INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality iilustrations and
photographs, print bieedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with smali overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

On The Design and Implementation

of a Top-Down Datalog Interpreter in C++

Mohan Rao Tadisetty

A Major Project Report
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Masters in Computer Science at
Concordia University
Montreal, Quebec, Canada

July 1997

© Mohan Rao Tadisetty, 1997

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre réference
Our file Notra référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-40235-5

ABSTRACT

On The Design and Implementation of a Top-Down Datalog

Interpreter in C++

Mohan Rao Tadisetty

Datalog is a database query language based on the logic programming paradigm.
Datalog is the language of deductive databases, obtained by extending the basic relational
database model with the reasoning capability, that is. one can not only query about the
facts stored explicitly in the database but also query about derived facts. Daralog provides
the clauses with parameters. called logical variables. The interpreter for Datalog requires
the matching of predicates and of logical variables, through unification and substitution.
Datalog behaves like a programming language because it can return values as answers to
queries, rather than just "yes" and "no" answers. In this report, the syntax and semantics
of Datalog, the efforts to design and implement a top-down version of the Daralog inter-

preter in C++ and the experimental results are presented.

The name "Datalog" is chosen because of its connection with database query lan-

guages. In this implementation, the Datalog interpreter can process one query at a time.

i

ACKNOWLDEGEMENTS

[am deeply indebted to my advisor Professor Gregory Butler for introducing me
to the Object Oriented Databases. Object Oriented Design concepts, programming and
Deductive Databases. I am grateful to him for his excellent guidance, valuable sugges-
tions, encouragement and the time he spent in carefully reading the manuscript. His in-
depth knowledge of the fundamental issues and clear vision of the underlying nature of
research has not only helped me in the preparation of this project but has also helped me

acquire the proper approach for Datalog Interpreter design and implementation.

Special thanks are to my wife Uma Maheswari for her constant encouragement

and moral support, to whom [dedicate this work. Finally I wish to thank my parents and

friends.

v

Table of Contents

List of Figures vii
1.0 INTRODUCTION 1
2.0 DATALOG INTERPRETER 3

2.1 THE SYNTAX OF DATALOG PROGRAMS 3
2.2 DATALOG AND RELATIONAI. DATABASES ... 4
2.3 TorP-DOWN EVALUATION OF DATALOG GOALS.... 7
8
9

2.4 DATALOG IS A DATABASE LANGUAGE
2.4.1 TRANSLATION OF DATALOG QUERIES INTO RELATIONAL ALGEBRA. .

2.5 THE EXPRESSIVE POWER OF DATALOG 11
2.6 SEARCH STRATEGY .. 12
2.6.1 Bottom-up Evalugtion SIrQIEZYceeewueucueuemrmmrmeieeene ettt sttt 12

2.6.2 Top-Down EVAIUGLON SIFAEGY cuvmemereremmrrsisrsrssssssss st s stcccas 13

2.7 Tor-DOWN EVALUATION...... eeeessesamescsesscerssssesssseestrsensansanssessrsrtntenannone 14
2.8 QUERY PROCESSING . cemeeeeeseecmesessnseesernrasanarnsananessanenen - 16
3.0 OBJECT ORIENTED DESIGN OF A TOP-DOWN DATALOG INTERPRETER......cnrcenceeee 18
3.1 STRUCTURAL OVERVIEW....ocoiiiiactienraosoocsessemrenrsosasssstasssasenaoenssrssnssensocence 19
3.2 DATA DICTIONARY FOR DATALOG ...cvvmmrermnceeesreesisimrerernestnrinseesns s aes et iitsn s no e s sesse st un s r s nraan ettt o sa et 19
3.3 GRAMMAR FOR DATALOG LANGUAGE -..ecrvrtimrrsmmemessssseeussessncssssessmnsnnan s st ses st s sns sttt e 22
3.4 CLASSES AND DATA STRUCTURES .c.ccutrmmuimreomccnnstirssesstttacosasanaenssscessssmnanaasasisenees 23
3.4] CIASS SYMBONL........oeeeeeeeeeeeveameeeeemeeaesacssase s s sress s e e s me s s s e e s s me s e e e e et 25

3042 ClASS NODE .oaoeeeeeeeeeeeeeeeceeereee e ersaeass e s s e bt s s e sa e st h oo s s e e e S eSS T e e 26

343 ClaSS SYMBOLLIST c..oeeoeeeeeeneeamtecaeseeataeenes sttt s e ms e s st ram e s n s s T D e C et et e 27

3.4.4 ClASS QUERYocooeeeeeeee e e e e 27

3045 CIASS LITERAL o.....ooeoeeeeeeeeeeeeeeeemeees et eameasraeses s s es s ase s s a e s st e s e ST E e e e 28

346 ClASS LITERALNODEoeoeoeeeeeeeeeeeeeceesesaeseesemeass s e et s es s es e s mr b st St nn 29

347 CLASS LITERALLIST ..oeeoeeeeeeeeeetesaeaeeseeacssasenesenas e e ams et s e nss e e e e ressr 8 S Dttt 29

348 ClLASS SYMBOLPAIR ...oeoeoeeeeeeaeeeveemeeameseesemietesetssane e eas s et st o e e s era s S s s s 30

3.4.9 ClASS SUBSTITUTION ... eeeeeeeeeeceeeessasesssemessesss e ss o sems e s s st s m s et 30
34O ClLASS CLAUSE ...o.eoeeeeeeeeeeeeeeeeemeemaeeeeeeecereesesses s bt sasm e s e e e e e o s e Em TS LS ce D S et tseceee 31
3417 CIASS DATABASE .ooeeeeeeeeeeeeeeeeenesaeeeeasecesaessemsme s mas sese st s e s o m e mms s St e Dottt n 31

3.4 12 ClaSS INFERENGCE ...aneeeooeeeeeeieeeereceesansestassest et sttt n s ea e e s s 48 fo oo r e e s n sttt 32
3413 CLASS LISTINODE ...eoeeeeeeeeeeeeevem e eeeetmetaeesemessassemes s s s et s m et n s e e s e eSS s 32

3 A CLASS LIST ceeeeeeeeeeeeeeeeeeeeeeeeemeeesm e sasesaesnaan s er s m s b e s s e e s b s e s o e c s m e s mmmn s ST S e e et n s s se e s 33
3415 Class LISTITERATOR. ...o.oeeeeeeeeeaeeeeceeessemesssess s sesssseas e asae s e m st ea et et 34

4.0 IMPLEMENTATION OF INFERENCE ENGINE MECHANISM 35
4.1 OBIECT MODELcovtiivvrnmeerenecaenneneees . teeeesesssssesssensesasonternrsnraranaraseetteitersttssse s srrnras 35
4.2 DATA STRUCTUREScocevemrarneecssenerrnsnnans eeeemeeseesbesseesseceieerseseseentisieecetesitestaaenties 36
.21 URIfICQUON AIGOFILAMc..cecnemieiemmurese st s i 37

4.2.2 URfICQUON EXAMPEe...eccacnmmarirmenreesscmsem e st 38

1.2.3 INference AIGOFIAIMow..cucoemreeeeieei e e 38

5.0 EXTENSIONS OF PURE DATALOG 40
6.0 CONCLUSION 41

Table of Contents Continued Ceeeescnsesanns censennese

Bibliography

Appendix - A : Program Listings

Appendix - B : Experimental Results

vi

44

List Of Figures

Figure# Description Page#
1 PAR Relationship Tree 6
2 The Expressive Power of Datalog 12
3 Overview of Datalog Architecture 19
4 Grammar for Datalog Language 22
5 Datalog Object Model 23
6 Object Model Details for List & List Iterator 23
7 Datalog Interpreter Object Model Details 24
8 Detailed Object Model for Datalog Interpreter 35
9 Inference Engine Implementation Object Model Details 36
10 Unification Algorithm 37
11 Inference Engine Algorithm 39

vii

1.0 INTRODUCTION

At an abstract level, mathematical logic provides a uniform framework for the ex-
pression and manipulation of information. One of its greatest strengths, from the point of
view of computer science, is that the manipulation of information can be given semantics
which is declarative. That is, the semantics can be expressed without reference to a se-
quence of operations. Research in the field of logic programming is concemed with de-
veloping logic-based programming systems which manipulate data efficiently. Prolog is a
logic programming language which has been successfully used as a general programming
language(9].

Techniques have been developed for traditional database query systems to ma-
nipulate large amounts of information very efficiently. The way information is handled in
these systems can be expressed by a subset of logic. These systems typically allow the in-
formation to be transformed using a fixed set of operations, but fall short of providing a
general computational mechanism for transforming data; for example, it is not possible to
express transitive closure of a relation in a traditional database system. Deductive data-
bases extend the expressive power of database systems by adding recursion[9]. At a se-
mantic level they are equivalent to logic programs; operationally, however, a query can
be processed using either a top-down or bottom-up computation method. These two
methods are the extremes of the range of computation methods that might be employed
by a deductive database system.

Recent years have seen substantial efforts in the direction of merging artificial in-

telligence and database technologies for the development of large and persistent knowl-

1

edge bases[5]. A persistent knowledge base is one whose data is stored on the disk. In
other words, after leaving the program. the relations can be accessed again. An important
contribution towards this goal comes from the integration of logic programming and da-
tabases. The focus has been concentrated mostly by the database theory community on
well-formalized issues, like the definition of a new rule-based language, called Datalog.
which is designed specifically for interacting with large databases, and the definition of
optimization methods for various types of Datalog rules, together with the study of their
efficiency. In parallel, various experimental projects have shown the feasibility of Data-
log programming environments.

Present efforts in the integration of artificial intelligence(Al) and databases(DBs)
take a much more pragmatic approach; in particular, several attempts fall in the category
of "loose coupling”, where existing AI and DB environments are interconnected through
ad-hoc interfaces. In other cases, 4] systems have solved persistency issues by developing
internal databases for their tools; but these internal databases typically do not allow data
sharing and recovery; thus they do not properly belong to current database technology.
The spread and success of such enhanced A7 systems, however, indicate that there is a
great need for them. Loose coupling has been attempted in the area of Logic Program-
ming and databases by interconnecting Prolog systems to relational databases[11]. Most
studies indicate that simple interfaces are too inefficient; an enhancement in efficiency is
achieved by intelligent interfaces. This indicates that loose coupling might solve today's
problems, but in the future, strong integration will be required. More generally, we expect

that knowledge base management systems will provide direct access to data and will sup-

port rule-based interaction as one of the programming paradigms. Datalog is a first step

in this direction[5].

2.0 Datalog Interpreter

2.1 The Syntax of Datalog Programs

Datalog is in many respects a simplified version of general Logic Programming.
A logic program consists of a finite set of facts and rules. Facts are assertions about a
relevant piece of the world. such as: "John is the father of Harry". Rules are sentences
which allow us to deduce facts from other facts. An example of a rule is: "If X is a parent
of Yand if Y is a parent of Z. then X is a grandparent of Z". The rules, in order to be gen-
eral, usually contain universally quantified variables (X, Y. Z etc.,). Both facts and rules are

particular forms of knowledge. In the formalism of Datalog, both facts and rules are rep-

resented as Horn clauses of the general type L, - L, L,. where L; is a literal of

the form pyt,, 15,........., 1;) such that p; is a predicate symbol and {; are terms. A term is

either a constant or a variable. The left-hand side of a Datalog clause is called its head
and right hand side is called its body. The body of a clause may be empty. Clauses with an
empty body represent facts; clauses with at least one literal in the body represent rules. A
fact should be a ground atom, that is, there should be no variables in the terms. The fact
"John is the father of Bob", for example, can be represented as father(bob, john). The
rule "If X is a parent of Y and, if Y is a parent of Z, then X is a grandparent of Z" can be

represented as grandpar(Z,X) :- par(Y.X), par(ZY).

L

Here the symbols par and grandpar are predicate symbols, the symbol josn and
bob are constants. and X.Y and Z are variables. Constants and predicate symbols are
strings beginning with an lower-case letter. For a given Datalog program, it is always
clear from the context whether a particular non variable symbol is a constant or a predi-
cate symbol. Variable symbols begin with an upper-case letter. Also, Datalog requires
that all literals with the same predicate symbol are of the same arity, that is, that they
have the same number of arguments. A literal, fact. rule, or clause which does not contain
any variables is called ground. Any Datalog program P must satisfy the following safety
conditions: I) Each fact of P is a ground atom; 2) Each variable which occurs in the head
of a rule of P must also occur in the body of the same rule. These conditions guarantee

that the set of all facts that can be derived from a Datalog program is finite.

2.2 Datalog and Relational Databases

In general. logic programming it is usually assumed that all the knowledge(facts
and rules) relevant to a particular application is contained within a single logic program
P. Datalog, on the other hand, has been developed for applications which use a large
number of facts stored in a relational database[5]. Therefore, we will always consider two
sets of clauses in P : a set of ground atoms, called the Extensional Database (EDB).
physically stored in a relational database, and a set of rules called the Intensional data-
base(IDB). The predicates occurring in P are divided into two disjoint sets: the EDB-
Predicates, which are those occurring in the Extensional database, and the /DB-
predicates, which occur in P but not in the EDB. We require that the head predicate of

each clause in P be an /DB-predicate. EDB-predicates occur only in clause bodies.

Ground atoms are stored in a relational database; we assume that each EDB-

predicate r corresponds to exactly one relation R of our database such that each fact

r(cy...... cp) of the EDB is stored as a tuple <c, c,> of R. Also the IDB-predicates of P

can be identified with relations. called IDB-relations, also called derived relations. de-
fined by the rules in P and the EDB. IDB relations are not stored explicitly; they corre-
spond to relational views. The materialization of these views, that is, their effective (and
efficient) computation, is the mair task of a Datalog interpreter.

As an example of a relational EDB, consider a database E, consisting of two rela-

tions with respective schemes PERSON(NAME) and PAR(CHILD, PARENT). The first
contains the names of persons and the second expresses a parent relationship between

persons. Let the actual instances of these relations have the following values:

PERSON = { < ann >, < bertrand >, < charles >, < david >, < evelyn >, < fred >,
< george >, < hanson > }
PAR = { <david, george >, < evelyn, george >, < bertrand, david >,
< ann, david >, < ann, hanson >, < charles. evelyn > }
The PAR Relationship Tree is shown in Figure 1. These relations express the set of
ground atoms :

E;={ persontann), person(bertrand),, par(david,george), ,

par(charles, evelyn)}

So E, = PERSON U PAR

george

N\ N

betrand ann charles

Figure 1: PAR Relationship Tree

Let P, be a Datalog Program consisting of the following clauses:

rl : sge(X, X) :- person(X).

r2: sge(XY) :- par(X,X1), sge(X1, Y1), par(Y, YI).

Due to rule r/, the derived relation SGC (Same Generation Cousins) will contain
a tuple <p, p> for each person p. Rule r2 is recursive and states that two persons are same
generation cousins whenever they have parents which are in turn same generation cous-

ins. The complete list of all tuples in the derived relation SGC are:

< george, george >, < david, david >, < hanson, hanson >, < evelyn, evelyn >,
< betrand, betrand >, < ann, ann >, < charles,charles >, < david, evelyn >,

< evelyn, david >, < betrand, ann >, < ann, betrand >, < ann, charles >,

< charles, ann >, < betrand, charles > and < charles, betrand >.

The program P, can be considered as a query against the EDB E,, producing tuple
answers in the relation SGC. In this setting, the distinction between the two sets of

clauses, £, and P,;. makes yet more sense, because a query can be viewed as a function

applied to the IDB to compute an instance of EDB. Usually a database(in our case the
EDB) is considered as a time-varying collection of information. A query(in our case, a
program P), on the other hand, is a time-invariant mapping which associates a result to
each possible database state. For this reason, we will formally define the semantics of a
Datalog program P as a mapping from database states to result states. The database states
are collections of EDB-facts and the result states are /DB-facts.

Usually Datalog programs define large IDB-relations. It often happens that a user
1s interested in a subset of these relations. For instance, one might want to know the same
generation cousins of ann rather than all the same generation cousins of all persons in the
database. To express such an additional constraint, one can specify a goal to a Datalog
program. A goal is a single literal. Goals usually serve to formulate ad hoc queries
against a view defined by a Datalog program. For example, the goal ?-sgc(a, X), (to get all
the tuples of same generation cousins of ann), when submitted to a Datalog interpreter

yields the tuples <ann, ann>, <ann, betrand> and <ann, charles> as the answers.

2.3 Top-Down Evaluation of Datalog Goals

The rop-down method one way of evaluating Datalog programs. Proof trees are

constructed from the top to the bottom[5]. This method is particularly appropriate when a

goal is specified together with a Datalog program. Consider the program P, and the EDB

E,; of our "same generation" example. Assume that the goal ?-sgcfann, X), (to get all

names which are same generation cousins of ann) is specified. One way to find the re-
quired answers is to compute first the entire relation sgc(X, X) by bottom-up derivation
from the EDB and then delete all facts in SGC which are not subsumed by our goal and
then project onto the second attribute position. This would be a waste, since we would de-
rive many more facts than necessary. The other possibility is to start with the goal and
construct proof trees from the top to the bottom by applying the Elementary Production
Principle(EPP) "backwards", similar to resolution-based theorem provers. EPP resolu-
tion refers to a general inference rule, which produces new Datalog facts from given Da-
talog rules and facts. Such methods are also referred to as backward chaining. EPP can
be considered as being a meta-rule, since it is independent of any particular Datalog rules,
and treats them just as syntactic entities. We present the top-down method for evaluating
Datalog programs against an £DB. This method, called Query-subquery approach(QSQ),

implicitly constructs all proof trees for a given goal in a recursive fashion.

2.4 Datalog Is a Database Language

Although expressing queries and views in Datalog is quite intuitive and fascinat-
ing from a user's view point, we should not forget that the aim of database query lan-
guages like Datalog is providing access to large quantities of data stored in mass memory.
Thus, in order to enable an easy integration of Datalog with database management sys-
tems, we need to relate the logic programming formalism to a data retrieval language. We

have chosen relational algebra as such a data retrieval language. This following section

provides an informal description of the translation of Datalog programs and goals into

relational algebra.

