An Amateur’s Introduction

to

Recursive Query Processing Strategies

Francois Bancilhon (1)
Raghu Ramakrishnan (1,2)

1 MCC
9430 Research Blvd
Austin, Texas 78759

2 Unversity of Texas at Austin
Austin, Texas 78712

ABSTRACT

This paper surveys and compares various strategies for processing logic queries 1n rela-
tional databases The survey and comparison 1s himited to the case of Horn Clauses with
evaluable predicates but without function symbols The paper 1s organized in three parts In
the first part, we introduce the main concepts and defimtions In the second, we describe
the varous strategies For each strategy, we give 1ts main characteristics, 1ts application
range and a detailed description We also give an example of a query evaluation The third
part of the paper compares the strategies on performance grounds We first present a set of
sample rules and queries which are used for the performance comparisons, and then we
characterize the data Finally, we give an analytical solution for each query/rule system
Cost curves are plotted for specific configurations of the data

1. Introduction

The database community has recently mamfested a
strong interest in the problem of evaluating “logic
queries”’ against relational databases This interest
15 motivated by two convergmg trends (1) the
desire to 1ntegrate database technology and
artificial 1ntelhgence technology 1e, to extend
database systems, to provide them with the func-
tionality of expert systems thus creating
“knowledge base systems” and (u) the desire to

Permussion to copy without fee all or part of this matenal is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice 1s given that copying 15 by
permussion of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

© 1986 ACM 0-89791-191-1/86/0500/0016 $00 75

16

integrate logic programming technology and data-
base technology 1e, to extend the power of the
interface to the database system to that of a gen-
eral purpose language The second goal 1s of a
somewhat different nature and has found m 1its
ranks proponents of object oriented, functional and
imperative as well as logic based programming
languages The logic programming camp 1s relying
on the fact that logic programming and relational
calculus have the same underlying mathematical
model, namely first order logic

Of course, database researchers already know how
to evaluate logic queries the view mechamism, as
offered by most relational systems, is a form of
support of a restricted set of logic queries But
those logic queries are restricted to be non-
recursive and the problem of efficiently supporting
recursive queries 1s still open

In the past five years, following the pioneering
work by Chang, Shapiro and McKay, and Hen-
schen and Naqyl, numerous strategies have been

proposed to deal with recursion 1 logic queries
The positive side of this work 1s that there are a
lot of algorithms offered to solve the problem The
negative side 1s that we do not know how to make
a choice of an algornithm It seems reasonable to
say that all these strategies can only be compared
on three grounds functionahty (1e, application
domam), performance and ease of implementation
However, each of these algorithms 1s described at a
different level of detail, and 1t 1s sometimes difficult
to understand their differences In fact, we shall
claim later in this paper that some of them are
indeed identical Each comes with hittle or no per-
formance analysis, and the application domain 1s
not always easy to 1dentify We try in this paper
to evaluate these algorithms with respect to these
three criterna We describe all the algorithms at
the same level of detall and demonstrate their
behavior on common examples This 1s not always
easy to do since some of them are fairly well for-
malized while others are merely sketched as an
1dea

For each one of them, we state 1n sumple terms the
application domain Finally, we give a first simple
comparison of the performance of these algorithms
Choosing a simple set of typical queries, a stmple
charactenzation of the data and a simple cost func-
tion, we give an analytical evaluation of the cost of
each strategy The results give a first mnsight into
the respective value of all the proposed strategies

The rest of the paper 1s organized as follows In
section 2 we present our defimtions and notations,
and introduce the main ideas In section 3 we
present the main features of the strategies, and
describe each one mndividually, and finally, 1n sec-
tion 4, we present the performance evaluation
methodology and results

2. Logic Databases

2.1. An Example

Let us start by discussing informally an example
Here 1s what we call a “logic database”

parent(caimn,adam)

parent(abel,adam)

parent(cain,eve)

parent(abel,eve)

parent(sem,abel)

ancestor(X,Y) - ancestor(X,Z),ancestor(Z,Y)

ancestor(X,Y) - parent(X,Y)

generation{adam,1)

generation(X,I) - generation(Y,J),
parent(X,Y),J=I-1

generation(X,I) - generation(Y,J),

parent(Y,X),J=I+1

Note that this 1s a purely syntactic object In this
database, we have a set of predicate or relation
names (parent, ancestor and generation), a set of
anithmetic predicates (I=J+1, I==J-1) and a set of
constants (adam, eve, camn, sem and abel) Finally,
we have a set of variables (X,Y and Z) The data-
base consists of a set of sentences ending with a
period “parent(camn,adam)”’ 1s a fact, and
“ancestor(X,Y) - parent(X,Y)” 1s a rule

Let us now associate a meaning with the database
We first associate with each constant an object
from the real world thus, with ‘““adam” we associ-
ate the individual whose name 1s “adam’ Then,
we assoclate with each anthmetic predicate name
the corresponding arithmetic operator Then we
can 1nterpret mtwitively each fact and each rule
For mnstance we interpret “parent(cain,adam)” by
saying that the predicate parent 1s true for the cou-
ple (cain,adam), and we interpret the rule

ancestor(X,Y) - ancestor(X,Z), ancestor(Z,Y)

by saying that if there are three objects X, Y and
Z such that ancestor(X,Z) 1s true and ancestor(Z,Y)
1s true then ancestor(X,Z) 1s true

This leads to an interpretation which associates
with each predicate a set of tuples For mstance
with the predicate ancestor we associate the
interpretation {(can,adam), (abel,adam),
(caimn,eve), (abel,eve), (sem,abel), (sem,adam),
(sem,eve)}, and with the predicate generation we
associate the interpretation {(adam,l), (eve,l),
(cam,?2), (abel,2), (sem,3)}

The problem 1s to answer queries, given the logic
database For nstance given a query of the form
generation(sem,?) or ancestor(?,adam), how do we
find the answer generation(sem,3) and
{ancestor(cain,adam), ancestor(abel,adam),
ancestor(sem,adam)}?

Let us now formalize all the notions encountered 1n
this example and define a logic database We first
define 1t syntactically, then we attach an interpre-
tation to this syntax

2.2. Syntax of a Logic Database

We first define four sets of names wvariable names,
constant names, predicate or relation names and
evaluable predicate names

We adopt the Prolog convention of denoting vari-
ables by strings of characters starting with an
upper case letter and constants by strings of char-
acters starting with a lower case letter or integers
For instance X1, Father and Y are vanables, while

john, salary and 345 are constants

We use 1dentafiers starting with lower case letters
for predicates names and relation names (evaluable
and non-evaluable)

We use the term relation (from database terminol-
ogy) and predicate (from logic terminology)
indifferently to represent the same object We shall
however interpret them differently a relation will
be interpreted by a set of tuples and a predicate by
a true/false function There 15 a fixed anty associ-
ated with each relation/predicate

The set of evaluable predicate names 1s a subset of
the set of predicate names We will not be con-
cerned with their syntactic recognition, 1n the
examples 1t will be clear from the name we use
The main examples of evaluable predicate names
are anthmetic predicates For instance, sum,
difference and greater-than are examples of evalu-
able predicates of anty 3, 3 and 2 respectively,
while parent and ancestor are non-evaluable predi-
cates of anty 2

A hteral 18 of the form p(t1,t2, ,tn) where p 1s a
predicate name of arity n and each t1 1s a constant
or a vanable For instance father(johnX),
ancestor(Y,Z), 1d(john,25,austin) and sum(X,Y,Z)
are hterals An nstanttated hteral 1s one which
does not contain any variables For instance
1d(john,doe,25,austin) 1s an 1instantiated lteral,
while father(john,Father) 1s not

We allow ourselves to write evaluable hterals using
functions and equality for the purpose of clanty
For mstance, Z = X+Y denotes sum(X,Y,Z), I =
J+1 denotes sum(J,1,I), and X > 0 denotes
greater-than(X,0)

If p(t1,t2, ,tn) 1s a lteral, we call (t1,t2, ,tn) a
tuple

A rule 18 a statement of the form

p -ql,q2, ,qn

where p and the qi’s are Literals such that the
predicate name in p 1s a non-evaluable predicate
p 1s called the head of the rule, and each of the qu’s
18 called a goal The conjunction of the qi’s 1s the
body of the rule We have adopted the Prolog
notation of representing implication by ’-’ and
conjunction by ’,’ For mstance

uncle(john,X) - brother(X,Y), parent(john,Y)
1s a rule with head “uncle(johnX)” and body
“brother(X,Y), parent(john,Y)”

A ground clause 1s a rule m which the body 1s
empty A fact 15 a ground clause which contains
no vanables For instance

18

loves(X,john)
loves(mary,susan)

are ground clauses, but only the second of these 1s
a fact

A database 1s a set of rules, note that this set 1s
not ordered Given a database, we can partition 1t
mto a set of facts and the set of all other rules
The set of facts 1s called the eztenstonal database,
and the set of all other rules 1s called the nten-
stonal database

2.3. Interpretation of a Logic Database

Up to now our defimitions have been purely syntac-
tical Let us now give an interpretation of a data-
base This will be done by associating with each
relation name mm the database a set of mstantiated
tuples We first assume that with each evaluable
predicate p 1s associated a set natural(p) of instan-
tiated tuples which we call 1ts natural snterpreta-
tion For mnstance, with the predicate sum 1s asso-
ciated an infimte set of all the 3-tuples (x,y,z) of
integers such that the sum of x and y 1s z In gen-
eral the natural interpretation of an evaluable
predicate 1s infimite

Given a database, an interpretation of this data-
base 15 a mapping which associates with each rela-
tion name a set of instantiated tuples

A model of a database 1s an mterpretation I such
that

(1) for each evaluable predicate p,
I(p) = natural(p), and,

(2) for any rule,
p(t) - q1(t1),q2(t2), ,qn(tn)

for any instantiation o of the varables of the rule
such that o(t1) 1s 1n the interpretation of qi for all1
then o(t) 1s 1s 1n the interpretation of p

This 1s simply a way of saying that, 1n a model, 1f
the right hand side 1s true then the left hand side
1s also true This 1mplies that for every fact p(x)
of the database the tuple x belongs to the interpre-
tation of p

Of course, for a given database there are many
models The nice property of Horn Clauses 1s that
among all these models there 15 a mimal one
(mimmal 1n the sense of set mclusion), which 1s the
one we choose as the model of the database [Van
Emden and Kowalski 76] Therefore from now on,
when we talk about the model or the interpretation
of a database, we mean 1ts minimal model

Notice that because of the presence of evaluable
arithmetic predicates the mimimal model 1s, 1n gen-

eral, not finite

Let p be an n-ary predicate An adornment of p 1s
a sequence a of length n of b’s and f’s [Ullman 85)
For instance bbf i1s an adornment of a ternary
predicate, and fbff 1s an adornment of predicate of
anty 4 An adornment 1s to be interpreted ntui-
tively as follows the 1-th vamable of p 1s bound
(respectively free) if the 1-th element of ¢ 15 b
(respectavely f) Let p(x1,x2, ,xn) be a lteral, an
adornment ala2 an of that hiteral 1s an adornment
of p such that

(1) of x1 15 a constant then a118 b,
(u) of xa = x} then a1 = a}

We denote adornments by superscripts A query
form 1s an adorned predicate Examples of query
forms are father®’ ,1d4%//*

A gquery 18 a query form and an instantiation of
the bound varniables We denote 1t by an adorned
hiteral where all the bound positions are filled with
the corresponding constants and the free positions
are filled by distinct free variables Therefore
father®” (john,X) and 1d*//®(johnX,Y,25) are
queries The distinction between queries and query
forms are that query forms are actually compiled,
and at run-time their parameters will be nstan-
tiated Notice that father(X,X) 1s not a query form
1 this formalism

The answer to a query q(t) 1s the set
{a(e(t)) | o 15 an 1nstantiation of t, and
o(t) 1s 1n the mterpretation of q}

2.4, Structuring and Representing the Data-
base

A predicate which only appears in the intensional
database 18 a dersved predicate A predicate which
appears only in the extensional database or in the
body of a rule 1s a base predicate

For performance reasons, it 18 good to decompose
the database into a set of pure base predicates
(which can then be stored using a standard DBMS)
and a set of pure derived predicates Fortunately,
such a decomposition 1s always possible, because
every database can be rewntten as an “equivalent”
database contaming only base and derived predi-
cates. By equvalent, we mean that all the predi-
cate names of the original database appear 1 the
modified database and have the same interpreta-
tion

We obtain this equivalent database in the following
way: consider any predicate p that 1s neither base
nor denved By definition, we have a set of facts
for p, and p appears on the left of some rules So
we simply introduce a new predicate p_ext and do

the following

(1) replace p by p_ext n each fact of p,
(2) add a new rule of the form
p(X1,X2, ,Xn) - p_ext(X1,X2, ,Xn)

where n 18 the anty of p
Ezample

father(a,b)

parent(b,c)

grandfather(b,d)

grandfather(X,Y) - father(X,Z),parent(Z,Y)

becomes

father(a,b)

parent(b,c)

grandfather_ext(b,d)

grandfather(X,Y) - father(X,Z),parent(Z,Y)
grandfather(X,Y) - grandfather_ext(X,Y)

Most authors have chosen to describe a set of rules
through some kind of graph formalism Predicate
Connection Graphs, as presented in [McKay and
Shapiro 81}, represent the relationship between
rules and predicates Rule/goal graphs, as
presented i [Ullman 85], carry more information
because predicates and rules are adorned by their
variable bindings We have chosen here to keep the
rule/goal graph terminology while using unadorned
predicates

The rule/goal graph has two sets of nodes square
nodes which are associated with predicates, and
oval nodes which are associated with rules If
there 1s a rule of the form
rp- pl)p2’ pn

1in the intensional database, then there 1s an arc
going from node r to node p, and for each predi-
cate p1 there 1s an arc from node p1 to node r

Here 1s an example of an intensional database For
the sake of simphicity, we have omitted the van-
ables in the rules

rl pl - p3,p4
r2 p2 -p4,p5

r3 p3 - pb,p4,p3
r4 p4 -pbd,pd

r5 p3 -pb
6 p5 .- p5,p7
r7 p5.-pB

r8 p7 :- p8,p8
The rule/goal graph 1s

Pl -p3,p4

[p1]

2.5. Recursion

Recursion 1s often discussed n the single rule con-
text For the purpose of clanty and simphety, let
us first give some temporary definitions 1n this con-
text We say that a rule 1s recursive if 1t 1s of the
form

p(t) - p(t)
For instance the rule
ancestor(X,Y) - ancestor(X,Z),parent(Z,Y)
1s Tecursive

An nteresting subcase 1s that of linear rules
Lmear rules play an important role because (1)
there 1s a behef that most “real hfe” recursive
rules are indeed Lnear, and (n) algorithms have
been developed to handle them efficiently

We say that a rule is linear if 1t 1s recursive, and
the recursive predicate appears once and only once
on the right This property 1s sometime referred to
as regulanty [Chang 81] We beheve the term
linear to be more appropriate, and we think that
regularity should be kept for another concept
(which 1s not defined here)

For 1nstance the rule

Sg(X,Y) - p(X,XP),p(Y,YP),sg(XP ,YP)

20

1S linear, while the rule
ancestor(X,Y) - ancestor(X,Z),ancestor(Z,Y)

1S not

These defimtions are fairly simple 1n the single rule
context They are a httle more involved in the con-
text of a set of rules where properties have to be
attached to predicates instead of rules Consider
the following database

p(X:Y) - bl(X,Z),q(Z,Y)
q(X:Y) - p(X,Z),b2(Z,Y)

Neither of the rules are recursive according to the
above definition, while clearly both predicates p
and q are recursive

