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Introduction

A “Cloud Computing” revolution is underway, supported by massive data centers that often contain
thousands (if not hundreds of thousands) of servers. In such systems, scalability is the mantra and
this, in turn, compels application developers to replicate various forms of information. By replicating
the data needed to handle client requests, many services can be spread over a cluster to exploit
parallelism. Servers also use replication to implement high availability and fault-tolerance
mechanisms, ensure low latency, implement caching, and provide distributed management and
control. On the other hand, replication is hard to implement, hence developers typically turn to
standard replication solutions, packaged as sharable libraries.

Virtual synchrony, the technology on which this article will focus, was created by the author and his
colleagues in the early 1980’s to support these sorts of applications, and was the first widely adopted
solution in the area. Viewed purely as a model, virtual synchrony defines rules for replicating data or
a service that will behave in a manner indistinguishable from the behavior of some non-replicated
reference system running on a single non-faulty node. The model is defined in the standard
asynchronous network model for crash failures. This turns out to be ideal for the uses listed above.

The Isis Toolkit, which implemented virtual synchrony and was released to the public in 1987,
quickly became popular. In part this was because the virtual synchrony model made it easy for
developers to use replication in their applications, and in part it reflected the surprisingly good
performance of the Isis protocols. For example, Isis could do replicated virtually synchronous
updates at almost the same speed as one could send raw, unreliable, UDP multicast messages: a level
of performance many would have assumed to be out of reach for systems providing strong
guarantees. At its peak Isis was used in all sorts of critical settings (we’ll talk about a few later). The
virtual synchrony model was ultimately adopted by at least a dozen other systems and standardized
as part of the CORBA fault-tolerance architecture.

Before delving into the history of the area and the implementation details and tradeoffs that arise, it
may be useful to summarize the key features of the approach. Figures 1 and 2 illustrate the model
using time-space diagrams. Let’s focus initially on Figure 1, which shows a nearly synchronous
execution; we’ll talk about Figure 2 in a moment. First, notation. Time advances from left to right,
and we see timelines for processes p, g, r, s and t: active applications hosted in a network (some
might run on the same machine, but probably each is on a machine by itself). Notice the shaded oval:
the virtual synchrony model is focused on the creation, management and use of process groups. In
the figures, process p creates a process group, which is subsequently joined by process g, and then by
r,s and t. Eventually p and q are suspected of having crashed, and at time 60 the group adjusts itself
to drop them. Multicasts are denoted by arrows from process to process: for example, at time 32,
process q sends a multicast to the group, which is delivered to p, r, s and t: the current members
during that period of the execution.
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Figure 1: Synchronous run. Figure 2: Virtually synchronous run.




Process groups are a powerful tool for the developer. They can have names, much like files, and this
allows them to be treated like topics in a publish-subscribe system. Indeed, the Isis “news” service
was the first widely used publish-subscribe solution [8]. One thinks of a process group as a kind of
object (abstract data type), and the processes that join the group as importing a replica of that object.

Virtual synchrony standardizes the handling of group membership: the system tracks group
members, and informs members each time the membership changes, an event called a view change.
In Figure 1, new group views are reported at time 0, 20, 30 and 60. All members are guaranteed to
see the same view contents, which includes the ranking of members, the event that triggered the new
view, and an indication of whether the view is a “primary” one, in a sense we’ll define just below.
Moreover, virtually synchronous groups can’t suffer “split brain” problems. We’ll say more about
this topic later, but the guarantee is as follows: even if p and g didn’t actually fail at time 60, but
simply lost connectivity to the network, we can be sure that they don’t have some divergent opinion
about group membership.

When a new member joins a group, it will often need to learn the current state of the group - the
current values of data replicated within it. This is supported through a state transfer: when installing
a new view that adds one or more members to a group, the platform an upcall in some existing
member (say, q) to request a state checkpoint for the group. This checkpoint is then sent to the
joining member or members, which initialize their group replica from it. Notice that state transfer
can be thought of as an instantaneous event: even if a multicast is initiated concurrently with a
membership change, a platform implementing virtual synchrony must serialize the events so that the
membership change seems atomic and the multicast occurs in a well-defined view.

The next important property of the model concerns support for group multicast. Subject to
permissions, any process can multicast to any group, without knowing its current membership
(indeed, without even being a member). Multicast events are ordered with respect to one-another
and also with respect to group view events, and this ensures that a multicast will be delivered to the
“correct” set of receivers. Every process sees the same events in the same order, and hence can
maintain a consistent perspective on the data managed by the group.

Now, consider Figure 2. We referred to the run shown in Figure 1 as nearly synchronous: basically,
one event happens at a time. Virtual synchrony (Figure 2) guarantees an execution that looks
synchronous to users, but event orderings sometimes deviate from synchrony in situations where
the processes in the system won'’t notice. These departures from synchrony are in situations where
two or more events commute. For example, perhaps the platform has a way to know that delivering
event a followed by b leaves g in the same state as if b was delivered first, and a subsequently. In
such situations the implementation might take advantage of the extra freedom (the relaxed ordering)
to gain higher performance.

We mentioned that protocols implementing virtual synchrony can achieve high update and group
membership event rates - at the time this chapter was written, in 2009, one could certainly
implement virtual synchrony protocols that could reach hundreds of thousands of events per second
in individual groups, using standard commodity hardware typical of cloud computing
platforms!. We'll say more about performance and scale later, but it should be obvious that these
rates can support some very demanding uses.

In summary: virtual synchrony is a distributed execution model that guarantees a very strong notion
of consistency. Applications can create and join groups (potentially, large numbers of them),
associate information with groups (the state transferred during a join), send multicasts to groups
(without knowing the current membership), and will see the same events in equivalent orders,

! The highest event rates are reached when events are very small and sent asynchronously (without waiting
for recipients to reply). In such cases an implementation can pack many events into each message it sends.
Peak performance also requires network support for UDP multicast, or an efficient overlay multicast.



permitting group members to update the group state in a consistent, fault-tolerant manner.
Moreover, although we've described the virtual synchrony model in pictures, it can also be expressed
as a set of temporal logic equations. For our purposes in this chapter?, we won’t need that sort of
formalism, but readers can find temporal logic specifications of the model in [71][23].

Distributed consistency: Who needs it?

Virtual synchrony guarantees a very powerful form of distributed, fault-tolerant consistency. With a
model such as this, applications can replicate objects (individual variables, large collections of data
items, or even files or databases), track their evolving state and cooperate to perform such actions as
searching in parallel for items within the collection. The model can also easily support
synchronization by locking, and can even provide distributed versions of counting semaphores,
monitor-like behavior, etc. But not every replicated service requires the sorts of strong guarantees
that will be our focus here, and virtual synchrony isn’t the only the only way to provide them.

Microsoft’s scalable cluster service uses a virtual synchrony service at its core [50], as does IBM’s
DCS system, which provides fault-tolerant management and communication technology for
WebSphere and server farms [27][28]. Yahoo's Zookeeper service [62] adopts a closely related
approach. Google’s datacenters are structured around the Google File System which, at its core,
depends on a replicated “chunk master” service (it uses a simple primary/backup scheme), and a
locking service called Chubby [17][19]. The Chubby protocols were derived from Lamport’s Paxos
algorithm [46]. Most Google applications depend on Chubby in some way: some share a Chubby
service, others instantiate their very own separate Chubby service and use it privately, while others
depend on services like Big Table or MapReduce, and thus (indirectly) on Chubby. But not all roads
lead to state machines. HP’s Sinfonia service implements a distributed shared memory abstraction
with transactional consistency guarantees [1].

The need for consistent replication also arises in settings outside of data centers that support cloud
computing. Edge Computing may be the next really big thing: this involves peer-to-peer technologies
that allow applications such as the widely popular Second Life game to run directly between client
systems, with data generated on client machines or captured from sensors transmitted directly to
applications that consume or render it [58]. Although highly decentralized, when edge computing
systems need consistency guarantees, they require exactly the same sorts of mechanisms as in the
datacenter services mentioned above. On the other hand, many peer-to-peer applications manage
quite well without the forms of consistency of interest here: Napster, Gnutella, PPLive and
BitTorrent all employ stochastic protocols.

