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Abstract

Achieving high performance for concurrent applications
on modern multiprocessors remains challenging. Many pro-
grammers avoid locking to improve performance, while oth-
ers replace locks with non-blocking synchronization to pro-
tect against deadlock, priority inversion, and convoying. In
both cases, dynamic data structures that avoid locking, re-
quire a memory reclamation scheme that reclaims nodes
once they are no longer in use.

The performance of existing memory reclamation
schemes has not been thoroughly evaluated. We conduct
the first fair and comprehensive comparison of three recent
schemes—quiescent-state-based reclamation, epoch-based
reclamation, and hazard-pointer-based reclamation—using
a flexible microbenchmark. Our results show that there is
no globally optimal scheme. When evaluating lockless syn-
chronization, programmers and algorithm designers should
thus carefully consider the data structure, the workload,
and the execution environment, each of which can dramati-
cally affect memory reclamation performance.

1 Introduction

As multiprocessors become mainstream, multithreaded
applications will become more common, increasing the
need for efficient coordination of concurrent accesses to
shared data structures. Traditional locking requires expen-
sive atomic operations, such as compare-and-swap (CAS),
even when locks are uncontended. For example, acquiring
and releasing an uncontended spinlock requires over 400
cycles on an IBM® POWER"" CPU. Therefore, many re-
searchers recommend avoiding locking [2, 7, 22]. Some
systems, such as Linuxm, use concurrently-readable syn-
chronization, which uses locks for updates but not for reads.

*Supported by an NSERC Canada Graduate Scholarship.

1-4244-0054-6/06/$20.00 ©2006 IEEE

2IBM Beaverton
Linux Technology Center
Beaverton, OR 97006 USA
paulmck @us.ibm.com

T1 : remove(N)

@ﬁ T2 : read(N->next)

Figure 1. Read/reclaim race.

Locking is also susceptible to priority inversion, convoying,
deadlock, and blocking due to thread failure [3, 10], leading
researchers to pursue non-blocking (or lock-free) synchro-
nization [6, 12, 13, 14, 16, 29]. In some cases, lock-free
approaches can bring performance benefits [25]. For clar-
ity, we describe all strategies that avoid locks as lockless.
A major challenge for lockless synchronization is han-
dling the read/reclaim races that arise in dynamic data
structures. Figure 1 illustrates the problem: thread 7'1 re-
moves node N from a list while thread 72 is referencing it.
N’s memory must be reclaimed to allow reuse, lest memory
exhaustion block all threads, but such reuse is unsafe while
T2 continues referencing N. For languages like C, where
memory must be explicitly reclaimed (e.g. via free()),
programmers must combine a memory reclamation scheme
with their lockless data structures to resolve these races.!
Several such reclamation schemes have been proposed.
Programmers need to understand the semantics and the
performance implications of each scheme, since the over-
head of inefficient reclamation can be worse than that of
locking. For example, reference counting [5, 29] has high
overhead in the base case and scales poorly with data-
structure size. This is unacceptable when performance is
the motivation for lockless synchronization. Unfortunately,
there is no single optimal scheme and existing work is rela-
tively silent on factors affecting reclamation performance.

IReclamation is subsumed into automatic garbage collectors in envi-
N ™
ronments that provide them, such as Java
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Figure 2. lllustration of QSBR. Black boxes
represent quiescent states.

We address this deficit by comparing three recent recla-
mation schemes, showing the respective strengths and
weaknesses of each. In Sections 2 and 3, we review these
schemes and describe factors affecting their performance.
Section 4 explains our experimental setup. Our analysis, in
Section 5, reveals substantial performance differences be-
tween these schemes, the greatest source of which is per-
operation atomic instructions. In Section 6, we discuss the
relevance of our work to designers and implementers. We
show that lockless algorithms and reclamation schemes are
mostly independent, by combining a blocking reclamation
scheme and a non-blocking algorithm, then comparing this
combination to a fully non-blocking equivalent. We also
present a new reclamation scheme that combines aspects of
two other schemes to give good performance and ease of
use. We close with a discussion of related work in Section 7
and summarize our conclusions in Section 8.