2.4.1 Translation of Datalog Queries into Relational Algebra

Each clause of a Datalog program is translated, by a syntax-directed translation
algorithm, into an inclusion relationship in Relational Algebra(RA4). The set of inclusion
relationships that refer to the same predicate is then interpreted as an equation of rela-
tional algebra. Thus, we say that a Datalog program gives rise to a system of algebraic
equations. Each IDB-predicate of the Datalog program corresponds to a variable relation;
each EDB-predicate of the Datalog program corresponds to a constant relation. Deter-
mining a solution of the system corresponds to determining the value of the variable rela-
tions which satisfy the system of equations. The translation from Datalog to relational al-
gebraf19] is described in the following paragraphs.

Relational Algebra is a system of operators that take one or two relations as argu-
ments and return a relation as a result. Selecr (), Project (I1), and Join (<) are the
fundamental operators of relational algebra. Select pulls out a subset of the tuples in a re-
lation based on some selection condition. A Selection condition is a comparison between
an attribute and a constant or between two attributes. Selection is denoted by o, with the
selection condition as a subscript. Project extracts a subset of the columns of a relation,
rather than a subset of the tuples. Project is denoted by a I'T with a subscript giving the
attributes for the columns to be retained. Join (sometimes called natural join) combines
two relations on the common attributes in their schemes. A tuple ¢ is in the join of rela-

tions r and s if t agrees with some tuple in r on the scheme of r, and with some tuple in ¢

on the scheme of 5. The result of a join, then has a scheme that is the union of the
schemes of the relations specified by the join’s arguments.
Let us consider a Datalog clause C:

p(ay oy oo 0,) == g (Bys -oBR)s oennee Gn(Bs:----Bp)-

The translation associates with C an inclusion relationship Expr(Q P Om) < P,

among the relations P, Q,,...., O, that correspond to predicates p, g;,...., q,,, with the con-

vention that relation attributes are named by the number of the corresponding argument in
the related predicate. For example, the Datalog rules of the program PI from Section 2.2:
rl : sge(X, X) :- person(X).
r2 :sge(X Y) :- par(X. X1), sge(X1, Y1), par(Y, Y1).

are translated into the inclusion relationships :

;5 ((PAR DX SGC)><d PAR) < SGC eeoveeeeeen. I
2=1 4=2
I, | PERSONc SGC e, 2

The relationships I and 2 are Relational Algebraic expressions where ><I denotes
the natural join operation and I1 denotes the projection operation and 1,5 in I'T denotes

the attribute number in the argument relation, that is, join PAR and SGC and PAR in this

order and then project on columns 1 and 5. Similarly IT; | PERSON defines a binary re-

lation of the form (X,X), V x € PERSON.
The rationale of the translation is that literals with common variables give rise to
Joins, while the head literal determines the projection. In order to obtain a two-column

relation SGC in the second inclusion relationship, we have performed a double projection

10

of the unique column of relation PERSON. For each /DB predicate p, we now collect all
the inclusion relationships of the type Expr;(Q;...... Q,) < P. and generate an algebraic

equation having P as LHS, and the union of all the left-hand sides of the inclusion rela-
tionships as RHS:

P =Expri(Q,...... On) Y Expry(Q,..... On) Y Exprn (O, O

We also translate logic goals into algebraic queries. Input Datalog goals are
translated into projections and selections over one variable relation of the system of alge-
braic equations. For example, the goal "?-p(X)." is equivalent to the algebraic query "P”,

and "?-q(a,X)" which is equivalent to " o7.o O".

2.5 The Expressive Power of Datalog

The system of equations produced by the above translation uses all the classical
relational operations, with the exception of difference: we say that it is written in positive
relational algebra, RA™[5]. It can be easily shown that each defining expression of R4"
can also be translated into a Datalog program. This means that Datalog is at least expres-
sive as R4™; in fact. Datalog is strictly more expressive than R4* because in Datalog it is
possible to express recursive queries, which are not expressible in R4A*. However, there
are expressions in full relational algebra that cannot be expressed by Datalog programs.
These are the queries that make use of the difference operator.

The relational algebra(R4) has negation but does not support recursion. On the
other hand. Datalog has recursion but does not support negation. Figure 2 graphically
represents the situation. and illustrates the correspondence between non-recursive Data-

log and negation-free subset of relational algebra RA™. However, these expressions can

11

Queries
containing
negation

Recursive
queries

Figure 2 : The Expressive Power of Datalog

be captured by enriching pure Datalog with the use of logical negation(-). Also, even
though Datalog is syntactically a subset of first-order logic, strictly speaking they are not
comparable. Indeed, the semantics of Datalog is based on the choice of a specific model
(the least Herbrand model), while first-order logic does not a priori require a particular

choice of the model.

2.6 Search Strategy

Evaluation of a Datalog goal can be performed in rwo different ways: bottom-up,
starting from the existing facts and infering new facts, or rop-down, trying to verify the
premises which are needed in order for the conclusion to hold. In the Al literature, these

are referred to as forward-chaining and backward-chaining respectively.

2.6.1 Bottom-up Evaluation Strategy

Bottom-up evaluations consider rules as productions. They apply the rules in a
given program to the EDB, and produce all the possible consequences of the program,

until no new fact can be deduced. Bottom-up methods can naturally be applied in a set-

12

oriented fashion. that is, taking as input the entire relations of the EDB, using a relational
database utility to retrieve large quantities of data from mass memory. On the other hand,
bottom-up methods do not take immediate advantage of the selectivity due to the exis-
tence of to constants in the goal. The following example makes the bottom-up evaluation
method more clear.

Example:

Suppose the query given is ?-sgcfann, X), to get all names which are same gen-
eration cousins(sgc) of ann. Assume that sgc has a large number of tuples (related to this
query) and only one of them belongs to the answer to this query. The bottom-up evalua-
tion method computes all the tuples in sgc relations and at the end applies the selection
operation to get the sgc of ann. This is wasteful, because the bottom-up evaluation

method does not take advantage of tuple selection based on bound arguments in the goal.

2.6.2 Top-Down Evaluation Strategy

In rop-down evaluation, rules are seen as problem generators[3]. Each goal is con-
sidered as a problem that must be solved. The initial goal is matched with the left-hand
side of some rule, and generates other problems corresponding to the right-hand side
predicates of that rule; this process is continued until no new problems are generated. In
this case, if the goal contains some bound argument, then only facts that match the goal
constants are involved in the computation. Thus, this evaluation mode already performs a
relevant optimization because the computation automatically disregards many of the facts

which are not useful in for producing the result. On the other hand. in top-down methods

it is more natural to produce the answer one-tuple-at-a-time, and this is an undesirable
feature in Datalog.

If we restrict our attention to top-down approach, we can further distinguish two
search methods: breadth-first and depth-first. With the depth-first approach, we face the
disadvantage that the order of literals in rule bodies strongly affect the performance of
methods. This happens in Prolog, where not only efficiency, but even termination of pro-
grams is affected by the left-to-right order of subgoals in the rule bodies[9]. Instead, Da-
talog goals are executed through breadth-first techniques, as the result of the computation
is neither affected by the order of predicates within right-hand sides of rules, nor by the
order of rules within the program. The optimization methods should satisfy three impor-
tant properties: 1) Methods must be sound: they should not include in the result tuples
which do not belong to it. 2) Methods must be complete : they must produce all the tuples
of the result. 3) Methods must terminate: the computation should be performed in finite
time.

Although we omit formal proofs [21. 22], the top-down efficient strategy

called Query-Subquery presented in the next section satisfies the above properties.

2.7 Top-Down Evaluation

The Query-Subquery(QSQ) algorithm is a top-down evaluation algorithm, opti-
mizing the behavior of backward-chaining methods. The objective of the OSQO method is
to access the minimum number of facts needed in order to determine the answer. In order
to do this, the fundamental notion of subquery is introduced. A goal, together with a pro-

gram, determines a query. Literals in the body of any one of the rules defining the goal

14

predicate are subgoals of the given goal. Thus, a subgoal. together with the program,
yields a subquery; this definition applies recursively to sub-goals of rules which are sub-
sequently activated. In order to answer the query, each goal is expanded in a list of sub-
goals, which are recursively expanded in turn.

Example:

For example, consider the EDB E; and the following Datalog rules from

Section 2.2 :
rl : sge(X, X) :- person(X).
2 :sge(X Y) :- par(X, X1), sge(X1, Y1), par(Y, Y1).

Suppose the given query is ?-sgc(ann, X). which gets all the same generation
cousins (sgc) of ann. In a top-down evaluation, each goal is considered a problem/query
that must be solved/answered. The top-down query processor tries to find those rules
whose head unifies with the given goal. For instance, for the goal sge(ann, X), unifies
with the head sge(X, X) of rule r!, and yields the substitution X = ann. This leads to new
goals in the rule body, that is, person(ann), which is true. since it is given as a fact. Then
the query processor explores remaining rules to find other possible answers to the query
sgc(ann, X). In this case, it unifies the goal with the head sge(X, ¥) of rule r2, producing a
new goal list par(ann, X1), sgc(X1, Y1) and par(X. Y1). Each of these goals are proc-
essed as described above, in the left-to-right order. Note that during query processing, the
top-down query processor may need to backrrack, that is, during the exploration of the

proof tree, if the top-down query processor encounters a goal that can not be established,

it retraces its own course by going backwards along the last tree branch and resumes tra-
versal by trying to re-satisfy the goal to the left of the one just failed.

The method maintains rwo sets: a set P of answer tuples, containing answers to
the main goal and answers to intermediate subqueries, which is represented by a set of
temporary relations (one relation for each IDB-predicate): and a set Q of current
subqueries (or subquery instances), which contains all the subgoals that are currently un-
der consideration. Thus the function of QSQ algorithm is twofold: generating new an-
swers and generating new subqueries that must be answered. There are two versions of
the OSQ algorithm, an iterative one(QSQI) and a recursive one (QSQOR). OSQI uses
breadth-first strategy and OSOR uses depth-first strategy. The difference between the two
concerns which of these two functions has priority over the other: OSQ/ favours the pro-
duction of answers, thus, when a new subquery is encountered, it is suspended until the
end of the production of all the possible answers that do not require using the new
subquery. OSOR behaves differently: whenever a new subquery is found, it is recursively
expanded and the answering to the current subquery is postponed to when the new
subquery has been completely solved. At the end of the computation, P includes the an-

swer to the goal.

2.8 Query Processing

Different databases and application domains - such as business accounts, engi-
neering designs, geometric and graphic data, text documents. scientific data, and hyper-

media documents - have different requirements as to storage and retrieval capabilities.

16

We discuss the types of queries briefly. Note that Datalog only solves exact match and

partial match queries. Some types of queries include :

a) Exact Match Queries : Specify a literal value (also called a ground value) for an at-
tribute, and a match of that value is expected. A predicate(or relation) may have sev-
eral attributes. A fully ground query specifies a literal value for each attribute, and re-
quires confirmation whether this fact is in the database. An exact match may also re-
fer to the case where a literal value is given for the primary key of a relation, and the
retrieval of the complete record with the given key is required.

b) Partial Match Queries : Specify a literal value for some attributes, and a partial
match is required - that is, a match is required for each of the attributes that have a lit-
eral value specified, but the other attributes can have any value: that is, the attributes
match a “wild card™.

¢) Range Queries : Specify a range of values for an attribute. The ranges may be
e an open interval range, such as low < artribute < high;

e aclosed interval range. low < attribute < high ;
e ahalf-open interval range, such as low < attribute < high ; or
low < attribute < high;
e asemi-infinite interval range, such as low < attribute or attribute < high;

d) Best Match Queries : Specify a literal value for some attributes but do not require

that an exact match for each of the specified literals be found. In the event that such an

exact match does not exist in the database, then the fact in the database which comes

17

“nearest” to matching the query should be retrieved. One metric for “nearness™ is the
number of attributes whose value matches the value specified in the query.

e) Other Queries : Covers a broad range of queries such as : String matching query in a
textual database and Boolean property query where the attributes take only boolean val-
ues, which indicate the presence or absence of some property. This list should be ex-
tended to include navigational queries common in object-oriented databases, and in li-
braries providing persistence.

The query(goal) itself will be in the form of a literal-list. The parser checks the
syntax of the query and produces a parse tree. The parse tree denotes the type of every
element of the query in order to check the validity of the query. This parse tree forms the
Datalog query. The Datalog interpreter accepts and validates this query on a database and

returns the solution.

3.0 Object Oriented Design of A Top-Down Datalog Interpreter

In this chapter, we introduce the object oriented architectural design of a top-
down Datalog interpreter. Based on this design, we have developed an implementation,
which can be found in Appendix-A.

The architectural overview of the Daralog interpreter is presented in Figure 3. A
formal discussion on Datalog semantics and the Datalog queries is given in Section 2.0.
The DDL(Data Definition Language) allows the definition of rules and facts as clauses.
The DML (Data Manipulation Language) only allows queries, which are posed as

(headless) clauses: that is, a list of literals [2, 3].

18

3.1 Structural Overview

User
Database
/ Text ; / Query :&
v Parser v

@t]
Parser Parser

Workstation
/;Iutions ;

v v

Database
inference
IDB Rules Engine
o <—
EDB Facts Unification &
Substitution
T 3

Figure 3: Overview of Datalog Architecture

3.2 Data Dictionary for Datalog

o Atomic Constant

It is a primitive value and is indicated by an identifier which start with a lower
case letter.
e Binding

Associates a variable ¥V with a value, which may be either a constant or another
variable W. If ¥V is bound to W and W is bound to a value, then both variables share the
same value. A variable may be unbound; that is, not associated with any value. A binding

is part of a substitution.

19

e Body

It is list of literals and forms part of a clause.
e Clause

It consists of a #ead and a body. A clause could be read as rule. "if the body is
true then the head is true”. It is one part of the definition of the predicate of the head. The
definition of the predicate is the "or" of each of the clauses.
e Constant

Same as Atomic Constant.
e FExtensional Data Base (EDB)

It is the collection of the facts explicitly stated as part of the database.
o Fact

It a clause which has an empry body. A fact may contain variables as arguments,
but more often a fact is fully ground: that is, all arguments are constants.
e Goal

It is same as Query.
e Head

It is a literal, and forms part of a clause.
e Intensional Data Base (IDB)

It is a collection of clauses which define those facts which may be derived form
the EDB. Often a program is viewed as precisely that part of the /DB needed to answer a

specific query.

o Literal

It is a reference to a predicate, which specifies the arguments of the predicate as
either constants or variables.
e Predicate

It is arelation.
e Predicate Name

The symbolic name of a predicate.
e Program

It is a set of clauses(or equivalently predicates) which define the relationship be-
tween the predicates in a query and those in the database.
* Query

It is a list of literals. (like clause with an empty head)
e Relation

Same as predicate.
e Solution

It is a ser of all facts that can be derived from the database, and that sarisfy the
query. The solution set may also be viewed as a set of substitutions for the variables in
the query.
o Substitution

It is a collection of bindings.
e Symbol

Same as atomic constant.

21

o Unification

It is a process which matches literals. Unification determines the most general
substitution, called the most general unifier, which, when applied to the littorals being
matched, gives an identical literal.
e Variable
It stands as a place for values. It may be bound to different values. or be unbound. A vari-

able is indicated by an identifier which starts with an upper case.

3.3 Grammar for Datalog Language

The grammar for the Datalog language is given below in Figure 4. The input of
the database and the queries is translated by a recursive descent parser[1]. The inference
engine for the interpreter uses backward-chaining with unification to process the /DB
rules, and for partial match retrieval of the EDB facts. The retrieval of the facts is imple-

mented using a simple list structure when facts are stored in memory.

Database = database | empty

clause = head :- body.| head.

head = literal | empty

body = literal. | literal-list.

literal = predicate-name (argument-list)
argument ::= constant | variable

query = literal | literal-list

Figure 4: Grammar for Datalog Language

3.4 Classes And Data Structures
An Object model of the Datalog language concepts is presented in Figure 5 and

Figure 6. The object model of the Datalog interpreter is presented in Figure 7.

Query 7<\ﬁ I 1

i :
! i head Literal

| :
! !
: B | ci K>-—l :
- ; ause
| Databa j C -~ Doply
| Datebase , o 7—
) . :

|

: \ . : Predicate i ' Argument |
: EDB . |' GroundFact 1 E I :
; ! | J
‘ j _ _9
' Symbol E
I
H
. I
— T -]
; H -
, Constant { Variable | ' Terminal |
| N | |
Figure 5: Datalog Object Model
!
LIST<T> - ITERATOR<T>
ListNode<T>" ap List<T>& thelList
Node *Next ListNode<T>" theCurNode
void prepend(Node)
void append(Node) T first()
Boolean IsEmpty() T" next()
Boolean contains()

Figure 6: Object Model Details for List and
Listiterator

o
LI

INFERENCE ENGINE

Query

LiteralList goals

query(char*)
Boolean checkdot()
LiteralList& getgoals()

Substitution

List <SymbolPairPtr> map

Substitution&(const Substitution&)
Substitution& operator=(Substitution&)
symbol* operator{ }J(symbol&)
void add(const symbol&,const symboli&)
void unify(node®, node®)
LiteralList& apply(LiteralList&)
void concat{Substitution&)
void nitSubsList()

Database

Nbr of clauses: int
clausearry[100]

database(char®)
Boolean inrange()
int FindCI()
LiteralList getlist()
clause& operatori]

Literal

symbol predicate
symbollist argslist

SymbolPair

symbol™ fst
symbol* snd

Boolean operator==
symbol predicate()
symbollist® arguments()
void ChLVarName()
void display Literal()

Symbol

len: int
Sname : char*

SymbolPair(symbol&, symbol&)
SymbolPair& operator=(SymbolPair&)
symbol* first()
symbol* second()

Skind: SymKind

symbol(char*, SymKind)
symbol(char* = 0)
symbol& operator=
SymKind getSKind()
void ChvarName()

Solutions

Clause

<>__J clause(Literal&, LiteralList&)
Literal& gethead()

Literal head

L Literallistbody |

LiteralList& getbody()
clause& Instance()
clause(const clause&)
void display_clause()

%\body

——@ Literal(symbol, symbollist)
Literal& operator= ® O LiteralNode* getLNode()

void display_LiteralList()

—

LiteralList

LiteralNode “Literalhead

LiteralList(LiteralNode&)
void append (Literal&)

LiteralList rest()
LiteralList& operator=
LiteralList& copycat2()
inline Boolen isEmpty()

void chLLVarName()

Symbollist

node *head

symbollist(symbol)
void append(symbol)
inline Bool isEmpty()
symbollist operator ==
void display_symboaollist()
symbol getinfo()
symboi* getinfo1()
void ChSIVarName()

Database
Text

Figure 7: Datalog Interpreter Object

Model Details
24

The following main classes are identified. The following paragraphs describe the
data structures, class descriptions and the methods associated with each class. For brevity,
the standard methods for each class such as constructors, destructors, copy constructors

and assignment operators, are not discussed.