Goals in this chapter

Whether one’s interest is focused on the cloud, looks beyond it to the edge, or is purely historical, it
makes sense to ask some basic questions. What sorts of mechanisms, fundamentally, are needed, and
when? How were these problems first identified and solved? What role does the classic consensus
problem play? What are the arguments for and against specific protocol suites, such as virtual
synchrony or Paxos? How do those protocol families relate to one-another?

This article won’t attempt to answer all of those questions; to do so would require a much longer
exposition than is feasible here, and would also overlap other articles in this collection. As the reader
will already have gathered, we'll limit ourselves to virtual synchrony, and even within this scope, will
restrict our treatment. We'll try to shed light on some of the questions just mentioned, and to record
a little snapshot of the timeline in this part of the field. For reasons of brevity, we won'’t get overly
detailed, and have opted for a narrative style rather light on theoretical formalism. Moreover,
although there were some heated arguments along the way, we won’t spend much time on them

2 We should note that [70] is a broad collection of Isis-related papers and hence probably the best reference
for readers interested in more detail. A more recent text [15] covers the material reviewed in this chapter in
a more structured way, aimed at advanced undergraduates or graduate students.



here. As the old saying goes, academic arguments are especially passionate because the underlying
issues are so unimportant!

Historical context
Virtual synchrony arose in a context shaped by prior research on distributed computing, some of
which was especially influential to the model, or to the Isis Toolkit architecture:

1. Leslie Lamport’s seminal papers had introduced theoretical tools for dealing with time in
distributed systems - and in the process, suggested what came to be known as the “replicated
state machine” approach to fault-tolerance, in which a deterministic event-driven application is
replicated, and an atomic broadcast primitive used to drive its execution. Especially relevant
were his 1978 paper, which was mostly about tracking causality with logical clocks but
introduced state machine replication in an example [43], and his 1984 paper, which explored
the approach in greater detail [44]. Fred Schneider expanded on Lamport’s results, showing
that state machine replication could be generalized to solve other problems [68].

2. The Fischer, Lynch and Patterson result proved the impossibility of asynchronous fault-tolerant
consensus [33]. One implication is that no real-world system can implement a state machine
that would be guaranteed to make progress; another is that no real system can implement an
accurate failure detector. Today, we know that most forms of “consistency” for replicated data
involve solving either the consensus problem as originally posed in the FLP paper, or related
problems for which the impossibility result also holds [18][23].

3. On the more practical side of the fence, Cheriton, Deering and Zwaenepoel proposed network-
level group communication primitives, arguing that whatever the end-to-end abstraction used
by applications, some sort of least-common denominator would be needed in the Internet itself
(this evolved into IP multicast, which in turn supports UDP multicast, much as IP supports UDP).
Zwaenepoel’s work was especially relevant; in [22] he introduced an operating-system
construct called a “process group”, and suggested that groups could support data replication,
although without addressing the issue of replication models or fault-tolerance.

4. Database transactions and the associated theory of transactional serializability were hot topics.
This community was the first to suggest that replication platforms might offer strong
consistency models, and to struggle with fundamental limits. They had their own version of the
FLP result: on the one hand, the fault-tolerant “available copies” replication algorithm, in which
applications updated replicas using simple timeout mechanisms for fault-tolerance, was shown
to result in non-serializable executions. On the other, while quorum mechanisms were known
to achieve 1-copy serializability [4], they required two-phase commit (2PC) protocols that could
block if a failure occurred. Skeen proposed a three-phase commit (3PC) [69]: with a perfect
failure detector, it was non-blocking. (The value of 3PC will become clear later, when we talk
about group membership services.)

5. Systems such as Argus and, later, Clouds were proposed [47][54]. The basic premise of this
work was that the transactional model could bring a powerful form of fault-tolerance to the
world of object-oriented programming languages and systems. A criticism of the approach was
that it could be slow: the methodology brings a number of overheads, including locking and the
need to run 2PC (or 3PC) at the end of each transaction.

All of this work influenced the virtual synchrony model, but the state machine model [43] [44] [68]
was especially important. These papers argued that one should think of distributed systems in
terms of event orderings and that doing so would help the developer arrive at useful abstractions for
fault-tolerance and replication. The idea made sense to us, and we set out to show that it could have
practical value in real systems.

To appreciate the sense of this last remark, it is important to realize that in 1983, state machine
replication meant something different than it does today. Today, as many readers are probably
aware, the term is used in almost any setting where a system delivers events in the same order to
identical components, and they process them deterministically, remaining in consistent states. In
1983, however, the state machine model was really offered as an illustration of how a Byzantine



atomic broadcast primitive could be used in real applications. It came with all sorts of assumptions:
the applications using state machine replication were required to be deterministic (ruling out things
like threads and exploitation of multicore parallelism), and the network was assumed to be
synchronous (with bounded message delays, perfectly synchronized clocks, and a way to use timeout
to sense failures). Thus, state machine replication was really a conceptual tool of theoretical, but not
practical, value at the time the virtual synchrony work began. This didn’t change until drafts of the
first Paxos paper began to circulate in 1990 [46], and then Paxos was used as a component of the
Frangiapani file server in 1997.

In our early work on virtual synchrony, we wanted to adapt the state machine concept of “ordered
events” to practical settings. Partly, this involved reformulating the state machine ideas in a more
object oriented manner, and under assumptions typical of real systems. But there was also the issue
of the Byzantine atomic broadcast protocol: a very slow protocol, at least as the community
understood such protocols at the time (faster versions are common today). Our thinking led us to
ask what other sorts of fault-tolerant multicast protocols might be options.

This line of reasoning ultimately took us so far from the state machine model that we gave our model
its own name. In particular, virtual synchrony weakened the determinism assumptions, targeted
asynchronous networks, added process groups with completely dynamic membership, and
addressed network partitioning faults. All were innovations at that time. By treating process groups
as replicated objects, we separated the thing being replicated (the object) from the applications using
it (which didn’t need to even be identical: a process group could be shared among an application
coded in C, a second one coded in Ada, and a few others coded in C++). Groups could be used to
replicate a computation, but also to replicate data, or even for purposes such as synchronization.

Today, as readers will see from other chapters in this collection, the distinctions just listed have been
eroded because the two models both evolved over time (and continue to do so). The contemporary
state machine approach uses dynamic process group membership mechanisms very similar to those
used in virtual synchrony. These mechanisms, however, were introduced around 1995, almost a
decade after the first virtual synchrony papers were published. Virtual synchrony evolved too, for
example by adding support for partitionable groups (work done by the Transis group; we’ll say more
about it later). Thus, today, it isn’t easy to identify clear differences between the best replicated state
machine implementations and the most sophisticated virtual synchrony ones: the approaches have
evolved towards one-another over the decades. But in 1983, the virtual synchrony work was a real
departure from anything else on the table.

Resilient Objects in Isis V1.0

We've summarized the background against which our group at Cornell first decided to develop a new
system. Staying with the historical time-line, it makes sense to discuss this first system briefly: it had
some good ideas that lived on, although it also embodied a number of questionable decisions. This
first system was called Isis (but not the Isis “Toolkit”), and was designed to support something we
called resilient objects. The goal was to help developers build really fast, fault-tolerant services.

Adopting what was then a prevailing paradigm, Isis V1.0 was a translator: it took simple object-
oriented applications, expressed in a language similar to that of Argus or Clouds, and then translated
them into programs that could run on multiple machines in a network, and would cooperate to
implement the original object in a fault-tolerant, replicated manner. When an application issued a
request to a resilient object, Isis would intercept the call, then distribute incoming queries in a way
that simultaneously achieved high availability and scalable performance [7] [8]. The name Isis was
suggested by Amr El Abbadi, and refers to an Egyptian resurrection myth in which Isis revived Osiris
after he had been torn apart by his enemy, Seth. Our version of Isis revived resilient objects damaged
by failure.

