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ABSTRACT: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high
dimensional Euclidean space can be mapped into an O(log n/€?)-dimensional Euclidean space such
that the distance between any two points changes by only a factor of (1 = €). In this note, we prove
this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct.
Alg., 22: 60-65, 2002

1. INTRODUCTION

A fundamental result of Johnson and Lindenstrauss [13] says that any n point subset of
Euclidean space can be embedded in k = O(log n/€*) dimensions without distorting the
distances between any pair of points by more than a factor of (1 = €), for any 0 < € <
1. In recent work, Noga Alon has shown that this result is essentially tight: His result
shows that any set of n points with inter-point distances lying in the range [1 — €, 1 +
€] requires at least )(log n/(ezlog 1/€)) dimensions [1, Section 9].

In recent years, the Johnson—Lindenstrauss theorem has found numerous applications
that include bi-Lipschitz embeddings of graphs into normed spaces [14], searching for
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approximate nearest neighbors in high-dimensional Euclidean space [12], learning mix-
tures of Gaussians [5], and dimension reduction in databases [2].

The original proof of Johnson and Lindenstrauss is probabilistic, showing that project-
ing the n-point subset onto a random subspace of O(log n/€*) dimensions only changes
the interpoint distances by (1 = €) with positive probability. Their proof was subsequently
simplified by Frankl and Maehara [7, 8]. The proof given in this note uses elementary
probabilistic techniques to obtain the result. Indyk and Motwani [12], Arriaga and
Vempala [3], and Achlioptas [2] have also given similar proofs of the theorem using
simple randomized algorithms. (A discussion of some of these proofs is given in Section
3.) Many of these randomized algorithms have recently been derandomized by [6, 15].

2. THE JOHNSON-LINDENSTRAUSS THEOREM

The main result of this paper is the following:
Theorem 2.1. Forany 0 < € < 1 and any integer n, let k be a positive integer such that
k=4(e¥2 — €/3) 'In n. (2.1)

Then for any set V of n points in RY, there is a map f : R — R* such that for all u,
veE YV,

(1 = )llu = o> = [lfw) = f)|P = (A1 + &)flu — o
Furthermore, this map can be found in randomized polynomial time.

The original paper of Johnson and Lindenstrauss [13] proved a version of this result
with the lower bound on k being O(log n). In their paper, Frankl and Maehara [7] showed
that k = [9(e? — 2€%/3) 'Inn| + 1 dimensions are sufficient; the papers of Indyk and
Motwani [12] and Achlioptas [2] give essentially the same bounds for k as we do. (For a
discussion on these proofs, the reader is pointed to Section 3.)

Our proof of the theorem follows a fairly standard line of reasoning which has been
used before for this problem (e.g., in [7]): It shows that the squared length of a random
vector is sharply concentrated around its mean when the vector is projected onto a random
k-dimensional subspace. Specifically, with probability O(1/n?), its (scaled) length is not
distorted by more than (1 = €). The theorem then follows from a union bound.

Hence the aim is to estimate the length of a unit vector in R when it is projected onto
a random k-dimensional subspace. However, this length has the same distribution as the
length of a random unit vector projected down onto a fixed k-dimensional subspace. Here
we take this subspace to be the space spanned by the first £ coordinate vectors, for
simplicity.

Let X,, ..., X, be d independent Gaussian N(0, 1) random variables, and let
Yzm (X1, ...,X,). It is easy to see that Y is a point chosen uniformly at random from
the surface of the d-dimensional sphere 7~ '. Let the vector Z € R be the projection of
Y onto its first k coordinates, and let L = [|Z||*. Clearly the expected squared length of Z
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is w = E[L] = k/d. The following lemma shows that L is also fairly tightly concentrated
around p.

Lemma 2.2. Let k < d. Then

a. If B < 1, then

k 1 — B)k\“0"2 k
Pr{L SZ] = Bk’2(1 + ((d—i))> = exp<2(1 —B+1n B))
b. If B > 1, then

K 1 — Bk k
Pr{LZ@] SB’“(I +((d—Bk))> Sexp(z(l —B+1n B)).

Before we prove this lemma, let us see how it implies Theorem 2.1.

Proof of Theorem 2.1.  1If d = k, the theorem is trivial. Else take a random k-dimensional

subspace S, and let v} be the projection of point v; € V into S. Then, setting L = ||v} —
v|I> and p = (k/d)|v; — v]* and applying Lemma 2.2(a), we get that

PrlL=(1 - eu]= exp(lz< 1-@0—¢€ +1In(1 — e)))

= oftfe(e+ ) el )

= exp(—21Inn) = 1/n?,

where, in the second line, we have used the inequality In(1 — x) = —x — x%/2, valid
forall )0 = x < 1.