We now come to the general definitions of recur-
stion 1n the multirule context Let p and q be two
predicates We say that p derwes q (denoted p —
q) if 1t occurs 1n the body of a rule whose head
predicate 15 ¢ We define —+ to be the transitive
closure (not the reflexive transitive closure) of —
A predicate p 1s said to be recurswe if p —+ p
Two predicates p and q are mutually recurswe if p
—+ q and ¢ =+ p It can be easily shown that
mutual recursion is an equivalence relation on the
set of recursive predicates Therefore the set of
recursive predicates can be decomposed into dis-
joint blocs of mutually recursive predicates

Given a set of rules, we say that the rule

p - plL,p2, ,pn 1s recursiwve 1f there exists p1 1n
the body of the rule which 1s mutually recursive to
P

A recursive rule p - p1,p2, ,pn s linear 1f there 1s
one and only one p1 1n the body of the rule which
1s mutually recursive to p A set of rules 1s linear
if every recursive rule 1 1t 1s inear For instance,
the following system 1s linear

rl p(X,Y) - pl(X,Z),q(Z,Y)
r2 q(X;Y) - p(X,Z),p2(Z,Y)
r3 P(X;Y) - b3(X;Y)

rd pl(XY) - b1(X,Z),p1(ZY)
5 pl(XY) - b4(XY)

r6 p2(X)Y) - b2(X,Z),p2(Z,Y)
17 p2(XY) - b5(XY)

The set of recursive predicates 1s {p,q,pl,p2}, the
set of base predicates 15 {bl,b2,b3,b4,b5} The
blocks of mutually recursive predicates are
{[p,al,[p1],[p2]} The recursive rules are ri, r2, r4
and r8, and the system 1s linear even though rules
rl and r2 both have two recursive predicates on
their right

We say that two recursive rules are mutually
recursive 1ff the predicates in theiwr heads are mutu-

ally recursive This defines an equivalence relation
among the recursive rules

Thus mutual recursion defines an equivalence class
among recursive predicates and among the recur-
sive rules, [Bancilhon 85| Therefore, 1t groups
together all predicates which are mutually recur-
sive to one another, 1 ¢ which must be evaluated as
a whole It also groups together all the rules which
participate 1n evaluating those blocks of predicates
Let us now see how this can be represented i the
rule/goal graph We define the reduced rule/goal
graph as follows

Square nodes are associated with non-recursive
predicates or with blocks of mutually recursive
predicates and, oval nodes are associated with
non-recursive rules or with blocks of mutually
recursive rules The graph essentially describes the
non-recursive part of the database by groupmng
together all the predicates which are mutually
recursive to one another and isolating the recursive
parts For every non-recursive rule of the form r
p - pl1,p2, ,pn, there 1s an arc gomng from node r
to node p (if p 1s non-recursive), or to node [p],
which 1s the node representing the set of predicates
mutually recursive to p (uf p 1s recursive) For each
non-recursive predicate pi, there 1s an arc from the
node p1 to the node r, and for each recursive predi-
cate p) there 1s an arc gomg from [p)] the node
representing the set of predicates mutually recur-
sive to pj

Finally, each bloc of recursive rules [r] 1s uniquely
associated to a set of mutually recursive predicates
[p], and we draw an arc from [p] to [r] and an arc
from [r] to [p] We also draw an arc from q (if q 1s
non-recursive) or from [q] (if q 1s recursive) to [r] if
there 1s a rule mn [r] which has q 1n 1ts body This
grouping of recursive predicates in blocks of
strongly connected components 1s presented In
[Morns et al 86]

Here 1s the representation of the previous database

21

p8 p9

P7 -p8,p9

p7

p6

p3 -p6,p4,p3
p4 -p5,p3

'p3)p4>

P2 pl

2.6. Safety of Queries

Given a query q in a database D, we say that q 1s
safe 1 D 1f the answer to q 1s finite Obviously
unsafe queries are highly undesirable

Sources of unsafeness are of two kinds

(1) the evaluable arithmetic predicates are inter-
preted by infinite tables Therefore they are unsafe
by defimtion For instance the query greater-
than(27 X) 1s unsafe

(n) rules with free vanables in the head which do
not appear 1n the body are a source of unsafeness
in the presence of evaluable arnthmetic predicates
(the anthmetic predicates provide an infimte
underlying domain, and the variable from the head
of the rule which does not appear on the nght
ranges over that domamn) Thus for instance, in
the system

good-salary(X) - X > 100000
hke(X,Y) - nice(X)

nice(john)

the query lhke(john,X)? 1s unsafe because, mn the
minimal model of the database like(john,x) 1s true
for every mteger x Note that if the first rule was
not there, like(john,X)? would be safe and have
answer hike(john,john)

The problem of safety has received a lot of atten-
tion recently [Afrat1 et al 86, Ullman 85, Zaniolo

86) We shall not survey those results here but
merely present some simple sufficient syntactic
conditions to guarantee safety A rule 1s range res-
tricted 1if every vanable of the head appears some-
where 1n the body Thus 1n this system

rl loves(X)Y) - mce(X)
r2 loves(X,Y) - nice(X),human(Y)

rl, which corresponds to ‘“nice people love every-
thing’’, 1s not range restricted while r2, which
corresponds to ‘“nice people love all humans”, 1s
Obviously, every ground rule which 1s not a fact 1s
not range restricted For instance

loves(john,X)

1S not range restricted

A set of rules 1s range restricted 1if every rule m
this set 1s range restricted

It 1s known [Reiter 78] that if each evaluable predi-
cate has a fimte natural interpretation, and if the
set of rules 1s range restricted, then every query
defined over this set of rules 1s safe This apphes
obviously to the case where there are no evaluable
predicates However, if there are evaluable predi-
cates with infinite natural interpretations, safety 1s
no longer assured We now present a simple
sufficient condition for safety in the presence of
such predicates

A rule 15 strongly safe \ff (1) 1t 15 range restricted,
and (2) every varniable 1n an evaluable predicate
term also appears in at least one base predicate

For example, the rule

well-paid(X) - has-salary(X,Y), Y > 100K
1s strongly safe, whereas

great-salary(X) - X > 100K

15 not strongly safe

A set of rules 1s strongly safe if every rule mn this
set 1s strongly safe

Any query defined over a set of strongly safe rules
1s safe However, while this 1s a sufficient condition,
1t 15 not necessary We can develop better condi-
tions for testing safety, or leave 1t to the user to
ensure that his queries are safe

2.7. Effective Computability.

Safety, mn general, does not guarantee that the
query can be effectively computed Consider for
mstance

22

pI(LXY) - X>Y
p2(X,Y,2) - X<Y
p(XrY) = pl(X;Z7Z)rp2(Z)Z;Y)

The query p(X,Y) 1s safe (the answer 1s {p(1,2)}),
but there 1s no safe computation for 1t

However, strongly safe rules are guaranteed to be
safe and safely computable

In fact, while we might often be willing to let the
user ensure that his queries are safe, 1t 1s desirable
to ensure that the query can be computed without
matenalizing “infinite” mtermediate results We
now present a sufficient condition for ensuring this

We first need some information about the way
arithmetic predicates can propagate bindings So
we characterize each anthmetic predicate by a set
of safety dependencies [Zanmolo 86] A safety
dependency 1s a couple (X — Y) where X 1s a set of
attributes and Y 1s a set of attributes It 1s to be
interpreted mtuitively as ‘“9f the values of the X
attributes are fixed then there 1s a fimte number of
values of the Y attributes associated with them”
Therefore, while their semantics 1s different from
that of functional dependencies, they behave i the
same fashion (and have the same axiomatization)
Of course, we assume that the natural interpreta-
tion of the evaluable predicate satisfies the set of
safety dependencies

For 1nstance, the ternary anthmetic predicate
“sum” has the safety dependencies

{12} — {3}
{1,3} — {2}
{23} = {1}

while the arithmetic predicate ‘‘greater than” has
only trivial safety dependencies

Now consider a rule, and define each varable n
the body to be secure if it appears 1n a non-
evaluable predicate in the body or if 1t appears n
position 1 1n an evaluable predicate p and there 1s a
subset I of the variables of p which are secure and
I —{1} Note that the defimition 1s recursive

A rule 1s bottom-up evaluable 1if

1 1t 1s range restricted, and
2 every vanable 1n the body 1s secure

For mstance
p(XY) - Y=X+1, X=Y1+Y2, p(Y1,Y2)

1s bottom-up evaluable because (1) Y1 and Y2 are
secure (they appear in p which 1s non-evaluable),
(n) n X=Y1+Y2, the safety dependency {Y1,Y2}
— {X} holds, therefore X 1s secure, and (m) in
Y=X+1, the safety dependency {X} — {Y} holds,

therefore Y 1s secure

On the contrary
p(XY) - X>Y1, o(YLY)

1s not bottom-up evaluable because X 1s not secure

A set of rules 1s bottom-up evaluable if every rule
mn this set 1s bottom-up evaluable

Any computation using only a set of bottom-up
evaluable rules can be carrnied out without materi-
alizing infinite intermediate results The computa-
tion proceeds 1n a strictly bottom-up manner, using
values for the body varnables to produce values for
the head variables The bottom-up evaluabihity cri-
terion ensures that the set of values for body van-
ables 15 finite at each step However, there may be
an mfinite number of steps For example, if we
repeatedly apply the bottom-up evaluable rule
given above, at each step we have a fimite number
of values (in this case, a unique value) for Y1 and
Y2, and hence for X and Y However, we can apply
the rule an infinite number of times, producing new
values for X and Y at each step

3. The Strategies

In the past five years, a large number of strategies
to deal with Horn rules have been presented in the
hiterature A strategy is defined by (1) an applhca-
tion domamn (1e, a class of rules for which 1t
applies) and (n) an algorithm for replymg to
queries given such a set of rules

In studying the strategies, we found that the
methods were described at different levels of detail
and using different formalisms, that they were
sometimes very difficult to understand (and some-
times were understood differently by subsequent
authors), that the application domain was not
always very clearly defined, and that no perfor-
mance evaluation was given for any of the stra-
tegies, which left the choice of a given strategy
completely open when the application domain was
the same Finally, we found that some of the stra-
tegies were 1n fact the same

We think that the strategies should be compared
according to the following cniteria (1) size of the
apphcation domain, (the larger the better), (n) per-
formance of the strategy, (the faster the better)
and (m) ease of implementation (the simpler the
better) Whle the last criterion 1s somehow subjec-
tive, the first two should be quantifiable In this
section, we give a complete description of our
understanding of the strategies and of their appl-
cation domains, and we demonstrate each one of
them through an example As much as possible, we
have tried to use the same example, except for

23

some ‘‘specialized’ strategies where we have picked
a specific example which exhibits 1ts typical
behavior

3.1. Characteristics of the Strategies

3.1.1.
zation

Query Evaluation vs. Query Optimi-

Let us first distinguish between two approaches
one first class of strategies consists of an actual
query evaluation algorithm, 1e a program which,
given a query and a database, will produce the
answer to the query We will call these methods
Representatives of this class are Henschen-Nagus,
Query/Subquery (@SQ] or Eztension Tabie,
APEX, Prolog, Nawe Evaluation and Semt-Natve
Evaluation

The strategies 1n the second class assume an under-
lymng simple strategy (which 18 in fact naive or
semi-naive evaluation) and optimize the rules to
make their evaluation more efficient They can all
be described as term rewrifing systems These
include Aho-Ullman, Counting and Reverse Count-
tng, Magic Sets and Kifer-Lozinskn

Note that this distinction 1s somehow arbitrary
each of the optimization strategies could be
described as a method (when adding to 1t naive or
semi-naive evaluation) However, this decomposi-
tion has two advantages (1) 1t might make sense
from an implementation point of view to realize
the optimization strategies as term rewnting sys-
tems on top of an underlying simpler method such
as naive evaluation, and (u) from a pedagogical
standpoint, they are much easier to understand
this way, because presenting them as term rewrit-
1ng systems indeed captures their essence

The subsequent charactenstics only relate to pure
methods

3.1.2. Interpretation vs. Compilation

A method can be interpreted or compsled The
notion 1s somehow fuzzy, and difficult to character-
1ze formally We say that the strategy 1s compiled
if 1t consists of two phases (1) a compilation phase,
which accesses only the intensional database, and
which generates an ‘“object program” of some
form, and (1) an execution phase, which executes
the object program against the facts only A
second characteristic of compiled methods is that
all the database query forms (1e, the query forms
on base relations which are directly sent to the
DBMS) are generated during the compilation
phase This condition 1s very important, because 1t
allows the DBMS to precompile the the query

forms Otherwise the database query forms are
repetitively compiled by the DBMS during the exe-
cution of the query, which 15 a time consuming
operation If these two conditions do not hold, we
say that the strategy 1s interpreted In this case,
no object code 15 produced and there 1s a fixed pro-
gram, the ‘“interpreter”, which runs agamnst the
query, the set of rules and the set of facts

3.1.3. Recursion vs. Iteration

A rule processing strategy can be recurswe or
tteratwe It 1s 1terative 1f the “target program” (in
case of a compiled approach) or the ‘“interpreter”
(i case of the interpreted approach) 1s iterative It
18 recursive 1f this program 1s recursive, 1 e, uses a
stack as a control mechanism Note that in the
iterative methods, the data we deal with 1s stati-
cally determined For mstance, if we use temporary
relations to store intermediate results, there are a
finite number of such temporary relations On the
contrary, in recursive methods the number of tem-
porary relations maintained by the system 1s
unbounded

3.1.4. Potentially Relevant Facts

Let D be a database and q be a query A fact p(a)
1s relevant to the query 1iff there exists a derivation
p(a) —* q(b) for some b in the answer set The
notion of relevant fact was mtroduced in [Lozinskn
85], we use 1t here with a somewhat different mean-
ing If we know all the relevant facts i advance,
mstead of using the database to reply to the query,
we can use the relevant part of the database only,
thus cutting down on the set of facts to be pro-
cessed A sufficient set of relevant facts 1s a set of
facts such that replacing the database by this set
of facts gives the same answer to the query
Unfortunately, in general there does not exist a
unique minimal set of facts as the following exam-
ple shows

suspect(X) - long-hair(X)
suspect(X) - ahen(X)
long-hair(antoine)
alien(antome)

Mimmal sets of facts with respect to the query
suspect(X)? are {long-hair(antomne)} and
{ahen(antone)} The second unfortunate thing
about relevant facts 1s that 1t 1s 1n general 1mpossi-
ble to find all the relevant facts in advance without
spending as much effort as in replying to the query
Thus, all methods have a way of finding a super-
set of relevant facts We call this set the set of
potentially relevant facts A set of potentially
relevant facts 1s valid 1f 1t contains a sufficient set

24

of relevant facts An obvious but not very
interesting vahd set 1s the set of all facts of the
database

3.1.5. Top Down vs. Bottom Up
Consider the following set of rules and the query

ancestor(X,Y) - parent(X,Z), ancestor(Z,Y)
ancestor(X,Y) - parent(X,Y)
query(X) - ancestor{john,X)

We can view each of these rules as productions in a
grammar In this context, the database predicates
(parent 1n this example) appear as terminal sym-
bols, and the derived predicates (ancestor n this
example) appear as the non-terminal symbols
Finally, to pursue the analogy, we shall take the
distinguished symbol to be query(X) Of course, we
know that the analogy does not hold totally, for
two reasons (1) the presence of variables and con-
stants 1n the hterals and (n) the lack of order
between the literals of a rule (for instance
“parent(X,Z), ancestor(Z,Y)” and ‘‘ancestor(Z,Y),
parent(X,Z)” have the same meaning) But we shall
1ignore these differences, and use the analogy infor-
mally

Let us now consider the language generated by this
“grammar’ It consists of

{parent(john,X),
parent(john,X),parent(X,X1),
parent(john,X),parent(X,X1),parent(X1,X2),

