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Abstract—Zab is a crash-recovery atomic broadcast algorithm
we designed for the ZooKeeper coordination service. ZooKeeper
implements a primary-backup scheme in which a primary
process executes clients operations and uses Zab to propagate the
corresponding incremental state changes to backup processes1.
Due the dependence of an incremental state change on the
sequence of changes previously generated, Zab must guarantee
that if it delivers a given state change, then all other changes it
depends upon must be delivered first. Since primaries may crash,
Zab must satisfy this requirement despite crashes of primaries.

Applications using ZooKeeper demand high-performance from
the service, and consequently, one important goal is the ability
of having multiple outstanding client operations at a time.
Zab enables multiple outstanding state changes by guaranteeing
that at most one primary is able to broadcast state changes
and have them incorporated into the state, and by using a
synchronization phase while establishing a new primary. Before
this synchronization phase completes, a new primary does not
broadcast new state changes. Finally, Zab uses an identification
scheme for state changes that enables a process to easily identify
missing changes. This feature is key for efficient recovery.

Experiments and experience so far in production show that our
design enables an implementation that meets the performance
requirements of our applications. Our implementation of Zab
can achieve tens of thousands of broadcasts per second, which
is sufficient for demanding systems such as our Web-scale
applications.

Index Terms—Fault tolerance, Distributed algorithms, Primary
backup, Asynchronous consensus, Atomic broadcast

I. INTRODUCTION

Atomic broadcast is a commonly used primitive in dis-
tributed computing and ZooKeeper is yet another application
to use atomic broadcast. ZooKeeper is a highly-available
coordination service used in production Web systems such as
the Yahoo! crawler for over three years. Such applications
often comprise a large number of processes and rely upon
ZooKeeper to perform important coordination tasks, such as
storing configuration data reliably and keeping the status of
running processes. Given the reliance of large applications on
ZooKeeper, the service must be able to mask and recover from
failures. [1]

ZooKeeper is a replicated service, and it requires that a
majority (or more generally a quorum) of servers has not
crashed for progress. Crashed servers are able to recover
and rejoin the ensemble as with previous crash-recovery
protocols [2], [3], [4]. ZooKeeper uses a primary-backup

1A preliminary description of Zab was presented as a brief announcement
at the 23rd International Symposium on Distributed Computing, DISC 2009.

scheme [5], [6], [7] to maintain the state of replica processes
consistent. With ZooKeeper, a primary process receives all
incoming client requests, executes them, and propagates the
resulting non-commutative, incremental state changes in the
form of transactions to the backup replicas using Zab, the
ZooKeeper atomic broadcast protocol. Upon primary crashes,
processes execute a recovery protocol both to agree upon a
common consistent state before resuming regular operation
and to establish a new primary to broadcast state changes. To
exercise the primary role, a process must have the support of
a quorum of processes. As processes can crash and recover,
there can be over time multiple primaries and in fact the
same process may exercise the primary role multiple times. To
distinguish the different primaries over time, we associate an
instance value with each established primary. A given instance
value maps to at most one process. Note that our notion
of instance shares some of the properties of views of group
communication [8], but it presents some key differences. With
group communication, all processes in a given view are able to
broadcast, and configuration changes happen when any process
joins or leaves. With Zab, processes change to a new view (or
primary instance) only when a primary crashes or loses support
from a quorum.

Critical to the design of Zab is the observation that each
state change is incremental with respect to the previous state,
so there is an implicit dependence on the order of the state
changes. State changes consequently cannot be applied in any
arbitrary order, and it is critical to guarantee that a prefix of the
state changes generated by a given primary are delivered and
applied to the service state. State changes are idempotent and
applying the same state change multiple times does not lead to
inconsistencies as long as the application order is consistent
with the delivery order. Consequently, guaranteeing at-least
once semantics is sufficient and simplifies the implementation.

As Zab is a critical component of the ZooKeeper core,
it must perform well. Some applications of ZooKeeper en-
compass a large number of processes and use ZooKeeper ex-
tensively. Previous systems have been designed to coordinate
long-lived and infrequent application state changes [9], [10],
[11]. We designed ZooKeeper to have high throughput and
low latency, so that applications could use it extensively on
cluster environments: data centers with a large number of well-
connected nodes.

When designing ZooKeeper, however, we found it difficult
to reason about atomic broadcast in isolation. There are re-
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quirements and goals of the application that must be satisfied,
and reasoning about atomic broadcast alongside the applica-
tion enables different protocol elements and even interesting
optimizations.

Multiple outstanding transactions: It is important in our
setting that we enable multiple outstanding ZooKeeper opera-
tions and that a prefix of operations submitted concurrently by
a ZooKeeper client are committed according to FIFO order.
Traditional protocols to implement replicated state machines,
like Paxos [2], do not enable such a feature directly, however.
If primaries propose transactions individually, then the order of
learned transactions might not satisfy the order dependencies
and consequently the sequence of learned transactions cannot
be used unmodified. One known solution to this problem is
batching multiple transactions into a single Paxos proposal
and having at most one outstanding proposal at a time.
Such a design affects either throughput or latency adversely
depending on the choice of the batch size.

Figure 1 illustrates a problem we found with Paxos under
our requirements. It shows a run with three distinct proposers
that violates our requirement for the order of generated state
changes. Proposer P1 executes Phase 1 for sequence numbers
27 and 28. It proposes values A and B for sequence numbers
27 and 28, respectively, in Phase 2 with ballot number 1.
Both proposals are accepted only by acceptor A1. Proposer
P2 executes Phase 1 against acceptors A2 and A3, and end up
proposing C in Phase 2 to sequence number 27 with ballot
number 2. Finally, proposer P3, executes Phase 1 and 2, and is
able to have a quorum of acceptors choosing C for sequence
number 27, B for sequence number 28, and D for 29.

Such a run is not acceptable because the state change
represented by B causally depends upon A, and not C.
Consequently, B can only be chosen for sequence number i+1
if A has been chosen for sequence number i, and C cannot
be chosen before B, since the state change that B represents
cannot commute with C and can only be applied after A.

Efficient recovery: One important goal in our setting is
to recover efficiently from primary crashes. For fast recovery,
we use a transaction identification scheme that enables a new
primary to determine in a simple manner which sequence of
transactions to use to recover the application state. In our
scheme, transaction identifiers are pairs of values: an instance
value and the position of a given transaction in the sequence
broadcast by the primary process for that instance. Under this
scheme, only the process having accepted the transaction with
the highest identifier may have to copy transactions to the
new primary, and no other transaction requires recovery. This
observation implies that a new primary is able to decide which
transactions to recover and from which process simply by
collecting the highest transaction identifier from each process
in a quorum.

For recovery with Paxos, having the last sequence number
for which a process accepted a value is not sufficient, since
processes might accept different values (with different ballot
numbers) for every sequence number. Consequently, a new
primary has to execute Phases 1 of Paxos for all previous
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29: <1b, _, _>

27: <3, C> 
28: <3, B> 
29: <3, D> 

27: <3, C>
28: <3, B>
29: <3, D>

Fig. 1. Paxos run

sequence numbers for which the primary has not learned a
value (or a transaction in our context).

