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Abstract
This paper describes OpenReplica, an open service that
provides replication and synchronization support for
large-scale distributed systems. OpenReplica is designed
to commodify Paxos replicated state machines by provid-
ing infrastructure for their construction, deployment and
maintenance. OpenReplica is based on a novel Paxos
replicated state machine implementation that employs an
object-oriented approach in which the system actively
creates and maintains live replicas for user-provided ob-
jects. Clients access these replicated objects transpar-
ently as if they are local objects. OpenReplica supports
complex distributed synchronization constructs through
a multi-return mechanism that enables the replicated ob-
jects to control the execution flow of their clients, in
essence providing blocking and non-blocking method in-
vocations that can be used to implement richer synchro-
nization constructs. Further, it supports elasticity re-
quirements of cloud deployments by enabling any num-
ber of servers to be replaced dynamically. A rack-aware
placement manager places replicas on nodes that are un-
likely to fail together. Experiments with the system show
that the latencies associated with replication are compa-
rable to ZooKeeper, and that the system scales well.

1 Introduction
Developing distributed systems is a difficult task, in part
because distributed systems comprise components that
can and do fail and in part because these distributed com-
ponents often need to take coordinated action through
failures. A typical distributed application maintains state
that needs to be replicated and distributed, as well as ac-
tively executing threads of control whose behavior needs
to be controlled. We term the former process replication
and the latter synchronization; together they are known
ascoordination. The recent emergence of the cloud as
a mainstream commercial deployment environment has
amplified the need forcoordination services, infrastruc-
ture software that provides a replication and synchroniza-
tion framework for distributed applications.

Building coordination services is a difficult task.
ZooKeeper [17] and Chubby [4] have recently emerged
as the predominant coordination services for large-scale
distributed systems. While these two systems differ in
the underlying consensus protocol they employ, they

both provide the same basic mechanism; namely, ordered
updates to a replicated file, with optional callbacks on
updates. This approach suffers from three shortcomings.
First, a file-based API requires an application to convert
its replicated state into a serialized form suitable for stor-
ing in a file. Consequently, the serialized form of data
stored in the filesystem typically differs from the pro-
grammatic view of an object as seen by the developer.
Bridging this disconnect requires either costly serializa-
tion and deserialization operations or a level of indirec-
tion, where the file serves as a membership service to
convert between the two views. Second, these services
require an application to express its communication and
synchronization behavior using an upcall-based API. In
essence, these coordination services provide a publish-
subscribe system. Consequently, applications need to
be rewritten to subscribe to the appropriate upcalls that
match their synchronization needs. Further, because
these upcall events separate control-flow from data-flow,
event handlers typically have to perform expensive ad-
ditional operations to reestablish the event context, such
as reading from the replicated state to determine the type
of modification. Finally and most importantly, configur-
ing and maintaining the resulting distributed application
is operationally challenging. For example, maintaining
replica sets to prevent service degradation often requires
manual intervention to spawn new replicas and changes
to update configurations. Since the ZooKeeper atomic
broadcast protocol does not support dynamic updates to
replica sets, migrating services requires a system restart.

In this paper, we present a novelobject-oriented self-
configuring and self-maintaining coordination service
for large-scale distributed systems, called OpenReplica.
OpenReplica is a public web service that instantiates
and maintains user-specific coordination instances eas-
ily. OpenReplica operates on user-provided objects that
define state machines, which it transforms into fault tol-
erant replicated state machines (RSMs) [26, 43]. These
objects are used to maintain replication and synchroniza-
tion data and can be crafted to meet an application’s co-
ordination needs. The system maintains a set of live
replicas that can provide instant failover and employs
consensus to keep the replicas in synchrony as the state
of the replicated objects change through method invo-
cations. OpenReplica can deploy replicated state ma-



chines in a manner that reduces the likelihood of cor-
related failures and monitors the liveness of this deploy-
ment over time. Critically, users can interact with the
replicated object through an automatically generated ob-
ject proxy or the OpenReplica web interface. Both of
these options provide an API that is identical to the orig-
inal, non-fault-tolerant object1. Analogous to RPC [8],
OpenReplica provides a programmatic view that simpli-
fies much of the complexity of interacting with a repli-
cated, fault-tolerant object implementation. Similar in
spirit to OpenDHT [38], the goal of OpenReplica is to
make the construction, deployment and maintenance of
a fault-tolerant object accessible to non-expert program-
mers.

The OpenReplica approach differs from ZooKeeper
and Chubby in significant ways that stem from the differ-
ence between active object replication and passive file-
based replication. Because OpenReplica provides trans-
parent object replication, applications need not be re-
vamped to use a file-based API. Clients need not even
be aware that certain components have been replicated,
which greatly simplifies the programming effort. Fur-
ther, it eliminates the necessity of serializing and de-
serializing the object on the performance-critical path;
in fact, the replicated object need not be serializable,
as might be the case with state machines with actively
executing background threads in them. Whereas a file-
based API requires clients to retrieve the state from the
coordination service, recover the state machine, advance
it through one or more transitions and store it back in
the coordination service. A client node that uses Open-
Replica need not instantiate the object locally. Moreover,
in coordination services based on wait-free primitives,
such as ZooKeeper, write operations might fail under
contention. The possibility of such a failure, and the cor-
responding need to redo the requested operation, requires
object methods to either be idempotent or to be pro-
tected with additional, heavy-weight, blocking synchro-
nization constructs. In contrast, because OpenReplica
replicas apply operations according to a strict total order,
there is no possibility of a write failure due to an out-
of-date version mismatch. o This implies, in turn, that
object methods can be written in a straightforward pro-
cedural manner; they need not be idempotent, resort to
heavy-weight locks, or employ a transactional style. Fi-
nally, OpenReplica provides blocking client method in-
vocations for enabling clients to easily implement com-
plex synchronization constructs using existing and well-
understood synchronization primitives, such as locks and
semaphores. The system API obviates the need to map
traditional synchronization code onto sequences of file
operations and event upcalls.

1The modified, fault-tolerant interface differs solely in additional
exceptions that pertain to a distributed implementation.

