
A Wait-Free Stack

Seep Goel, Pooja Aggarwal and Smruti R. Sarangi
E-mail: seep.goyal@gmail.com, {pooja.aggarwal, srsarangi}@cse.iitd.ac.in

Indian Institute of Technology, New Delhi, India

Abstract. In this paper, we describe a novel algorithm to create a con-
current wait-free stack. To the best of our knowledge, this is the first
wait-free algorithm for a general purpose stack. In the past, researchers
have proposed restricted wait-free implementations of stacks, lock-free
implementations, and efficient universal constructions that can support
wait-free stacks. The crux of our wait-free implementation is a fast pop
operation that does not modify the stack top; instead, it walks down
the stack till it finds a node that is unmarked. It marks it but does not
delete it. Subsequently, it is lazily deleted by a cleanup operation. This
operation keeps the size of the stack in check by not allowing the size of
the stack to increase beyond a factor of W as compared to the actual
size. All our operations are wait-free and linearizable.

1 Introduction

In this paper, we describe an algorithm to create a wait-free stack. A concurrent
data structure is said to be wait-free if each operation is guaranteed to complete
within a finite number of steps. In comparison, the data structure is said to be
lock-free if at any point of time, at least one operation is guaranteed to complete
in a finite number of steps. Lock-free programs will not have deadlocks but
can have starvation, whereas wait-free programs are starvation free. Wait-free
stacks have not received a lot of attention in the past, and we are not aware
of algorithms that are particularly tailored to creating a generalized wait-free
stack. However, approaches have been proposed to create wait-free stacks with
certain restrictions [1], [3], [7], [8], and with universal constructions [10], [5].
The main reason that it has been difficult to create a wait-free stack is because
there is a lot of contention at the stack top between concurrent push and pop
operations. It has thus been hitherto difficult to realize the gains of additional
parallelism, and also guarantee completion in a finite amount of time.

The crux of our algorithm is as follows. We implement a stack as a linked
list, where the top pointer points to the stack top. Each push operation adds
an element to the linked list, and updates the top pointer. Both of these steps
are done atomically, and the overall operation is linearizable (appears to execute
instantaneously). However, the pop operation does not update the top pointer.
This design decision has been made to enable more parallelism, and reduce the
time per operation. It instead scans the list starting from the top pointer till it
reaches an unmarked node. Once, it reaches an unmarked node, it marks it and
returns the node as the result of the pop operation. Over time, more and more

ar
X

iv
:1

51
0.

00
11

6v
1

 [
cs

.D
C

]
 1

 O
ct

 2
01

5

nodes get marked in the stack. To garbage collect such nodes we implement a
cleanup operation that can be invoked by both the push and pop operations.
The cleanup operation removes a sequence of W consecutively marked nodes
from the list. In our algorithm, we guarantee that at no point of time the size of
the list is more than W times the size of the stack (number of pushes - pops).
This property ensures that pop operations complete within a finite amount of
time. Here, W is a user defined parameter and it needs to be set to an optimal
value to ensure the best possible performance.

The novel feature of our algorithm is the cleanup operation that always keeps
the size of the stack within limits. It does not allow the number of marked nodes
that have already been popped to indefinitely grow. The other novel feature
is that concurrent pop and push operations do not cross each others’ paths.
Moreover, all the pop operations can take place concurrently. This allows us to
have a linearizable operation. In this paper, we present our basic algorithm along
with proofs of important results. Readers can find the rest of the pseudo code,
asymptotic time complexities, and proofs in the appendices.

2 Related Work

In 1986, Treiber [15] proposed the first lock-free implementation of a concurrent
stack. He employed a linked list based data structure, and in his implemen-
tation, both the push and pop operations modified the top pointer using CAS
instructions. Subsequently, Shavit et al. [14] and Hendler et al. [6] designed a
linearizable concurrent stack using the concept of software combining. Here, they
group concurrent operations, and operate on the entire group.

In 2004, Hendler et al. [9] proposed a highly scalable lock-free stack using
an array of lock-free exchangers known as an elimination array. If a pop opera-
tion is paired with a push operation, then the baseline data structure need not
be accessed. This greatly enhances the amount of available parallelism, and is
known to be one of the most efficient implementations of a lock-free stack. This
technique can be incorporated in our design as well. Subsequently, Bar-Nissan et
al. [2] have augmented this proposal with software combining based approaches.
Recently, Dodds et al. [4] proposed a fast lock-free stack, which uses a timestamp
for ordering the push and pop operations.

The restricted wait-free algorithms for the stack data structure proposed so
far by the researchers are summarized in Table 1.

The wait-free stack proposed in [1] employs a semi-infinite array as its un-
derlying data structure. A push operation obtains a unique index in the array
(using getAndIncrement()) and writes its value to that index. A pop operation
starts from the top of the stack, and traverses the stack towards the bottom. It
marks and returns the first unmarked node that we find. Our pop operation is
inspired by this algorithm. Due to its unrestricted stack size, this algorithm is
not practical.

David et al. [3] proposed another class of restricted stack implementations.
Their implementation can support a maximum of two concurrent push opera-
tions. Kutten et al. [7,8] suggest an approach where a wait-free shared counter
can be adapted to create wait-free stacks. However, their algorithm requires the

Author Primitives Remarks

Herlihy 1991 [10] CAS
1. Copies every global update to the private copy of every thread.
2. Replicates the stack data structure N times (N → # threads).