In retrospect, the initial version of Isis reflected a number of misconceptions on our part.
Fortunately, it wasn’t a complete wash: in building the system, we got one thing right, and it had a



huge impact on the virtual synchrony model. Isis dealt with failure detection in an unusual way, for
the time. In most network applications, failures are detected by timeout at the network layer, and
throw exceptions that are handled “end to end” by higher layer logic. No failure detector can achieve
perfect accuracy, hence situations can arise in which processes p, g, and r are communicating, and p
believes that g has failed - but r might still believe both are healthy. Interestingly, this is almost
exactly the scenario that lies at the core of the problem with the transactional available copies
replication scheme. Moreover, one can provoke such a problem easily. Just disrupt your local area
network. Depending on the value of the TCP_KEEPALIVE parameter, connections will begin to break,
but if the network outage is reasonably short, some connections will survive the outage, purely as a
random function of when the two endpoints happen to have last exchanged messages or
acknowledgements. This illustrates a pervasive issue: timeouts introduce inconsistency. FLP teaches
us that the problem is fundamental.

Transactional systems generally overcome such problems using quorum methods, but Isis adopted a
different approach: it included a separate failure detection service. When an Isis component detected
a timeout, rather than severing the associated connection, it would complain to the failure detection
service (which was itself replicated using a fault-tolerant protocol [12]). This group membership
service (GMS) virtualized the notion of failure, transforming potentially inaccurate failure suspicions
into what the system as a whole treated as bedrock truth. Returning to our example above, p would
report q as faulty, and the service would dutifully echo this back out to every process with a
connection to q. The word of this detection service was authoritative: once it declared a component
faulty, the remainder of our system believed the declaration and severed connections to q. If a
mistake occurred and process q was still alive, ¢ would be forced to rejoin the system much like a
freshly-launched process. In particular, this entails rejoining the process groups to which it
previously belonged, and reinitializing them.

Today, it would be common to say that Isis implemented a failstop model [67]: one in which
processes fail by halting, and where those failures are detectable. In effect, the Isis GMS creates a
virtual network abstraction, translating imprecise timeouts into authoritative failure events, and
then notifying all components of the system so that they can react in a coordinated way. This
simplifies the design of fault-tolerant protocols, although they remain challenging to prove correct.

The reader may be puzzled by one issue raised by this approach. Recall from the introduction that
we need to avoid split-brain behavior, in which a system becomes logically partitioned into two or
more subsystems that each think the other has failed, and each think themselves to be running the
show. We mentioned that the GMS itself was replicated for high availability. How can the GMS itself
avoid split-brain failures?

Isis addressed this by requiring a form of rolling majority consent within the GMS. Membership in
the service was defined as a series of membership epochs - later, we began to use the term “view3.”
To move from view i to view i+1, a majority of the GMS processes in view i were required to explicitly
acknowledge view i+1. The protocol was initiated by the oldest GMS process still operational, and
requires a 2PC as long as the leader is healthy. If any process suspects the current leader of being
faulty, it can trigger a 3PC whereby the next oldest process replaces the apparently faulty one as
leader. Our 1985 SOSP paper focused on the system issues and performance [8]; a technical report
gave the detailed protocols [11], and later those appeared as [12]. In a departure from both the

® Isis was the first to use this term, which was intended as an allusion to “dynamically materialized views”,
a virtualization mechanism common in relational database systems: the user poses a standing query, and as
the database is updated, the result of the query is continuously recomputed. Queries treat the resulting
relation as if it were a real one. At the time, we were thinking of the membership of a group as a sequence
of records: membership updates extend the sequence, and multicast operations read the current membership
and deliver messages to the operational processes within it. In effect, a multicast is delivered to a
“dynamically materialized view of the membership sequence” containing the target processes. The term
was ultimately adopted by many other systems.



Byzantine Agreement work and the Consensus model used in FLP, Isis made no effort to respect any
sort of ground-truth about failures. Instead, it simply tried to detect real crash failures quickly,
without making too many mistakes#.

In adopting this model, Isis broke new ground. Obviously, many systems developed in that period
had some form of failure detection module. However, Isis used its membership module throughout,
and the membership protocol can be recognized as a fault-tolerant agreement (consensus) solution.

Today, this mechanism may seem much less novel. For example, contemporary implementations of
the state machine approach, such as the modern Paxos protocols, have a dynamically tracked notion
of membership (also called a view), and use a leader to change membership. However, as noted
earlier, when Paxos was introduced in 1990, the protocol wasn’t leader-based: it assumed a fixed set
of members, and all of them had perfectly symmetric roles. Leaders were introduced into Paxos
much later, with a number of performance-enhancing optimizations. Thus when Isis introduced the
approach in 1983, it was the first system to use this kind of dynamic membership tracking.

In adopting this approach, we rejected a tenet of the standard Internet TCP protocol: in keeping with
the end-to-end philosophy, TCP (and later, early RPC protocols) used timeouts to detect failures in an
uncoordinated manner. We also departed from the style of quorum-based update used in database
systems, where the underlying set of nodes is fixed in advance (typically as a set of possible
participants, some of which might be unavailable from time to time), and where each update must
run as a 2PC: a first phase in which an attempt is made to reach a write-quorum of participants, and
a second phase in which the participants are told if the first phase succeeded. As we’ll see
momentarily, the cheapest virtually synchronous multicast avoids this 2PC pattern and yet still
ensures that delivery will occur within the primary partition of the system: not the identical
guarantee, but nonetheless, very useful.

With the benefit of hindsight, one can look back and see that the convergence of the field around
uncoordinated end-system based failure detection enshrined a form of inconsistency into the core
layers of almost all systems of that period. This, in turn, drove developers towards quorum-based
protocols, which don’t depend on accurate failure detection - they obtain fault-tolerance guarantees
by reading and writing to quorums of processes, which are large enough to overlap. Yet as we just
saw, such protocols also require a two phase structure, because participants contacted in the first
phase don’t know yet whether a write quorum will actually be achieved. Thus, one can trace a line of
thought that started with the end-to-end philosophy, became standardized in TCP and RPC protocols,
and ultimately compelled most systems to adopt quorum-based replication. Unfortunately, quorum-
based replication is very slow when compared with unreliable UDP multicast, and this gave fault-
tolerance a bad reputation. The Isis protocols, as we’ve already mentioned, turned out to do well in
that same comparison.

We've commented that a GMS greatly simplifies protocol design, but how? The key insight is that in a
failstop setting, protocols benefit from a virtualized environment where processes appear to fail by
halting, and where failures are reported as an event, much like the delivery of a “final message” from
the failed process (in fact, Isis ignored messages from processes reported as faulty, to ensure that if a
failure was transient, confusion couldn’t arise). For example, it became safe to use the available
copies replication scheme, an approach that risks non-serializable executions when timeouts are

* Obviously, this approach isn’t tolerant of malicious behavior: any mistaken failure detection could force
an Isis process to drop out of the system and then rejoin. Our reasoning was pragmatic: Isis was a complex
system and early versions were prone to deadlock and thrashing. We included mechanisms whereby a
process would self-check and terminate itself if evidence of problems arose, but these didn’t always suffice.
By allowing any process to eject any other process suspected as faulty, Isis was able to recover from many
such problems. The obvious worry would be that a faulty process might start to suspect everyone else, but
in practice, this sort of thing was never observed.



used to detect failures. Internally, we were able to use protocols similar in style to Skeen’s 3PC,
which is non-blocking with “accurate” failure detections.