This language has two interesting properties (1) 1t
consists of first order sentences involving only base
predicates, 1 e, each word of this language can be
directly evaluated agaimnst the database, and (u) if
we evaluate each word of this language against the
database and take the umon of all these results, we
get the answer to the query

There 15 a minor problem here the language 1s not
fimte, and we would have to evaluate an infinite
number of first order sentences To get out of this
difficulty, we use termination conditions which tell
us when to stop An example of such a termination
condition 15 1f one word of the language evaluates
to the empty set, then all the subsequent words
will also evaluate to the empty set, so we can stop
generating new words Another example of a termi-
nation condition 1s 1f a word evaluates to a set of
tuples, and all these tuples are already in the
evaluation of the words preceding 1t, then no new
tuple will ever be produced by the evaluation of
any subsequent word, thus we can stop at this
point

All auerv evaluation methods in fact
I query ¢ ation methods 1n fact

Fg ey ARy ¥ Qaasy 2 2zl 2" i AU Al 20Uy

Ing

(1) generate the language, (11) while the language 1s
generated, evaluate all its sentences and (m) at
each step, check for the termination condition

Therefore, there are essentially two classes of
methods those which generate the language bot-
tom up, and those which generate the language
top-down The bottom-up strategies start from the
terminals (1 e, the base relations) and keep assem-
bhng them to produce non-terminals (1e denved
relations) until they generate the distinguished
symbol (1e, the query) The top-down strategies
start from the distinguished symbol (the query)
and keep expanding it by applying the rules to the
non-terminals (derived relations) As we shall see,
top-down strategies are often more efficient because
they “know” which query 1s being solved, but they
are more complex Bottom up strategies are
simpler, but they compute a lot of useless results
because they do not know what query they are
evaluating

3.2. The Methods

We shall use the same example for most of the
methods The intensional database and query are

rl ancestor(X,Y) - parent(X,Z),ancestor(Z,Y)
r2 ancestor(X,Y) - parent(X,Y)
r3 query(X) - ancestor(aa,X)

The extensional database 1s

parent(a,aa)
parent(a,ab)
parent(aa,aaa)
parent(aa,aab)
parent(aaa,aaaa)
parent(c,ca)

3.2.1. Naive Evaluation

Naive Evaluation 1s a bottom-up, compiled, itera-
tive strategy

Its apphcation domain 1s the set of bottom-up
evaluable rules

In a first phase, the rules which derive the query
are compiled into an iterative program The compi-
lation process uses the reduced rule/goal graph It
first selects all the rules which derive the query A
temporary relation 1s assigned to each derived
predicate 1 this set of rules A statement which
computes the value of the output predicate from
the value of the input predicates 1s associated with
each rule node i the graph With each set of
mutually recursive rules, there 1s associated a loop

25

which annhes the rules m that gat until no new
LA T AVESY u«yyln\aw viiv A Wiwvew 111 Viieau vUuwu UALVIL LI\ 1iVvYY
tuple 1s generate ach temporary relation is m-

tialized to the empty set Then computation
proceeds from the base predicates capturing the
nodes of the graph

In this example, the rules which derive the query
are {r1, r2, r3}, and there are two temporary rela-
tions ancestor and query The method consists in
applying r2 to parent, producing a new value for
ancestor, then applying rl to ancestor until no new
tuple 1s generated, then applying r3

The object program 1s

begin
intialize ancestor to the empty set,
evaluate (ancestor(X,Y) - parent(X,Y)),
sert the result in ancestor,
while ‘“‘new tuples are generated” do
begin
evaluate (ancestor(X,Y) - parent(X,Z),
ancestor(Z,Y))
using the current value of ancestor,
1nsert the result 1n ancestor
end,
evaluate (query(X) - ancestor(aa,X)),
insert the result m query
end

The execution of the program against the data goes
as follows

Step 1 Apply rl

The resulting state 1s

ancestor = {(a,aa), (a,ab), (aa,aaa), (aa,aab),
(aaa,aaaa), (c,ca)}

query = {}

Step 2 Apply r2

The following new tuples are generated in

ancestor {(a,aaa), (a,aab), (aa,aaaa)}

And the resulting state 1s

ancestor = {(a,aa), (a,ab), (aa,aaa), (aa,aab),
(aaa,aaaa), (c,ca), (a,aaa), (a,aab), (aa,aaaa)}

query = {}

New tuples have been generated so we continue

Step 3 Apply r2

The following tuples are generated

{(a,aaa), (a,aab), (aa,aaaa), (a,aaaa)}

The new state 1s

ancestor = {(a,aa), (a,ab), (aa,aaa), (aa,aab),
(aaa,aaaa), (c,ca), (a,aaa), (a,aab),
(aa,aaaa), (a,aaaa)}

query = {}

Because (a,aaaa) 1s new, we continue

Step 4 Apply r2

The following tuples are generated
{(a,aaa), (a,aab), (aa,aaaa), (a,aaaa)}
Because there are no new tuples, the state
does not change and we move to r3

Step 5 Apply r3

The following tuples are produced 1n query

{(aa,aaa), (aa,aaaa)} and the new state 1s

ancestor = {(a,aa), (a,ab), (aa,aaa), (aa,aab),
(aaa,aaaa), (c,ca), (a,aaa), (a,aab),
(aa,aaaa), (a,aaaa)}

query = {(aa,aaa), (aa,aaaa)}

The algorithm terminates

In this example, we note the following problems (1)
the entire relation 1s evaluated, 1e, the set of
potentially relevant facts 1s the set of facts of the
base predicates which derive the query, and (u)
step 3 completely dupheates step 2

Naive evaluation 1s the most widely described
method 1n the hterature It has been presented 1n a
number of papers under different forms The infer-
ence engine of SNIP, presented in [Shapiro and
McKay 80, Shapiro et al 82, McKay and Shapiro
81}, 15 1n fact an interpreted version of naive
evaluation The method described m [Chang 81],
while based on a very interesting language para-
digm and restricted to linear systems, 1s a compiled
version of naive evaluation based on relational
algebra The method 1 [Marque-Pucheu 83,
Marque-Pucheu et al 84] 1s a compiled version of
naive evaluation using a different algebra of rela-
tions The method 1n [Bayer 85] 1s another descrip-
tion of naive evaluation The framework presented
in [Delobel 86] also uses naive evaluation as 1ts
inference strategy SNIP 1s, to our knowledge, the
only existing implementation 1n the general case

3.2.2. Semi-Naive Evaluation

Semi-naive evaluation 1s a bottom-up, compiled
and 1terative strategy

Its application range 1s the set of bottom-up evalu-
able rules

This method uses the same approach as naive
evaluation, but tries to cut down on the number of
duplications It behaves exactly as naive evalua-
tion, except for the loop mechanism where 1t tnes
to be smarter

Let us first try to give an 1dea of the method as an
extension of naive evaluation Let p be a recursive
predicate, consider a recursive rule having p as a
head predicate and let us write this rule

p - ¢(p1,p2, ,pn,ql,q2, ,qm)

where ¢ 1s a first order formula, pl,p2, ,pn are

mutually recursive to p, and ql,q2, ,qm are base or
derived predicates, which are not mutually recur-
sive to p

In the naive evaluation strategy, all the qi’s are
fully evaluated when we start computing p and the
pt’s On the other hand p and the pr’s are all
evaluated nside the same loop (together with the
rest of predicates mutually recursive to p)

Let p)(1) be the value of the predicate pj at the 1-th
iteration of the loop At this iteration, we compute

#(p1(1),p2(x), ,pn(1),q1,q2, ,qm)

During that same 1teration each p) receives a set of
new tuples Let us call this new set dp)(1) Thus the
value of pj at the beginning of step (1+1) 1s p)(2) +
dpj(2) (where + denotes union)

At step (1+1) we evaluate
¢((p1(1)+dp1(x)), ,(pn(1)+dpn(1)),ql, ,qm),

which, of course, recomputes the previous expres-
sion (because ¢ 1s monotonic)

The 1deal however, 1s to compute only the new
tuples 1 e the expression

d¢(p1(1),dp1(1), ,pn(1),dpn(1),ql, ,qm)=
#((p1(1)+dp1(1)), ,(pn(1)+dpn(1)),ql, ,qm)
'¢(p1(l)’ ,pn(l),ql,)qm)

The basic principle of the semi-naive method 1s the
evaluation of the differential of ¢ instead of the
entire ¢ at each step The problem 1s to come up
with a first order expression for d¢, which does not
contain any difference operator Let us assume
there 1s such an expression, and describe the algo-
rithm With each recursive predicate p are associ-
ated four temporary relations p before, p after,
dp before and dp after The object program for a
loop 1s as follows

while ‘‘the state changes’ do

begin

for all mutually recursive predicates p do
begin
mitiahize dp after to the empty set,
mtiahize p after to p before,
end

for each mutually recursive rule do
begin
evaluate d¢(pl,dpl, ,pn,dpn,ql, ,qn)

using the current values of

p1 before for p1 and of dp:1 before for dpi,
add the resulting tuples to dp after,
add the resulting tuples to p after
end

end

All we have to do now 1s provide a way to generate

d¢ from ¢ The problem 1s not solved in 1ts
entirety and only a number of transformations are
known In [Bancilhon 85], some of them are given
1n terms of relational algebra

It should be noted however, that for the method to
work, the only property we have to guarantee 1s
that
¢(p1+dpl,)- é(p1,) € dg(pl,dpl,)
C ¢(p1-+dpl,)

Clearly, the closer dé(pl,dpl,) 15 to
(é(p1+dpl,) - é(pl,)), the better the optimiza-
tion 1s In the worse case, where we use ¢ for d¢,
semi-naive evaluation behaves as naive evaluation
Here are some sumple examples of rewrite rules

if ¢(p,a) = p(X,Y),q(Y,Z),
then d¢(p,dp,q) = dp(X,Y),q(Y,Z)

More generally when ¢ 1s linear 1 p, the expression
for d¢ 18 obtained by replacing p by dp

if ¢(p1;p2) = pl(X,Y),p2(Y,Z),
then d¢(p,dp) = p1(X,Y),dp2(Y,Z)
+dp1(X,Y),p2(Y,Z)+dp1(X,Y),dp2(Y,Z)

Note that this 1s not an exact differential but a rea-
sonable approximation

The 1dea of semi-naive evaluation underhies many
papers A complete description of the method
based on relational algebra 1s given in [Bancilhon
85] The 1dea 1s also present 1n [Bayer 85]

It should also be pointed out that, in the particular
case of linear rules, because the differential of ¢(p)
1s sumply ¢(dp), 1t 1s sufficient to have an inference
engine which only uses the new tuples Therefore
many methods which are restricted to linear rules
do indeed use semi-naive evaluation Note also that
when the rules are not linear, applying narve
evaluation only to the “new tuples’ 1s an mcorrect
method (in the sense that 1t does not produce the
whole answer to the query) This can be easily
checked on the recursive rule

ancestor(X,Y) - ancestor(X,Z),ancestor(Z,Y)

In this case, iIf we only feed the new tuples at the
next stage, the relation which we compute consists
of the ancestors whose distance to one another 1s a
power of two

To our knowledge, outside of the special case of
linear rules, the method as a whole has not been
implemented

3.2.3. Iterative Query/Subquery

Iterative Query/Subquery (QSQI) 1s an interpreted,
top-down strategy

27

Its application domain 1s the set of range restricted
rules without evaluable predicates

The method associates a temporary relation with
every relation which derives the query, but the
computation of the predicates deriving the query 1s
done at run time QSQI also stores a set of queries
which are currently being evaluated When several
queries correspond to the same query form, QSQI
stores and executes them as a single object For
nstance, 1if we have the queries p(a,X) and query
p(b,X), we can view this as query p({a,b},X) We
call such an object a generalized query The state
memorized by the algorithm 1s a couple <Q,R>,
where Q 15 a set of generalized queries, and R 1s a
set of derived relations, together with their current
values

The 1terative interpreter 1s as follows

Imtial state 1s <{query(X)},{}>
while the state changes do
for all generalized queries n Q do
for all rules whose head matches the
generalized query do
begin
unify rule with the generalized query,
(1 e propagate the constants)
this generates new generalized quenes
for each derived predicate 1n the body
by looking up the base relations,
generate new tuples, (by replacing
each base predicate on the right by
1ts value and every denved predicates
by 1ts current temporary value)
add these new tuples to R,
add these new generahzed queres to Q
end

Let us now run this interpreter against our exam-
ple logic database

The mmtial state 1s <{query(X)},{}>

Step 1

We try to solve query(X) Only rule r3 apphes
The unification produces the generalized query
ancestor({aa},X) This generates temporary rela-
tions for query and ancestor with empty set values
Attempts at generating tuples for this generahized
query fail

The new state vector 1s

< {query(X),ancestor(aa,X)},
{ancestor={},query={}}>

Step 2

A new generalized query has been generated, so we
go on We try to evaluate each of the generahzed

queries query(X) does not give anything new, so
we try ancestor({aa},X)

Using rule r2, and umfymng, we get parent(aa,X)
This 1s a base relation, so we can produce a set of
tuples Thus we generate a value for ancestor
which contains all the tuples of parent(aa,X) and
the new state vector 1s

< {query(X),ancestor(aa,X)},
{ancestor={(aa,aaa),(aa,aab)},query={}}>

We now solve ancestor(aa,X) using r1 Unification
produces the expression

parent(aa,Z),ancestor(Z,Y)

We try to generate new tuples from this expansion
and the current ancestor value but get no tuples
We also generate new generahized queries by look-
ng up parent and immstantiating Z This produces
the new expression

parent(aa,{aaa,aab}),ancestor({aaa,aab},Z)

This creates two new queries which are added to
the generalized query and the new state 1s

< {query(X),ancestor({aa,aaa,aab} X)},
{ancestor={(aa,aaa),(aa,aab)},query={}}>

Step 3

New generahized queries and new tuples have been
generated so we continue We first solve query(X)
using r3 and get the value {(aa,aaa), (aa,aab)} for
query The resulting new state 1s

< {query(X),ancestor({aa,aaa,aab} X)},
{ancestor={(aa,aaa),(aa,aab)},
query={(aa,aaa),(aa,aab)}}>

We now try to solve ancestor({aa,aaaaab}X)
Using r2, we get parent({aa,aaa,aab}),X} which 1s a
base relation and generates the following tuples 1n
ancestor {(aa,aaa),(aa,aab),(aaa,aaaa)} This pro-
duces the new state

< {query(X),ancestor({aa,aaa,aab} X)},
{ancestor={(aa,aaa),(aa,aab),(aaa,aaaa)},
query={(aa,aaa),(aa,aab)}}>

We now solve ancestor({aa,aaa,aab}X)} using rl
and we get p({aa,aaa,aab},Z)ancestor(Z,Y) We
bind Z by going to the parent relation, and we get

p({aa,aaa,aab},{aaa,aab,aaaa}),
ancestor({aaa,aab,aaaa},Y)

This generates the new generalized query
ancestor({aaa,aab,aaaa},Y) and the new state

< {query(X),ancestor({aa,aaa,aab,aaaa} X)},
{ancestor={(aa,aaa),(aa,aab),(aaa,aaaa)},
query={(aa,aaa),(aa,aab)}}>

28

Step 4

A new generahzed query has been generated, so we
continue Solving the ancestor queries using r2 will
not produce any new tuples, and solving 1t with r3
will not produce any new generalized query nor
any tuples The algorithm terminates

Concerning the performance of the method, one
can note that (1) the set of potentially relevant
facts 15 better than for naive (in this example 1t 1s
optimal), and (n) QSQI has the same duplication
problem as naive evaluation each step entirely
duplicates the previous strategy

Iterative Query/Subquery 1s presented m [Vieille
85 and 86] To our knowledge 1t has not been
1mplemented

3.2.4. Recursive Query/Subquery or Exten-
sion Tables

Recursive Query/Subquery (QSQR) 1s a top-down
mterpreted recursive strategy

The application domam 1s the set of range res-
tricted rules without evaluable predicates