Afek et al. [1] F&A, 1. Requires a semi-infinite array (impractical).
2006] TAS 2. Unbounded stack size.
Hendler et al. [7]

DCAS
1. DCAS not supported in modern hardware

2006] 2. Variation of an implementation of a shared counter.
Fatourou et al. [5] LL/SC, 1. Copies every global update to the private copy of every thread.
2011] F&A 2. Relies on wait-free implementation of F&A in hardware.
David et al. 2011 [3] BH Object 1. Supports at the most two concurrent pop operations

CAS → compare-and-set, TAS → test-and-set, LL/SC → load linked-store conditional
DCAS → double location CAS, F&A → fetch-and-add, BH Object (custom object [3])

Table 1. Summary of existing restricted wait-free stack algorithms

DCAS (double CAS) primitive, which is not supported in contemporary hard-
ware.

Wait-free universal constructions are generic algorithms that can be used to
create linearizable implementations of any object that has valid sequential se-
mantics. The inherent drawback of these approaches is that they typically have
high time and space overheads (creates local copies of the entire (or partial)
data structure). A recent proposal by Fatourou et al. [5] can be used to im-
plement stacks and queues. The approach derives its performance improvement
over the widely accepted universal construction of Herlihy [10] by optimizing on
the number of shared memory accesses.

3 The Algorithm

3.1 Basic Data Structures

Algorithm 1 shows the Node class, which represents a node in a stack. It has a
value, and pointers to the next (nextDone) and previous nodes (prev) respec-
tively. Note that our stack is not a doubly linked list, the next pointer nextDone
is only used for reaching consensus on which node will be added next in the stack.

To support pop operations, every node has a mark field. The pushT id field
contains the id of the thread that created the request. The index field and
counter is an atomic integer and is used to clean up the stack.

Algorithm 1: The Node Class
1 class Node

2 int value

3 AtomicMarkableReference < Node > nextDone

4 AtomicReference < Node > prev

5 AtomicBoolean mark

6 int pushTid

7 AtomicInteger index

8 AtomicInteger counter /* initially set to 0 */

In our wait-free stack, the nodes are arranged as a linked list. Initially, the list
contains only the sentinel node, which is a dummy node. As we push elements,
the list starts to grow. The top pointer points to the current stack top.

3.2 High level Overview

The push operation starts by choosing a phase number (in a monotonically
increasing manner), which is greater than the phase numbers of all the existing
push operations in the system. This phase number along with a reference to the
node to be pushed and a flag indicating the status of the push operation are
saved in the announce array in an atomic step. After this, the thread ti scans
the announce array and finds out the thread tj , which has a push request with
the least phase number. Note that, the thread tj found out by ti in the last step
might be ti itself. Next, ti helps tj in completing tj ’s operation. At this point of
time, some threads other than ti might also be trying to help tj , and therefore,
we must ensure that tj ’s operation is applied exactly once. This is ensured by
mandating that for the completion of any push request, the following steps must
be performed in the exact specified order:

1. Modify the state of the stack in such a manner that all the other push re-
quests in the system must come to know that a push request pi is in progress
and additionally they should be able to figure out the details required by
them to help pi.

2. Update the status flag to DONE in pi’s entry in the announce array.
3. Update the top pointer to point to the newly pushed node.

The pop operation has been designed in such a manner that it does not update
the top pointer. This decision has the dual benefit of eliminating the contention
between concurrent push and pop operations, as well as enabling the parallel
execution of multiple pop operations. The pop operation starts by scanning the
linked list starting from the stack’s top till it reaches an unmarked node. Once,
it gets an unmarked node, it marks it and returns the node as a result of the
pop operation. Note that there is no helping in the case of a pop operation and
therefore, we do not need to worry about a pop operation being executed twice.
Over time, more and more nodes get marked in the stack. To garbage collect
such nodes we implement a clean operation that can be invoked by both the
push and pop operations.

3.3 The Push Operation

The first step in pushing a node is to create an instance of the PushOp class.
It contains the reference to a Node (node), a Boolean variable pushed that
indicates the status of the request, and a phase number (phase) to indicate the
age of the request. Let us now consider the push method (Line 14). We first
get the phase number by atomically incrementing a global counter. Once the
PushOp is created and its phase is initialized, it is saved in the announce array.
Subsequently, we call the function help to actually execute the push request.

The help function (Line 19) finds the request with the least phase number
that has not been pushed yet. If there is no such request, then it returns. Oth-
erwise it helps that request (minReq) to complete by calling the attachNode
method. After helping minReq, we check if the request that was helped is
the same as the request that was passed as an argument to the help function
(request) in Line 19. If they are different requests, then we call attachNode

for the request request in Line 26. This is a standard construction to make a
lock-free method wait-free (refer to [11]).

In the attachNode function, we first read the value of the top pointer, and
its next field. If these fields have not changed between Lines 31 and 32, then we
try to find the status of the request in Line 34. Note that we check that next is
equal to null, and mark is equal to false in the previous line (Line 33). The mark
field is made true after the top pointer has been updated. Hence, in Line 33, if
we find it to be true then we need to abort the current iteration and read the
top pointer again.

Algorithm 2: The Push Method
9 class PushOp

10 long phase

11 boolean pushed

12 Node node

13 AtomicReferenceArray < PushOp > announce

14 push(tid, value)

15 phase ← globalPhase.getAndIncrement()

16 request ← new PushOp(phase,false,new Node(value,tid))

17 announce[tid] ← request

18 help(request)

19 help(request)

20 (minTid, minReq) ← minreq.phase { (i, req) | 0 ≤ i < N , req = announce[i], !req.pushed }
21 if (minReq == null) || (minReq.phase > request.phase) then
22 return

23 end

24 attachNode(minReq)

25 if minReq 6= request then
26 attachNode(request)

27 end

28 attachNode(request)

29 while !request.pushed do
30 last ← top.get()

31 (next, done) ← last.nextDone.get()

32 if last == top.get() then
33 if next == null && done = false then
34 if !request.pushed then
35 myNode ← request.node

36 res ← last.nextDone.compareAndSet((null,false), (myNode, false))

37 if res then
38 updateTop()

