
Copysets: Reducing the Frequency of Data Loss in
Cloud Storage

Asaf Cidon, Stephen Rumble, Ryan Stutsman,
Sachin Katti, John Ousterhout and Mendel Rosenblum

Stanford University
cidon@stanford.edu, {rumble,stutsman,skatti,ouster,mendel}@cs.stanford.edu

ABSTRACT
Random replication is widely used in data center storage
systems to prevent data loss. However, random replica-
tion is almost guaranteed to lose data in the common sce-
nario of simultaneous node failures due to cluster-wide
power outages. Due to the high fixed cost of each in-
cident of data loss, many data center operators prefer to
minimize the frequency of such events at the expense of
losing more data in each event.

We present Copyset Replication, a novel general-
purpose replication technique that significantly reduces
the frequency of data loss events. We implemented
and evaluated Copyset Replication on two open source
data center storage systems, HDFS and RAMCloud,
and show it incurs a low overhead on all operations.
Such systems require that each node’s data be scattered
across several nodes for parallel data recovery and ac-
cess. Copyset Replication presents a near optimal trade-
off between the number of nodes on which the data is
scattered and the probability of data loss. For example,
in a 5000-node RAMCloud cluster under a power outage,
Copyset Replication reduces the probability of data loss
from 99.99% to 0.15%. For Facebook’s HDFS cluster, it
reduces the probability from 22.8% to 0.78%.

1. INTRODUCTION
Random replication is used as a common technique by

data center storage systems, such as Hadoop Distributed
File System (HDFS) [25], RAMCloud [24], Google File
System (GFS) [14] and Windows Azure [6] to ensure
durability and availability. These systems partition their
data into chunks that are replicated several times (we use
R to denote the replication factor) on randomly selected
nodes on different racks. When a node fails, its data is re-
stored by reading its chunks from their replicated copies.

However, large-scale correlated failures such as clus-
ter power outages, a common type of data center fail-
ure scenario [7, 10, 13, 25], are handled poorly by ran-
dom replication. This scenario stresses the availability of
the system because a non-negligible percentage of nodes

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Probability of data loss when 1% of the nodes fail concurrently

Number of nodes

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

HDFS, Random Replication

RAMCloud, Random Replication

Facebook, Random Replication

Figure 1: Computed probability of data loss with
R = 3 when 1% of the nodes do not survive a power
outage. The parameters are based on publicly avail-
able sources [5, 7, 24, 25] (see Table 1).

(0.5%-1%) [7, 25] do not come back to life after power
has been restored. When a large number of nodes do not
power up there is a high probability that all replicas of at
least one chunk in the system will not be available.

Figure 1 shows that once the size of the cluster scales
beyond 300 nodes, this scenario is nearly guaranteed to
cause a data loss event in some of these systems. Such
data loss events have been documented in practice by Ya-
hoo! [25], LinkedIn [7] and Facebook [5]. Each event re-
portedly incurs a high fixed cost that is not proportional
to the amount of data lost. This cost is due to the time
it takes to locate the unavailable chunks in backup or re-
compute the data set that contains these chunks. In the
words of Kannan Muthukkaruppan, Tech Lead of Face-
book’s HBase engineering team: “Even losing a single
block of data incurs a high fixed cost, due to the overhead
of locating and recovering the unavailable data. There-
fore, given a fixed amount of unavailable data each year,
it is much better to have fewer incidents of data loss with
more data each than more incidents with less data. We
would like to optimize for minimizing the probability of
incurring any data loss” [22]. Other data center operators
have reported similar experiences [8].

Another point of view about this trade-off was ex-

1

pressed by Luiz André Barroso, Google Fellow: “Hav-
ing a framework that allows a storage system provider to
manage the profile of frequency vs. size of data losses
is very useful, as different systems prefer different poli-
cies. For example, some providers might prefer frequent,
small losses since they are less likely to tax storage nodes
and fabric with spikes in data reconstruction traffic. Oth-
ers services may not work well when even a small frac-
tion of the data is unavailable. Those will prefer to have
all or nothing, and would opt for fewer events even if
they come at a larger loss penalty." [3]

Random replication sits on one end of the trade-off be-
tween the frequency of data loss events and the amount
lost at each event. In this paper we introduce Copy-
set Replication, an alternative general-purpose replica-
tion scheme with the same performance of random repli-
cation, which sits at the other end of the spectrum.

Copyset Replication splits the nodes into copysets,
which are sets ofR nodes. The replicas of a single chunk
can only be stored on one copyset. This means that data
loss events occur only when all the nodes of some copy-
set fail simultaneously.

The probability of data loss is minimized when each
node is a member of exactly one copyset. For exam-
ple, assume our system has 9 nodes with R = 3 that
are split into three copysets: {1, 2, 3}, {4, 5, 6}, {7, 8, 9}.
Our system would only lose data if nodes 1, 2 and 3,
nodes 4, 5 and 6 or nodes 7, 8 and 9 fail simultaneously.

In contrast, with random replication and a sufficient
number of chunks, any combination of 3 nodes would
be a copyset, and any combination of 3 nodes that fail
simultaneously would cause data loss.

The scheme above provides the lowest possible proba-
bility of data loss under correlated failures, at the expense
of the largest amount of data loss per event. However, the
copyset selection above constrains the replication of ev-
ery chunk to a single copyset, and therefore impacts other
operational parameters of the system. Notably, when a
single node fails there are only R − 1 other nodes that
contain its data. For certain systems (like HDFS), this
limits the node’s recovery time, because there are only
R − 1 other nodes that can be used to restore the lost
chunks. This can also create a high load on a small num-
ber of nodes.

To this end, we define the scatter width (S) as the
number of nodes that store copies for each node’s data.

Using a low scatter width may slow recovery time
from independent node failures, while using a high
scatter width increases the frequency of data loss from
correlated failures. In the 9-node system example above,
the following copyset construction will yield S = 4:
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9}.
In this example, chunks of node 5 would be replicated
either at nodes 4 and 6, or nodes 2 and 8. The increased

scatter width created more copyset failure opportunities.
The goal of Copyset Replication is to minimize the

probability of data loss, given any scatter width by us-
ing the smallest number of copysets. We demonstrate
that Copyset Replication provides a near optimal solu-
tion to this problem. We also show that this problem has
been partly explored in a different context in the field of
combinatorial design theory, which was originally used
to design agricultural experiments [26].