It 1s of course a recursive version of the previous
strategy As before, we maintain temporary values
of denved relations and a set of generalized
queries The state memorized by the algorithm 1s
still a couple <Q,R>, where Q 1s a set of general-
1zed queries and R 18 a set of derived relations
together with thewr current values However,
besides this explicit state, the recursion mechamsm
stores at each level mn the stack the tuples returned
by the evaluation of the query, but this seems to
have been solved reasonably in the existing imple-
mentation The algorithm uses a selection function
which, given a rule, can choose the first and the
next derived predicate in the body to be “‘solved”

The recursive interpreter 1s as follows

procedure evaluate(q)
(* q 15 a generalized query *)
begin
while ‘“new tuples are generated” do
for all rules whose head matches the
generalized query do
begin
unify the rule with the generahzed
query, (1 e, propagate the constants)
until there are no more derived predicate
on the nght do
begin
choose the first/next derived predicate
according to the selection function,
generate the corresponding generahzed
query, (This 1s done by replacing n the

rule each base predicate by its value
and each previously solved derived
predicate by 1ts current value)
ehminate from that generalized query
the queries that are already m Q,

this produces a new generalized query q’,

< {ancestor({aa,aaa,aab} X), query(X)},{}>
evaluate (ancestor({aaa,aab},X))
(this 1s a recursive call)

Step 11

use rl

ancestor({aaa,aab})Y) -

add q’ to Q, parent({aaa,aab},Z),ancestor(Z,Y)
evaluate(q’) by looking up parent we get the
end, binding {aaaa} for Z
replace each evaluated predicate by its new state 1s
value and evaluate the generalized query q, < {ancestor({aa,aaa,aab,aaaa} X),
(This can be done 1n some order without query(X)},{}>
waiting for all predicates to be evaluated) evaluate(ancestor({aaaa},X))
add the results in R, (this 1s a recursive call)
return the results Step111
end use rl
end ancestor({aaaa},Y) -
Initial state 1s < {query(X)},{}> parent({aaaa},Z),ancestor(Z,Y)
evaluate(query(X)) by looking up parent we get no
It 1s important to note that this version of QSQ 1s binding for 2
very similar to Prolog It solves goals in a top- use r2
down fashion using recursion, and 1t considers the ancestor({aaaa},Y) -
parent({aaaa},Y)

literals ordered in the rule (the order 1s defined by
the selection function) The important differences
with Prolog are (1) the method 1s set-at-a-time
mnstead of tuple-at-a-time, through the generalized
query concept, and (n) as pointed out mn [Dietrich
and Warren 86], the method uses a dynamic pro-
gramming approach of storing the intermediate

this fails to return any tuple

end of evaluate(
ancestor({aaaa} X))

Step 112

nothing new 1s produced

end of evaluate(

results and re-using them when needed This ancestor({aaaa},Y))

dynamic programming feature also solves the prob- use r2 By

lem of cycles in the facts while Prolog will run 1n ancestor({aaa,aa }t:() - b},Y)

an wnfimte loop 1n the presence of such cycles, thus returns tll)lzr:: liaaaraa b

QSQR will detect them and stop the computation P
ancestor(aaa,aaaa)

when no new tuple 1s generated Thus, QSQR 1s
complete over 1ts application domain whereas Pro-
log 1s not

new state 1s

< {ancestor({aa,aaa,aab,aaaa} X),
query(X)}, {ancestor={(aaa,aaaa)}}>
Here 1s the ancestor example Step 1 2

same as Step 1, nothing new produced

evaluate(query(X))
use rule r3 end of evaluate (
query(X) - ancestor{aa,X) | ancestor({aaa,aab} X))
this generates the query ancestor({aa},X) use rule r2
new state 1s ({aa) ancestor({aa},X) - parent({aa},Y)
< {ancestor({aa},X), query(X)},{}> returns the tuples

ancestor(aa,aaa) and ancestor(aa,aab)
new state 1s
< {ancestor({aa,aaa,aab,aaaa} X),

evaluate(ancestor({aa}X)
Step 1 of the 1teration

use rule rl
ancestor({aa},Y) - parent({aa},Z), query(X)},{ancestor={(aaa,aaaa),
ancestor(Z,Y) g (ag,aaa),(a.a,aab)}}>
tep

by looking up parent we get the
bindings {aaa,aab} for Z

this generates the query
ancestor({aaa,aab},X)

new state 1s

nothing new produced

end of evaluate({aa},X)
generate tuples from r3
new state 1s
< {ancestor({aa,aaa,aab,aaaa},X),

29

query(X)},{ancestor={(aaa,aaaa),
(aa,aaa),(aa,aab)},query=(aaa,aaaa),
(2,203 (an,2ab)}) >

end of evaluate(query(X))

Recursive Query/Subquery 1s described 1 [Vieille
85 and 86] A compiled version has been imple-
mented on top of the INGRES relational system
[Vieille 86] In [Dietrich and Warren 85|, along with
a good survey of some of these strategies, a method
called ‘““extension tables” is presented It is, up to a

few details, the same method

3.2.5. Henschen-Nagvi

Henschen-Naqvi 1s a top-down, compiled and itera-
tive method

The apphcation domain 1s that of linear range res-
tricted rules

The method has a compilation phase which gen-
erates an iterative program That iterative pro-
gram 1s then run against the data base The gen-
eral strategy 1s fairly complex to understand, and
we shall restrict ourselves to describing 1t 1n the
“typical case” which 1s

p(X)Y) - up(X,XU),p(XU,YU),down(YU,Y)
p(X,Y) - ﬂa't(X’Y)

query(X) - p(a,X)

Note that the relation names up and down are not
to be confused with the notions ‘‘top-down” or
“bottom-up”’, which are charactenstics of evalua-
tion strategies Let us introduce some simple nota-
tion, which will make reading the algorithm much
simpler Since we are only dealing with binary rela-
tions, we can view these as set-to-set mappings
Thus, the relation r associates with each set A a
set B, consisting of all the elements related to A by
r We denote Ar the image of A by r, and we
have

Ar= {y|r(x,y) and x € A}

If we view relations as mappings, we can compose
them, and we shall denote r s the composition of r
and s Therefore

A(rs)=(Ar)s

This approach is similar to the formalism described
m [Gardarin and Maindreville 86] We shall
denote the composition of relation r n times with
itself #* Finally we shall denote set unmion by ’+’
Once this notation 1s introduced, it 15 easy to see
that the answer to the query 1s

30

{a} flat + {a} up flat down

+ {a} up up flat down down +

+ {a} up® flat down® +
The state memorized by the algorithm 1s a couple
<V,E>, where V 1s a the value of a unary relation
and E 1s an expression At each step, using V and
E, we compute some new tuples and compute the
new values of V and E

The 1terative program 1s as follows

V ={a},

E =), /*the empty string */

while ‘“‘new tuples are generated m V”’ do
begin
/* produce some answer tuples */
answer == answer + V flat E,
/* compute the new value */

V =Vup,

/* compute the new expression */
E =E| down,

end

Note that E 1s an ezpresston, and 1s augmented
each time around the loop by concatenating
“ down” to it through the “cons’ operator As can
be seen from this program, at step 1, the value V
represents {a} up' and the expression E represents
down' Therefore the produced tuples are

{a} up* flat down'

This 1s not meant to be a complete description of
the method, but a description of 1ts behavior mn the
typical case

The Henschen-Naqvi method 1s described in [Hen-
schen and Naqvi 84] The method has been imple-
mented in the case described here This 1mplemen-
tation can be found in [Laskowski] An equivalent
strategy 15 described using a different formalism 1n
[Gardarin and Maindreville 86] The performance
of the strategy 1s compared to Semi-Naive evalua-
tion and another method (not described here) mn
[Han and Lu 86)

3.2.8. Prolog

Prolog 1s a top-down, nterpreted and recursive
method

The application domain of Prolog s difficult to
state precisely (1) 1t 1s data dependent in the sense
that the facts have to be acychc for the interpreter
to terminate, and (n) there 15 no simple syntactic
characterization of a terminating Prolog program
The job of characterizing the “good” rules 1s left
to the programmer

We consider 1ts execution model to be well known
and will not describe 1t In fact Prolog 1s a pro-
gramming language and not a general strategy to
evaluate Horn clauses We essentially mention
Prolog for the sake of completeness and because 1t
18 1nteresting to compare 1ts performance to the
other strategies

3.2.7. APEX

APEX 1s a strategy which 1s dafficult to categorize
It 1s partly compiled 1n the sense that a graph simi-
lar to the predicate connection graph 1s produced
from the rules, which takes care of some of the
preprocessing needed for interpretation It 1s not
fully compiled 1n the sense that the program which
runs against the database 1s still unique (but dnven
by the graph) It 1s, however, clearly recursive,
because the interpreter program 1s recursive
Finally, 1t is partly top-down and partly bottom-up
as will be seen 1n the interpreter

The apphcation domain of APEX 1s the set of
range restricted rules which contain no constants
and no evaluable predicates

The interpreter takes the form of a recursive pro-
cedure, which, given a query, produces a set of
tuples for this query It 1s as follows

procedure solve(query,answer)
begin
answer = {},
if query q 15 on a base relation
then evaluate q against the date base
else
begin
select the relevant facts for q 1n the
base predicates,
put them 1n relevant,
while new tuples are generated do
begin
for each rule do
(this can be done in parallel)
begin
mstantiate the right predicates
with the relevant facts and produce
tuples for the left predicate,
add these tuples to the set of
relevant facts,
mtialize the set of useful facts
to the set of relevant facts,
for each literal on the nght do
(this can be done in parallel)
begin
for each matching relevant fact do
begin
plug the fact in the rule and

31

propagate the constants,
this generates a new rule and
a new set of quenes,
for all these new quernes q’ do
begin
solve(q’,answer(q’))
(this 1s the recursion step)
add answer(q’)
to the useful facts
end
end
mstantiate the night predicates
with the useful facts,
produce tuples for
the left predicate,
add these to the
relevant facts,
extract the answer to q from
the relevant facts
end
end
end
end
end,

solve(query(X),answer)

Let us now run this program against our ancestor
example We cannot have a constant in the rules
and we must modify our rule set and solve directly
the query ancestor(aa,X)

solve (ancestor(aa,X), answer)
we first select the relevant base facts,
relevant = {parent(aa,aaa),parent(aa,aab)},
we now start the main 1teration
Step 1
rule rl
“ancestor(X,Y) - parent(X,Z),
ancestor(Z,Y)”
we cannot produce any new tuple
form this rule because ancestor
does not yet have any relevant fact
useful =
{parent(aa,aaa),parent(aa,aab)},
process parent(X,Z)
use parent(aa,aaa)
the new rule 15
“parent(aa,aaa),ancestor(aaa,Y)”
solve(ancestor(aaa,Y),answerl)
(this call 1s not described)
this returns
{ancestor(aaa,aaaa)}
which we add to useful
useful =
{parent(aa,aaa),parent(aa,aab),
ancestor(aaa,aaaa)},

use parent(aa,aab)
the new rule 1s
“parent(aa,aab),ancestor(aab,Y)”
solve(ancestor(aab,Y),answer2)
(this call 1s not described)
this returns nothing
process ancestor(Z,Y)
we 1nstantiate parent and ancestor
with the useful facts
this produces ancestor(aa,aaaa)
we add 1t to the relevant facts
relevant =
{parent(aa,aaa),parent(aa,aab),
ancestor(aa,aaaa)},
rule r2 “ancestor(X,Y) - parent{X)Y)”
using the relevant facts we produce
{ancestor(aa,aaa),ancestor(aa,aab)}
we add these to relevant
relevant =
{parent(aa,aaa),parent(aa,aab),
ancestor(aa,aaa), ancestor(aa,aab),
ancestor(aa,aaaa)},
this rule does not produce any subquery

Step 2
will not produce anything new,
and so the algorithm stops

The APEX method 1s described in [Lozinskn 85
and 85a] The method has been 1mplemented

3.3. Optimization Strategies

We now turn to the description of the second class
of strategies the optimization strategies

The main drawbacks of the naive evaluation
method are

1 The potential set of

relevant facts 1s too big (In other words, 1t
does not make good use of the

query bindings), and

2 It generates a lot of duplicate computation

A number of optimization strategies have recently
been proposed to overcome those two difficulties

3.3.1. Aho-Ullman

Aho and Ullman [Aho and Ullman 79] present an
algorithm for optimizing recursive queries by com-
muting selections with the least fixpoint operator
(LFP) The mput 1s an expression

op(LFP(r=1(r))

where f(r) 1s a monotonic relational algebra expres-
sion (under the ordering of set inclusion) and con-

32

tains at most one occurrence of r The output 1s an
equivalent expression where the selection has been
pushed through as far as possible

We mtroduce their notation and ideas through an
example Consider

a(X)Y) - a(X,Z), p(Z,Y)
a(X:Y) - p(X:Y)
q(X) - a(john,X)

Aho-Ullman wrnite this as
a'al=,°hn(LFP(a. =apUp))

In this defimtion, @ 1s a relation which 1s defined by
a fizpownt equation 1n relational algebra, and p1s a
base relation If we start with ¢ empty and repeat-
edly compute a using the rule a = ap U p, at
some 1teration, there 1s no change (since the rela-
tion p 1s finite) Because the function used mn the
fixpoint equation 1s monotonic, this 1s the least
fizpornt of the fixpont equation [Tarski 55] It 1s
the smallest relation a which satisfies the equation,
1 e contains every tuple which can be generated by
using the fixpoint rule, and no tuple which cannot
The query 1s sumply the selection a;=john applied
to this relation Thus, the query 1s a selection
applied to the transitive closure of p

We now describe how the Aho-Ullman algonthm
optimizes this query We use ’’ to denote compo-
sition, which 1s a join followed by projecting out
the join attributes We begin with the expression

o'al=10hn(a)

and by replacing a by f(a) we generate
g =sobn(a P U P))

By distributing the selection across the jon, we get
Ual=john(a‘ p)U Ua,=;ohn(P)

Since the selection i the first subexpression only
mvolves the first attribute of a, we can rewrite 1t
as

aal=)ohn(a‘) P
We observe that this contains the subexpression
aal=:ohn(a)

which was the first expression in the senes If we
denote this by E, the desired optimized expression
1s then

LFP(E = E p U 0, —jon(P))

This 1s equivalent to the Horn Clause query
a(john,Y) - a(john,Z), p(Z,Y)

a(john,Y) - p(john,Y)
q(X) - a(john,X)

The essence of the strategy is to construct a series
of equivalent expressions starting with the expres-
sion op(r) and repeatedly replacing the single
occurrence of r by the expression f(r) Note that
each of these expressions contains just one
occurrence of R In each of these expressions, we
push the selection as far inside as possible Selec-
tion distributes across umion, commutes with
another selection and can be pushed ahead of a
projection However, 1t distributes across a Carte-
sian product Y X Z only if the selection apphes to
components from just one of the two arguments Y
and Z The algorithm fails to commute the selec-
tion with the LFP operator 1if the (single)
occurrence of r 1s 1n one of the arguments of a
Cartesian product across which we cannot distri-
bute the selection We stop when this happens or
when we find an expression of the form h(g(ow(r)))
and one of the previous expressions mn the series 1s
of the form h(op(r)) In the latter case, the
equivalent expression that we are looking for 1s
h(LFP(s=g(s))), and we have succeeded 1n pushing
the selection ahead of the LFP operator

We note 1n conclusion that the expression f(r) must
contain no more than one occurrence of r For
mstance, the algorithm does not apply in this case

aal=]ohn(LFP(a' =apU p))

Aho and Ullman also present a similar strategy for
commuting projections with the LFP operator, but
we do not discuss 1t here