39 last.nextDone.compareAndSet ((myNode, false), (null,true))

40 return

41 end

42 end

43 end

44 updateTop()

45 end

46 end

After, we read the status of the request, and find that it has not completed,
we proceed to update the next field of the stack top in Line 36 using a compare-
And-Set (CAS) instruction. The aim is to change the pointer in the next field
from null to the node the push request needs to add. If we are successful, then we

need to update the top pointer by calling the function, updateTop. After the top
pointer has been updated, we do not really need the next field for subsequent
push requests. It will not be used. However, concurrent requests need to see
that last.nextDone has been updated. The additional compulsion to delete the
contents of the pointer in the next field is that it is possible to have references
to deleted nodes via the next field. The garbage collector in this case will not
be able to remove the deleted nodes. Thus, after updating the top pointer, we
set the next field’s pointer to null, and set the mark to true. If a concurrent
request reads the mark to be true, then it can be sure, that the top pointer has
been updated, and it needs to read it again.

If the CAS instruction fails, then it means that another concurrent request
has successfully performed a CAS operation. However, it might not have updated
the top pointer. It is thus necessary to call the updateTop function to help the
request complete.

Algorithm 3: The updateTop method
47 updateTop()

48 last ← top.get()

49 (next, mark) ← last.nextDone.get()

50 if next 6= null then
51 request ← announce.get(next.pushTid)

52 if last == top.get() && request.node == next then
53 /* Add the request to the stack and update the top pointer */

54 next.prev.compareAndSet(null, last)

55 next.index ← last.index +1

56 request.pushed ← true

57 stat ← top.compareAndSet(last, next)

58 /* Check if any cleaning up has to be done */

59 if next.index % W == 0 && stat == true then
60 tryCleanUp(next)

61 end

62 end

63 end

The updateTop method is shown in Algorithm 3. We read the top pointer, and
the next pointer. If next is non-null, then the request has not fully completed. It
is necessary to help it complete. After having checked the value of the top pointer,
and the value of the next field, we proceed to connect the newly attached node
to the stack by updating its prev pointer. We set the value of its prev pointer in
Line 54. Every node in the stack has an index that is assigned in a monotonically
increasing order. Hence, in Line 55, we set the index of next to 1 plus the index
of last. Next, we set the pushed field of the request equal to true. The point
of linearizability is Line 57, where we update the top pointer to point to next
instead of last. This completes the push operation.

We have a cleanup mechanism that is invoked once the index of a node
becomes a multiple of a constant, W . We invoke the tryCleanUp method in
Line 60. It is necessary that the tryCleanUp() method be called by only one
thread. Hence, the thread that successfully performed a CAS on the top pointer
calls the tryCleanUp method if the index is a multiple of W .

3.4 The Pop Operation

Algorithm 4 shows the code for the pop method. We read the value of the top
pointer and save it in the local variable, myTop. This is the only instance in this
function, where we read the value of the top pointer. Then, we walk back towards
the sentinel node by following the prev pointers (Lines 67 – 73). We stop when
we are successfully able to set the mark of a node that is unmarked. This node
is logically “popped” at this instant of time. If we are not able to find any such
node, and we reach the sentinel node, then we throw an EmptyStackException.

Algorithm 4: The Pop Method
64 pop()

65 mytop ← top.get()

66 curr ← mytop

67 while curr 6= sentinel do

68 mark ← curr.mark.getAndSet(true)

69 if !mark then
70 break

71 end

72 curr ← curr.prev

73 end

74 if curr == sentinel then
75 /* Reached the end of the stack */

76 throw new EmptyStackException()

77 end

78 /* Try to clean up parts of the stack */

79 tryCleanUp(curr)

80 return curr

After logically marking a node as popped, it is time to physically delete it.
We thus call the tryCleanUp method in Line 79. The pop method returns the
node that it had successfully marked.

3.5 The CleanUp Operation

The aim of the clean method is to clean a set of W contiguous entries in the list
(indexed by the prev pointers). Let us start by defining some terminology. Let
us define a range of W contiguous entries, which has four distinguished nodes
as shown in Figure 1.

A range starts with a node termed the base, whose index is a multiple of
W . Let us now define target as base.prev. The node at the end of a range is
leftNode. Its index is equal to base.index + W − 1. Let us now define a node
rightNode such that rightNode.prev = leftNode. Note that for a given range,
the base and leftNode nodes are fixed, whereas the target and rightNode nodes
keep changing. rightNode is the base of another range, and its index is a multiple
of W .

The push and the pop methods call the function tryCleanUp. The push
method calls it when it pushes a node whose index is a multiple of W . This is a
valid rightNode. It walks back and increments the counter of the base node of
the previous range. We ensure that only one thread (out of all the helpers) does
this in Line 59. Similarly, in the pop function, whenever we mark a node, we call

the tryCleanUp function. Since the pop function does not have any helpers, only
one thread per node calls the tryCleanUp function. Now, inside the tryCleanUp
function, we increment the counter of the base node. Once, a thread increments
it to W + 1, it invokes the clean function. Since only one thread will increment
the counter to W +1, only one thread will invoke the clean function for a range.

..........

W nodes

target rightNode

leftNodebase

Fig. 1. A range of W entries

Algorithm 5: The tryCleanUp method
81 tryCleanUp(myNode)

82 temp ← myNode.prev

83 while temp 6= sentinel do
84 if temp.index() % W == 0 then
85 if temp.counter.incrementAndGet == W + 1 then
86 clean(getTid(), temp)

87 end

88 break

89 end

90 temp ← temp.prev()

91 end

The functionality of the clean function is very similar to the push function.
Here, we first create a DeleteRequest that has four fields: phase (similar to phase
in PushOp), threadId, pending (whether the delete has been finished or not),
and the value of the base node. Akin to the push function, we add the newly cre-
ated DeleteRequest to a global array of DeleteRequests. Subsequently, we find
the pending request with the minimum phase in the array allDeleteRequests.