The OpenReplica implementation is based on the
Paxos protocol [28, 29] for consensus and uses a novel
combination of Paxos features to achieve higher perfor-
mance and dynamicity. To maximize availability and
provide flexibility in replica management, we support
dynamic view changes where the acceptor and replica
sets can be modified at run time. To achieve high perfor-
mance, we employ a version of the Paxos protocol based
on a light-weight implementation built on asynchronous
events. And to provide integration with existing naming
infrastructure and to enable clients to be directed to up-
to-date replicas, OpenReplica implements name servers
which can provide authoritative DNS name service as
well as optional integration with Amazon’s Route 53 [3].

OpenReplica has been used to build and deploy several
fault-tolerant services, including a fault-tolerant logging
service, a reliable group membership tracker, a reliable
data store, a configuration service as well as reliable data
structures, such as binary search trees, red black trees,
queues, stacks, linked lists, and synchronization objects,
such as distributed locks, semaphores, barriers and con-
dition variables. These implementations show that Open-
Replica enables programmers to build and deploy non-
trivial fault-tolerant services simply by implementing a
local object. The amount of engineering effort that went
into these applications is substantially lower than special-
ized, monolithic systems built around Paxos agreement.

Overall, this paper makes three contributions. First,
it presents the OpenReplica service for the construc-
tion, deployment and maintenance of Paxos-based repli-
cated state machines (RSMs). Second, it describes
the OpenReplica implementation for building practi-
cal Paxos RSMs which support high-throughput, dy-
namic view changes, fault-tolerance through rack-
aware replica placement, client synchronization control
through a multi-return primitive, and DNS integration.
Finally, it compares the performance of OpenReplica to
ZooKeeper, known for its high performance implemen-
tation, and demonstrates that the system achieves low
latency during regular operation, quick recovery in re-
sponse to failures, and high scalability in the size of the
replicated state. Specifically, OpenReplica outperforms
ZooKeeper by 15% on latency for 5 replicas and exhibits
comparable failure recovery times.

The rest of this paper is structured as follows. Sec-
tion 2 outlines the OpenReplica approach to replication
for general-purpose objects. Section 3 describes the im-
plementation of the system. Section 4 evaluates the per-
formance of the system and provides a comparison to
ZooKeeper. Section 5 places OpenReplica in the con-
text of past work on coordination services and Section 6
summarizes our contributions.
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2 Approach
OpenReplica is a public web service that instantiates
and maintains application-specific coordination services.
This section describes the design outline and rationale
for the OpenReplica approach to providing coordination
services in large-scale distributed systems.

The goals of OpenReplica are as follows:

• Easy-to-use: Defining, implementing, deploying
and maintaining replicated state machines should be
straightforward, even for non-expert programmers.

• Transparent: Replication and fault-tolerance tech-
niques must not require disruptive changes to ap-
plication logic. Rendering parts of an existing ap-
plication fault-tolerant should not require extensive
changes to the code base.

• Dynamic: It should be possible to change the loca-
tion and number of replicas at run-time. The correct
operation of the system should not depend on the
liveness of statically designated clients.

• High-Performance: The resulting fault-tolerant
system should exhibit performance that is compa-
rable to state-of-the-art coordination services.

The underlying coordination infrastructure used by
OpenReplica tackles these goals with an object-oriented
approach centered around acoordination object abstrac-
tion. A coordination object consists of requisite data and
associated methods operating on that data, which, to-
gether, define a state machine capable of stopping and
restarting client executions. In essence, a coordination
object specifies the application functionality to be made
fault-tolerant, as well as defining the fault-tolerant syn-
chronization mechanisms required to control the execu-
tion of an application. A user defines a coordination
object as if it were a local Python object, hands it to
OpenReplica, which then instantiates replicas on a set
of servers and creates a distributed and fault-tolerant co-
ordination object.

OpenReplica ensures that the coordination object
replicas remain in synchrony by using the Paxos proto-
col to agree on the order of method invocations. There
has been much work on employing the Paxos protocol
to achieve fault-tolerance in specific settings [34, 36, 4,
32, 10, 20, 1], in which Paxos was monolithically inte-
grated into a specific, static API offered by the system.
In contrast, OpenReplica is a general-purpose, open ser-
vice that enables any object to be made fault-tolerant. We
illustrate the overall structure of a coordination object in-
stance in Figure 1 and discuss each component in turn.

Binary Rewriting: OpenReplica uses binary rewriting
to ensuresingle-object semantics; that is, users have the
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Figure 1: The structure of an OpenReplica coordination object. Clients
interact with a coordination object transparently throughthe client
proxy. The consistency and fault-tolerance of the user-defined coor-
dination object is maintained by Replica (R), Acceptor (A) and Name
Server (NS) nodes using the Paxos consensus protocol. Name server
nodes keep track of the view of the system and reply to DNS queries
for the coordination object with the latest view information.

illusion of a single object both when specifying and in-
voking a coordination object. The implementation uses
binary rewriting on the server side to generate a net-
worked object suitable for replication from an object
specification. This process involves the generation of
server-side stubs and a control loop that translates local
method invocations into Paxos consensus rounds. Open-
Replica also uses binary rewriting to generate a client
proxy object whose interface is identical to the original
object. Underneath the covers, the client proxy translates
method invocations into client requests, which comprise
a unique client request id, method name, and arguments
for invocation. The proxy marshals client requests and
sends them to one of the replicas, discovered through a
DNS lookup. Depending on the responses returned from
the replica, the proxy is also capable of suspending and
resuming the execution of the calling thread, thereby en-
abling a coordination object to control the execution of
its callers.