Copyset Replication transforms the profile of data loss
events: assuming a power outage occurs once a year, it
would take on average a 5000-node RAMCloud cluster
625 years to lose data. The system would lose an aver-
age of 64 GB (an entire server’s worth of data) in this
rare event. With random replication, data loss events oc-
cur frequently (during every power failure), and several
chunks of data are lost in each event. For example, a
5000-node RAMCloud cluster would lose about 344 MB
in each power outage.

To demonstrate the general applicability of Copyset
Replication, we implemented it on two open source data
center storage systems: HDFS and RAMCloud. We
show that Copyset Replication incurs a low overhead on
both systems. It reduces the probability of data loss in
RAMCloud from 99.99% to 0.15%. In addition, Copy-
set Replication with 3 replicas achieves a lower data
loss probability than the random replication scheme does
with 5 replicas. For Facebook’s HDFS deployment,
Copyset Replication reduces the probability of data loss
from 22.8% to 0.78%.

The paper is split into the following sections. Sec-
tion 2 presents the problem. Section 3 provides the
intuition for our solution. Section 4 discusses the design
of Copyset Replication. Section 5 provides details on
the implementation of Copyset Replication in HDFS and
RAMCloud and its performance overhead. Additional
applications of Copyset Replication are presented in in
Section 6, while Section 7 analyzes related work.

2. THE PROBLEM
In this section we examine the replication schemes of

three data center storage systems (RAMCloud, the de-
fault HDFS and Facebook’s HDFS), and analyze their
vulnerability to data loss under correlated failures.

2.1 Definitions
The replication schemes of these systems are defined

by several parameters. R is defined as the number of
replicas of each chunk. The default value of R is 3 in
these systems. N is the number of nodes in the sys-
tem. The three systems we investigate typically have
hundreds to thousands of nodes. We assume nodes are
indexed from 1 to N . S is defined as the scatter width.

2

System Chunks
per
Node

Cluster
Size

Scatter
Width

Replication Scheme

Facebook 10000 1000-
5000

10 Random replication on
a small group of nodes,
second and third replica
reside on the same rack

RAMCloud 8000 100-
10000

N-1 Random replication
across all nodes

HDFS 10000 100-
10000

200 Random replication on
a large group of nodes,
second and third replica
reside on the same rack

Table 1: Replication schemes of data center storage
systems. These parameters are estimated based on
publicly available data [2, 5, 7, 24, 25]. For simplicity,
we fix the HDFS scatter width to 200, since its value
varies depending on the cluster and rack size.

If a system has a scatter width of S, each node’s data is
split uniformly across a group of S other nodes. That is,
whenever a particular node fails, S other nodes can par-
ticipate in restoring the replicas that were lost. Table 1
contains the parameters of the three systems.

We define a set, as a group of R distinct nodes.
A copyset is a set that stores all of the copies of a
chunk. For example, if a chunk is replicated on nodes
{7, 12, 15}, then these nodes form a copyset. We will
show that a large number of distinct copysets increases
the probability of losing data under a massive correlated
failure. Throughout the paper, we will investigate the re-
lationship between the number of copysets and the sys-
tem’s scatter width.

We define a permutation as an ordered list of all
nodes in the cluster. For example, {4, 1, 3, 6, 2, 7, 5} is
a permutation of a cluster with N = 7 nodes.

Finally, random replication is defined as the following
algorithm. The first, or primary replica is placed on a
random node from the entire cluster. Assuming the pri-
mary replica is placed on node i, the remaining R − 1
secondary replicas are placed on random machines cho-
sen from nodes {i + 1, i + 2, ..., i + S}. If S = N − 1,
the secondary replicas’ nodes are chosen uniformly from
all the nodes in the cluster 1..

2.2 Random Replication
The primary reason most large scale storage systems

use random replication is that it is a simple replica-
tion technique that provides strong protection against
uncorrelated failures like individual server or disk fail-
ures [13, 25] 2. These failures happen frequently (thou-
1Our definition of random replication is based on Facebook’s
design, which selects the replication candidates from a window
of nodes around the primary node.
2For simplicity’s sake, we assume random replication for all

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Probability of data loss when 1% of the nodes fail concurrently

Number of RAMCloud nodes

P
ro

b
a
b
ili

ty
 o

f
d

a
ta

 l
o
s
s

R=3, Random Replication

R=4, Random Replication

R=5, Random Replication

R=6, Random Replication

Figure 2: Simulation of the data loss probabilities of
a RAMCloud cluster, varying the number of replicas
per chunk.

sands of times a year on a large cluster [7, 10, 13]), and
are caused by a variety of reasons, including software,
hardware and disk failures. Random replication across
failure domains (e.g., placing the copies of a chunk on
different racks) protects against concurrent failures that
happen within a certain domain of nodes, such as racks
or network segments. Such failures are quite common
and typically occur dozens of times a year [7, 10, 13].

However, multiple groups, including researchers from
Yahoo! and LinkedIn, have observed that when clusters
with random replication lose power, several chunks of
data become unavailable [7, 25], i.e., all three replicas of
these chunks are lost. In these events, the entire cluster
loses power, and typically 0.5-1% of the nodes fail to
reboot [7, 25]. Such failures are not uncommon; they
occur once or twice per year in a given data center [7].

Figure 1 shows the probability of losing data in the
event of a power outage in the three systems. The figure
shows that RAMCloud and HDFS are almost guaranteed
to lose data in this event, once the cluster size grows be-
yond a few hundred nodes. Facebook has a lower data
loss probability of about 20% for clusters of 5000 nodes.

Multiple groups have expressed interest in reducing
the incidence of data loss, at the expense of losing a
larger amount of data at each incident [3, 8, 22]. For
example, the Facebook HDFS team has modified the de-
fault HDFS implementation to constrain the replication
in their deployment to significantly reduce the probabil-
ity of data loss at the expense of losing more data dur-
ing each incident [2, 5]. Facebook’s Tech Lead of the
HBase engineering team, has confirmed this point, as
cited above [22]. Robert Chansler, Senior Manager of
Hadoop Infrastructure at Linkedin has also confirmed the
importance of addressing this issue: “A power-on restart

three systems, even though the actual schemes are slightly dif-
ferent (e.g., HDFS replicates the second and third replicas on
the same rack [25].). We have found there is little difference in
terms of data loss probabilities between the different schemes.

3

of HDFS nodes is a real problem, since it introduces a
moment of correlated failure of nodes and the attendant
threat that data becomes unavailable. Due to this issue,
our policy is to not turn off Hadoop clusters. Administra-
tors must understand how to restore the integrity of the
file system as fast as possible, and an option to reduce
the number of instances when data is unavailable–at the
cost of increasing the number of blocks recovered at such
instances–can be a useful tool since it lowers the overall
total down time" [8].

