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SECTION I_---_ABSTRACT

The purpose of this paper is to discuss some organizational aspects of programs using the actor
model of computation. In this paper we present an approach to modelling intelligence in terms of a
. society of communicating knowledge-based problem-solving experts. In turn each of the experts can be
- viewed as a society that can be further decomposed in the same way until the primitive actors of the
system are reached. We are investigating the nature of the communication mechanisms needed for
effective problem-solving by a society of experts and the conventions of discourse that make this
possible. In this way we hope eventually to develop a framework adequate for the discussion of the
central issues of problem-solving involving parallel versus serial processing and centralization versus
_decentralization of control and information storage. :

This paper demonstrates how actor message passing can be used to understand control structures
as patterns of passing messages in serial processing. This paper is a pre-requisite for successors -which
treat issues of parallelism and communication within the f ramework established here. The ability to
analyze or synthesize any kind of control structure as a pattern of passing messages among the members
of a society provides an important tool for understanding control structures. Ultimately, we hope to be
able to characterize various control structures in common use by societies in terms of patterns of passing
messages. This paper makes a small step in this direction by showing how to characterize familiar
control structures such as iteration and recursion in these terms. S
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SECTION II --- METHODOLOGY

11 -~ Modeling an Intelligent Person

Newell [1962] characterized what has become the conventional metaphor for computer probiem
solving as follows: "The problem solver should be a single personality, wandering over a goal net much as
an explorer wanders over the countryside, having a single context and taking it with him wherever he
goes." Working within this paradigm, authors of problem solving programs have often relied on
introspection as to methods that they would personally use to accomplish the task. Excellent scientific
work has been done working within this metaphor. Some of the work has taken the form of writing a
program to perform a task which requires a high degree of problem-solving ability in a human. Other
work has attempted to model how an individual human actually performs a simple task at an
information processing level. '

~ Research in any scientific field is carried out within the framework of underlying theories. A
large portion of the research that has been done in the field of Artificial Intelligence has taken the
modeling of an artificial human as its implicit goal. An early form of this modelling paradigm was the
goal of constructing devices which would. pass the "Turing Test". By this test a device is intelligent if it
cannot be distinguished from a human by interaction through a teletype. However, the "Turing Test"
view of the goal of artificial intelligence has been abused in recent years. Transcripts that appear to be
interactions with programs have been published that give a very misleading impression of the real
capabilities of the process that produced the transcripts. '

112 -~ Modeling a Society of Experts

Reciprocal communication of a cooperative nature is the essontial
intuitive criterion of a society.

Edward 0. Wilson in SOCIOBIOLOGY

We are investigating the problem solving model of a society of experts to supplement the model
of a single very intelligent human. We submit that this change in focus has several beneficial results.
It provides a better basis for naturally introducing parallelism into problem-solving since protocols of
individual people do not seem to exhibit much parallelism. The change in focus helps to make
mechanisms for the communication of knowledge more explicit. Psychologists have found it extremely
difficult to discover the communications that occur in the mind of an individual expert during problem
solving. Also the justifications for statements becomes more explicit since one expert will often demand
explicit justifications for the statements of another expert. It helps make the goal structures of
programs more explicit since experts can demand to know why they are being asked to work on a
particular task and how this task fits in with other tasks that are being pursued. Furthermore the
change should foster better specifications for tasks to be achieved so that appropriate experts can be
selected or synthesized.
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In these ways we hope to develop the communication mechanisms that are necessary to achieve
cooperation between expert modules for various micro-worlds in order to perform larger tasks which

- call for the expertise of more than one micro-world. Our work is attempting t0 build on the analysis

that has been done by philosophérs of science in recent years on the structure of the processes used by
scientific societies. In particular the work of Kuhn and Popper and their followers provides us with a
large stock of problem-solving ideas. The long term goal is to construct systems whose behavior
approximates the behavior of scientific societies. That is, the ultimate aim is to build systems which
model the way scientists construct, communicate, test, and modify theories. S :

113 -~ The_Actor Progr‘a’.mminjg_M,eﬁhodologx

We are developing methods to specify the behavior of actors (ob jects) in terms that are natural to
the semantics of the causal and incidental reia\tionshyipsl among the objects. That is, we are attempting
to develop a transparent medium for constructing models in which the control structure emerges as a
pattern of passing messages among the objects being modeled. - ' '

Towards that end, we are developing a programming methodolog'y consisting of the following
activities:

Deciding on the natural kinds of actors (ob iects) to have in the system to be conSﬁructed. '

Deciding for eachy‘kin“d of actor what kind of messages it should recgive.

Deciding for each kind qf actﬁr' iyhat it‘s“h'ould do when it reqeives ea‘ch, ‘ki}n’d‘ qf message.

Making the above decisions should constitute the design of an implementation. Thus the data
structures and control structures of the implementation should be determined by these decisions instead
of being determined by the limitations of the programming language being used. This is not to say
that the resulting implementation should be unstructured. Rather the structure of the implementation
should develop naturally from the structure of the system being modeled working within the

~ conventions of discourse among actors.

Actors are a local model of computation. There is no such thing as "action at a distance” nor is
there any "global state” of all actors in the universe. Actors interact on a purely local way by sending

. messages to one another.

I: Causal refationships are determined by physical causation in activating computational events whereas
incidental relationships are determined by the local order of arrival of messages at their destinations.
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SECTION III --—- THE ACTOR MODEL

HI1 -~ ,Adt’O’!‘S

 The basic construct of our computation model is the ACTOR. The BEHAVIOR of each actor is
DEFINED by the relationships among the events which are caused by the actor.

At a more superficial and impredse level, each actor may be thought of as having two aspects
which together realize the behavior which it manifests:

the ACTION it should take when it is sent a message

its ACQUAINTANCES which is the finite collection of actors that it directly KNOWS
ABOUT.

We first discuss actors in terms of their physical arrangement because it makes the discussion
more concrete and familiar to most readers. Gradually the emphasis will change to a discussion of the
behaviors realized by actors.

Diagramatically we will represent a situation in which an actor A knows about an actor B by
drawing a directed arc (which may be labeled for the convenience of the reader) from A to B.

friend ’ fathe‘r
. support h .~ door
A n ol C

A directly knows about B as “friend”
B directly knows about A as "support”
A directly knows about C as "n"

B directly knows about C as "father”
C directly knows about D as "door”

Diagram of the acquaintances of actors A, B, C, and D
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. The notation (acquaintanées'i)ywm be used to denote the immediate acquaintances of an actor x.

For example

{acquaintances A) = {C8}]
(acquaintances B) = {AC}
(acquaintances c) = {D}
(acquaintances D) = {}

Note that the KNOWS ABOUT relationship is asymmetric; ie. it is possible for an actor A to
know about another actor © without C also knowing about A. Should it happen that A and B know
about each other then we will say that they are MUTUAL ACQU AINTANCES.

The acquaintances of an actor are an abstraction of its physical representation. Consider for
example a list L with first element X and rest Y

rest

s o SR first

Diagram showing L directly knows about X as "first” and Y as "rest”

The actual physical representation of L could be in terms of a linked list, a vector of storage, or even a
hash table:




Page 6 _ Control Structure

« ex[ ]
x[ 1] == 2 N

Y
LINKED LIST VECTOR HASH TABLE
Diagram showing alternative physical realizations of L

Actors are straightforward to implement on conventional machines. We will mention a couple of
ways to do this in order to add concreteness to our discussion. Practical implementations are particularly
easy to construct using list-processing languages and micro-processors. Our implementation of actors in
LISP uses one cons pair for every actor. One component of the pair is a LISP procedure which
provides an entry point into the machine code necessary to implement the behavior of the actor when it
is sent a message. The other component of the pair is an ordered list of the acquaintances of the actor.
A similar representation could be used on a micro-processor (such as the CONS micro-processor of
Knight et. al). A reference to an actor on a micro-processor would in general require one word of
memory which consisted of two sub-fields. One field would be used as an index into the micro-code
and the other field would be used to point to a vector of the acquaintances of the actor.

The reader should keep in mind. thgt w_ithin K:thg actor m,odgl of computation there is o wav to
decompose an_actor into its parts. An_ actor is 'définéd‘ by its béhavipr; not by its physical
representation) ' T ‘
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1112 - Components of the Actor Model

The actor message-passing model is being developed as four tightly related and mutually
supportive components: ’

I A method for the rigorous specification of behaviors f rom various perspectives.
An important degree of flexibility available in actor semantics involves the ability to
carefully control the articulation of detail to be included in specifications. That is,
the constraints on the behavior of a system of actors can be specified in as much or
as little detail as is germane. Too much detail is distracting and impractical. Too
little detail fails to specify important aspects of the desired behavior. The wrong
kind of detail deflects attention down fruitless paths. Often the specifications need
to be very highly articulated for some crucial aspects of the desired behavior and
less so for other aspects. We are developing a methodology through which the
desired behavior of a system can be specified by axioms which characterize the
relationships among the events which must constitute the behavior of the system. At
the highest level these axioms are specifications of what is to be done rather than
how. As more detailed constraints of the allowable events are gradually imposed,
the possible behaviors which will realize these constraints become more restricted
until one is uniquely determined. Conversely, in order to demonstrate that a set of
specifications is satisfied by a particular actor, one examines the behaviors of the
component actors and demonstrates that the connection of these behaviors realizes
the behavior that is required.