3.3.2. Kifer-Lozinskii

The Kifer-Lozinskn algorithm 1s an extension of
the Aho-Ullman algorithm described above How-
ever, rules are represented as rule/goal graphs
rather than as relational algebra expressions, and
the strategy 1s described in terms of filters which
are apphed to the arcs of the graph It 1s con-
vement to think of the data as flowing through the
graph along the arcs A filter on an arc 1s a selec-
tion which can be apphed to the tuples flowing
through that arc, and 1s used to reduce the number
of tuples that are generated Transforming a given
rule/goal graph nto an equivalent graph with
(additional) filters on some arcs 15 equivalent to
rewnting the corresponding set of rules

The execution of a query starts with the nodes
corresponding to the base relations sending all their
tuples through all arcs that leave them Each
axiom node that receives tuples generates tuples
for 1ts head predicate and passes them on through

33

all 1ts outgoing arcs A relation node saves all new
tuples that 1t receives and passes them on through
1ts outgomng arcs Computation stops (with the
answer bemng the set of tuples in the query node)
when there 1s no more change 1n the tuples stored
at the various nodes at some 1iteration We note
that this 1s simply Semi-Naive evaluation

Guven filters on all the arcs leaving a node, we can
’push’ them through the node as follows If the
node 1s a relation node, we sumply place the dis-
junction of the filters on each imncoming arc If the
node 1s an axiom node, we place on each mncoming
arc the strongest consequence of the disjunction
that can be expressed purely in terms of the van-
ables of the hteral corresponding to this arc

The objective of the optimization algorithm 1s to
place the ‘‘strongest’ possible filters on each arc
Starting with the filter which represents the con-
stant 1 the query, 1t repeatedly pushes filters
through the nodes at which the corresponding arcs
are incident Since the number of possible filters 1s
fimte, this algorithm terminates It stops when
further pushing of filters does not change the
graph, and the graph at this point 1s equivalent to
the origmmal graph (although the graph at inter-
mediate steps may not) Note that since the dis-
junction of ’true’ with any predicate 1s ’true’, if
any arc in a loop 1s assigned the filter ’true’, all
arcs 1n the loop are subsequently assigned the filter
‘true’

Consider the transitive closure example that we
optimized using the Aho-Ullman algomthm We
would represent 1t by the following axioms

rl a(X)Y) - a(X,Z), p(Z,Y)
2 aX)Y) - p(XY)
r3 q(X) - a(john,X)
Given below 1s the corresponding system graph,

before and after optimization (We have omitted
the vanables in the axioms for clanty)

After

We begin the optimization by pushing the selection
through the relation node a Thus the arcs from rl
to ¢ and from r2 to a both get the filter ’1=)ohn’
(We have simplified the conventions for keeping
track of variables - ’1’ refers to the first attribute
of the corresponding head predicate) We then
push these filters through the corresponding axiom
nodes, rl and r2 Pushing ’I=john’ through node
r2 puts the filter ’p ;=—john’ on the arc from p to
r2 Pushing ’1=john’ through node rl puts the
filter ’a ;=)ohn’ on the arc from a to r1 Note that
1t does not put anything on the arc from p to rl
(empty filters are equivalent to ’true’) There are
no arcs entering p, and the filter on the arc from a
to rl does not change the disjunction of the filters
on arcs leaving a (which 1s still ’a;==)ohn’) So the
algorithm terminates here

The analogy with the Aho-Ullman algorithm 1s
easily seen when we recognize that a filter 1s a

34

selection, pushing through a relation node is distn-
bution across a U and pushing through an axiom
node 1s distribution across a Cartesian product In
general, the optimizations achieved by the two
algonithms are 1dentical However, the Kifer-
Lozinskn algorithm 1s more general in that 1t suc-
cessfully optimizes some expressions containing
more than one occurrence of the defined predicate
An example 1s the expression

aa1=10hn(LFP(a = (a' pUaqU p)))

The Aho-Ullman algorthm does not apply in this
case because there are two occurrences of R
f(R) The Kifer-Lozinskn algorithm optimizes this
to

LFP((0, —jota(2) P) U (0a—joma(a) q)
) (O'al=10hn(P)))

Essentially, 1t improves upon the Aho-Ullman algo-
rithm 1n that 1t 1s able to distribute selection across
some unions where both arguments contain r
Further, the algorithm can work directly upon cer-
tain mutually recursive rules, for example

rl1 rX)Y) - bX), s(X,Y)

r2 S(X»Y) - C(X)’ r(X)Y)

13 q(X) - r(X,ohn)
Before applying the Aho-Ullman algorithm, these
rules must be rewritten as follows

r1 (X)Y) - b(X), ¢(X), r(X,Y)

r2 q(X) - r(X,john)
Note that the Kifer-Lozinskn algorithm fails to
optimize both

0a1=)ohn(LFP(a = aa U p)), and

aal=10hn(LFP(a =apUpal p))

3.3.3. Magic Sets

The 1dea of the Magic Sets optimization 1s to simu-
late the sideways passing of bindings a la Prolog by
the introduction of new rules This cuts down on
the number of potentially relevant facts

The application domain 18 the set of bottom-up
evaluable rules

We shall describe the strategy in detail, using as an
example a modified version of the same-generation
rule set

Sg(X,Y) = p(X;}CP)!p(YrYPLSg(YP)(P)
sg(X,X)
query(X) - sg(a,X)

Note that 1n this version the two variables XP and

YP have been permuted Note also that the second
rule 15 not range restricted The first step of the
magic set transformation 1s the introduction of
adornments and the generation of adorned rules

Given a system of rules, the adorned rule system
[Ullman 85] 1s obtained as follows

For each rule r and for each adornment a of the
predicate on the left, generate an adorned rule
Define recursively an argument of a predicate in
the rule r to be distsngutshed [Henschen and Naqw:
84| 1f either 1t 1s bound 1n the adornment q, or 1t 1s
a constant, or 1t appears mn a base predicate
occurrence that has a distingmshed wvanable
Thus, the sources of bindings are (1) the constants
and (u) the bindings in the head of the rule These
bindings are propagated through the base predi-
cates If we consider each distinguished argument
to be bound, this defines an adornment for each
derived literal on the right The adorned rule is
obtained by replacing each derived lhteral by its
adorned version

If we consider the rule
Sg(X’Y) = p(X;)CP),p(YtYP):Sg(YP;}CP)

with adornment bf on the head predicate, then X 1s
distinguished because bound 1n sg(X,Y), XP 1s dis-
tinguished because X 1s distingwished and p(X,XP)
15 a base predicate and these are the only dis-
tinguished vanables Thus the new adorned rule 1s

sg” (X)Y) - p(XXP),p(Y,YP),sg/® (YPXP)

If we consider a set of rules, this process generates
a set of adorned rules The set of adorned rules
has size K R where R 1s the size of the onginal set
of rules and K 1s a factor exponential in the
number of attributes per derived predicate So, for
mnstance, if every predicate has three attributes,
then the adorned system 1s eight times larger than
the onginal system However, we do not need the
entire adorned system and we only keep the
adorned rules which derive the query In our
example the reachable adorned system 1s

Sgbl (XIY) - p(XrXP)7p(Y»YP):Sg/b (YP7)(P)
Sg!b (X;Y) - p(Xr)(P)rp(YrYP);Sgb, (YP:)CP)
SS"’ (X, X)

sg/® (X.X)

query’ (X) - sg¥ (a,X)

Clearly, this new set of rules 1s equivalent to the
oniginal set 1n the sense that i1t will generate the
same answer to the query

The magic set optimization consists In generating
from the given set of rules a new set of rules,
which are equivalent to the ongmnal set with
respect to the query, and such that their bottom-

35

up evaluation 1s more efficient This transformation
1s done as follows (1) for each occurrence of a
derived predicate on the nght of an adorned rule,
we generate a magic rule (n) For each adorned
rule we generate a modified rule

Here 1s how we generate the magic rule (1) choose
an adorned hteral predicate p on the right of the
adorned rule r, () erase all the other derived
hiterals on the mght, (1) in the denved predicate
occurrence replace the name of the predicate by
magic p* where ¢ 15 the literal adornment, and
erase the non distinguished vanables, (1v) erase all
the non distinguished base predicates, (v) in the
left hand side, erase all the non distinguished vari-
ables and replace the name of the predicate by
magte p 1°, where pl 1s the predicate on the left,
and a’ 1s the adornment of the predicate pl, and
finally (v1) exchange the two magic predicates

For mstance the adorned rule

SS” (X’Y) - p(X,)G)),p(Y,YP),SgIb (YP:)(P)
generates the magic rule

magic/® (XP) - p(X,XP), magic®’ (X)

Note that the magic rules simulate the passing of
bound arguments through backward chaining (We
have dropped the suffix “sg” 1n naming the magic
predicates since 1t 1s clear from the context)

Here 1s how we generate the modified rule For
each rule whose head 1s p a, add on the nght hand
side the predicate magic p a(X) where X 1s the list
of distinguished variables in that occurrence of p
For instance the adorned rule

SS” (XIY) - p(X7)(P),p(Y7YP);Sg,b (YPIXP)
generates the modified rule

sgb/ X)Y) - p(X,XP),p(Y,YP),ma.glc"l (X,
sg/* (YP,XP)

Finally the complete modified set of rules for our
example 1s

magic!* (XP) - p(X.XP), magic”/ (X)
magic®’ (YP) - p(Y,YP),magic’/® (Y)
magict/ (a)
sg® (X)Y) -
p(X,XP),p(Y,YP),magic’’ (X),sg/* (YP XP)
Sg/b (X:Y) -
p(X’}G))’p(Y;YP)rmaglc/b (Y)rSg“ (YP’XP)
sg* (X,X) - magic¥ (X)
sg/® (X,X) - magic® (X)
query f(X) - sg”/ (2.X)
The 1dea of the magic set strategy was presented 1n

[Bancilhon et al 86] and the precise algorithm 1s
described 1n [Bancilhon et al 86a] The ‘“Alexan-

dre” strategy described in [Rohmer and Lescoeur
85] appears to be based on the same 1dea To our
knowledge, the strategy 1s not implemented

3.3.4. Counting and Reverse Counting.

Counting and Reverse Counting are derived from
the magic set optimization strategy

They apply under two conditions (1) the data 1s
acychc and (un) there 15 at most one recursive rule
for each predicate, and 1t 1s linear

We first describe counting using the “typical” sin-
gle linear rule system

B(XY) - Ba(X.Y)
p(X)Y) - up(X,XU),p(XU,YU),down(YU,Y)
query(Y) - p(a,Y)

The 1dea consists in introducing magic sets (called
counting sets) in which elements are numbered by
thewr distance to the element a Remember that the
magic set essentially marks all the up ancestors of
a and then applies the rules in a bottom-up fashion
to only the marked ancestors In the counting stra-
tegy, at the same time we mark the ancestors of
john, we number them by their distance from a
Then we can “augment” the p predicate by
numbering 1ts tuples and generate them by levels
as follows

counting(a,0)

counting(X,I) -counting(Y,J),up(Y,X),I=J+1

pP’(XY,I) - counting(X,I),fat(X,Y)

p'(XY,I) - counting(X,I),up(X,XU),
p’(XU,YU,J),down(YU,Y),I=J-1

query(X) - p’(2,X,0)

Thus at each step, mstead of using the entire
magic set, we only use the tuples of the correct
level, thus mimimizing the set of relevant tuples
But 1n fact, 1t 1s useless to compute the first attr-
bute of the p predicate Thus the system can be
further optimized nto

counting(a,0)

counting(X,I} -counting(Y,J),up(Y,X),I=J+1
p”(Y,]) - countmng(X,I),flat(X,Y)

P (YD) - p”(YU,J),down(YU,Y),J=J-1,J>0
query(X) - p”(Y,0)

It 1s interesting to notice that this new set of rules
1s In fact simulating a stack

Reverse counting 1s another vanmation around the
same 1dea It works as follow (1) first compute the
magic set, then (n) for each element b n the magic
set number all 1ts down descendants and 1ts up
descendants and add to the answer all the down
descendants having same number as a (because a 1s
in the up descendants) This gives the following

36

equivalent system

magic(a)

magic(Y) - magie(X),up(X,)Y)

des up(X,X,0) - magic(X)

des down(X’,Y,0) - magic(X’),flat(X’,Y)

des up(X’,X,I) - des up(X’,Y,J),
up(X,Y),I=J+1

des down(X’,X,I) - des down(X’,Y,J),
down(Y X),I=J+1

query(Y) - des up(X’,a,Y),des down(X",Y,I)

This can be shghtly optimized by limiting our-
selves to the b’s which will join with flat and res-
tricting the down des’s to be i the magic set This
generates the following system

magic(a)

magic(Y) - magie(X),up(X,Y)

des up(X,X,0) - magic(X),fat(X,Y)

des down(X’,Y,0) - magie(X’),flat(X’,Y)

des up(X’,X,I) - magic(X),des up(X’,Y,J),
up(X,Y),I=J+1

des down(X’ X1} - des down(X",Y,J),
down(Y X),J=J+1

sg(a,Y) - des up(X’,a,Y),des down(X"Y,])

Note that we still have the problem of a “late ter-
mination’” on down because we number all the
descendants 1n down, even those of a lower genera-
tion than a

The 1dea of counting was presented in {Bancilthon
et al 86] and a formal description of counting and
of an extension called ‘“magic counting” was
presented 1 the single rule case in [Sacca and
Zaniolo 86] An extension to the fully general case
of Horn Clauses with function symbols 15 described
in [Sacca and Zaniolo 86a] We did not cover this
extension here Reverse counting 1s described 1n
[Bancilhon et al 86] They have not been imple-
mented

3.4. Summary of Strategy Characteristics.

A summary of the charactenstics of each strategy
1s presented 1n Table 1

Method

Naive Evaluation

Semi-Naive Evaluation

Application Range

Bottom-up Evaluable

Bottom-up Evaluable

Query/Subquery Range Restricted
No Anthmetic
Query/Subquery Range Restricted
No Arithmetic
APEX Range Restricted
No Arithmetic
Constant Free
Prolog User responsible

Henschen-Naqva

Linear

Aho-Ullman Strongly Linear
Kifer-Lozinsku Range Restricted
No Arithmetic
Counting Strongly Linear
Magic Sets Bottom-up evaluable

4. Performance Comparisons

In this section, we present the results of a com-
parative performance evaluation of the various
strategies To perform such a comparison we must

(1) Choose a set of rules and queries which will
represent our benchmark (2) Choose some test
data which will represent our extensional database
(3) Choose a cost function to measure the perfor-
mance of each strategy (4) Evaluate the perfor-
mance of each query agamnst the extensional data-
bases

We first describe the four queries used as “typical”
mtensional databases Then, we present our char-
acterization of the data Each relation 1s character-
1zed by four parameters and 1t 1s argued that a
number of famhar data structures, e g trees, can
be described 1 this framework We describe our
cost metric, which 1s the size of the intermediate
results before duplicate ehimination We present
analytical cost functions for each query evaluation
strategy on each query The cost functions are
plotted for three sets of data - tree, inverted tree

37

Top down vs

Table 1: Summary of Strategy Characteristics

Compied vs

Iterative vs

Bottom Up Interpreted Recurswe
Bottom Up Compiled Tterative
Bottom Up Compiled Iterative
Top Down Interpreted Iterative
Top Down Interpreted Recursive
Mixed Mixed Recursive
Top Down Interpreted Recursive
Top Down Compiled Iterative
Bottom Up Compiled Tterative
Bottom Up Compiled Iterative
Bottom Up Compiled Iterative
Bottom Up Compiled Iterative

and cylinder We discuss these resuits informally

The performance 1ssue was addressed mformally
through the discussion of a set of examples i [Ban-
cilhon et al 86a] Han and Lu [Han and Lu 86]
have reported a study of the performance of a set
of four evaluation strategies (including Naive and
Henschen-Naqvi and two others not considered
here) on the same generation example, using ran-
domly generated data Their model 1s based on the
selectivity of the join and select operations and the
sizes of the data relations They consider both
CPU and IO cost We have chosen to concentrate
on one aspect of the problem, which 1s the number
of successful firngs (measured using the sizes of the
intermediate relations) and have studied a wider
range of strategies, queries and data

