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1 Introduction

Much of the success of the relational database model can be attributed to the declarativeness of
its query language SQL. Unfortunately, SQL is not expressive enough. There are many useful
queries (e.g., queries that involve recursion) which cannot be expressed in this language. Usually,
when one wants to reason about the contents of a database, it is necessary to leave the relational
model by embedding SQL into a lower-level language such as C, which results in an impedance
mismatch and consequent loss of declarativeness.

Deductive databases [4, 5] address this problem by adopting logic programming or a restriction
such as Datalog [11] as the query language. Prolog engines have been used to evaluate Datalog
queries, but they have proven to be unacceptable for data-oriented queries for two major reasons:
their poor termination and complexity properties for Datalog, and their tuple-at-a-time strategy.

A number of approaches have been used to attack the termination and complexity problems,
most notably: (1) tabling [13], which has added features of database evaluation to logic program-
ming languages, and (2) magic evaluation [1], which has embedded recursive goal-orientation in
the framework of database evaluation. Magic evaluation closely resembles tabling. Both magic
and tabling combine top-down goal orientation with bottom-up redundancy checking. Indeed, for
range-restricted programs, they have been proven to be asymptotically equivalent [10, 8]. De-
spite these well-known equivalences, magic-style systems have traditionally differed from tabling
systems. Magic-style systems, such as Aditi [12], LDL [2] and CORAL [7], are built upon set-at-a-
time engines, and can use set-at-a-time operations like relational joins that may be made efficient
for disk-resident data, while tabling systems, such as XSB [9], use a tuple-at-a-time strategy
that reflects their genesis in the logic programming community. Presently for in-memory Datalog
queries, due mainly to the use of Prolog compilation technology, the fastest tabling systems show
an order of magnitude speedup over magic-style systems [9]. However, because of their tuple-at-
a-time strategy, tabling systems cannot be efficiently extended to disk, and thus, they are not
practical for applications that deal with massive amounts of data.

Examining tabling closely, we found that there is no reason why a set-at-a-time strategy cannot
be closely integrated into a tabling engine. Doing so offers tremendous advantages: in-memory
predicates can be evaluated at the best in-memory speeds, while queries to disk can have the
same access patterns as the best set-at-a-time methods.



In what follows we give a brief overview of magic, introduce the basic ideas of tabling and
describe how a set-at-a-time tabled evaluation can be formulated.

2 Evaluating Recursive Queries: Magic vs. Tabling

In semi-naive bottom-up evaluation [11], a derivation is made as follows: previously derived (or
stored) facts are unified with each goal in the body of a rule; the head of the instantiated rule is
the fact that is derived. Semi-naive is an incremental iterative fixpoint algorithm. It is iterative
in that it repeatedly generates facts by applying program rules. It is incremental in the sense
that no derivation step is repeated in the evaluation, that is, a rule uses a fact in a given position
only once for further derivation.

A central difficulty of pure bottom-up evaluation, such as semi-naive, is that it is not goal-
oriented: to answer a query, the entire model of a program must be constructed. Consider the
following example.

Example 2.1 The recursive program below determines whether two individuals belong to the
same generation.

sg(X,Y):- person(X), X=Y.

sg(X,Y) :- par(X,Xp),sg(Xp,Yp) ,par(Y,Yp).
The first rule indicates that a person X is in its own generation, whereas the second rule indi-
cates that X and Y are in the same generation if their corresponding parents belong to the same

generation.

Given the following facts in a database

person(joe). person(dave). person(mary). person(ann) .
person(cain) . person(abel). person(adam). person(eve).
par(joe,ann). par(joe,dave). par(mary,ann). par(mary,dave).

par(cain,adam). par(cain,eve). par(abel,adam). par(abel,eve).
we wish to know the individuals which are in the same generation as joe, that is, we issue the
query sg(joe,Y). a

Under semi-naive evaluation, in order to answer this query, a number of facts irrelevant to our
query would be generated (e.g., sg(cain,abel)). It is important that we answer this query exam-
ining only the part of the database that involves individuals somehow connected to joe. Magic
templates rewriting (see e.g. [6]) addresses this problem by means of a program transformation.
Magic is well-discussed in the literature [11]; here we give an example to illustrate the idea.