The main reason some data center operators prefer to
minimize the frequency of data loss events, is that there
is a fixed cost to each incident of data loss that is not
proportional to the amount of data lost in each event. The
cost of locating and retrieving the data from secondary
storage can cause a whole data center operations team to
spend a significant amount of time that is unrelated to the
amount of data lost [22]. There are also other fixed costs
associated with data loss events. In the words of Robert
Chansler: “In the case of data loss... [frequently] the data
may be recomputed. For re-computation an application
typically recomputes its entire data set whenever any data
is lost. This causes a fixed computational cost that is not
proportional with the amount of data lost”. [8]

One trivial alternative for decreasing the probability
of data loss is to increase R. In Figure 2 we computed
the probability of data loss under different replication
factors in RAMCloud. As we would expect, increasing
the replication factor increases the durability of the sys-
tem against correlated failures. However, increasing the
replication factor from 3 to 4 does not seem to provide
sufficient durability in this scenario. In order to reliably
support thousands of nodes in current systems, the repli-
cation factor would have to be at least 5. Using R = 5
significantly hurts the system’s performance and almost
doubles the cost of storage.

Our goal in this paper is to decrease the probability
of data loss under power outages, without changing the
underlying parameters of the system.

3. INTUITION
If we consider each chunk individually, random repli-

cation provides high durability even in the face of a
power outage. For example, suppose we are trying to
replicate a single chunk three times. We randomly select
three different machines to store our replicas. If a power
outage causes 1% of the nodes in the data center to fail,
the probability that the crash caused the exact three ma-
chines that store our chunk to fail is only 0.0001%.

However, assume now that instead of replicating just
one chunk, the system replicates millions of chunks
(each node has 10,000 chunks or more), and needs to
ensure that every single one of these chunks will survive
the failure. Even though each individual chunk is very

safe, in aggregate across the entire cluster, some chunk
is expected to be lost. Figure 1 demonstrates this effect:
in practical data center configurations, data loss is nearly
guaranteed if any combination of three nodes fail simul-
taneously.

We define a copyset as a distinct set of nodes that con-
tain all copies of a given chunk. Each copyset is a sin-
gle unit of failure, i.e., when a copyset fails at least one
data chunk is irretrievably lost. Increasing the number of
copysets will increase the probability of data loss under
a correlated failure, because there is a higher probabil-
ity that the failed nodes will include at least one copy-
set. With random replication, almost every new repli-
cated chunk creates a distinct copyset, up to a certain
point.

3.1 Minimizing the Number of Copysets
In order to minimize the number of copysets a repli-

cation scheme can statically assign each node to a sin-
gle copyset, and constrain the replication to these pre-
assigned copysets. The first or primary replica would be
placed randomly on any node (for load-balancing pur-
poses), and the other secondary replicas would be placed
deterministically on the first node’s copyset.

With this scheme, we will only lose data if all the
nodes in a copyset fail simultaneously. For example,
with 5000 nodes, this reduces the data loss probabilities
when 1% of the nodes fail simultaneously from 99.99%
to 0.15%.

However, the downside of this scheme is that it
severely limits the system’s scatter width. This may
cause serious problems for certain storage systems. For
example, if we use this scheme in HDFS with R = 3,
each node’s data will only be placed on two other nodes.
This means that in case of a node failure, the system will
be able to recover its data from only two other nodes,
which would significantly increase the recovery time. In
addition, such a low scatter width impairs load balanc-
ing and may cause the two nodes to be overloaded with
client requests.

3.2 Scatter Width
Our challenge is to design replication schemes that

minimize the number of copysets given the required scat-
ter width set by the system designer.

To understand how to generate such schemes, consider
the following example. Assume our storage system has
the following parameters: R = 3, N = 9 and S = 4.
If we use random replication, each chunk will be repli-
cated on another node chosen randomly from a group of
S nodes following the first node. E.g., if the primary
replica is placed on node 1, the secondary replica will be
randomly placed either on node 2, 3, 4 or 5.

Therefore, if our system has a large number of chunks,

4

it will create 54 distinct copysets.
In the case of a simultaneous failure of three nodes, the

probability of data loss is the number of copysets divided
by the maximum number of sets:

copysets(
N
R

) =
54(
9
3

) = 0.64

Now, examine an alternative scheme using the same pa-
rameters. Assume we only allow our system to replicate
its data on the following copysets:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}{1, 4, 7}, {2, 5, 8}, {3, 6, 9}

That is, if the primary replica is placed on node 3, the
two secondary replicas can only be randomly on nodes 1
and 2 or 6 and 9. Note that with this scheme, each node’s
data will be split uniformly on four other nodes.

The new scheme created only 6 copysets. Now, if three
nodes fail, the probability of data loss is:

copysets

84
= 0.07.

As we increase N , the relative advantage of creating
the minimal number of copysets increases significantly.
For example, if we choose a system with N = 5000,
R = 3, S = 10 (like Facebook’s HDFS deployment), we
can design a replication scheme that creates about 8,300
copysets, while random replication would create about
275,000 copysets.

The scheme illustrated above has two important prop-
erties that form the basis for the design of Copyset Repli-
cation. First, each copyset overlaps with each other copy-
set by at most one node (e.g., the only overlapping node
of copysets {4, 5, 6} and {3, 6, 9} is node 6). This en-
sures that each copyset increases the scatter width for its
nodes by exactly R−1. Second, the scheme ensures that
the copysets cover all the nodes equally.

Our scheme creates two permutations, and divides
them into copysets. Since each permutation increases the
scatter width by R− 1, the overall scatter width will be:

S = P (R− 1)

Where P is the number of permutations. This scheme

will create P
N

R
copysets, which is equal to:

S

R− 1

N

R
.

The number of copysets created by random replica-

tion for values of S <
N

2
is: N

(
S

R−1

)
. This number is

equal to the number of primary replica nodes timesR−1
combinations of secondary replica nodes chosen from a
group of S nodes. When S approaches N , the number
of copysets approaches the total number of sets, which is
equal to

(
N
R

)
.

In summary, in a minimal copyset scheme, the number
of copysets grows linearly with S, while random replica-
tion creates O(SR−1) copysets. Figure 3 demonstrates

 50 100 150 200 250 300 350 400 450 500
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Facebook HDFS

Probability of data loss when 1% of the nodes fail concurrently

Scatter Width

P
ro

b
a
b
ili

ty
 o

f
d

a
ta

 l
o
s
s

Random Replication

Copyset Replication

Figure 3: Data loss probability when 1% of the nodes
fail simultaneously as a function of S, using N =
5000, R = 3.

