Signal/Collect: Graph Algorithms for the
(Semantic) Web

Philip Stutz!, Abraham Bernstein®, and William Cohen?

! DDIS, Department of Informatics, University of Zurich, Zurich, Switzerland
2 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA
{stutz,bernstein}@ifi.uzh.ch
wcohen@cs.cmu.edu

Abstract. The Semantic Web graph is growing at an incredible pace,
enabling opportunities to discover new knowledge by interlinking and
analyzing previously unconnected data sets. This confronts researchers
with a conundrum: Whilst the data is available the programming models
that facilitate scalability and the infrastructure to run various algorithms
on the graph are missing.

Some use MapReduce — a good solution for many problems. However,
even some simple iterative graph algorithms do not map nicely to that
programming model requiring programmers to shoehorn their problem
to the MapReduce model.

This paper presents the Signal/Collect programming model for syn-
chronous and asynchronous graph algorithms. We demonstrate that this
abstraction can capture the essence of many algorithms on graphs in
a concise and elegant way by giving Signal/Collect adaptations of var-
ious relevant algorithms. Furthermore, we built and evaluated a pro-
totype Signal/Collect framework that executes algorithms in our pro-
gramming model. We empirically show that this prototype transpar-
ently scales and that guiding computations by scoring as well as asyn-
chronicity can greatly improve the convergence of some example algo-
rithms. We released the framework under the Apache License 2.0 (at
http://www.ifi.uzh.ch/ddis/research/sc).

1 Introduction

The Semantic Web confronts researchers and practitioners with increasing data
set sizes. One approach to deal with this problem is to hope for the compu-
tational capabilities of computers to grow faster than the datasets relying on
Moore’s Law [1]. This approach is somewhat impractical as it makes current
work rather tedious and relies on the hope that Moore’s Law will be sustainable
and will outpace the growth of data—Dboth of which are unsure prospects. As a
consequence, many researchers have tried to use parallelism to improve the per-
formance of Semantic Web computational tasks. Hereby, they used two avenues
of investigation. On the one hand, they have tried to use distributed computing
programming models such as MapReduce [2] to achieve their goals [3,4]. This,

usually, requires to cumbersomely shoehorn their computation to the program-
ming model. In the case of MapReduce the typed graphs of the Semantic Web
need to be inconveniently mapped to the key/value-pair programming model.
On the other hand, many have used low-level distributed computing primitives
such as message passing interfaces [5], clusters [6], or distributed hash trees [7],
which requires the building of the whole infrastructure for Semantic Web graph
processing from scratch—a tedious task.

This paper proposes a novel and scalable programming model for typed graphs.
The core idea lies in the realization, that most computations on Semantic Web
data involve the passage of (1) some kind of information between the resources
(or vertices) along the properties (or edges) of the RDF graph and (2) some
computation at the vertices of the RDF graph. Specifically, we propose a pro-
gramming model where vertices send signals along the property-defined edges
of a compute graph and then a collect function gathers the incoming signals at
the vertices to perform some computation. Given the two core elements we call
our model SIGNAL/COLLECT.

This programming model allows an elegant and concise definition of program-
ming tasks on typed graphs that a suitable execution framework can process
transparently in a distributed fashion. In some cases the framework can exploit
asynchronous execution to further speed up the accomplishment of the task. As
such SIGNAL/COLLECT provides a natural programming model for the Semantic
Web, which can serve as an alternative to paradigms such as MapReduce.

Given the above, the contributions of this paper are the following: First, we
introduce an elegant and concise programming model for Semantic Web comput-
ing tasks. We show the elegance and conciseness by presenting the model and
providing a number of typical algorithm examples. Second, we empirically show
that a simple execution framework is able to transparently parallelize SIGNAL /-
COLLECT computations and can be simply initialized with SPARQL queries.
Third, we empirically show that the exploitation of asynchronous execution can
further increase the performance and convergence of an already parallel algo-
rithm.

The remainder of the paper is organized as follows: Section 2 formally intro-
duces the programming model and its extensions. Section 3 describes a number
of increasingly complex graph algorithms to illustrate the elegance and concise-
ness of the programming model. We then introduce an actual implementation
and evaluate the scalability, the impact of guiding computations by scoring and
asynchronous computations in Sections 4 and 5. We close with a discussion of
the related and future work.