Summary of contributions: We describe here the design
of Zab, an atomic broadcast protocol for the ZooKeeper coor-
dination service. Zab is a high-performance atomic broadcast
protocol for primary-backup systems. Compared to previous
atomic broadcast protocols, Zab satisfies a different set of
correctness properties. In particular, we propose a property
called primary order that is important for primary-backup
systems. This property is critical to enable the correct ordering
of state changes over time as different processes exercise the
primary role while allowing multiple outstanding transactions.
Primary order is different from causal order, as we discuss in
Section III-B. Given our use of the primary order property,
we say that Zab is a PO atomic broadcast protocol. Finally,
our scheme for identifying transactions enables faster recovery
compared to classic algorithms such as Paxos, since Zab
transaction identifiers map to at most one transaction and
processes accept them in order.

II. SYSTEM MODEL

A system comprises a set of processes Π =
{p1, p2, . . . , pn}, and each process is equipped with a
stable storage device. Processes proceed in iterations and
communicate by exchanging messages. Processes can crash
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and recover an unbounded number of times. We say that a
process is up if it is not crashed, and down otherwise. A
process that is recovering is up, and for progress, we assume
that eventually enough processes are up for sufficiently long.
In fact, we have progress if a quorum of processes is up and
able to pairwise exchange messages for sufficiently long. We
assume that a quorum system Q is defined a priori, and that
Q satisfies the following:

Definition II.1. (Quorum System) A quorum system Q over
Π is such that:∧

∀Q ∈ Q : Q ⊆ Π∧
∀Q1, Q2 ∈ Q : Q1 ∩Q2 6= ∅

Processes use bidirectional channels to exchange messages.
More precisely, the channel cij between processes pi and pj
is such that each of the processes has a pair of buffers: an
input buffer and an output buffer. A call to send a message
m to process pj is represented by an event send(m, pj),
which inserts m into the output buffer of pi for cij . Messages
are transmitted following the order of send events, and they
are inserted into the input buffer. A call to receive the next
message m in the input buffer is represented by an event
recv(m, pi).

To specify the properties of channels, we use the notion
of iterations, since the algorithm we propose proceeds in
iterations, and in each iteration we have three phases. Let σi,jk,k′

be the sequence of messages pi sends to pj during iteration k
of pi and k′ of pj . We assume that the channel between
processes pi and pj satisfies the following properties:
Integrity: Process pj receives a message m from pi only if

pi has sent m;
Prefix: If process pj receives a message m and there is m′

such that m′ ≺ m in σi,jk,k′ , then pj receives m′ before
m;

Single iteration: The input buffer of a process pj for channel
cij contains messages from at most one iteration.

Implementation of channels: To implement the properties
we state for channels and ensure liveness, it is sufficient to
assume fair-lossy links (a precise definition of fair-lossy in
the crash-recovery model appears in the work of Boichat and
Guerraoui [12]). In practice, we use TCP connections2. At
the beginning of a new iteration, we establish a connection
between pi and pj . By doing so, we guarantee that only
messages sent are received (Integrity), a prefix of the sequence
of messages sent from a process pi to a process pj are received,
and once we close a connection and establish a new one,
we guarantee that a process only has messages from a single
iteration.

III. PROBLEM STATEMENT

ZooKeeper uses a primary-backup scheme to execute re-
quests and propagate state changes to backup processes using

2RFC 793: http://tools.ietf.org/html/rfc793

PO atomic broadcast (Figure 2). Consequently, only a primary
is able to broadcast. If a primary process crashes, we assume
an external mechanism exists for selecting a new primary. It
is important, however, to guarantee that at any time there is at
most one active primary process that is allowed to broadcast.
In our implementation, the primary election mechanism is
tightly coupled with the mechanisms we use in the broadcast
layer. For specification purposes, it is sufficient to assume
that some mechanism exists to select primaries and such a
mechanism guarantees that at most one primary is active at any
time. Over time, we have an unbounded sequence of primaries:
ρ1ρ2 . . . ρeρe+1 . . ., where ρe ∈ Π. We say that a primary ρe
precedes a primary ρe′ , ρe ≺ ρe′ , if e < e′. Precedence of
primaries refers to the sequence of processes that are primaries
over time. In fact, since processes can recover, there can be
ρe and ρe′ , e 6= e′, such that ρe and ρe′ are the same process,
but refer to different instances.

PO Atomic Broadcast (Zab)

Primary
Replica

abcast abdeliver

Replica

abdeliver

Replica

abdeliver

Fig. 2. ZooKeeper overview.

To guarantee that the transactions a primary broadcast are
consistent, we need to make sure that a primary only starts
generating state updates once the Zab layer indicates that
recovery has completed. For this purpose, we assume that
processes implement a ready(e) call, which the Zab layer
uses to signal to the application (primary and backup replicas)
that it can start broadcasting state changes. A call to ready(e)
also sets the value of the variable instance that a primary
uses to determine its instance. The primary uses the value of
instance to set the epoch of transaction identifiers when
broadcasting, and we assume that the value of e is unique for
different primary instances. The uniqueness of instance values
is guaranteed by Zab.

We call transactions the state changes a primary propagates
to the backup processes. A transaction 〈v, z〉 has two fields:
a transaction value v and a transaction identifier z (or zxid).
Each transaction identifier z = 〈e, c〉 has two components: an
epoch e and a counter c. We use epoch(z) to denote the epoch
of a transaction identifier and counter(z) to denote the counter
value of z. We say that an epoch e is earlier than an epoch
e′ to denote that e < e′. Similarly, we say that an epoch e is
later that e′.

For a given primary ρe, the value of epoch(z) =
instance = e, and upon each new transaction, we in-
crement the counter c. We say that a transaction identifier
z precedes an identifier z′, z ≺z z′, to denote that ei-
ther epoch(z) < epoch(z′) or epoch(z) = epoch(z′) and
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counter(z) < counter(z′). We use z �z z′ to denote that
either z ≺z z′ or z = z′.

Once a primary has a transaction to broadcast it calls
abcast(〈v, z〉). Processes deliver (or commit) a transaction
〈v, z〉 by calling abdeliver(〈v, z〉). A call to abcast(〈v, z〉) is
not guaranteed to succeed if the primary crashes or there is a
change of primary. Consequently, from the sequence of state
changes a primary broadcasts, only a prefix of the sequence
of state updates is delivered. Upon delivering a transaction, a
process adds it to a txns set.

A. Core properties

Our system, ZooKeeper, requires the following properties
to maintain the state of processes consistent:
Integrity If some process delivers 〈v, z〉, then some process

pi ∈ Π has broadcast 〈v, z〉.
Total order If some process delivers 〈v, z〉 before 〈v′, z′〉,

then any process that delivers 〈v′, z′〉 must also deliver
〈v, z〉 and deliver 〈v, z〉 before 〈v′, z′〉.

These two properties guarantee that no transaction is created
spontaneously or corrupted and that processes that deliver
transactions must deliver them according to a consistent order.
The total order property, however, allows runs in which two
processes deliver disjoint sequences of transactions. To prevent
such undesirable runs, we require the following property:
Agreement If some process pi delivers 〈v, z〉 and some

process pj delivers 〈v′, z′〉, then either pi delivers 〈v′, z′〉
or pj delivers 〈v, z〉.