Node	
 1	

Permuta(on	
 1	

Node	
 2	
 Node	
 3	
 Node	
 4	
 Node	
 5	
 Node	
 6	
 Node	
 7	
 Node	
 8	
 Node	
 9	

Node	
 7	
 Node	
 5	
 Node	
 1	
 Node	
 6	
 Node	
 4	
 Node	
 9	
 Node	
 3	
 Node	
 2	
 Node	
 8	

Permuta(on	
 2	

Node	
 9	
 Node	
 7	
 Node	
 2	
 Node	
 3	
 Node	
 6	
 Node	
 1	
 Node	
 4	
 Node	
 5	
 Node	
 8	

Copyset	
 1	
 Copyset	
 2	
 Copyset	
 3	

Copyset	
 4	
 Copyset	
 5	
 Copyset	
 6	

Permuta(on	
 Phase	

Figure 4: Illustration of the Copyset Replication Per-
mutation phase.

the difference in data loss probabilities as a function of
S, between random replication and Copyset Replication,
the scheme we develop in the paper.

4. DESIGN
In this section we describe the design of a novel repli-

cation technique, Copyset Replication, that provides a
near optimal trade-off between the scatter width and the
number of copysets.

As we saw in the previous section, there exist replica-
tion schemes that achieve a linear increase in copysets for
a linear increase in S. However, it is not always simple to
design the optimal scheme that creates non-overlapping
copysets that cover all the nodes. In some cases, with
specific values of N , R and S, it has even been shown
that no such non-overlapping schemes exist [18, 19]. For
a more detailed theoretical discussion see Section 7.1.

Therefore, instead of using an optimal scheme, we
propose Copyset Replication, which is close to opti-
mal in practical settings and very simple to implement.
Copyset Replication randomly generates permutations
and splits each permutation into copysets. We will show
that as long as S is much smaller then the number of
nodes in the system, this scheme is likely to generate
copysets with at most one overlapping node.

5

Replica(on	
 Phase	

Node	
 2	

Primary	

Node	
 7	
 Node	
 5	
 Node	
 1	
 Node	
 6	
 Node	
 4	
 Node	
 9	
 Node	
 3	
 Node	
 2	
 Node	
 8	

Node	
 9	
 Node	
 7	
 Node	
 2	
 Node	
 3	
 Node	
 6	
 Node	
 1	
 Node	
 4	
 Node	
 5	
 Node	
 8	

Copyset	
 1	
 Copyset	
 2	
 Copyset	
 3	

Copyset	
 4	
 Copyset	
 5	
 Copyset	
 6	

Randomly	
 pick	
 copyset	

Figure 5: Illustration of the Copyset Replication
Replication phase.

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Probability of data loss when 1% of the nodes fail concurrently

Number of nodes

P
ro

b
a
b
ili

ty
 o

f
d

a
ta

 l
o
s
s

HDFS, Random Replication

RAMCloud, Random Replication

Facebook, Random Replication

HDFS, Copyset Replication

Facebook, Copyset Replication

RAMCloud, Copyset Replication

Figure 6: Data loss probability of random replication
and Copyset Replication with R = 3, using the pa-
rameters from Table 1. HDFS has higher data loss
probabilities because it uses a larger scatter width
(S = 200).

Copyset Replication has two phases: Permutation and
Replication. The permutation phase is conducted of-
fline, while the replication phase is executed every time
a chunk needs to be replicated.

Figure 4 illustrates the permutation phase. In this
phase we create several permutations, by randomly per-
muting the nodes in the system. The number of permu-
tations we create depends on S, and is equal to P =
S

R− 1
. If this number is not an integer, we choose

its ceiling. Each permutation is split consecutively into
copysets, as shown in the illustration. The permutations
can be generated completely randomly, or we can add
additional constraints, limiting nodes from the same rack
in the same copyset, or adding network and capacity
constraints. In our implementation, we prevented nodes
from the same rack from being placed in the same copy-
set by simply reshuffling the permutation until all the
constraints were met.

In the replication phase (depicted by Figure 5) the sys-
tem places the replicas on one of the copysets generated
in the permutation phase. The first or primary replica
can be placed on any node of the system, while the other
replicas (the secondary replicas) are placed on the nodes

of a randomly chosen copyset that contains the first node.
Copyset Replication is agnostic to the data placement

policy of the first replica. Different storage systems have
certain constraints when choosing their primary replica
nodes. For instance, in HDFS, if the local machine has
enough capacity, it stores the primary replica locally,
while RAMCloud uses an algorithm for selecting its pri-
mary replica based on Mitzenmacher’s randomized load
balancing [23]. The only requirement made by Copyset
Replication is that the secondary replicas of a chunk are
always placed on one of the copysets that contains the
primary replica’s node. This constrains the number of
copysets created by Copyset Replication.

4.1 Durability of Copyset Replication
Figure 6 is the central figure of the paper. It compares

the data loss probabilities of Copyset Replication and
random replication using 3 replicas with RAMCloud,
HDFS and Facebook. For HDFS and Facebook, we plot-
ted the same S values for Copyset Replication and ran-
dom replication. In the special case of RAMCloud, the
recovery time of nodes is not related to the number of
permutations in our scheme, because disk nodes are re-
covered from the memory across all the nodes in the clus-
ter and not from other disks. Therefore, Copyset Repli-
cation with with a minimal S = R − 1 (using P = 1)
actually provides the same node recovery time as using a
larger value of S. Therefore, we plot the data probabili-
ties for Copyset Replication using P = 1.

We can make several interesting observations. Copy-
set Replication reduces the probability of data loss un-
der power outages for RAMCloud and Facebook to close
to zero, but does not improve HDFS as significantly.
For a 5000 node cluster under a power outage, Copy-
set Replication reduces RAMCloud’s probability of data
loss from 99.99% to 0.15%. For Facebook, that proba-
bility is reduced from 22.8% to 0.78%. In the case of
HDFS, since the scatter width is large (S = 200), Copy-
set Replication significantly improves the data loss prob-
ability, but not enough so that the probability of data loss
becomes close to zero.

Figure 7 depicts the data loss probabilities of 5000
node RAMCloud, HDFS and Facebook clusters. We can
observe that the reduction of data loss caused by Copy-
set Replication is equivalent to increasing the number
of replicas. For example, in the case of RAMCloud, if
the system uses Copyset Replication with 3 replicas, it
has lower data loss probabilities than random replication
with 5 replicas. Similarly, Copyset Replication with 3
replicas has the same the data loss probability as random
replication with 4 replicas in a Facebook cluster.