Above, we indicated that this article won'’t say very much about the various academic arguments that
erupted around our work. It is interesting, however, to realize that while Isis drew on ideas from
many research communities, it also had elements that were troubling to just about every research
community of that period. We used a technology reminiscent of state machines, but in a non-
Byzantine setting. We use terminology close to that of the consensus literature, but proposed a
solution in which a healthy process might be treated as faulty and forced to restart, something that a
normal consensus definition wouldn’t allow. Our GMS service violated the end-to-end approach
(network-level services that standardize failure detection are the antithesis of end-to-end design).
Finally, we claimed that our design was intended to maximize performance, and yet we formalized
the model and offered protocols that with (partial) correctness proofs. Not surprisingly, all of this
resulted in a mixed reception.

Beyond Resilient Objects

As it turned out, resilient objects in Isis V1.0 weren’t much of a success even relative to our own
goals. Beyond its departures from the orthodoxies of the period, the system itself had all sorts of
problems. First, resilient objects used a transactional programming language similar to the ones
used by Argus and Clouds. However, whereas those systems can now be understood as forerunners
of today’s transactional distributed computing environments and software transactional memories,
Isis was aimed at what would now call the cloud computing community. To convince users that this
language was useful, we needed to apply it to network services such as load balancers, DNS resolvers,
etc. But most such services are implemented in C or C++, hence our home-brew language seemed
unnatural. Moreover, it turned out to be difficult to adapt the transactional model for such uses.

The hardest problems relate to transactional isolation (the “I” in the ACID model). In a nutshell,
transactional systems demand that uncommitted actions be prevented from interacting. For
example, if an uncommitted transaction does a DNS update, that DNS record must be viewed as
provisional. Until the transaction commits or aborts, other applications either can’t be allowed to
look at it or, if they “optimistically” read the record, the readers become dependent upon the writer.

This may seem straightforward, but creates a conundrum. Locking records in a heavily-used service
such as the DNS isn’t practical. But if such records aren’t locked, long dependency chains arise.
Should an abort occur, it may cascade through the system. Moreover, no matter how one implements
concurrency control, it is hard to achieve high performance unless transactions are very short-lived.
This forces applications to use lots of very short atomic actions, and to employ top-level actions
whenever possible. But such steps “break” the transactional model. There was a great deal of work
on this issue at the time (the Argus team had one approach, but it was just one among many: others
included Recovery Blocks [61] and Sagas [24]). None of these solutions, however, appeared to be
well matched with our target environment.

Faced with these issues, it occurred to us that perhaps the core Isis infrastructure might be more
effective if we unbundled it and offered it as a non-transactional library that could be called directly
from C or C++. Of course, the system had been built to support transactions, and our papers had
stressed transactional consistency models. This led us to think about what it would mean to offer a
“transactional process group” in which we could retain strong consistency and fault-tolerance
properties, but free applications from the problematic consequences of the transactional model.

The key idea was to think of the membership of each group as a kind of shared database that would
be updated when processes joined and left the group, and “read” by multicast protocols, resulting in a
form of transactional serializability at the level of the multicasts used to send updates to replicated
data. This perspective led us to the virtual synchrony model. Stripped down versions of the model
were later proposed, notably “view-atomic multicast” as used by Schiper and Sandoz [65] and “view
synchrony”, proposed by Guerraoui and Schiper in [34] (the Isis literature used the term “virtually



synchronous addressing” for this property). In [3], Babaoglu argued that view synchrony should be
treated as the more fundamental model, and developments have tended to reinforce this perspective.

The Isis Toolkit and the Virtual Synchrony Model

Accordingly, we set out to re-implement the Isis system as a bare-bones infrastructure that would
present a “toolkit” API focused on processes that form groups to replicate data, back one-another up
for fault-tolerance, coordinate and synchronize their actions, and perform parallel operations such as
concurrent search of large databases>. Other tools within the toolkit offered access to the group
membership data structure, delivered event upcalls when membership changed, and supported state
transfer. A “news” service developed by Frank Schmuck provided topic-oriented publish/subscribe.
None of these services was itself transactional, but all gained consistency and fault-tolerance from
the underlying model. Isis even included a conventional transactional subsystem (nobody used it).

Of course, our goal wasn’t just to make our own tools fault-tolerant: we wanted to make the life the
application developer simpler, and for this reason, the virtual synchrony model was as much a “tool”
as the ones just listed: those were library tools, while the model was more of a conceptual tool. As we
saw in the introduction, a virtually synchronous system is one indistinguishable from a synchronous
one. This is true of applications built using virtual synchrony too: the developer starts with a very
synchronous design, and is assisted in developing a highly concurrent, performance-efficient solution
that retains the simplicity and correctness characteristics of the original synchronous version.

The key to this methodology is to find systematic ways that event ordering can be relaxed, leaving
the platform the freedom to delivery some messages in different orders at different group members.
We'll discuss the conditions under which this can happen below, but the essential idea is to allow
weaker delivery orderings when the delivery events commute, so that the states of the members turn
out to be identical despite the different event orderings. One benefit of this approach is to reduce
the risk of a “poison pill” scenario, in which a state-sensitive bug might cause all members of a
traditional state-machine replicated service to crash simultaneously. In virtual synchrony, the
members of a group are in equivalent states, but recall that a group is usually a replicated object: Isis
rarely replicated entire processes. Thus the processes joining a group might actually differ widely:
they could be coded in different languages, may have joined different sets of additional groups, and
their executions could be quite non-deterministic. In contrast the code implementing a typical object
replica might be very small: often, just a few lines of simple logic. All of this makes it much less likely
that a single event will cause many members to crash simultaneously.

Another difference is visible at the “end” of the execution, on the right: two processes become
partitioned from the others, and continue to exchange some messages for a short while before finally
detecting their isolated condition and halting. Although the application developer can ask Isis not to
allow such runs (they use the gbcast primitive to send messages, or invoke flush primitive before
delivering messages), the default allows them to arise for bounded periods of time®. These messages
may never be delivered at all in the other processes, and if they are, may not be delivered in the order
seen by the processes that failed. Assuming the developer doesn’t mind, by allowing these runs, Isis
on average because in practice, we found that stronger guarantees are rarely needed’?, and gains big
speedups, because the weaker protocol is far faster, a topic we'll revisit later.

> The system also included a home-brew threads package, and a standard library for serializing data into
messages and extracting data from them. Cthreads weren’t yet available, and we learned later that quite a
few of the early Isis users were actually looking for a threads package when they downloaded the toolkit!

® The internal timeout mechanisms mentioned earlier ensure that an isolated process would quickly
discover the problem and terminate itself; developers could fine-tune this delay.

" Few lIsis applications maintained on-disk state that couldn’t be discarded after a restart. Think about
messages reporting load within a replicated service. If a node of the service crashes and later restarts, it
isn’t likely to complain that right before it crashed, it saw a message from node x reporting that its load had
surged to 3.0. While Isis did support applications with persistent data, they weren’t very common.



One proves that a system implements virtual synchrony by looking at the runs it can generate. Given
a run, the first step is to erase any invisible events - events that occurred at processes that later
failed, and that didn’t have a subsequent causal path to the processes that survived. Next, where
events are known to commute, we sort them. If we can untangle Figure 2 and end up with Figure 1,
our run was “indistinguishable” from a synchronous run; if all runs that a protocols permits are
indistinguishable from synchronous runs, it is virtually synchronous.

As discussed earlier, network partitioning is avoided by requiring that there can only be one
“primary” partition active in the network. In Figure 2, the majority of the processes are on the side
of the system that remains active. The isolated processes are too few in number to form a primary
partition, and will quickly discover this problem and then shut down (or, in fancier applications, shift
to a “disconnected” mode of operation)8. A special mechanism was used to handle “total” failure, in
which the primary partition is lost. Basically, the last processes to fail are able to restart the group,
resuming execution using whichever state reflects the most updates. Although the problem is
difficult in general settings [70], in a virtual synchrony environment identifying these last failed
processes becomes easy if we simply log each group view.