Note that the statement of agreement is different compared
to previous work. In previous work, the agreement has been
presented as a liveness property for atomic broadcast [13],
which requires an abstraction such as the one of good pro-
cesses, as in the work of Rodrigues and Raynal [3]. We instead
state agreement as a safety property, which guarantees that the
state of two processes do not diverge. We discuss liveness in
Sections V and VI.

The three safety properties above guarantee that processes
are consistent. However, we need to satisfy one more property
to enable multiple changes in progress from a given primary.
Since each state change is based on a previous state if
the change for that previous state is skipped, the dependent
changes must also be skipped. We call this property primary
order, and we split it into two parts:
Local primary order If a primary broadcasts 〈v, z〉 before

it broadcasts 〈v′, z′〉, then a process that delivers 〈v′, z′〉
must also deliver 〈v, z〉 before 〈v′, z′〉.

Global primary order Let 〈v, z〉 and 〈v′, z′〉 be as follows:
• A primary ρi broadcasts 〈v, z〉
• A primary ρj , ρi ≺ ρj , broadcasts 〈v′, z′〉
If a process pi ∈ Π delivers both 〈v, z〉 and 〈v′, z′〉, then
pi must deliver 〈v, z〉 before 〈v′, z′〉.

Note that local primary order corresponds to FIFO order
for a single primary instance, and that global primary order
prevents runs such as the one described in Figure 1.

Finally, a primary has to guarantee that the state updates
generated are consistent. A primary consequently can only

start broadcasting in an epoch once it has delivered the
transactions of previous epochs. This behavior is guaranteed
by the following property:
Primary integrity If a primary ρe broadcasts 〈v, z〉 and some

process delivers 〈v′, z′〉 such that 〈v′, z′〉 has been broad-
cast by ρe′ , e′ < e, then ρe must deliver 〈v′, z′〉 before
it broadcasts 〈v, z〉.

B. Comparison with causal atomic broadcast
PO atomic broadcast is designed to preserve the causal

order implicitly established in the generation of incremental
state updates. In this section, we compare causal atomic
broadcast and PO atomic broadcast, and argue that they are
not comparable.

The definition of causal order is based on the precedence
(or happens before) relation of events [14]. For broadcast
protocols, the events are either broadcast or deliver events.
We use 〈v, z〉 ≺c 〈v′, z′〉 to denote that abcast(〈v, z〉) pre-
cedes abcast(〈v′, z′〉). The causal order property for atomic
broadcast protocols is typically defined as (adapted from the
definition of Défago et al. [13]):

Definition III.1. (Causal order) If 〈v, z〉 ≺c 〈v′, z′〉 and a
process p delivers 〈v′, z′〉, then process p must also deliver
〈v, z〉 and deliver 〈v, z〉 before 〈v′, z′〉.

This property is not satisfied by PO atomic broadcast.
Figure 3 gives an example in which two transactions 〈v, z〉
and 〈v′′, z′′〉, epoch(z) < epoch(z′) < epoch(z′′), are causally
related, but transaction 〈v, z〉 is not delivered. To simplify the
discussion, we present only events for two processes.

Process pi

Process pj
abdeliver(⟨v'',z''⟩)

abdeliver(⟨v'',z''⟩)

abcast(⟨v'',z''⟩)

abdeliver(⟨v',z'⟩)abcast(⟨v,z⟩) abcast(⟨v',z'⟩)

abdeliver(⟨v',z'⟩)

Fig. 3. Example of an execution satisfying PO causal order, but not causal
order, epoch(z) < epoch(z′) < epoch(z′′).

The delivery order of PO atomic broadcast respects a
primary causal order relation ≺po that is strictly weaker than
causal order. In fact, transactions sent by different primaries
are not necessarily considered as causally related even if they
are actually sent by the same process. We say that an event ε
PO-precedes an event ε′, or equivalently that ε→po ε

′, if and
only if one of the following conditions hold:

1) ε and ε′ are local to the same process, ε occurs be-
fore ε′, and at least one of the following holds: ε 6=
abcast(〈v, z〉), ε′ 6= abcast(〈v′, z′〉), or epoch(z) =
epoch(z′);

2) ε = abcast(〈v, z〉) and ε′ = abdeliver(〈v, z〉);
3) There is an event ε′′ such that ε→po ε

′′ and ε′′ →po ε
′.

The ≺po relation is defined based on the PO-precedence
relation, and we obtain the PO causal order property by
replacing ≺c with ≺po in the definition of causal order.
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PO atomic broadcast also implements a key additional prop-
erty called strict causality: if some process delivers 〈v, z〉 and
〈v′, z′〉, then either 〈v, z〉 ≺po 〈v′, z′〉 or 〈v′, z′〉 ≺po 〈v, z〉.
Strict causality is needed because transactions are incremental
updates so they can only be applied to the state used to produce
them, which is the result of a chain of causally related updates.
With causal order, however, there can be transactions delivered
that are not causally related.

Figure 4 shows an execution satisfying causal order (and PO
causal order), but not strict causality, since 〈v, z〉 and 〈v′, z′〉
are both delivered even though they are causally independent.
This example shows that none of the two primitives is stronger
than the other.

Process pi

Process pj
abdeliver(⟨v'',z''⟩)abcast(⟨v',z'⟩) abdeliver(⟨v,z⟩)abdeliver(⟨v',z'⟩)

abcast(⟨v'',z''⟩)abcast(⟨v,z⟩) abdeliver(⟨v,z⟩)abdeliver(⟨v',z'⟩)

Fig. 4. Example of an execution satisfying causal order (and PO causal
order), but not strict causality, epoch(z) < epoch(z′) < epoch(z′′).

It follows directly from the core properties that PO atomic
broadcast implements PO causal order and strict causality [15].

IV. ALGORITHM DESCRIPTION

Zab has three phases: discovery, synchronization, and broad-
cast. Each process executes one iteration of this protocol at
a time, and at any time, a process may drop the current
iteration and start a new one by proceeding to Phase 1.
There are two roles Zab process can perform according to the
protocol: leader and follower. A leader concurrently executes
the primary role and proposes transactions according to the
order of broadcast calls of the primary. Followers accept
transactions according to the steps of the protocol. A leader
also executes the steps of a follower.

Each process implements a leader oracle, and the leader
oracle provides the identifier of the prospective leader `. In
Phase 1, a process consults its leader oracle to determine
which other process ` it should follow. If the leader oracle
of a process determines that it is the leader, then it executes
the leader steps of the protocol. Being selected the leader
according to its oracle, however, is not sufficient to establish
its leadership. To establish leadership, a process needs to
complete the synchronization phase (Phase 2).

f.p Last new epoch proposal follower f acknowledged, initially ⊥
f.a Last new leader proposal follower f acknowledged, initially ⊥
hf History of follower f , initially 〈〉

f.zxid Last accepted transaction identifier in hf

TABLE I
SUMMARY OF PERSISTENT VARIABLES

In the phase description of Zab, and later in the analysis,
we use the following notation:

Definition IV.1. (History) Each follower f has a history hf
of accepted transactions. A history is a sequence.

Definition IV.2. (Initial history) The initial history of an
epoch e, Ie, is the history of a prospective leader of e at the
end of phase 1 of epoch e.