2 Memory Reclamation Schemes

This section briefly reviews the reclamation schemes we
consider: quiescent-state-based reclamation (QSBR) [22,
2], epoch-based reclamation (EBR) [6], hazard-pointer-
based reclamation (HPBR) [23, 24], and reference count-
ing [29, 26]. We provide an overview of each scheme to
help the reader understand our work; further details are
available in the papers cited.

2.1 Blocking Schemes

We discuss two blocking schemes, QSBR and EBR,
which use the concept of a grace period. A grace period
is a time interval [a,b] such that, after time b, all nodes
removed before time a may safely be reclaimed. These
methods force threads to wait for other threads to complete
their lockless operations in order for a grace period to oc-
cur. Failed or delayed threads can therefore prevent memory
from being reclaimed. Eventually, memory allocation will
fail, causing threads to block.
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Figure 3. QSBR is inherently blocking.
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Figure 4. lllustration of EBR.
2.1.1 Quiescent-State-Based Reclamation (QSBR)

QSBR uses quiescent states to detect grace periods. A
quiescent state for thread T is a state in which 7 holds
no references to shared nodes; hence, a grace period for
QSBR is any interval of time during which all threads pass
through at least one quiescent state. The choice of quies-
cent states is application-dependent. Many operating sys-
tem kernels contain natural quiescent states, such as volun-
tary context switch, and use QSBR to implement read-copy
update (RCU) [22, 20, 7].

Figure 2 illustrates the relationship between quiescent
states and grace periods in QSBR. Thread 7'1 goes through
quiescent states at times ¢; and ¢5, 72 at times to and t4,
and 73 at time ¢3. Hence, a grace period is any time interval
containing either [t1, t3] or [t3, t5].

QSBR must detect grace periods so that removed nodes
may be reclaimed; however, detecting minimal grace peri-
ods is unnecessary. In Figure 2, for example, any interval
containing [t1,t3] or [ts, t5] is a quiescent state; implemen-
tations which check for grace periods only when threads en-
ter quiescent states would detect [t1, 5], since T1’s two qui-
escent states form the only pair from a single thread which
enclose a grace period.

Figure 3 shows why QSBR is blocking. Here, 72 goes
through no quiescent states (for example, due to blocking
on I/O). Threads T'1 and 7T'3 are then prevented from re-
claiming memory, since no grace periods exist. The ensuing
memory exhaustion will eventually block all threads.

2.1.2 Epoch-Based Reclamation (EBR)

Fraser’s EBR [6] follows QSBR in using grace periods, but
uses epochs in place of QSBR’s quiescent states. Each
thread executes in one of three logical epochs, and may lag



1 int search (struct list *1, long key)
2 {

3 node_t *cur;

4 critical_enter();

5 for (cur = 1->1ist_head;

6 cur != NULL; cur = cur->next) {
7 if (cur->key >= key) {

8 critical_exit();

9 return (cur->key == key);
10 }

11 }

12 critical_exit();
13 return (0);
14 }

Figure 5. EBR concurrently-readable search.

at most one epoch behind the global epoch. Each thread
atomically sets a per-thread flag upon entry into a critical
region, indicating that the thread intends to access shared
data without locks. Upon exit, the thread atomically clears
its flag. No thread is allowed to access an EBR-protected
object outside of a critical region.

Figure 4 shows how EBR tracks epochs, allowing safe
memory reclamation. Upon entering a critical region, a
thread updates its local epoch to match the global epoch.
Hence, if the global epoch is e, threads in critical regions
can be in either epoch e or e- 1, but not e+/ (all mod 3). Any
node a thread removes during a given epoch may be safely
reclaimed the next time the thread re-enters that epoch.
Thus, the time period [¢1, 2] in the figure is a grace period.
A thread will attempt to update the global epoch only if it
has not changed for some pre-determined number of critical
region entries.