RSM Synchrony: OpenReplica uses Paxos to ensure
that the coordination object replicas are kept in syn-
chrony. The central task of any RSM protocol is to en-
sure that all the replicas observe the same sequence of ac-
tions. OpenReplica retains this sequence in a data struc-
ture calledcommand history. The command history con-
sists of numberedslots containing client requests, corre-
sponding to method invocations, along with their associ-
ated client request id, return value, and a valid bit indi-
cating whether the operation has been executed. To en-
sure that operations are executed at most once, a replica
checks the command history upon receiving a client re-
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quest and, if the operation has already been executed,
responds with the previously computed output. If the re-
quest has been assigned to a slot in the command history
(i.e. a previous Paxos round has decided on a slot num-
ber for that request), but has not been executed yet, it
records the client connection over which the output will
be returned when the operation is ultimately executed.
These two checks ensure that every method invocation
will execute at most once, even in the presence of client
retransmissions and failures of the previous replicas that
the client may have contacted. If the client request does
not appear in the command history, the receiving replica
locates the earliest unassigned slot and proposes the op-
eration for execution in that slot. This proposal takes
place over a Paxos consensus round, which will either
uncover that there was an overriding proposal for that
slot suggested previously by a different replica (which
will, in turn, defer the client request to a later slot in
the command history and start the process again), or it
will have its proposal accepted. These consensus rounds
are independent and concurrent; failures of replicas may
lead to unassigned slots, which get assigned by follow-
ing rounds. Once a client request is assigned to a slot
by a replica, that replica can propagate the assignment to
other replicas and execute the operation locally as soon
as all preceding slots have been decided. The replica then
responds with the return value back to the client. Note
that, while the propagation to other replicas occurs in the
background, there is no danger of losing the agreed-upon
slot number assignment, as the Paxos protocol implic-
itly stores this decision in a quorum of acceptor nodes
at the time the proposal is accepted. For the same rea-
son, OpenReplica does not require the object state to be
written to disk. As long as there are less than a threshold
f failures in the system, the state of the object will be
preserved.

Dynamic Membership: Because coordination objects
are fault-tolerant and long-lived, the system supports re-
positioning of the replicas dynamically during execu-
tion. Consequently, the connection between the client
proxy and the replicas is established not by a static con-
figuration file, but by a DNS lookup. DNS servers that
participate in the agreement protocol track the member-
ship of nodes in the replica set, and can thus respond
to DNS queries with an up-to-date list of replicas. The
names of the DNS servers in the parent-level DNS ser-
vice is also updated whenever DNS servers come online,
thus ensuring that the replica set can be located through
the standard DNS resolvers. OpenReplica uses a fault-
tolerant DNS service coordination object to keep track
of the DNS servers for many coordination instances that
are created for client coordination objects.

The end result of this organization is that the clients
can treat the set of replicas as if they implement a sin-

c l a s s Account ( ) :
def i n i t ( s e l f , acctnumber , i n i t b a l a n c e ) :

s e l f . number = acc tnumber
s e l f . b a l a n c e = i n i t b a l a n c e

def d e b i t ( s e l f , amount ) :
i f amount >= s e l f . b a l a n c e :

s e l f . b a l a n c e = s e l f . b a l a n c e− amount
re turn True

e l s e :
re turn F a l s e

def d e p o s i t ( s e l f , amount ) :
s e l f . b a l a n c e = s e l f . b a l a n c e + amount
re turn True

Figure 2: Coordination objects do not include OpenReplica-specific
code, they are implemented as if they are local objects.

gle object. OpenReplica extends traditional Paxos RSM
implementations with a novel multi-return mechanism
to support two kinds of objects: synchronous and ren-
dezvous objects.

Synchronous Objects

A synchronous object is a coordination object that encap-
sulates replicated state and provides associated methods
to update this state, which donot change the execution
state of their callers. Synchronous object methods exe-
cute to completion and return a result without suspending
the caller.

Since synchronous objects are by far the most com-
mon type of object in distributed systems, OpenReplica
makes it particularly easy to define and invoke them. Fig-
ure 2 shows a sample coordination object implementa-
tion for an online payment service. The Account class
defines synchronous objects that hold a user’s current
account balance. The account has an identifier (an ac-
count number) and a balance, modified throughdebit
and deposit methods. In effect, the object encloses
the critical state that needs to be made fault-tolerant, and
defines a state machine whose legal transitions are deter-
mined by the amount of money in the account. Open-
Replica ensures that these operations are invoked in a
consistent, totally-ordered manner.

What is noteworthy about this implementation is that
it includes no replication-specific code. Neither the
server-side object specification nor the user of the client
proxy need be aware that the object is replicated and
fault-tolerant. Single object semantics ensure that sound
clients can be written in a straight-forward way, with
only some additional exception handling for the cases
where a partition or network failure results in a network
timeout. In contrast, performing the same task with a
file-based API in ZooKeeper or Chubby would require
handling connections, serializing/deserializing persistent
state, or perhaps using these systems to determine the
membership of a set of live nodes which in turn manu-
ally implement an RSM.
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The decision to maintain live instances and keep them
in synchrony through agreement on the command his-
tory represents critical design tradeoffs. The advantage
of agreeing on command history instead of object state is
that it can support any object, even those that may con-
tain active components, such as threads, and performs
well even for large objects that may be too costly to seri-
alize, such as large files. The downsides of this approach
are two-fold: the command history can grow over time, a
topic we address in the next section with garbage collec-
tion, and non-deterministic operations in methods may
cause replica divergence if left unchecked, a topic we ad-
dress in the next section through language mechanisms.

Rendezvous Objects

Making a distributed system fault tolerant typically re-
quires synchronizing the activities of distributed com-
ponents. OpenReplica accomplishes this with a novel
multi-return primitive, supported for a class of objects
dubbedrendezvous objects. Specifically, whereas syn-
chronous objects support methods that simply execute to
completion and return, rendezvous objects may block the
calling client until further notice and resume it at a later
point. Normally, clients of a replicated state machine
perform synchronous method invocations, where every
method invocation gets assigned to a slot in the replicated
state machine history through consensus, and a result
is returned to the client when the execution completes.
In cases where the replicated state machine is used to
synchronize clients, the method invocation may need to
block the client and return as the result of a method in-
vocation by another client. Note that this is not the same
as the RSM itself blocking, though on casual observa-
tion, the two effects may seem the same. When the client
is explicitly blocked, the RSM itself is free to take ad-
ditional state transitions, prompted by operations issued
by other clients. In contrast, when the RSM is blocked,
it ceases to make progress and cannot uphold liveness
requirements. OpenReplica avoids such blocking by en-
abling rendezvous objects to suspend and resume their
calling clients.