2. A system (called PLASMA for PLANNER-like System Modeled on
A ctors) implemented in terms of actor message passing that is convenient for the
interactive construction of scenarios, scripts, and justifications. A SCRIPT is a
PLASMA program which can be used to specify the action that an actor will take
when it receives a message. In our research we have attempted to investigate
semantic instead of syntactic issues. We have designed PLASMA to be a
transparent _medium for expressing the underlying semantics of actor
message-passing. For example the semantics of the "knows-about” relationship for
actors dictates that PLASMA must use a particular syntactic rule (lexical binding)
for the referents of identifiers. The semantic model specifies that acquaintances of '
an actor must be specified when the actor is created. PLASMA satisfies this
semantic constraint by using the values of the identifers at at the time of creation
for the free identifiers in the script of a newly created actor since these are the only
actors available to be used as acquaintances.

3: A mathematical theory of computation which can represent any kind of
discrete behavior that can be physically realized. Our goal is to have a robust
theory whose theorems are not sensitive to arbitrary conventions and definitions. A
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theory which will be widely applicable as a mathematical tool is needed for
formalizing and investigating properties of procedures. Currently our theory takes
the form of a set of laws that any physically realizable actor system must satisfy
together with a set of axioms that characterize the behavior of a powerful modular
set of physically realizable actors (the primitives of PLASMA) which embody
conventions for discourse among actors.

4: The Event Diagrams presented in this paper are a further development of a
graphical notation used by Richard Steiger in his masters thesis for displaying
relationships among the events of an actor computation. In this paper we use them
to show the causal and knowledge relationships that characterize simple control
structures such as iteration and recursion as patterns of passing messages. Given an
outline of important hypothesized events and causal relations among the events of a
particular computation (ie. a SCENARIO of the intended behavior of the system),
event diagrams aid in abstracting scripts of modules that are capable of realizing
this behavior. For example we plan to explore the abstraction of the scripts of
actors for simple procedures for data structures from scenarios of their intended use.
Conversely, they aid in the analysis of an existing system by graphically displaying
the relationships among the events occuring in the system for particular cases of
behavior. Using the displays available on our time-sharing system, we would like to
automate the construction and analysis of event diagrams that have been done by
hand in this paper. We would like to investigate the construction of an “eclectic
magnifying glass” which provides flexible ways to specify which events and
relationships in the history of a computation are to be be displayed.

_This paper introduces and describes the relationship between Event Diagrams and PLASM A for simple
computations that do not involve side-effects. Issues of parallelism, inter-process communication, and
synchronization will be treated in subsequent papers building on the foundation provided by this paper.
For a mathematical treatment of the actor model of computation see (Greif and Hewitt:
SIGACT-SIGPLAN 1975) and (Greif: dissertation 1975). Issues of behavioral specifications are treated
in (Greif: dissertation 1975), (Hewitt and Smith: Towards a Programming Apprentice 197‘:) (Yonezawa:
Symbolic Evaluation as an Aid to Program Construction).
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SECTION IV --- ACTOR CONTROL STRUCTURE

IVl - Introduction to Event Diagrams

From a strictly input-output point of view there is no difference between iterative and
non-iterative implementations of a module. In order to rigorously analyze control structures it is
necessary to have a model of computation that is capable of displaying the internal structure of

computations.

We shall use event diagrams to display the internal structure of computations. Such diagrams
can be used to display many of the significant internal structural relations in a computation. A legend
for the notation used in these diagrams is given on the next page.
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Legend for Event Diagrams

A the box represents the actor A -
helper . "
X » Y x knows about y as. “helper
M —“”‘lm—-—::> T the double line represents the EVENT which consists

of sending the messenger M to the target T

the “railroad tracks” are used to indicate that the
occurrence of event Eq results in the occurrence of the
event E, and thus E; must precede Ep in time. The
event E; has messenger My and target Ty whereas the
event E5 has messenger Mp and target Tp.
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V2 - Actor M'I"i:g@}smissiioxxf

Actors make use of one universal communication mechanism called ACTOR TRANSMISSION
which consists of sending one actor (called the MESSENGER of the transmission) to another actor
(called the TARGET of the transmission). Each actor transmission defines an EVENT in which the
- MESSENGER arrives at the TARGET. The target and messenger are the immediate

PARTICIPANTS in the event. LE.if Eisan event with messenger actor M and target actor T then

(participants €) = {M T}

Actor transmission enables the knowledge in the local context of the target actor T to be integrated
with the information of the messenger actor M since the acquaintances of both the messenger and target
are available for use when the messenger arrives at the target. Furthermore this constitutes the only
information available at the instant of computation defined by the event!! ”

(:,N\P*“ON IN MESSENQ CONIEXT OF TAp
$

L
oK 2 & \ &
NN - N \ &
acquaintances M S > T acquaintances
of M ‘ of T

N X \\\

Event recording the transmission of Messenger Mto T
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Actor transmission is used to provide the necessary communication between actors to accomplish
the following kinds of actions:

calling a procedure :

obtaining an element from a data structure.
invoking a co-routine

modifying a data-structure

returning a value

synchronization of communicating parallel processes

The actor transmission communication mechanism enforces the modularity and protection of actor
systems. It provides the basis for constructing actor systems with explicit modular interfaces such that
user of a module (actor) can only depend of the behavior of the actor. The hardware enforces the
cbnstraint that the user of a module cannot depend on its current physical representation.

IV.2a --- Messengers

In order to have a useful model of a message-passing system, the problem of infinite regress must
be explicitly addressed. The actor message passing model provides for primitive actors to deal with
this problem. When a-primitive actor receives a request, it is unnecessary for the primitive to send any
further messages in order to properly respond to the request. In particular this means that a primitive
actor must be able to obtain some of the acquaintances of a messenger which it receives without having
to send any messages. Packagers (see appendix) provide the primitive mechanism needed in PLASMA
for transmitting messengers between actors.

Once an actor, m, (serving as messenger) is transmitted to another actor (serving as the target), §,
the computation proceeds by following the script of t using information from m. For this to be of any
use as a model of communication, it must be that m obeys some fairly standard conventions. These
provide the basis for meaningful discourse between actors. We will adopt the convention that all of the

messengers constructed by the PLASMA system are packagers2 of the following form:
(messenger: (agent: a) (envelope: 8) (banker: b))
where a is an actor representing the agent responsibie for the computation, e is the envelope of the

transmission, and b is the banker funding the computation. The explanation of bankers and agents is
outside the scope of this paper so we shall say no more about them.

2: Readers who are unfamiliar with the packagers of PLASM A may wish to consult the appéndix.
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IV2b . EhVélop¢$ o

In many cases the envelope of a messenger will simply contain a meSsage. A response to a request
is either a REPLY envelope with a reply message to the request packaged as

‘ .(reply: the-message)
ora COMPLAIN envelope with a complaint message packaged as
| | {complain: the-message)
whicﬁ explains why the request could not be honored.
Often the envelope of a messenger is a REQUEST which in addition to a request message
:21":::‘:::5 an actor ¢ to which a reply to the request should be sent. Such an envelope is packaged as

(request: the~-message (reply-to: ¢))

The ACTOR ¢ is closely related to the continuation FUNCTIONS used by Morris, Wadsworth,
Reynolds, and Strachey. L

__An ordinary functional call to a function f with arguments argy, .., through argy is fmplemented

in PLASMA by passing to f a request envelope with a message consisting of the tuple [argy, .., arg Jof
arguments and a continuation actor to which the value of f should be sent. v

IV3 - Request and Reply

Perhaps the simplest control structure is the ordinary request and reply pattern of activity that is
implemented in most programming languages as a procedure call and return. None of the internal
structure of the actor being invoked is shown. Instead the description articulates only the input-output
behavior of the actor. -
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Consider the example of a request being sent to an actor factorial to compute its value for the

argument tuple [3] and send the answer to the actor C. The diagram shows the two events consisting of

the above REQUEST (i.e. factorial is sent a messenger M; with message [3] and continuation C) and the
REPLY in which C is sent a newly created messenger M, with message 6:

message

[3] | M,

> factorial

reply-to

o e

message

A
=z

An Event Diagram for the Computation of (factorial 3)

- The above event diagram treats factorial as a "black box"™ with none of the internal events shown.
Notice that the computational process follows the “railroad” tracks from the first event to the second
event. We will now proceed to examine the computation more closely. This is an application of the
idea of using an eclectic magnifying glass to articulate the description of a behavior in greater detail.
What is seen depends on how factorial is implemented as well as the focus of the magnifying glass.
When we look into the implementation of factorial, we will see a number of events that occur between
the two which are diagrammed above.

Note that the value 6 which is constructed by the actor factorial is not an acquaintance of factarist.
Instead it is the "reply” acquaintance of the messenger My which is sent to the continuation C.
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V4 - "Re‘curls,i‘oxi _

IV.4a --- Scripts for a Non-lteratyiv,e ‘Factorial

Suppose we have a non-iterative implementation of factorial. A script written in PLASMA for
such an implementation is given below. Readers who are unfamiliar with the notation can consult the
appendix which provides an informal introduction to PLASMA.