2 The Signal/Collect Programming Model

The general intuition behind our SIGNAL/COLLECT programming model is that
all computations are executed on a compute graph, where the vertices are the
computational units that interact by the means of signals that flow along the
edges. All computations in the vertices are accomplished by collecting the in-

coming signals and performing some computation on them employing, possibly,
some vertex-state, and then signaling their neighbors in the compute graph.
To give a more concrete example: imagine a graph with RDF'S classes as ver-
tices and edges from superclasses to subclasses (i.e., rdfs:subClassOf triples).
Every vertex has a set of superclasses as state, which initially only contains it-
self. Now all the superclasses send their own states as signals to their subclasses,
which collect those signals by setting their own new state to the union of the old
state and all signals received. It is easy to imagine how these steps, when repeat-
edly executed, iteratively compute the transitive closure of the rdfs:subClass0f

relationship in the vertex states.
S1GNAL/COLLECT provides an elegant and concise abstraction for describ-

ing such graph-based algorithms. So far, however, we glossed over a number of
important details which we elaborate in this section. We will introduce a formal
definition of the basic structures of the SIGNAL/COLLECT programming model
and continue by specifying the synchronous/asynchronous execution modes for
computations as well as extending the basic model to support them.

2.1 A Formal Definition of the Signal/Collect Structures
The basis for any SIGNAL/COLLECT computation is the compute graph

G=\VE),

where V is the set of vertices and E the set of edges in G. Every vertex v e V
has the following attributes:
v.id a unique id.
v.state the current vertex state which represents computational intermediate
results.
v.outgoingEdges a list of all edges e € F with e.source = v.
v.signalMap a map with the ids of vertices as keys and signals as values.
Every key represents the id of a neighboring vertex and its value represents
the most recently received signal from that neighbor. We will use the alias
v.signals to refer to the list of values in v.signalMap.
v.uncollectedSignals a list of signals that arrived since the collect operation
was last executed on this vertex.
Every edge e € E has the following attributes:
e.source the source vertex
e.sourceld id of the source vertex
e.targetld id of the target vertex
The default vertex type also defines an abstract collect function and the
default edge type defines an abstract signal function. To specify an algorithm in
the SIGNAL/COLLECT programming model the default types have to be extended
with implementations of those functions. The collect function calculates a new
vertex state, while the signal function calculates the signal that will be sent

along an edge.
We have now defined the basic structures of the programming model. In order

to completely define a SIGNAL/COLLECT computation we still need to describe
how to execute computations on them.

2.2 The Computation Model and Extensions

In this section we will specify how both synchronous and asynchronous compu-
tations are executed in the SIGNAL/COLLECT programming model. Also we will

provide extensions to the core model.
We will use the attribute target on edges to denote the target vertex, but

this is only to specify the behavior without having to describe how signals are
relayed.

We first define an additional attribute lastSignalState and two additional
functions on all vertices v € V, which will enable us to describe computations
in SIGNAL/COLLECT:

v.executeSignalOperation

lastSignalState := state
for all (e € outgoingEdges) do
e.target.uncollectedSignals.append(e.signal)
e.target.signalMap.put(e.sourceld, e.signal)
end for
v.executeCollectOperation

state := collect
uncollectedSignals := N4l

With these functions we are now able to describe a synchronous SIGNAL/-
COLLECT execution.

Synchronous Execution A synchronous computation is specified in Algorithm
1. Tts parameter num_iterations defines the number of iterations (computation
steps the algorithm is going to perform. Everything inside the inner loops can

Algorithm 1 Synchronous execution of SIGNAL/COLLECT

for i < 1..num_iterations do
for all v € V parallel do
v.executeSignalOperation
end for
for all v € V parallel do
v.executeCollectOperation
end for
end for

be executed in parallel, with a global synchronization between the signaling and
collecting phases, which is similar to computations in Pregel [8]. This parallel
programming model is more generally referred to as Bulk Synchronous Parallel
(BSP).

This specification allows the efficient execution of algorithms, where every
vertex is equally involved in all steps of the computation. However, in many
algorithms only a subset of the vertices is involved in each part of the compu-
tation. In order to be able to define a computational model that enables us to

guide the computation and give priority to more “important” operations, we will
introduce scoring.