The multiple return primitive greatly simplifies the im-
plementation of objects used for synchronization. Fig-
ure 3 shows the implementation of a semaphore object
in OpenReplica. The implementation follows a conven-
tional semaphore implementation line-by-line. It keeps
a count, a wait queue and an atomic lock and blocks or
unblocks clients depending on the count value.

OpenReplica uses an extension over the underlying
consensus protocol, where return values may be de-
ferred. When a rendezvous object blocks its caller, a
second bit in the command history is used to indicate
that the calling client has been deferred. Later, any other
command can cause previously deferred method calls to

c l a s s Semaphore ( ) :
def i n i t ( s e l f , coun t =1) :

s e l f . coun t = i n t ( coun t )
s e l f . queue = [ ]
s e l f . a tomic = Lock ( )

def a c q u i r e ( s e l f , concoord cmd ) :
w i th s e l f . a tomic :

s e l f . coun t −= 1
i f s e l f . coun t< 0 :

s e l f . queue . append (concoord cmd )
r a i s e B lock ingRe tu rn ( None )

e l s e :
re turn True

def r e l e a s e ( s e l f , concoord cmd ) :
w i th s e l f . a tomic :

s e l f . coun t += 1
i f l e n ( s e l f . queue )> 0 :
unblockcmd = s e l f . queue . pop ( 0 )
unb locked = {}
unb locked [ unblockcmd ] = True
r a i s e Unb lock ingRetu rn ( None , unb locked )

Figure 3: Semaphore coordination object follows exactly from the tra-
ditional Semaphore implementation and it does not require instrumen-
tation of upcall mechanisms to implement the expected behavior.

be resumed. Upon completion, these calls may yield ac-
tual returned values, which are returned to the client at
a later time. The command history always records the
time at which a call was deferred, as well as the later
call that resumed the deferred method invocation. As a
result, each method invocation in OpenReplica has asso-
ciated with it not only its own results, but also the results
of computations it resumed as a side-effect during its ex-
ecution.

This enables a replica, replaying the object history, to
make the same set of synchronization-related decisions
as other replicas. On the client side, the intention of the
RSM to block the client is communicated by an excep-
tion carried in the first response packet, which instructs
the client proxy to block the calling thread on a local con-
dition variable. A future, asynchronous response mes-
sage for the same client request unblocks the thread and
yields the result carried in the second response. Con-
sequently, users can implement synchronization objects
following conventional blocking constructs.

In contrast, systems with file-based APIs require eso-
teric, upcall-based implementations for synchronization
control. For instance, a comparable barrier implementa-
tion is three times as long in ZooKeeper than its Open-
Replica counterpart, requires intimate understanding of
znodes andwatchers, and has almost no code in common
with textbook barrier implementations [17].

3 Implementation

Implementing a public, open web service for general pur-
pose replication and coordination necessitates numerous
design decisions on how to layer RSMs on top of the core
Paxos protocol and how to maintain multiple instances of
this distributed system. We present these implementation
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details below, focusing on the design rationale.

3.1 Paxos

Paxos is used to achieve consensus among the repli-
cas on the order in which client requests will be ex-
ecuted. By providing ordering guarantees, Paxos en-
sures that the replicated state machine behaves like a
single remote state machine. Following the concise
and lightweight multi-decree Paxos implementation de-
scribed in [45], OpenReplica assigns a client-initialized
request to a unique slot and communicates this assign-
ment to the various nodes in the system.

OpenReplica employs two sets of nodes, replicas and
acceptors. In OpenReplica, replicas keep a live copy of
the replicated object, receive requests from clients, start
a consensus round for each request and execute opera-
tions on the replicated state in the agreed upon order.
Acceptors constitute the quorum keeping the consensus
history, in effect providing memory for past decisions.
Acceptors communicate solely with replicas and record
the proposed client command and the highest Paxos bal-
lot number they have seen for each slot. Consequently,
replicas can use the acceptors to determine past history
of proposals for each slot number, and to recover and
resume past proposals in cases where they were only
partially completed. At any time, a replica can retrieve
the history of operations from acceptors to synchronize
with other replicas. In the presence of special conditions
like dynamic view changes, garbage collection, and non-
deterministic inputs, the behaviors of replicas and accep-
tors are managed through additional mechanisms imple-
mented upon the underlying RSM.

3.2 Meta commands

OpenReplica implements an internal control mechanism
based onmeta commands for managing replicas. Meta
commands are special commands recognized by Open-
Replica replicas that pertain to the configuration state of
the replicated state machine as opposed to the state of
the user-defined object. Meta commands are generated
within OpenReplica and guaranteed to be executed at the
same logical time and under the same configuration in
every replica. This timing guarantee is required as the
underlying protocol typically has many outstanding re-
quests being handled simultaneously, and a change in the
configuration would affect later operations that are being
decided. For instance, a change in the set of Paxos accep-
tors would impact all ongoing consensus instances for all
outstanding slots, and therefore needs to be performed in
synchrony on all replicas.

To guarantee consistency through configuration
changes, OpenReplica employs awindow to define the
number of non-executed operations a replica can have at
any given time. To guarantee that meta commands are

executed on the same configuration in every replica, the
execution of a meta command is delayed by a window
after it is assigned to a slot. For example, assume an
OpenReplica setting where the window size isω and the
last operation executed by a replica is at slotα. Here,
no other replica can initiate a consensus round for slots
beyondα+ω. To initiate a consensus round for the next
slot, a replica has to wait until after the execution of slot
α + 1. Therefore, when the command atα + ω is ex-
ecuted, all replicas are guaranteed to have executed all
meta commands throughα. Hence, by delaying the exe-
cution of meta commands byω, consistency of the Paxos
related state can be maintained through a dynamic con-
figuration change [31].