Note that at this stage it is possible for multiple threads to read the same
value of the request with the minimum phase number. It is also possible for
different sets of threads to have found different requests to have the minimum
phase. For example, if a request with phase 2 (R2) got added to the array before
the request with phase 1 (R1), then a set of threads might be trying to complete
R2, and another set might be trying to complete R1. To ensure that our stack
remains in a consistent state, we want that only one set goes through to the next
stage.

To achieve this, we adopt a strategy similar to the one adopted in the func-
tion attachNode. Interested readers can refer to the appendices for a detailed
explanation of how this is done. Beyond this point, all the threads will be work-
ing on the same DeleteRequest which we term as uniqueRequest. They will
then move on to call the helpF inishDelete function that will actually finish the
delete request.

Let us describe the helpF inishDelete function in Algorithm 6. We first read
the current request from the atomic variable, uniqueRequest in Line 93. If the

request is not pending, then some other helper has completed the request, and
we can return from the function. However, if this is not the case, then we need
to complete the delete operation. Our aim now is to find the target, leftNode,
and rightNode. We search for these nodes starting from the stack top.

The index of the leftNode is equal to the index of the node in the cur-
rent request (currRequest) + W − 1. endIdx is set to this value in Line 97.
Subsequently, in Lines 101–106, we start from the top of the stack, and keep
traversing the prev pointers till the index of leftNode is equal to endIdx. Once,
the equality condition is satisfied, Lines 101 and 102 give us the pointers to the
rightNode and leftNode respectively. If we are not able to find the leftNode,
then it means that another helper has successfully deleted the nodes. We can
thus return.

Algorithm 6: The helpF inishDelete method
92 helpFinishDelete()

93 currRequest ← uniqueRequest.get()

94 if !currRequest.pending then
95 return

96 end

97 endIdx ← currRequest.node.index + W − 1

98 rightNode ← top.get() /* Search for the request from the top */

99 leftNode ← rightNode.prev

100 while leftNode.index 6= endIdx && leftNode 6= sentinel do
101 rightNode ← leftNode

102 leftNode ← leftNode.prev

103 end

104 if leftNode = sentinel then
105 return /* some other thread deleted the nodes */

106 end

107 /* Find the target node */

108 target ← leftNode

109 for i=0; i < W ; i++ do
110 target ← target.prev

111 end

112 rightNode.prev.compareAndSet(leftNode, target) /* Perform the CAS operation and
delete the nodes */

113 currRequest.pending ← false /* Set the status of the delete request to not pending*/

The next task is to find the target. The target is W hops away from the
leftNode. Lines 108–111 run a loop W times to find the target. Note that we
shall never have any issues with null pointers because sentinel.prev is set to
sentinel itself. Once, we have found the target, we need to perform a CAS
operation on the prev pointer of the rightNode. We accomplish this in Line 112.
If the prev pointer of rightNode is equal to leftNode, then we set it to target.
This operation removes W entries (from leftNode to base) from the list. The last
step is to set the status of the pending field in the current request (currRequest)
to false (see Line 113).

4 Proof of Correctness
The most popular correctness criteria for a concurrent shared object is lineariz-
ability [12]. Linearizability ensures that within the execution interval of every

operation there is a point, called the linearization point, where the operation
seems to take effect instantaneously and the effect of all the operations on the
object is consistent with the object’s sequential specification. By the property
of compositional linearizability, if each method of an object is linearizable we
can conclude that the complete object is linearizable. Thus, if we identify the
point of linearization for both the push and the pop method in our implemen-
tation, we can say that our implementation is linearizable and thus establish its
correctness.

Interested readers can refer to the appendices, where we show that our imple-
mentation is legal and push and pop operations complete in a bounded number
of steps.

Theorem 1. The push and pop operations are linearizable.

Proof. Let us start out by defining the notion of “pass points”. The pass point of
a push operation is when it successfully updates the top pointer in the function
updateTop (Line 57). The pass point of the pop operation, is when it successfully
marks a node, or when it throws the EmtpyStackException. Let us now try to
prove by mathematical induction on the number of requests that it is always
possible to construct a linearizable execution that is equivalent to a given execu-
tion. In a linearizable execution all the operations are arranged in a sequential
order, and if request ri precedes rj in the original execution, then ri precedes rj
in the linearizable execution as well.
Base Case: Let us consider an execution with only one pass point. Since the
execution is complete, we can conclude that there was only one request in the sys-
tem. An equivalent linearizable execution will have a single request. The outcome
of the request will be an EmptyStackException if it is a pop request, otherwise it
will push a node to the stack. Our algorithm will do exactly the same in the pop
and attachNode methods respectively. Hence, the executions are equivalent.
Induction Hypothesis: Let us assume that all executions with n requests are
equivalent to linearizable executions.
Inductive Step: Let us now prove our hypothesis for executions with n + 1
requests. Let us arrange all the requests in an ascending order of the execution
times of their pass points. Let us consider the last ((n + 1)th) request just after
the pass point of the nth request. Let the last request be a push. If the nth re-
quest is also a push, then the last request will use the top pointer updated by the
nth request. Additionally, in this case the nth request will not see any changes
made by the last request. It will update last.next and the top pointer, before
the last request updates them. In a similar manner we can prove that no prior
push request will see the last request. Let us now consider a prior pop request. A
pop request scans all the nodes between the top pointer and the sentinel. None
of the pop requests will see the updated top pointer by the last request because
their pass points are before this event. Thus, they have no way of knowing about
the existence of the last request. Since the execution of the first n requests is
linearizable, an execution with the (n+ 1)th push request is also linearizable be-
cause it takes effect at the end (and will appear last in the equivalent sequential
order).