Extension 1: Score-Guided Execution In order to enable the scoring (or
prioritizing) of signal/collect operations, we need to extend the core structures of
the SIGNAL/COLLECT programming model. This is why we define two additional
functions on all vertices v € V:

v.scoreSignal : Double
is a function that calculates a number that reflects how important it is
for this vertex to signal. The result of this function is only allowed to
change when the v.state changes. Its default implementation returns 0 if
state = lastSignalState and 1 otherwise. This captures the intuition that
it is desirable to inform the neighbors iff the state has changed since they
were informed last.

v.scoreCollect : Double
is a function that calculates a number that reflects how important it is
for this vertex to collect. The result of this function is only allowed to
change when uncollectedSignals changes. Its default implementation re-
turns uncollectedSignals.size. This captures the intuition that the more
new information is available, the more important it is to update the state.

The default implementations can be overridden with functions that capture the
algorithm-specific notion of “importance” more accurately.

Now that we have extended the basic model with scoring we specify a score-
guided synchronous execution of a SIGNAL/COLLECT computation in Algo-
rithm 2. There are three parameters that influence when the algorithm stops:

Algorithm 2 Score-guided synchronous execution of SIGNAL/COLLECT

done := false
while iterations < num_iterations and !done do
done := true
iterations := iterations +1
for all v € V parallel do
if (v.signalScore > signal_threshold) then
done := false
v.executeSignalOperation
end if
end for
for all v € V parallel do
if (v.collectScore > collect_threshold) then
done := false
v.executeCollectOperation
end if
end for
end while

signal_threshold and collect_threshold which set a minimum level of “im-
portance” for operations that get executed and num_iterations, which limits
the number of computation steps. This means that the algorithm is guaranteed
to stop, either because the maximum number of iterations is reached or because
there are no operations anymore that score higher than the threshold. If the
second condition is fulfilled, we say that the algorithm has converged.

Asynchronous Execution We can now also define an asynchronous execution
which gives no guarantees about the order of execution or the ratio of signal/-
collect operations. We referred to the first two execution modes as synchronous
because they guarantee that all vertices are in the same “loop” at the same time.
In a synchronous execution it can never happen that one vertex executes a sig-
nal operation while another vertex is executing a collect operation, because the
switch from one phase to the other is globally synchronized. In an asynchronous
computation, in contrast, no such guarantees exist.

Algorithm 3 Asynchronous execution of SIGNAL/COLLECT
ops :=0
while [ops < numops] A [3v € V((v.signalScore > signal threshold) V
(v.collectScore > collect_threshold))] do
S := radomly choose subset of V'
for all v €S parallel do
Randomly call either
v.executeSignalOperation or v.executeCollectOperation
assuming respective threshold is reached
ops :=ops +1
end for
end while

As shown in Algorithm 3 there are again three parameters that influence
when the asynchronous algorithm stops: signal_threshold and
collect_threshold, which have the same function as in the synchronous case
and num_ops which instead of the number of iterations limits the number of op-
erations executed. Again this guarantees that an asynchronous execution termi-
nates, either because the maximum number of operations is exceeded or because
it converged. The purpose of Algorithm 3 is not to be executed directly, but to
specify what kind of restrictions are guaranteed (by an execution environment)
during asynchronous execution. This freedom is useful, because if an algorithm
no longer has to maintain the execution order of operations then one is able use
different scheduling strategies for those operations.

Extension 2: Scheduled Asynchronous Operations As an extension to
the asynchronous execution we can define operation schedulers that optimize
certain measures. For example we can define an eager scheduler (see Algorithm
4 in Section 4) that will execute the signal operation of a vertex immediately after

the collect operation of that same vertex. This allows other vertices to receive
those signals sooner. Another example is a scheduler that gives priority to signals
that have high scores by only executing signals with at least an average score.
Depending on the algorithm this can result in fewer operations being executed,
which, depending on the operation costs, impact of scheduling on convergence
and the cost of scheduling itself, can pay off.

Extension 3: Multiple Vertex/Edge Types Some algorithms, for example
operating on OWL ontologies in RDF or bipartite factor graphs, require several
kinds of vertices and edges with different associated functions for signaling, col-
lecting, etc. This is why a compute graph can contain vertices and edges that
have different types.

Extension 4: Result Processing Results are processed by a resultProcessing
function defined on the default vertex type. The default implementation does
nothing and is meant to be overridden. This function gets executed on all ver-
tices once the computation has ended.

Extension 5: Weights The model supports weights on edges and the vertices
keep track of the sum of weights of outgoing edges. It is also possible to extend
the default edge/vertex type with labels or whatever additional attributes or
functions should be required.