{tactorial = ifactorial is defined to be
(= [=n] ‘ ireceive a message with one element which will be called n
(rules n , sthe rules for n are
(=1 _ ' ' ifiris
1) : ' sthen return 1

=0 1) ' ~ jelse if it is greater than 1 then

{n x (tsctorial (n = 1NN jreturn n times factorial of n minus 1
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IV4b --- An Event Dia'zram_for factorial _Ca‘llving, Itself Recursively

We are interested in looking more deeply into the control structure of recursive procedures. To
this end we take the above non-iterative implementation of factorial as a concrete example to be studied.
When factorial receives the message [3] it is not able to reply immediately since it does not directly know
what (factorial 3)is. Below is an event diagram of the computation that results from sending factorial a
messenger My with message [3] and continuation C up to the point of the first recursive call in which
factorial is sent a newly created messenger M, with message [2] and continuation C’ where C' is a newly
created actor that knows about nand C. The script of C' is such that whenever it is sent a message y, it
sends C the message (3 x y). ’

\
Factorial
M messagey s
‘tply-to 21 Y
c e —~
r—;:e‘ply—to
J
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IV.4c - Snapshot "of ‘Storage at Instant when faét;;iia;lfgcéive‘s‘ [Ll |

" Below we present a snapshot of the storage at the instant tactorial receives the message {1} The
rule for computing the amount of storage being used at the instant of any particular event is very
simple: Merely count all the actors that are in the transitive closure of the acquaintances of the
participants involved in the event. Recall that the participants of an event are the actors immediately

involved (i.e. the target and messenger).

factorial 1 M3
|

reply-to message

reply-to reply—to
c - Pty 'CI . pPly ‘ Cll

i
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IV.4d --- Viewing Recursion as a Pattern of Passing Messagés

The above event diagram exhibits the characteristic structure of a recursive computation. This
pattern is familiar to users of ALGOL, LISP 16, and PL-l and other programming languages that
make use of a pushdown stack to implement recursion. In such languages the amount of stack used by
the implementation grows monotonically until factorial is called with the argument 1 and then
monotonically decreases as the stack is popped.

Below we give an event diagram that displays the pattern of passing messages characteristic of

recursion in the computation of (factorial 3). Note that the computation proceeds from event to event
along the “railroad tracks” in the diagram.

reply~-to .

1 B ~
message 1

M ;—" :E—-’ 3

> 4

message

Factorial —1M, ‘“""(%D
) 1

reply-to

v,
message
> message d
J
6 |@essage )
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IV.4e - Characterization of Recursion as a Pattern of Passing Messages

Thus we see how recursion can be characterized as a pattern of passing messages using event
diagrams. The characteristic feature is the build up of a chain of continuation actors each one of
which knows only about the next and which eventually replies to the next with the answer. Notice that
this characterization of recursion in terms of relations between events is independent of the syntax of

the language for scripts which gives rise to the behavior. For example the same characterization would

hold for a recursive implementation of factorial in ALGOL. The semantics of ALGOL can be def ined
using relations among events in a manner similar to the way in which the semantics of PLASMA is
defined.

. The existence of the actors labeled €' and C” in the above diagram and the events in which they
are the target are difficult to explain in terms of the above PLASMA script for factorial. In order to
explain the origin of these actors and events, we need to explain more of the underlying implementation

of PLASMA.

IV5 - Envelope Level Scripts

Thus far in our PLASMA scripts we have examined information communicated in the messages
of envelopes. At this point we would like to introduce the envelope Jevel which allows access to other
information in the messengers of actor transmissions. Every messenger always contains (among other
things) an actor which serves as the ENVELOPE. In turn every envelope always contains an actor

which serves as the MESSAGE. Additionally REQUEST envelopes contain actors called

CONTINUATIONS to which replies to the messages should be sent.

The reason that it is useful to introduce the envelope level transmitters and receivers into scripts
is that otherwise much of the control structure (pattern of passing messages) has to remain implicit in
something like an evaluator or a compiler. Envelope receivers and transmitters provide the mechanism
for expressing more explicit scripts so that none of the processing or allocation of storage is going on
behind the scenes.

Envelope receivers and transmitters are analogous to ordinary receivers and transmitters in many
respects. They are intended to be used as a notation for writing scripts in which all the computational
events and actors are explicitly shown. In this way the structure of simple control structures such as
teration and recursion can be explicitly characterized as patterns of passing messages.

PLASMA uses the syntactic convention of using the number of shafts on the transmitter and
receive arrows to reflect the level at which the transmission is being referenced; one shaft meaning
ordinary message level, and two shafts meaning envelope level. Thus:

<= is an (ordinary) message-level-transmitter, and
== is a envelope-level-transmitter.
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Similarly,
= is an (ordinary) message-level-receiver, and
==) is an envelope-level-receiver.

Below ‘we use this notation to make the message-passing underlying the implementation of PLASMA
more explicit.

For example an ordinary message receiver which receives one argument n and replies with the
value (n + 1)written as :

{=> [=n]
(n+1)

can be written at the envelope level as follows:
(==> (request: {=n]} (reply-to: =c))

{c <== (reply: (n + 1))))

1V.5a --- A More Explicit Script for the Non-Iterative Factorial

The correspondence between the event diagram for the non-iterative implementation of factorial
and its script can be made more apparent by using envelope transmitters and receivers to fnake the
underlying’ implementation explicit. The script presented below is intended to explicate how the
implementation of PLASMA actually works.

{factorial = ' ;factorial is defined to be
22> {request: [=n] {reply-to: =c)) jreceive a request to compute the value of factorial for

' ‘ ;an argument tuple whose only element is n and

ssend the reply to the actor €

{rules n , . sthe rules for n are
=1 _ jif it is & then

(¢ <== (reply: 1)) ;send ¢ a reply envelope with message 1

=01 ' . selse if i1 is greater than 1
(factorial ¢== ;send faclorial e requess

{request: [(n - 1)] ;with message (n - 1) end

(reply-to: ' ;eontinuation the following actor

{==> (reply: =y) iif a reply envelope with message y is received

. : (c ¢== (reply: (y x ))IMN))  then send ¢ a reply envelope with message (y % n)

Notice that the above script specifies that before recursively calling factorial (in the case where Ml), a
new actor is created as the reply-to: component of the envelope sent to factorial. This new actor is
created with ACQUAINTANCES n and ¢ and has the following SCRIPT:




Control Structure Page 21

(z=> (reply: =y)
(c ¢== (reply: (y * n))))
Operationally,' the script says “for each reply y that is received, multiply it by n and send the resulting
product as a reply to c". ,
~
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Iv6 — Iteration

It is well known that another, more efficient implementation of factorial uses iterative control
structure. Event diagrams will be used as a tool to illustrate the behavior of this more efficient
implementation of factorial. One idea for an iterative implementation is to gradually build up the
product while counting down the argument --doing one multiply for each iteration. So we define an
actor called loop which should be sent both the current accumulation (which is initially 1) and the current
count (which is initially the input n) on each iteration. The obvious way to do this is to repeatedly send
loop a sequence of the form [accumulation count].

1IV6a - A-Script fof an Iterative Implementation of Factorial

{factorial = , ifactorial is defined to be
{=> [=n}] ‘ jreceive one argument and call it n
([t n)= : ssend a 2-tuple with elements 1 and n to
{loop = , ;a newly created actor named loop which behaves as follows

{> [=accumulation =count] jreceive o 2-tuple as the current accumulated product and couns

(rules count sthe rules for the count are

(=1 ' sif it is 1 then

sccumulation) . sreturn the aceumulation

= 01) selse if it is greater than 1

{loop  eend loop

(accumulation % count)  ;the acenmulation times the cownt

(count = 1NN ;and the count minus one

Notice that the argument n is not an acquaintance of the actor loop in the iterative
implementation of factorial. The rule for calulating the acquaintances from the script of an actor
defined in PLASMA is very simple: the acquaintances of a newly created actor are the actors named by
the free identifiers in the script at the time the actor is created. Instead of being an acquaintance, the
actor n is sent to loop as the second element of the two tuple [1 n}.
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1V.6b - An Event Diagram for Iterative Factorial

The script given above will exhibit the behavior diagramed below when factorial is sent the
message [3]. This is an illustration of iteration as a pattern of passing messages. Note the repeated use
of the actor C as a continuation in the envelopes used in the iterative implementation of factorial.

[rep!y—to ’
Factorial M, = [ 3] l
rreplyuto ’ |
M, e [13] v
(reply-to ' -
Loo
P My =225 [ 3 2] v
(_Leply—to '
My g [ 6 1] 4
6 [ M, Cc ¢ — —
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IV6c --- A More Explicit Script for Iterative Factorial

Notice that the above implementation of factorial definitely uses iterative (finite-state) control
structure in the sense that it does not need any more memory than that needed for the values of count
and sccumulation. We now incorporate envelope transmitters and receivers to make the script of the
iterative implementation of factorial more explicit. ‘In this way the correspondence between the event
diagram for the iterative implementation and its script becomes more apparent.