The typical number of simultaneous failures observed
in data centers is 0.5-1% of the nodes in the cluster [25].
Figure 8 depicts the probability of data loss in Face-

6

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Probability of data loss when 1% of the nodes fail concurrently

Number of RAMCloud nodes

P
ro

b
a

b
ili

ty
 o

f
d
a
ta

 l
o
s
s

R=3, Random Replication

R=4, Random Replication

R=2, Copyset Replication

R=5, Random Replication

R=3, Copyset Replication

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Probability of data loss when 1% of the nodes fail concurrently

Number of HDFS nodes

P
ro

b
a

b
ili

ty
 o

f
d
a
ta

 l
o
s
s

R=3, Random Replication

R=2, Copyset Replication

R=4, Random Replication

R=3, Copyset Replication

R=5, Random Replication

R=4, Copyset Replication

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Probability of data loss when 1% of the nodes fail concurrently

Number of Facebook nodes

P
ro

b
a

b
ili

ty
 o

f
d
a
ta

 l
o
s
s

R=2, Copyset Replication

R=3, Random Replication

R=3, Copyset Replication

R=4, Random Replication

Figure 7: Data loss probability of random replication and Copyset Replication in different systems.

 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Probability of data loss with varying percentage of concurrent failures

Percentage of Facebook nodes that fail concurrently

P
ro

b
a
b
ili

ty
 o

f
d
a

ta
 l
o
s
s

10000 Nodes

5000 Nodes

2000 Nodes

1000 Nodes

500 Nodes

Figure 8: Data loss probability on Facebook’s HDFS
cluster, with a varying percentage of the nodes failing
simultaneously.

book’s HDFS system as we increase the percentage of si-
multaneous failures much beyond the reported 1%. Note
that Facebook commonly operates in the range of 1000-
5000 nodes per cluster (e.g., see Table 1). For these clus-
ter sizes Copyset Replication prevents data loss with a
high probability, even in the scenario where 2% of the
nodes fail simultaneously.

4.2 Optimality of Copyset Replication
Copyset Replication is not optimal, because it doesn’t

guarantee that all of its copysets will have at most one
overlapping node. In other words, it doesn’t guarantee
that each node’s data will be replicated across exactly S
different nodes. Figure 9 depicts a monte-carlo simu-
lation that compares the average scatter width achieved
by Copyset Replication as a function of the maximum S
if all the copysets were non-overlapping for a cluster of
5000 nodes.

The plot demonstrates that when S is much smaller
than N , Copyset Replication is more than 90% optimal.
For RAMCloud and Facebook, which respectively use
S = 2 and S = 10, Copyset Replication is nearly opti-
mal. For HDFS we used S = 200, and in this case Copy-
set Replication provides each node an average of 98% of
the optimal bandwidth, which translates to S = 192.

4.3 Expected Amount of Data Lost

S
Pe
rc
en
ta
ge
 o
f o
pt
im
al
 s
ca
tt
er
 w
id
th

Figure 9: Comparison of the average scatter width
ofCopyset Replication to the optimal scatter width in
a 5000-node cluster.

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Expected lost chunks under concurrent failures

Percentage of RAMCloud nodes that fail concurrently

E
x
p

e
c
te

d
 p

e
rc

e
n

ta
g

e
 o

f
lo

s
t

c
h

u
n

k
s

1000 Nodes, R=3

Figure 10: Expected amount of data lost as a percent-
age of the data in the cluster.

Copyset Replication trades off the probability of data
loss with the amount of data lost in each incident. The
expected amount of data lost remains constant regardless
of the replication policy. Figure 10 shows the amount of
data lost as a percentage of the data in the cluster.

Therefore, a system designer that deploys Copyset
Replication should expect to experience much fewer
events of data loss. However, each one of these events
will lose a larger amount of data. In the extreme case,
if we are using Copyset Replication with S = 2 like in
RAMCloud, we would lose a whole node’s worth of data
at every data loss event.

7

5. EVALUATION
Copyset Replication is a general-purpose, scalable

replication scheme that can be implemented on a wide
range of data center storage systems and can be tuned to
any scatter width. In this section, we describe our imple-
mentation of Copyset Replication in HDFS and RAM-
Cloud. We also provide the results of our experiments
on the impact of Copyset Replication on both systems’
performance.

5.1 HDFS Implementation
The implementation of Copyset Replication on HDFS

was relatively straightforward, since the existing HDFS
replication code is well-abstracted. Copyset Replication
is implemented entirely on the HDFS NameNode, which
serves as a central directory and manages replication for
the entire cluster.

The permutation phase of Copyset Replication is run
when the cluster is created. The user specifies the scatter
width and the number of nodes in the system. After all
the nodes have been added to the cluster, the NameNode
creates the copysets by randomly permuting the list of
nodes. If a generated permutation violates any rack or
network constraints, the algorithm randomly reshuffles a
new permutation.

In the replication phase, the primary replica is picked
using the default HDFS replication.

5.1.1 Nodes Joining and Failing
In HDFS nodes can spontaneously join the cluster or

crash. Our implementation needs to deal with both cases.
When a new node joins the cluster, the NameNode

randomly creates
S

R− 1
new copysets that contain it.

As long as the scatter width is much smaller than the
number of nodes in the system, this scheme will still be
close to optimal (almost all of the copysets will be non-
overlapping). The downside is that some of the other
nodes may have a slightly higher than required scatter
width, which creates more copysets than necessary.

When a node fails, for each of its copysets we replace
it with a randomly selected node. For example, if the
original copyset contained nodes {1, 2, 3}, and node 1
failed, we re-replicate a copy of the data in the original
copyset to a new randomly selected node. As before, as
long as the scatter width is significantly smaller than the
number of nodes, this approach creates non-overlapping
copysets.

5.2 HDFS Evaluation
We evaluated the Copyset Replication implementation

on a cluster of 39 HDFS nodes with 100 GB of SSD stor-
age and a 1 GB ethernet network. Table 2 compares the
recovery time of a single node using Copyset Replication

Replication Recovery
Time (s)

Minimal
Scatter
Width

Average
Scatter
Width

Copy-
sets

Random
Replication

600.4 2 4 234

Copyset
Replication

642.3 2 4 13

Random
Replication

221.7 8 11.3 2145

Copyset
Replication

235 8 11.3 77

Random
Replication

139 14 17.8 5967

Copyset
Replication

176.6 14 17.8 147

Random
Replication

108 20 23.9 9867

Copyset
Replication

127.7 20 23.9 240

Table 2: Comparison of recovery time of a 100 GB
node on a 39 node cluster. Recovery time is measured
after the moment of failure detection.

and random replication. We ran each recovery five times.
As we showed in previous sections, Copyset Replica-

tion has few overlapping copysets as long as S is signif-
icantly smaller than N . However, since our experiment
uses a small value of N , some of the nodes did not have
sufficient scatter width due to a large number of overlap-
ping copysets. In order to address this issue, our Copyset
Replication implementation generates additional permu-
tations until the system reached the minimal desired scat-
ter width for all its nodes. The additional permutations
created more copysets. We counted the average number
of distinct copysets. As the results show, even with the
extra permutations, Copyset Replication still has orders
of magnitude fewer copysets than random replication.