A Design Feature Motivated by Performance Considerations

The most controversial aspect of virtual synchrony centers on the willingness of the system to
deliver unstable events to applications, despite the risk that a failure might “erase” all evidence that
this occurred. Doing so violates one of the tenants of the Consensus model as articulated by the FLP
paper: the uniform agreement property, which requires that if one process decides v € {0,1}, then
every non-faulty process that decides, decides v. As stated, this implies that even if a process decides
and then crashes immediately, the rest of the system will make the identical decision value. Paxos,
for example, provides this guarantee for message delivery, as does the uniform reliable multicast
[65]. Moreover, virtual synchrony sometimes does so as well: this is the case for process group
views, uniform multicast protocols, and for events delivered using gbcast. Why then did we offer a
“broken” multicast primitive as our default mode of operation?

To understand our reasoning, the reader will need to appreciate the emphasis on performance that
dominated the systems community during that period, and continues to dominate today. For the
networking community, there will never be a point at which the network is “too fast” to be seen as a
bottleneck. Even our earliest papers came under criticism because reviewers argued that in the real
world, no protocol slower than UDP multicast would be tolerated. Yet UDP multicast is a hardware-
supported unreliable protocol in which the sender sends a message, and “one hop downstream”, the
receivers deliver it! Competing with such a short critical path creates all sorts of pressures. The
features of the virtual synchrony model, taken as a whole, represent a story that turned out to be
competitive with this sort of raw communication primitive: most virtually synchronous multicasts
could be sent asynchronously, and delivered immediately upon receipt, just as would be the case if
one were using raw UDP multicast. This allowed us to argue that users could have the full
performance of the hardware, and yet would also gain much stronger fault-tolerance and consistency
semantics.

As we've emphasized, an application can be designed so that if a multicast needs the stronger form of
safety, in which any multicast is delivered to all operational processes, or to none, the developer
simply sends it with a uniform multicast primitive, or with gbcast, or invokes flush prior to delivery.
But our experience with Isis revealed that this is a surprisingly rare need. The common case was
simply to send the multicast unsafely. Doing so works because the great majority of multicasts either
don’t change the application state at all, or update what can be understood as “transient” state,
relevant to the system for a short period of time, but where persistency isn’t needed. In such cases, it

® The developer controlled the maximum delay before such a problem would be detected. By manipulating
timeout parameters, the limit could be pushed to as little as three to five seconds. Modern machines are
faster, and today the limit would be a small fraction of a second. By using gbcast or flush, “lost events”
such as the ones shown in Figure 2 are eliminated, but performance is sharply reduced.



may not matter if a failed process received a multicast that nobody else will receive, or so an unusual
event ordering: if it ever recovers, nobody will notice that immediately before crashing, it
experienced a strange sequence of events.

For example, a query might be multicast to a group in order to request some form of parallel search
by its members. Queries don’t change application state at all, so this kind of multicast can certainly
be delivered without worrying about obscure failure cases.

Many kinds of updates can be sent with an non-uniform multicast primitive, too. Probably the best
example is an update to a cache. If a process restarts from a crash, it certainly won’t assume that
cached data is currently accurate; either it will validate cached items or it will clear the cache. Thus a
really fast, reliable, ordered multicast is exactly what one wants for cache updates; uniform delivery
simply isn’t needed. Other examples include updates that only touch transient state such as load-
balancing data, and internal chit-chat about the contents of transient data structures such as a cache,
a lock queue or a pending-task queue (a “work queue”). On recovery from failure, a process using
such a data structure will reinitialize itself using a state transfer from an operational process. If the
whole group fails, we either restart in a default state, or have one of the last processes to fail restart
from a checkpoint.

The application that really needs uniform delivery guarantees, because it maintains persistent state,
would be a big on-disk database. Obviously, databases are important, but there aren’t many more
such examples. Our point, then, is that this category is relatively small and the stronger guarantees
they need are costly. In Isis, we simply made the faster, more common multicast the default, and left
it to the developer to request a stronger guarantee if he or she needed it. In contrast, the Paxos
protocols offer the stronger but more costly protocol by default, whether needed or not.

Dynamic Membership

Let’s revisit the features of the model somewhat more carefully. As we’ve seen, the basic idea of
replicating data within a group of processes traces to Lamport’s state machine concept. In addition
to removing state machines from the Byzantine world where they were first proposed, Isis departed
from Lamport’s work in several ways.

We've already seen one departure, namely our use of a dynamic membership model. At the time we
built Isis, one might think that a static model of the sort used in databases (and later in Paxos) would
have seemed more natural, but in fact our model of how process groups would be used made
dynamic membership seem much more obvious. After all: we assumed that applications might use
large numbers of groups, because for us, the granularity of a group was a single object, not an entire
application. Like files that applications open, access, then close, we saw groups as shared structures
that applications would join, participate in for a while, and then depart from. With completely
dynamic membership, a group becomes an organic abstraction that can, in effect, wander around the
system, residing at processes that are currently using it, but over time, moving arbitrarily far from
the initial membership.

Of course, we realized that some systems have groups of server platforms and need to know that
groups will always contain a majority of the servers (databases often require this). In fact, Isis
supported both models. Implicit in the normal behavior was a weighting function and a minimum
group commit weight. By default, the weighting function weighted all processes 1.0, and used a
minimum commit weight of 0.0, but it was possible to override these values, in which case no new
view could be committed unless a majority of the members of the previous view had consented to it
and the sum of weights of the new group view exceeded the minimum. Thus, to ensure that the
majority of some set of k servers would always be present in each new group view, one simply told
Isis to weight the servers 1.0 and all non-servers 0.0, and then specified that new views have a weight
greater than k/2.

Local Reads and Fast Updates



Dynamic membership is the key to an important performance opportunity: many of the protocols we
were competing with at the time assumed that their role was to replicate some service at a statically
defined set of replicas, and used quorum methods to do both reads and updates. To tolerate failures,
even reads needed to access at least two members, since any single member might have been down
when an update was done and hence have a stale state. By tracking membership dynamically, in a
setting where a trusted primary-partition GMS reports liveness, we could be sure that every member
of a group was also up to date, and reads could then be done entirely locally. In [38] we showed this,
and also gave a locking protocol in which read-locks are performed locally. Thus, reads never
require sending messages, although updates obviously do - for locking, to communicate the changes
to data, and for the commit protocol when the transaction completes. The resulting protocol far
outperforms quorum-based algorithms in any setting where reads are common, or where updates
are bursty. In the worst case, when updates are common and each transaction performs just one,
performance is the same as for a quorum scheme.

The key insight here is that within a virtual synchrony system, the group view represents a virtual
world that can be “trusted”.  In the event of a partitioning of the group, processes cut off from the
majority might succeed in initiating updates (for example if they were holding a lock at the time the
network failed), but would be unable to commit them - the 2-phase protocol would need to access
group members that aren’t accessible, triggering a view change protocol that would fail to gain
majority consent. Thus any successful read will reflect all prior updates: committed ones by
transactions serialized prior to the one doing the read, plus pending updates by the reader’s own
transaction. From this we can prove that our protocol achieves one-copy serializability when
running in the virtual synchrony model. And, as noted, it will be dramatically faster than a quorum
algorithm achieving the identical property.

This may seem like an unfair comparison: databases use quorums to achieve serializability. But in
fact Isis groups, combined with locking, also achieve serializability. Because the group membership
has become a part of the model, virtually synchronous locking and data access protocols guarantee
that any update would be applied to all replicas and that any read-locked replica reflects all prior
updates. In contrast, because quorum-based database systems lack an agreed-upon notion of
membership, to get the same guarantees in the presence of faults, a read must access two or more
copies: a read quorum. Doing so is the only way to be sure that any read will witness all prior
updates.