3.4.1 Class SYMBOL

3.4.1.1 Data Structure

e [Len: Length of the string (type integer)

e Sname: Symbol Name (character string)

o Skind: Symbol Kind (enumeration: PRED, VAR , CONST)
3.4.1.2 Description

To store a Predicate/ Variable/ Constant symbol.
3.4.1.3 Methods

1. getSkind: Returns the SymKind of a given symbol.

2. ChVarName(): Changes the name of the symbol Variable to 2 new name
3.4.1.4. Friend Functions

A friend function can access a class's private data, even though it is not a member
function of the class[18]. This is useful when one function must have access to two or
more unrelated classes and when an overloaded operator must use, on its left side, a value
of a class other than the one of which it is a member. Friends are also used to facilitate
functional notation.

The Input/Output operators, operator<<(), operator>>() functions must be

friends of the symbol class, since the istream and ostream objects appear on the left side

25

of the operator. The operator >>() function takes an istream object, which will usually be
cin, as its first argument. and an object of the symbol class as its second. It returns an
istream so that the operator can be chained [12].

The operator<<() function is constructed similarly but uses ostream instead of
istream. For similar reasons, the operator==() and operator!=() should be defined as
friends of class Symbol.
ostream& operator<<(ostreamd, const symbol&) : is an Output Operator
istream& operator>>(istreamd, const symbol&) : is an Input Operator
Boolean operator==(const symbol&, const symbol&) : returns TRUE if the two

given symbols are same and of same SymKind.

Boolean operator!=(const symbol&, const symbol&) : returns TRUE if the two

given symbols are NOT same OR not of same SymKind.

3.4.2 Class NODE

3.4.1.1 Data Structure

e info: Symbol string
® next: Pointer to next node.
3.4.2.2 Description

To store a Symbol and a pointer to next Symbol.
3.4.2.3 Methods
1. node(const symbol&. node*) : creates a node for given symbol and with a

given pointer to the next node.

3.4.2.4. Friend Class: class symbollist; - provides access to the private

data of class symbollist.

3.4.3 Class SYMBOLLIST
3.4.4.1 Data Structure
e head: Pointer to the first node
3.4.4.2 Description
To maintain and manage a linked list of symbols.

3.4.4.3 Methods

—

append() : Appends a node at the end.

!\)

getnext() : Returns the pointer to the next node in the symbollist.

isEmpty() : checks whether the symbollist is empty or not.

[V3)

4. display_symbollist(): Displays the symbollist.

W

. getinfo() : Returns the pointer to the symbol in the node.
6. ChSlVarName() : Changes all the Variable names to new ones.
3.4.4.4 Friend Functions

istream& operator>>(istreamd&, const symbollist&) : Input Operator.

3.4.4 Class QUERY
3.4.4.1 Data Structure

e goals: query of type LiteralList
3.4.4.2 Description

To read the query from the file and to validate and build the query.

3.4.4.3 Methods

1. checkdot() : Senses the query end.

2. getgoals() : Returns the pointer to goals of type LiteralList.
3.4.4.4 Friend Functions :

istreamd& operator>>(istream&, const symbollist&) : Input Operator

3.4.5 Class LITERAL

3.4.5.1 Data Structure

e predicate : Name of the predicate of type symbol

¢ arguments: argument list of Literal of type symbollist.
3.4.5.2 Description

To hold a Predicate and the Argument list.

3.4.5.3 Methods
1. predicate() : Returns the predicate name of the Literal.
2. arguments(): Returns the arguments list of the Literal.

LI

. ChLVarName(): Changes the Variables names in the Literal's argument
to a new name.
4. display_Literal(): Displays Literal's predicate and its arguments.
3.4.5.4 Friend Functions

istreamd& operator>>(istreamé&. const Literal&:) : Input Operator

3.4.6 Class LITERALNODE

3.4.6.1 Data Structure

e Lul: Literal

e LtrINext: Pointer to next LiteralNode
3.4.6.2 Description

To hold a Literal and a pointer to next Literal.
3.4.6.3 Methods

Friend Class: class LiteralList - To access private data of class LiteralList.

3.4.7 Class LITERALLIST
3.4.7.1 Data Structure
e LiteralHead: Pointer to a LiteralNode head.
3.4.7.2 Description
To maintain and manage a linked list of LiteralNodes(i.e.. Literals).
3.4.7.3 Methods

1. append() : Appends a Literal to the existing LiteralList.

!\)

getLtrl() : Return the first LiteralNode in the LiteralList.

(V3]

getNxtLtrl() : Returns pointer for rest of LiteralList.

4. isEmpty() : Checks whether the LiteraList is empty or not.
5 display_LiteralList(): Displays the LiteralLlist.

3.4.7.4 Friend Function :

istream& operator>> (istreamd&:, const LiteralLlist&); : Input Operator

3.4.8 Class SYMBOLPAIR

3.4.8.1 Data Structure

¢ First: Holds the first symbol(symbol to be replaced) of the symbolpair.

e Second: Holds the second symbol(symbol for replacement) of the symbolpair.
3.4.8.2 Description

To maintain and manage Symbol Pairs for substitution.
3.4.8.3 Methods

1. SymbolPair() : Creates the symbol pair.

3.4.9 Class SUBSTITUTION

3.4.9.1 Data Structure
e List <SymbolPairPtr> map

3.4.9.2 Description
To maintain and manage substitution and unification aspects for the
Inference engine.

3.4.9.3 Methods

—

. operator[]() : Makes a Substitute for a symbol.

8]

add() : adds a substitution symbol t for s.

(U3]

unify() : Unifies the two Literals.
4. apply(): Applies the substitutions

5. InitSubsList(): Initializes the Substitutions List

3.4.10 Class CLAUSE
3.4.10.1 Data Structure
e head: Clause head of type Literal.
e body: Clause body of type LiteralList.

3.4.10.2 Description

To maintain and manage Clauses of the database

3.4.10.3 Methods
1. clause() Build a clause with given head and body
2. gethead() Returns the head(of type Literal) of the clause.
3. getbody() : Returns the body(of type LiteralList) of the clause.
4. Instance() : Returns the instantiated clause.

3.4.10.4 Friend Function :

istream& operator>>(istreamd, const LiteralLlist&); : Input Operator

3.4.11 Class DATABASE

3.4.11.1 Data Structure

e array of clauses

e Number of clauses
3.4.11.2 Description

To maintain and manage the database which is an array of clauses.
3.4.11.3 Methods

1. inrange() : Checks whether the given clause index is within the range.

%)

FindCl(): Returns the index to the matching clause.

(U]

. getList() : Returns the body of a clause with given clause index.

o

operator[]() : Returns the reference to a clause for a given clause index.
3.4.11.4 Friend Function

istream& operator>>(istream&, const LiteralLlist&); : Input Operator

3.4.12 Class INFERENCE

3.4.12.1 Data Structure
e subs: List of substitutions
3.4.12.2 Description
To establish the given goal from the database rules and facts. Basically it
performs the inference function.
3.4.7.3 Methods
1. Establish() : Inference Engine - Established the query on a Database.

2. Match() : Unification & Substitution

3.4.13 Class LISTNODE

The iterator pattern [8, pages 257-273] is used to access the elements of the LIST
sequentially, regardless of the internal representation of the L/ST. This pattern uses the
LIST class and the LIST ITERATOR class. The LIST ITERATOR defines an interface to
access and traverse elements of the LIST. While the LIST defines an interface for creating
an iterator object. The main advantage of using this pattern are: the list representation can

be changed without affecting the iterator since the list does not need to expose its internal

(3]
NS

structure to the iterator; different list traversals can be defined and used on the same list
depending on the need.
3.4.13.1 Data Structure
¢ Data: any type depending on the instantiation of the list. since a list is a
template.
e Next: a list node.
3.4.13.2 Description
The nodes to go in the List are of type ListNode. It is of template class.
3.4.13.3 Methods

1. getdata() : Returns the pointer to data.

o

getnext() : Returns the pointer to the next ListNode.

(V3]

. putdata() : Stores a data item in data.

4. putnext() : Appends the given ListNode at the end of the List.

3.4.14 Class LIST

3.4.14.1 Data Structure
ap : Pointer to ListNode of type template

3.4.14.2 Description
It is a container class used to store elements of any type. It could be used either
with the LIFO strategy or the FIFO strategy depending on the need.

3.4.14.3 Methods

1. prepend : Inserts an element at the head of the list.

L)
W)

]

append : Inserts an element at the end of the list

IsEmpty: Checks whether the list is empty or not.

[V3)

3.4.15 Class LISTITERATOR

3.4.12.1 Data Structure

e theList : List itself

e theCurrentNode: Pointer to the current ListNode.
3.4.15.2 Description

It is used to traverse the list sequentially regardless of its internal representation.
3.4.15.3 Methods

1. first: Initializes the iterator to point to the first element in the list.

2. next: Moves to the next element of the list.

4.0

4.1

Object Modei

Implementation of Inference Engine Mechanism

Figure 8 shows all the classes involved in the inference mechanism implementation.

N
— Query N i
head Literal
bo%
& |
Database <>—"’ DB Clause ? Y
accepts Veri+s with Predicate Argument
EDB Fact
_ | Infer H—
answers |
quefies Uses . Parser . Symbol
giving i Produces i
Unification List | l
Uses =]
Produces Traversed by [: : l
— |
Substitution Listiterator Constant | Variable Terminal
I

Figure 8: Detailed Object Model for Datalog Interpreter

(98]
(]}

Infer establishes the given query(goal list) on a given database and uses Unifica-
tion algorithm which produces the substitutions necessary to unify two terms. The classes

and associations are shown separately with their attributes and methods in Figure 9.

Infer Substitution |

List<SymboolPairPtr> Liste ot
substitutions ist<SymboolPairP :

’ Substitution(Substitution)
! Substitution& QOperator =
inference(inference&) i symbol” Operator []
Bool Establish(L.L. DB) ! ! void add()
Bool Match(L1. L2) void unify()
LiteralList& applyQ |
void concat() i

l

SymbolPair Unification |
symbol *fst
symbol *snd !
! SymbolPair(symbol1, symbol2) | ?
SymbolPai& operator= i) unify(Literal, Subs)

symbol® first() !
symbol* second() i

Figure 9: Inference Engine Implementaion
Object Model Details

4.2 Data Structures

The Inference Engine of the Datalog interpreter processes the query on a given
database. The key to this algorithm is to delay the actual choice of constants for variables
in Datalog rules as long as possible. The Daralog Inference engine uses the Unification
algorithm to unify the literals: this is the heart of the Inference Engine. The following
paragraphs present the pseudo-code for the Unification algorithm([13] in Figure 10 and

the Inference Engine Algorithm[13] in Figure 11.

4.2.1 Unification Algorithm

The purpose of this algorithm is to check whether the two given literals are unifi-
able. This algorithm takes two literals, Literall and Literal2 as input.

Function: Unify()
begin

If the predicate of Literall is not same as the predicate of Literal2
return that there is no unification

Repeat
If we have a variable term in Literall
begin
If the two variable terms of Literall and Literal2 are same
do nothing
else
begin
Add the replacement element pair (variable term of Literall,
variable term of Literal2) to the Substitution List
Apply the above substitution to all the terms in the Literall
Apply the above substitution to all the terms in the Literal2
Apply the above substitution to all the right sides of the existing
Substitution List
end
end
Else
begin
If we have a variable term in Literal2
begin
Add the replacement element pair (variable term of Literal2,
variable term of Literal2) to the Substitution List
Apply the above substitution to all the terms in the Literall
Apply the above substitution to all the terms in the Literal2
Apply the above substitution to all the right sides of the existing
Substitution List
end
end
Else
If the terms of Literall and Literal2 are not same
return that there is no unification

go to the next terms of Literall and Literal2
Until all the terms are traversed through

Stop with success.
End

Figure 10: Unification Algorithm

The substitution list contains the list of individual substitutions which unify the
two given literals.

4.2.2 Unification Example

Consider the following two Literals :
e(a, XX, b, ZZ), e(a, YY, YY, WW)
the first arguments match, so no replacements are generated for them. Comparing second
arguments generates the substitution {XX = Y7} and modifies the literals to:
e(a YY, b. ZZ), e(a, YY, YY, WW). Comparing b and YY makes the substitution
{XX = b, YY = b} and the literals e(a, b, b, ZZ). e(a, b, b, WW). Matching the last argu-
ments gives {XX = b, YY=b, ZZ=WW}as the value returned for the substitution. Both lit-

erals are now e(a, b, WW) under the substitution.

4.2.3 Inference Algorithm
The purpose of this algorithm is to establish the given goal on a database which
contains a set of clauses. The algorithm takes a list of goals and tries to infer the given

goal from the given database.

In our implementation, the Establish() function (Inference Engine) uses a data
structure subst, four functions (predsym(), instance(), unify and apply()). and a new ver-
sion of the concatenation procedure. It has literals in the goals list. A value of type subst
represents a substitution, which is a set of pairs of variables and constants. Each pair is
called a replacement. A substitution says which constants should be substituted for which

variables. Function predsym() just extracts the predicate symbol from a literal. Function

Function : Establish()
begin

If the goal-list is empty
Stop with success

Get the first Literal of the goal-list

Get the Predicate term from the Literal

Search the database (start from the first clause) for a clause whose head has the
matching predicate that of goal Literal

If the search is unsuccessful, that is, we do not have a clause with matching
goal predicate in its head, Stop with Failure

Repeat
Make the Instance of the above clause, that is, copy the clause from the
database into a new clause and change all the variables in it to new
variables names which were not used before
Try to unify the Literals from the instantiated clause head and the goal-
literal using the above unification algorithm
If the Literals can be unified
begin
replace the goal-literal with the body of the instantiated clause thus
arriving at new goal-list
Apply the replacements(contained in Substitution List) returned by
Unification algorithm to the entire goal-list
Invoke the Inference algorithm(Establish) again with this new
goal-list
If the goal-list is established
Stop with success
end

Get the first Literal of the goal-list

Get the Predicate term from the Literal

Search the database(start from the last matching clause seen + 1)
for a clause whose head has the matching predicate that of
goal Literal

If the search is unsuccessful, that is, we do not have a clause with
matching goal-predicate in its head, Stop with Failure

Until no more matching clauses are found

Stop with success
end

Figure 11: Inference Engine Algorithm

instance() takes a rule and uniformly changes all the variables in it to new variables that
have not been used so far. It makes a copy of the rule, rather than modifying the rule it-
self. Algorithm unify takes the head of a rule and a goal literal and does a comparison to
determine what replacements are needed to make them match. If they cannot be made to
match, the function returns false. If they can match. the function returns true, and it also
returns a substitution that contains replacements to make them match. Function apply()
takes a substitution and a goal list and makes all the appropriate replacements. It is like
the "replace all" function of an editor.

The concatenation procedure, copycar2() (page-5. Appendix-A), makes a copy of
its second argument, so that apply() (page-3. Appendix-A), does not alter the current goal
list when forming he next one. The unaltered goal list is needed for backtracking in case
the recursive call with the new goal list fails. Since instance() (page-3, Appendix-A)
copies its argument, copycat2() need not copy its first argument.

Figure 11 presents pseudo-code for the inference algorithm, establish(). Given a
goal list with variables, the current version of establish() will leave them as variables un-

til a value for each is determined.

5.0 Extensions of Pure Datalog

The Datalog syntax we have been considering so far corresponds to a very re-
stricted subset of first-order logic and is often referred to as pure Datalog[15]. Several
extensions of pure Datalog have been proposed in the literature. The most important of
these extensions are built-in predicates, negation. and complex objects. In our project,
these extensions are not looked into.

40

6.0 CONCLUSION

The main attraction of Datalog is the possibility of dealing, within the one for-
malism, with non-recursive expressions (or views) as well as with recursive ones. Al-
though this area is still very active, we feel that some basic understanding has been estab-
lished. thus allowing for systematic treatment. One of the major challenges that Datalog
research has still to meet is to convince the knowledge base community of the practical
merits of this theory. The weaknesses of Datalog work have been indicated as follows.

a) Very few applications have been shown which can take full advantage of Daralog's
expressive power. In particular, no useful applications have been reported so far for
nonlinear or mutually recursive rules.

b) Datalog is not considered as a programming language, but rather as a "pure" com-
putational paradigm. For instance, Datalog does nor provide support for writing user's
interfaces. and does not support quite useful programming tools, such as modulariza-
tion and structured types.

¢) Datalog does not compromise its clean declarative style in any way; while sometimes
it is required that the programmer may take control on inference processing, by stat-
ing the order and method of execution of rules. This is typical, for instance, of many
expert system shells.

d) Datalog systems have been considered, until now, as closed worlds, that do not talk to

other systems; while the current trend is towards supporting heterogeneous systems.