Let us now consider the last request to be a pop operation. A pop operation
writes to any shared location only after its pass point. Before its pass point, it
does not do any writes, and thus all other requests are oblivious of it. Thus,
we can remove the last request, and the responses of the first n requests will
remain the same. Let us now consider an execution fragment consisting of the
first n requests. It is equivalent to a linearizable execution, E . This execution is
independent of the (n + 1)th request.

Now, let us try to create a linearizable execution, E ′, which has an event
corresponding to the last request. Since the linearizable execution is sequential,
let us represent the request and response of the last pop operation by a single
event, R. Let us try to modify E to create E ′. Let the sequential execution
corresponding to E be S.

Now, it is possible that R could have read the top pointer long ago, and is
somewhere in the middle of the stack. In this case, we cannot assume that R is the
last request to execute in the equivalent linearizable execution. Let the state of
the stack before the pop reads the top pointer be S ′. The state S ′ is independent
of the pop request. Also note that, all the operations that have arrived after the
pop operation have read the top pointer, and overlap with the pop operation.
The basic rule of linearizability states that, if any operation Ri precedes Rj

then Ri should precede Rj in the equivalent sequential execution also. Whereas,
in case the two operations overlap with each other, then their relative order is
undefined and any ordering of these operations is a valid ordering [11].

In this case, we have two possibilities: (I) R returns the node that it had read
as the top pointer as an output of its pop operation, or (II) it returns some other
node.
Case I: In this case, we can consider the point at which R reads the top pointer
as the point at which it is linearized. R in this case reads the stack top, and pops
it.
Case II: In this case, some other request, which is concurrent must have popped
the node that R read as the top pointer. Let R return node Ni as its return
value. This node must be between the top pointer that it had read (node Ntop),
and the beginning of the stack. Moreover, while traversing the stack from Ntop

to Ni, R must have found all the nodes in the way to be marked. At the end it
must have found Ni to be unmarked, or would have found Ni to be the end of
the stack (returns exception).

Let us consider the journey for R from Ntop to Ni. Let Nj be the last node
before Ni that has been marked by a concurrent request, Rj . We claim that if R
is linearized right after Rj , and the rest of the sequences of events in E remain
the same, we have a linearizable execution (E ′).

Let us consider request Rj and its position in the sequential execution, S. At
its point of linearization, it reads the top of the stack and returns it (according
to S). This node Nj is the successor of Ni. At that point Ni becomes the top
of the stack. At this position, if we insert R into S, then it will read and return
Ni as the stack top, which is the correct value. Subsequently, we can insert the
remaining events in S into the sequential execution. They will still return the
same set of values because they are unaffected by R as proved before.

This proof can be trivially extended to take cleanup operations into account.

5 Conclusion

The crux of our algorithm is the clean routine, which ensures that the size of
the stack never grows beyond a predefined factor, W . This feature allows for a
very fast pop operation, where we need to find the first entry from the top of the
stack that is not marked. This optimization also allows for an increased amount
of parallelism, and also decreases write-contention on the top pointer because
it is not updated by pop operations. As a result, the time per pop operation is
very low. The push operation is also designed to be very fast. It simply needs to
update the top pointer to point to the new data. To provide wait-free guarantees
it was necessary to design a clean function that is slow. Fortunately, it is not
invoked for an average of W − 1 out of W invocations of push and pop. We can
tune the frequency of the clean operation by varying the parameter, W (to be
decided on the basis of the workload).

References

1. Afek, Y., Gafni, E., Morrison, A.: Common2 extended to stacks and unbounded
concurrency. Distributed Computing 20(4), 239–252 (2007)

2. Bar-Nissan, G., Hendler, D., Suissa, A.: A dynamic elimination-combining stack
algorithm. In: Principles of Distributed Systems, pp. 544–561. Springer (2011)

3. David, M., Brodsky, A., Fich, F.: Restricted stack implementations. In: Fraigniaud,
P. (ed.) Distributed Computing, Lecture Notes in Computer Science, vol. 3724, pp.
137–151. Springer Berlin Heidelberg (2005)

4. Dodds, M., Haas, A., Kirsch, C.M.: A scalable, correct time-stamped stack (2014)
5. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction.

In: SPAA (2011)
6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the

synchronization-parallelism tradeoff. In: Proceedings of the 22nd ACM symposium
on Parallelism in algorithms and architectures. pp. 355–364. ACM (2010)

7. Hendler, D., Kutten, S.: Constructing shared objects that are both robust and
high-throughput. In: Distributed Computing, pp. 428–442. Springer (2006)

8. Hendler, D., Kutten, S., Michalak, E.: An adaptive technique for constructing
robust and high-throughput shared objects-technical report (2010)

9. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures. pp. 206–215. SPAA ’04, ACM, New York, NY, USA
(2004)

10. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (Jan 1991)

11. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Elsevier (2012)
12. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (Jul 1990)
13. Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe lock-

ing on multiprogrammed shared memory multiprocessors. Journal of Parallel and
Distributed Computing 51(1), 1 – 26 (1998)

14. Shavit, N., Zemach, A.: Combining funnels: a dynamic approach to software com-
bining. Journal of Parallel and Distributed Computing 60(11), 1355–1387 (2000)

15. Treiber, R.K.: Systems programming: Coping with parallelism. International Busi-
ness Machines Incorporated, Thomas J. Watson Research Center (1986)

Appendices of A Wait-Free Stack

A Asymptotic Worst-Case Time Complexity

Let us now consider the asymptotic worst-case time complexity of the push, pop
and clean methods in terms of the number of concurrent threads in the system
(N), the actual size of the stack(S) and the parameter W .