Similarly, we can apply Lemma 2.2(b) and the inequality In(1 + x) = x — x%/2 +
x°/3 (which is valid for all x = 0) to get

PrlL=(1+ eu]= exp(lzC 1—-(1+e€ +1In(1+ e)))

k e é k(€12 — €/3)
§exp(2 (—e-i— (e—2+3>)>=exp<—2 )

1
=exp(—2Inn) = g

Now set the map f(v;) = (\/ﬂ)v;. By the above calculations, for some fixed pair i,
J» the chance that the distortion || f(v,) — f(v)|[*/|[v; — vj||* does not lie in the range [(1 —
€), (1 + €] is at most 2/n>. Using the trivial union bound, the chance that some pair of
points suffers a large distortion is at most (3) X 2/n* = 1 — 1/n. Hence f has the desired
properties with probability at least 1/n. Repeating this projection O(n) times can boost the

success probability to the desired constant, giving us the claimed randomized polynomial
time algorithm.
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To finish off, let us prove Lemma 2.2. The proof uses by now standard techniques used
for proving large deviation bounds on sums of random variables [4, 9].

Proof of Lemma 2.2(a). We use the easily-proved fact that if X ~ N(0, 1), then E[esxz]
= 1/VI — 2s, for —» <5 < % We now prove that

k(1 — (d—k)/2
( B)) . (2.2)

PrldX?+ - -+ X) =kBX>+ -+ X)] = Bk’2<1 +——

Note that this is just another way of stating Lemma 2.2(a). However, this can be shown
by the following algebraic manipulations:

Prld(X; + -+ X) =kBX; + - + X))
= PrlkB(X; + -+ X)) —d(X; + -+ - + X;) = 0]
= Prlexp{tkB(X; + - - -+ X)) —d(X;+ - - -+ X))} = 1] (for ¢t > 0)
= E[exp{tkB(X; + - - -+ X3) —d(X} + - - - + X})}] (by Markov’s inequality)
= E[exp{tkBX*}]“ “E[exp{t(kB — d)X*} ]} (where X ~ N(0, 1))
= (1 — 2tkB)" P21 — 2t(kB — d)) 2.
We will refer to this last expression as g(¢). The last line of the derivation gives us the

additional constraints that tk3 < %and kB —d) < % The latter constraint is subsumed
by the former (since t = 0), and so 0 < ¢ < 1/2kf3. Now, to minimize g(¢), we maximize

o) = (1 = 26kB) (1 = 2e(kB — d))*

in the interval 0 < ¢t < 1/2kp. Differentiating f, we get that the maximum is achieved
at

_a-p
2B(d— kB)*

)

which lies in the permitted range (0, 1/2kf3). Hence we have

d—k\"*1\*
o= =5) ()
and the fact that g(z,) = 1/Vf(t,) proves the inequality (2.2). "

Proof of Lemma 2.2(b). The proof is almost exactly the same as that of Lemma 2.2(a).
The same calculations show

Prld(G + - + X)) = kBOG + -+ + X0)]
= (1 +26kB)~“"M2(1 + 26(kB — d)) > = g(—1)
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for 0 <t < 1/2(d — k). But this is minimized at —¢,, where ¢, is as defined in the
previous proof. This does lie in the desired range (0, 1/2(d — kf3)) for B > 1, which
gives us that

k(l _ B))(dk)lz

PrldX?+ - -+ X)=kBX> + -+ X)] = kaz(l +——

3. DISCUSSION

The reader may find it interesting to compare the results of this paper with the alternate
proofs given by Indyk and Motwani in [12], and by Achlioptas in [2].

The algorithm in former paper does not choose a random k-dimensional subspace per
se; it instead picks k independent random vectors { U,}*_, from the d-dimensional normal
distribution (with the unit covariance matrix), and sets the i-th coordinate of the map f( x)
to be ﬁ (U,, x). The proof follows by formalizing the intuition that these random vectors
are almost orthogonal to each other, and hence this mapping is almost the same as
projecting onto a random k-dimensional subspace.

The statement in [12] analogous to our Lemma 2.2 is somewhat weaker in the sense
that the lower bound for k contains some lower order terms, as a result of which one has
to assume a lower bound for k larger by an additive factor of roughly O(log log n).
However, their algorithm is substantially simpler, since it just has to populate all the

entries of a k X d matrix A by independent N(O, 1) random variables, whereupon the

images of x € V are given by f(x):%a (Ax).

The latter paper [2] takes this idea even further and shows that, instead of using
Gaussians, one can pick the entries of A to be uniformly and independently drawn from
{1, —1}. With a tighter analysis than that of [12], this paper gives the same bound for k
as Theorem 2.1.
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