A magic transformation of the rules in Example 2.1 would be:

query(Y):- sg(joe,Y).

magic(sg(joe,Y)).

sg(X,Y):- magic(sg(X,Y)),person(X),X=Y.

sg(X,Y):- magic(sg(X,Y)) ,par(X,Xp),sg(Xp,Yp),par(Y,Yp).
magic(sg(Xp,Yp)):- magic(sg(X,Y)) ,par(X,Xp).

Intuitively, the magic facts correspond to queries or subgoals. The set of magic facts is used
as a “filter” in the rules defining sg to avoid generating facts that are not answers to some
subgoal. Thus a semi-naive evaluation of the rewritten program achieves goal-directedness —
only facts relevant to the original query are created. For example, the semi-naive evaluation of
the magic-transformed (SNMT) same generation program would proceed as follows.



o Iteration 0: magic(sg(joe,Y)) added.

Iteration 1: sg(joe,joe), magic(sg(ann,Y)), magic(sg(dave,Y)) added.
e [teration 2: sg(ann,ann), sg(dave,dave) added.
e [teration 3: sg(joe,mary), sg(joe, joe) each derived twice, sg(joe,mary) added.

e [teration 4: Fixpoint.

In a tabled evaluation, a resolution-style search tree ensures goal-orientation rather than a
rewrite of the program. Evaluation starts from the query as a goal, and uses the rules from head
to body to create more goals. Tabled evaluations can be conveniently represented as forests of
trees as in Figure 1, which represents the same generation program and database in Example 2.1
at the end of its evaluation. Consider the operations performed by a tabled evaluation. Analogous
to the generation of magic facts in an SNMT evaluation, the first time a subgoal 5 is encountered
during a tabled evaluation, 9 is registered in the table, and a new tree created with root S: Figure 1
contains three trees whose roots (generators nodes) are labeled sg(joe,Y), sg(2,Y), and sg(3,Y).
Program clause resolution is used to obtain the immediate children for each generator node. In
addition, the node calling S becomes a consuming node, so named because it will consume answers
produced by S’s tree. Alternatively, if S is not new to the evaluation (.5 is contained in the table),
no new tree is required for S. However, a consuming node is still created for S as in the previous
case. Processing of answers is analogous: the first time an answer to a subgoal is derived during an
evaluation it is added to the table and returned to relevant consuming subgoals; any subsequent
derivations of the answer are failed. In this manner, redundant subcomputations (including loops)
that sometimes happen in Prolog are prevented by tabling. Tabled resolution can be mixed with
the program clause resolution of Prolog. In this case, we refer to tabled predicates and non-tabled
predicates depending on the form of resolution used for each. In Figure 1, consuming nodes are
represented by bold italics, and Prolog-style nodes are represented by non-bold italics.

0. sg(joe,Y) <-sg(joe,Y)

1. sg(joe,joe) <- 1. sg(joe,Y) <- par(joe, Xp),sg(Xp,Yp),par(Y,Yp)

1. sg(joe,Y) <- 1. sg(joe,Y) <-
sg(ann,Yp) par(Y,Yp) 80 sg(dave,Yp) par(Y Yp)

3. sg(joe,Y) <-par(Y,ann) 3. sg(joe,Y) <- par(Y,dave)

3. sg(joe,mary) <- 3.sg(joe,joe) <- 3. sg(joe,mary) <- 3. sg(joe,joe) <-

2.sg(ann,ann) <-  2.sg(ann,Y) <- 2.sg(dave,dave) <-  2.sg(dave)Y) <-
. par(ann,Xp) C par(dave Xp) .
sg(Xp,Yp).par(Y,Yp) : : sg(Xp,Yp),par(Y.Yp):

Figure 1: SLG forest



3 A Set-at-a-Time Tabulation Strategy

Note from the description of tabling that no assumptions are made about the linkage of the
production of answers by trees in the forest and their return to consuming nodes. There is
an intrinsic asynchrony between these two operations and this asynchrony can be exploited to
construct a search strategy that resembles that of semi-naive. Consider the following strategy.