A.1 The clean method

The time complexity of the clean method is the same as that of the helpDelete
function. The helpDelete function finds the delete request with the minimum
phase number, which requires O(N) steps. After having found the request with
the minimum phase number, it calls the uniqueDelete function. The uniqueDelete
function contains a while loop. In the worst case this while loop might execute
N times. Now, when we look into the body of this while loop, everything ex-
cept the call to the helpF inishDelete function has O(1) time complexity. The
helpF inishDelete function contains two loops. The first is a while loop, which
traverses the stack from the top to the point it finds the desired node. In the
worst possible case, this loop might end up traversing the complete stack. We
do not allow the size of the stack to increase by more than a factor of W as
compared to S, the worst case time complexity of this loop is therefore O(WS).
The other loop in the function is a for loop, with time complexity O(W). So,
the worst case time complexity of the helpF inishDelete function is O(WS) and
therefore, the worst case time complexity of the clean function is O(NWS). The
high time complexity of this method is an achilles heel of our algorithm; hence,
we are working on reducing its complexity as well as practical run time. How-
ever, it should be noted that this function is meant to be called infrequently (1
in W times).

A.2 The pop method

In the pop method, everything except the while loop and the call to the tryCleanUp
function take O(1) time. The while loop is iterated over till the time an un-
marked mode is encountered. In our algorithm, as soon as W consecutive nodes
get marked, we issue a cleanUp request for it and at any point of time there
can be at most N − 1 clean requests in the system. Thus after having traversed
at most WN nodes, a pop request is assured to find an unmarked node. Now,
if we analyze the tryCleanUp method, in the worst case scenario, the while
loop inside the function will be iterated over W times but the clean method will
only be called at most once. In fact, the clean method is called only once for
a group of W + 1 operations, and therefore, the worst case time complexity of
the tryCleanUp function, which is O(NWS), will be incurred very infrequently
(1 in W). Nevertheless the worst case time complexity of the pop operation
is O(NWS), and the amortized time complexity (across W pop operations is
O(NS).

A.3 The push method

The time complexity of the push method is the same as that of the help func-
tion. Since the help function is supposed to find the request with the least phase
number, it takes at least O(N) time. After having found the request with the
minimum phase number, the help function calls the attachNode function. Note
that for any push request, the maximum number of times the while loop in the
attachNode function could possibly execute is of O(N). Also note that every-
thing inside the while loop, except the call to the updateTop function requires
only a constant amount of time for execution. If the index of the newly pushed
node is not a multiple of W , the updateTop’s time complexity is O(1), and there-
fore the time complexity of the push operation is O(N), but if this is not the
case, the time complexity of the updateTop function becomes dependent on the
time complexity of the tryCleanUp function, which is O(NWS) in the worst
case.

All our methods: push, pop and clean are bounded wait-free.

B Background

A stack is a data structure that provides push and pop operations with LIFO((Last-
in-First-Out) semantics. A data structure is said to respect LIFO semantics, if
the last element inserted is the first to be removed.

B.1 Correctness

The most popular correctness criteria for a concurrent shared object is lineariz-
ability [12]. Let us define it formally.

Let us define two kinds of events in a method call namely invocations (inv)
and responses (resp). A chronological sequence of invocations (inv) and responses
(resp) events in the entire execution is known as a history. Let a matching
invocation-response pair with a sequence number i be referred to as request ri.
Note that in our system, every invocation has exactly one matching response. A
request ri precedes request rj , if ri’s response comes before rj ’s invocation. This
is denoted by ri ≺ rj . A history, H, is said to be sequential if an invocation is
immediately followed by its response. A subhistory (H|T) is the subsequence of
H containing all the events of thread T . Two histories, H and H ′, are equivalent if
for every thread , H|T = H ′|T . A complete history - complete(H) is a history that
does not have any pending invocations. The sequential specification of an object
constitutes of the set of all sequential histories that are correct. A sequential
history is legal if for every object x, H|x is in the sequential specification of x.

A history H is linearizable if complete(H) is equivalent to a legal sequential
history, S. Additionally, if ri ≺ rj in complete(H), then ri ≺ rj in S also. Alter-
natively we can say, linearizability ensures that within the execution interval of
every operation there is a point, called the linearization point, where the opera-
tion seems to take effect instantaneously and the effect of all the operations on
the object is consistent with the object’s sequential specification.

B.2 Progress

Generally, there are two kinds of implementations for a concurrent object: blocking
and non-blocking. Blocking algorithm use locks. Approaches that protect critical
sections with locks unnecessarily limit parallelism and are known to be ineffi-
cient.

In comparison non-blocking implementations can prove to be much faster.
Such algorithms rely on atomic primitives such as compare-And-Set(CAS), LL/SC,
and getAndIncrement. They do not have critical sections. In this context, lock-
freedom is defined as a property that ensures that at any point of time at least
one thread makes progress. Or in other words, the system as a whole is always
making progress. They can still have problems of starvation.

Wait-free algorithms provide starvation freedom in addition to being lock-
free. They ensure that every process completes its operation in a finite number of
steps. The wait-free algorithms have a notion of inherent fairness, where fairness
measures the degree of imbalance across different threads. We quantify fairness
as the ratio of the average number of operations completed by an thread divided
by the number of operations completed by the fastest thread. Figure 2 shows a
comparison of the fairness of our wait-free stack WF with the lock-free stack
LF in [9] and the locked stack in [13] LCK. For the WF version, the average
fairness is around 80%, whereas for LF the fairness goes as low as 50%, and
for LCK, it even drops to 25%. Also, as shown in figure 3 and 4, in the case
of WF , almost all the threads have completed more than 90% of their work,
whereas for LF only 11 out of 64 threads have completed more than 90% of
their work and for some threads the percentage of work done is as low as 40%
only.