41

Some of the above criticisms are in fact well founded: and provide an indication
of the directions in which we expect Daralog to move in order to become fully applicable.
Datalog research will have to consider the advances in other research areas; in particular,
Datalog can be extended to support complex terms; this is a first step towards the devel-
opment of new language paradigms which use some of the concepts from object-oriented
databases. In summary, we expect that supporting rule computation will be one of the in-
gredients of future knowledge base systems; Datalog research has provided exact meth-

ods and fairly good understanding for approaching this issue.

In this project, a top down version of a Datalog interpreter was designed in the
Object Oriented paradigm making use of design patterns, and then implemented in C++.
Some important topics had to be studied first in order to gather the necessary background.
The second step. was the design and implementation of the Datalog interpreter. The de-
sign uses design patterns which makes it reusable in other programs or applications. The
third step. was the understanding of the unification concept and its design and imple-
mentation. The unification module is at the heart of the inference mechanism. The final
step was the building of inference mechanism, which provides a decidable way to answer
any query based on the facts and rules stored in the database. We are confident about the
correctness of this mechanism, we have tested it with the examples from a text book[13]
and some examples prepared by the author and his supervisor. The results of the various

tests are enclosed in Appendix-B - Experimental Results.

The importance of this work lies in the use of Object Oriented Paradigm in the
design and implementation phases. which should make it easier to modify, extend, and
reuse in different applications. Although the implementation is robust, it has one major
limitation: It is a non-recursive one, that is, it can not operate well, if a predicate symbol
in the body of a rule also appears as the predicate symbol in the head. However, this
drawback can be eliminated by adopting an advanced inference algorithm given in chap-

ter 6 of [13].

43

BIBLIOGRAPHY

[1]

(2]

(4]

[3]

[6]

[7]

(8]

[9]

Alfred V. Aho, Ravi Sethi and Jeffrey D.Ullman, Compilers - Principles,
Techniques, and Tools. Addison Wesley Publishing Company. March 1988.

G. Butler, Daralog and TwoGroups and C++, Integrating Symbolic
Mathematical Computation and Artificial Intelligence, Jacques Calmet and John
A. Campbell(eds). Lecture Notes in Computer Science 958. Springer-Verlag,
Berlin, 1995, pp. 80-92.

G. Butler, S.S. Iyer and E.A. O'Brien, 4 Database of Groups of Prime-Power
Order, Software - Practice and Experience 24, 10 (October 1994) 911-951.
Micheal A. Carrico. John E. Girard and Jennifer P. Jones, Building Knowledge
Systems, McGraw Hill Book Company, 1989.

Stefano Ceri. Georg Gottlob and Letizia Tanca, What You Always Wanted to
know About Datalog(And Never Dared to Ask), IEEE Transaction on Knowledge
and Data Engineering, Vol 1. No. 1, March 1989, pp. 146-166.

Ramez Elmasri, Shamkant B. Navatha, Fundamentals of Database Systems,
Benjamins/Cummings Inc., Redwood City, California, 1989.

Michael J. Folk and Bill Zoellick, File Structures - A Conceptual Toolkir”,
Addison Wesley Publishing Company, 1989.

E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley Publishing Company, 1995.
Peter M.D. Gray and Robert J. Lucas. Prolog and Databases - Implementations

and New Directions, Johan Wiley & Sons, Chichester, 1988.

44

[10] Frank Van Harmelen, Peter Jackson and Han Reichgelt, Logic-Based Knowledge
Representation, The MIT Press. 1989.

[11] Christopher John Hogger, Essentials of Logic Programming, Clarendon Press,
Oxford, 1990.

[12] Stanley B. Lippman, C++ Primer. Addison Wesley Publishing Company, 1991.

[13] David Maier and David S. Warren. Computing with Logic - Logic Programming
with Prolog, The Benjamin/Cummings Publishing Company Inc., 1988.

[14] Scott Meyers, Effective C++, Addison Wesley Publishing Company, 1992.

[15] Ulf Nilsson and Jan Maluszynski. Logic, Programming and Prolog, John Wiley
& Sons , 1990.

[16] Wolfgang Pree, Design Patterns for Object-Oriented Software Development,
Addison Wesley Publishing Company, 1995.

[17] J. Rumbaugh, M. Blaha, W.Premerlani, F.Eddy and W.Lorenson. Object-Oriented
Modelling and Design. Prentice Hall, New Jersey, 1991.

[18] Bjarne Stroustrup, Programming with C++, 2™ edition, Addison Wesley
Publishing Company, 1991.

[191 1.D. Ullman, Principles of Databases and Knowledge-Base Systems, Volume I,
Computer Science Press, Inc, Rockville, Madison, 1988.

[20] J.D. Ullman, Principles of Databases and Knowledge-Base Systems, Volume II,
Computer Science Press, Inc, Rockville, Madison, 1989.

[21] L.Vieille, Recursive axioms in deductive databases: The Query Subquery
approach, in 8" ACM Symposium, Principles of Database Systems(PODS),

March 1989, pp. 1-10.

[22] L.Vieille, 4 database complete proof procedure based on SLD resolution, ECRC,

Munich, West Germany. Int. Rep. IR-KB-40, November 1986.

46

APPENDIX - A

Program Listings

Listing for Mohan Tadisetty Tue Mar 25 18:47:48 1997

/tt*t*ttt"'tt*tf*'*f""7ttrttt'tt***'r?*'ft""ttt"*'tf*ttt’tt'th't'tQt*'/

,’t t/
i */
* Module : Clause.C */
’* Description : To create and manage the Clauses */
’/f '/
/> */

7 ttwttt*tt"t't*ttt*t*tt'ttwtf**tt**t'ttt*"'t"wttwt"ftf'ttyw't"v'tt"'t't/

#include "Lex.h"
#include "Syn.h"
#include "Symbol.h*
#include "Clause.h*
#include "Global.h*

clause: :clause() // clause constructor
:head (), body ()

{

}

clause: :~clause() // clause destructor

{

}

clause::clause(const Literals& h, LiteralLists b) // constructor
:head (h) ,body (b)

{

}

clause::clause(const clause& c) // copy constructor

:head(c.head), body(c.body)
{

}
// **** To get the head of the Clause **=*=*

Literal& clause::gethead() // To get the head of the clause
(

}

recturn(head) ;

clause& clause::operator=(const clause& cl)

{

if(this != &cl)
{
head = c¢cl.head;
body = cl.body:
}

return *this;
}

LicteralList& clause::getbody() // To gez the body of the clause
{

}

return(body) ;

CFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:48 1997 2
istreamk operator>>(istream& inFile, clause& cl) //input operator
{

Literal h;

Literallist L1:

curr_tok = prev_tok = INI;
get_token(inFile):
parse(inFile};

if (curr_tok == END || curr_tok == ERROR) recurn inFile;

if(curr_tok == NAME) curr_tok = PREDICATE: // FORCE to PREDICATE

i1if (curr_tok == PREDICATE) // To confirm the head first
inFile >> h; // Reading the head

else return inFile;

get_token(inFile) ; //checking for iff

parse(inFile):;

if (curr_tok == ERROR) return inFile:

if (curr_tok == iff_ok)

{

//cout << "LiteralList invoked” << endl;

curr_tok = prev_tok = INI;

inFile >> LI1; // Reading the body
}

cl = *new clause(h,Ll); //construct new clause
return inFile;

}

void clause::display_clause() const
{
cout << "Clause: " ;
head. dlsplay_theral().
cout << * :-~
body. dlsplay_thera1Llst()
cout << *." << endl;

}

clause& clause::Instance()
{
cout << endl << "Clause - BEFORE Instantiation” << endl;
head. dlsolay_theral(),
cout << " -~
body - dlsplay_theralLlsc()
cout << *." << endl;

++seqgno;
head.ChLVarName (seqno) ;
body .ChLLVarName (seqno) ;

cout << endl << "Clause - AFTER Instantiation® << endl;
head. dlsplay_theral(),

cout << " -

body. dlsplay_theralLlst()

cout << *." << endl;

recurn(*this) ;

CFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:48 1997 3
}

/"'"**"*'*"f‘ﬁf""*t*t'""'f"QT"*""'*f"'t"'*?f""k"f"f'f"'*"'t*'/

/= .

/* '/

/* Module : Database.C */

/* Description : To create and manage the Database */

/= y

/* */

/*t't'*'t*tt*t*"tt*t'r"'vtt'tr"t*7'#*7ttt'trf'r't**t*trrt'tttt*ttrtttt*tt'/

#include <fstream.h>
#include "Lex.h*
#include "Literal.h"
#include "LiterallList.h"
#include "Database.h*"

database: :database(char *infile) //constructoxr
{
ifstream inFile(infile, ics::in};
if (! inFile) // File open failed
(
cout << *"¥** Sorry! can nct open " << infile << * for input” << endl:
curr_tok = ERROR;
}
else
{
//cout << "Input Data File: " << infile << endl ;
inFile >> =*this;
}
}
database: : ~database() //destructor
{
}
Boolean database::inrange(int i) const //range check
{
recturn{ i < no_of_clauses);
}
int database::FindCl(int i, const symbolz pred) //Predicate existence check

{
Liceral L;
symbol s;

cout << endl << "Finding Clause starting with i= * << 1 << * ->";

for(; i<no_of_clauses;i+~+)
{
L clausearray(i] .gethead():
S L.predicate() ;
if(s == pred)
break:;

}

if (i < no_of_clauses)
cout << “Clause Found az i= " << i << endl;

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:48 1997

Page

4

else
cout <<

return i:;

1

istream& operator>>(iscream& inFile,

{
int i = 0;
while ((!'inFile.eof())
{

"Clause Not found*

&& (curr_tok

<< endl;

database& dbs)

= END) && (curr_cock

curr_tok = prev_tok = INI;

inFile >> dbs{i++];
}

dbs.no_of_clauses = --i;
cout << "Number of clauses: *
return inFile;

}

clause& database::operator(] (int i)

{
}

return {(clausearray({il):

database: :database()
{

}

<< dbs.no_of_clauses << endl;

= ERROR))

//to get clause reference

/*i’"*"*""'*f'f?tt,f'tt*t"f"'***'f"f'"f"*'fR"f"Qt't"*'i"t"*"fﬂ"/

/t

/t

/* Module

/= Description
/'

/t

e e

Error.C

Generates errors during input £files parsing */

*/
*/
*/
*/
>/

/"‘.I""t"*'.*f**f*'tf'f'k""'f'*"'"*'Tttfi""'f**"t't***'t't"t"f't"?"/

#include <iostream.h>
#include "Error.h*

int no_cf_errors;

void error({const char~ s)

{

“\n*;

AR A AEALLLLELLS LSS LA EEISEEl RSl SRR LR B R R R R R R R RtRup R R e R e R AR AR
/ /

cerr << "Error : " << s <<
no_of_errors++;

}

/*

/'

/* Module :

/* Description :

/'

/t

Infer.C
To create and manage the Clauses

*/
=/
x/
'1’
*/

* /
/

/tqtrtttt't*t*w?*'rtwrt"tttwrtttwtwwt*tvtwtrttwtrw*ttttw'ww**'tft*tttt'**rt'/

#include "Bool.h"

CFiles

Listing for Mohan Tadisetty Tue Mar 25 18:47:48 1997

Page

#include "Infer.h*
#include "Substitution.h"

inference: :inference() // constructor
{
}

inference::~inference() // destructor

{
}

Boolean inference::Establish(Literallist& goals, database& db)

1

clause NxtCl;

clause ClInst;

LiteralList L1;

symbol Pred;

int ClPos = 0;

Boolean terminace = FALSE;
if (goals.isEmpty()) return TRUE;
cout << endl << "Goals : “;

goals.display LiteralList():
Pred = (((goals.getLNode())->getLtrl())->predicate());

cout << endl << "Looking for Clause with Predicate: "<< Pred ;
ClPos = db.FindCl(0, Pred):

if (db.inrange(ClPos))
{
NxtCl = db[ClPos]:
NxtCl.display_clausel(); //Display this clause
}
else
terminate = TRUE;

while(terminate i= TRUE)
{
ClInst = NxtCl.Instance():

cout << endl << *Trying to Establish ths goals : -;
goals.display LiterallList();

LiteralList NewGoals(goals); // Preserve the Goals for BackTracking
if (Match(ClInst.gethead(), ((goals.getLNode())->getLrtrl(})))
(
L1 = goals.rest();
if (Establish(Subs.apply((ClInst.getbody()).copycat2(Ll)), db))
return (TRUE) ;
}

// Unable to Establish the present goals. So backtrack to
// preserved goals list and try for alternate choices

Subs.InitSubsListc(); //Inicialize the Subs List

CFiles

. Page
Listing for Mohan Tadisetty Tue Mar 25 18:47:48 1997 6

goals = NewGoals; // Get back the preserved goals list

cout <<endl<<"*** Unable to Establish the goals - Back Tracking to -> ":
cout << endl << "Goals : ";
goals.display LiteralList();

Pred = (((goals.getLNodel())->getLtrl())~>predicate());
ClPos = db.FindCl(++ClPos, Pred):

if (db.inrange(ClPos))
NxtCl = db(ClPos]:;
else
terminate = TRUE;
}

return FALSE;
}

Boolean inference::Match(Literala Head, Literal* Goal)
{
node *SlH, *sS1G, *S1HOrg, *S1GOrg:

cout << endl << *"Trying to Unify the Literals : *;

Head.display_Literal();
cout << " and *;
Goal->display_Literal():

if (Head.predicate() !'= Goal->predicate(})
return (FALSE) ; //Wrong Rule - Return False

/* Same Predicates - So proceed */
sympollist* s = Head.arguments();
S1H = S1HOrg = s->gethead():

s
sS1G

Goal->arguments () ;
S1GOrg = s->gethead();

while(S1H && S1G)
{
if (((SlH->getinfo()).getSKind()) == VAR)
{
if (SlH->getinfo() == $1G->getinfol()) // Same variable 2

// YES - Same variables - Do nothing !
continue;

}

else

{
// NO - Not the same variables - Try to unify
Subs.add (S1E->getinfo(), S1lG->getinfol());
Subs.unify(S1HOrg, S1GOrg):;

}

}
else
{
if (((SlG->getinfo()).getSXind()) == VAR)
{

Subs.add(S1G->getinfo(), SlH->getinfol()):

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:49 1997

Page
7

Subs.unify(S1HOrg, S1GOrg):;
}
else
{
if (SlH->getinfo() !'= SlG->getinfo()) //Both same constants ?
{
cout << endl << "Unification Failed : Constants not same"<<en
dl;
recturn FALSE:;
}
}
}
S1H = SlH->getnext();
S1G = S1G->getnext();

}

cout << endl << "OK - Unification is Sucessfull "<< endl;

return TRUE;

}

[R R R R R R O AN R T T RRE XTI

/*

/*

Module
Description

Ve e

A AR AN XA AL TAXT XXX RTINS

*/
*/
Lex.C >/
To perform Lexical Analyis on the given */
input ascii file for clauses and query */
*/

*/

/*f'**""*t"'?*"?t't't'f'tf*'f"'""""7'*?'*'1*"""*I"t"'f*""t'ttt/

// Input

#include
#include
#include

and Lexical analysis definitions

<stdio.h>
"Error.h*
"Lex.h"

token_value curr__tok;
token_value prev_tok;

token_value get_token(istream&k inFile)

{

char ch;

}

~

o

if (! (inFile.get(ch)))

while (isspace(ch));

switch (ch)

{

case
case ',
case
case '
case -
case '’

"

— -] .

defaulc

~ s s

e ee ey

return curr_tok =

if

(isalnum(ch))

return curr_tok = END

~

token_value(ch) ;

CFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:49 1997 8
{
if(isupper(ch)) curr_tok = VARIABLE;
else curr_tok = NAME;

// NAME can be PREDICATE or CONSTANT
inFile.putback(ch) ;
return curr_tok;
}
else
{
error{"bad tcken"):
return curr_tck = ERROR:

}

}
5"Ii"*'?'Qtt'tf’tt*f?'f*'fi'*t***""'tI'f?*'f"'*"'f""t*t'""'t'*t‘k""/
/7> */
/= */
/* Module : Literal.C */
/= Description : To create and manage the Literal Class >/
/> =/
’” x/

I/'f'*""t""'f'ff*f'f'tf'*"f'?'**f’*"f?*"7‘."*'?"'7""""",""'*"'/

#include "Literal.h"

Literal::Literal(symbol& pn, symbollisti SL)

pred(pn), arglist(SL)
}
Literal::Literal(const Literal& L)
pred(L.pred), arglist(L.arglist)
)

Literal::Literal ()
{

}

Literal::~Literal()
§
Literal& Literal::cperator = (const Litesral& L)
¢ if(this !'= &L)
: pred = L.pred:;
arglist = L.arglist;
iecurn *chis;

}

Boolean Literal::operator == (const Literalg L)
{
if ((L.pred == pred) && (((Literal ;L).arglist == arglist))
return TRUE:;

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:49 1997

Page

else
return FALSE;

symbol& Literal::predicate()
{

}

return pred;

symbollist* Literal::arguments/()
(

return (&arglist);
}
istream& operator>>(istream& inFile, Literal& L) //input operator
{
symbol predsym;
symbollist si;
if (curr_tok == PREDICATE) // To confirm the head first
{
prev_tok = curr_tok:;
inFile >> predsym; // Building the predicate
}
else return inFile;
get_token(inFile); // Checking for LP
parse(inFile);
if (curr_tok == END || curr_tok == ERROR ||
curr_tok != LP) return inFile;
if(curr_tok == END || curr_tok == ERROR) return inFile:
inFile >> sl; // Building the arglist
L = *new Literal(predsym,sl): // Constructing the Literal
return inFile;
}

void Literal::display_Literal()
{
cout << pred ;
arglisct.display_symbollist();
}

const

void Literal::ChLVarName(int seqno)
(
arglisc.ChSlVarName(seqno) ;