To normalize the scatter width between Copyset Repli-
cation and random replication, when we recovered the
data with random replication we used the average scatter
width obtained by Copyset Replication.

The results show that Copyset Replication has an over-
head of about 5-20% in recovery time compared to ran-
dom replication. This is an artifact of our small cluster
size. The small size of the cluster causes some nodes to
be members of more copysets than others, which means
they have more data to recover and delay the overall re-
covery time. This problem would not occur if we used
a realistic large-scale HDFS cluster (hundreds to thou-
sands of nodes).

5.2.1 Hot Spots
One of the main advantages of random replication is

that it can prevent a particular node from becoming a ’hot
spot’, by scattering its data uniformly across a random

8

Scatter
Width

Mean
Load

75th %
Load

99th %
Load

Max Load

10 10% 10% 10% 20%
20 5% 5% 5% 10%
50 2% 2% 2% 6%
100 1% 1% 2% 3%
200 0.5% 0.5% 1% 1.5%
500 0.2% 0.2% 0.4% 0.8%

Table 3: The simulated load in a 5000-node HDFS
cluster with R = 3, using Copyset Replication. With
Random Replication, the average load is identical to
the maximum load.

set of nodes. If the primary node gets overwhelmed by
read requests, clients can read its data from the nodes that
store the secondary replicas.

We define the load L(i, j) as the percentage of node
i’s data that is stored as a secondary replica in node j.
For example, if S = 2 and node 1 replicates all of its
data to nodes 2 and 3, then L(1, 2) = L(1, 3) = 0.5, i.e.,
node 1’s data is split evenly between nodes 2 and 3.

The more we spread the load evenly across the nodes
in the system, the more the system will be immune to hot
spots. Note that the load is a function of the scatter width;
if we increase the scatter width, the load will be spread
out more evenly. We expect that the load of the nodes
that belong to node i’s copysets will be dfrac1S. Since
Copyset Replication guarantees the same scatter width
of random replication, it should also spread the load uni-
formly and be immune to hot spots with a sufficiently
high scatter width.

In order to test the load with Copyset Replication,
we ran a monte carlo simulation of data replication in
a 5000-node HDFS cluster with R = 3.

Table 3 shows the load we measured in our monte
carlo experiment. Since we have a very large number of
chunks with random replication, the mean load is almost
identical to the worst-case load. With Copyset Replica-
tion, the simulation shows that the 99th percentile loads
are 1-2 times and the maximum loads 1.5-4 times higher
than the mean load. Copyset Replication incurs higher
worst-case loads because the permutation phase can pro-
duce some copysets with overlaps.

Therefore, if the system’s goal is to prevent hot spots
even in a worst case scenario with Copyset Replication,
the system designer should increase the system’s scatter
width accordingly.

5.3 Implementation of Copyset Replication
in RAMCloud

The implementation of Copyset Replication on RAM-
Cloud was similar to HDFS, with a few small differ-
ences. Similar to the HDFS implementation, most of

the code was implemented on RAMCloud’s coordinator,
which serves as a main directory node and also assigns
nodes to replicas.

In RAMCloud, the main copy of the data is kept in a
master server, which keeps the data in memory. Each
master replicates its chunks on three different backup
servers, which store the data persistently on disk.

The Copyset Replication implementation on RAM-
Cloud only supports a minimal scatter width (S = R −
1 = 2). We chose a minimal scatter width, because it
doesn’t affect RAMCloud’s node recovery times, since
the backup data is recovered from the master nodes,
which are spread across the cluster.

Another difference between the RAMCloud and
HDFS implementations is how we handle new back-
ups joining the cluster and backup failures. Since each
node is a member of a single copyset, if the coordinator
doesn’t find three nodes to form a complete copyset, the
new nodes will remain idle until there are enough nodes
to form a copyset.

When a new backup joins the cluster, the coordinator
checks whether there are three backups that are not as-
signed to a copyset. If there are, the coordinator assigns
these three backups to a copyset.

In order to preserve S = 2, every time a backup node
fails, we re-replicate its entire copyset. Since backups
don’t service normal reads and writes, this doesn’t af-
fect the sytem’s latency. In addition, due to the fact that
backups are recovered in parallel from the masters, re-
replicating the entire group doesn’t significantly affect
the recovery latency. However, this approach does in-
crease the disk and network bandwidth during recovery.

5.4 Evaluation of Copyset Replication on
RAMCloud

We compared the performance of Copyset Replication
with random replication under three scenarios: normal
RAMCloud client operations, a single master recovery
and a single backup recovery.

As expected, we could not measure any overhead of
using Copyset Replication on normal RAMCloud opera-
tions. We also found that it does not impact master recov-
ery, while the overhead of backup recovery was higher as
we expected. We provide the results below.

5.4.1 Master Recovery
One of the main goals of RAMCloud is to fully re-

cover a master in about 1-2 seconds so that applications
experience minimal interruptions. In order to test mas-
ter recovery, we ran a cluster with 39 backup nodes and
5 master nodes. We manually crashed one of the mas-
ter servers, and measured the time it took RAMCloud
to recover its data. We ran this test 100 times, both
with Copyset Replication and random replication. As

9

Replication Recovery Data Recovery Time

Random Replication 1256 MB 0.73 s
Copyset Replication 3648 MB 1.10 s

Table 4: Comparison of backup recovery perfor-
mance on RAMCloud with Copyset Replication. Re-
covery time is measured after the moment of failure
detection.

expected, we didn’t observe any difference in the time
it took to recover the master node in both schemes.

However, when we ran the benchmark again using 10
backups instead of 39, we observed Copyset Replication
took 11% more time to recover the master node than the
random replication scheme. Due to the fact that Copy-
set Replication divides backups into groups of three, it
only takes advantage of 9 out of the 10 nodes in the clus-
ter. This overhead occurs only when we use a number
of backups that is not a multiple of three on a very small
cluster. Since we assume that RAMCloud is typically de-
ployed on large scale clusters, the master recovery over-
head is negligible.