{factorial = ' ifactorial is defined to be
(=2> (request: [=n] jreceive a request with argument tuple [n])
(reply-to: =¢)) ‘ . sand continuation ¢

((request: [1 n] {reply-to: ¢)) ==> ssend a request with argument tuple {1 n] and
icontinuation ¢ to the following newly created actor

(loop = inamed locp

= (request [=accumulation =count] (reply-to: =d)) ssuch that if a request is received with

smessage comammg the accumulation and count
:and continuation d

{rules count schecks the count
=1 o see if igis 1

(d <== (reply: accumulation))) if so it sends the accumulation as a reply to &
=01 selse if it is greater than § thew
{loop ¢== . ‘ ;send loop a request with
{request: [(accumulation % count) (count = 1)} ithe appropriate message
(reply-to: d))))IINY} ;and the continuation d

The reason that this is iterative is that loopalways passes along the same continuation actor that it
receives with the message. The only continuation it needs, and therefore the only one that it holds onto,
is the one contained in the otiginal envelope that was sent to factorial. The loop sends its answer to that
continuation directly when it is done Thus no extra storage is needed going around the loop.
Furthermore, in this implementation of iteration there are no side effects which change the behavior of
any actor. If the user wants, she can keep a complete history of all the events in her computation and
be confident that no information has been lost. Actor semantics account for the iterative behavior of
the above implementation of factorial without having to appeal to external implicit mechanism such as
an interpreter or any kind of external storage mechanism such as activation records. Al the behavior
of the system is accounted for by the behavior of actors when they are sent messages. Furthermore al
of the storage is accounted for by the actors shown in the event diagrams. Event diagrams show how
PLASMA is actually implemented using actors. The actor model provides a complete self-contained
rigorous theory of iteration as a pattern of passing messages. It provides an explanation for the
semantics behind the optimization rule used by many compilers that all "ail recursive” self- referential
definitions can be compiled using special iteration primitives such as “while” loops, "do” loops, etc.
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1V.6d_-— Meaning of "Recursion”
The term RECURSIVE has come to have at least three different meanings in computer science:
1: Effectively computable as in "recursive function theory”
9. Self-referential as in "factorial can be defined recursively in terms of itself”
3. Non-iterative as in "recursive functions use up more push-down stack when they
call each other whereas iterative loops do not”. :
Both the iterative and non-iterative definitions for factorisl which we have presented are
self-referential. However, only the non-iterative implementation is *recursive” in the third sense of the
word.
Using factorial as a simple example, we have shown how the actor message passing model can be
used to give additional precision to fundamental concepts in computer science. '
~
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IV.7 - Comparison of Recursion and Iteration

Below we present abstracted versions of the event diagrams for the iterative and non-iterative
implementations of factorial when called with 3 as an argument. In the diagrams below the message is
shown inside the messenger in order to more strongly bring out the pattern of message passing.

RECURSION

reply-to
[ 3] -

[- 5 ] reply~to

Factorial ———

v
; (1]
1 % = fol 4—]

Dfc je——
e

T

6 =

ITERAT;ONN
Factoriall: - [ 3] reply-to
! < i [1 3]
Loop ¢ i > )
< ; 6 1)
c ¢ }t
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SECTION V_--- EFFICIENCY and INTELLIGIBILITY

Vi - Modular Distribution of Enowledge

Since the defining characteristic of actors is that they send and receive messages, they are
relatively unbiased with respect to assumptions about control structure and the distinction between data
and operators. The neutrality on the issue of division of knowledge between data structure and
operators can be seen in the various ways in which one can distribute information in an actor system.
How. one might choose to distribute it depends on one’s purposes and the various uses to which the
knowledge can be put. Often it is desirable to represent knowledge redundantly with different uses of
the same knowledge appearing in several guises in several different places. The point is that the actors
allow distribution of knowledge in any way that is useful. '

Early Artificial Intelligence programs were mainly organized as multi-pass heuristic programs
consisting of a pass of information gathering, a pass of constraint analysis, and a pass of hypothesis
formation. It is now generally recognized that multi-pass organizations of this kind are inflexible
because it is often necessary for information to flow across these boundaries in both directions in a
dialogue at all stages of the processing. ' '

v2 - Non-hairy Control Structure

One of the most important results that has emerged from the development of actor semantics has
" been the further development of techniques to semantically analyze or synthesize control structures as a
patterns of passing messages. As a result of this work, we have found that we can do without the
paraphernalia of "hairy control structure” such as possibility lists, non-local gotos, and assignments
of values to the internal variables of other procedures in CONNIVER). None of the accouterments of
"hairy control structure” seem to be necessary for communication among the plans of a high-level
goal-criented formalism. In particular "hairy control structure” is not needed to deal effectively and
efficiently with anomalies and complaints encountered in the course of attempting to mechanize
problem solving in such a formalism. The conventions of ordinary message-passing seem to provide a
better structured, more intuitive, foundation for constructing the communication systems needed for
expert problem-solving modules to cooperate effectively.

We have discovered a syntactic transformation by which it is possible to convert a program which
uses hairy control structure into an equivalent program that uses ordinary message passing. The first
step of the transformation is to convert each ordinary message receiver = into the form ==> and each
ordinary message transmitter => into the form ==> using the techniques used in the examples above.
The next step then simply to convert each envelope level receiver == into => and each each envelope
level transmitter ==> Into =>. The result is a program which make no use of hairy control structure.
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However, it is not recommended that the above method be used to convert programs that use
hairy control structure. The best way to achieve an-efficient modular implementation of a problem
solver is to reason directly in terms of the behavior required to solve the problem. It is highly
undesirable to take a program that is difficult to understand because of the use of hairy control
structure and “improve” it by eliminating the hairy control structure by a local syntactic transformation
such as the one discussed above. In_general such local transformations make badly structured
programs worse instead of better. '

We will present two examples of problems where hairy control structure was originally used to
implement a difficult problem. As the problem to be solved has become better understood, more
intelligible solutions which do not involve hairy control structure have been developed.

V3 --- Gaining Efficiexioy thru Progressive Refinement

Efficient implementations of systems are usually most easily arrived at by beginning with a
high-level goal-oriented plan and then progressively refining using specific domain-dependent
knowledge. For example a simple recursive implementation for computing base®*Ponent js oiven below:

(integer-axponentiation =
(=> [=base =exponent]
{rules exponent
=0 k
1)
else
(base % (integer-axponentiation base (exponent = 1)))))))

- In the above example we have made use of an expression of the form
{else body)
as a convenient mnemonic abbreviation for
(> ? body)
making use of the fact that the pattern ? will match anything.
The above plan is too inefficient to use to calculate large exponents. However, we do not intend
to use it for this purpose! Instead of executing the plan, we propose to refine it to make it more
efficient. These refinements have been accomplished by using a great deal of mathematical and

problem solving knowledge.

The efficiency of the exponentiation routine can be improved by transforming it into an iterative
form using the fact that integer multiplication is associative:
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(integer-exponentiation =
(=> [=base =exponent]
{[exponent 1] =>
(till~exponent-zero =

(2> [=e =accumulation]
(rules o
(=0

accumulation)
(else

(till-exponent-zero
(e-1)
" (accumulation % base)))}))))

However, the above procedure is still not very efficient.

Notice that if exponent is an even integer then

base®*PONent = (hace x b,“)(oxpomn! l2)
The above arithmetical fact can be used as the basis for making a f aster exponentiation routine:

* (tast-exponentiation =
(=> [=hase =eoxponent]
{({base exponent 1] =
(till=oxponent-zero =
(> [=b =e =accumulation]

(rules @
=0
accumulation)
- {=> (even)
(till-exponent-zero
.{bxb)
{e/2)
accumulation))
(else
(till-exponent-zero
b
(e-1)

{b x accumulation)))))))

This last refinement is probably fast enough for most practical purposes. However, John Reynolds has
pointed out that the above program is still inefficient in two ways:
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After it is determined that the exponent is odd, when the loop is continued it is
unnechsary to test that {(exponent - 1)is even.

~ After it is determined that the exponent is non-zero but even, when the loop is continued
it is unnecessary to test that (exponent / 2)is non-zero.

Reynolds showed how these inefficiencies could be removed by the use of assignment statements and
gotos.

The double testmg is easnly eliminated in PLASMA by simply defining two auxiliary actors
which handle positive and even exponents as special cases. This example demonstrates how the
underlying strategies of optimizations can be captured by reasoning in terms of message-passmg

(fastor-oxpononhahon E
{=> [=base =exponent]
{les
{positive-exponent =
(=> [=b =e zaccumulation]
. {rules @
(=> (even)
(positive-exponent
(b xDb)
(0/2)
accumulation))
(else
{even-exponent
b
{o - 1)
(b % accumulation)))))
(aven-exponent =
(=> [=b =e =accumulation]
{rules e
(=0
accumulation)
(else
{positive-exponent
(b % b)
(e /2)
accumulation)))))
then
{rules exponent
=0
1)
{else
{pesitive-exponent base exponent 1))))))
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The point of this example is that viewing control structure as a pattern of passing messages can
be used to motivate optimizations that improve efficiency. A good programming methodology involves
writing high-level goal-oriented plans to specify a task followed by progressively refining these plans to
obtain efficient implementations. To support a programming methodology based on progressive
refinement, it is necessary to have a unif ied coherent formalism which can encompass the necessary

range of plans. The formalism needs to be sufficiently powerful to represent any potential optimization
so that the complexity and efficiency of the optimization can be calculated.

V.4 - Generators

- In knowledge based systems, it is unreasonable to store all the implications of the knowledge
available at a given time. Explicitly storing the answers to all possible questions instead of
incrementally generating them as they are needed is not only extremely inefficient since most of them
may never be needed, but may in fact be impossible. For example expanding out all the possible games
of chess before making the first move is clearly infeasible. The therefore it must be possible to
incrementally generate implications as needed in order to answer questions.

In order to deal with this problem Newell, Shaw, Simon introduced a form of generators into
their Information Processing Language. Since that time, the concept has undergone considerable
further development. In terms of actors the idea is to construct a sequence s which behaves like a

_sequence of the possible answers to some question. The trick is that s does not physically contain all the

answers but rather generates them incrementally as needed. To make this discussion more concrete we
present a simple problem that illustrates how generators can be conveniently implemented in PLASMA.