As with QSBR, reclamation can be stalled by threads
which fail in critical regions, but threads not in critical re-
gions cannot stall EBR. EBR’s bookkeeping is invisible to
the applications programmer, making it easy for a program-
mer to use; however, Section 5 shows that this property im-
poses significant overhead on EBR.

Figure 5 shows an example of a search of a linked list
which allows lockless reads but uses locking for updates.
QSBR omits lines 4 and 12, which handle EBR’s epoch
bookkeeping, but is otherwise identical; QSBR’s quiescent
states are flagged explicitly at a higher level (see Figure 8).

2.2 Non-blocking schemes

This section presents the non-blocking reclamation
schemes we evaluate: hazard-pointer-based reclamation
(HPBR) and lock-free reference counting (LFRC).

2.2.1 Hazard-Pointer-Based Reclamation (HPBR)

Michael’s HPBR [23] provides an existence locking mech-
anism for dynamically-allocated nodes. Each thread per-
forming lockless operations has K hazard pointers which
it uses to protect nodes from reclamation by other threads;
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Figure 6. lllustration of HPBR.

1 int search (struct list *1, long key)

2 {

3 node_t **prev, *cur, *next;

4 /* Index of our first hazard pointer. */

5 int base = getTID() *K;

6 /* Offset into our hazard pointer segment. */
7 int off = 0;

8 try_again:

9 prev = &l1->1ist_head;
10 for (cur = *prev; cur != NULL; cur = next & ~1) {
11 /* Protect cur with a hazard pointer. */
12 HP [base+off] = cur;
13 memory_fence () ;
14 if (*prev != cur)
15 goto try_again;
16 next = cur->next;
17 if (cur->key >= key)
18 return (cur->key == key);
19 prev = &cur->next;
20 off = (off+l) % K;
21 }
22 return (0);
23}

Figure 7. HPBR concurrently-readable

search.

hence, we have H=NK hazard pointers in total. K is data-
structure-dependent, and often small. Queues and linked
lists need K=2 hazard pointers, while stacks require only
K=1; however, we know of no upper bound on K for gen-
eral tree- or graph-traversal algorithms.

After removing a node, a thread places that node in a
private list. When the list grows to a predefined size R,
the thread reclaims each node lacking a corresponding haz-
ard pointer. Increasing R amortizes reclamation overhead
across more nodes, but increases memory usage.

An algorithm using HPBR must identify all hazardous
references — references to shared nodes that may have been
removed by other threads or that are vulnerable to the ABA
problem [24]. Such references require hazard pointers. The
algorithm sets a hazard pointer, then checks for node re-
moval; if the node has not been removed, then it may safely
be referenced. As long as the hazard pointer references the
node, HPBR’s reclamation routine refrains from reclaiming
it. Figure 6 illustrates the use of HPBR. Node N has been re-
moved from the linked list, but cannot be reclaimed because
T2’s hazard pointer HP[2] references it.

Figure 7, showing code adapted from Michael [24],
demonstrates HPBR with a search algorithm corresponding
to Figure 5. At most two nodes must be protected: the cur-
rent node and its predecessor (K=2). The code removing



nodes, which is not shown here, uses the low-order bit of
the next pointer as a flag. This guarantees that the valida-
tion step on line 14 will fail and retry in case of concurrent
removal. Full details are given by Michael [24].

Herlihy et al. [15] presented a very similar scheme called
Pass the Buck (PTB). Since HPBR and PTB have similar
per-operation costs, we believe that our HPBR results apply
to PTB as well.

2.2.2 Lock-Free Reference Counting (LFRC)

Lock-free reference counting (LFRC) is a well-known non-
blocking garbage-collection technique. Threads track the
number of references to nodes, reclaiming any node whose
count is zero. Valois’s LFRC scheme [29] (corrected
by Michael and Scott [26]) uses CAS and fetch-and-add
(FAA), and requires nodes to retain their type after recla-
mation. Sundell’s scheme [28], based on Valois’s, is wait-
free. The scheme of Detlefs et al. [5] allows nodes’ types
to change upon reclamation, but requires double compare-
and-swap (DCAS), which no current CPU supports.