Enabling applications to read a single local replica as opposed to needing to read data from two or
more replicas, may seem like a minor thing. But an application that can trust the data on any of its
group members can potentially run any sort of arbitrary read-oriented computation at any of its
members. A group of three members can parallelize the search of a database with each member
doing 1/3 of the work, or distribute the computation of a costly formula, and the code looks quite
normal: the developer builds any data structures that he or she likes, and accesses them in a
conventional, non-distributed manner. In contrast, application programmers have long complained
about the costs and complexity of coding such algorithms with quorum reads. Each time the
application touches a data structure, it needs to pause and do a network operation, fetching the same
data locally and from other nodes and then combining the values to extract the current version. Even
representing data becomes tricky, since no group member can trust its own replicas. Moreover,
whereas virtually synchronous code can execute in straight-line fashion without pausing, a quorum-
read algorithm will be subjected to repeated pauses while waiting for data from remote copies.

Updates become faster, too. In systems where an update initiator doesn’t know which replicas to
“talk to” at a given point in time, there isn’t much choice but to use some kind of scatter-shot
approach, sending the update to lots of replicas but waiting until a have quorum acknowledged the
update before it can be safely applied. Necessarily, such an update will involve a 2PC (to address the
case in which a quorum just can’t be reached). In virtual synchrony, an update initiated by a group
member can be sent to the “current members”, and this is a well-defined notion.



Partitionable Views

This discussion raises questions about the conditions under which progress can be guaranteed
during partitioning failures. Danny Dolev’s research group became fascinated with the topic and
went much further with it than we ever did at Cornell. Dahlia Malkhi, visiting with us in 1992, helped
formalize the Isis model; the model in Chapter 6 of the book we published on the Isis system was due
to her [71]. Upon returning to Hebrew University, she was the lead developer for the Transis [29]
system, sharing some code with our Horus system, but using her own GMS protocols redesigned to
maximize availability during partitioning failures, and including multicast protocols that can be
traced back to the UCSB Totem project. The Transis protocol achieves the highest possible
availability during partitioning failures [40]. However, this author always found the resulting model
tricky to work with, and it was not widely adopted by application developers. Subsequent work
slightly simplified the model, which became known as extended view synchrony [56], but it remains
hard to develop non-trivial applications that maximize availability during partitioning failures.

Causally Ordered Multicast: cbcast

Dynamic membership only addresses some costs associated with multicasts that carry updates. In
the timeframe when we developed our update protocols, the topic was very much in the air.
Lamport’s papers had been followed by a succession of theoretical papers proposing all sorts of
protocols solving such problems as Byzantine Agreement, totally ordered atomic broadcast, and so
forth - again, within static groups. For example, one widely cited paper was the Chang and
Maxemchuck protocol [20], which implemented a totally ordered atomic multicast that used a
circulating token to order messages. To deliver an update, one might have to wait for the token to do
a full circuit of a virtual ring linking the group members. Latency increased linearly in the size of the
group: a significant cost for large groups, but tolerable for a group with just two or three members.

Our initial work with Isis used a totally ordered protocol proposed by Dale Skeen and based on a
similar, earlier, protocol by Leslie Lamport: it involved a 2PC in which logical timestamps were
exploited to order multicasts [12][43]. This was faster than most other total ordering protocols, but
still was potentially as slow as the slowest group member. We wanted to avoid the two-phase flavor
that pervade such protocols, and became interested in protocols that exploited what might be called
application-specific optimizations. For example, knowing that the sender of a multicast holds a
mutually exclusive lock within a group, a totally ordered multicast can be built using a protocol with
the “cost” of a sender-ordered (FIFO) multicast. Frans Kaashoek, who ultimately wrote his PhD
thesis on this topic [39], showed that token-based protocols of this sort have all sorts other
advantages too, including better opportunities to aggregate small messages into big ones, the
possibility of asynchronous garbage collection, and also match well with applications that produce
updates in a bursty pattern.

In our work, we realized that FIFO order has a generalization that can extend the power of the
multicast primitive at surprisingly low cost - just a few bytes per message. The trick is to put a little
extra ordering information onto the message (the solution we ultimately favored used a small vector
timestamp with a single counter per member of the current group view [14]). The rule for delivering
a message generalizes the rule used for FIFO ordering: “if message x arrives and its header indicates
that there is a prior message y, delay x until y has been delivered”. But now, “prior” is interpreted
using the vector timestamp ordering rule, rather than the usual comparison of sender sequence
numbers.

Isis used this approach to support a protocol we called cbcast: a reliable, view-synchronous multicast
that respected the potential causality ordering (the transitive closure of the FIFO ordering). One way
to visualize this ordering property is to think about a system in which process p does some work, and
then sends an RPC to process g asking it to do a subtask, and so forth. When the RPC returns, p
resumes working. Now suppose that “work” involves sending multicasts. A FIFO ordering would
deliver messages from x in the order it sent them, and similar for y, but a node receiving messages
from both p and q could see them in an arbitrary order. We see this in the figure below; the heavy
lines denote the “thread of execution”:



Figure 3: Causally ordered multicasts

One way to think about figure 3 is to imagine that process p “asked” q to do that work, and q in turn
issued a request to r. In some sense, q is a continuation of a thread of execution running in p. The
figure highlights this visually: the single thread of control is the one shown in dark black, first
running at p, then g, then r, and then finally returns back to p. The cbcast primitive respects ordering
along this kind of thread of control. If multicast b (perhaps sent by q) could be causally after
multicast a (perhaps sent by p), a FIFO ordering won'’t necessary deliver the messages in the order
they were sent because they had different senders. In contrast, chcast will deliver a before b at any
destinations they share. The idea is very intuitive if one visualizes it this way.

Performance for cbcast can be astonishingly good: running over UDP multicast, this primitive is
almost as fast as unreliable UDP multicast [14]. By using cbcast to carry updates (and even for
locking, as discussed in [37]), we accomplished our goal, which was to show that one could
guarantee strong reliability semantics in a system that achieved performance fully comparable to
that of Zwaenepoel’s process groups running in the V system.

Time-Critical Applications

With its focus on speed, one major class of Isis applications turned out to involve systems that would
traditionally have been viewed as “real-time” by the research community. As a result, Isis was often
contrasted with the best known protocols in the fault-tolerant real-time community, notably the so-
called A-T fault-tolerant broadcast protocols developed by Flaviu Cristian and his colleagues [25].

These protocols work in the following manner. The designer starts by specifying bounds on the
numbers and types of failures that can occur (process failures, packet loss, clock failures). They also
bound delays for packet delivery and clock skew by correct processes. Then, through multiple all-to-
all broadcast stages, each multicast is echoed by its receivers until one can prove that at least one
round included a correct sender and experienced no network faults (in effect: there must be enough
rounds to use up the quota of possible failures). Finally, received multicasts are delayed for long
enough to ensure that even if correct processes have worst-case clock skew and drift, they will still
deliver messages in the same order and at roughly the same time as all other correct processes.

All of this takes time: at one workshop in the early 1990’s, a speaker concerned about costs worked
out the the numbers for this and other broadcast protocols and argued that with as few as 10
processes under assumptions reasonable for that time, a A-T broadcast could take between 5 and 20
seconds to be delivered, depending upon the failure model selected (the protocols cover a range from
fail-stop to Byzantine behavior). Most of the delay is associated with overcoming clock-drift and
skew so as to deliver messages within a tight temporal window: the multicast relaying phases would
normally run very quickly.

The strength of the A-T suite was its guarantee that messages will be delivered fault-tolerantly, in
total order, and within a bounded temporal delay despite failures. On the other hand, these protocols
lack the consistency property of virtual synchrony. For example, a “faulty” group member using the
A-T protocols could miss a message, or deliver one out of order. This may not seem like a big deal
until one realizes that a process can be temporarily faulty by simply running a bit slower than the
bounds built into the system, or temporarily having a higher-than-tolerable clock skew. Since the A-
T protocols have no explicit notion of group view, the protocols work around faults, rather than



excluding faulty members. A discussion of the issue, with diagrams showing precisely how it can
arise, can be found in [15].