We will assume that we have some actors called trees such that each tree is either of the form

(terminal: T)where T is the terminal symbol, or of the form {non-terminal: L R)where L and R are left and
right sub-trees.

For example the tree / \\
(non-terminal: 1 2 C
(non-terminal: (terminal: A) (terminal: B)) ,

{terminal: C))
A B

has the following fringe (sequence of terminals in left to right order) [A B C]
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as does the following tree:

(non-terminal: ' ‘ ‘ 1 2
' (terminal: A) ' : /

(non-terminal: (terminal: B) (terminal: C)))

whereas the following tree

. // X
{non-terminal: .

(terminal: C)

{non-terminal: (zérminal: A) {terminal: B))) C / X

A B

has [c A BJas its fringe.

The problem is to define the actor fringe so that for any tree T, (fringe T)behaves like a sequence
of the terminal elements of T. There are two important properties that characterize the behavior of
fringe. First, frmgo of a termmal node must behave like a sequence with one element

(fringe (terminal: T)) ~ [__]
The symbol ~ is used to denote behavioral equivalence of actors. Second, fringe of a non-terminal node
must behave like the sequence produced by concatenating the f ringe of the left sub-node and the fringe
of the right subnode:
_{fringe (non-terminal: L R)) ~ (!(fringq L} Yiringe R)]

The above specification makes use of the unpack operator § of PLASMA which is explained in the
appendix,
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V.4a - A Higﬁ-Léyéﬁ'kyilyymélémg“ﬁigtikbnk

From the above behavioral specifications we can immediately derive the following
implementation of fringe:

(fringe = ' ;the behavior of fringe is defined to be
=) [=the-tree] ;whenever it receives a tree
(rules the-tree sthe rules for the tree are

(= (terminal: =T) if is a terminal T

m sthen the fringe is a sequence whose only element isT

{=> (non~terminal: =L =R) _ selse the tree must be a non-terminal

[t(tringe L) Hfringe R)IV) :and the fringe of the tree is

sthe fringe of its left sub-tree concatenated with
jthe fringe of its right sub-tree

Unfortunately, the above implementation is not incremental because it immediately looks at all the
niodes of the tree and thus is exponentially inefficient. The above definition of fringe is still very much
a specification of what fringe is supposed to do as opposed to a detailed specification of how to
efficiently accomplish the task. This lack of concern with the details of implementation is the chief
advantage (and at the same time the chief disadvantage) of high-level implementations. ‘

V.4b - An Incremental I‘n‘\pleinéym‘atldn -

‘Incremental generation amounts to adopting a "wait and see” approach as to whether the rest of
the elements will be needed. The above implementation of fringe can be refined to be incremental by
use of the delay operator. Readers who are not familiar with the delay operator of PLASMA should
consult the appendix. :

{fringe = _ sthe behavior of fringe is defined to be
(=> [=the-tree] ' ' swhenever it receives a tree
{rules tha-tree sthe rules for the tree are

(=> (terminal: =T) ;if is a terminal T

™ sthen the fringe is a sequence whose only element isT

(=) (non-terminal: =L =R) ' ;else the tree must be a non-terminal

[Ydelay (fringe L)) Hdelay (fringe RN ;and the fringe of the tree is

sthe fringe of its left sub-tree concatenated with
sthe fringe of its right sub-tree

The "wait and see” approach is not always the most efficient implementation for every problem.
In particular often there is a space-time trade-off in the use of the delay operator. In many cases it is
more efficient to simply compute an expression E immediately than to wait by the use of (delay E)since
the latter can cause the retention of extra unnecessary storage. For example consider the following
definition: : :
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{¢=
{=> [=x =h]
{rules x
(=« 3)
0)
{else

hm

Notice that the expression  (f 2 HUGE)immediately evaluates to O whereas the expression
(delay (f 2 HUGE))is an arbitrarily large amount of storage which will eventually evaluate to 0. The
reader might consider how the eff iciency of the implementation of the delay operator can be improved
using partial evaluation. .

An additional complexity is that PLASMA uses incremental sequences to implement pattern
directed retrieval from a data base. This data base must have side-effects because it is used to
implement communicating parallel processes [Greif and Hewitt 1975). In this application the "do it now"
and "wait and see” implementations can result in different sequences of values! In_ order to make
interprocess communication work properly, careful control must be maintained over when delays are
introduced into PLASMA scripts. This issue arises in the implementation of shared resources whos
integrity must be protected as they are used by communicating parallel processes. For this reason
PLASMA has been not been designed to use the delay rule for evaluation as the default evaluation
mechanism as has been proposed for lambda calulus languages by Church, Cadiou, Vuillemin,
Wadsworth, Henderson and Morris, and Friedman and Wise. Carried to its logical extreme the
ultimate form of the uniform delay rule is to never compute the value of any expression unless the
value is needed for output to the external environment!
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As we have explicitly acknowledged in our previous papers, the development of PLASMA and
the actor model of computation has been strongly influenced by the lambda calculus and by the work of
numerous researchers who have studied it. The lambda calcutus of Church is a suitable f ormalism for
studying the behavior of effectively computable functions. . ' ' o

In our research we have attempted to constructively build on this previous work by developing a
problem solving formalism and semantic model for actors such : s cells, serializers, and funnels which do
not_behave like mathematical functions In the sections below ‘we Investigate the different ways that
previous researchers have used the lambda calculus as a formalism for studying the semantics of
procedures. S

The actor model of computation is based on incidental and causal relations among events where
each event is defined by the act of sending one actor to another. Thus it is incorrect to speak of an
“actors interpreter" because a semantic model does not specify a language which can be _executed. The
relationship between actors and PLASMA is analogous to the relationship between mathematical
functions and the lambda calculus. Although there is a well developed mathematical theory of
functions as sets of ordered pairs, there is no such thing as a "functions interpreter”. The lambda
calculus is just one of many possible languages which can be used to define the behavior of
mathematical functions. Similarly, PLASMA is just one of many possible languages that. can be used to

In some useless sense all programming languages are equivalent. It is possible to simulate the
behavior of any programming language using any other programming language in common use.
Naively it might be thought that ALGOL is "more powerful” than FORTRAN because ALGOL has
recursion and FORTRAN doesn’t. However, there is a programming style in FORTRAN which

enables recursive programs to be written in FORTRAN corresponding very closely to the way in which
the programs would be written in ALGOL. The simulation involves allocating a large array to hold
the temporary values needed in recursion. Similarly it is possible to simulate the behavior of PLASMA
using a lambda calulus interpreter. The table below gives a simulation method for important
behaviors of actors: ' ‘

BEHAVIOR PLASMA LAMBDA CALCULUS

' PRIMITIVE SIMULATION TECHNIQUE
mutual-reference labels " Yoperastr
side-effects ' cell “global state” of memory
synchronization sarlalizer “global oracle”
parallelism ~ funnel "global state” of program counters

- All of the above simulation techniques work by systematically adding extra arguments to lambda
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expressions. To simulate cells [Scott-Strachey] an extra argument is added to every lambda expression
which is to be bound to a lambda expression which contains the "current contents® of all the cells on all
the machines of the system. An assignment of new contents to a cell is simulated by constructing a new
lambda expression which simulates the "next global state” of all the cells on the machines. Similariy to
simulate synchronization an extra argument is added to every lambda expression which is to be bound
to a lambda expression which simulates the "next" instruction to be executed on one of the machines

executing in parallel. Thus the lambda calculus can be used to simulate the behavior of an actor system:

running on a network of machines executing in parallel. The lambda calculus simulation approach
attempts to model all behavior by reduction to lambda abstraction and application. This raises an
important question: ’

For what purposes is lambda calculus simulation a useful model of computation?

The answer to this question is currently under investigation by many researchers. We suspect that it
will be several more years before researchers have reached a consensus of opinion on the question.

However, we can make a few preliminary remarks that bear on what the ultimate answer might be.