Definition IV.3. (Broadcast values) βe is the sequence of
transactions broadcast by primary ρe using abcast(〈v, z〉).

The three phases of the protocol are as follows:
Phase 1 (Discovery): Follower f and leader ` execute the
following steps:
Step f.1.1 A follower sends to the prospective leader ` its

last promise in a CEPOCH(f.p) message.
Step `.1.1 Upon receiving CEPOCH(e) messages from a

quorum Q of followers, the prospective leader ` proposes
NEWEPOCH(e′) to the followers in Q. Epoch number e′

is such that it is later than any e received in a CEPOCH(e)
message.

Step f.1.2 Once it receives a NEWEPOCH(e′) from the
prospective leader `, if f.p < e′, then make f.p← e′ and
acknowledge the new epoch proposal NEWEPOCH(e′).
The acknowledgment ACK-E(f.a, hf ) contains the cur-
rent epoch f.a of the follower and its history. Follower
completes Phase 1.

Step `.1.2 Once it receives a confirmation from each follower
in Q, it selects the history of one follower f in Q
to be the initial history Ie′ . Follower f is such that
for every follower f ′ in Q, f ′.a < f.a or (f ′.a =
f.a)∧(f ′.zxid �z f.zxid). Prospective leader completes
Phase 1.

Phase 2 (Synchronization): Follower f and leader ` execute
the following steps:
Step `.2.1 The prospective leader ` proposes

NEWLEADER(e′, Ie′) to all followers in Q.
Step f.2.1 Upon receiving the NEWLEADER(e′, T ) message

from `, the follower starts a new iteration if f.p 6= e′.
If f.p = e′, then it executes the following actions
atomically:
1) It sets f.a to e′;
2) For each 〈v, z〉 ∈ Ie′ , it accepts 〈e′, 〈v, z〉〉, and makes
hf = T .

Finally, it acknowledges the NEWLEADER(e′, Ie′) pro-
posal to the leader, thus accepting the transactions in T .

Step `.2.2 Upon receiving acknowledgements to the
NEWLEADER(e′, Ie′) from a quorum of followers, the
leader sends a commit message to all followers and
completes Phase 2.

Step f.2.2 Upon receiving a commit message from the leader,
it delivers all transactions in the initial history Ie′ by
invoking abdeliver(〈v, z〉) for each transaction 〈v, z〉 in
Ie′ , following the order of Ie′ , and completes Phase 2.

Phase 3 (Broadcast): Follower f and leader ` execute the
following steps:
Step `.3.1: Leader ` proposes to all followers in Q in

increasing order of zxid, such that for each proposal
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〈e′, 〈v, z〉〉, epoch(z) = e′, and z succeeds all zxid values
previously broadcast in e′.

Step `.3.2: Upon receiving acknowledgments from a quo-
rum of followers to a given proposal 〈e′, 〈v, z〉〉, the
leader sends a commit COMMIT(e′, 〈v, z〉) to all follow-
ers.

Step f.3.1: Follower f initially invokes ready(e′) if it is
leading.

Step f.3.2: Follower f accepts proposals from ` following
reception order and appends them to hf .

Step f.3.3: Follower f commits a transaction 〈v, z〉
by invoking abdeliver(〈v, z〉) once it receives
COMMIT(e′, 〈v, z〉) and it has committed all transactions
〈v′, z′〉 such that 〈v′, z′〉 ∈ hf , z′ ≺z z.

Step `.3.3: Upon receiving a CEPOCH(e) message from
follower f while in Phase 3, leader ` proposes back
NEWEPOCH(e′) and NEWLEADER(e′, Ie′ ◦ βe′).

Step `.3.4: Upon receiving an acknowledgement from f
of the NEWLEADER(e′, Ie′ ◦ βe′) proposal, it sends a
commit message to f . Leader ` also makes Q← Q∪{f}.

2

Note that a realization of this protocol does not re-
quire sending complete histories with ACK-E(f.a, hf ) and
NEWLEADER(e′, Ie′), only the last transaction identifier in
the history followed by missing transactions. It is also possible
to omit values in acknowledgements and commit messages in
Phase 3 to reduce the size of messages.

The following section discusses the Zab protocol in more
detail along with some implementation aspects.

V. ZAB IN DETAIL

In our implementation of Zab, a Zab process can be looking
for a leader (ELECTION state), following (FOLLOWING
state), or leading (LEADING state). When a process starts,
it enters the ELECTION state. While in this state the process
tries to elect a new leader or become a leader. If the process
finds an elected leader, it moves to the FOLLOWING state
and begins to follow the leader. Processes in the FOLLOWING
state are followers. If the process is elected leader, it moves to
the LEADING state and becomes the leader. Given that a pro-
cess that leads also follows, states LEADING and FOLLOW-
ING are not exclusive. A follower transitions to ELECTION if
it detects that the leader has failed or relinquished leadership,
while a leader transitions to ELECTION once it observes that it
no longer has a quorum of followers supporting its leadership.

The basic delivery protocol is similar in spirit to two phase
commit [16] without aborts. The primary picks values to
broadcast in FIFO order and creates a transaction 〈v, z〉. Upon
receiving a request to broadcast a transaction, a leader pro-
poses 〈e, 〈v, z〉〉 following the order of zxid of the transactions.
The followers accept the proposal and acknowledge by sending
an ACK(e, 〈v, z〉) back to the leader. Note that a follower does
not send the acknowledgment back until it writes the proposal
to local stable storage. When a quorum of processes have
accepted the proposal, the leader issues a COMMIT(e, 〈v, z〉).
When a process receives a commit message for a proposal

〈e, 〈v, z〉〉, the process delivers all undelivered proposals with
zxid z′, z′ ≺z z.

Co-locating the leader and the primary on the same process
has practical advantages. The primary-backup scheme we use
requires that at most one process at a time is able to generate
updates that can be incorporated into the service state. A
primary propagates state updates using Zab, which in turn
requires a leader to initiate proposals. Leader and primary
correspond to different functionality, but they share a common
requirement: election. By co-locating them, we do not need
separate elections for primary and leader. Also important is
the fact that calls to broadcast transactions are local when they
are co-located. We consequently co-locate leader and primary.

A. Establishing a new leader

Leader election occurs in two stages. First, we run a leader
election algorithm that outputs a new process as the leader.
We can use any protocol that, with high probability, chooses
a process that is up and that a quorum of processes selects.
This property can be fulfilled by an Ω failure detector [17].

Figure 5 shows the events for both the leader and followers
when establishing a new leader. An elected leader does not
become established for a given epoch e until it completes
Phase 2, in which it successfully achieves consensus on the
proposal history and on itself as the leader of e. We define a
established leader and a established epoch as follows:

Definition V.1. (Established leader) A leader `e is estab-
lished for epoch e if the NEWLEADER(e, Ie) proposal of `e
is accepted by a quorum Q of followers.

Definition V.2. (Established epoch) An epoch e is established
if there is an established leader for e.