}

IAAAA AL AAAAL LSS ALAASESE S LSS E Sl

TR T XA AT A AT A AT AN AR XA A AT LEAXNR XXX [

/* .
/* */
/* Module : LiteralList.C =/
/* Description : To create and manage the LiteralList Class ~/
/= <
/w "I

AL RS AR AL ALL L LA RS S SR

R N AT TN AN T AR ATXELATXTTTRNLEXNXRTN T XN

CFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:49 1997 10

#include "LiteralList.h*

LiteralNode: :LiteralNode(const Literal& L, LiteralNode *n)
{

Ltrl = new Literal(L);

LtriNext = n;
}

LiteralNode: :~LiteralNode()
{

}

LiteralList::LiteralList()
{

}

Literalhead = NULL:;
Literallist::~LiteralList()
{

}

Literallist::Literallist(LiteralNode~ n)

{
}

Literalnead = n;

LiteralList::Literallist(const LiteralList& LL)
{
Literalhead = NULL;
LiteralNode *last = NULL;
LiceralNode *cursor = LL.Literalhead;
if (cursor != NULL)
{
Literalhead = new LiteralNode(~*(cursocr->Ltrl), NULL);
last = Literalhead;

cursor = cursor->LtrlNext;

while{cursor != NULL)

{

last->LtrlNext = new LiteralNode(* (cursor->Ltrl), NULL):
cursor = cursor->LtrlNext;

last = last->LtrlNext;

}
1
4
void LiteralList::append(const Literal& n)

{

LiteralNode *cursor = Literalhead;

if (cursor '!'= NULL)
{
while(cursor->LtrlNext != NULL)
cursor = cursor->LtrlNext:;
cursor->LtrlNext = new LiteralNode(n, NULL);
}
else
Literalhead = new LiteralNode(n, NULL):;

CFiles

. Page
Listing for Mohan Tadisetty Tue Mar 25 18:47:49 1997 11

LiteralNode* LiteralList::getLNode ()
{

}

return {(Literalhead) ;

LiteralList LiteralList::rest()
{
if (Liceralhead == NULL)
return LiteralList();
else
return Literallist(Literalhead->LcrlNext) ;
}

Literallist& Literallist::operator = (const LiteralLisct& LL)
{

Literalhead = LL.Literalhead;

return *this;
}

LiterallList& LiteralLisct::copycatZ({Literallist& L)
{
if (isEmpty()) return(L);

// The LiteralLists are not Null, So append the two lists
LiteralNode *cursor = Literalhead;
while(cursor->LtrlNext != NULL)

cursor = cursor->LtrlNexc;
cursor->LtrlNext = L.Literalhead;

return *this;
}

istream& operator>>(istream& inFile, LiceralList& LL)} //input operator
{
Literal L;

for(; ;)
{
get_token(inFile) ;
parse(inFile) ;
1f (curr_tok == END || curr_tok == DOT) break:;
if (curr_tok == NAME) curr_tok = PREDICATE;

switch(curr_cok)
{
case PREDICATE -
inFile >> L; // BuilZd the Literal
LL.append (L) ; // Append the new Literal to LiteralList
break;

case COMMA
break;

case ERROR

default :
error ("Out of Sequence");
curr_tok = prev_tok = ERROR;
break;

CFiles

. Page
Listing for Mohan Tadisetty Tue Mar 25 18:47:49 1997 12

}
return inFile;
}

void LiteralList::display_LiteralList() const
{

Literal Lit;

LiteralNode *cursor = Literalhead:

1f(isEmpty()) cout<<"(No Body)*:

else
{

while(cursor != NULL)

{
lcursor->Ltrl)->display_Literal();
cursor = cursor->LtrlNext;
if(cursor != NULL) cout<<" , ";

}

}
}

void LiteralList::ChLLVarName(int seqno)

{
LiteralNode *cursor = Literalhead;
while (cursor != NULL)
{

(cursor->Ltrl)} ->ChLVarName (seqno) ;
cursor = cursor->LtrlNext;

/tt*rttttt'tt*t*tt'w*trtwttwtr'*wtrwt**t*'tt'tt'v't'tfttttttfrf'rtt'tttttr't*/

/* */
/> y
/* Module : Main.C */
/> Description : Datalog Interpreter Program */
/* .y
’* -/

/""7tf?"tf**'t"'?'t"f‘l"t'lf"'i'ft*'fI"t'f't"'if*""t'*"?t""tt"*t/

#include "Database.h*
#include "Infer.h-"
#inciude "Query.h-

Boolean main(int argec, char **argv)
{
if (arge > 3) (
error ("arguments error");
return FALSE;)}

prev_tok = curr_tok=INT;
cout << "*** Proceeding for Database creation **** << endl;
cout << "Input Clauses File: " << argv(l];

database mydata (argv{l]);

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:49 1997

Page
13

if (curr_tok
{
cout << endl <<
cout << endl <<
}
else
return FALSE;

!= ERROR)

inference my_infer;

"Clause Errors = *
"Database is created Successfully" << endl;

<< no_of_errors;

cout << endl << "*** proceeding to build the Query **** << endl:;

no_of_errors = 0;

cout << "Input Query File: -
cout << endl << "Query Errors
cout << endl << "User's Query
query qryl(argv(2]);

if(curr_tok == ERROR)
cout << endl << endl;

<< argvi2] :

<< no_of_errors;

) -
M H

return FALSE:;

cout <<"*** Datalog Interpreter is Trying to Estblish User’'s Query ***";

cout << endl;

if (my_infer.Establish(qry.getgoals(), mydata))
cout<<endl<<"*** SUCCESS - User‘'s Query CAN BE Established ***"<< endl:

else
cout<<endl<<*"*** FAILURE -

}

User’'s Query CAN'T RBE

Established ***"<< endl:

/tf*t'f*'!**'f*f"'*'t""tt'Qt't*t*f'*’*"?""*i'Q'vt"'t"t""t""'*""/

/'

/f

/* Module

/= Description
/ﬂ'

/t

Query.C
To create and manage the Queries

>/
*/
*/
*/
*/
*/

/f'tf**t*"*'*'t**'*f*i"t't't'tlf'"'Q**"**i’"""'*\'t't't*f*f"'t'**'i*'*'/

<fstream.h>
*Bool.h"
“Lex.h"
"Query.h"

#include
#include
#include
#include

query: :query ()
:goals ()

Literallist& query:: getgoals()
{

}

return goals;

query: :query(const query& s)
{

//construccor

/ /destructor

//To get the gocals pointer

//copy constructor

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:49 1997

Page
14

}

goals = s.goals:;

Boolean query::checkdot()

{

}

char ch;

cin.get(ch):;
if (ch == .

else

{

'} return TRUE:;

cin.putback(ch};
return FALSE;

}

istream& operator>>(istream& inFile, query& s) //input cperator

{

}

LiteralList 11;

prev_tok = iff_ok;

curr_tok = INI;

wnile ((!

{

prev_tok

//to pretend as if head already been read

inFile.eof()) && {(curr_tok != END) && (curr_tok != ERROR))

= iff_ok:

inFile >> 11;

}

1l.display_LiteralList();
s.goals = 11;

return inFile;

query: :query(char *infile) //constructor

{

ifstream inFile(infile, iocs::in);

if (¢

inFile)

// File open failed

cout << "*** Sorry! can not open " << infile << * for input" << endl;

curr_tok =

ERRCR;

//cout << "Input Data File: " << infile << endl ;
inFile >> *this;

/Ittt*tt*ftttt't*fw'*t'ttttt‘—tw""w*tttw-lwrntttt*vtt*trttrttt**tvtw*f#twttwtt/

/*
/*
7*
/™

/=
/

Module
Description

Substicution.C
To create and manage the Substitution Class
and its methods

*/
*/
*/
-/

~/

CFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:49 1997 15
/> */
/* */

IAAAAEALLSALSEL LA LSSl lll Al llisl it il il ti bl sV

// A substitution is a map from Symbols to Symbols in Datalog
#include “Substitution.h*

Substituticn: :Substitution()
map ()

{

}

Substitution::Substitution(const Substitution& S)
map(S.map)

{
}
Substitution: :~Substicution()

{
}

Substitution& Substituticn::operator =(Substitution& S)
{

map = S.map;

return *this;

symbol* Substitution::operator{] (const symbol& s)

ListIterator< SymbolPairpPtr > iter(map) ;

symbocl* symptr = NULL;

for(SymbolPairPtr *sp = iter.first(); sp != NULL; sp = iter.nextc()
if(*((*sp)->firsc()) == s)

symptx = (*sp)->secondl();
break;
}
return symptr;
}

LiteralList& Substitution::apply(LiteralList& L1)
{
LiteralNode *cursor = Ll.Literalhead:;
while (cursor != NULL)
{
this->unify((cursor->getLtrl (})->arguments()->gethead(), NULL);
cursor = cursor->getLtrxlNext();
}
return{(Ll) ;

}

void Substitution::unify(node* S1G, node* S1H)
{

symbol *symptr:

Substitution *ptr = this;

while(S1G)
{

CFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:49 1997 16

symptr = NULL;

if (((SlG->getinfo()).getSKind()) == VAR)
symptr = ((*ptr) [(const symbol&) (S1G->getinfo())]);
if (symptr != NULL)
{symbol~) ((S1G)->getinfol()) = *symptxr;
S1G = SlG->getnext();
}
while(S1H)
{
symptr = NULL;
if (((SlH->getinfo()).getSKind()) == VAR)
symptr = ({(*ptr)[(const symbolk) (SlE->getinfo())]};
if (symptr ‘= NULL)
* (symbol~*) (S1H->getinfol()) = *symptr:;
S1H = SlH->getnext();
}
return;

}

void Substitution::InitSubsList()
{
ListIterator< SymbolPairpPtr > icer (map) ;

for(SymbolPairPtr* sp = iter.first();:; sp '= NULL; sp = iter.next())
*((*sp)~>first()) = *((*sp)->second(}) = 0;
}

void Substitution::add(const symbol& s, const sympol& t)

{
ListIterator< SymbolPairPtr > iter (map) ;
for(SymbolPairPtr* sp = iter.firsc(); sp != NULL; sp = itcer.next())
if(*((*sp)->second()) == s)

*((*sp)->first()) = s;

map.append(new SymbolPair(s, ©));
}

void Substitution::concat(Substitution& s)

{
ListIterator< SymbolPairPtr > iter(s.map);
for(SymbolPairPtr* p = iter.first(); p '= NULL; p = iter.next(})
{
map.append(new SymbolPair(*((*p}->firsz(}), *((*p)->second())));

SymbolPair: :SymbolPair ()
fst(NULL), snd(NULL)
{

}

SymbolPair::SymbolPair(const symbol& s, const symsol& t)
(
fst = new symbol(s);

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:49 1997

Page
17

snd = new symbol(¢ };
}

SymbolPair: :~SymbolPair()
{
delete fst;
delete snd;

SymbolPair& SymbolPair::cperator =(const SymbolPair& SP)

}
{
if(this ‘= &SP)
{
£st = SP.fst:;
snd = SP.snd:
}
return *this;
}

symbol* SymbolPair::firsc()
{

}

return fst;

symbol* SymbolPair::second()
{

return snd;
}

/'*'t"t'"t'*".*"'*"""*"tf""""'tt**f't't*"*Y****tf*'f?'\"t‘l’"tttf"'/

/i’

/'

/* Module

/™ Description
/'

/t

Symbol.C

*/
*/
*/

To create and manage Symbol Class =/

>/
*/

/wttttwtttwt**tttt*'ttttt'*ft**tt*r*f'*t"wwt'ttwttitttt*ttttf*"tttwtttw'ttt/

#include <string.h>
#include <stdio.h>
#include "Symbol.h-"
//#include "Global.h*

symbol: :symbol(char* s , const SymKind& sk)

{

if (s t= 0)

{
len = strlen(s) + 5;
Sname=new char{len + 5
strxcpy (Sname, s) ;

}

else

{
len = 0;
Sname = new char(l];
Sname([0] = "\0';

}

Skind = sk;

11

//construccor

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:49 1997

Page
18

}
symbol::~symbol ()
{
}
symbol: :symbol (char* s)
(
if (s = 0)

(
len = strlen(s) + 5;

Sname=new char{len + 5 + 1}];

strcepyv (Sname, s) ;

}

else

{
len = 0;
Sname = new char[lj;
Sname({0] = "\0‘;

}
Skind = PRED;

symbol::symbol (const symbol& s)
{

if (s == 0)

{
len = 0;
Sname = new char([l]:
Sname[0] = ‘\0‘;
Skind = PRED;

}

else

(
if (s.Sname == 0)
{

len = 0;

Sname = new char(l]:

Sname[0] = ‘\0’;
Skind = PRED;

}

else

{

len = s.len:

Sname = new char([len+1l 1:
strcpy (Sname, s.Sname)

Skind = s.Skind;
}

}

symbol& symbol::operator=(const symbol& s)
{

if (this !'= &s)
{

len = strlen(s.Sname);
Sname = new char[len+1];
strcpy (Sname, s. Sname) ;

/ /destructor

/ /fconstructor

//copy constructor

//Assignment operator

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:49 1997

Page
719

Skind = s.Skind:
}
return *this;

}

SymKind& symbol::getSKind()
‘ return(this->Skind) ;

}

Boolean operator==(const symbol& sl,
{
if (((sl.Sname != 0) && (s2.Sname
(!strcmp(sl.Sname, s2.Sname))
return TRUE;
else

return FALSE;

Boolean operator'!=(const symbol& sl,c

if (sl.Sname == 0 && s2.Sname

return FALSE;

if (sl.Sname == 0
return TRUE;

|| s2.sname

if |
return TRUE;
else
return FALSE;
}

ostream& operator<<{(ostream&os, const
r

{

if(s.len == 0) cout<< "Length Error*" << endl;
for(int i = 0; 1 < s.len; i++)
os.put(s.Sname(il]l);
switch(s.Skind)
(
case PRED break:;
case VAR : break;
case CONST: kreak:;
default cout<< “-> ** ERROR SXIND"<< endl;
}
return os;
}
istcream& operator>>(istreamiis, symbol& s}

{
char buf([20];
is >> buf;

s.len = strlen (zuf);
char *charPtr = new char [s.len +
strcpy (charPtr, cuf);

(strcmp (sl.Sname, s2.Sname)) ||

const svymbol& s2)

= 0)) &&
&& (sl.Skind ==

onst svmpol& s2)

== ()

G)

(sl.Skind

symbol& s)

11;

‘/egality operator

s2.Skind))

//inegality operator

= s2.8kind))

//0utput operato

break:

//Input Operator

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:49 1997

Page

20

s.Sname = charPtr:;
switch(curr_tok)
{
case PREDICATE :
s.Skind = PRED;
break;

case VARIABLE :
s.Skind = VAR;
break:

case CONSTANT H
s.8kind = CONST;
break;

}

return 1is;

}
void symbol::ChvarName(int seqmno)
{

char buf[25];

if£(Skind == VAR)

{

sprintf(buf, *"%s%03d", Sname, seqgno):

len = strien(buf);

strcpy (Sname, buf) ;

recurn;

}
/'f***f**f't**"i"'?t*t*t*"*tt"l*'fl’tt'tt*tf'*"'i’**t""'f**f*t""t‘l’fﬂ"f*'/
/™ */
Vad */
/* Module : Symbollist.C */
/= Description : To create and manage Symbollist Class >/
/' */
/= */

] T T R K R X A R K N A R R A A AT AT AT A XA AT A A XN XA TN T RN RTAN

zinclude "Error.h"
£include *“Syn.h*
#include "Symbollisc.h*

node: :node(constc symbol& s, node~ t)
{

info = new symbol(s):
next = t;

}

node: : ~node ()

{

}

symbollist: :symbollist ()
{
head = NULL:

/ /node constructor

/ /node destructor

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:49 1997

Page
21

}
istream& operator>>(istream& inFile,
¢ symbol Symb;

for : :)

{

get_token(inFile) ;
parse(inFile);

svmbollist& sl)

if (curr_tok == END || curr_tok == RP) break:

if (curr_tok == NAME)
switch (curr_tok)

{

curr_tok =

case VARIABLE

case CONSTANT
inFile >> Symb;
sl.append (Symb) ;
break:

case COMMA :
break;

case ERROR:

CONSTANT;

= ERROR;

defaulc
error ("Out of Sequence");
curr_tok = prev_tok
break:;

}
}
return inFile;
1

symbollist: :symbollist(node* t)
{

}

symbollist::symbollist(symbol& ptr)
{

}

head = t;

head = new node(ptr, NULL);

symbollist::symbollist(const symbollist& sl1)
{

head = NULL;

node *last = NULL:

node *cursor = sl.head:

if (cursor != NULL)

{

//constructor

//copy constructor

head = new node(* (cursor->info),NULL);

CUursor = cursor->next;
last = head:;
while(cursor != NULL)
(
last->next =
CUursor = Ccursor->next:;
last = last->next;

}

new node(* (cursor->info),NULL) ;

CFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:49 1997 22
}
}
void svmbollist::append(const symbol& s) //To append node at end
{
node *cursor=head;
if (cursor != NULL)
{
while (cursor->next != NULL)
cursor = cursor->next;
cursor->next = new node(s, NULL):;
}
else

head = new node(s, NULL);
}

node* node::getnext() const //To get the next node pointer

{
return {(next):;

}

Boolean symbollist::operator==(const symbollist& SL)

{
node *sl = SL.head:
node *cursor = head:
if (cursor == NULL)} return(FALSE};
while(sl != NULL && curscr != NULL)
{
if(cursor->info !'= sl->info) recurn(FALSE);
sl = sl->next; CuUrsor = cursor->next;
}
recurn(TRUE) ;
}
symbollist& symbollist::operator = (const symbollist& p) /. assignment operator
{
head = p.head:;
recurn *this:;
}
void symbollist::display_symbollist() const // to display symbollist