Simulation using lambda expressions does not correspond very closely to the mechanisms that

are actually used to implement communicating parallel processes on a network of machines

executing in parallel. Networks of machines will soon become very common because of the rapidiy
decreasing cost of processors and rapid development of technologies to inexpensively provide
high-bandwidth connections between machines. :

PLASMA attempts to provide modular primitives which are intended to be used to implement
abstractions that manifest useful problem solving behaviors such as communicating parailel processes.
Within the actor model of computation, the behaviors of primitives such as cells, serializers, and funnels
are axiomatized using incidental and causal relations among events. The actor model is intended to
serve as the semantic foundation for a Programming Apprentice that supports an evolutionary
behavioral programming methodology. In order for a Programming Apprentice to communicate
effectively with the programmers building a system, it needs a semantic model which closely corresponds
to the way in which programmers think about their computations. The_actor message-passing model

corresponds closely to the mechanisms that are actually used to implement communicating paraliel

processes on networks of machines.
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SECTION VII --- FUTURE WORK

Vill — Applications

The PLASMA system described in_this papér is currently being impiemented at the MIT

Artificial Intelligence Laboratory. In the spring of 1975, PLASM A was defined meta-circularly in terms
of itself and then translated by hand into LISP using making use of LISP macros written by Russ
Atkinson that make LISP resemble a subset of PLASMA. In the fall semester of 1975 the translation
was completed and brought into an efficient running state by Howie Shrobe. However, more work is
needed before it will be usable for writing large systems. This implementation [which has modularity
and good human engineering as its chief design goals] is still under development. It is based on the
actor transmission communication mechanism using primitive actors coded in LISP. The development
of the actor metaphor will continue in the next year to gain some experience in using it for the
following kinds of applications: ‘

to implement a distributed symbolic evaluator for a Programming Apprentice (Hewitt
and Smith 1975, Rich and Shrobe 1975, Yonezawa 1975]

to implement other procedural knowledge-based systems such as a stereotype-based visual
perception system [McLennan 1975]

" as a formalism for defining message passing systems to try out ideas for the modular
distribution of knowledge for a society of communicating experts

to experiment with various scheduling and synchronization policies using serializers
[Atkinson and Hewitt 1976]

as a basis for a flexible actor-based animation language [Kahn 1976]

g
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Viila --- Incremental Perpetual Development

The development of any large system (viewed as a society) having a long useful life must be
viewed as an incremental and evolutionary process. Development begins with specifications, plans,
domain dependent knowledge, and scenarios for a large task. Attempts to use this information to create
an implementation have the effect of causing revisions: additions, deletions, modifications,
specializations, generalizations, etc. At all times in the perpetual development of the system the
programmers are confronted with '

I: A progression of more refined plans [programs, implementatlons. etc]
which partially accomplish some of the tasks specified.

2: Partial specifications [contracts, intentions, constraints, etc.] for some of
the subtasks which are to be accomplished.

8: Partial justifications [proofs, demonstrations, analysis of dependencies]
regarding how some of the plans satisfy some of their specifications.

4:  Partial descriptions of some of the background knowledge
{mathematical facts, physical laws, questions of interactive users, government
regulations, etc.] of the environment in which the system will operate.

5: A collection of scenarios [at various articulations of detail]
demonstrating how the system is supposed to work in concrete instances.

The success of an evolutionary behavioral modeling methodology is highly dependent on the
development of competent Programming Apprentices [Hewitt and Smith 1975, Rich and Shrobe

1976, Yonezawa 1976] that help keep the above potentially disparate descriptions of a system

coherently organized. The primary benefit of maintaining this coherence is not to prove once and for
ali that the implementation is CORRECT in any absolute sense. Changes in the environment external
to the system will require that the system must either adapt its behavior to the changed circumstances or
be supplanted. Rather the chief benefit of demonstrating the coherence of multiple descriptions of
a_system is to make the dependencies among the parts explicit so that the system can be readily
adapted to the perpetually changing external environment. Already for many systems considerably
more money is spent on modification and enhancement than on initial design and implementation.
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VILZ - ,Tﬁe Abtor Problem-Solving Metaphor

The actor metaphor for problem solving is a large human scientific society: each actor is a
scientist. Each has her own duties, specialties, and contracts. Control is decentralized among the actors.

Communication is highly stylized and formal using messages that are sent to individual actors.

Problem solving proceeds by the attempts of experts to guess, or to con jecture, a plan for a
solution followed by attempts to criticize the usually somewhat faulty initial plan. Plans for action are
put forward for trial, to be eliminated or modified if not germane to the problem at hand. Tentative
acceptance of a proposed plan must be combined with an ability to revise it if it is demonstrated to be
infeasible. We make it our task to construct expert problem-solving modules to live in a world
characterized by incomplete knowledge; to ad just themselves to it as well as they can; to take advantage
of the opportunities they can find in it; and to solve the problem, if possible (they need not assume that
it is), with the help of the knowledge available. If this is the task, then there is no more rational
procedure than the method of planning, refining, and _criticizing: of proposing new plans;

progressively refining these plans to incorporate knowledge relevant to their execution, criticizing these
refinements to expose their deficiencies; and of tentatively following them if they survive.

~ Newell (1962) points out two potential difficulties which must be dealt with by systems which
adopt the actor problem solving methodology. First, the messages (carried by the messengers) must
sometimes contain strategies, not just facts. They must be in the form of partial information that can
be combined with other information avaifable to the target actor. A good formal language must be
developed for this kind of communication. The second potential difficulty is that a society operating in
this fashion must not become a bureaucracy bogged down in sending messages back and forth without
making any progress. We propose to rely on the critical nature of actors which are delegated subtasks
to help control aimless thrashing.

We would like to emphasize that in the current state of the art only a small_part of this
metaphor _can be realized in_practice. At this point in time the metaphor serves mainly to provide
suggestions of directions in which to work. Perhaps in the very far future it will be possible to
construct computer systems which havea significant fraction of the expertise and communication ability
of a small scientific subfield. - ‘ ’ :
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Writing this paper would not have been possible without the generous help and encouragement
of Marilyn McLennan. Many people have given us valuable feedback and criticism on the ideas in
this paper. The detailed comments and criticisms of Robert Baron, Candy Bullwinkle, Henry
Lieberman, Marilyn McLennan, Ron Pankiewicz, Chuck Rich, Bruce Schatz, and Brian Smith have
vastly improved the presentation of the ideas in this paper. We would like to thank Hal Abelson, Russ
Atkinson, Roger Banks, Edward Fredkin, Danny Hillis, Ben Kuipers, Chuck Reiger, Steve Saunders,
Howie Shrobe, Brian Smith, Peter Szolovits, Jim Stansfield, Richard Steiger, Guy Steele, Richard .
Waters, and Aki Yonezawa for their comments and suggestions. :

Our event diagrams and semantic definitions demonstrating that iteration and co-routine control
structures can be efficiently implemented in PLASMA without using "hairy control structure” have been
the subject of numerous lectures which we have given at M.LT. and elsewhere in the last year. The
event diagram for the recursive implementation of factorial appearing in this paper is a simplified
version of the one presented by Richard Steiger in his masters thesis. They were presented in a tutorial
lecture at the International Joint Conference on Artificial Intelligence held at Tiblisi in September 1975.
The method described in this paper for doing iteration [published in the paper by Greif and Hewitt in
the Conference Record of the January 1975 ACM Symposium on Principles of Programming
Languages] has influenced Sussman and Steele to make the same method work for SCHEME.

The progress we have made on actors would have been completely  impossible without the
contributions and questions of numerous MIT students. Ben Kuipers, Howie Shrobe, Keith Nishihara,
Brian Smith, Aki Yonezawa, Richard Steiger, and Peter Bishop, and Irene Greif have done much of
the work in making actors intelligible and relevant to the problems of constructing knowledge-based
systems. -

Conversations with Alan Kay, John McCarthy, Alan Newell, and Seymour Papert were useful in
getting us started on this line of research. Newell's thought provoking paper entitled "Some Problems
of Basic Organization in Problem-Solving Programs” has inspired many of the ideas in this paper.
Our research has concentrated on the development of a rigorous model of computation based on
relationships among computational events. The development of this model has been greatly influenced
by Seymour Papert’s "little people” model of computation, a seminar given by Alan Kay at M.LT. on an
early version of SMALLTALK, and the work of Church, Fischer, Landin, McCarthy, Milner, Morris,
Plotkin, Reynolds, Scott, Stoy, Strachey, Tennent, Wadsworth, etc. on formalisms based on the lambda
calculus. The treatment of the behavior of sequences in this paper is an adaption of the “stream”
concept of Landin and the generators of the IPL languages of Newell, Shaw, and Simon.

PLASMA has been designed to provide the basis for the implementation of a Programming
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Apprentice for expert prbgramrﬁers;' The behavioral programming methodology which PLASMA is
intended to facilitate owes a tremendous intellectual debt to the concepts in SIMULA [Birtwistle et al.
1973, Paime 1973). We are indebted to Alan Kay for calling our attention to these virtues of SIMULA.

The current implementation of PLASMA was designed by Carl Hewitt and has been
implemented in LISP over the last year by a team of people whose principal members were Russ
Atkinson, Tom Downey, Carl Hewitt, Marilyn Mclennan, and Howie Shrobe. The implementation has
been accomplished using a set of LISP macros implemented by Russ Atkinson that make LISP into a
very limited subset of PLASMA. Howie Shrobe put the system together in the fall semester of 1975.
This spring Marilyn McLennan has brought the system to a usable state. Tom Downey and Jerry
Morrison have implemented a modular format printer for PLASMA programs. Carl Hewitt and Russ
Atkinson have designed modular primitives for the implementation of parallelism and synchronization
in PLASMA.
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SECTION X --- APPENDIX: Introduction to PLASMA

X1 - Sequences and Collections

We will begin by presenting some very simple PLASMA scripts and gradually work our way up
to more complicated examples. ‘ -

Meta-syntactic variables will be underlined.

We note initially that [A; A, .. Anlmeans an ordered sequence of the actors Asthrough
Anwhereas {Aq A, .. Anlmeans a unordered collection of the actors Asthrough AnThus [3 'blis not
equivalent to ['b 3Jaithough {3 'b}is equivalent to {'b 3}.Also collections behave differently from
mathematical sets in that {3:'b 3}is not equivalent to {3 'b}but is equivalent to {3 3 ’b}.

Thus PLASMA has syntactic delimiters which are used consistently for the following different
purposes: - . : R

[..] delimits an ordered sequence of elements

{..} delimits an unordered collection of elements
(...) delimits an expression in PLASMA

X2 - Transmitters

A slmple’syntaxA for sending an actor M{called the message) to an actor T(called the t_a_rgég) is:
M |
or the following, which is entirely equivallem3
M=T)
Thus,
(['this 'is 'a 'simple 'sentence] => parser)

will send a sequehce of the five symbols 'this, 'is, 'a, 'simple, and ’sentence to the actor denoted by
parser.