Extension 6: Conditional Edges & Computation Phases Edges can be
extended to only send a signal when certain conditions have been met. A possible
condition is that a source vertex has received a convergence signal from an
aggregation vertex, which can be used to trigger a next computation phase in
the target vertices. Another use for this feature is to avoid sending the same
signal repeatedly.

Feature: Aggregation Sometimes it is desirable to aggregate over the state of
multiple vertices to, for example, obtain a global convergence criterium. This can
be easily achieved by introducing an aggregation vertex that receives a signal
from all the vertices it needs to aggregate.

We have now specified the structures and execution model of the SIGNAL/-
COLLECT programming model. In the next section we show the usefulness of
this programming model by giving implementations for various algorithms.

3 Algorithms in Signal/Collect

We argue that the SIGNAL/COLLECT programming model is a useful abstraction.
There are many important algorithms that can be expressed in a concise and
elegant way, which proves that this abstraction captures the essence of many
computations on graphs indeed.

We demonstrate these characteristics of the SIGNAL/COLLECT programming
model by giving examples (written in Scala-like® pseudocode, where the initial-
ization of class variables is passed in parentheses) of several interesting algo-
rithms expressed in SIGNAL/COLLECT. Note that not all algorithms work with
all execution modes. Vertex coloring for example does not converge without
score-guidance.

Single-source shortest path. Here the vertex states represent the shortest
currently known path from the path-source, edge weights are used to represent
distance. The signals represent the total path length of the shortest currently
known path from the path-source to e.target that passes through e. In the
Semantic Web context this algorithm can be used to compute the Rada shortest
path distance along subclass vertices, which is sometimes used to denote the
similarity between two classes.

class Location(id: Any, initalState: Int) extends Vertex {
def collect: Integer = min(state, min(uncollectedSignals))
}
class Path(sourceld: Any, targetId: Any) extends Edge {
def signal: Integer = source.statet+weight

}

RDFS subclass inference. A vertex represents an RDFS class. The vertex
state represents the set of currently known superclasses of the given vertex. As
the edges just signal the set of currently known superclasses of the class repre-
sented by the source vertex, one can simply use the predefined StateForwarder
edge, which has the signal function: def signal = source.state. The compute
graph can be built with edges from vertices representing super-classes to vertices
representing sub-classes, which can easily be done with a SPARQL query (see
full PageRank example code in Figure 1, Section 4).

class RdfsClass(id: String, initialState=Set(iri)) extends Vertex {
def collect: Set[String] = stateU U s

s€uncollectedSignals

Vertex coloring. The following algorithm solves the vertex coloring problem
by assigning to each vertex a random color. The vertices keep switching to dif-
ferent random colors wherever conflicts with neighbors remain. The predefined
StateForwarder edges are used again to signal the color of a vertex to its neigh-
bors.

class Colored(id: Any, initialState=randomColor) extends Vertex {

3 http://www.scala-lang.org/

def collect: Int = {
if (signals.contains(state)) randomColorExcept(state) else state
}
}

PageRank [9]. The vertex state represents the current pagerank of a vertex.
The signals represent the rank transferred from e.source to e.target.

class Document(id: Any, initialState=0.15) extends Vertex {
def collect: Double = 0.15+0.85% j{: s

s€v.signalMap.values
}
class Citation(sourceld: Any, targetId: Any) extends Edge {

weight*source.state
source.sum0fOutWeights

def signal: Double =
X

Loopy Belief Propagation [10]. Loopy belief propagation subsumes infer-
encing on Relational Probabilistic Models. These can be used to combine logical
and probabilistic inference on Semantic Web data—a highly desirable goal.

Because of space constraints we just convey the intuition: A factor graph can
be defined in SIGNAL/COLLECT with two vertex types Factor and Variable and
edge types FactorToVariable and VariableToFactor. Loopy belief propagation
is a message passing algorithm on a factor graph where messages are passed
back and forth between factor and variable vertices. Those messages in turn
are calculated from the messages received by the respective factor/variable. In
the simplest adaptation we put the code that computes those messages into the
signal functions of the edges. These functions can directly calculate the new
outgoing signals from the received signals in the signalMap of the source vertex.

All current evidence also indicates (but we have not tried it yet) that Sic-
NAL/COLLECT can straightforwardly implement the general sum-product (GSP)
algorithm [11]. According to Kschischang et al. [11] a wide variety of algorithms,
such as the forward/backward algorithm, the Viterbi algorithm, the iterative
turbo decoding algorithm, Pearls belief propagation algorithm for Bayesian net-
works, the Kalman filter, and certain fast Fourier transform (FFT) algorithms
can be derived as specific instances of the GSP algorithm.