1 2 4 8 16 32 64
No. of Threads

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fa
irn

es
s

Wait-Free Lock-Free(Hendler et al.) Locked

Fig. 2. Fairness

30000 40000 50000 60000 70000 80000 90000 100000
No. of operations

0

2

4

6

8

10

12

14

No
. o

f T
hr

ea
ds

Fig. 3. Operations done by
various threads : Lock-free

88000 90000 92000 94000 96000 98000 100000
No. of operations

0

2

4

6

8

10

12

14

16

18

No
. o

f T
hr

ea
ds

Fig. 4. Operations done by
various threads : Wait-free

C Proof of Correctness

Lemma 1. Every push request is inserted at Line 36 at most once.

Proof. To the contrary, let us assume that the same request is inserted at least
twice in Line 36. Let us consider the sequence of steps that need to take place.

Step 0: Read the value of last and next, and observe that next = null.
Step 1: We read the status as START in Line 34.
Step 2: The CAS succeeds in Line 36.
Step 3: Some thread reads next 6= null in Line 50 (updateTop function).
Step 4: The status of the node is updated to DONE by some thread in Line 56.
Step 5: The top pointer is changed in Line 57.

Let us now explain the steps and mention why these steps need to be per-
formed in a sequence (not necessarily by the same thread). To insert any node
in Line 36 it is necessary to perform steps 0, 1 and 2 because to reach Line 36, it
is necessary to satisfy the condition of the if statement in Line 34. At this point,
the next pointer has been updated, and the top pointer has not been updated.
It is not possible to insert any other request till the next pointer does not be-
come null. This is only possible when we update the top pointer. To update the
top pointer some thread – either the thread that is doing the push operation,
or some other thread – needs to successfully perform the updateTop operation.
This can only be achieved if a thread executes Lines 50 to 57, or in other words,
performs steps 3, 4, and 5. Before the top pointer is updated in Line 57, another
concurrent push request cannot be successful because two push requests cannot
simultaneously perform a successful CAS operation in step 2.

Now we have proved that if any push operation has successfully completed
step 2 (performed the CAS on the next pointer), then till steps 3, 4, and 5 are
performed no other push request can be successful. This means that between any
two successful push operations, the status of the request needs to be changed
(step 4). Let us now assume that two push requests for the same node are
successful. Let the request that performs step 2 first be Ri, and let the other
request be Rj . We denote this fact as: Ri ≺ Rj .

Rj must read a different value of the stack top in step 0. Otherwise, it will find
last.next to be non-null and it will not proceed beyond step 0. Subsequently, it
will try to read the status of the request in step 1. Note that this step is preceded
by step 4 of Ri. Thus Rj will read the status to DONE, and it will not be able to
proceed to step 2. Consequently, Rj will not be able to do the push operation
done by Ri once again.

Hence, the lemma stands proved.

Lemma 2. A push request always adds an entry to the top of the stack in
Line 36 in a bounded number of steps.

Proof. Let us assume that a push request, Ri never gets fulfilled. This can hap-
pen because it either fails the if conditions in Lines 32 and 33, or the CAS
operation in Line 36. This can only happen if some other push request makes
progress. Now, let us assume that Ri has the least phase number out of all the
push requests that remain unfulfilled for an unbounded amount of time.

Since Ri has the least phase number out of all the unfulfilled requests, all
other request with a lower phase number must have gotten fulfilled. This means
that there is a point of time at which Ri has the least phase in the announce
array. At this point all the threads must be helping Ri to complete its request.
One of the threads needs to perform a successful CAS in Line 36. Either that

thread or some other thread can update the top pointer. In this manner, request
Ri will get satisfied.

Hence, it is not possible to have a request, Ri that waits for an infinite amount
of time to get fulfilled.

Theorem 2. A push request adds an entry only once to the stack in a bounded
number of steps. Futhermore, if we just consider the next pointers, the stack is
always a linked list without duplicate nodes. Thus, the push operation is lock-free.

Proof. Lemma 1 and Lemma 2 prove that an entry is added only once (in a
bounded number of steps). Secondly, we are allowed to modify the next pointer
of a node only once. It cannot only point to another node. Each node points to
another node that is pushed to the stack after it because steps 2-5 are executed
in sequence. Thus the stack at all times has a structure similar to a linked list.
The end of the linked list is the stack top. The pop method does not touch the
next pointer; hence, this property is maintained.

Lemma 3. Every pop operation pops just one element or returns an EmptyS-
tackException.

Proof. We start at the stack top (mytop ← top.get()), and proceed towards
the bottom of the stack. If we get any unmarked node, then we mark it. After
marking a node the pop operation is over. Note that there is no helping in the
case of a pop operation. Hence, other threads do not work on behalf of a thread.
As a result only one node is marked (or popped). If we are not able to mark a
node then we return an EmtpyStackException.

D The clean Method

Let us consider the clean method first. It is called by the tryCleanUp method
in Line 86. The aim of the clean method is to clean a set of W contiguous
entries in the list (indexed by the prev pointers). Let us start out by defining
some terminology. Let us define a range of W contiguous entries, which has four
distinguished nodes (see Figure 5).

..........

W nodes

target rightNode

leftNodebase

Fig. 5. A range of W entries

A range starts with a node termed the base, whose index is a multiple of
W . Let us now define target as base.prev. The node at the end of a range is

leftNode. Its index is equal to base.index + W − 1. Let us now define a node
rightNode such that rightNode.prev = leftNode. Note that for a given range,
the base and leftNode nodes are fixed, whereas the target and rightNode nodes
keep changing. rightNode is the base of another range, and its index is a multiple
of W .