3.3 Dynamic Views

Long-lived servers are expected to survive countless net-
work and node failures. To do so effectively, the sys-
tem has to provide sufficient flexibility to move every
component at runtime. OpenReplica achieves this by
using meta commands to change the replica, acceptor
and name server sets. Over time, an OpenReplica object
may completely change the set of servers in its configu-
ration, though adjacent configuration can modify at most
f nodes because the state transfer mechanism used dur-
ing view changes may temporarily keep new nodes from
fully participating in the protocol. To maintain consensus
history, new acceptors need to acquire past ballot number
and command tuples from a majority of old acceptors for
each past round. New acceptors transfer these ballots in
the background until they have reached the current ballot.
A meta command can then be issued to add the acceptor
to the configuration, though there exists a window during
which the acceptor may fall behind. Newly added accep-
tors ensure that they do not participate in the protocol un-
til they have caught up by having heard from a majority
of old acceptors for each past ballot. The acceptor addi-
tion mechanism suffers from a window of vulnerability
during a configuration change where a newly added node
consumes one of thef failure slots; past work has devel-
oped techniques for masking this window [32], though
we have not yet implemented this technique due to its
complexity. Replicas are easier to bring up, as any fresh
replica will iterate through slot numbers, learn previously
assigned commands by proposing NOOPs for each slot
(whereupon the acceptors will notify the replica of pre-
vious assingments), and transition through states until it
catches up. To speed this process up, the OpenReplica
implementation allows a replica to fetch the command
history from another replica en masse. The previous
mechanism is then used to fill any gaps that could arise
when the source replica is out of date.

Dynamic view changes in our system can be initiated
externally, by a system administrator manually issuing
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Figure 4: Example of failure groups in a data center. Failure groups
define set of nodes, whose failure depend strictly on the failure of one
component. Data center outage definesf0, failures of two top-of-rack
switches definef1,2, failures of two cooling units definef3,4, and each
machine failure definesf10,21. OpenReplica uses the list of failure
groups that a host is in, as an input to the greedy rack-aware replica
placement algorithm.

commands, or internally, by a replica or the OpenReplica
coordinator that detects a failure. In either case, the ini-
tiater typically brings up a nascent node, instructs it to
acquire its state, and then submits a meta command to re-
place the suspected-dead node with the nascent one. To
have the view change take effect quickly, independent of
the rate of operations organically sent to the coordination
object from clients, the initiater invokesω NOOP opera-
tions.

3.4 Rack-Aware Replica Placement

The fault-tolerance of a distributed system is affected
immensely when multiple servers fail simultaneously.
These kinds of failures can happen if servers share cru-
cial components such as power supplies, cooling units,
switches and racks. Common points of failures define
failure groups wherein a single failure would affect mul-
tiple servers. For instance Figure 4 illustrates possible
failure groups in a data center by highlighting node sets
that will be affected by the failure of a power distribu-
tion unit, a top-of-rack switch, a cooling unit and a ma-
chine. To prevent concurrent, non-independent failures,
replica placement should be performed judiciously, min-
imizing the number of servers in the same failure group,
and thus, subject to simultaneous failures due to the same
root cause.

OpenReplica supports replica placement that takes

failure scenarios into account, a feature that is sometimes
called rack-awareness. During object instantiation, a
user specifies the candidate set of hosts on which she
can deploy replicas, along with a specification of their
failure groups. Shown in Figure 4, a failure group spec-
ification is a free-form tuple that associates, with each
server, the set of events that could lead to its failure. For
instance, hosth7 shares common failure pointsf0 and
f3 with h1. OpenReplica places no limit on the num-
ber of failure groups, and is agnostic about the semantic
meaning of eachfi. In this example,f0 corresponds to
a failure of a PDU that affects both racks shown in the
figure, whilef3 corresponds to a cooling unit failure.

OpenReplica picks replicas using a greedy approach
that achieves high fault tolerance. In particular, when
picking a new host for a replica, acceptor or name server,
it picks the host that maximizes the number of differ-
ences from the piecewise union of all existing hosts’
failure groups. This greedy approach will not neces-
sarily yield the minimally-sized replica group for tol-
erating a given level of failure, an open problem that
has been tackled, in part, by other work [21]. Since
OpenReplica deployments are not extensive and since
there exists a fundamental trade-off between optimal-
ity and query time which avoids exhaustive search [39],
our greedy approach performs an assignment within 3s
for a data center with 80,000 hosts, and we later show
that the greedy approach achieves fault-tolerance that ex-
ceeds that of random placement. of hosts.

3.5 DNS Integration

In an environment where the set of nodes implementing
a fault-tolerant object can change at any time, locating
the replica set can be a challenge. To help direct clients
to the most up-to-date set of replicas, OpenReplica im-
plements special nodes calledname server nodes. Name
server nodes are involved in the underlying Paxos pro-
tocol just like replicas, but they maintain no live object
and perform no object operations. They solely track meta
commands to update the set of live nodes and receive and
handle DNS queries.

To support integration with DNS, coordination in-
stances can be assigned a DNS domain, such as
bank.openr.org , at initialization. On boot, the name
server nodes register their IP address and assigned do-
main with the DNS name servers for their parent do-
main. Thereafter, the parent domain designates them as
authoritative name servers for their subdomain and di-
rects queries accordingly.

Name server nodes also support integration with Ama-
zon Route 53 [3] to enable users to run stand-alone co-
ordination instances without requiring the assistance of
a parent domain. To run OpenReplica integrated with
Amazon Route 53, the users set up a Route 53 account
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that is ready to receive requests and supply the related
credentials to OpenReplica. From this point on, the name
server nodes track meta commands that affect the view
of the system and update the Route 53 account automat-
ically.

DNS integration enables client to initialize their con-
nection to an RSM through a DNS lookup. After the con-
nection is initialized, following method invocations are
submitted using the same connection as long as it does
not fail. When the connection fails, the client proxy per-
forms a new DNS lookup and initializes a new connec-
tion transparently. This way the view changes that might
require new connections to be established are masked by
the client proxy. Short timeouts on DNS responses en-
sure that clients do not cache stale DNS results.

3.6 Proxy Generation

OpenReplica clients interact with a coordination object
through a client proxy or the web interface provided.
Both of these methods use the client proxy, which is au-
tomatically generated by OpenReplica through Python
reflection and binary rewriting. OpenReplica parses the
coordination object, creates the corresponding abstract
syntax tree and, following the original structure of the
tree, generates a specialized proxy that performs appro-
priate argument marshalling and unmarshalling as well
as execution blocking and unblocking, where needed.
OpenReplica also attaches a security token to every
proxy to disable unauthorized method invocations on the
replicated object, which is generated with the same to-
ken.