Once a process determines that it is a prospective leader by
inspecting the output of the leader election algorithm, it starts a
new iteration in Phase 1. It initially collects the latest epoch of
a quorum of followers Q, proposes a later epoch, and collects
the latest epoch and highest zxid of each of the followers in
Q. The leader completes Phase 1 once it selects the history
from a follower f with latest epoch and highest zxid in a
ACK-E(f.a, hf ). These steps are necessary to guarantee that
once the prospective leader completes Phase 1, none of the
followers in Q accept proposals from earlier epochs. Given
that the history of a follower can be arbitrarily long, it is not
efficient to send the entire history in a ACK-E(f.a, hf ). The
last zxid of a follower is sufficient for the prospective leader
to determine if it needs to copy transactions from any given
follower, and only copies missing transactions.

In Phase 2, the leader proposes itself as the leader of
the new epoch and sends a NEWLEADER(e, Ie) proposal,
which contains the initial history of the new epoch. As with
ACK-E(f.a, hf ), it is not necessary to send the complete initial
history, but instead only the transactions missing. A leader
becomes established once it receives the acknowledgments
to the new leader proposal from a quorum of followers, at
which point it commits the new proposal. Followers deliver
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Fig. 5. Zab protocol summary

the initial history and complete Phase 2 once they receive a
commit message for the new leader proposal.

One interesting optimization is to use a leader election
primitive that selects a leader that has the latest epoch and has
accepted the transaction with highest zxid among a quorum of
processes. Such a leader provides directly the initial history of
the new epoch.

B. Leading

A leader proposes operations by queuing them to all con-
nected followers. To achieve high throughput and low latency,
the leader has a steady stream of proposals to the followers.
By the channel properties, we guarantee that followers receive
proposals in order. In our implementation, we use TCP connec-
tions to exchange messages between processes. If a connection
to a given follower closes, then the proposals queued to
the connection are discarded and the leader considers the
corresponding follower down.

Detecting crashes through connections closing was not a
suitable choice for us. Timeout values for a connection can
be of minutes or even hours, depending on the operating
system configuration and the state of the connection. To
mutually detect crashes in a fine-grained and convenient
manner, avoiding operating system reconfiguration, leader and
followers exchange periodic heartbeats. If the leader does not
receive heartbeats from a quorum of followers within a timeout
interval, the leader renounces leadership of the epoch, and
transitions to the ELECTION state. Once it elects a leader,
it starts a new iteration of the algorithm, and starts a new
iteration of the protocol proceeding to Phase 1.

C. Following

When a follower emerges from leader election, it connects
to the leader. To support a leader, a follower f acknowledges
its new epoch proposal, and it only does so if the new epoch
proposed is later than f.p. A follower only follows one leader
at a time and stays connected to a leader as long as it receives
heartbeats within a timeout interval. If there is an interval
with no heartbeat or the TCP connection closes, the follower

abandons the leader, transitions to ELECTION and proceeds
to Phase 1 of the algorithm.

Figure 5 shows the protocol a follower executes to support
a leader. The follower sends its current epoch f.a in a current
epoch message (CEPOCH(f.a)) to the leader. The leader
sends a new epoch proposal (NEWEPOCH(e)) once it receives
a current epoch message from a quorum Q of followers. The
new proposed epoch e must be greater than the current epoch
of any follower in Q. A follower acknowledges the new epoch
proposal with its latest epoch and highest zxid, which the
leader uses to select the initial history for the new epoch.

In Phase 2, a follower acknowledges the new leader pro-
posal (NEWLEADER(e, Ie)) by setting its f.a value to e and
accepting the transactions in the initial history. Note that once
a follower accepts a new epoch proposal for an epoch e, it
does not send an acknowledgement for any other new epoch
proposal for the same epoch e. This property guarantees that
no two processes can become established leaders for the same
epoch e. Once it receives a commit message from the leader
for the new leader proposal, the follower completes Phase 2
and proceeds to Phase 3. In Phase 3, the follower receives new
proposals from the leader. A follower adds new proposals to
its history and acknowledges them. It delivers these proposals
when it receives commit messages from the leader.

Note that a follower and a leader follow the recovery
protocol both when a new leader is emerging and when
a follower connects to an established leader. If the leader
is already established, the NEWLEADER(e, Ie) proposal has
already been committed so any acknowledgements for the
NEWLEADER(e, Ie) proposal are ignored.

D. Liveness

Zab requires the presence of a leader to propose and
commit operations. To sustain leadership, a leader process `
needs to be able to send messages to and receive messages
from followers. In fact, process ` requires that a quorum of
followers are up and select ` as their leader to maintain its
leadership. This requirement follows closely the properties
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of �f -accessibility and leader stability of Malkhi et al. [18].
A thorough analysis and discussion of liveness requirements,
comparing in particular with the work of Malkhi et al., is out
of the scope of this work.

VI. ANALYSIS

In this section, we present an argument for the correctness
of Zab. A more detailed proof appear in a technical report [15].
We present initially a list of definitions followed by a set of
invariants that the protocol must satisfy.

A. Definitions

We use the following additional notation in this analysis.

Definition VI.1. (Chosen transaction) A transaction 〈v, z〉
is chosen when a quorum of followers accept a proposal
〈e, 〈v, z〉〉 for some e.

Definition VI.2. (Sequence of chosen transactions) Ce is
the sequence of chosen transactions in epoch e. A transaction
〈v, z〉 is chosen in epoch e iff there exists a quorum of
followers Q such that each f ∈ Q has accepted 〈e, 〈v, z〉〉.

Definition VI.3. (Sequence of chosen proposals broadcast
in the broadcast phase) CBe is the sequence of chosen
proposals during the broadcast phase of epoch e;

Definition VI.4. (Sequence of transactions delivered) ∆f

is the sequence of transactions follower f uniquely delivered,
which is the sequence induced by the identifiers of the
elements in txns.

Definition VI.5. (Sequence of transactions delivered in the
broadcast phase) Df is the sequence of transactions follower
f delivered while in the B phase of epoch f.a.

Definition VI.6. (Last committed epoch of a follower) Given
a follower f , we use f.e to denote the last epoch e such that
f has learned that e has been committed.

B. Invariants

The following properties are invariants that the protocol
maintains at each step, and that can be verified against the
protocol of Section IV in a straightforward manner. We use
them when proving the core properties of Zab.

Invariant 1. A follower f accepts a proposal 〈e, 〈v, z〉〉 only
if its current epoch f.a = e.

Invariant 2. During the broadcast phase of epoch e, a
follower f such that f.a = e accepts proposals and delivers
transactions according to zxid order.

Invariant 3. In Phase 1, a follower f promises not to accept
proposals from the leader of any epoch e′ < e before it
provides its history as the initial history of an epoch.

Invariant 4. The initial history Ie of an epoch e is the history
of some follower. Messages ACK-E(f.a, hf ) (Phase 1) and
NEWLEADER(e, Ie) (Phase 2) do not alter, reorder, or lose
transactions in hf and Ie, respectively.

Invariant 5. Let f be a follower. Df v βf.e.

C. Safety properties

We now present proof sketches for the properties we in-
troduced in Section III. Note that we use in some statements
the terms follower, leader, and primary, instead of process to
better match our definitions and the algorithm description.

Claim 1. Zab satisfies broadcast integrity: If some follower
delivers 〈v, z〉, then some primary ρe ∈ Π has broadcast
〈v, z〉.