4.1. Workload: Sample Intensional Data-
bases and Queries

Instead of generating a general mix, we have
chosen four queries which have the properties of
exercizing various important features of the stra-
tegies We are fully aware of the fact that this set

15 1nsufficient to provide a complete benchmark,
but we view this work as a first step towards a
better understanding of the performance behavior
of the various strategies

The queries are three different versions of the
ancestor query and a version of the same-
generation query The first one 1s just a classical
ancestor rule and query with the first attribute
bound

Query 1 a(X)Y) - p(X)Y)
a(fo) - p(X,Z),a(Z,Y)

query(X) - a(john,X)

Because most strategies are representation depen-
dent, we have studied the same example with the
second attribute bound instead of the first This
will allow us to determine which strategies can
solve both cases

Qucry 2 B(X,Y) - p(X,Y)
a’(x"{) - p(X,Z),a.(Z,Y)
query(X) - a(X,john)

The third version of the ancestor example specifies
ancestor using recursive doubling This enables us
to see how the strategies react to the non hnear
case This example bemng fully symmetrc, 1t 1s
sufficient to test 1t with 1ts first attribute bound

Qu"'y 3 a’(er) - p(X;Y)
a'(XrY) R a(X,Z),a(Z,Y)
query(X) - a(johnX)

Finally to study something more complex than
transitive closure, we have chosen a generalized
version of the same generation example, bound on
its first attrbute

Query 4 B(XY) - Bat(X.Y)
p(X;Y) - uP(X:XU);P(XU;YU)y
down(YU,Y)
query(X) - p(john,X)
4.2. Characterizing Data: Sample Exten-

sional Databases

Because we decided on an analytical approach, we
had to obtain tractable formulae for the cost of
each strategy against each query Therefore, each
relation must be characterized by a small set of
parameters Fortunately, because of the choice of
our workload, we can restrict our attention to
binary relations

We represent every binary relation by a directed
graph and view tuples as arcs and domain elements
as nodes Nodes are arranged in layers and each
arc goes from a node in one layer to a node 1n the
next Note that in these graphs each node has at

38

least one n-arc or one out-arc Nodes in the first
layer have no incoming arcs and nodes in the last
layer have no outgoing arcs

Let R be a binary relation and A be a set Recall
that we denote by A.R the set

AR = {y | x€ Aand R(x,y) }
We charactenze a binary relation R by

(1) Fp the fan-out factor,

(2) Dg the duplication factor,
(3) hg the hetght, and

(4) bg the base

Fp and Dy are defined as follows given a ‘‘ran-
dom’ set A of n nodes from R, the size of AR 1s
nFyp (We use ’’ here to denote multiphcation It
should be clear from the context whether ’°’
denotes multiplication or composition) before
duplicate elimination Dp 1s the duplication factor
mm AR, 1e the ratio of the size of AR before and
after duplicate elimination Thus the size of AR
after duplicate ehmnation 18 n Fp /Dy

We call E; = Fp /Dy the ezpanston factor of R

The base by is the number of nodes which do not
have any antecedents The height hy 1s the length
of the longest chain n R

When no confusion is possible, we shall simply use
F, D, h and b instead of Fp ,.Dg ,hy and by

The typical structure consists of a number of
layers There are (hgp +1) layers of nodes i the
structure, numbered from top to bottom (as 0 to
h) There are by nodes 1n level 0

< b

>

\ A

level 0

h F Y

This “parametnzed structure” 1s fairly general and
can represent a number of typical configurations

A binary balanced tree of height 1 1s defined

by

==2, D=1, h=l, b=1
The same binary tree upside down 1s defined
by
F=1/2, D=2, h=l, b=2!
A st of length 1 1s defined by

F=1, D=1, h=l, b=1
A set of n lists of length 1 1s defined by
F=1, D=1, h=l, b=n
A parent relation, where each person has two chil-
dren and each child has two parents, 1s defined by
F=2, D=2, h=number of generations,
b=number of people of unknown parentage

However, this formalism does not represent cycles
Nor does 1t represent short cuts, were a short cut 1s
the existence of two paths of different length going
from one point to another Clearly, they would
violate our assumption that nodes were arranged 1n
layers with arcs gong from nodes 1n one layer to
the next We also emphasize that we assume the
data to be random, with a uniform distribution
Thus, the values F and D are average values

Our assumption that the duplication factor 1s
independent of the size 1s a very crude approxima-
tion For instance 1t implies that if you start from
one node you still generate some duplicates Obwi-
ously the duplication factor increases with the size
of the start set Therefore, our approximation
overestimates the number of duplhicates However,
it becomes reasonable as the size of the start set
becomes large It 1s also dependent upon our
assumption that the data 1s random (with a uni-
form distribution) and not reguler

Let us now turn to the problem of charactenzing
mter-relation relationships Let A and B be two
sets The transfer ratio of A with respect to B,
denoted T, g 1s the number such that given a ran-
dom set of n nodes 1n A, the size of A N B after
duphcate elimination 1s n Ty Note that 0 < T
<1

This definition can be extended to binary relations
by considering only the columns of the relations
We shall denote the 1-th column of R by Ri. Thus,
given two binary relations R and S, the number of
tuples 1n the (ternary) result of the join of R and S
18 n Tryg;, where n 18 the number of tuples in R

4.3. The Cost Metrics

We have chosen for our cost measure the number
of successful inferences performed by the system

The sumplest way to obtamn this cost function 1s to
measure the size of the mntermediate results before
duphcate ehmmation

Note that 1in this model the measure of complexity
of the join, the cartesian product, intersection and
selection 1s the size of the result, the measure of
complexity of union 1s the sum of the sizes of the
arguments (each tuple present in both argument 1s
going to fire twice), and the measure of complexity
of projection 1s the size of the argument Readers

39

familiar with performance evaluation of relational
queries might be surprised by these measures How-
ever, 1t Is argued 1n [Bancithon 85] that they are
meaningful In essence, our cost 1s a measure of one
mmportant factor in the performance of a query
evaluation system, the number of successful finngs,
rather than a measure of the actual run-time per-
formance

4.4. Cost Evaluation

For each strategy and for each query, we have
analytically evaluated the cost of computing the
given query using the given strategy The cost 1s
expressed as a function of the data parameters F,
D, h and b The formulae are histed in Appendix 1,
and therr derivations are contained in [Bancilhon
and Ramaknshnan 86] To compare these fairly
complex formulae, we have plotted a number of
curves, some of which are included 1n Appendix 2

4.5. Graphical Comparison of the Costs

The curves shown 1n Appendix 2 show the relative
performance of the various strategies on each of
the sample queries for three sets of data They are
relations 1n which the tuples are arranged in a tree
structure, an inverted tree structure, and a
“cylinder” A cyhinder 1s a structure 1n which each
layer has b nodes and each node has on the aver-

age two incoming and two outgomng arcs We
present below a sample relation of each type
b=l b=8
level 0 N 3 3
e e h=3 h=3
h,
Tree, S=2, D=1 Inverted Tree, S=1, D=2
b=S
level 0 ~ '
o0 h=3
h v

Cylinder, S=D=2

The choice of these structures was made 1n order
to study the effects of uneven distmbution of the
data and the effects of duplication We have fixed
the sizes of all relations at 100,000 tuples For the
tree structure, we vary the shape by changing the
nnnnnn

1s the number of tuples) constant Clearly, decreas-
ing the fan-out increases the depth of the structure
and vice-versa Similarly, the shape of the inverted
tree 1s varied by varying the duplication factor
The shape of the cylinder 1s varied by varying the
ratio of breadth b to height h

ARG iky

acgain keenme the
agaiil xecping ule

number of arcs constant

For each query and data structure, we plot the cost
of each strategy against the shape of the data
(measured 1n terms of the parameter used to vary
1t) Thus, for each query, we plot cost vs F for the
tree, cost vs D for the inveried tree, and cost vs
b/h for the cylinder We do this for each strategy
The cost 1s computed using the cost functions
listed 1n the appendix We have often displayed a
subset of the curves (for the same query and data
structure) over a different range, to allow a better
comparison

For the ancestor queres, we plot the cost of each
strategy for the cases when the parent relation has
100,000 tuples and the data 1n 1t has the shape of a
tree, an inverted tree and a cyhnder

For the same generation example, we have
assumed that the relations up and down are 1denti-
cal and that the fan-out and duplication for the
relation flat are both equal to 1 We have also
assumed that the transfer ratio from up to flat 1s
equal to the transfer ratio from flat to down We
have assumed that all three relations (up, flat and
down) have 100,000 tuples We plot the cost of
each strategy as the shape of up and down varies
for a total of six cases the cases when the struc-
ture 1s a tree, an mverted tree and a cylinder, with
the transfer ratio equal to 1 and 001 (100% and
1% respectively)

4.6. Summary of the Curves

There are several important pomnts to be seen 1n
the curves For a given query, there is a clear ord-
ering of the various strategies which usually holds
over the entire range of data The difference 1n per-
formance between strategies 1s by orders of magni-
tude, which emphasizes the importance of choosing
the right strategy The cost of the optimal strategy
15 less than 10,000 1n each of the queries we have
considered, over the entire range of data The size
of the data 1s 100,000 tuples This indicates that
recursive queries can be implemented efficiently

40

We present a summary of the ordering of the stra-
tegies, as seen 1n the corresponding curves We use
<< to denote an order of magnitude or greater
difference in performance, and for a given query,
we hst 1n parentheses those strategies that perform

S Aandi oy fan o1l Aods Wa nofan b4 dha o
iaenvicaily 10T ail aata vve reier vo tne various

strategies using the following acronyms for brevity
HN (Henschen-Naqvi), C (Counting), MS (Magic
Sets), QSQR, QSQI, APEX, P (Prolog), SN (Sem-
Naive), N (naive) and KL (Kifer-Lozinskn)

Query 1 (Ancestor bf)

Tree
(HN,C) << (MS,QSQR,APEX) =P <<
QSQI << (SNKL) << N

Inverted tree

(HN,C) << (MS,QSQR,APEX) << P <<
QSQI << (SN,KL) << N

Cylinder

(HN,C) << (MS,QSQR,APEX) <<

QSQI << (SNKL) << N << P

Query 2 (Ancestor fb)

All data
(HN,C) << (MS,QSQR,KL) <<
QSQI << APEX << SN << N=P

Query 8 (Ancestor bf, non-linear)

All data
QSQR << QSQI << APEX <<
(SN, MSKL) << N

(HN, Counting and Prolog do not apply)
Query 4 (Same Generation bf)

Tree
C << HN = (MS,QSQR,APEX) = P <<
QSQI << (SNJKL) << N

Inverted tree
C << HN = (MS,QSQR,APEX) <<
P << QSQI << (SNJKL) << N

Cyhnder
C << HN = (MS,QSQR,APEX) <<
QSQI << (SNKL) << N << P

To summarize the ancestor results, the following
order 1s seen to hold for the ancestor queries

(HN, C) << (MS, QSQR) << QSQI <«
APEX << SN << N

There are some exceptions and additions to the
above ordering In the non-linear case, Henschen-
Nagqvi and Counting do not apply, and Magic Sets
reduces to Semi-Naive Kifer-Lozinskn performs

hke Semi-Naive, except in the case where the
second argument 1s bound, and n this case i1t per-
forms ke QSQR APEX performs hike QSQR n
the case where the first argument 1s bound Prolog
performs poorly when it cannot propagate the con-
stant 1n the query (the case where the second argu-
ment 1s bound), as expected When 1t can pro-
pagate the constant, its performance degrades shar-
ply with duplhcation, especially as the depth of the
data structure mcreases This 1s readily seen from
the curves for the cylinder

To summarize the same generation results, we
have

C << HN = (MS, QSQR, APEX) <<
QSQI << (SN, KL) << (P, N)

Prolog behaves hke QSQR when there 1s no duph-
cation (tree) With duplication, 1its performance
degrades so sharply with an increase mn the depth
of the data structure that we have classified 1t with
Naive, although 1t performs better than Semi-
Naive over a wide range

4,7. Interpreting the Results

These results indicate that the following three fac-
tors greatly influence the performance

1 The amount of duplication of work,

2 The s1ze of the set of relevant facts, and

3 The use of unary vs binary intermediate
relations

By duplication of work, we refer to the repeated
finng of a rule on the same data This can occur
due to duplication 1n the data (e g Prolog), or due
to an 1terative control strategy that does not
remember previous firnngs (e g QSQI and Naive)
Relevant facts have been defined earher, and their
signmficance 1n reducing the number of useless
finngs has been explained The third factor 1s hard
to define precisely Strategies which only look at
sets of nodes rather than sets of arcs perform
better than those that look at sets of arcs, by an
order of magnitude or more They are less gen-
erally applicable since this often involves a loss of
information This usually leads to non-termination
unless the database has certain properties, such as
hnearity of rules and acychicity of the extensional
database The following discussion 1s intended to
clanfy these concepts, as well as to explamn the per-
formance of the various strategies 1n terms of these
three factors

41

4.7.1. The Ancestor Queries

We begin by looking at the ancestor queries The
effect of duplication 1s seen by considering Prolog
and QSQI, both of which do duphcate work, for
different reasons When the first argument 1s
bound, Prolog performs hke QSQR on a tree data
structure, where exactly one arc enters each node
(equivalently, there 1s exactly one way of deriving
a given answer) With duplication (1 e on the aver-
age more than one arc enters a given node) perfor-
mance degrades dramatically Prolog’s performance
for the same query on a cylinder 1s comparable to
Naive evaluation, a difference of several orders of
magnitude! We note that the set of relevant facts
1s comparable 1n the two cases, being the set of
nodes reachable from the node denoting the con-
stant i the query (which will henceforth be
referred to as the query node) However, in the
case of the cylnder, these nodes can be reached
along several paths and Prolog infers them afresh
along each path QSQI performs duplicate compu-
tation for a different reason, which 1s that its itera-
tive control strategy does not remember previous
firngs Essentially, there are as many steps (execu-
tions of the control loop) as the longest path from
the query node, and all nodes reached by a path of
length less than or equal to 1 are recomputed at all
steps after the 1th This can be seen by comparing
QSQR and QSQI and noting that QSQI 1s orders
of magnitude worse m all cases QSQR uses the
same set of relevant facts (the reachable nodes)
and differs only in that 1t has a recursive control
strategy that avoids precisely this duplhcation
Naive evaluation also does a lot of duplicate work,
for the same reason as QSQI, 1e, 1t does not
remember previous firings Semi-Naive differs from
Naive only 1n that 1t remembers all previous firings
and does not repeat them Thus, the effect of
duplication can also be seen in the difference
between Naive and Semi-Naive

The effect of a smaller set of relevant facts can be
seen 1n the vast difference between Magic Sets and
Semi-Naive Magic Sets 1s sumply Semi-Naive
applied to the set of relevant facts, which 1s deter-
mined to be the set of reachable nodes except m
the doubly recursive case In this case, the first
phase of the Magic Sets strategy, which computes
the set of relevant facts, fails and the Magic Sets
strategy degenerates to Sem-Naive This effect can
also be seen 1n the behavior of Prolog on a tree
data structure (which means we eliminate the effect
of duphcation) when the first argument 1is free
Prolog’s depth first strategy 1s unable to propagate
the constant 1n the second argument of the query
In other words, 1t must consider all facts in the

database, and 1ts performance degrades by several
orders of magmitude Similarly, the Kifer-Lozinskn
strategy degenerates to Semi-Naive when the
optimization algorithm fails to push down the con-
stant 1n the query We note that pushing the con-
stant (equivalently, the selection that 1t represents)
15 equivalent to cutting down on the number of
relevant facts