Clients can use a client proxy with very little modifica-
tion compared to the invocation of a local object. Due to
the replicated nature of the coordination object, the client
proxy might throw additional OpenReplica exceptions.
The client has to surround such method invocations with
an exception handler to catch and address these excep-
tions, which relate to network errors such as partitioned
network.

3.7 Non-deterministic Operations and Side-Effects

During remote method invocations, non-deterministic
operations might result in different states on each replica.
OpenReplica deals with non-deterministic operations by
performing a Paxos agreement on function calls that
might result in different states on different replicas. To
enable this kind of behavior, the operations with non-
deterministic behaviors are detected with a blacklist and,
if one of these operations is performed during a method
invocation, a new meta command, including the resulting
state after the non-deterministic operation, is started by
the replica. When this meta command is executed, the in-
structions following the non-deterministic operation are
executed using the state retrieved from the meta com-
mand. This ensures that all replicas observe the same

non-deterministic choices.
In our current prototype, we identified method invo-

cations in time, random and socket modules to result in
non-deterministic results along with dictionary and set
operations. In the Python runtime, dictionaries are im-
plemented as hash tables and sets are implemented as
open-addressing hash tables, consequently, inserting and
removing items can change their order. OpenReplica de-
termines method invocations that make use of these com-
ponents and simply sorts them to establish a canonical
order. Applications wishing to avoid the sort overhead
can use their own deterministic data structures.

3.8 Inconsistent Invocations

By default, every method invocation in OpenReplica pro-
vides strong consistency. Its slot location in the execu-
tion history is the result of an agreement protocol, and
its execution is determined by the globally-agreed slot
assignment. Because no replica executes a command un-
less it has seen the entire prefix of commands, the results
are guaranteed to be consistent.

But there are certain application-specific instances
where this level of consistency is not necessary. When
an application needs high performance and can handle
inconsistent results, it is possible to provide a best-effort
response with drastically lower overhead. For exam-
ple, a bank account normally requires fully consistent
updates, but a user profiler that wants to determine the
user’s approximate net worth need not go through the
full expense of an RSM transaction. To support these
cases, OpenReplica provides a low-overhead call for in-
consistent method invocation. Such inconsistent calls are
performed on any one of the replicas, and it is up to
the application programmer to ensure that they execute
with no side-effects, as they may be executed at different
times on different replicas. OpenReplica does not invoke
agreement for such calls, does not record them in object
history, and load-balances them uniformly across the set
of replicas for performance. As with the consistency re-
laxation in ZooKeeper, inconsistent invocations in Open-
Replica have the potential to provide a significant boost
in performance.

3.9 Garbage Collection

Any long-running system based on agreement on a
shared history will need to occasionally prune its his-
tory in order to avoid running out of memory. In par-
ticular, acceptor nodes in OpenReplica keep a record of
completely- and partially-decided commands that needs
to be compacted periodically. The key to this compaction
is the observation that a prefix of history that has been
seen by all acceptors and executed by all replicas can
be elided safely and replaced with a snapshot of the ob-
ject. OpenReplica accomplishes this in two main steps.
First, a replica takes a snapshot of the coordination ob-
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Object Total Size OpenReplica
Code

Reliable Data Structures
Queue 12 0
Stack 11 0
Linked List 36 0
Red Black Tree 149 0
Binary Search Tree 61 0
Reliable Synchronization Primitives
Lock 33 4
Recursive Lock 38 4
Semaphore 29 4
Bounded Semaphore 31 4
Condition Variable 40 2
Barrier 22 2
Reliable Coordination Objects
Job Manager 50 4
Membership Service 111 4
Shared Log 14 0
Data Storage on Disk 27 0

Table 1: Coordination Object Sizes in LoC. The implementations for
reliable versions of data structures, synchronization primitives and cus-
tom coordination objects follow exactly from their local, centralized
versions, except for the special Blocking and Unblocking Returns re-
quired for synchronization primitives.

ject everyτ commands, and issues a meta command to
garbage collect the state up to this snapshot. This con-
sensus round on a meta command serves three purposes;
namely, the garbage collection command is stored in the
acceptor nodes; the acceptors detect the meta command
and acquiesce only if they themselves have all the bal-
lots for all preceding slot numbers; and finally, the meta
command ensures that at the time of execution for the
meta command, all the replicas will have the same state.
Later, when the meta command is executed, a garbage
collection command is sent to acceptor nodes along with
the snapshot of the object at that point in time. Upon re-
ceiving this message, the acceptors can safely replace a
slot with the snapshot of the object and delete old bal-
lot information. This way, during a failover, new leader
will be able to simply resurrect the object state afternτ
operations, instead of having to apply as many state tran-
sitions.

4 Evaluation

We have performed a detailed evaluation of Open-
Replica’s performance and compared it to widely used
and state-of-the-art coordination service ZooKeeper. In
this section we present the size of coordination objects
used to implement reliable data structures, synchroniza-
tion primitives and specialized constructs, results of sev-
eral microbenchmarks which examine the latency, the re-
covery time from failures, the throughput and the scala-
bility of OpenReplica, and the performance of the greedy
rack-aware placement algorithm used by OpenReplica.

Our experiments reflect end-to-end measurements
from clients and include the full overhead of going over
the network. As a result, the latency numbers we present
are not comparable to numbers presented in most past
work, which has tended to report performance metrics
collected on the same host. The inputs to clients are gen-
erated beforehand and same inputs are used for Open-
Replica and ZooKeeper tests.

Our evaluation is performed on a cluster of eleven
servers. Each server has two Intel Xeon E5420 proces-
sors with 4 cores and a clock speed 2.5GHz and 16GB

RAM and a500 GB SATA 3.0 Gbit/s hard disk operat-
ing at 7200 RPM. All servers are running 64-bit Fedora
10 with the Linux 2.6.27 kernel. We spread clients, repli-
cas and acceptors on these 11 servers.