Proof sketch:
By the algorithm and the properties of channels, only trans-
actions broadcast by primaries are delivered.
2

Claim 2. Zab satisfies agreement: If some follower f delivers
〈v, z〉 and some follower f ′ delivers 〈v′, z′〉, then f ′ delivers
〈v, z〉 or f delivers 〈v′, z′〉.

Proof sketch:
If 〈v, z〉 = 〈v′, z′〉, then the claim is vacuously true. Assuming
that 〈v, z〉 6= 〈v′, z′〉, we have by the algorithm that no two
leaders propose different transactions with the same zxid. Sup-
pose without loss of generality that z ≺z z′. By assumption,
we have that 〈v, z〉 ∈ ∆f . By the algorithm, we have that
〈v, z〉 ∈ If.e or 〈v, z〉 ∈ Df . There are two cases:
Case epoch(z) = epoch(z′): By Invariant 2, followers accept
〈v, z〉 and 〈v′, z′〉 in zxid order. Assuming that 〈v′, z′〉 ∈ Df ′ ,
we have also by Invariant 2 that:

〈v, z〉 ∈ Df ′ (1)

Otherwise, 〈v, z〉, 〈v′, z′〉 ∈ If ′.e and by the algorithm:

〈v, z〉, 〈v′, z′〉 ∈ ∆f ′ (2)

Case epoch(z) < epoch(z′): By Invariant 1 and the algorithm,
we have that:

〈v′, z′〉 ∈ ∆f ′ ⇒ epoch(z′) has been established (3)
〈v, z〉 ∈ ∆f ⇒ ∃e′ : 〈v, z〉 ∈ Ce′ (4)

By the choice of initial history of epoch(z′) and the defini-
tion of a chosen transaction:

Eq. 3 ∧ Eq. 4⇒ 〈v, z〉 ∈ Iepoch(z′) (5)

By the algorithm, once a transaction is in the initial history
of a established epoch, it is in the initial history of all later
epochs, and consequently we have that:

Eq. 5⇒ 〈v, z〉 ∈ If ′.e (6)

By assumption, we have that 〈v′, z′〉 ∈ ∆f . By the algo-
rithm, we have that ∆f = If.e ◦ Df , and we conclude that
〈v, z〉, 〈v′, z′〉 ∈ ∆f

2

Claim 3. Zab satisfies total order: If some follower delivers
〈v, z〉 before 〈v′, z′〉, then any process that delivers 〈v′, z′〉
must also deliver 〈v, z〉 and deliver 〈v, z〉 before 〈v′, z′〉.

252



Proof sketch:
By assumption, we have that 〈v, z〉 ≺ 〈v′, z′〉 in ∆f and
〈v′, z′〉 ∈ ∆f ′ . By the algorithm, we have that ∆f v Cf.e.
We then have that:

(∆f v Cf.e) ∧ 〈v, z〉 ≺∆f
〈v′, z′〉 ⇒ 〈v, z〉 ≺Cf.e

〈v′, z′〉
(7)

and that:

(∆f ′ v Cf ′.e) ∧ 〈v′, z′〉 ∈ ∆f ′ ⇒ 〈v′, z′〉 ∈ Cf ′.e (8)

Case f ′.e < f.e: By the algorithm, we have that:

Cf ′.e v Cf.e (9)

and that:

Eq. 7 ∧ Eq. 8 ∧ Eq. 9⇒ 〈v, z〉 ≺Cf′.e
〈v′, z′〉 (10)

Consequently, we have that:

Eq. 10 ∧∆f ′ v Cf ′.e ∧ 〈v′, z′〉 ∈ ∆f ′ ⇒ 〈v, z〉 ≺∆f′ 〈v′, z′〉

Case f ′.e ≥ f.e: Transactions chosen in a given epoch e
are in the initial history of every epoch e′ > e. Given that
Ce = Ie ◦ CBe, we have:

Cf.e v Cf ′.e (11)

and:

Eq. 11 ∧ Eq. 8 ∧ Eq. 7⇒ 〈v, z〉 ≺Cf′.e
〈v′, z′〉 (12)

Consequently, we have that:

Eq. 12 ∧∆f ′ v Cf ′.e ∧ 〈v′, z′〉 ∈ ∆f ′ ⇒ 〈v, z〉 ≺∆f′ 〈v′, z′〉

2

Claim 4. Zab satisfies local primary order: If a primary
broadcasts 〈v, z〉 before it broadcasts 〈v′, z′〉, then a follower
that delivers 〈v′, z′〉 must also deliver 〈v, z〉 before 〈v′, z′〉.

Proof sketch:
Let f be a follower process. There are two cases to consider:
Case f.e = e: By Invariant 5, we have that:

〈v, z〉 ≺βe 〈v′, z′〉 ∧ 〈v′, z′〉 ∈ ∆f ⇒ 〈v, z〉 ≺Df
〈v′, z′〉

Finally, since ∆f = If.e ◦Df we have that:

〈v, z〉 ≺Df
〈v′, z′〉 ⇒ 〈v, z〉 ≺∆f

〈v′, z′〉

Case f.e > e: By Invariant 2:

〈v, z〉 ≺βe 〈v′, z′〉 ∧ 〈v′, z′〉 ∈ ∆f ⇒ 〈v, z〉 ≺If.e
〈v′, z′〉

Finally, given that ∆f = If.e ◦Df :

〈v, z〉 ≺If.e
〈v′, z′〉 ∧ 〈v′, z′〉 ∈ ∆f ⇒ 〈v, z〉 ≺∆f

〈v′, z′〉

2

Claim 5. Zab satisfies global primary order: Let transactions
〈v, z〉 and 〈v′, z′〉 be as follows:
• A primary ρe broadcasts 〈v, z〉

• A primary ρe′ , ρe ≺ ρe′ , broadcasts 〈v′, z′〉
If a follower f ∈ Π delivers both 〈v, z〉 and 〈v′, z′〉, then f
must deliver 〈v, z〉 before 〈v′, z′〉.

Proof sketch:
Since ∆f v Cf.e, we have that:

〈v, z〉 ∈ ∆f ⇒ 〈v, z〉 ∈ Cf.e (13)
〈v′, z′〉 ∈ ∆f ⇒ 〈v′, z′〉 ∈ Cf.e (14)

Case f.e = e′: We have by Invariant 5 that 〈v, z〉 ∈ If.e and
〈v′, z′〉 ∈ Df . Since ∆f = If.e ◦Df , we have that 〈v, z〉 ≺∆f

〈v′, z′〉.
Case f.e > e′: We have by Invariant 5 that 〈v, z〉, 〈v′, z′〉 ∈
If.e. It must be the case that 〈v, z〉 ≺If.e

〈v′, z′〉, otherwise
either some process has accepted a proposal from ρe after
accepting a proposal from ρe′ or transactions in If.e have been
reordered, thus violating Invariants 3 and 4, respectively .
2

Claim 6. Zab satisfies primary integrity: If ρe broadcasts
〈v, z〉 and some follower f delivers 〈v′, z′〉 such that 〈v′, z′〉
has been broadcast by ρe′ , e′ < e, then pi must deliver 〈v′, z′〉
before it broadcasts 〈v, z〉.