QSQR succeeds 1n restricting the set of relevant
facts to the set of nodes reachable from the query
node even 1n the non-lhinear version of ancestor
QSQI also succeeds 1n domng this, but performs a
lot of duphicate computation The Magic Sets algo-
rithm uses the entire parent relation for the set of
relevant facts and so degenerates to Semi-Naive
APEX, for reasons explained below, also uses a
much larger set of relevant facts So, although 1t
improves upon Semi-Naive computation i this
case, 1t 13 much worse than QSQR Henschen-
Naqvi and Counting do not apply and Prolog does
not terminate Thus QSQR 1s the only strategy
that succeeds in both restricting the set of relevant
facts and avoiding duplicate work It does this at
the cost of implementing the recursive control,
which 15 a cost that we do not understand at this
stage

The behavior of APEX 1illustrates the interesting
distinction between the set of relevant facts and
the set of useful facts The first step in the APEX
strategy 1s to find what APEX calls the set of
relevant facts (which 1s actually a subset of the set
of relevant facts as we have defined 1t, since 1t does
not 1nclude all facts than could derive an answer)
In the ancestor examples, these are facts from the
relation parent, and the finng of the first rule adds
them to the ancestor relation Subsequently, these
facts are substituted (in turn) into both the parent
and ancestor predicates in the body of the second
rule Except 1n the first case, this leads to
subqueries whose answers are not relevant For
example, 1n the case where the second argument 1s
bound to john, the set of relevant (a la APEX)
facts 1s the set of facts p(X,John) By substituting
these into the parent predicate in the second rule,
we generate the query a(john,?) This computes the
ancestors of john, whereas the given query
a(?,John) asks for the descendants of john This 1s
because APEX does not make the distinction that
facts of the form p(X,john) are relevant to the
query a(?,John) only when substituted nto the
ancestor predicate mn the second rule This1s a dis-
tinction that the Magic Sets strategy makes, and 1t
thereby reduces the number of useless firngs

We now consider the third factor, the anty of the
intermediate relations The two strategies which

42

use unary mtermediate relations are the Henschen-
Naqvi and Counting strategies In essence, at step 1
they compute the set of relevani facts which 1s at a
distance 1 from the query node Let us denote this
set by S1 At the next step, they compute the set
of those nodes 1n parent to which there 1s an are
from a node in S1 Thus, they compute all nodes
reachable from john, and further they compute
each node at most D times where D 1s the duplica-
tion factor However, the unary relations strategy
fails to terminate if the query node 1s 1n a cycle
Also, neither the Henschen-Nagvi nor the Counting
strategy applies when there are non-hnear rules

Magic Sets computes exactly the same set of
relevant facts and does no duphcate work How-
ever, 1n the second phase at step 1 1t computes all
arcs 1n the transitive closure of parent (restricted
to the set of relevant facts) of length 1 In particu-
lar, this includes all arcs of length 1 rooted at john
This 1s the answer, and this 15 essentially all that
the more specialized methods, Henschen-Naqvi and
Counting, compute Everything else that the
Magic Sets strategy does 1s useless computation
Thus, the cost of the Magic Sets strategy 1s the
number of arcs 1n the transitive closure of the sub-
tree rooted at john (1 e the subtree of nodes reach-
able from john)

The recursive control of QSQR generates
subqueries using precisely the nodes m set Si at
step 1, and the answer to each of these subqueries
15 the set of all nodes 1n the subtree rooted at that
node By induction, 1t 1s easy to see that the total
cost 1nvolved in computing a query 1s the number
of arcs in the transitive closure of the subgraph
rooted at that query node The intermediate rela-
tions here are the (bmary) sets of answers to each
subquery This seems to indicate the power of a
recursive control strategy since 1t succeeds 1n
reducing both the set of relevant facts and the
amount of duplicate work

4.7.2. The Same Generation Query

We conclude this discussion by explaiming the per-
formance of the various strategies in the same gen-
eration query 1n terms of these three factors
Counting has the best performance since 1t uses the
smallest set of relevant facts (the nodes of up
which are reachable from the query node), does not
do duplicate computation, and further, uses unary
intermediate relations It executes the query in
two phases In the first phase, at step 1, it com-
putes the set of all nodes 1n up that are reachable
from the query node via a path of length 1 In the
second phase, 1t first computes the nodes of down
that are reachable from this set via an arc of flat,

still retaimng the distance of each set from the
query node In subsequent 1iterations, it steps
through down once each time, such that each node
m a set that 1s 1 steps away from the query node in
up 1s the root of paths of length 1 1n down

Henschen-Naqv1 uses the same set of relevant facts,
and 1s a unary strategy, but 1t does a lot of duph-
cate work It 1s a single phase algorthm, which
does the same amount of work as the first phase of
Counting 1n computing sets of up nodes along with
therr distances from the query node However, 1t
steps through down 1 times for each set at a dis-
tance 1 from the query node 1n up Since 1t does not
keep track of the work 1t does 1n step 1 at step 1+1,
1t repeats a lot of the work in stepping through
down

The set of relevant facts for Magic Set, QSQR and
APEX 15 agan the set of up nodes reachable from
the query node They do not perform duphcate
computation However, they work with binary rela-
tions, 1n effect computing all paths with equal
lengths 1n up and down hnked by a single arc in
flat Thus, their performance 1s inferior to that of
Counting Our graphs show theirr performance to
be 1dentical to that of Henschen-Naqvi It 15 to be
expected that they perform similarly since the
duplicate work done by Henschen-Naqvi 1s offset
by the fact that they work with binary relations
However, their performance 1s not really identical
It appears to be so 1n our curves for two reasons
The first 1s our approximation of the number of
arcs of length 1 to n(l) gsum(E,h-l) The second 1s
the fact that we plot the curves for cases where up
and down are 1dentical Under these conditions, the
expressions for the performance of these methods
become 1dentical

QSQI 1s sumilar to QSQR except that at each step,
1t duplicates the work of the previous steps, and so
1t 1s wnferior to Magic Set, QSQR and APEX
Semi-Naive uses bimnary relations, and although 1t
does not do duplicate work, this 1s outweighed by
the fact that the set of relevant facts 1s all the
nodes 1 up So 1t performs worse than QSQI
Kifer-Lozinskn degenerates to Semi-Naive since the
optimization strategy fails to make any improve-
ments to the system graph Prolog 1s similar to
QSQR when there 1s no duplication 1n the data,
but 1ts cost increases exponentially with the depth
of the data structure when there 1s duplcation
Naive evaluation uses the entire set of nodes 1n up
as relevant facts, does duplicate work since 1t does
not remember firings, and uses binary intermediate
relations With the exception of Prolog over a cer-
tamn range, it 1s clearly the worst strategy

43

Finally, we note that when the transfer ratio T 1s
001 (1%), the cost of computing the answer by
Naive or Semi-Naive evaluation 1s essentially that
of computing all arcs in the relation flat, and so
the two methods perform almost identically

4.8. Summary and Caveats

Our conclusions may be summarized as follows

1 For a given query, there 1s a clear ordering of
the strategies

2 The more
significantly better
3 Recursion is a powerful control structure which
reduces the number of relevant facts and ehm-
inates duphcate work

4 The choice of the nght strategy 1s critical since
the differences 1n performance are by orders of
magnitude

5 Three factors which greatly influence perfor-
mance are (1) duphcation of work, (n) the set of
relevant facts, and () the anty of the intermedi-
ate relations

speclalized strategies perform

The results seem robust in that the performance of
the various strategies usually differ by orders of
magnmtude, which allows a wide latitude for the
approximations in the model and cost evaluation.
Also, the curves rarely intersect, which means that
the relative ordering of the strategies 1s mamtamed
1n most cases over the entire range of data

However, 1t must be emphasized that our cost
function makes some crude approximations The
cost of jomm 1s linear 1n the size of the result, a
consequence of our using the size of intermediate
relations as the cost measure We also ignore the
cost of disk accesses, and the cost of implementing
a recursive control strategy Our model suffers from
the approximation that duplication 1s independent
of the s1ze of the start set

Finally, our sample data and queries are hmited,
and the results must be extrapolated to other data
and queries with caution, especially since the
results show some variance 1n the relative perfor-
mance of the strategies for different sets of data
and queries In particular, our benchmark is hm-
ited to the type of data and query where there 1s a
large amount of data and the size of the answer to
the query 1s small This clearly favors the “‘smart”
strategies and obscures, for instance, the fact that
Semi-Naive performs as well as any other strategy
when computing the entire transitive closure of a
relation [Bancilhon 85] Further, our data contains
no cycles or shortcuts This 1s an important hm-
tation since 1t favours some of the speciahized stra-
tegies For instance, there are cases where Count-
ing performs worse than Magic Sets [Bancilhon et

al 86] This 1s not shown by our results since these
cases 1nvolve shortcuts 1n the data

We have also assumed 1n this paper that methods
should strive for generahty, 1e we have not
addressed the problem of finding a set of special-
1zed operators which would solve the ‘“real life”
cases of recursion Other authors have addressed
this problem, mainly by concentrating on the tran-
sitive closure operator [Valduriez and Boral 85] or
extensions of 1t [Dayal et al 85, Rosenthal et al
85]

5. Conclusions

In this paper, we have given a description and
comparative evaluation of the major strategies for
processing logic queries without function symbols

We have tried to identify the exact application
domain for each method We have also tried to
describe the strategies 1n a uniform manner Unfor-
tunately, we have only been partially successful at
that We have 1dentified a set of major characteris-
tics of the strategies method vs optimization stra-
tegy, top-down vs bottom-up, recursive vs 1tera-
tive and compiled vs interpreted But some of
these characteristics are somewhat arbitrary for
the same strategy it 1s sometimes possible to have
a compiled or interpreted version For instance, we
have presented a compiled version of naive evalua-
tion, while SNIP 1s an interpreted version of it It
seems also reasonable to design a compiled version
of iterative QSQ We also argued that the distinc-
tion between optimization strategy and method
was mainly of a pedagogical interest However, the
top-down vs bottom-up and recursive vs 1terative
distinction seems to capture intrinsic properties of
the strategies But we consider that the problem of
finding a good taxonomy of strategies 1s still wide
open

We have presented a performance comparison of
ten methods Even though the ‘“benchmark” we
have used 1s incomplete, the cost measure too ele-
mentary and the approximations crude, we found
the results to be valuable The robustness of the
results (at least on our workload), both in terms of
the order of magmitude differences between the
costs of the strategies and in terms of invariance of
the results to the parameters which we varied, was
a surprise We have also been able to explain most
of our results through three factors duphcation,
relevant facts and unary vs binary While the first
two factors were well known, the third one came
also as a surprise, even though 1t was probably
already understood in [Sacca and Zaniolo 86]

44

Acknowledgements

We wish to thank Bill Alexander and Patrick Val-
duriez for careful proofreading of parts of the
manuscript We are extremely grateful to Pans
Kanellakis, Eliezer Lozinskn, Jeff Ullman, Laurent
Vieille and Carlo Zaniolo who provided enhghten-
ing comments and suggested many corrections and
1mprovements to the paper

References

[Afrat1 et al 86]
“Convergence of Sideways Query Evalua-
tion,” F Afrati, C Papadimitrion, G
Papageorgiou, A Roussou, Y Sagiv and J
Ullman, Proe¢ 5th ACM SIGMOD-SIGACT
Symposstum on Prwnciples of Database Sys-
tems, 1986

[Aho and Ullman 79]
“Universality of Data Retrieval Languages,”
A Aho and J Ullman, Proc 6th ACM Sym-
postum on Prineciples of Programming
Languages, 1979

[Apt and Van Emden 82]
“Contnbutions to the Theory of Logic Pro-
gramming,” JACM, 1982

[Bancilhon 85]
“Naive Evaluation of Recursively Defined
Relations,” F Bancilhon, n On Knowledge
Base Management Systems - Integrating
Database and Al Systems, Brodie and Mylo-
poulos, Eds , Springer-Verlag

[Bancilhon 85a)
“A Note on the Performance of Rule Based
Systems,”” F Bancilhon, MCC Technscal
Report DB-022-85, 1985

[Bancilhon et al 86]
“Magic Sets and Other Strange Ways to
Implement Logic Programs,”” F Banclhon,
D Maier, Y Sagiv and J Ullman, Proc 5th
ACM SIGMOD-SIGACT Sympostum on
Principles of Database Systems, 1986

[Bancilhon et al 86a]
“Magic Sets Algorithms and Examples,” F
Bancilhon, D Maier, Y Sagiv and J Ull-
man, Unpublished Manuscript, 1986

[Bancilhon and Ramaknshnan 86]
“Performance Evaluation of Data Intensive
Logic Programs,” F Bancilhon and R
Ramaknishnan, Unpublished Manuscript,
March 1986

[Bayer 85|
“Query Evaluation and Recursion 1n Deduc-
tive Database Systems,” R Bayer, Unpub-

hshed Manuscript, 1985

[Chang 81]
“On the Evaluation of Queries Containing
Derived Relations 1n Relational Databases,’’
C Chang, In Advances wm Data DBase
Theory, Vol 1, H Gallasre, J Minker and
JM Nicolas, Plenum Press, New York,
1981, pp 285-260

[Dayal et al 85)
“PROBE- a Research Project 1n
Knowledge-Oriented Database Systems
Preliminary Analysis,” U Dayal, A Buch-
mann, D Goldhirsch, S Heiler, F Manola,
J Orensten and A Rosenthal, Technical
Report, CCA-85-08, July 1985

[Delobel 86]
“Bases de Donnees et Bases de Connais-
sances Une Approche Systemique a I’Aide
d’une Algebre Matricielle des Relations,” C
Delobel Journees Francophones, Grenoble,
January 1986

[Dietrich and Warren 85
“Dynamic Programming Strategies for the
Evaluation of Recursive Queres,” S W
Dietrich and D S Warren, Unpublished
Report, 1985

[Gallaire et al 84]
“Logic and Data Bases A Deductive
Approach,” H Gallaire, J Minker and J-M
Nicolas, Computing Surveys, Vol 16, No 2,
June 1984

[Gardarin and Maindreville 85]
“Evaluation of Database Recursive Logic
Programs as Recurrent Function Series,” G
Gardarin and Ch de Maindreville, Proc
SIGMOD 86, Washington, D C, May 1986

[Han and Lu 86]
“Some Performance Results on Recursive
Query Processing in Relational Database
Systems,” J Han and H Lu Proc Data
Engineersng Conference, Los Angeles,
February 1986

[Henschen and Naqv: 84]
“On Compiling Queries in Recursive First-
Order Data Bases,”” L Henschen and S
Naqvi, JACM, Vol 81, January 1984, pp 47-
85

[Kafer and Lozmnskn 85]
“Query Optimization 1n Logic Databases,”
M Kifer and E Lozinsku, Techntcal Report,
SUNY at Stonybrook, June 1985

[Laskowsk: 84]
“Compiling Recursive Axioms 1n First Order

45

Databases,” K Laskowski, Masters Thests,
Northwestern Unwersty, 1984

[Lozinskn 83]
“A Problem-Onented Inferential Database
System,” E Lozinskn, Tech Report 83-17,
The Hebrew Unwersity of Jerusalem, May
1983

[Lozmskn 85]
“Evaluating Quertes in Deductive Databases
by Generating,” E Lozinsku, Proc 11th
International Jownt Conference on Artificral
Intelligence, 1985

[Lozinskn 85al
“Inference by Generating and Structuring of
Deductive Databases,”” E Lozinskn, Unpub-
lhshed Manuscript, 1985

[Marque-Pucheu 83]
“Algebraic Structure of Answers in a Recur-
stve Logic Database,” G Marque-Pucheu,
To appear mn Acta Informatica