In this subsection we demonstrated that the SIGNAL/COLLECT programming
model is a useful abstraction by giving examples of several interesting algorithms,
which we were able to express in a concise and elegant way. Note that whilst not
all of them are initially recognizable as typical Semantic Web approaches they
all provide important functionality.

In the next section we are going to evaluate the properties of a prototype
of the SIGNAL/COLLECT framework which can execute algorithms such as the
ones we just described.

4 The Signal/Collect Framework — An Implementation

The SIGNAL/COLLECT framework provides an execution platform for algorithms
specified according to the SIGNAL/COLLECT programming model. This is analo-
gous to the Hadoop MapReduce framework which executes algorithms expressed
in the MapReduce programming model. The framework has been implemented in
Scala—a fusion of the object-oriented and functional programming paradigms
running on the Java Virtual Machine. We released the framework under the
Apache License 2.0 (http://www.ifi.uzh.ch/ddis/research/sc).

Parallel Computations: The current implementation of the framework
can parallelize computations exploiting multiple processor cores of one computer
and shared memory for efficient signal passing. To that end we assign the vertices
to worker threads that are each responsible for a part of the graph. We use a
hash function on the vertex ids for the mapping of vertices to workers, edges are

always assigned to the same worker as their source vertex.
We implemented the synchronous computation similar to [8] with a master

that orchestrates the synchronized execution of signal/collect steps for all worker

threads.
Asynchronous Scheduling: In an asynchronous computation every worker

decides on its own which operations to execute. For this purpose every worker
has a scheduler that determines the order in which the signal/collect operations
get executed. We experimented with different schedulers for the signal/collect
operations in the asynchronous case. Every computation in asynchronous mode
starts with one synchronous score-guided signal/collect step, as this improved
performance for the algorithms we analyzed. After that a scheduler takes over.
The “eager” scheduler (Algorithm 4) for example tries to have a vertex signal
as soon as possible after collecting.

Algorithm 4 “Eager” scheduler: tries to signal right after collection
for all v €V do
if (v.collectScore > collect_threshold) then
v.executeCollectOperation
if (v.signalScore > signal_threshold) then
v.executeSignalOperation
end if
end if
end for

We also experimented with other schedulers that, for example, only execute
signal operations that score above or equal to the average signal score (“above

average” scheduler).
Specifying Graphs: The PageRank example. In order to specify com-

pute graphs one needs to define the necessary elements of the SIGNAL/CoL-
LECT programming model. Consider the SIGNAL/COLLECT implementation of
the PageRank algorithm optimized with residual scoring on SwetoDblp? cita-

* http:/ /knoesis.wright.edu/library /ontologies/swetodblp

tions shown in Figure 1. First, the Figure specifies the PageRank algorithm by
defining both the collect and signal functions. Second, the Algorithm ob-
ject initializes a score-guided and synchronous compute-graph by iterating over
the answers of a SPARQL query and then executes the algorithm with a signal
threshold of 0 using computeGraph.execute(.). Note that this is the executable
code and not simplified pseudocode.

class Document(id: Any) extends Vertex(id, @.15) {
def collect = 0.15 + @.85 * signals[Double].foldLeft(0.@)(_ + _)
override def processResult = if (state > 5) println(id + ": " + state)
override def scoreSignal = (state - lastSignalState.getOrElse(®)).abs
}

class Citation(citer: Any, cited: Any) extends Edge(citer, cited) {
override type SourceVertexType = Document
def signal = source.state * weight / source.sumOfOutWeights

Algorithm

}

object Algorithm {
def executeCitationRank(db: SparqlAccessor) {
val computeGraph = new ComputeGraph(ScoreGuidedSynchronous)
val citations = new SparqlTuples(db, "select ?source ?target where {"
+ "?source <http://1sdis.cs.uga.edu/projects/semdis/opus#cites> ?target}")
citations foreach {
case (citer, cited) =>
computeGraph.addVertex[Document](citer)
computeGraph.addVertex[Document](cited)
computeGraph.addEdge[Citation](citer, cited)
}
computeGraph.execute(signalThreshold = @)
}

Execution| Initialization

}

Fig.1l. Complete implementation of the PageRank algorithm on citations,
including residual scoring and result processing. Written in Scala and executable as-is
on the framework.