Proof sketch:
Suppose by way of contradiction that process pi broadcasts
〈v, z〉 before it delivers 〈v′, z′〉. There are two cases to
consider:
Case 1: Process pi invokes abcast(〈v, z〉) before it delivers the
initial history of epoch e. This is not possible, since a primary
only broadcasts a transaction if ready(e) has been called and
a follower only calls ready(e) once it finishes delivering the
transactions in the initial history;
Case 2: Process pi delivers 〈v′, z′〉 while in the B phase of
epoch e. This action violates Invariant 2.
2

D. Liveness property

Claim 7. Suppose that:
• a quorum Q of followers is up;
• the followers in Q elect the same process ` and ` is up;
• messages between a follower in Q and ` are received in

a timely fashion.
If ` proposes a transaction 〈v, z〉, then 〈v, z〉 is eventually
committed.

Proof sketch:
Upon starting a new iteration of the protocol, a follower exe-
cutes Phase 1 exchanging messages with `. By the algorithm,
the leader selects the new epoch number e′ to be a number
larger than any epoch number received in a CEPOCH(e)
from the followers in Q. Consequently, upon receiving a
NEWEPOCH(e′) from `, a follower in Q acknowledges the
proposal and proceeds to Phase 2.

Once a quorum of followers have received, processed,
and acknowledged a NEWLEADER(e′, Ie′) proposal in Phase
2, the leader ` commits the NEWLEADER(e′, Ie′) proposal
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and proceeds to Phase 3. A proposal 〈e′, 〈v, z〉〉 from ` is
eventually committed in Phase 3 if all processes in {`} ∪ Q
remain up and message reception is timely, so that no process
suspects that ` is faulty.
2

VII. EVALUATION

We have written our implementation of Zab and the rest
of the ZooKeeper server in Java. To evaluate Zab, we used a
cluster of 13 identical servers with dual quad-core processor
Xeon 2.50GHz CPUs, 16G RAM, a gigabit network interface,
and a dedicated 1T SATA hard drive for the proposal history.
The servers run RHEL 5 (kernel 2.6.18-53.1.13.el5) using the
ext3 file system. We use the 1.6 version of Sun’s JVM.

Because Zab is not separable from ZooKeeper, we wrote
a special benchmark wrapper that hooks into the internals
of ZooKeeper to interact directly with Zab. The benchmark
wrapper causes the Zab leader to generate batches of 250,000
requests and keep 1,000 requests outstanding. When Java
first starts there is class loading and incremental compilation
that takes place that adversely affects the initial runs. We
also allocate files for logging transactions in the initial runs
that are reused in later runs. To avoid these startup effects
we run some warmup batches and then run approximately
10 batches sequentially. Although we use up to 13 servers
in our benchmarks, typical ZooKeeper installations have 3-7
servers, so 13 is larger compared to a typical setting. We ran
our benchmark with 1024-byte operations, which represents a
typical operation size.
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Fig. 6. Throughput of 1K messages as the number of servers increases. The
error bars show the range of the throughput values from the runs.

a) Throughput: We benchmark the time it takes to
replicate operations using Zab. Figure 6 shows how through-
put varies with the number of servers. One line shows the
throughput when nothing is written to disk. This isolates
the performance of just the protocol itself and the network.
Because we have a single gigabit network interface we have
a cap on outgoing bandwidth. We also show the theoretical
maximum replication throughput given this cap. Since the

leader propagates operations to all followers the throughput
must drop as the number of servers increase.

Although we sync requests to disk using the fdatasync
system call, this call only forces the request to the disk, and not
necessarily to the disk media. By default, disks have a write
cache on the disk itself and acknowledge the write before it
is written to the disk media. In the event of a power failure,
writes can be lost if they have not reached the disk media. As
shown in this figure and the next, there is a high price to pay
when the disk cache is turned off. When running with a disk
cache, or with a battery backed cache, such as those in raid
controllers, the performance with the disk is almost identical
to network only and both are saturating the network.

When we turn the disk write cache off, Zab becomes I/O
bound and the throughput is roughly constant with the number
of servers. With more than seven servers, throughput decreases
with more servers, since the same network-only bottlenecks
are present when the transactions are logged to disk.

As we scale the number of servers we saturate the network
card of the leader which causes the throughput to decrease as
the number of servers increases. We can use a broadcast tree
or chain replication [7] to broadcast the proposals to avoid this
saturation, but our performance is much higher than we need
in production, so we have not explored these alternatives.

b) Latency: Figure 7 shows the latency of a leader to
commit a single operation. Using ping we measured the basic
latency between servers to be 100 microseconds. The timer
resolution for our benchmark is in milliseconds.
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As with throughput, turning off the disk write cache causes
a significant performance impact. We use preallocated files,
write sequentially, and use the fdatasync to only sync
the data to disk. Unfortunately, the Linux kernel does not
recognize the “only sync data” flag until version 2.6.26. When
we sync, the performance penalty should be no more than a
rotational delay and a seek (around 20 milliseconds). However,
the penalty is higher due to metadata updates. This extra access
time affects both the latency and the throughput.

VIII. RELATED WORK

Paxos. In Paxos, a newly elected leader executes two
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phases. In the first phase, called read phase, the new leader
contacts all other processes to read any possible value that
has been proposed by previous leaders and committed. In the
second phase, called write phase, the new leader proposes
its own value. Compared to Paxos, one important difference
with Zab is the use of an additional phase: synchronization.
A new prospective leader ` tries to become established by
executing a read phase, that we call discovery, followed by a
synchronization phase. During the synchronization phase, the
new leader ` makes sure that a quorum of followers delivers
chosen transactions proposed by established leaders of prior
epochs. This synchronization phase prevents causal conflicts
and ensures that this property is respected. In fact, it guarantees
that all processes in the quorum deliver transactions of prior
epochs before transactions of the new epoch e are proposed.
Once the synchronization phase completes, Zab executes a
write phase that is similar to the one of Paxos.

An established leader is always associated with an epoch
number. Similar to the ballot number in Paxos, each epoch
number can only be associated with a single process. Instead
of using simple sequence numbers, in Zab a transaction is
identified by a zxid, which is a pair 〈epoch, counter〉. Such
zxids are ordered first by epoch and then by the counter. After
reading accepted histories from each process of a quorum, the
new established leader selects a history with the highest zxid
among the followers with the latest epoch to replicate across
a quorum of followers. Such a choice is critical to guarantee
that the sequence of transactions delivered is consistent with
the order of primaries broadcasting over time. With Paxos,
the leader instead selects transactions (or values) for each
sequence number independently.

Abstract Paxos Zab follows the abstract description of
Paxos by Lampson [19]. For each instance of consensus, a Zab
leader chooses a value that is anchored, it tries to get a quorum
of agents (followers) to accept it, and it finishes by recording
the value on a quorum of agents. In Zab, determining which
value is anchored for a consensus instance is simple because
we grant the right to propose a value for a given consensus
instance to exactly one leader, and, by the algorithm, a leader
proposes at most one value to each instance. Consequently, the
anchored value is either the single value the leader proposed or
no value (no-op). With Zab, consensus instances are ordered
according to zxids. Zab splits the sequence of consensus
instances into epochs, and to the consensus instances of an
epoch, only one leader can propose values.