Since no process can be sure it hasn’t ever been faulty, no group member can never be sure that its
own data is current, because the protocol isn’t actually required to operate correctly at faulty
participants. This is a bit like obeying the speed limit without a reliable speedometer. One does the
best one can, but short of driving absurdly slowly, there is a definite risk of briefly breaking the law.
And indeed, driving slowly is the remedy A-T protocol designers recommended: with these protocols,
it was critical to set the parameters to very conservative values. One really doesn’t want a correct
process to be transiently classified as faulty; if that happens, all guarantees are lost.

Thus, builders of real-time systems who needed provable temporal guarantees, but could sacrifice
speed and consistency, would find what they wanted in the A-T protocols. Isis, in contrast, offered
much better performance and strong consistency, but without hard temporal delivery guarantees.
The real-time community found itself immersed in a philosophical debate that continues to this day:
Is real-time about predictable speed, or provable worst-case deadlines? The question remains
unanswered, but Isis was used successfully in many sensitive settings, including air traffic control
and process control in chemical refineries.

A series of commercial successes, but ultimately, a market failure

The combination of the virtual synchrony consistency model with an easily used toolkit turned out to
be quite popular. Isis soon had large numbers of real users, who downloaded the free release from a
Cornell web site. Eventually, the user base became so demanding that it made sense to launch a
company that would do support, integration work and enhance the platform. Thus, the same
protocols we designed and implemented at Cornell found their way into all sorts of real systems
(details on a few can be found in [12] and [71]). These included the New York and Swiss Stock
Exchange, the French Air Traffic Control System, the US Navy AEGIS, dozens of telecommunications
provisioning systems, the control system of some of the world’s largest electric and gas grid
managers, and all sorts of financial applications. Many of these live on: today, the French ATC
solution has expanded into many other parts of Europe and, to this author’s knowledge, has never
experienced a single problem. The New York Stock Exchange system operated without problems for
more than a decade (they phased the Isis solution out in early 2007), running the fault-tolerant
system that delivers data to the overhead displays and to external “feeds” like Reuters, Bloomberg
and the SEC. During that decade, there were plenty of component crashes, but not a single
disruption of actual trading.

Virtual synchrony was also adopted by a number of other research groups, include the Totem project
developed by Moser and Melliar Smith [51], Dolev’s Transis project [29], the European Phoenix
project [53], Babaoglu’s early e-Grid project, Amir’s Spread system [2] (which continues to be widely
used), and others. The UCSB team led a successful effort to create a CORBA fault-tolerance standard
based on virtual synchrony. It offers lock-step state-machine replication of deterministic CORBA
objects, and there were a number of products in the area, including Eternal [57], and Orbix+Isis,
offered by IONA.

Unfortunately, despite these technical successes, virtual synchrony was never became a huge market
success [9]. The main commercial applications tended to be for replication of services, and in the
pre-cloud computing data, revenue was mostly generated on the “client side”. The model continues
to play an important role in many settings, but at the time of this writing there are only three
commercial products using the model: JGroups, Spread and C-Ensemble. Of these, JGroups and
Spread are the most widely used.

At Cornell, after completing Isis, we developed two Isis successors: first Horus [72], in which Van
Renesse showed that a virtual synchrony protocol stack could be constructed as a composition of
microprotocols (and set performance records along the way), and then Ensemble [35], a rewrite of
Horus into O’CaML (a dialect of ML) by Mark Hayden. Ensemble was the basis of an interesting



dialog with the formal type theory community. In a collaboration that drew upon an I/0 Automata
specification developed jointly by the Cornell team and Lynch’s group at MIT, and used the Cornell
NuPRL automated theorem proving system developed by Constable’s group [48], a specification of
many of the Ensemble protocols was created. NuPRL was then used to prove protocol properties and
(through a form of partial evaluation) to generate optimized versions of the Ensemble protocols.
Although the protocol stack as a whole was never “proved correct”, the resulting formal structure
was still one of the largest ever treated this way: the Ensemble protocol stacks that implement virtual
synchrony included nearly 25,000 lines of code!

Virtual synchrony continues to play some important roles hidden within products that don’t expose
any form of directly usable group communication APL. IBM has described patterning its DCS product
on Ensemble [27][28]. As mentioned early in this article, DCS is used for fault-tolerance and
management layer in Websphere and in other kinds of services deployed within datacenters. We
also worked with Microsoft to develop a scalable cluster management solution that ultimately
shipped with the recent Longhorn enterprise server product; it runs large clusters and provides core
locking and state replication services [50]. Again, a virtual synchrony protocol is used where strong
consistency matters. Moreover, Google’s Chubby and Yahoo's Zookeeper services both have
structures strongly reminiscent of virtually synchronous process groups.

How Replication Was Used
In light of the focus on this volume on replication, it makes sense to review some of the uses to which
these applications put the technology. Details can be found in [12] and [71].

e One popular option was to simply replicate some sort of abstract data type, in effect associating
the object with the process group. In Isis, we saw two “styles” of data replication. For non
performance-intensive uses, applications simply used the totally ordered multicast protocol,
abcast, to propagate updates, and performed reads against any local copy. For performance-
critical purposes, developers typically started with abcast but then optimized their applications
by introducing some form of locking and then replacing the abcast calls with asynchronous®
fbcast (the FIFO multicast) or its cousin cbcast. One common pattern used cbcast for both
purposes: to request and grant locks, and to replicate updates [37]. With the Isis
implementation of chcast this implements the Herlihy-Wing linearizability model [36].

e Replication was also applied to entire services. We expected that state-machine replication
would be common among Isis users, but in fact saw relatively little use of this model until the
CORBA “Orbix+Isis” product came out. Users objected to the requirement that applications be
deterministic. The problem is that on modern platforms, concurrency through multithreading,
timer interrupts, and non-deterministic I/0 is so common that most developers couldn’t develop
a deterministic application even if they wanted to do so.

e Some applications used request replication for parallelism. Most servers are 1/0 bound, hence
response time for many applications limited by the speed with which a file or database can be
searched. Many virtual synchrony applications replicate requests by multicasting them to a
process group consisting of identical servers, which subdivided the work. For example, perhaps
one server could search the first half of a database, and another the second half. This was a
popular model, and is a very good match with search in datacenters, which often work with
enormous files and databases. One can think of it as a very simple form of “map-reduce”.

e Variations on primary-backup fault-tolerance were common. Isis users were loath to dedicate
one machine to simply backing up another machine. However, the system also supported a
generalization of primary-backup that we called “coordinator-cohort” that could be combined
with a transparent TCP fail-over mechanism. In this model, each request was assigned to a
different process group member, with another group member functioning as a backup, stepping
in only if the primary crashed. The coordinator role was spread evenly within the group. Since

° In Isis, a multicast could be invoked asynchronously (no replies), or could wait for replies from one,
several, or all group members.



the cost of replicating the request itself is negligible, with k members available to play the
coordinator role for distinct requests, users obtained a k-fold speedup. Moreover, because the
client’'s connection to the group wouldn’'t break even if a fault did occur, the client was
completely insulated from failures. The mechanism was very popular.

e Many applications adopted a publish-subscribe communication pattern. As mentioned above,
Isis offered a “news” interface that supported what later became known as topic-based publish-
subscribe. In the simplest model, each topic maps one-to-one to a process group, but this creates
huge numbers of groups. Accordingly, the tool used a form of channelization, mapping each topic
to one of a small set of groups and then filtering incoming messages to deal with the resulting
inaccuracy. This approach remains common in modern publish-subscribe products.

With the exception of publish-subscribe applications, it is interesting to realize that most uses of Isis
involved servers running on small clusters. For example, the French Air Traffic Control System runs
Isis in datacenters with hundreds of machines, but organized as clusters of 3 to 5 consoles. Isis was
configured to run in disjoint configurations, keeping loads light and providing fault isolation.

Publish-subscribe, however, is a very different world: data rates can be very high, groups can be big,
and enterprises may have other desires too, such as security or management interfaces. Group
communication of all kinds, not merely virtual synchrony, is challenged by such goals - indeed,
operators of today’s largest datacenter platforms report that instability of large-scale publish-
subscribe deployments represents a very serious problem, and we know of a number of very high-
profile settings in which publish-subscribe has effectively been banned because the technology
proved to be unreliable at high data rates in large-scale uses. Such stories make it clear that the
French Air Traffic Control project made a very wise decision. Later, we'll comment on our recent
work to overcome these issues, but they clearly point to important research challenges.