5 Evaluation

Having established the elegance and conciseness of the SIGNAL/COLLECT pro-
gramming model by example in Sections 3/4 we can now turn to validate the
second and third of our claims: the scalability /transparency of our parallelization
framework and the ability of our programming model to exploit score-guidance
and asynchronous execution to further improve performance.

5.1 Scalability

To establish the ability of the SIGNAL/COLLECT framework to transparently
scale we evaluated its performance when running the single-source shortest path
algorithm (“above average” score-guided asynchronously) with a varying number
of worker threads on a computer with two quad-core Intel® Xeon® X5570 pro-
cessors (turbo boost & hyper-threading disabled to reduce confounding effects)
and 72 GB RAM.

Figure 2(a) shows the average, fastest and slowest running-times over 10
executions, while Figure 2(b) shows that the performance scaled almost linearly
with the number of worker threads used. Bearing the limitations discussed in
Section 5.4 below we have, hence, established that given the right algorithm and
graph our programming model and framework can provide excellent scalability.

Fig. 2. Scalability of Signal/Collect: Single-source shortest path on a randomly
generated graph with a log-normal distribution of out-degrees. The graph had 1 million
vertices, 94 million edges and a longest path of 5. Results of 10 executions for each
number of worker threads.

300.00 8

250.00 —8—Average —#—Measured Speedup

Fastest (Average:Average)

—#—Slowest

200.00

150.00

Time (seconds)

100.00

50.00

0.00

1 2 6 7 8 1 2 3

4 5
Worker Threads

3 4 5
Worker Threads

(a) Scaling with additional workers (b) Parallel speedup

5.2 Score-Guided Computations

In order to evaluate the impact of guiding computations by scoring and, hence,
establish its usefulness we ran PageRank (as shown in Figure 1) with and without
score-guiding (residual scoring, signal_threshold=0.001) on two different graphs.
The hardware we used for all further evaluations was a MacBook Pro i7 2.66 GHz
(2 cores, hyper-threading enabled) with 8 GB RAM running four worker threads.
Also we used a newer version of the framework than in the previous experiment.
Figures 3 and 4 show the averages over 10 executions for each algorithm and the

error bars indicate min/max values.
These results show that score-guided execution in general performed very well

on the less densely connected citation graph, where some parts of the graph prob-
ably converged faster than others. On the densely connected generated graph the
synchronous version performed comparably to the score-guided algorithms. We
can conclude that given a suitable combination of algorithm and graph, score-
guidance can improve convergence significantly by focusing the computation only
on the parts of the graph that still require it.

5.3 Asynchronous vs. Synchronous

The results in Figure 4 suggest that the performance of the asynchronous version
is highly dependent on the scheduling. For this combination of algorithm and
graph the “eager” asynchronous version performed well and outperformed the
synchronous approach, while the “above average” asynchronous scheduler per-
formed poorly. Hence, more evaluations are required to determine which combi-
nations of scheduling algorithms and graph algorithms/structures work well.

Fig. 3. PageRank on SwetoDblp citations, 22 387 vertices (publications) con-
nected by 112 303 edges (citations)

Average Computation Time (ms) Average # of Signal Operations Executed
1000 300000
900 I -
800 250000
700 7 200000
600
500 150000
el 100000
1 P

20 | i 2 — . - .
o] 50000 —

0] [— | . o [— |

Synchronous Score-Guided ~ "Eager" Score- "Above Average" Synchronous Score-Guided "Eager” Score- "Above Average”
Synchronous Guided Score-Guided Synchronous Guided Score-Guided
Asynchronous ~ Asynchronous Asynchronous Asynchronous

Fig. 4. PageRank on a generated graph with log-normal distributed out-degrees
(drawn from e**°N, where u = 4, ¢ = 1.3 and N is drawn from a standard normal
distribution). The generated graph has 100 000 vertices connected by 1 284 495 edges.