The push and the pop methods call the function tryCleanUp. The push
method calls it when it pushes a node whose index is a multiple of W . This is a
valid rightNode. It walks back and increments the counter of the base node of
the previous range. We ensure that only one thread (out of all the helpers) does
this in Line 59. Similarly, in the pop function, whenever we mark a node, we call
the tryCleanUp function. Since the pop function does not have any helpers, only
one thread per node calls the tryCleanUp function. Now, inside the tryCleanUp
function, we increment the counter of the base node. Once, a thread increments
it to W + 1, it invokes the clean function. Since only one thread will increment
the counter to W +1, only one thread will invoke the clean function for a range.

Algorithm 7: DeleteRequest

114 class DeleteRequest

115 long phase

116 int threadId

117 AtomicBoolean pending

118 Node node

119 AtomicReferenceArray<DeleteRequest> allDeleteRequests

Let us now consider the clean, helpDelete, and uniqueDelete functions.
Their functionality at a high level is very similar to the push and help meth-
ods. Here, we first create a DeleteRequest that has four fields: phase (similar
to phase in PushOp), threadId, pending (whether the delete has been finished
or not), and the value of the base node. Akin to the push function, we add the
newly created DeleteRequest to a global array of DeleteRequests in Line 123.
Subsequently, we call the helpDelete function. This function finds a pending
request with the minimum phase in the array allDeleteRequests, and returns
the request as minReq. Subsequently, we invoke uniqueDelete.

Note that at this stage it is possible for multiple threads to read the same
value of the request with the minimum phase number. It is also possible for
different sets of threads to have found different requests to have the minimum
phase. For example, if a request with phase 2 (R2) got added to the array before
the request with phase 1 (R1), then a set of threads might be trying to perform
uniqueDelete on R1, and another set might be trying to perform uniqueDelete
on R1. Our aim in the uniqueDelete function is to ensure that only one set
goes through to the next stage. It takes two arguments: req (request) and phase
(phase number).

Algorithm 8: clean, helpDelete, and uniqueDelete methods

120 clean(tid, node)

121 phase ← deletePhase.getAndIncrement()

122 request ← new DeleteRequest(phase, tid, true, node)

123 allDeleteRequests[tid] ← request

124 helpDelete(request)

125 helpDelete(request)

126 (minTid, minReq) ← minreq.phase { i, req | 0 ≤ i < N , req =
allDeleteRequests[i], req.pending = true }

127 if (minReq == null) || (minReq.phase > request.phase) then
128 break

129 end

130 uniqueDelete(minReq)

131 if minReq 6= request then
132 uniqueDelete(request)

133 end

134 uniqueDelete(request)

135 while request.pending do
136 currRequest ← uniqueRequest.get()

137 if !currRequest.pending then
138 if request.pending then
139 stat ← (request 6= currRequest) ? uniqueRequest.compareAndSet

(currRequest, request) : true

140 helpF inishDelete()

141 if stat then
142 return

143 end

144 end

145 end

146 else
147 helpF inishDelete()

148 end

149 end

We adopt a strategy similar to the one adopted in the function attachNode.
We define a global atomic variable, uniqueRequest. If a delete is not pending
(Line 137) on uniqueRequest, we read its contents, and try to perform a CAS
operation on it. We try to atomically replace its current contents with the ar-
gument, req. Note that at this stage, only one set of threads will be successful.
Beyond this point, all the threads will be working on the same DeleteRequest.
They will then move on to call the helpF inishDelete function that will finish
the delete request. For threads that are not successful in the CAS operation,
or threads that find that the current request contained in uniqueRequest has a
delete pending will also call the helpF inishDelete function. This is required to
ensure wait freedom.

Algorithm 9: The helpF inishDelete method

150 helpFinishDelete()

151 currRequest ← uniqueRequest.get()

152 if !currRequest.pending then
153 return

154 end

155 endIdx ← currRequest.node.index + W − 1

156 /* Search for the request from the top */

157 rightNode ← top.get()

158 leftNode ← rightNode.prev

159 while leftNode.index 6= endIdx && leftNode 6= sentinel do
160 rightNode ← leftNode

161 leftNode ← leftNode.prev

162 end

163 if leftNode = sentinel then
164 return /* some other thread deleted the nodes */

165 end

166 /* Find the target node */

167 target ← leftNode

168 for i=0; i < W ; i++ do
169 target ← target.prev

170 end

171 /* Perform the CAS operation and delete the nodes */

172 rightNode.prev.compareAndSet(leftNode, target)

173 /* Set the status of the delete request to not pending*/

174 currRequest.pending ← false

Lastly, let us describe the helpF inishDelete function in Algorithm 9. We first
read the current request from the atomic variable, uniqueRequest in Line 151.
If the request is not pending, then some other helper has completed the request,
and we can return from the function. However, if this is not the case, then
we need to complete the delete operation. Our aim now is to find the target,
leftNode, and rightNode. We search for these nodes starting from the stack
top.

The index of the leftNode is equal to the index of the node in the cur-
rent request (currRequest) + W − 1. endIdx is set to this value in Line 155.
Subsequently, in Lines 160–165, we start from the top of the stack, and keep
traversing the prev pointers till the index of leftNode is equal to endIdx. Once,
the equality condition is satisfied Lines 160 and 161 give us the pointers to the
rightNode and leftNode respectively. If we are not able to find the leftNode,
then it means that another helper has successfully deleted the nodes. We can
thus return.

The next task is to find the target. The target is W hops away from the
leftNode. Lines 167–170 run a loop W times to find the target. Note that we
shall never have any issues with null pointers because sentinel.prev is set to
sentinel itself. Once, we have found the target, we need to perform a CAS
operation on the prev pointer of the rightNode. We accomplish this in Line 172.
If the prev pointer of rightNode is equal to leftNode, then we set it to target.
This operation removes W entries (from leftNode to base) from the list. The last
step is to set the status of the pending field in the current request (currRequest)
to false (see Line 174).

	A Wait-Free Stack