Michael [24] showed that LFRC introduces overhead
which often makes lockless algorithms perform worse than
lock-based versions. We include some experiments with
Valois’ scheme to reproduce Michael’s findings.

3 Reclamation Performance Factors

We categorize factors which can affect reclamation
scheme performance; we vary these factors in Section 5.

3.1 Memory Consistency

Current literature on lock-free algorithms generally as-
sumes a sequentially-consistent [ 18] memory model, which
prohibits instruction reordering and globally orders mem-
ory references. For performance reasons, however, mod-
ern CPUs provide weaker memory consistency models in
which ordering can be enforced only when needed via spe-
cial fence instructions. Although fences are often omitted
from pseudocode, they are expensive on most modern CPUs
and must be included in realistic performance analyses.

HPBR, EBR, and LFRC require per-operation fences.
HPBR, as shown in Figure 7, requires a fence between
hazard-pointer setting and validation, thus one fence per
visited node. LFRC also requires per-node fences, in ad-
dition to atomic instructions needed to maintain reference
counts. EBR requires two fences per operation: one when
setting a flag when entering a critical region, and one when
clearing it upon exit. Since QSBR has no per-operation
fences, its per-operation overhead can be very low.

3.2 Data Structures and Workload

Data structures differ in both the operations they provide,
and in their common workloads. Queues are write-only,
but linked lists and hash tables are often read-mostly [19].
Blocking schemes may perform poorly with update-heavy
structures, since the risk of memory exhaustion is higher.

Conversely, non-blocking schemes may perform poorly
with operations such as list or tree traversal which visit
many nodes, since they require per-node fences.

3.3 Threads and Scheduling

We expect contention due to concurrent threads to be
a minor source of reclamation overhead; however, for the
non-blocking schemes, it could be unbounded in degener-
ate cases: readers forced to repeatedly restart their traversals
must repeatedly execute fence instructions for every node.

Thread preemption, especially when there are more
threads than processors, can adversely affecting blocking
schemes. Descheduled threads can delay reclamation, po-
tentially exhausting memory, particularly in update-heavy
workloads. Longer scheduling quanta may increase the risk
of this exhaustion.

3.4 Memory Constraints

Although lock-free memory allocators exist [25], many
allocators use locking. Blocking methods will see greater
lock contention because they must access a lock-protected
global pool more frequently. Furthermore, if a thread is pre-
empted while holding such a lock, other threads will block
on memory allocation. The size of the global pool is finite,
and governs the likelihood of a blocking scheme exhausting
all memory. Only HPBR [23] provides a provable bound on
the amount of unreclaimed memory; it should thus be less
sensitive to these constraints.

4 Experimental Setup

We evaluated the memory reclamation strategies with re-
spect to the factors outlined in Section 3 using commodity
SMP systems with IBM POWER CPUs. This section pro-
vides details on these aspects of our experiments.

4.1 Data Structures Used

We tested the reclamation schemes on linked lists and
queues. We used Michael’s ordered lock-free linked
list [24], which forbids duplicate keys, and coded our
concurrently-readable lists similarly. Because linked lists
permit arbitrary lengths and read-to-write ratios, we used



1 while (parent’s timer has not expired) {
2 for i from 1 to 100 do {

3 key = random key;

4 op = random operation;

5 d = data structure;

6 op(d, key);

7 }

8 if (using QSBR)

9 quiescent_state();

0

10}

Figure 8. Per-thread test pseudocode.

them heavily in our experiments. Our lock-free queue fol-
lows Michael and Scott’s design [24]. Queues allow evalu-
ating QSBR on a write-only data structure, which no prior
studies have done.