4.1 Implementation Size

The OpenReplica approach results in a great simplifica-
tion in the implementation of reliable and fault-tolerant
coordination objects, including reliable data structures
and synchronization primitives. To illustrate, Table 1
presents the sizes of some reliable data structures, syn-
chronization primitives and generalized coordination ob-
jects implemented to work with OpenReplica. While im-
plementing these coordination objects, no OpenReplica-
specific code has been used except for the Blocking and
Unblocking Return exceptions required to implement the
multi-return mechanism of synchronization primitives.
Consequently, implementing a reliable and fault-tolerant
data structure, synchronization primitive or coordination
object suitable to be used in a distributed system is re-
duced to implementing a centralized, local version of it.
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Figure 5: Latency as a function of the number of replicas and accep-
tors.

4.2 Latency

Next, we examine the latency of consistent requests in
OpenReplica and in ZooKeeper. For this experiment, we
used a synchronous client that invokes methods from the
Account object of Section 2, and collected end-to-end
latency measurements from the clients. To be able to
examine the latency related to the underlying protocol,
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Figure 6: Latency as a function of the number of replicas and accep-
tors.
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Figure 7: Latency as a function of the size of the replicated state.

we used only 128 bytes of replicated state, keeping the
serialization and deserialization cost to a minimum for
ZooKeeper.

Figure 5 plots the latency of requests against the num-
ber of replicas and acceptors in OpenReplica and number
of replicas in ZooKeeper. OpenReplica and ZooKeeper
present comparable latency results. OpenReplica shows
lower latency for lower number of replicas and differs
from ZooKeeper performance by 0.5ms on average for
larger number of replicas. Another behavior we exam-
ine in this graph is the high standard deviation present in
ZooKeeper measurements. While OpenReplica requests
are handled with the same average latency, there is a big
variance in latency measurements for ZooKeeper.

The CDF for OpenReplica and ZooKeeper latency
shows this variance in more detail (Figure 6). For clarity,
the plots are cutoff at the maximum latency value they
present. The CDF of OpenReplica shows that there is
an even distribution of latency values shown by Open-
Replica varying from values less than 1 ms to 8 ms.
ZooKeeper, on the other hand, has a number of requests
whose latency exceeds 10 ms, even though these mea-
surements were done when the services were in a stable
state with no failures.
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Figure 9: The throughput performance of OpenReplica with 5 replicas
and 5 acceptors, for inconsistent reads, against the number of clients.

4.3 Scalability

We examine the scalability of OpenReplica in relation to
size of the replicated state and the number of replicas and
acceptors. Figure 7 shows how ZooKeeper and Open-
Replica scale as the size of the replicated state grows.
As ZooKeeper has to serialize and deserialize data and
perform read and write operations with an update on
the replicated size, the overhead of these operations in-
creases as the replicated state grows larger. OpenReplica
on the other hand, does not require serialization, deserial-
ization or reinstantiation as every object is kept as a live
instance. Consequently, the size of the replicated state
does not effect the latency experienced by the clients in
OpenReplica, providing the same performance for any
replicated state size.

A critical parameter in any fault-tolerant system is the
amount of fault-tolerance the system offers. Figure 8
shows how OpenReplica scales as the number of replicas
and acceptors increase, when the fault-tolerance of the
system is improved considerably. The graph shows that
OpenReplica performance scales well, even with very
large numbers of replicas and acceptors.

10



 0.001

 0.01

 0.1

 1

 10

 0  100  200  300  400  500  600  700  800  900  1000

La
te

nc
y 

(s
ec

)

Request Number

OpenR

 0.001

 0.01

 0.1

 1

 10

 0  100  200  300  400  500  600  700  800  900  1000

La
te

nc
y 

(s
ec

)

Request Number

ZooKeeper

Figure 10: Latency in the presence of leader failures at operation 250
and 500.

4.4 Throughput

OpenReplica achieves a sustained throughput of 327 op-
s/s with 5 replicas and 5 acceptors; this measure-
ment includes all network overhead. For compari-
son, ZooKeeper achieves 1872 ops/s in the same set-
ting. The difference is due to an unoptimized Open-
Replica implementation in Python, and a highly opti-
mized ZooKeeper implementation that employs batch-
ing to improve throughput. This is consistent with the
latency measurements for the two systems, where Open-
Replica outperforms ZooKeeper because the batching
optimizations are not effective for the latency experi-
ment.

OpenReplica implements a fast-read operation that
provides high throughput, but inconsistent, method in-
vocations. Fast-read operations do not require agree-
ment, are handled by any replica in the system and are
not saved in the command history. ZooKeeper provides
a similar read relaxation primitive. Figure 9 examines
the throughput of OpenReplica with inconsistent method
invocations with 5 replicas. The experiment shows that
the throughput scales with increasing numbers of clients.
This is not surprising, as inconsistent reads enable Open-
Replica to avoid agreement overhead entirely and dis-
tribute the request stream among all the replicas.

4.5 Fault Tolerance

Another important performance measure for a fault-
tolerant system is how fast the system can recover from
the failure of a server, specifically from the failure of
the leader. Figure 10 shows how OpenReplica and
ZooKeeper handle failures of leaders. In this bench-
mark, two leaders fail at the 250th and 500th requests,
respectively. OpenReplica takes on average 2.75 sec-
onds to recover whereas ZooKeeper takes on average
2 seconds. The recovery performance of OpenReplica
depends heavily on the state to be transferred from the
acceptors, as a new leader needs to collect all past
state from acceptors, constituting the dominant cost of a

failover. This overhead, in turn, is determined by the fre-
quency of garbage collection performed in the system; it
does not increase with longer amounts of time the system
is kept alive.
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Figure 11: Rack-aware replica placement reduces number of catas-
trophic failures significantly.

4.6 Rack-Aware Placement

OpenReplica can recover from replica failures if more
thanf replicas, out of2f+1, do not fail concurrently. To
prevent these type ofcatastrophic failures, OpenReplica
supports placing replica, acceptor and name server nodes
in a rack-aware manner. Figure 11 compares the perfor-
mance of OpenReplica’s greedy replica placement strat-
egy to that of random placement. It plots the number of
catastrophic failures expected within a year for a system
with 5 replicas instatiated on groups of 20-hosts suballo-
cated within a data center with the failure groups shown
in Figure 4. This suballocation strategy captures a real-
istic scenario that a developer at a large company might
face when reserving dedicated nodes within a data cen-
ter, where groups of nodes within a rack are allocated to a
project from the larger data center. The probabilities for
component failures were extracted from empirical stud-
ies [13, 14]. The figure shows that in this setting, greedy
placement achieves significant advantages compared to
random placement.