{
node *cursor=head:;

if (isEmpty()) cout << "Empty Symbollist";

cout << *“{";
while(cursor!=NULL)

cout << *(cursor->info):;
cursor = cursor->next;
if(cursor != NULL) cout << ",*;
}
cout << ")";

}

symbollist::~symbollist ()
(

CFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:49 1997

Page
23

consc

//to get the symbol pointer

void symbellist::ChSlVarName (int segno) const

!= NULL)

(cursor->info) —>ChVarName (seqno) ;

cursor->next;

/tt*tt'ttf’tttt'tt"t'gt'ttw*"tttwt*t'ttttr\vww'tthttt'*f"'ft'ttrt't't'tttt/

}
symbol& node::getinfo() const
{
return *(info);
}
symbol~* node: :getinfol ()
{
return (info);
}
(
node *cursor=head;
while (cursor
{
cursoer =
}
}
/f
/t
/= Module
/™ Description
/"
/'
/t

Syn.C

To parse the input ascii £ile of clauses

and query

* /

*/

*/

/t'fif""t“'*'tt"t'fit?""f?'t"""'*"*"'**t"t'fi't*'*"'f"t"'t"fﬁtf/

#include
#include
#include

char ch;

“Error.h"

"Lex.h"
"Syn.h"

parse(istream& inFile)

{

swictch (curr_tok)

{

case COLON

if (prev_tok ==

{

inFile.get(ch);

if (rtoken_value(ch) == HYPHEN) ‘second chr of iff
recurn (curr_tok = prev_tok = iff_ok);

else
{
error ("iff error®);
break; ;//1ff error
}

}

else
(

}

error ("COLON
break:;

// 1E£f starc

RP)

not preceded by a RP");

CFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:49 1997 24

case COMMA :
if (prev_tok == VARIABLE || prev_tok == CONSTANT ||
prev_tok == RP || prev_tok == NAME)
return(prev_tok = curr_tok);

error ("COMMA not preceded by a Pred/Var/Constant®);

break;
case LP :
if (prev_tok == PREDICATE)

return (prev_tok = curr_tok);

error ("LP nct preceded by a Predicate”);

break;
case RP : //read next predicate
if (prev_tok == VARIABLE || prev_tok == CONSTANT ||
prev_tok == NAME)

return(prev_tok = curr_tok):;

error{"RP not preceded by a Var/Cons:t"};

break:
case DOT : //end of clause
if (prev_tok == RP)

recurn (prev_tok = curr_tok);

error ("DOT not preceded by a RP");
break;

case VARIABLE

if (prev_tok == COMMA || prev_tok == LP)
return (prev_tok = curr_tok);

error ("Invalid token before the VARIABLE"):
break;

case NAME

// Here NAME can be a PREDICATE or a CONSTANT.
// So check for it !1t¢

INI ||

if (prev_tok == COMMA prev_tok
== LP)

prev_tok iff_ok prev_tock
recurn (prev_tok = curr_tok);

error ("Invalid token befors a NAME");
break;

case END
return (prev_tok = curr_tok);

case ERROR

CFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:49 1957 || 5z

default
cout << curr_tok << endl;
errcr (*Invalid token *);
break:;
}
return (curr_tok = prev_tok = ERROR):

CFiles

. Page
Listing for Mohan Tadisetty Tue Mar 25 18:47:57 1997] (1]

‘I"?*'f'*"'*"'f"f""'f'*'***'t't*"""tt"f*t*t""t"'Q't"'**"'ltt?i'/

(»' '/
- */
;. Module : Bool.h */
A Description : Boolean definitions */
. */
/" l/

/ttrtvtwt*t*t*twttttt'tr't'tt*rt*ttttttrrv"twttttttt'f*r"ttttttfttwttt'tt*t/

#ifndef BOOL_H
#define BOOL_H

¢define Boolean int
#define TRUE 1
#define FALSE 0

#endif

/ LA A R B B B A S & A S A 8 R R R B K R *'*k't"ft"tIt't"tf'**'t'f"*f*f'*ttt""?"/
/= 7
/> x/
. Module : Clause.h hid
/= Description : Definitions for Clause Class and its methods*/
'/' '/
/- */

BASE LS LA RS AR SRR R S K B B R R R R R R P S T AR RN N T AT TARAN AR ATCCTCRRNNT |

#ifndef CLAUSE_H

#define CLAUSE_H
#include <iostream.h>
#include "Literal.h-"
#include "LiterallLisc.h*

// *** (Class - Database with Clauses it

class clause
{
Literal head;
LiteralList body:;
friend istream& operator>>(istream&, clause&); //input operator
public :
clause(); // clause constructor
~clause() ; // clause destructor
clause(const Literals&, LiterallList&): // constructcsr
clause(const clause&) ; // copy cCoOmnstIructor
Literal& gethead() ; // To get the head
LiteralList& getbody() ; // To get the body
clause& Instance(); // To build clause Instance
clause& operator=(const clause&); // Assignment operator
void display_clause() const; // To display the clause
1
fendif
M B B R R i R R R R R R R R 1'*****"'*'wt?*'*tt"*'*'*'Y‘R*'*t*l’*tt"rtt*'/
’- */
i */
/T Module : Database.r */
- Description : Definitions and methods fcr Database Class ~/

hFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:57 1997 2
'/ - * /
/= */

‘/tt"***f’tt'**t"*'f*f'*"'f"'f"**t"'*"ff't"'t""t'*’tt"'fff"'f'f***t/

#ifndef DATABASE_H
#define DATABASE_H

#define MAXCLAUSES 100
#¢include <iostream.h>
#include "Bool.h-"

¢include "Symbol.h-"

#include "Clause.h"

// *** (Class - Database **~

class database
p

int no_of_clauses:
clause clausearray[MAXCLAUSES];

friend iscream& operator>>(istream&,database&): ./Input operator
public :
database(char *): //constructor
~database() ; //destrucctor
database() ; //constructor
Boolean inrange(int) const; //range check
int FindCl(int, const symbolg) //symbol existence check
clause& operator([] (int) ; //to get clause reference
}:
#endif

N R R R R RN R A T T A T A T T R AT N T R R A A AN AR ARTARATNNTRRT T

TEXER |

/t
*/

/*
*/

/= Module : Error.h
*/

/= Description : Definitions for error generating routine
*/

/'
*/

/t
*/

T R T N R A A N N A A T A A TN NN AT

"\"‘*/

#ifndef ERROR_H
#define ERROR_H

extern int no_of_errors:
extern void error {(const char*);
#endif

/ft****twttftww't"ttrtvttttv'*fktttttttwtt"wtsrv"tt'tt'7trwtw't'srfrt'vw'tit/

hFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:57 1997

Page

/Q

/'

/* Module

/* Description
/?

/*

Global.h

o

Global definitions

*/
*/

*/
*/
*/

/"*'tf?',"*?'f't't""'tt"f*‘l’*!t""f""t*t**"t"f"*f*ttt*"t?""f?*ft/

int seqno:

//Segno for Instantiating a variable

/f’*'ff?"tf*f"'t*'tf?'t*"f'f"i’"'"'t"tf'*t*f’t't"'f!tttf"f?i’"*"'t'*"/

/* Ny
/* */
/* Module : Infer.h =/
/* Description : Definitions for Inference Class and its */
/* methcds */
/* */
/* */

/"?""?'fﬁ*'*'*"""f?f*'f***'*"f?"""'"?tf"frr'f'?ttfftf'tttf""ft"'/

#ifndef INFER_H
#define INFER_H

#include "Bool.h*"
#include "Symbollist.h”
#include "Database.h"
#include "Substitution.h"

/7 Class - Inference Engine

class inference

{

public :
inference();
~inference();
inference(const inferencek);
Boolean Establish(LiteralList&, Jdatabases
Boolean Match(Literal&, Literal~*);

private :

Substitution Subs;

Y

#endif

Constructcor
Destructor

Copy Constructor
Inference Engine

To match the Literals

/rtt*tttzttttrttfrtttttrttt"ttw*ttt'tw'twt'fvttrt'vtwttwrtf'rtt*tttt'tr"twt/

/* */
/* */
Vi Module : Lex.h */
/* Description : Defirnitions for Lexical Analysis */
/* */
/* */

/7?‘-*"*ttttttriftw'w**tttrv'tt*twtv'wttvt'wtw*tttttﬁtrr*t*wtw*ttt'wt'rwr'tft/

#i1fndef LEX H
#define LEX_H

#include <ctype.h>

hFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:57 1997

Page
4

#include <iostream.h>

enum token_value { DOT = ‘.°, HYPHEN

NAME, PREDICATE,

iff_ok, END, INI,

extern token_value curr_tok;
extern token_value prev_tok;

= *'-', COMMA =
VARIABLE,

ERROR };

extern token_value get_token(istream&) ;

CONSTANT, LP =

= .

(', RP = ")",

#endif
"f'f"*'"'I'?'t'f""""'"'f’*f'f""'f"?f?".tf"'"'?""*f*'*ttt'
/ /
/> >/
/* >/
/* Module : List.h) */
/* Description : List Class definictions & Implementaitons */
/> */
/* */

/t'tfi'f?**f'f*f?""'*'f*f"'f""""",""""'""'t'*"""""""""'/

#ifndef LIST_H
#define LIST_H

#include <stream.n>
#include <stdlib.h>
#include "Bool.h-"

// the nodes to go in the list are of type ListNode<T>

template < class T >
class ListNode(
public:
ListNode():
~ListNode();
T* getdacal();
ListNode<T>* getnext();
void putdata(T*);
void putnext(ListNode<T>~
void incref();
privace:
T *data:;
ListNode<T> *next;
int ret;
}:

)

template < class T > class ListIcerator:

template < class T >
class List(

friend class ListIterator< T >;

friend T head(List<T>& L

)

friend List<T>& tail(Listc<T>& L):

public:
Lisc();
List(const List<T>&);
~List();

List<T>& operator=(List<T>&

)i

hFiles

. Page
Listing for Mohan Tadisetty Tue Mar 25 18:47:57 1997] [5 j

void prepend(const T& x);

void append(const T& x };

Boolean isEmpty() const;

Boolean contains(const T& x) consc;

private:
ListNode<T>* ap;
};:

template < class T >
class ListIterator(

public:
ListIterator(List< T >& L);
~ListIterator(}:
T* first():
T* next() ;

privace:
List<T>& ctheList;
ListNode<T>* cheCurrentNcde;

};
//g++ needs implementaction in this file
// implementation of ListNode

template < class T >
ListNode<T>::ListNode()

{
data = NULL;
next = NULL;
ref = 0;

}

template < class T >
ListNode<T>::~ListNode()

{
1f((--ref) == 0) ({
if(next !'= NULL)
delete next;
if(dacta '= NULL)}

delete data;
}:
}

template < class T >
ListNode<T>" ListNode<T>::getnext (
{

}

return next;

template < class T >
T* ListNode<T>::getdata()
{

}

return data;

template < class T >
void ListNode<T>::putnext(ListNode<T>* L)
{

hFiles

Listing for Mohan Tadisetty

Page
Tue Mar 25 18:47:57 1997 6

next = L;
}

ctemplate < class T >
void ListNode<T>::putdata(T* x)
{

}

data = x;

template < class T >
void ListNode<T>::incref()
{

}

ref += 1;

//implementation of List
template < class T >
List<T>::List()

{

}

ap = NULL;

template < class T >
List<T>::List(const List<T>& L)
{
ap = L._ap:
if(L.ap != NULL)
L.ap->incref ()

}

template < class T >
List<T>::~List()
{
if(ap '= NULL)
delete ap;

}

template < class T >
List<T>& List<T>::operator=(List<T>& L)
{
ap = L.ap:
if(L.ap !'= NULL)
L.ap->incref () :
return *chis;

}

template < class T >
T& head(List<T>& L)

{
if(L.ap != NULL) {
return *(L.ap->getdata()):
}
else{
cout << "head of empty data
exitc(1);
}
}

template < class T >

\n";

hFiles

Page
Listing for Mohan Tadisetty Tue Mar 25 18:47:57 1993 [7J

List<T>& tail(List<T>& L)
(
if(L.ap '= NULL)¢
List<T>~ p = new List<T>;
p~>ap = L.ap->getnext():;
return *p;
}
else(
cout << *"tail of empty data \n*;
exit(1);

}

template < class T >
void List<T>::prepend(const T& x)

{
//insert x at the head of the list
ListNode<T>* p = new ListNode<T>;
™ Xxp = new T:
*Xp = x;

p->putdata(xp);
p~>putnext(ap };
) ap = p;

template < class T >
void List<T>::append(const T& x)

{
//insert x at the end of the list

//create new node

ListNode<T>~* p = new ListNode<T>;
T Xp = new T;
*Xp = x;

p->putdata(xp);
p->putnext{ NULL) ;

if(ap == NULL)}
(ap = p;
else
//traverse to the end cof the list

ListNode<T>" last = ap;
while(last->getnextc() != NULL) last = last->getnext();

last->putnexc(p):

}

template < class T >

Boolean List<T>::isEmpty() const
{

}

return (ap == NULL) ;

template < class T >
Boolean List<T>::contains(const T& X) const

{
/ / durmmy

hFiles

. Page
Listing for Mohan Tadisetty Tue Mar 25 18:47:57 1997] [8 j

return FALSE;
}

// implementation of ListIterator

template < class T >
ListIterator<T>::ListIterator(Listc<T>& L)
: theList(L)

{

}

theCurrentNode = L.ap;

template < class T >
ListIterator<T>::~ListIterator()
{

}

template < class T >
T* ListIterator<T>::next(}
{
ListNode<T>* ap:
ap = ap->getnext();
if(ap != NULL)
return ap->getdaca():;
else
return NULL;
}

template < class T >
T* ListlIterator<T>::firsc()

{
ListNode<T>* ap;
ap = thelList.ap:;
if(ap != NULL)
return ap->getdatal();
else
return NULL;
}
#endif
/l‘"'t'*""’""f*'"""‘l"""""tt*i*'ff!"f?**'*"'t*"t"'**"**f?"?"'""/
/™ Ny
/= */
/' Module : Literal.h >/
/' Description : Definitions for Literal Class and methods -
/- y
/, r’/

T X R A N A T X AT AN AT TR TR TENRT T X A N AT AT XRN T TRN XXX TRERNT TS X/

#ifndef LITERAL_H
#define LITERAL_H

#include <iostream.h>
#include "Bool.h"
#include "Lex.h"
#include "Syn.h"
#include "Symbol.h*
#include "Symbollistc.h*

class Literal({

hFiles

Listing for Mohan Tadisetty

Page
Tue Mar 25 18:47:57 1997 9

friend istream& operator>>(istream& , Literals):

public :

privace

Y

#endif

Literal();

Literal(symbol&, symbollisti)
Literal(const Literals);

~Literal():

Literal& operator={(const Literali);
)]

7 /input operator

Boolean operator==(const Literal&a ;

symbola predicate(); //ferch the predicate name
symbollist* arguments() ; //fetch the list of arguments
void ChLVarName (int) ; //To Instantiate the Literal args
void display_Literal() const; //To Display the Literal

symbol pred; //Predicate

symbollisc arglisc; //Arguments List

/!""'?'YQ'Y""""*'ttfI'"ttt*,"t"'t"l*"","t"'"'*"'*""""t'f'f‘/

/*
/"

Module
Description

e

LiteralListc.h

- s
7
x 7

*/

Definitions for LiterallList Class and its >/
methods =/
*/
*/

/rttrt'tt't*tt'tr'twtw-'*wf'trtwt*tt"t'tttt'7*'tv*tt*tt'rwttttt'v'w"'rt'v't/

#ifndef
#define

LITERALLIST_H
LITERALLIST_H

// A list of licterals for Datalog

#include
#include
#include
#include

class Li

{

<iostream.h>
“Bool.h"
"Exror.h"
"Literal.h"
teralNode

friend class LiteralLisct:

public

LiteralNode(const Literal&, LiteralNode*);

~LiteralNode() ;
Literal~ getLtxrl ()
LiteralNode* getLtrlNext ()

{ recurn Ltxrl; }
const { return LtrlNext;

//Construccor

hFiles

. Page
Listing for Mohan Tadisetty Tue Mar 25 18:47:57 1997] (1 ‘J

private :
Literal *Ltrl:;
LiteralNode *LtrlNext;

}:

class LiteralList

{

friend istream& operator>>(istcream&, LiteralList&):; //input operator
public -
Literallist(); ¢/ Constructor
~LiteralLisc(); // Destructor
LiterallList (LiteralNode&) ; // Constructor
LiteralList(const LiteralList&); // Ceopy Constructoxr
void append(const Literalk): // Append a Literal
LiteralNode* getLNode():; // Get the first LiteralNode
Literallistc rest(); // Get next Literallist
LiterallList& operator=(const LiteralList&): /.’ Assignment Operator
LiteralList& copyvcat2(LiteralList&); // To concatenate twc Literallis
ts
inline Boolean isEmpty () const: ;) To check for empty LitList
void ChLLVarName(int);
void display_LiteralList() const:
LiteralNode *Literalhead;
privatce:
LiteralList(LiteralNode~) :; // Constructor

inline Boolean LiterallList::isEmpty() const
{

recturn(Literalhead == NULL) ;
}

#endif

R R K R R A T R A A T A N T A AN I I A N T AT TN TN TXNAAXAXTNTINE XN XXX/

= -/
i* -/
i Module : Querv.h ~/
S Descrigpcion : Definicions for Query Class and its methods */
‘/" r/
/> */

[R R R A K T T AR T TR T T A N A A T AT A AT A TXTAT XA AXARATTTANTHNTN AN RS/

#ifndef QUERY_H
#define QUERY_H

#include <iostream.h>
#include "Bool.h"
#include "LiterallListc.h*

class query
{

friend istream& operator>>(istream&, querv&): //input operator

hFiles

Page

Listing for Mohan Tadisetty Tue Mar 25 18:47:57 1997 11
public :
query(); //constructor
query (char~*) ; //constructor
~query () ; / /destructor
query (const query&) ; //copy constructor
Boolean checkdot(); //To sense the end of query
LiteralList &getgoals(); //To get the goals pointer
private :