4.2 Test Program

In our tests, a parent thread creates N child threads, starts
a timer, and stops the threads upon timer expiry. Child
threads count the number of operations they perform, and
the parent then calculates the average execution time per
operation by dividing the duration of the test by the total
number of operations. The CPU time is the execution time
divided by the minimum of the number of threads and the
number of processors. CPU time compensates for increas-
ing numbers of CPUs, allowing us to focus on synchroniza-
tion overhead. Our tests report the average of five trials.

Each thread runs repeatedly through the test loop shown
in Figure 8 until the timer expires. QSBR tests place a
quiescent state at the end of the loop. The probabilities
of inserting and removing nodes are equal, keeping data-
structure size roughly constant throughout a given run.

We vary the number of threads and nodes. For linked
lists, we also vary the ratio of reads to updates. As shown
in Figure 8, each thread performs 100 operations per qui-
escent state; hence, grace-period-related overhead is amor-
tized across 100 operations. For EBR, each op in Figure 8
is a critical region; a thread attempts to update the global
epoch whenever it has entered a critical region 100 times
since the last update, again amortizing grace-period-related
overhead across 100 operations. For HPBR, we amortized
reclamation overhead over R = 2H + 100 node removals.
For consistency, QSBR and EBR both used the fuzzy bar-
rier [11] algorithm from Fraser’s EBR implementation [6].

The code for our experiments is available at
http://www.cs.toronto.edu/ tomhart/
perflab/ipdps06.tgz.

4.3 Operating Environment
We performed our experiments on the two machines

shown in Table 1. The last line of this table gives the com-
bined costs of locking and then unlocking a spinlock.

Table 1. Characteristics of Machines

XServe IBM POWER
CPUs 2x 2.0GHz PowerPC G5 8x 1.45 GHz POWER4+
Kernel | Linux 2.6.8-1.ydl.7g5-smp | Linux 2.6.13 (kernel.org)
Fence 78ns (156 cycles) 76ns (110 cycles)
CAS 52ns (104 cycles) 59ns (86 cycles)
Lock 231ns (462 cycles) 243ns (352 cycles)

Our experiment implements threads using processes.
Our memory allocator is similar to that of Bonwick [4].
Each thread has two freelists of up to 100 elements each,
and can acquire more memory from a global non-blocking
stack of freelists. This non-blocking allocator allowed us to
study reclamation performance without considering patho-
logical locking conditions discussed in Section 3.

We implemented CAS using POWER’s LL/SC instruc-
tions (Larx and stcx), and fences using the eieio in-
struction. Our spinlocks were implemented using CAS and
fences. Our algorithms used exponential backoff [1] upon
encountering conflicts.

4.4 Limitations of Experiment

Microbenchmarks are never perfect [17], however, they
allow us to study reclamation performance by varying each
of the factors outlined in Section 3 independently. Our re-
sults show that these factors significantly affect reclamation
performance. In macrobenchmark experiments, it is more
difficult to gain insight into the causes of performance dif-
ferences, and to test the schemes comprehensively.

Some applications may not have natural quiescent states;
furthermore, detecting quiescent states in other applications
may be more expensive than it is in our experiments. Our
QSBR implementation, for example, is faster than that used
in the Linux kernel, due to the latter’s need to support dy-
namic insertion and removal of CPUs, interrupt handlers,
and real-time workloads.

Our HPBR experiments statically allocate hazard point-
ers. Although this is sufficient for our experiments, some al-
gorithms, to the best of our knowledge, require unbounded
numbers of hazard pointers.

Despite these limitations, we believe that our experi-
ments thoroughly evaluate these schemes, and show when
each scheme is and is not efficient.

5 Performance Analysis

We first investigate the base costs for the reclamation
schemes: single-threaded execution on small data struc-
tures. We then show how workload, list traversal length,
number of threads, and preemption affect performance.
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5.1 Base Costs

Figure 9 shows the single-threaded base costs of these
schemes on non-blocking queues and single-element linked
lists with no preemption or contention. We ran LFRC only
on read-only workloads; these were sufficient for us to cor-
roborate Michael’s [24] result that LFRC performs poorly.