Lampson observes that the Viewstamped replication proto-
col has a consensus algorithm embedded [19]. The approach
proposed by Viewstamped replication combines transaction
processing with a view change algorithm [20]. The view
change algorithm guarantees that events known to a majority
of replicas (or cohorts in their terminology) in a view survive
into subsequent views. Like Zab, the replication algorithm
guarantees the order of events proposed within an epoch.

Passive replication. With passive replication, a single pro-
cess executes clients operations and propagates state changes
to the remaining replicas. Budhiraja et al. discuss algorithms

and bounds for primary-backup synchronous systems [5].
Primary-backup is also a special case of Vertical Paxos [21],
which is a family of Paxos variants that enable reconfigurations
over time and requires fewer acceptors. Vertical Paxos relies
upon a configuration master for configuration changes. Each
configuration is associated to a ballot number, which increases
for every new configuration, and the proposer of each configu-
ration uses the corresponding ballot number to propose values.
Vertical Paxos is still Paxos, and each instance of consensus
can have multiple values proposed over time under different
ballots, thus causing the undesirable behavior for our setting
we discuss previously in the Introduction.

Crash-recovery protocols. Rodrigues and Raynal propose
a crash-recovery atomic broadcast protocol using a consensus
implementation [3]. To avoid duplicates of delivered messages,
they use a call A-deliver-sequence to obtain the sequence
of ordered messages. Mena and Schiper propose to add a
commit primitive to the specification of atomic broadcast [4].
Messages that have not been committed can be delivered twice.
With Zab, messages can be delivered twice as long as they
respect the order agreed upon. Boichat and Guerraoui propose
a modular and incremental approach to total-order broadcast,
and their strongest algorithm corresponds to Paxos [12].

Group Communication Systems. Birman and Joseph pro-
pose virtual synchrony as a computational model for pro-
gramming distributed environments [22], [23]. The general
idea is to guarantee that all processes observe the same
events in the same order. This guarantee applies not only
to message delivery events, but also to failures, recoveries,
group membership changes, etc. Although atomic broadcast
is important for virtually synchronous environments, other
weaker forms of broadcast, such as causal broadcast, also
enable applications to obtain the property of virtual synchrony.

Different from such a programming model, Zab assumes
a static ensemble of processes and does not perform view
or epoch changes upon failures of processes other than the
leader, unless the leader has no quorum supporting it. Also,
different from the ABCAST protocol of Birman and Joseph,
Zab uses a sequencer to disseminate messages because it
naturally matches the ZooKeeper application.

Chockler et al. survey properties of group communication
systems [8]. They present three total order properties: strong
total order, weak total order, and reliable total order. Reliable
total order is the strongest property, and guarantees that a
prefix of messages totally ordered by a timestamp function
are delivered in a view. Zab properties match more closely this
property, with one key difference: each view has at most one
process broadcasting. Having a single process broadcasting in
a view simplifies the implementation of the property, since the
ordering is established directly by the process broadcasting.

Partitionable atomic broadcast. COReL is an atomic
broadcast protocol for partitionable environments [24]. It relies
upon Transis, a group communication layer [25] and enables
processes in a primary component to totally order messages.
Like Zab, upon a configuration change, COReL does not
introduce new messages until recovery ends to guarantee a
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causal invariant. COReL, however, assumes that all processes
can initiate messages, leading to different ordering guarantees.

Even if we restrict a single process broadcast in a given
primary component, we still cannot replace Zab with COReL
in our design because of the delivery guarantee with respect
to causality. Causality holds across configurations, leading
to executions in which a message broadcast during an ear-
lier configuration is delivered after messages from a later
configuration. Using the example of Figure 3 to illustrate,
by the causal invariant of COReL, 〈v, z〉 must be delivered
before 〈v′, z′〉 even if there has been a transaction 〈v′′, z′′〉
delivered such that epoch(z) < epoch(z′′). In our design, such
a behavior causes inconsistencies because the state updates are
not commutative.

IX. CONCLUSION

When we designed ZooKeeper, we needed an efficient
atomic broadcast protocol, able to support our use of primary-
backup with multiple outstanding transactions. Two key re-
quirements in our design were efficient recovery upon primary
changes and state consistency. We observed that primary order
was a necessary property for guaranteeing correct recovery in
our use of primary-backup. We considered protocols in the
literature like Paxos, but even though Paxos is a popular choice
for implementing replicated systems, we found that it does
not satisfy this property when there are multiple outstanding
transactions without batching.

Zab guarantees primary order and enables multiple out-
standing transactions. Our implementation of Zab has been
able to provide us excellent throughput performance while
guaranteeing these properties. To guarantee primary order
despite primary crashes, Zab implements three phases. One
particular phase critical to guarantee that the property is
satisfied is synchronization. Upon a change of primary, a
quorum of processes has to execute a synchronization phase
before the new primary broadcasts new transactions. Executing
this phase guarantees that all transactions broadcast in previous
epochs that have been or will be chosen are in the initial
history of transactions of the new epoch.

Zab uses a scheme for assigning transaction identifiers that
guarantees at most one value for each identifier. This scheme
enables efficient recovery of primary crashes by allowing
correct transaction histories to be chosen by simply comparing
the last transaction identifier accepted by a process.

Zab is in production as part of ZooKeeper and has met the
demands of our workloads. The performance of ZooKeeper
has been key for its wide adoption.

REFERENCES

[1] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for Internet-scale systems,” in USENIX ATC’10: Proceed-
ings of the 2010 USENIX Annual Technical Conference. USENIX
Association, 2010.

[2] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[3] L. Rodrigues and M. Raynal, “Atomic broadcast in asynchronous crash-
recovery distributed systems and its use in quorum-based replication,”
IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 5,
pp. 1206–1217, 2003.

[4] S. Mena and A. Schiper, “A new look at atomic broadcast in the
asynchronous crash-recovery model,” in SRDS ’05: Proceedings of the
24th IEEE Symposium on Reliable Distributed Systems. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 202–214.

[5] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, Distributed
systems (2nd Ed.). ACM Press/Addison-Wesley Publishing Co., 1993,
ch. 8: The primary-backup approach, pp. 199–216.

[6] D. Powell, “Distributed fault tolerance - lessons learned from Delta-
4,” in Revised Papers from a Workshop on Hardware and Software
Architectures for Fault Tolerance. London, UK: Springer-Verlag, 1994,
pp. 199–217.

[7] R. van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability,” in OSDI’04: Proceedings of the 6th
conference on Symposium on Operating Systems Design & Implemen-
tation. USENIX Association, 2004, pp. 91–104.

[8] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communication
specifications: a comprehensive study,” ACM Comput. Surv., vol. 33,
pp. 427–469, December 2001.

[9] M. Burrows, “The Chubby lock service for loosely-coupled distributed
systems,” in OSDI ’06: Proceedings of the 7th symposium on Operating
systems design and implementation, 2006, pp. 335–350.

[10] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in PODC ’07: Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing. ACM,
2007, pp. 398–407.

[11] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou,
“Boxwood: Abstractions as the foundation for storage infrastructure,”
in OSDI’04: Proceedings of the 6th conference on Symposium on
Operating Systems Design & Implementation, 2004, pp. 105–120.

[12] R. Boichat and R. Guerraoui, “Reliable and total order broadcast in the
crash-recovery model,” J. Parallel Distrib. Comput., vol. 65, pp. 397–
413, April 2005.
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