LiteralList goals;
}:

#endif

/*"",*ff'f*'f?f't'*"It'!,"""f"t"'f""""'f"ttttt?f*f't'***t'*'*'*"tt'l/

/= =/
/= .
’* Module : Substicution.h */
/* Description : Definictions for Substitution Class and its ~/
/* methods */
/= y

/if"tt*fff"t*'ttf"*"'ft"'?'t'**'f'f*"'?"*‘l*"'t“'*ti"'*t'*'t"ttf"tt)/

#ifndef SUBSTITUTION_H
#define SUBSTITUTION_H

// A substitution is a map Irom Symbols to Symbols in Datalog

#include <iostream.h>
#include "Bool.h"
#include "Symbol.h"
#include "List.h"
#include "Literal.h"
#include "Literallist.h*

class SymbolPair;
friend class symbollist;
typedef SymbolPair* SymbolPairPtr:;

class Substitution
{
public :
Substitution();
Substitution(const Substitutionk):
~Substitution();
Substitution& operator=(Substizutionk) ;

symbol* operator(] (const symbol&) ; // the substitute for s
void add(const symbol& , const symbolk); // incorporate the new

// substitution
void unify(node*, node*):; // Unify the Literals
LiteralList& apply(LiteralList&); // Apply the substitutions
void concat(Substitution&); // incorporate s
void InitSubsList(); // Initialize the SubsListc

List< SymbolPairPtr > map;

hFiles

. Page
Listing for Mohan Tadisetty Tue Mar 25 18:47:57 1997 12

}:
class SymbolPair(

public:

SymbolPair() ;

SymbolPair(const symboli&, const svmbol&) ;

~SymbolPair();

SymbolPair& operator=(const SymbolPairk);

symbol* firsc():; // Get the First symbol

symbol* second() : // Get the Second symbol
private:

symbol* fst;

symbol* snd;
}:
#endif
/'t'*f*t't'**'tt"ttv'"'ttf*""'f'*Q"'"""'*"Itt"*""'t'"?'7'1'*"""/
/' tl/
/o =/
/> Module : symbol.h */
/= Description : Definitions for Symbol Class and its methods*/
’* *x/
/> */

/f'f"""t"tt't"'"t'*?"f"""*t'f"fif"l"'f""*f'**'t’"""t"t*"f"/

#ifndef SYMBOL_H
#define SYMBOL_H

#include <iostream.h>

#include "Lex.h*

#include "Rool.h"

// PRED: Predicate, VAR: Variable, CONST: Ccnstant

enum SymKind {PRED, VAR, CONST}:

// *** Defining the Basic Element Structure used in the program **~

class symbol

{
friend Boolean operator=={(const symbol&, const symbol&):;
friend Booclean operator!=(const symbolk,const symbol&);
friend ostream& operacor<<{(ostream&, constc symbol&) ;
friend istream& operator>>(istcreamk, symbol&) ;
public :
symbol (char* = 0);
symbol (char* , const SymKindk); // constructor
~symbol () ; // destructor
symbol (const symbolk) : // copy constructor
symbol& operator=(const symbolk); // assignment operator
SymKind& getSKind() ; // To get SymKind
void ChvVarName(int) ; // To change the Var
// to new name
private :
int len:
char~ Sname;

SymKind Skind;

hFiles

Listing for Mohan Tadisetty

Tue Mar 25 18:47:57 1997

Page
13

Y

#endif

/'**’Qt't't'ttt""t*t"f'tf'f't*’f**?*""'t"t"ttr""'t'tttt"""'*""**/
/= */
/> */
/T Module : Symbollist.h */
/- Description : Definitions for SymbollistClass and icts */
/= methods */
;* x/
/- o

/

#ifndef SYMBOLLIST_H
#define SYMBOLLIST_H

#include <iostream.h>
#include "Bocl.h"
#include "Symbol.h"

:'1ttft"fft'tttftt'tttttf*vt'*?*?*tt*t"tt'ttt'wfqgtft'*'ﬁv'r*tt'tt'ttttttt*/

// **> Defining the Basic List Structure used in the program ***

class node

{
friend class symbollist;

private :

symbol *info;
node *next;

public :

node (const symbol&, node*);
~node () ;

symbol& getinfo() const;
symbol~* getinfol() consc;
node* getnext() const;

};

class symbollist
{

//node constructor

//node destructor

//to get the symbol

//to get the symbol pointer
//to get the next ncde pointer

friend istream& operator>>(istream&, svmbollisc&): //input operator
public :
symbollistc(); // ceonscructor
symbollist(symbol&} ; // constructor
~symbollistc(); /¢ destructor

symbollist(const symbollist&)
void append(const symbol&);
node* gethead() { return head; }
inline Boolean isEmpty() const;

// cCopy COnstructor

// append a node

// Returmn the first node
// to check for empty list

symbollist& operator = (const symbollistg); // assignment operator
Boolean operator == (const symbollistk): // equality operator

void display_symbollist() const;
void ChSlvarName (int) const;

private :
node *head;

// to display the symbollist
// To instantiate the Sl

hFiles

. Page
Listing for Mohan Tadisetty Tue Mar 25 18:47:57 1993 [14 j

symbollist (node~*); // constructor
inline Boolean syvmbollist::isEmpty() const // to check for empty Symlist
{
return (head == NULL);

}

#endif
l/t*f*t"*"?f"*"i’""'it"t**'t*f'1*'"'""***'f*'fIt"'t"t"'*'*""*""f/
’ y
/f '/
’* Module : Syn.h */
/* Description : Definitions fcr Syntactic analysis */
/* Ny
/* '/

/ftf"*"t**'""*tfitf??t""ti"'"t"*'f?""'*"t"'t*'ttf"ift**"'*'*'*'/

#ifndef SYN H
#define SYN_H

#include <iostream.h>
extern parse(istream&);

#endif

hFiles

APPENDIX - B

Experimental Results

&sting for Mohan Tadisetty

Thu Apr 3 17:38:13 1997]

Page
1

pasta (X)

cup (
cup (
egg (
egg (

one
two

)
)

one ,

two ,

:t= cup (X),

one)
cwo)

egg (X ,

Y

)

testo

Listing for Mohan Tadisetty

Thu Apr 3 17:38:39 1997

Page

*** Proceeding for Database creation ***
Input Clauses File: test0
Number of clauses: 5

Clause Errors = 0
Database is created Successfully

*** Proceeding to build the Query =***
Input Query File: gry

Query Errors = 0

User’s Query : pasta(two)

=** Datalog Interpreter is Trying to Establish User’s Query ***

Goals : pasta(two)

Looking for Clause with Predicate: pasta

Finding Clause starting with i= 0 ->Clause Found at i= 0
Clause: pasta(X) :- cup(X) , egg(X,Y).

Clause - BEFORE Instantiation
pasta(X) :- cup(X) , egg(X,Y).

Clause - AFTER Instantiation
pasta (X001l) :- cup(X00l) , egg(X001l,Y001).

Trying to Establish the goals : pasta(two)
Substitutions: No Substitutions

Trying to Unify the Literals : pasta(X001l) and pascta(two)
OK - Unification is Successfull

Goals : cup(two) , eggl(two,Y001l)

Looking for Clause with Predicate: cup

Finding Clause starting with i= 0 ->Clause Found at i= 1
Clause: cup(one) :- (No Body).

Clause -~ BEFORE Instantiation
cup(one) :- (No Body).

Clause - AFTER Instantiation
cup (one) :- (No Body).

Trying to Establish the goals : cup(two) , egg({two,¥Y001l)
Substitutions: (X0C1l, two)

Trying te Unify the Literals : cup(one) and cup(two!
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking tc ->
Goals : cup(two) , eggl(two,Y001)
Finding Clause starting with i= 2 ->Clause Found at i= 2

Clause - BEFORE Instantiation

cup(two) :~ (No Body }.

Clause -~ AFTER Instantiation

cup(two) :- (No Body).

Trying to Establish the goals : cup(two) , egg(two,¥001)

Substitutions: No Substitutions

testO0_results

Listing for Mohan Tadisetty

Thu Apr 3 17:38:39 1997

Page

2

Trying to Unify the Literals : cup(two) and cup(two)
OK - Unification is Successfull

Goals : egg(two,Y001l)

Looking for Clause with Predicate: egg

Finding Clause starting with i= 0 ->Clause Found at i=
Clause: egg(one,one) :- (No Body).

Clause - BEFORE Instantiation
egg(one,one) :- (No Body).

Clause ~ AFTER Instantiaticn
egg(one,one) :~ (No Body).

Trying to Establish the goals : egg(two,Y0O01l)
Substitutions: No Substitutions

Trying to Unify the Literals : egg(one,one) and egg({two,¥Y001)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking tc ->
Goals : egg(two,Y001)
Finding Clause starting with i= 4 ->Clause Found at i= 4

Clause -~ BEFORE Instantiation
egg(two,two) :- (No Body).

Clause - AFTER Instantiation
egg(two,two) :- (No Body).

Trying to Establish the goals : egg(two,Y00l)
Supbstitutions: No Substitutions

Trying to Unify the Literals : egg(two,two} and egg(two,Y001)
OK - Unification is Successfull

*** SUCCESS - User’'s Query is Established *=*=*

testO0 results

. Page
[Listing for Mohan Tadisetty Thu Apr 3 17:43:35 1997] [1 j

pasta (X) :~cup (X) .

cup (X) = cup2 (Y), egg (X, ¥)
cup2 {(one)

cup2 { three).

egg (two , three)

()

Listing for Mohan Tadisetty

Thu Apr 3 17:43:48 1997

Page
1

*** Proceeding for Database creation ***
Input Clauses File: testl
Number of clauses: S5

Clause Erxors = 0
Database is created Successfully

*** Proceeding to build the Query *=**
Input Query File: qgry

Query Errors = 0

User’'s Query : pasta(two)

*** Datalog Interpreter is Trying to Establish User’s Query ===

Goals : pasta(two)
Looking for Clause with Predicate: pasta

Finding Clause starting with i= 0 ->Clause Found at i= 0

Clause: pasta(X) :- cup(X).

Clause ~ BEFORE Instantiation
pasta(X) :- cup(X).

Clause ~ AFTER Instantiation
pasta(X001l) :- cup(X001).

Trying to Establish the goals : pasta(two)

Substitutions: No Substitutions

Trying to Unify the Literals : pasta(X001l)

OK - Unification is Successfull

Goals : cup(two)
Looking for Clause with Predicate: cup

Finding Clause starting with i= 0 ->Clause Found at i= 1

Clause: cup(X) :- cup2(Y) . egg(X,Y).

Clause - BEFORE Instantiation
cup (X) :- cup2(Y) , egg(X,Y).

Clause -~ AFTER Instantiation
cup (X002) :- cup2(Y002) , egg(xX002,Y002).

Trying to Establish the goals : cup(two)
Substitutions: (X001, two)

Trying to Unify the Literals : cup(X002)
OK - Unification is Successfull

Goals : cup2(Y002) , egg(two,Y002)
Looking for Clause with Predicate: cup2

Finding Clause starting with i= 0 ->Clause Found at i= 2

Clause: cup2({one) :— (No Body).

Clause -~ BEFORE Instantiation
cup2(one} :- (No Body).

Clause ~ AFTER Instantiation
cup2 (one) :- (No Body).

Trying to Establish the goals : cup2(¥002)

Substitutions: (X001, two) (X002, two)

and pasta(twoc)

and cup{two)}

egg (two,Y002)

test1_results

. Page
Listing for Mohan Tadisetty Thu Apr 3 17:43:48 199j [2]

Trying to Unify the Literals : cup2(one) and cup2(Y002)
OK -~ Unification is Successfull

Goals : egg(two,one)

Looking for Clause with Predicate: egg

Finding Clause starting with i= 0 ->Clause Found at i= 4
Clause: eggl(two,three) :- (No Body).

Clause - BEFORE Instantiation
egg (two, three) :~ (No Body).

Clause - AFTER Instantiation
egg (two, three) :- (No Body).

Trying to Establish the goals : egg(two,one)

Substitutions: (X001, two) (X002, two) (Y002, one)

Trying to Unify the Literals : egg(two, three) and egg(two, one)
Unification Failed : Constants not same

T** Unable to Establish the goals - Back Tracking to ->
Goals : egg(two,one)
Finding Clause starting with i= S5 ->Clause Not found

*** Unable to Establish the goals - Back Tracking ts ->
Goals : cup2(Y002) , egg(two,Y¥Y002)
Finding Clause starting with i= 3 ->Clause Found at i= 3

Clause - BEFORE Instantiation
cup2 (three) :- (No Body).

Clause - AFTER Instantiation
cup2 (three) :- (No Body).

Trying to Establish the goals : cup2(Y002) , egg(two.Y002)
Substitutions: No Substitutions

Trying to Unify the Literals : cup2(three) and cup2(¥Y002)
OK - Unification is Successfull

Goals : egg(two,three)

Looking for Clause with Predicate: egg

Finding Clause starting with i= 0 ~->Clause Found at i= 4
Clause: egg(two,three) :- (No Body).

Clause - BEFORE Instantiation
egg(two, three) :- (No Body).

Clause - AFTER Instantiation
egg(two, three) :~ (No Body).

Trying to Establish the goals : egg(two,chree)

Substitutions: (Y002, three)

Trying to Unify the Literals : egg(two, three) and egg(two, chree)
OK - Unification is Successfull

*** SUCCESS ~ User’'s Query is Established ==~

test1_results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:43:58 1997 1
pasta (X) :-= cup (X)

cup (X) (~cup2 (X) , egg (X , ¥)

cup (X) :~cup2 (Y), egg (X , ¥)

cup2 (one)

cup2 (three).

egg (one , one)

egg (two , three)

test2

Listing for Mohan Tadisetty

Thu Apr 3 17:.

:09 1997

Page

*** Proceeding for Database creation **~
Input Clauses File: test2
Number of clauses: 7

Clause Errors = 0
Database is created Successfully

*** Proceeding to build the Query **=*
Input Query File: qry

Query Errors = 0

User’'s Query : pasta(two)

*** Datalog Interpreter is Trying to Establish User‘s Query *=~

Goals : pasta(two)

Looking for Clause with Predicate: pasta

Finding Clause starting with i= 0 ->Clause Found at i= 0
Clause: pasta(X) :- cup(X).

Clause - BEFORE Instantiation
pasta(X) :- cup(X).

Clause - AFTER Instantiaction
pasta(X001l) :- cup(X001l).

Trying to Establish the goals : pasta(two}
Substitutions: No Substitutions

Trying to Unify the Literals : pasta(X001l) and pasta{two)
OK - Unification is Successfull

Goals : cup(two)

Looking for Clause with Predicate: cup

Finding Clause starting with i= 0 ->Clause Found at i= 1
Clause: cup(X) :- cup2(X) , egg(X,Y).

Clause ~ BEFORE Instantiation
cup(X) :- cup2(X) , egg(X,Y).

Clause - AFTER Instantiation
cup (X002) :- cup2(X002) , egg(xX002,¥002).

Trying to Establish the goals : cup(two)
Substitutions: (X001, two)

Trying to Unify the Literals - cup (X002) and cup({two)
OK - Unification is Successfulil

Goals : cup2(two) , egg(two,Y002)

Looking for Clause with Predicate: cup?2

Finding Clause starting with i= 0 -»>Clause Found at i= 3
Clause: cup2{one) :- (No Body).

Clause - BEFORE Instantiation
cup2(one} :- (No Body).

Clause - AFTER Instantiation
cup2{one} :- (No Body).

Trying to Establish the goals : cup2(two) , egg{two,Y002)
Substitutions: (X001, two) (X002, two)

test2 _results

Listing for Mohan Tadisetty

Page
Thu Apr 3 17:44:09 1997 2

Trying to Unify the Literals : cup2(one) and cup2(two)
Unification Failed : Ccnstants not same

*** Unable to Establish the goals - Back Tracking to ~->
Goals : cup2(two) , egg(two,Y002)
Finding Clause starting with i= 4 ->Clause Found at i= 4

Clause - BEFORE Instantiation
cup2 {three) :-~ (No Body).

Clause - AFTER Instantiation
cup2 (three) :~ (No Body).

Trying to Establish the goals : cup2(two) , egg(two,Y002)
Substitutions: No Substitutions

Trying to Unify the Literals : cup2(three) and cup2(two)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : cupl2(two} , egg(two,Y002)
Finding Clause starting with i= 5 ->Clause Not found

*=> Unable to Establish the goals - Back Tracking to ->
Goals : cup(two)
rinding Clause starting with i= 2 ->Clause Found at i= 2

Clause -~ BEFORE Instantiation
cup(X) :- cup2(Y) , egg(X,Y).

Clause - AFTER Instantiation
cup (X005) :~ cup2(Y00S5S) , egg(X005,Y005).

Trying to Establish the goals : cup(two)
Substitutions: No Substitutions

Trying to Unify the Literals : cup(X005) and cup (two)
OK - Unification is Successfull

Goals : cup2(Y00S) , egg{two,Y005)

Looking for Clause with Predicate: cup2

Finding Clause starting with i= 0 ->Clause Found at i= 3
Clause: cup2{cne) :- (No Body).

Clause - BEFORE Instantiation
cup2(one) :— (No Body).

Clause - AFTER Instantiation
cup2(one) :- (No Body).

Trying to Establish the goals : cup2(Y00S5) , egg(two,Y005)
Substitutions: (X005, two)

Trying to Unify the Literals : cup2(one) and cup2(Y005)
OK - Unification is Successfull

Goals : egg(two,one)

Looking for Clause with Predicate: egg

Finding Clause starting with i= 0 ->Clause Found at i= 5
Clause: egg(one,one) :- (No Body).

test2 results

Listing for Mohan Tadisetty

Thu Apr 3 17:44:09 1997

Page
3

Clause - BEFORE Instantiation
egg(one,one) :- (No Body).