In these base cases, the dominant influence on perfor-
mance is per-operation atomic instructions: compare-and-
swap (CAS), fetch-and-add (FAA), and fences make LFRC
much more expensive than the other schemes. Since EBR
requires two fences per operation, and HPBR requires one
for most operations considered here, EBR is usually the
next most expensive. QSBR, needing no per-operation
atomic instructions, is the cheapest scheme in the base case.

Workload affects the performance of these schemes. Un-
der an update-intensive workload, a significant number of
operations will involve removing nodes; for each attempt
to reclaimed a removed node, HPBR must search the array
of hazard pointers. This overhead can become significant
for update-intensive workloads, as can be seen in Figure 9.
We note that in our experiments, the performance of QSBR,
EBR, and HPBR all increased linearly between read-only
and update-only workloads.

5.2 Scalability with Traversal Length

Figure 10 shows the effect of list length on a single-
threaded read-only workload. We observed similar results
in write-only workloads. As expected, per-element fence
instructions degrade HPBR’s performance on long chains
of elements; QSBR and EBR do much better.

Figure 11 shows the same scenario, but also includes
LFRC. At best, LFRC takes more than twice as long as the
next slowest scheme, and the performance gap rapidly in-
creases with list length due to the multiple per-node atomic
instructions. Because LFRC is always the worst scheme in
terms of performance, we do not consider it further.

Avg CPU Time (ns)

0 20 40 60 80 100
Number of Elements

Figure 10. Effect of traversal length — read-
only lock-free list, one thread, 8 CPUs.
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Figure 11. Effect of traversal length, including
LFRC — read-only lock-free list, one thread,
8 CPUs.

5.3 Scalability with Threads

Concurrent performance is an obvious concern for mem-
ory reclamation schemes. We study the effect of threads
sharing the data structure when there is no CPU contention,
and when threads must also compete for the CPU.

5.3.1 No Preemption

To reduce the effects of CPU contention (thread preemp-
tion, migration, etc.), we use a maximum of seven threads,
ensuring that one CPU is available for other processes, fol-
lowing Fraser [6].

Figures 12 and 13 show the performance of the reclama-
tion schemes with a read-only workload on a linked list, and
with a write-only workload on a queue. All three schemes
scale almost linearly in the read-only case. In both cases,
the schemes’ relative performance seems to be unaffected
by the number of threads.

5.3.2 With Preemption

To evaluate the performance of the reclamation schemes un-
der preemption, we ran our tests on our 2-CPU machine,
varying the number of threads from 1 to 32.

Figure 14 shows the performance of the schemes on a
one-element lock-free linked list with a read-only workload.
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Figure 13. Effect of adding threads — lock-
free queue, 8 CPUs.

This case eliminates reclamation overhead, focusing solely
on read-side and fuzzy barrier overhead. In this case, the
algorithms all scale well, with QSBR remaining cheapest.
For the write-heavy workloads shown in Figure 15, HPBR
performs best due to its non-blocking design.

The blocking schemes perform well on this write-heavy
workload only because threads yield the processor upon al-
location failure. Figure 16 shows the same test as Figure 15,
but with busy-waiting upon allocation failure. Here, HPBR
performs well, but EBR and QSBR quickly exhaust the pool
of free memory. Each thread spins waiting for more mem-
ory to become free, thereby preventing grace periods from
completing in a timely manner and hence delaying memory
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Figure 14. Effect of preemption — read-only
lock-free list, 2 CPUs.
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Figure 15. Effect of preemption — lock-free
queue, 2 CPUs.
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Figure 16. Effect of busy waiting when out of
memory — lock-free queue, 2 CPUs.

reclamation.