3: The reason for having two different syntactic forms for the transmission of a message is that often
it is more readable to have the expression for the message before the expression for the target or vice
versa. The difference is particularly noticeable when one is much smaller than the other. '
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Since it is very common to want to send a sequence of arguments to an actor, a simple syntactic
form is needed for this purpose. For example the notation used above would require us to write
(+ <= [x y z])in order to compute the sum of x, y, and z. whereas we would prefer use the syntax
(+xyz) ' :

In PLASMA, as in LISP, an expression of the form (Eq Ej .. gﬂ)o?dinarily denotes an ordinary
procedure call with procedure Eq and arguments Ey, .., and E, Since PLASMA also uses parentheses as
the delimiters of special syntactic forms, it needs to have some mechanism to distinguish special syntactic
foims such as (f <= [3 4))from ordinary procedure calls so that <= is not taken to be the second
argument of f. PLASMA uses RESERVED SYMBOLS in parenthesized expressions for this purpose.
For example both =>and <=are reserved symbols. Transmitters using the reserved symbols =>and <=are
read as forms of the verb "SEND". For example (i <= [1 3]lwould be read as “f is sent the sequence 1
3", or "a sequence of 1 and 3 issenttof. '

For example

{tactorial 3) is equivalent to (tactorial <= (3
{generate) is equivalent to ({] => generate)

Note that when either of the transmitter arrows <=or =)is written
out explicitly in a special syntactic form, there is always one
‘expression before the arrow and one after it.

Also note that arithmetic can be expressed in infix notation as
well as prefix notation. Arithmetic expressions are implemented
in PLASMA by making arithmetic symbols such as +and *
reserved symbols so that special modules associated with these
symbols can process the expression in which they occur when the
script is reduced.

The syntactic forms

(target <= message) and (message => target)

are designed to direct the eye of the reader along the normal flow of control of the message to the
target. The transmitters of PLASMA are a generalization of the functional applications in the lambda
calculus of Church which were defined in terms of substitution semantics. The semantics of
transmitters are behaviorally defined in terms of events in the actor message-passing model.
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X3 - Pattern Matching
Pattern Matching is used in PLASMA to recognize actors which satisf yi a simple description and
to bind the answers to simple requests. The process is meant to be quite intuitive. For example The
prefix = in front of an identifier name in a pattern can be used to bind the identifier to the
corresponding ob ject being matched. For example typing
(match [=x =y]) 10 [3 4))

can be used to bind x to 3 and yto 4

X4 — Recelvers

Corresponding to the syntax for sending messages is a syntax for their reception. A PLASMA
message-receiver has the following syntax: ~

- {=> pattern
- body)

where the reserved symbol =)is read as "RECEIVE". Note the use of the three horizontal bars for the
shaft a receive arrow as opposed to the use of two horizontal bars for a transmitter arrow. If an actor
with the above definition is sent a message which matches patternthen bodywill be evaluated in the
envirohimeit resulting from the pattern match. For example the PLASMA expression '

7]1= ;send the tuple whose first element is 5 and second element 7
= [=x =y] ito a receiver which names the first element of the sequence received x and the second y

(x +y)) sand replies with the sum of x and y
evaluates to 12.

For the sake of exposition we will call the actor that (= pattern body)creates a receiver. The
behavior of the receiver is roughly as follows: when the receiver is sent a message, it matches it against
the pattern. A PATTERN is an actor which decides whether it will match another actor called an
ob ject - the process is asymmetric. If the match is unsuccessful, then the receiver complains that the
message is not acceptable. If the match is successful, the pattern creates a new environment (which
contains the bindings that resulted from the matching process). The receiver then sends the body an
eval message that contains the new environment.

The syntactic form for receivers

(=> paitern body)
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is designed to direct the eye of the reader along the normal flow of control with the message through
the pattern into the body. The receivers of PLASMA are a generalization of the lambda expressions
which were defined by Church in terms of substitution semantics. The semantics of receivers are
behaviorally defined in terms of events in the actor message-passing model. ' .

All messages in PLASMA are received through patterns which should be kept quite simple.
Writing complicated patterns results in tortuous obscure code. Simple patterns are a good way to
bind Identifiers to values. Pattern matching in PLASMA is a generalization of the lambda calculus
identifier binding mechanism. The semantics of receivers is behaviorally defined by axioms in terms
of the actor message-passing model. ' '

The evaluation of a receiver results in an actor which has as its script the receiver and as its
acquaintances the actors bound to the free identifiers of the receiver. For example if we type ’

(az((3+2)(3-2))

then we will create an actor [5 1]which is called a in the current local environment in which we are
working. If we then type . ‘ SR

(= : , ;define { to be an actor which
(= [=x] :when it receives a sequence with one element which will be called x

L (! X 3))_) ' ;replies with g of x and &

an actor will be created which has [5 1]and the value of g as its acquaintances.

X5 - Conditiongls

Conditionals in PLASMA take two standard forms which are closely related. One form
_conditionally tests the value of an expression, the other conditionally tests the incoming message. The
first is known as the rules expression and has the form:

(rules 'an-exgression sthe rules for the actor an-expression are
(=> pattern; , ' ;if it matches pattern then
body4) : sreply with the value of bodyy

=> pattern, selse if it maiches paitern, then
body,) ' ;reply with the value of bodyy

(=> pattern, selse it must match pattern,, so
bbodzn)) ‘ ‘ ' sreply with the value of body,

“The expression is matched against the successive patterns until it matches one of them; then the
corresponding body is evaluated in the environment resulting from the pattern match. For example,
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{rules ’(3 + 4)

(=> (even) ithe pattern (even) will maich any even integer
5) ' _ ’

(==n , ithe pattern =n will match any actor and bind n to that actor
(2 =n))) ' » jreturn twice the value of n

evaluates to 14.

) PLASMA uses a similar construct (called a cases statement) to conditionally dispatch on an
incoming message. :

{cases ‘ ;the cases for a message sent to this actor are
=> patterny iif the message matches patterny then
body4) , _ sreply with the value of body,

(=> pattern, : selse if the message matches pattern, then
body,) sreply with the value of body,

(=> pattern,, selse the message must match pattern,, so
body,)} . sreply with the value of body,,

A message sent to an expression of the above form is matched directly against the successive patterns
until a match is found, whereupon the corresponding body is evaluated in the environment which
results from the match,

For example the following actor replies with yes to any even number it is sent; replies with no to
any odd number; and is otherwise not-applicable.

(cases
(=> (even)
yes)
{=> (odd)
no))

X6 -— Definitions

In general, typing an éxpression of the form
{name = definition)

will cause PLASMA to do its subsequent evaluations in an environment which has been extended by
binding name to the value of definition. '
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For exémplé the normal way to Interactively define ih(bﬁér-’.xﬁdnbniiatidriWﬁi!‘é"ZWOy‘rl‘(ihyg" at a
console would be to type:

(integer-exponentiation = sinteger-exponentiation is defined to have the following behavior
(=> [=base =exponent] swhenevér it receives o sequence of two arguments called base and exponent

- {rules exponent ;the rules for the exponent are
(=0 ; sif it is 0 then

1) ;reply that the answer is 1

=00 ;else if it is greater than O then

(base % (integer-exponentiation base {exponent - 1))
' sthe answer is the base times the base to the power of the exponent minus 1

As an obvious extension to our notation for definitions we allow a parenthesized expression on
the left hand side of a definition. For example we can define integer exponentiation in terms of an
infix operator as follows:

((=base to-integer-power =exponent) = ;an expression of the form (=base to-integer-power =exponent)
, s defined by the following behavior

(rules exponent , sthe rules for the exponent are

=0 sif it is O then

1) ;the answer is 1

=00 ;else if it is greater than O then

“oovis ik (base % (base to-integer-power (exponent = 1))
sthe answer is the base times the base to the inleger power of the exponent minus 1

' Using the above definition {5 to-integer-power 3)evaluates to 125. In this way we can conveniently
define new kinds of syntactic forms. '

MUTUALLY REFERENTIAL DEFINITIONS are easy to make using the reserved symbol let as
follows: ‘ ' S ‘

(let
< {nameq = Dy)
(name; = Do)
(name, = g")
then

body)

which evaluates biodx‘ in an environment with each name; bound to the value of D; The equations are
mutually referential in that any occurrence of a name; within a Dy refers to D;

As a special case of the let construct we use

(namo = definition)

HH
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as an abbre__viétion for

(let
(name = definition)
then ‘
name)

Sélf—referential definitions are very useful in defining iterative, recursive, and co-routine control
structures. They are also useful in defining data structures that need to know about themselves.

At this point, we have enumerated all the ways to bind identifiers in PLASMA. Note that the
definition of every symbol is lexically scoped and that there are no "global variables”.

X.7 -~ Unpack

We will often make use of an extremely useful operator for sequences and collections called
UNPACK which is abbreviated as an exclamation point: Sexpressionis always equivalent to writing out
all of the elements of the expresSion individually. Thus if sis bound to the sequence [3 4 5], then the
value of [1 2 Is}is [1 23 4 5] Thus if the sequence [10 20 30 40 50Jis matched against the pattern
[=x =y ¥=2], then xwill be bound to 10, ywill be bound to 20, and zwill be bound to [30 40 50} in the
environment which results from the match. Unpack is in essence the inverse of sequence brackets "[...J".