5.4.2 Backup Recovery
In order to evaluate the overhead of Copyset Replica-

tion on backup recovery, we ran an experiment in which
a single backup crashes on a RAMCloud cluster with
39 masters and 72 backups, storing a total of 33 GB
of data. Table 4 presents the results. Since masters re-
replicate data in parallel, recovery from a backup fail-
ure only takes 51% longer using Copyset Replication,
compared to random replication. As expected, our im-
plementation approximately triples the amount of data
that is re-replicated during recovery. Note that this ad-
ditional overhead is not inherent to Copyset Replication,
and results from our design choice to strictly preserve a
minimal scatter width at the expense of higher backup
recovery overhead.

6. DISCUSSION
This section discusses how coding schemes relate to

the number of copysets, and how Copyset Replication
can simplify graceful power downs of storage clusters.

6.1 Copysets and Coding
Some storage systems, such as GFS, Azure and HDFS,

use coding techniques to reduce storage costs. These
techniques generally do not impact the probability of
data loss due to simultaneous failures.

Codes are typically designed to compress the data
rather than increase its durability. If the coded data is
distributed on a very large number of copysets, multiple
simultaneous failures will still cause data loss.

In practice, existing storage system parity code im-

plementations do not significantly reduce the number of
copysets, and therefore do not impact the profile of data
loss. For example, the HDFS-RAID [1, 11] implementa-
tion encodes groups of 5 chunks in a RAID 5 and mirror-
ing scheme, which reduces the number of distinct copy-
sets by a factor of 5. While reducing the number of copy-
sets by a factor of 5 reduces the probability of data loss,
Copyset Replication still creates two orders of magni-
tude fewer copysets than this scheme. Therefore, HDFS-
RAID with random replication is still very likely lose
data in the case of power outages.

6.2 Graceful Power Downs
Data center operators periodically need to gracefully

power down parts of a cluster [4, 10, 13]. Power downs
are used for saving energy in off-peak hours, or to con-
duct controlled software and hardware upgrades.

When part of a storage cluster is powered down, it is
expected that at least one replica of each chunk will stay
online. However, random replication considerably com-
plicates controlled power downs, since if we power down
a large group of machines, there is a very high probability
that all the replicas of a given chunk will be taken offline.
In fact, these are exactly the same probabilities that we
use to calculate data loss. Several previous studies have
explored data center power down in depth [17, 21, 27].

If we constrain Copyset Replication to use the min-
imal number of copysets (i.e., use Copyset Replication
with S = R− 1), it is simple to conduct controlled clus-
ter power downs. Since this version of Copyset Repli-
cation assigns a single copyset to each node, as long as
one member of each copyset is kept online, we can safely
power down the remaining nodes. For example, a cluster
using three replicas with this version of Copyset Replica-
tion can effectively power down two-thirds of the nodes.

7. RELATED WORK
The related work is split into three categories. First,

replication schemes that achieve optimal scatter width
are related to a field in mathematics called combinato-
rial design theory, which dates back to the 19th century.
We will give a brief overview and some examples of such
designs. Second, replica placement has been studied in
the context of DHT systems. Third, several data center
storage systems have employed various solutions to mit-
igate data loss due to concurrent node failures.

7.1 Combinatorial Design Theory
The special case of trying to minimize the number of

copysets when S = N−1 is related to combinatorial de-
sign theory. Combinatorial design theory tries to answer
questions about whether elements of a discrete finite set
can be arranged into subsets, which satisfy certain “bal-
ance" properties. The theory has its roots in recreational

10

mathematical puzzles or brain teasers in the 18th and
19th century. The field emerged as a formal area of math-
ematics in the 1930s for the design of agricultural exper-
iments [12]. Stinson provides a comprehensive survey of
combinatorial design theory and its applications. In this
subsection we borrow several of the book’s definitions
and examples [26].

The problem of trying to minimize the number of
copysets with a scatter width of S = N − 1 can be ex-
pressed a Balanced Incomplete Block Design (BIBD), a
type of combinatorial design. Designs that try to mini-
mize the number of copysets for any scatter width, such
as Copyset Replication, are called unbalanced designs.

A combinatorial design is defined a pair (X,A), such
that X is a set of all the nodes in the system (i.e.,
X = {1, 2, 3, ..., N}) and A is a collection of nonempty
subsets of X . In our terminology, A is a collection of all
the copysets in the system.

Let N , R and λ be positive integers such that N >
R ≥ 2. A (N,R, λ) BIBD satisfies the following prop-
erties:

1. |A| = N

2. Each copyset contains exactly R nodes

3. Every pair of nodes is contained in exactly λ copy-
sets

When λ = 1, the BIBD provides an optimal design for
minimizing the number of copysets for S = N − 1.

For example, a (7, 3, 1)BIBD is defined as:

X = {1, 2, 3, 4, 5, 6, 7}
A = {123, 145, 167, 246, 257, 347, 356}

Note that each one of the nodes in the example has a
recovery bandwidth of 6, because it appears in exactly
three non-overlapping copysets.

Another example is the (9, 3, 1)BIBD:

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168,
249, 357}

There are many different methods for constructing
new BIBDs. New designs can be constructed by com-
bining other known designs, using results from graph and
coding theory or in other methods [20]. The Experimen-
tal Design Handbook has an extensive selection of design
examples [9].

However, there is no single technique that can produce
optimal BIBDs for any combination of N and R. More-
over, there are many negative results, i.e., researchers
that prove that no optimal designs exists for a certain
combination of N and R [18, 19].

Due to these reasons, and due to the fact that BIBDs
do not solve the copyset minimization problem for any
scatter width that is not equal to N − 1, it is not practical
to use BIBDs for creating copysets in data center storage
systems. This is why we chose to utilize Copyset Repli-
cation, a non-optimal design based on random permuta-
tions that can accommodate any scatter width. However,
BIBDs do serve as a useful benchmark to measure how
optimal Copyset Replication in relationship to the opti-
mal scheme for specific values of S, and the novel formu-
lation of the problem for any scatter width is a potentially
interesting future research topic.

7.2 DHT Systems
There are several prior systems that explore the impact

of data placement on data availability in the context of
DHT systems.

Chun et al. [15] identify that randomly replicating data
across a large “scope" of nodes increases the probability
of data loss under simultaneous failures. They investi-
gate the effect of different scope sizes using Carbonite,
their DHT replication scheme. Yu et al. [28] analyze
the performance of different replication strategies when a
client requests multiple objects from servers that may fail
simultaneously. They propose a DHT replication scheme
called “Group", which constrains the placement of repli-
cas on certain groups, by placing the secondary repli-
cas in a particular order based on the key of the primary
replica. Similarly, Glacier [16] constrains the random
spread of replicas, by limiting each replica to equidistant
points in the keys’ hash space.