Tabled Breadth-First Search: like the semi-naive evaluation of a magic-transformed program,
tabled evaluations can also be seen as incremental iterative fixpoint computations. Resolution
proceeds iteratively, in the following manner. Conceptually, all consuming nodes in all trees
are visited in each iteration, although only answers derived during previous iterations can be
returned to them. In addition, when a tabled subgoal 5 is called in iteration t, and S is new to
the evaluation, the evaluation must wait until iteration t+1 to create a new tree with S as root.
Notationally, we can denote the set of all answers added at iteration ¢ or earlier as Ans;, and the
set of answers added at iteration ¢ itself as a delta set of answers, §Ans;. Similarly for subgoals
we define the sets Subg; and 0.Subg,

Let us consider the actions of tabled breadth-first search for the same-generation program in
Example 2.1. Tteration 1 begins when the query sg(joe,Y) is called. Program clause resolution
is used to derive the first answer sg(joe, joe). Execution then backtracks to the second program
clause for sg/2 which eventually selects the subgoal sg(ann,Yp). Note that program clause
resolution for sg(ann,Y) will not be used until iteration 2. Rather, the engine suspends this
subgoal — at this point this subgoal is simply added to the delta set of subgoals §Subg; — and
fails, causing it to execute the next available clause, producing the selected subgoal sg(dave,Yp).
Eventually, there will be no available clauses and the engine will perform a fizpoint check, and
then start iteration 2. The engine scans the delta sets of subgoals and answers from iteration 1
to resume suspended subgoals (which will use program clause resolution) and consuming nodes
(which will consume answers created in the previous iteration). For our example, iteration 2 begins
by performing program clause resolution for sg(ann,Y). This produces, among other clauses,
the answer sg(ann,ann). This answer is added to the delta set of answers §Ansy and will be
returned in iteration 3 to the consuming node sg(joe,Y) ¢« sg(ann,Yp),par(Y,Yp). During
iteration 2, program clause resolution is also performed for sg(dave,Y), and its actions parallel
those of sg(ann,Y). The process continues, with the engine scanning nodes via the delta sets at
each fixpoint iteration, and then either performing program clause resolution for the delta set of
subgoals or returning answers in the delta set of answers to consuming nodes. The evaluation
terminates when neither new answers nor new subgoals exist. Note that, at each iteration, the
breadth-first tabling engine generates the same answers as the SNMT evaluation.

Tabled Breadth-First Search was formally defined in [3] where we prove that any fact de-
rived by this strategy is also derived by SNMT, that is, on an iteration-by-iteration basis, Tabled
Breadth-First Search is equivalent to Semi-Naive Magic Template evaluation. Experimental re-
sults presented in [3] show that an implementation of the breadth-first strategy gives excellent
times for queries that involve disk-resident data without sacrificing in-memory performance.

4 Conclusion

We have presented a breadth-first scheduling strategy for tabled evaluations that combines fast in-
memory processing of top-down logic programming systems with set-at-a-time access to external



data. Thus, serious database interaction, such as that needed in data mining, decision support,
or a variety of other applications, can be done efficiently within the structure of first-order logic
and the programming environment of Prolog.

Even though this concept has been implemented in a system, a number of improvements
are needed. For instance, the set-at-a-time interface used to couple the breadth-first tabling
engine and relational databases is in an initial state of development. When these practical issues
are resolved, our framework will contain an efficient procedural component and an efficient data
retrieval component, both using the language of first-order logic and tightly integrated in a tabling
abstract machine. We believe this framework will form a computational basis to combine the fields
of logic programming and deductive databases.
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