Although this busy waiting would be a poor design
choice in a real application, this test demonstrates that pre-
emption and write-heavy workloads can cause QSBR and
EBR to exhaust all memory. Similarly, Sarma and McKen-
ney [27] have shown how QSBR-based components of the
Linux kernel are vulnerable to denial-of-service attacks. Al-
though this can be avoided with engineering effort — and has
been, in Linux — it is in these situations that HPBR’s fault-
tolerance becomes valuable.

5.4 Summary

We note several trends of interest. First, in the base case,
atomic instructions such as fences are the dominant cost.
Second, when large numbers of elements must be traversed,
HPBR and reference counting suffer from significant over-
head due to extra atomic instructions. QSBR and EBR per-
form poorly when grace periods are stalled and the work-
load is update-intensive.

6 Consequences of Analysis

We describe the consequences of our analysis for com-
paring algorithms, designing new reclamation schemes, and
choosing reclamation schemes for applications.
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6.1 Fair Evaluation of Algorithms

Reclamation schemes have profound performance ef-
fects that must be accounted for when experimentally eval-
uating new lockless algorithms.

For example, one of our early experiments compared a
concurrently-readable linked list with QSBR, as is used in
the Linux kernel, with a lock-free HPBR equivalent. Our
intuition was that lock-free algorithms might pay a perfor-
mance penalty for their fault-tolerance properties, as they
do in read-mostly situations. The LF-HPBR and CR-QSBR
traces in Figure 17 might lead to the erroneous conclusion
that the concurrently-readable algorithm is always faster. A
better analysis takes the LF-QSBR trace into account, not-
ing that as the update fraction increases, lock-free perfor-
mance improves, since its updates require fewer atomic in-
structions than does locking. This example shows that one
can accurately compare two lockless algorithms only when
each is using the same reclamation scheme.

LF-QSBR’s higher per-node overhead makes it more
attractive when there are fewer nodes. Figure 18 shows
the performance of hash tables consisting of arrays of LF-
QSBR or CR-QSBR single-element lists being concurrently
accessed by four threads. For clarity, we omit HPBR from
this graph — our intent is to compare the lock-free and
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Figure 19. Performance of NEBR — lock-free
list, 8 CPUs, read-only workload, variable
number of threads.

concurrently-readable algorithms using a common reclama-
tion scheme. Here, the lock-free algorithm out-performs
locking for update fractions above about 15%. Lock-free
lists and hash might therefore be practical for update-heavy
situations in environments providing QSBR, such as OS
kernels like Linux.

New reclamation schemes should also be evaluated by
varying each of the factors that can affect their performance.
For example, Gidenstam et al. [8] recently proposed a new
non-blocking reclamation scheme that combines reference
counting with HPBR, and can be proven to have several
attractive properties. However, like HPBR and reference
counting, it requires expensive per-node atomic operations.
The evaluation of this scheme consisted only of experiments
on double-ended queues, thus failing to evaluate scalability
with data-structure size, an HPBR weakness. This failing
shows the value of our analysis: it is necessary to vary the
experimental parameters we considered to gain a full under-
standing of a given scheme’s performance.

6.2 Improving Reclamation Performance

Improved reclamation schemes can be designed based
on an understanding of the factors that affect performance.
For example, we observe that a key difference between
QSBR and EBR is the per-operation overhead of EBR’s
two fences. This observation allows us to make a modest
improvement to EBR called new epoch-based-reclamation
(NEBR).

NEBR requires compromising EBR’s application-
independence. Instead of setting and clearing the flag at
the start and end of every lockless operation, we set it at the
application level before entering any code that might con-
tain NEBR critical regions. Since our flag is set and cleared
at the application level, we can amortize the overhead of
the corresponding fence instructions over a larger number
of operations. We reran the experiment shown in Figure 12,
but including NEBR, and found that NEBR scaled linearly
and performed slightly better than did HPBR. Furthermore,



NEBR does not need the expensive per-node atomic opera-
tions that ruin HPBR’s performance for long traversals.