Average Computation Time (ms) Average # of Signal Operations Executed
60000 450000
50000 I 400000 r
- _ 350000 7 —
40000 — 300000 . —
250000 —
30000 200000 +—— - A
20000 & 150000
10000 100000
50000
0 [
Synchronous Score-Guided "Eager" Score- "Above Average" Synchronous Score-Guided "Eager" Score- "Above Average"
Synchronous Guided Score-Guided Synchronous Guided Score-Guided
Asynchronous Asynchronous Asynchronous Asynchronous

To establish that for some algorithms the asynchronous version outperforms
the synchronous we ran the vertex coloring algorithm introduced in Section 3
on a generated graph. The results in Table 1 show that the asynchronous ver-
sion converges quickly for some problems, where the synchronous version fails
to converge (within a reasonable amount of time). Other algorithms share this
property: Koller and Friedman note that some asynchronous loopy belief propa-
gation computations converge where the synchronous computations keep oscillat-
ing. They summarize [12, p. 408]: “In practice an asynchronous message passing
scheduling works significantly better than the synchronous approach. Moreover,
even greater improvements can be obtained by scheduling messages in a guided

”

way.

Table 1. Vertex coloring on a generated graph with log-normal distributed out-
degrees (drawn from e#T°N where u = 1, ¢ = 0.2 and N is drawn from a standard
normal distribution). The generated graph has 100 000 vertices connected by 554 118
edges. The table shows the average time (in milliseconds) over 10 executions it took to
find a vertex coloring with the given number of colors. When the algorithm failed to
converge in less than a minute (on average) the time was noted as “did not converge”
(d.n.c).

Number of colors 5 6 7 8 9 10 11

”Eager” Score-Guided Asynchronous d.n.c 12870 1690 1392 1243 1218 1046
Score-Guided Synchronous d.n.c d.n.c d.n.c d.n.c d.n.c 2856 1876

5.4 Limitations—Threats to Validity

The main limitation of the evaluations above is that our current SIGNAL/COL-
LECT framework only runs on a single machine using shared memory for signal-
ing. It is not entirely clear how the overhead of signaling across the network with
the involved bandwidth and latency implications would impact the scalability
of the prototype system. We do not expect this limitation to have an impact on
the evaluations of score-guided and asynchronous execution.

In terms of scalability, we only ran our experiment on one large graph with
an algorithm that has a very simple interaction pattern and many more vertices
than worker threads and many edges per vertex. For a refined evaluation we need
to investigate the impact of different graph structures and interaction scenarios.

Note also, that we only ran our second experiment on one algorithm. Before
analyzing the impact of all important factors (algorithm, graph, scoring func-
tions/thresholds, number of worker threads, asynchronous operation scheduling,
etc.) it is difficult to make a general statement about the trade-offs involved with
regard to guided vs. unguided and synchronous vs. asynchronous computations.

6 Related Work

Many general programming models for distributed computing have been pre-
sented. Most notable is the MapReduce [2] programming model, which is based
on parallel operations on sets of key-value pairs. The Hadoop MapReduce frame-
work® has been used by [3,4] for scalable RDFS/OWL reasoning. The big disad-
vantage of the MapReduce model is that it is based on key-value pairs requiring
a translation of Semantic Web tasks to this abstraction. Also, the programming
model was not designed with iterated executions in mind and if it is used itera-
tively, the model is limited to synchronous execution.

Most closely related to our programming model is Pregel [8]: a system devel-
oped by Google for large-scale graph processing. It has been shown to scale to
graphs with billions of vertices/edges via distribution to thousands of commodity
PCs. Its limitations are that it only handles synchronous computations, can only
support graphs with one kind of vertex sharing a single “compute” function, and
edges are not first class citizens. As we have seen in our evaluation, score-guided
asynchronous computations are essential for some graph computations. Pregel’s
limitation to one vertex type makes the implementation of algorithms employing
multiple kinds of vertices rather tedious.

The concurrency model of the asynchronous SIGNAL/COLLECT computation
was inspired by the actor formalism [13], in which many processor objects take
part in a computation and can only influence each other via messaging. This
bears a lot of similarity to vertices in SIGNAL/COLLECT, which do local compu-
tations and can only influence each other via signaling.

We did not find any other programming models specialized for parallel it-
erated computation on typed graphs (such as the Semantic Web). However, in

® http://hadoop.apache.org/mapreduce

addition to the use of generic distributed computing frameworks many have im-
plemented their own distributed systems for Semantic Web tasks [6, 7]. Weaver
and Hendler [5], e.g., present an RDFS closure using MPI—a low-level message
passing interface. Oren et al. [14] have implemented a distributed reasoner using
their own low-level primitives. We believe that most of these solutions could
profit from our generic framework.