[Marque-Pucheu et al 84]
“Interfacing Prolog and Relational Database
Management Systems,” G Marque-Pucheu,
J Martin-Gallausiaux and G Jomuer, n
New Applications of Databases, Gardarin
and Gelenbe Eds, Academic Press, London,
1984

[McKay and Shapiro 81]
“Using Active Connection Graphs for Rea-
soning with Recursive Rules,” D McKay
and S Shapiro, Proc 7th International Josnt
Conference on Artificral Intellsgence, 1981

[Morris et al 86]
“Design Overview of the NAIL! System,” K
Morns, J Ullman and A Van Gelder,
Proceedings of the 3rd International confer-
ence on Logic Programming, London, July
1986

[Naqvi and Fishman 81]
“An Improved Compiling Techmque for
First Order Databases,” Shamim A Naqv
and Daniel H Fishman, Proc Formal Bases
for Databases, Toulouse, October 1981

[Naqv1 and Henschen 83
“Synthesizing Least Fixed Point Queries
mto Non-recursive Iterative Programs,” S
Naqvi and L Henschen, Proc 9th Interna-
tional Jownt Conference on Artsficial Intells-
gence, Karlsruhe, 1983

[Rexter 78]
“Deductive Question Answering on Rela-
tional Data Base,” R Reiter, In Logtc and
Data Bases, H Gallawre and J Minker Ple-

num Press, New York, 1978, pp 149-177

[Rohmer and Lescoeur 85]
“La Methode Alexandre une solution pour
traiter les axiomes recursifs dans les bases de
donnees deductives ,”” Collogue Reconnais-
sance de Formes et Intelligence Artifictelle,
Grenoble, November 1985

[Rosenthal et al 85]
“Traversal Recursion A Practical Approach
to Supporting Recursive Apphcations,” A
Rosenthal, S Heiler, U Dayal, F Manola,
Unpublished Report, CCA, December 1985

[Sacca and Zamolo 86a)
“On the Implementation of
of Logic Queries for Databases,” D Sacca
and C Zaniolo, Proc 5th ACM SIGMOD-
SIGACT Symposium on Principles of Data-

base Systems, 1986

[Sacca and Zamolo 86b]
“Implementing Recursive
with Function Symbols,”
Manuscript, Aprid 1986

[Sagiv and Ullman 84
“Complexity of a Top-Down Capture Rule,”
Y Sagiv and J Ullman, Technical Report,
Stanford Unwersity, STAN-CS-84-1009,
1984

[Shapiro and McKay 80]
“Inference with Recursive Rules,” S
Shapiro and D McKay, Proc 1st Annual
National Conference on Artificral Intelhr-
gence, August, 1980

[Shapiro et al 82
“Bi-Directional Inference,” S Shapiro, J
Martins and D McKay, Proc 4th Annual
Conference of the Cognitive Science Soctety,
Ann Arbor, Michigan, 1982

[Tarsk 55]
“A Lattice Theoretical Fixpoint Theorem
and 1ts Apphlications” A Tarski, Pactfic
Journal of Mathematics 5, 1955, pp 285-309

f a Sumple Class

Logic Quenes
Unpublished

[Ullman 85]
“Implementation of Logical Query
Languages for Databases,”” J Ullman,

TOLD, Vol 10, No 8, pp 289-321, 1985

[Ullman and Van Gelder 85]
“Testing Applicability of Top-Down Cap-
ture Rules,”” J Ullman and A Van Gelder,
Technical Report, Stanford Unwerssty,
STAN-CS-85-1046, 1985

[Van Emden and Kowalsk: 76|
“The Semantics of Predicate Logic as a Pro-

46

gramming Language,” M Van Emden and
R Kowalski, JACM, Vol 28, No 4, October
1376, pp 785-742

[Valduriez and Boral 86)
“Evaluation of Recursive Queries Using Join
Indices,” P Valduriez and H Boral, Proc
Furst Intl Conference on Ezxpert Database
Systems, Charleston, 1986

[Vieille 85]
“On Handling Recursively Defined Virtual
Relations 1 Deductive Databases,” L
Vieille, Unpublished Report, ECRC, Munich

[Vieille 86]
“Recursive axioms 1n Deductive Databases
The Query/Subquery Approach,” L Vieille,
Proc Fiwrst Intl Conference on Expert Data-

base Systems, Charleston, 1986

[Zaniolo 85)
“The Representation and Deductive
Retrieval of Complex Objects,” C Zaniolo,
Proc 11th Int Conference on Very Large
Data Bases, Stockholm, September 1985

[Zaniolo 86]
“Safety and Compilation of Non-Recursive
Horn Clauses,” C Zamolo Proc First Intl
Conference on Ezpert Database Systems,
Charleston, 1986

Appendix 1: The Cost Functions

We first explain the notation and terminology used
1n analytically deriving the cost functions We have
denived expressions for the cost of each strategy on
each of the four queries we have defined We refer
the reader to [Bancilhon and Ramakrnishnan 86] for
the derivation of these expressions

We denote the number of nodes at level 1 1n rela-
tion R by np (1), and the total number of arcs m R
(which 1s the number of tuples in R) by A Where
no confusion 1s possible, we drop the subscript

We denote the sum of the (h+1)st elements of the
geometric series of ration E by gsum(E,h), thus

gum(Eh) = (1 + E+E> + E* + +EY

We define the length of an arc in the transitive clo-
sure of R (which we denote by R*) to be the length
of the path of R that generates 1t (Note that this
1s well defined because there are no short-cuts)

We denote by ag.(l) the number of arcs of length
exactly 1 in R*¥ Where the context 1s clear, we

write a(l)

a(l) = n(l) + n(1+1) + . + n(h) = n(1) gsum(E,h-1)

We denote by h! the average level

b
2.(in(1))

1=

N

It denotes the mean level at which we pick a node,
assuming nodes are umformly distributed We have
actually defined h’ as the distance of the mean
level from the highest level h for notational con-
venience, since this 13 a quantity we use exten-

sively.

Query 1 (Ancestor.bf)

1.1 Nasve evaluation

1 2 Semi-Nasve Evaluation

1.8 QSQ, Iterattve

1.4 QSQ, Recurstve

15 Henschen-Naqu

1 6 Prolog

17 APEX

1 8 Kifer-Lozinskun

1 9 Magic Sets

110 Counting

Query 2 (Ancestor.fb)

2 1 Nasve evaluation

2 2 Sems-Nawe Evaluation

Di(h-m).a(i) + E.gsum(E, 1)

=]

Di}a(n) + E gsum(E,h’-1)

1=1

h'
E gsum(Eh-1) + F Y] (h’-i+1)1E-!

=]

h'
(F+E) gsum(E,h’-1) + DY E'.gsum(E,h’)

1=1

(F+E) gsum(E,h’-1)

‘ ’
gsum(F,h’) + E gsum(E,h-1) + Y (F*') gsum(F,h 1)

[E 31

h'
(F+E) gsum(E,h’-1) + DY E' gsum(E,h’)

1=

Di‘,a(l)+E gsum(E,h’-1)

1=1

h'
(F+E) gsum(E,h’-1) + DY E' gsum(E,h’-1)

=]

(F+E) gsum(E,h’-1)

Dzh)(h—H-l) a(1) + (1/E) gsum(1/E,h-h’-1)

im=1

Di‘,a(l) + (1/E) gsum(1/E h-h’-1)
= 47

28 QSQ, Iteratsve

2 4 QSQ, Recursve

2 5 Henschen-Naqus

2 6 Prolog

27 APEX

2 8 Kifer-Lozinsks

2 9 Magic Sets

2 10 Counting

(1/E) gmum(1/Ep-h1) + D 3 (h-boa1) i (1/E)
joml

1 + (1/E) gsum(1/E,h-h’-1) + F hz“)h'(l/E)i gsum(1/E,h-h’-1)
jm=1
(D+1/E) gsum(1/E h-h’-1)

(1/E) gsum(1/E,h-h’-1) + izh)ln(x) gsum(F,h—-1)

(1/E)®*) (E gsum(E,h-1)+D i}E‘ gsum(E,h-1))

pe=x]

(D+1/E) gsum(1/E, h-h’-1)

1 + (1/E) gsum(1/E,h-h’-1) + F llf}l'(l/E)i gsum(1/E,h-h’-)

j=1

(D+1/E) gsum(1/E h-h’-1)

Query 8 (Ancestor.bf, Non-Linear Version)

8 1 Nawe evaluation

E gsum(E,h’-1) + D Zh)(log(h/l)+1) (1-1) afs)

=]

b
8 2 Sems-Nawe Evaluation E gsum(E,h’-1) + D Y (1-1) a(i)

8 8 QSQ, Iteratsve

8 4 QSQ, Recurswve

8 5 Henschen-Nagus

8 6 Prolog

8 7 APEX

8 8 Kifer-Lozinskn

8 9 Magre Sets

8 10 Counting

1=1

h'
E gsum(E,h-1) + F Y (h'-+1)1 E-!

im=1

h'
F+E gsum(Eh’-1}+DY; (:-1) E!

1=2
Does not apply

Does not terminate

E gsum(E,h’-1) + (1/E}*Y (Di(l—l) E' gsum(E,h-i))

1=1

+EY (Fi(l-—l) (1/E)* gsum(1/E,h-1))

1=1

E gsum(E,h’-1) + Di(x—l) a(1)

=1

E gsum(Eh-1) + D i(l—l) a(i)

1=}

Does not apply

48

Query 4 (Same Generation.bf)

In the following expressions, h'y, soun = min(h’y,h soun), and hyp gous = min(hg,hyp,,)

4 1 Nasve evaluation

hl, down

All¢ +T|p 2.fla1l E/M Tll¢t2 down 1 Ddoum E (hlp down "H'l) a!p(l) E&n-'* +
=i

h ’tp down

Tlp 2.f1at1 Ellat T/ lat 2.down 1 Fdwu E (Eup Eloun)i
fom1

4 2 Sems-Nasve Evaluation
hn down

A!ld +Tw2.llatl Ellu Tllutldownl Ddoum 2 a'up(l) Edloum +

1=1
h 'l, down
Tup2ttat1 Efta Triat2dount Faows 3, (Esp Edoun)'
=1

4 8 QS5Q, Iteratsve
(h ’-p down +1) Fjld +

2 '-p bomn

Tcp 2.f1at1 Fllot iE (h ,lp down "H'l) Eupi +
-]

,-p down
EI lat Tlp2 Jlat1 TI lat 2.down 1 Fdoml E (h lup down -H'l) Etlp-gsum(Edwml_l) +

1=]1

h’-y down

T2ttt Efta Triat2.iount Fioun 3y (Exp Edoun)'
1=1

4 4 @5Q, Recurstve
F'p gs“m(Eqnh ,sp‘l) +Etp gsum(Etpyh ’vp_l) Tlp2 flatl FI e +

hl
sp down
T'p2 flatl EIM T!hlz.doml Ddoum 2 E'lp gsum(E,p,h ,w_l) Eiwn +
1==1
b ,U' down i
Tspzllatl Elld T/luzdownl Fdown E (E:p Edovm)
1==]
4 5 Henschen-Naqus
Fyp gsum(E,,h’-1) +
b "’ down
E (Etlp T2 Fria + Tlp2 Jlat1 E/m T 12 dount Fioun Eqp gsum(E gy n,1-1)) +
1=e]
h ,l’ down
Ttp2 flatl Ellu T/luzdowu 1 Flwn E (Elp Edawn)l
1=1
4 6 Prolog
gsum(F.p,h ,-p"l) +F p gsum(F:p;h ,'p"l) T'p2 flatl F] lat +
h’l' down

Tcp 2.f1lat1 FI lat T]lnt2 down E Flip gsum(F.p,h ,Ip—l) Fdloum +
1=1

h 'vp down

T-pz/uc 1 Eﬂd T!mzdom 1 Fdovn 2 (Elp Edou)l

=]

49

47 APEX
F".@llm(E",h ’:p—l) +E|r Ssum(E-ph '.'-1) Tup 2./t F/ i« t+

h’l’ down
Tep2siet1 Erie Triatzdownt Divwn El, gsum(E,,h’;~1) Edpun +
jam]
h’l' down i
Ttpzlhtl E!ld T/ldzloml qun E (Elp Edoun)
juml
4 8 Kifer-Lozinsksi
ll', down
Apte +Tup2 1101 Eftee Triat2 downt Daown (Y (34p1) Edoun) +
jmrl
hl-p down i
Tupz./m 1 Elld T!lazlo«ml Fdwu E (E'p Elolu)
jm=1

4 9 Magic Sets
F-p Ssum(E'prh ,!p—l) +Esp~gsum(Elp;h ’up—l) Ttp 2.flat1 F[¢ +

h’l’ dowsn
T'p 2.flat1 El lat T] tat2.down 1 Diown 2 Eclp gsum(E.,,h ’l'.l) Elres +
fumi

h 'l’ dowsn
Te2sia1 Efie Triatz.ioont Fioen 3 (EvpEdun)'

1=

4 10 Counting
F,p gsum(E,,h’,-1) +

Tep2siat1 Fria (1+Egsum(Eu h',-1)) +
h

"p down

T:p2 flatl E/ lat TI lat 2 down) Dlwn (Ecp Edo-u)l +
ju=1

h 'l’ doon

Tup2.siat1 Epiat Tist2.dount Faows 2 (Evp-Edoun)'
j=1

50

Appendix 2: The Curves

A.bf, Tree A.bf. Inverted tree
200000000°T - ~ “ — 20000000 -
-— \""'\’__
I n \ N
£0000000"]
o, KL 000000+
$N, XKL
SR e LI
r — e T U N /
00000+
4000007
c c 10000+
° 10000 -]
s s
t ¢ 1000+
uoqL asal / Py
[4] T\'_"‘\ ————t®
s007
sooT M8, SR APEX
/ ™~ asaz
MS, QSR APEX
10F ﬁ& T — » Q8aR
N HN, €
‘ TS g, c
e ey —p— o B Sy e S P e Seng vy |
e :f- 1.0 t.83 b i-l"" w0 s 150 th 800 480 4.8 5.80 T T e e e t6s 200
F V]
A.Df. Cylinder A.fb, Tree
400000000 -
N
100000007
10000001
$n, P
00000
c Cc
° ° so000r
s]
t t APEX
1000+
Qasal
MS, aSaR, KL
w0t jl KN, €
wr MS, QsaR, APEX Vi
MN, ¢
b e ey . JURIIT UNUEENY QU THNSUNI SIS ppueory R UYOY POt
o Jo 200 o'-o u‘n [u‘n 00 800 000 e 1m “u ;‘- s.!n a.!n ;400 |.‘u 1.9 a.‘u I.L.
b/n F

51

L - ¢]

LA NN+

Sg.bf, Tree, T = 1 8g.bf, Cylinder, T = 4

N 00000 T
—~—— N N ‘/'A\"//-A\V’ 400000
.V
20000000001 N
R s, KL
$9000000T
10000001
c
. _ osac :
t
0000 v, M3, QSAR, APEY, P 00001
esal
A
1600 c 10007 HN, M, 838, APEX, P
100 / \ 00—
wt wt \ c
s —— i st § = fm| — o~ }—1
$80 $.08 4,800 4.08 £.70 4.7 4.80 485 4.0 1.98 8.9 400 D00 300 400 GO0 900 700 800 800 1000
F b/h
A.dr, Cylinder Sg9.bf, Cylinder, T = 0.04

/.’

N 200000
4000000 \
SN, #MS, Kb N, %L, N
2000001 tMOJ'
APEX c
40000 -]
asat : i°°°'|r G, N, M9, QASAR, APEX
21000
mqn
0wt asaf
N Sy S e S e o e] e for—i D e e Nl T Y [ESUUE WSS WIS IR I
b/h b/n

52