5 Related Work

OpenReplica is implemented to provide infrastructure
services for distributed systems using the replicated state
machine approach [26]. Originally described for fault-
free environments, this approach was extended to han-
dle fail-stop failures [42], a class of failures between
fail-stop and Byzantine [25], and full Byzantine fail-
ures [27]. The seminal tutorial on the state machine
approach outlined various implementation strategies for
achieving agreement and order requirements [43].

There has been much work examining strategies for
achieving the agreement and order requirements in a
replicated state machine. In particular, the Paxos Synod
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protocol achieves consensus among replicas in an envi-
ronment with crash failures [28, 29]. Subsequent work
has concentrated on making the basic Paxos algorithm
more efficient and dynamic [31, 30], two techniques em-
ployed by OpenReplica. Other work has concentrated
on the practical aspects of implementing the basic algo-
rithm [11, 7, 23, 2, 33]. There has also been some work
on designing high performance protocols derived from
Paxos [36].

Paxos replicated state machines have been used pre-
viously to provide the underlying infrastructure for
systems such as consistent, replicated, migratable file
systems. SMART [32] achieves high performance
through parallelization, supports dynamic membership
changes and migration without a window of vulnerabil-
ity. SMARTER [10] constructs a reliable storage sys-
tem using Paxos RSMs that are strongly crafted to mask
the latencies related to the RSM infrastructure and al-
lows restarts of the system by logging requests. Open-
Replica is built to provide a service that enables users
to implement such systems easily. While, many sys-
tems use Paxos in a monolithic fashion to support a fixed
API, OpenReplica is the first system to provide an open,
general-purpose object replication service.

Another approach to achieving consistency in a dis-
tributed system relies on an atomic broadcast prim-
itive [12]. ZooKeeper follows this approach and
implements universal wait-free synchronization primi-
tives [16], which can be used for leader-based atomic
broadcast [37, 22]. There have also been similar work
on protocols [47, 40] presenting optimistic and collision-
fast atomic broadcast protocols, respectively.

Coordination of distributed applications is a long-
standing problem and there has been a lot of work fo-
cusing on how to provide coordination services for dis-
tributed systems and data center environments. Early
work examined how to use locks as the basis of coordi-
nation among distributed components [24, 18, 34]. More
recently, Boxwood [34], designed especially for stor-
age applications, provides reliable data structure abstrac-
tions supported directly by the storage infrastructure. Al-
though Boxwood offers a rich set of data structures, its
API is not extensible, making it a closed system.

Automatic data center management services have re-
cently emerged to ease the task of managing large-scale
distributed systems [15, 20, 1]. Autopilot [20] is a Paxos
RSM that handles tasks, such as provisioning, deploy-
ment, monitoring and repair, automatically without op-
erator intervention. Similarly, Centrifuge [1] is a lease
manager, built on top of a Paxos RSM, that can be
used to configure and partition requests among servers.
Much like these infrastructure services, OpenReplica is
designed to offer a manageable coordination infrastruc-
ture that allows programmers to offload complicated con-

figuration and coordination services to an automatically
maintained, fault-tolerant and available service.

Past work on toolkits for replication services exam-
ined how to build infrastructure services. PRACTI [5]
approach offers partial replication of state on different
nodes, arbitrary consistency guarantees on the replicated
data and arbitrary messaging between replicas. Ursa [6]
offers safety and liveness policies that provide different
consistency levels for a replicated system, and provides
mechanisms that define abstractions for storage, commu-
nication, and consistency. This enables Ursa to be used
as infrastructure for higher-level replication systems. In
contrast to such low-level services for the construction of
replication systems, OpenReplica provides a higher ab-
straction that directly replicates user objects.

Past work has examined how to employ an
object-oriented distributed programming (OODP)
paradigm. Common Object Request Broker Architecture
(CORBA) [44] provides an open standard for OODP,
providing a mechanism to normalize method invocations
among different platforms. There has been much work
on building mechanisms for distributed systems using
CORBA [19, 41] and extending CORBA to provide
additional guarantees such as fault-tolerance [35]. A
similar approach was used to build distributed objects
that remain available and offer guarantees on the
completion of operations in the presence of up tok fail-
ures [9]. This work was later used to provide a platform
independent framework for fault-tolerance [46]. While
OpenReplica shares the same object-oriented spirit as
these early efforts, it differs fundamentally in every
aspect of its implementation.

6 Conclusions

This paper presented OpenReplica, an object-oriented
coordination service for large-scale distributed systems.
OpenReplica proposes a novel approach to providing
replication and synchronization in large-scale distributed
systems. This approach is based around the abstraction
of a coordination object; namely, an object that defines
a replicated state machine that can block and resume the
execution of its clients. Coordination objects not only
support ordinary replication, but also enable complex
distributed synchronization constructs and reliable data
structures. Critically, OpenReplica renders the specifi-
cation of such constructs straightforward and similar to
their non-distributed counterparts.

In contrast with the file-base APIs of extant coordina-
tion services, OpenReplica object-based API represents
a novel approach to replica management. Whereas previ-
ous systems provide low-level mechanisms that could be
used in a large number of ways to implement replicated
state machines, OpenReplica provides a high-level ap-
proach. These state machines are specified using regular
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Python objects. OpenReplica maintains a live instance of
these coordination objects on every replica node and uses
Paxos to guarantee strong consistency in the presence of
crash failures. Moreover, OpenReplica implements ad-
ditional mechanisms to guarantee the soundness of the
replicated state in the presence of non-deterministic in-
vocations and side effects. Evaluations show that Open-
Replica provides performance, in terms of latency, scal-
ability and failover, that is comparable to ZooKeeper,
while providing additional features as well as a higher
level of abstraction.
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