7 Limitations, Future Work and Conclusions

In order to master the onslaught of data the Semantic Web is in dire need of
distributed computation paradigms. Current paradigms either have the problem
that their programming model does not lend itself naturally to the typed graph
based Semantic Web computation tasks or provide only low-level functionality
requiring the tedious implementation of the whole functionality for every algo-
rithm. This paper presented a novel, distributed, and scalable computing model
for typed graphs called SiaNAL/COLLECT. We showed a framework that can be
used to elegantly and concisely specify and execute a number of computations
that are typical for the Semantic Web fully incorporating Semantic Web tech-
niques such as SPARQL (to initialize the graph). We also showed that the pro-
gramming model allows for scalable implementations given suitable algorithms
and graphs. Lastly, we showed that the support for asynchronous execution of
graph algorithms enables the convergence for some algorithms that will not con-
verge in the synchronous case.

Whilst these results are remarkable SIGNAL/COLLECT is still at its beginning.
First, we need to find the limitations of the programming model. Although it
is suitable for computations on graphs it is, obviously, not quite as suitable for
computations on lists. Second, we need to extend the framework for distribution
and explore heuristics for the distribution of vertices in the compute graph to
compute nodes. This is a non-trivial problem as signals transmitted across the
network will incur significant latencies compared to signals transmitted in a
shared memory setting. Consequently, the algorithms need to be robust against
signal latency variance. Third, for the use outside research we need to build a
framework that provides typical middle-ware services (such as distributed file-
system access). We plan to investigate each of these areas in the future.

The Semantic Web is growing and so are the needs for processing its RDF-
based data. Many have approached the call for processing these large-sized RDF
graph data sets. Researchers have developed stores (or data bases) that scale
to disk, have explored various means for computing the logical closure, and
built large-scale systems. In order for large-scale processing of these data to go
main-stream we need elegant programming models that allow for the concise for-
mulation of a large amount of Semantic Web tasks. SIGNAL/COLLECT is such a
programming model that, we believe, can serve the function as a general purpose
Semantic Web infrastructure. As such, it has the potential to bring distributed
computing transparently to the Semantic Web and become a major building
block for future Semantic Web applications.

Acknowledgemement
We would like to thank Stefan Schurgast for using early prototypes of the frame-
work and providing valuable feedback on its usage.

References

1.

10.

11.

12.

13.

14.

Moore, G.E.: Cramming more components onto integrated circuits. Electronics
38(8) (1965)

. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

In: OSDI’04: Proceedings of the 6th conference on Symposium on Opearting Sys-
tems Design & Implementation, Berkeley, CA, USA, USENIX Association (2004)
10-10

Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reason-
ing using mapreduce. In: Proceedings of the ISWC ’09. Volume 5823 of LNCS.,
Springer (2009)

Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.: Owl reasoning
with webpie: Calculating the closure of 100 billion triples. In Aroyo, L., Antoniou,
G., Hyvonen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T., eds.:
ESWC (1). Volume 6088 of Lecture Notes in Computer Science., Springer (2010)
213-227

Weaver, J., Hendler, J.: Parallel materialization of the finite rdfs closure for
hundreds of millions of triples. In: 8th International Semantic Web Conference
(ISWC2009). (October 2009)

Harth, A., Umbrich, J., Hogan, A., Decker, S.: Yars2: A federated repository for
querying graph structured data from the web. In: 6th International and 2nd Asian
Semantic Web Conference (ISWC2007+ASWC2007). (November 2007) 211-224
Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Pelt, T.V.: Gridvine: Building
internet-scale semantic overlay networks. The Semantic Web-ISWC 2004 (2004)
107-121

. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,

Czajkowski, G.: Pregel: a system for large-scale graph processing. In Elmagarmid,
A K., Agrawal, D., eds.: SIGMOD Conference, ACM (2010) 135-146

Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the Web. Technical report, Stanford Digital Library Technologies
Project (1998)

Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). 1st ed. 2006. corr. 2nd printing edn. Springer (October 2007)
Kschischang, F., Frey, B., Loeliger, H.: Factor graphs and the sum-product algo-
rithm. IEEE Transactions on information theory 47(2) (2001) 498-519

Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (Jan 2009)

Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artifi-
cial intelligence. In: IJCAI’73: Proceedings of the 3rd international joint conference
on Artificial intelligence, San Francisco, CA, USA, Morgan Kaufmann Publishers
Inc. (1973) 235-245

Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:
Marvin: Distributed reasoning over large-scale semantic web data. Web Seman-
tics: Science, Services and Agents on the World Wide Web 7(4) (2009) 305 — 316
Semantic Web challenge 2008.