Causal and other controversies

Although virtual synchrony has certainly been successful and entered the mainstream computing

world, this history wouldn’t be complete without at least allusion to some of the controversies

mentioned earlier. There were many of them:

e  The causally ordered multicast primitive used in Isis was debated with enormous enthusiasm
(and much confusion) [21][64].

e  There was a period of debate about the applicability of the FLP result. The question was
resolved emphatically with the not-surprising finding that indeed, consensus and virtual
synchrony are related [23] [52][66].

e  We noted that the formal definition of consensus includes an agreement property that Isis
violates by default. Is virtual synchrony therefore incorrect by default?

e Because Paxos can be used to build multicast infrastructures, and virtual synchrony
communication systems can be used to solve consensus, one can ask which is “better”. Earlier,
we noted that virtual synchrony can implement guarantees identical to Paxos if the user limits
himself to uniform multicast or gbcast, or uses flush. As noted earlier, systems like Chubby do use
Paxos, but tend to be engineered with all sorts of optimizations and additional mechanisms: Paxos is
just one of several protocols, just as the virtual synchrony view update protocol is just one of many
Isis protocols. Thus, it makes little sense to talk about choosing “between” Paxos and virtual
synchrony. The protocol suites we end up using incorporate elements of both.

e  There was much interest in using groups to securely replicate keys for purposes of end-to-end
cryptographic security. Interestingly, this model runs afoul of the cloud-computing trend
towards hosting everything: these days, companies like Google want to manage our medical
records, provide transcripts of telephone calls, and track our digital lives. Clearly, one is
supposed to trust one’s cloud provider, and perhaps for this reason, the major security
standards are all client-server infrastructures; true end-to-end security keys that might deny
the cloud platform a chance to see the data exchanged among clients have no obvious role. But
this could change, and if so, secure group keys could be just what the doctor ordered.



What Next? Live Objects and Quicksilver Scalable Multicast!

The story hasn’t ended. Today’s challenges relate to scale and embeddings. With respect to
scalability, the push towards cloud computing has created a new interest on infrastructure for
datacenter developers. The tools used in such settings must scale to accommodate deployments on
tens or hundreds of thousands of machines and correspondingly high data rates. Meanwhile, out at
the edge, replication and multicast patterns are increasingly interesting in support of new forms of
collaboration and new kinds of social networking technologies.

At Cornell, our current focus is on solving these next generation scalability challenges, while also
integrating reliable multicast mechanisms with the modern generation of componentized platforms
that support web services standards - for example, the Microsoft .net platform and the J2EE platform
favored by Java developers. We've created a system that implements what we are calling “Live
Distributed Objects!?” [58][59]. The basic idea is to enable end-users, who may not be programmers,
to build applications by drag-and-drop, much as one pulls a figure or a table into a text document.

From the perspective the application designer, live objects are edge-mashups, created on the client
platform much in the same sense as a Google mashup that superimposes push-pin locations on maps:
the user drags and drops objects, constructing a graph of components that interact by event passing.
The main difference is that the Google mashup is created on Google’s platform and exported through
a fairly sophisticated minibrowser with zoom, pan and layer controls; a live object is a simpler
component designed to connect with other live objects within the client machine to form a graph that
might have similar functionality to the Google version, but could import content from multiple hosted
platforms (for example, we routinely combine Google maps with Yahoo! weather and population
data from the National Census), and with peer-to-peer protocols that can achieve very low latency
and jitter when clients communicate with one-another. Once created, a Live Object-based application
can be shared by making copies - it can even be emailed - and each node that activates it will
effectively become an endpoint of a group associated with that object.

We've packaged a number of multicast protocols as Live Objects, and this creates a connection to the
theme of the present article: one of the protocols supports virtually synchronous replication at high
data rates and large scale. However, not all objects have complex distributed behaviors. Live objects
can also be connected to sensors, actuators, applications that generate events, and even databases or
spreadsheets.

With Live Objects, we're finding that even an unskilled user can build non-trivial distributed
collaboration applications, workflow systems, or even games. The experience is very similar to
building scenarios in games like Second Life, but whereas Second Life “runs” on a data center, Live
Objects run directly on and between the client platforms where the live application is replicated.
Although doing so poses many challenges, one of our research goals is to support a version of Second
Life built entirely with Live Objects.

In support of Live Objects, we've had to revisit reliable multicast and replication protocols [60]. As
noted, existing solutions can scale a single group to perhaps 100 members, but larger groups tend to
destabilize at high data rates. None of the systems we’ve evaluated can handle huge numbers of
groups with irregular overlap. Yet, even simple Live Object applications can create patterns of object
use in which a single machine might end up joining thousands of replication groups, and extremely
high data rates. In [60] we discuss some of the mechanisms we’re exploring in support of these new
dimensions of scalability. With these, we believe that groups providing a slightly weaker reliability
model than virtual synchrony can scale to at least hundreds of members, can sustain data rates as
high as 10,000 1-kbyte messages per second, and individual nodes can join thousands of groups that
overlap in irregular ways.

19 A video of a demo can be seen at http://liveobjects.cs.cornell.edu



We're also revisiting the way that virtual synchrony, consensus and transactional guarantees are
implemented. The standard way to build such protocols is to do so as a library constructed directly
over UDP message passing. We're currently working on a scripting language (we call it the properties
framework) in which higher level reliability properties can be described. An interpretive runtime
executes these scripts in a scalable, asynchronous, dataflow manner. Preliminary results suggest that
strong reliability properties can scale better than had previously been believed, but we’ll need to
complete the work to know for sure.

Live objects include a simple type system, matched to the limited interface model favored in modern
web services platforms, but far from the state of the art. Readers interested in connections between
replication and type theory may want to look at papers such as [41][42][45][49]. Research on
componentized protocols includes [5][6][35][37][55][72]. These lines of study come together in
work on typed endpoints in object oriented systems, such as [16][26][30][32][31].

Closing Thoughts

It seems appropriate to end by sharing an observation made by Jim Gray, who (over dinner at a
Microsoft workshop) commented on a parallel between the early database community, and what he
believed has happened with virtual synchrony and other strong replication models. In its early days,
the transactional community aggressively embraced diversity. Researchers published on all sorts of
niche applications and papers commonly argued for specialized variations on the transactional
model. The field was awash in specialized database systems. Yet real success only came only with
consolidation around transactions on relational databases: so much investment was focused on the
model that the associated technology advanced enormously.

With this success, some researchers probably felt that the field was taking a step “backwards”,
abandoning superior solutions in favor of less elegant or less efficient ones. Yet success also brought
research opportunities: research was needed to overcome a new set of challenges of scale, and
performance. The science that emerged was no less profound than the science that had been
“displaced.”

In this, Jim saw a general principle. If a technology tries too hard to make every user happy, so much
effort is needed to satisfy the 20% with the hardest problems that the system ends up being clumsy
and slow. The typical user won’t needed most of its features, and many will opt for a simpler,
cheaper solution that’s easier to use. The irony is that in striving to make every user happy, a
technology can actually leave the majority unhappy. In the end, an overly ambitious technology
merely marginalizes itself.

Did the Isis system actually “need” four flavors of ordered multicast? Probably not: we got carried
away, and it made the system difficult for the community to understand.

Today, the opportunity exists to create consistency-preserving replication tools that might be widely
adopted, provided that we focus on making replication as easy as possible to use in widely standard
platforms. In some ways this may force us to focus on a least common denominator approach to our
past work. Yet making replication with strong semantics work for real users, on the scale of the
Internet, also reveals profound new challenges, and as we solve them, we may well discover that the
underlying science is every bit as interesting and deep as anything we discovered in the past.
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