The Unpack operator neatly cleans up the confusion in LISP between different ways to construct
lists. Considering analogies between LISP lists and PLASMA sequences, the following similarities hold:

[xy 2] is analogous to (list x y 2)

[x ty] is analogous to {cons x y)

[x y] is analogous to (append x (list y))
[ By] is analogous to (append x y)

The chief benefit of the unpack notation is that the programmer no longer needs to concentrate
on how to construct the structure by deciding whether to use CONS, LIST, or APPEND. Instead she can
concentrate on what the structure should be by writting a pattern of what it should look like. For
example the following PLASM A expression

[%a [b ¥c d] te]
&
has the following LISP analog:
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(sppend
a
{cons
{cons
b .
(sppend ¢ (list d)))
o)) ‘

X8 - Usc} of .Seq’uencbes

Sequences are a useful mechanism for the implementation of the kind of dialogues needed in the
implementation of knowledge-based systems. They provide a useful common interface for co-routine
control structures. We shall bind the elements and sub-sequences using pattern matching. The
following pattern will bind { to the first element of a sequence and r to the rest: ‘ ‘

(=t !=r].
For example if s is boqnd to the sequence [14 3 105}then typing the following expression in PLASMA
e | ~ Amotch [=f t=rl 0 s) ‘

~ Asan example of the use of sequences, we define the function sum-of which calculates the sum of
all the elements in a sequence: '

(sum=-of = T : _' ;define the function sum=-of
(= [=the-sequence] ;to receive a sequence
(rules the-sequence ; - sthe rules for the sequence are

= (1 _ . ;if the sequence iz empty

0) ' » sthen the sum i3 O

=> [=the=next I=the-rest] , ;else bind the next and the rest

(the<next + {sum-of the-rest)))))) sthen return the next plus the sum of the rest

 For example (sum-of [1 4 9))evaluates to 14.

It is easy to build sequences. For example the following definition defines finite sequences of
consecutive decreasing squares. ‘

i
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(sequence~of-squares =

= [=n]
(rules n , sthe rules for n are
(=0 ' ‘ Af it is O then
4)] : sthe answer is the empty sequence

(= 00 selse if it is greater than O then
[(nx n) ¥{sequence~-of-squares (n - 1))1)))) :
;the answer is a sequence with ﬂ2 Jollowed the squares for n minus 1
For example typing the following expression into PLASMA
(maich [=first I=rest] to (sequence-of-squares 4))
results in binding first to the value 16 and binding rest to the value [941]) Thus

(sum-of (sequence-of-squares 4))evaluates to 30.

X9 — Delay

For many applications, it is more efficient to generate the squares in the sequence of squares
incrementally adopting a "wait and see” approach as to whether the rest of the elements will be needed.
To this end we introduce the delay operator which delays computation of the value of expression E
until the valueé is needed. Suppose that ve is the value of the expression (deley E). The value of E is
not computed until the actor ve is sent a message. The first time ve is sent a message, the value of E is
computed and remembered. Thereafter ve behaves exactly like the value of E It is unreasonable to
delay the evaluation of any expression which does not always evlaluate to the same ob ject.

! The delay operator can be used to refine the implementation of sequence-of-squares to produce
an incremental-version: '

(incremental-sequence-of-squares =
= {=n)
(rules n
(=0
MY

=0 0) A
[n2 ¥(delay (incremental-sequence-of-squares (n - 1))}
Typing the fd“owingf into PLASMA
(mméh [=t1 #=r1] to (incremental-sequence-of-squares 10))

will bind 1 to 100 and bind r1 to an actor which is behaviorally equivalent to
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(delay (incremental-sequence-of-squares 9))
At this point in time the only square that has'been computed is thé square of 10. Typing
(miatch [=f2 ¥=r2] ;o rl)
wll‘lvbi‘nd‘ f2 to 81 and bind r2 to an actor which is behay)ioral\y equivalent to

" (delay (incrementai-sequence-of-squares 8)

X0 - Packagers

PACKAGERS are a primitive mechanism in PLASMA for packaging actors together. They are
very useful for packaging up the parts of a message. For example the notation [x; ... x,] for a sequence
is really just syntactic sugar for the package (sequence: xj .. xy). Thus evaluation of an ordinary
function call of the form (f <= [xq .. xpllsends a package which is the sequence of arguments to f.
However, the use of positional notation within a sequence for the components of a message is neither
mnemonic nor secure. The packagers of PLASMA allow the components of the package to be explicitly
named and the physical representation to be hidden (for reasons of efficiency and cleanliness). They
permit all of the components of the package which are of interest to be selected in parallel and the
remainder of the components to be ignored (for reasons of modularity and extensibility). Additionally,
packagers provide for both the privacy and security of messages since in order to have access to the
contents of a package constructed by a particular packager, it is necessary to have access to that
packager. Packagers are the primitive authentication mechanism of PLASMA. A packager can only be

. taken apart by the packager which constructed it. -

To illustrate the use of packagers we shall define a packager for complex'numbers. First we
define packagers for the messages to which complex numbers must respond:

(packager (real-part?))
(packager {imaginary-part?))

To make these abbreviations more convenient to use we define the following abbreviations:

((real-part =2) = ;the regl-part of z is computed by
((real-part?) => 2)) stending a message asking 2 for its real part
((imaginary-part =2) = ;the imaginary=-part of z is computed by
(timaginary-part?) = > 2)) ssend a message asking z for its imaginary part

Below we def ine a packager for complex numbers:
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(packager (conplex: (real: 7 (imagiv_m_ry: 7)) ’ :
: sdefine o packager for complex numbers with real and imaginary components
(=> (complex: (real: =x) (imaginary: =y))

(cases '
2> (real-pari?) , if asked for the real part then
‘ x) ‘ : sreturn X
=> (imaginary-part?) ‘ sif asked for the imaginary part then
y) ' return y
= (plus: =2) ;if asked for the sum with 2 then
{complex: ; sreturn a complex number with
(real: (x + (real-part z))) sreal component the sum of x and the real part of 2

{imaginary: {y + (imaginary-part z))))) ,
sand imaginary component the sum of y and the imaginary part of &
(= ({times: =2) :
(complex: - . ;
(real: ((x % (resl-part 2)) - (y % (imaginary-part z))))
(imaginary: {(x % (imaginary-part 2)) + {y = (real-part 2)))IN)N

Notice the use of the packager complex: both to construct ‘complex numbers and to take them
apart into their real and imaginary parts. The above implementation is inefficient because of all the
message passing involved in computing the values of (real-part z)and (imaginary-part z)when doing
addition and multiplication of complex numbers. For example in the above implementation two such
messages are required to compute the sum in the following sub-expression of the above program: -

(éomplex:
(real: (x + (real-part z)))
(imaginary: (y + (imaginary=-part z))))

We will demonstrate how the efficiency can be improved in a purely mechanical way without
diminishing the generality of the implementation. The first step is to collect statistics of executions to
determine which actors are very frequently sending messages to other. This will soon reveal that the
expression (real-part z)quite often results in sending the message (real-part?)to z where z is of the form

{complex: (real: rz) (imaginary: iz))

This suggests that special code for this case might be generated in-line to speed up the execution.
Obviously the expression (real-part z)is completely equivalerit to '

(rules z
(=> (complex: (real: =rz) (imaginary: =iz)) - ‘
(real-part (complex: (real: rz} (imaginary: iz)) ))
{else '
{reat-part z)))

g
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By replacing real-part and compléz: by their definitions and simplifying we obtain the followiﬁg
expression: ' :

{rules 2
~ (®> (complex: (real: rr2) (imaginary: =iz))
“rz2)
(else
(reai-part 2)))

By performing the above transformation on all expressions of the form (real-part z2and

(imaginary-part zJand then pulling out common sub-expressions the following more efficient
implementation of the packager complez: has been derived:

{packager (complex: (real: 7) (imaginary: 1))
;define a more officient packager for complex numbers with real and imaginary components
(2> (complex: (real: =x) limaginary: =y)) -
(cases
(=> (real-part?)
x) '
{=> (imaginary-part?)
| v) T ‘
(@ (plus: =2)
- {rules z
(=> (complex: (real: =rz) (imaginary: =iz))
(complex:
(real: {x + rz))
(imaginary: ly + i2)}))
(else
{complex:
(real: (x + (real-part 2)))
(imaginary: (y + (imaginary=part 2)))))
{=> (times: =2) : '
(rules z ‘ .
(=> {(complex: (real: =rz) (imaginary: =iz))
. (complex: .
{real: {(x % rz) = (y ® i2)})
~ (imaginary: ((x % iz) +(y % rz))))
{else
{complex: : .
(real: ((x % (real-part 2)) - (y * (imaginary=-part 2)))) .
(imaginary: ((x % (imaginary-part 2)} + (y % (real-part )N

Note that PLASMA is ideally suited for the above kind of optimization by in-line substitution

because identifiers in PLASMA (unlike many other languages) are completely transparent. An
occurrence of identifier in PLASMA serves only to name the actor to which it is bound. In-line
substitution is not always valid in languages like LISP 15 because of the SET primitive in the language.

The presence of a pfimiti_ve like SET (and other similar primitives in other ilSP-Iike languages) make§
optimization much more difficult. ' o re