None of these studies focus on the relationship be-
tween the probability of data loss and scatter width, or
provide optimal schemes for different scatter width con-
straints.

7.3 Data Center Storage Systems
Facebook’s proprietary HDFS implementation con-

strains the placement of replicas to smaller groups, to
protect against concurrent failures [2, 5]. Similarly,
Sierra randomly places chunks within constrained groups
in order to support flexible node power downs and data
center power proportionality [27]. As we discussed pre-
viously, both of these schemes, which use random repli-
cation within a constrained group of nodes, generate or-
ders of magnitude more copysets than Copyset Replica-
tion with the same scatter width, and hence have a much
higher probability of data loss under correlated failures.

Ford et al. from Google [13] analyze different fail-
ure loss scenarios on GFS clusters, and have proposed
geo-replication as an effective technique to prevent data
loss under large scale concurrent node failures. Geo-
replication across geographically dispersed sites is a fail-
safe way to ensure data durability under a power outage.

11

However, not all storage providers have the capability to
support geo-replication. In addition, even for data center
operators that have geo-replication (like Facebook and
LinkedIn), losing data at a single site still incurs a high
fixed cost due to the need to locate or recompute the data.
This fixed cost is not proportional to the amount of data
lost [8, 22].

8. ACKNOWLEDGEMENTS
We would like to thank David Gal, Diego Ongaro, Is-

rael Cidon, Rashmi Vinayak and Shankar Pasupathy for
their valuable feedback. We would also like to thank our
shepherd, Bernard Wong, and the anonymous review-
ers for their comments. Asaf Cidon is supported by the
Leonard J. Shustek Stanford Graduate Fellowship. This
work was supported by the National Science Foundation
under Grant No. 0963859 and by STARnet, a Semi-
conductor Research Corporation program sponsored by
MARCO and DARPA.

References
[1] HDFS RAID. http://wiki.apache.org/hadoop/

HDFS-RAID.

[2] Intelligent block placement policy to decrease probability of data
loss. https://issues.apache.org/jira/browse/
HDFS-1094.

[3] L. A. Barroso. Personal Communication, 2013.

[4] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. Computer, 40(12):33–37, Dec. 2007.

[5] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, R. Schmidt, and A. Aiyer. Apache hadoop
goes realtime at Facebook. In Proceedings of the 2011 interna-
tional conference on Management of data, SIGMOD ’11, pages
1071–1080, New York, NY, USA, 2011. ACM.

[6] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Hari-
das, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Mani-
vannan, and L. Rigas. Windows Azure Storage: a highly available
cloud storage service with strong consistency. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples, SOSP ’11, pages 143–157, New York, NY, USA, 2011.
ACM.

[7] R. J. Chansler. Data Availability and Durability with the Hadoop
Distributed File System. ;login: The USENIX Magazine, 37(1),
February 2012.

[8] R. J. Chansler. Personal Communication, 2013.

[9] W. Cochran and G. Cox. Experimental designs . 1957.

[10] J. Dean. Evolution and future directions of large-scale storage
and computation systems at Google. In SoCC, page 1, 2010.

[11] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson. DiskReduce:
Replication as a prelude to erasure coding in data-intensive scal-
able computing, 2011.

[12] R. Fisher. An examination of the different possible solutions
of a problem in incomplete blocks. Annals of Human Genetics,
10(1):52–75, 1940.

[13] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in globally
distributed storage systems. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation,
OSDI’10, pages 1–7, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file sys-
tem. In SOSP, pages 29–43, 2003.

[15] B. gon Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. F. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient replica
maintenance for distributed storage systems. In IN PROC. OF
NSDI, pages 45–58, 2006.

[16] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated failures.
In IN PROC. OF NSDI, 2005.

[17] D. Harnik, D. Naor, and I. Segall. Low power mode in cloud
storage systems.

[18] S. Houghten, L. Thiel, J. Janssen, and C. Lam. There is no (46, 6,
1) block design*. Journal of Combinatorial Designs, 9(1):60–71,
2001.

[19] P. Kaski and P. Östergård. There exists no (15, 5, 4) RBIBD.
Journal of Combinatorial Designs, 9(3):227–232, 2001.

[20] J. Koo and J. Gill. Scalable constructions of fractional repetition
codes in distributed storage systems. In Communication, Control,
and Computing (Allerton), 2011 49th Annual Allerton Conference
on, pages 1366–1373. IEEE, 2011.

[21] J. Leverich and C. Kozyrakis. On the energy (in)efficiency of
hadoop clusters. SIGOPS Oper. Syst. Rev., 44(1):61–65, Mar.
2010.

[22] K. Mathukkaruppan. Personal Communication, 2012.

[23] M. D. Mitzenmacher. The power of two choices in randomized
load balancing. Technical report, IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, 1996.

[24] D. Ongaro, S. M. Rumble, R. Stutsman, J. K. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In SOSP,
pages 29–41, 2011.

[25] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. Mass Storage Systems and Technologies,
IEEE / NASA Goddard Conference on, 0:1–10, 2010.

[26] D. Stinson. Combinatorial designs: construction and analysis.
Springer, 2003.

[27] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical
power-proportionality for data center storage. Proceedings of Eu-
rosys 11, pages 169–182, 2011.

[28] H. Yu, P. B. Gibbons, and S. Nath. Availability of multi-object
operations. In Proceedings of the 3rd conference on Networked
Systems Design & Implementation - Volume 3, NSDI’06, pages
16–16, Berkeley, CA, USA, 2006. USENIX Association.

12

http://wiki.apache.org/hadoop/HDFS-RAID
http://wiki.apache.org/hadoop/HDFS-RAID
https://issues.apache.org/jira/browse/HDFS-1094
https://issues.apache.org/jira/browse/HDFS-1094

	Introduction
	The Problem
	Definitions
	Random Replication

	Intuition
	Minimizing the Number of Copysets
	Scatter Width

	Design
	Durability of Copyset Replication
	Optimality of Copyset Replication
	Expected Amount of Data Lost

	Evaluation
	HDFS Implementation
	Nodes Joining and Failing

	HDFS Evaluation
	Hot Spots

	Implementation of Copyset Replication in RAMCloud
	Evaluation of Copyset Replication on RAMCloud
	Master Recovery
	Backup Recovery

	Discussion
	Copysets and Coding
	Graceful Power Downs

	Related Work
	Combinatorial Design Theory
	DHT Systems
	Data Center Storage Systems

	Acknowledgements