NEBR is attractive because it is almost as fast as QSBR,
but does not require quiescent states. Interestingly, recent
realtime variants of the Linux-kernel RCU also dispense
with quiescent states [21]. Ongoing work is expected to
substantially reduce realtime RCU read-side overhead.

It is interesting to consider what sort of weakened non-
blocking property, if any, could be defined such that one
could create a corresponding reclamation scheme without
requiring expensive per-node atomic operations.

6.3 Blocking Memory Reclamation for
Non-Blocking Data Structures

We have shown that non-blocking data structures often
perform better when using blocking reclamation schemes.
One might question why one would want to use a non-
blocking data structure in this case, since a halted would
cause an infinite memory leak, thus destroying the non-
blocking data structure’s fault-tolerance guarantees.

However, non-blocking data structures are often used for
reasons other than fault-tolerance; for example, Qprof [3]
and Cache Kernel [10] both use such structures because
they can be accessed from signal handlers without risk of
self-deadlock. Blocking memory reclamation does not re-
move this benefit. In fact, Cache Kernel uses a blocking im-
plementation of Type-Stable Memory to guard against read-
reclamation races; its implementation [9] has similarities
to QSBR. Non-blocking algorithms with blocking reclama-
tion schemes similarly continue to benefit from resistance
to preemption-induced convoying and priority inversion.

We view combining a non-blocking algorithm with a
blocking reclamation scheme as part of a trend towards
weakened non-blocking properties [16, 3], designed to pre-
serve selected advantages of non-blocking synchronization
while improving performance. In this case, threads have all
the advantages of non-blocking synchronization, unless the
system runs out of memory.

Conversely, one may also use non-blocking reclamation
with blocking algorithms to reduce the amount of memory
awaiting reclamation in face of preempted or failed threads.

7 Related Work

Relevant work on reclamation scheme design was dis-
cussed in Section 2. Previous work on the performance of
these schemes, however, is limited.

Michael [24] criticized QSBR for its unbounded mem-
ory use, but did not compare the performance of QSBR to
that of HPBR, or determine when this limitation affects a
program.

Auslander implemented a lock-free hash table with
QSBR in K42 [19]. No performance evaluation, ei-
ther between different reclamation methods or between
concurrently-readable and lock-free hash tables, was pro-
vided. We are unaware of any work combining QSBR with
update-intensive non-blocking algorithms such as queues.

Fraser [6] noted, but did not thoroughly evaluate,
HPBR’s fence overhead, and used his EBR instead. Our
work extends Fraser’s, showing that EBR itself has high
overhead, often exceeding that of HPBR.

8 Conclusions

We have performed the first fair comparison of blocking
and non-blocking reclamation across a range of workloads,
showing that reclamation has a huge effect on lockless al-
gorithm performance. Choosing the right scheme for the
environment in which a concurrent algorithm is expected to
run is essential to having the algorithm perform well.

Our results show that QSBR is usually the best-
performing reclamation scheme; however, the performance
of both QSBR and EBR can suffer due to memory exhaus-
tion in the face of thread preemption or failure. HPBR and
EBR have higher base costs than QSBR due to their re-
quired fences. For EBR, the worst-case overhead of fences
is constant, while for HPBR it is unbounded. HPBR and
LFRC scale poorly when many nodes must be traversed.

Our analysis helped us to identify the main source of
overhead in EBR and decrease it, resulting in NEBR. Fur-
thermore, understanding the impact of reclamation schemes
on algorithm performance enables fair comparison of differ-
ent algorithms — in our case, lock-free and concurrently-
readable lists and hash tables.

We reiterate that blocking reclamation can be useful with
non-blocking algorithms: in the absence of thread fail-
ure, non-blocking algorithms still benefit from deadlock-
freedom, signal handler safety, and avoidance of priority
inversion. Nevertheless, the question of what sort of weak-
ened non-blocking property could be satisfied by a reclama-
tion scheme without the per-node overhead of current non-
blocking reclamation scheme designs remains open.
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