Clause - AFTER Instantiation
egg(one,one) :- { No Body).

Trying to Establish the goals : egg(two.one)

Substitutions: (X005, two) (Y005, one}

Trying to Unify the Literals : egg(one,one) and egg{two,one)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : egg(two,one)
Finding Clause starting with i= 6 ->Clause Found at i= §

Clause - BEFORE Instantiation
egg (two, three) :- (No Body).

Clause - AFTER Instantiation
egg(two, three) :- (No Body).

Trying to Establish the goals : egg{two,one)
Substitutions: No Substitutions

Trying to Unify the Literals : egg(two,three) and egg(two,one)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : egg(two, one)
Finding Clause starting with i= 7 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->
Goals : cup2(Y005) , egg(two,Y005)
Finding Clause starting with i= 4 ->Clause Found at i= 4

Clause - BEFORE Instantiation
cup2 (three) :- (No Body).

Clause - AFTER Instantiation
cup2 (three) :- (No Body).

Trying to Establish the goals : cup2(Y00S) , egg(two,Y005)
Substicutions: No Substitutions

Trying to Unify cthe Literals : cup2(three) and cup2(Y005)
OK - Unification is Successfull

Goals : egg(two, cthree)

Looking for Clause with Predicate: egg

Finding Clause starting with i= 0 ->Clause Found at i= 5
Clause: egg(one,one) :- (No Body).

Clause - BEFORE Instantiation
egg(one,one) :- (No Body).

Clause - AFTER Instantiation
egg(one,one) :- (No Body).

Trying'to Establish the goals : egg(two, three)
Substitutions: (Y00S, three)

test2_results

Listing for Mohan Tadisetty

Thu Apr 3 17:44:09 1997

Page
4

Trying to Unify the Literals : egg(one,one)} and egg(two, chree)
Unification Failed : Constants notc same

*** Unable to Establish the goals - Back Tracking to ->
Goals : egg(two, three)
Finding Clause starting with i= 6 ->Clause Found at i= 6

Clause - BEFORE Instantiation
egg(two, three) :- (No Body).

Clause - AFTER Instantiation
egg(two, three) :- (No Body).

Trying to Establish the goals : egg(two, chree)
Substitutions: No Substitutions

Trying to Unify the Literals : egg(two,cthree) and egg(two, three)

OK - Unification is Successfull

*** SUCCESS - User’s Query is Established ==~

test2 results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:18 1997 1
pasta (XX) :- cupFlour (XX) , egg (XX) , tblspwWater (YY) , twice (XX ,
YY) , tspSalt (XX) , tspOil (XX)

cupFlour (XX) :- haveCupFlour (XX).

cupFlour (XX) :- haveCupFlour (YY) , less (XX ., YY).

cupMilk (XX) :- haveCupMilk (XX).

cupMilk (XX) :- haveCupMilk (YY } ., less { XX . YY).

egg (XX) :- haveEgg (XX).

egg (X) :- haveEgg (YY) , less (XX , ¥Y).

tspSalt (XX) :- haveTspSalt (XX).

tspSalt (XX) :- haveTspSalt (YY) , less (XX ., YY).

tspOil (XX) :- haveTspOil (XX).

tspOil (XX) :- haveTspOil (Y¥) , less (XX , Y¥).

twice (one , two).

twice (two , four).

twice (three , six).
less (one , two).
less (two , three).
less (three , four).
tblspWater (one }.
tbhlspWater (twc).
tblspWater (three).
tblspWater (four).
haveCupFlour (three).
haveEgg (two).
haveTspSalt (three).
haveTspSalt (four).
haveTspOil (three).

test3

Listing for Mohan Tadisetty

Thu Apr 3 17:44:27 1997

Page
1

*** Proceeding for Database creation ***

Input Clauses File: test3
Number of clauses: 26

Clause Errors = 0
Database is created Successfully

*** Proceeding to build the Query
Input Query File: qry

Query Errors = 0

User’s Query : pasta(two)

*** Datalog Interpreter is Trying

Goals : pasta({two)

Looking for Clause with Predicate:
Finding Clause starting with i= 0

Clause: pasta(XX) :~ cupFlour(XX)

pSalt(XX) , tspOil(XX).

Clause - BEFORE Instantiation
pasta(XX) :- cupFlour(xx) .,
} , tspOil(XX).

Clause -~ AFTER Instantiation
pasta(XX001l) :~ cupFlour(xxX001l) ,
Y001l) , tspSalt(XX001l) ,

Trying to Establish the goals
Substitutions: No Substitutions

Trying to Unify the Literals
OK - Unification is Successfull

egg (XX) .,

pasta (XX001)

to Establish User’s Query *=*=*

pasta
->Clause Found at i= 0

., egg(XX) , tblspWater (YY) , twice(XX,YY} ., ts

thlspWater (YY) , twice(XX,YY) tspSalc (XX

egg (XX001) tblspWater (YY001) twice (XX001,Y

tspO1il (XX001) .

pasta (two)

and pastca(two)

Goals : cupFlour(two) , egg(two) ., tblspWater(YY00l) , twice (two,YY001l) , tspSal
t(two) , tspOil (two)

Looking for Clause with Predicate: cupFlour

Finding Clause starting with i= 0 ->Clause Found at i= 1

Clause: cupFlour(XX) :- haveCupFlour (XX) .

Clause - BEFORE Instantiation

cupFlour (XX) :- haveCupFlour (XX).

Clause - AFTER Instantiation

cupFlour (XX002) :~ haveCupFlour (XX002).

Trying to Establish the goals cupFlour (two} , egg{two) , tblspWarer(YY00l) , ¢
wice(two,¥Y¥Y001l) , ctspSalt(two) , tspOil (two)

Substitutions: (XX001l, two)

Trying to Unify the Literals cupFlour (XX002) and cupFlour{two)

OK - Unification is Successfull

Goals haveCupFlour(two) , egg(two) ., tblspWater(YY001l) , twice({two,Y¥Y001l) ., ts

pSalt{two) , tspOil(two)

Looking for Clause with Predicate:

Finding Clause starting with i= 0
Clause: haveCupFlour (three) :-

Clause - BEFORE Instantiation
haveCupFlour (three) :- (No Body)

haveCupFlcur
->Clause Found at i= 21

(No Body).

test3_results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:27 1997 2

Clause - AFTER Instantiation

haveCupFlour (three) :- (No Body).

Trying to Establish the goals : haveCupFlour(two) , egg{two) , tblspWater(YY001)
, twice(two,¥YY001l) , tspSalt(two) , tspOil (two)

Substitutions: (XX001, two) (XX002, two)

Trying to Unify the Literals : haveCupFlour(three) and haveCupFlour (two)

Unification Failed : Constants not same

*** Unable to Establish the goals ~ Back Tracking tec ->

Goals : haveCupFlour(two) , egg(two) , tblspWater (YY00l) , cwice{two,YY00l) , ts
pSalt(two) , tspOil(two)

Finding Clause starting with i= 22 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->

Goals : cupFlour(two) , egg(two) , tblspWater(YY00l) , ctwice(two,YY00l) , tspSal
t(two) , tspOil(two)

Finding Clause starting with i= 2 ->Clause Found at i= 2

Clause ~ BEFORE Instantiation

cupFlour (XX) :- haveCupFlour (YY) , less(XX,YY).

Clause -~ AFTER Instantiation

cupFlour (XX004) :- haveCupFlour(YY004) , less(XX004,YY004).

Trying to Establish the goals : cupFlour(twe) , egg(two) , tbhlspWater(YY00l) ., t
wice(two,¥Y001l) , ctspSalt(two) , =spOil(two)

Substitutions: No Substitutions

Trying to Unify the Literals : cupFlour(XX004) and cupFlour(two)

OK - Unification is Successfull

Goals : haveCupFlour(YY004) , less(two,YY004) , egg(two) , tblspWater (YY00l) , t
wice(two,YY001l) , tspSalt(two) , tspOil(two)

Looking for Clause with Predicate: haveCupFlour
Finding Clause starting with i= 0 ->Clause Found at i= 21
Clause: haveCupFlour(three) :- (No Body).

Clause - BEFORE Instantiation
haveCupFlour (chree) :- (No Body).

Clause -~ AFTER Instantiation
haveCupFlour (three) :- (No Body).

Trying to Establish the goals : haveCupFlour(YY004) ., less(two,YY004) , egg(two)
. tblspWater (YY00l) , twice(two,¥Y00l) , tcspSalt(two) , tspOil (two)

Substitutions: (XX004, two)

Trying to Unify the Literals : haveCupFlour(three) and haveCupFlour(YY004)

OK - Unification is Successfull

Goals : less(two,three) , egg(twoij
alc(tweo) , tspOil(two)

Looking for Clause with Predicate: less

Finding Clause starting with i= 0 ->Clause Found at i= 14
Clause: less(one,two) :— (No Body).

, tbhblspWater (¥Y001l) , twice(two,¥YY00l) , tspS

Clause - BEFORE Instantiation
less(one,two) :- (No Body).

test3 results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:27 1997 3

Clause - AFTER Instantiation

less (one,two) :- (No Body).

Trying to Establish the goals : less(two,three) , egg(two) . tblspWater (YY0O0l) .
twice(two,YY001l) , tspSalt(two) . tspOil(two)

Substitutions: (XX004, two) (YY004, three)

Trying to Unify the Literals : less(one,two) and less(twc, three)

Unification Failed : Constants not same

*** Unable to Establish the goals -~ Back Tracking to ->
Goals : less(two,three) , egg(two) , tblspWater(YY001l)
alt(two) , tspOil(two)

Finding Clause starting with i= 15 ->Clause Found at i= 15

, twice(two,YY001l) , tspS

Clause - BEFORE Instantiation
less (two, three) :- (No Body).

Clause - AFTER Instantiation
less (two, three) :- (No Body).

Trying to Establish the goals : less(two,three) , egg(two) , tblspWater (YY0O0l) ,
twice(two,YY001l) , tspSalt(two) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : less(twc,cthree) and less(two, three)
OK - Unification is Successfull

Goals : egg(two) , tblspWater(YY001l) , twice(two,YY00l) , tspSalt(two) , tspQil(
two)

Looking for Clause with Predicate: egg

Finding Clause starting with i= 0 ->Clause Found at i= 5

Clause: egg(XX) :- haveEgg(XX).

Clause - BEFORE Instantiation
egg (XX) :- haveEgg(XX).

Clause - AFTER Instantiation
egg (XX008) :- haveEgg (XX008).

Trying to Establish the goals : egg(two) , tblspWater(YY00l) ., twice(two,YY001l)
., tspSalt(two) , tsp0il(two)
Substitutions: No Substitutions

Trying to Unify the Literals : egg(XX008) and egg{two)
OK - Unification is Successfull

Goals : haveEgg(two) , tblspWater(YY001l) , twice(two,YY001l) , tspSalt(two) , tsp
0il (two)

Looking for Clause with Predicate: haveEgg

Finding Clause starting with i= 0 ->Clause Found at i= 22

Clause: haveEgg(two) :— { No Body).

Clause - BEFORE Instantiation

haveEgg(two) :— (No Body).

Clause - AFTER Instantiation

haveEgg(two) :- (No Bedy).

Trying to Establish the goals : haveEgg(two) , tblspWater (YY001l) , twice(two,YY0
01) , tspSalt{two) , tspOil (two)

test3 results

. Page
Listing for Mohan Tadisetty Thu Apr 3 17:44:27 1997 4

Substitutions: (XX008, two)
Trying to Unify the Literals : haveEgg(two) and haveEgg(two)
OK - Unification is Successfull

Goals : tblspWater (YY00l) , twice(two,YY00l) , tspSalt(two) , tspOil(two)
Looking for Clause with Predicate: tblspWater

Finding Clause starting with i= 0 ->Clause Found at i= 17

Clause: tblspWater(one) :— (No Body).

Clause - BEFORE Instantiation
tblspWater(one) :- (No Body).

Clause - AFTER Instantiation
tblspWater(one) :- (No Body).

Trying to Establish the goals : tblspWater(YY00l) , twice(two,YY00l) , tspSalt(t
wo) , tspOil(two)

Substitutions: (XX008, two)

Trying to Unify the Literals : tblspWater{one) and tblspWater (YY001)

OK - Unification is Successfull

Goals : twice(two,one) , tspSalt(two) , tspOil{two)
Looking for Clause with Predicate: twice

Finding Clause starting with i= 0 ->Clause Found at i= 11
Clause: twice(one,two) :- (No Body).

Clause - BEFORE Instantiation
twice(one, two) :- (No Body).

Clause - AFTER Instantiation

twice(one,two) :- (No Body }.

Trying to Establish the goals : twice(two,one) , tspSalt(two) , tspOil (two)
Substitutions: (XX008, two) (YY001l, one)

Trying to Unify the Literals : twice(one,two) and twice(two,one)

Unification Failed : Constants nort same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,ocne) , tspSalt(two) , tspOil (two)
Finding Clause starting with i= 12 ~>Clause Found at i= 12

Clause - BEFORE Instantiation
twice(two, four) :- (No Body).

Clause - AFTER Instantiation
twice(two, four) :- (No Body).

Trying to Establish the goals : twice(two,one) , tspSalt(two) , =spOil {two)
Substitutions: No Substitutions

Trying to Unify the Literals : twice(two, four) and twice(two,one)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,one) , tspSalt(two) , tspOil (two)
Finding Clause starting with i= 13 ->Clause Found at i= 13

Clause - BEFORE Instantiation
twice(three,six) :- (No Body).

test3 results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:27 1997 5

Clause ~ AFTER Instantiation
twice(three,six) :- (No Body).

Trying te Establish the goals : twice(two,one) , tspSalt(two) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : twice(three,six) and twice(two,one)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,one) , tspSalt(two) , tspOil(two)
Finding Clause starting with i= 14 ->Clause Not found

*** Unable to Establish the gcals - Back Tracking to ->
Goals : tblspWarer(YY001l) , twice(two,YY00l) , tspSalt{two) , tspOil(two)
Finding Clause starting with i= 18 ->Clause Found at i= 18

Clause - BEFORE Instantiation
tblspWater(two) :- (No Bedy).

Clause - AFTER Instantiation
tblspWacter (two) :- (No Body).

Trying to Establish the goals : tbhispWater(YY00l) , twice({two,YY001l) , tspSalt(:
wo) , tspOil (two)
Substitutions: No Substitutions

Trying to Unify the Literals : tblspWater(two) and tblspWater (YY001)
OK - Unification is Successfull
Goals : twice(two,two) , tspSalt(two) , tspOil (two)

Looking for Clause with Predicate: twice
Finding Clause starting with i= 0 ->Clause Found at i= 11
Clause: twice(one,two) :- (No Body).

Clause - BEFORE Instantiation
twice(one,two) :- (No Body).

Clause - AFTER Instantiation

twice(one,two) :- (No Body).

Trying to Establish the goals : twice(two,two) , tspSalt(two) , tspOil(two)
Substitutions: (YY001l, two)

Trying to Unify the Literals : twice(one,two) and twice(two, two)

Unification Failed : Constants nct same

*** Unable toc Establish the gocals - Back Tracking tec ->
Goals : twice(two,two) , tspSalt(two) , tspOil (two)
Finding Clause starting with i= 12 ->Clause Found at i= 12

Clause - BEFORE Instantiation
twice(two, four) :- (No Body).

Clause - AFTER Instantiation
twice(two, four) :~ (No Body).

Trying to Establish che goals : twice(two,two) , tspSalt(two) , tspOil(two)
Substitutions: No Substitutions

Tryving to Unify the Literals : ctwice(two, four) and twice(two, two)

test3 results

. Page
Listing for Mohan Tadisetty Thu Apr 3 17:44:27 1997 6

Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,two) , tspSalc(two) , tspOil(two)
Finding Clause starting with i= 13 ->Clause Found at i= 13

Clause - BEFORE Instantiation
twice(three,six) :- (No Body).

Clause - AFTER Instantiation
twice(three,six) :- (No Body).

Trying to Establish the goals : twice(two,two) , tspSalt(two) , tspOil({two)
Substitutions: No Substitutions

Trying to Unify the Literals : twice(three,six) and twice(two, two)
Unification Failed : Constants not same

**+* Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,two) , tspSalt(two) , tspOil(two)
Finding Clause starting with i= 14 ->Clause Not found

**r Unable to Establish the goals - Back Tracking to ->
Goals : tblspWater(YY001l) , twice(two,YY00l) , tspSalt(tweo) , tspOil(two)
Finding Clause starting with i= 19 ->Clause Found at i= 19

Clause - BEFORE Instantiation
tblspWater (three) :- (No Body).

Clause - AFTER Instantiation
tblspWater (three) :- (No Body).

Trying to Establish the goals : tblspWater(YY00l) , twice(two,YY00l) , tspSalt(t
wo) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : tblspWater(three) and tblspWater (YY001l)
OK - Unification is Successfull

Goals : twice(two, three) , tspSalt(two) , tTsp0il(two)
Looking for Clause with Predicate: twice

Finding Clause starting with i= 0 ->Clause Found at i= 11
Clause: twice({one,two) :- {(No Body).

Clause - BEFORE Instantiation
twice(one, two) :- (No Body).

Clause - AFTER Instantiation

twice(one,two) :- (No Body).

Trying to Establish the gocals : twice(twc,three) , tspSalt{cwo) , tspOil({two)
Substitutions: (Y¥YY001, three)

Trying to Unify the Literals : twice(one,two) and twice(two, three)

Unification Failed : Constants nct same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two, three) , tspSaltl(ctwo} , tspOil(two)
Finding Clause starting with i= 12 ->Clause Found at i= 12

Clause -~ BEFORE Instantiation

test3 results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:27 1997 7
twice(two, four) :- (No Body).

Clause ~ AFTER Instantiation

twice(two, four) :- (No Body).

Trying to Establish the goals : twice (two, three) , tspSalt(two) , tspOil (two)

Substitutions: No Substitutions

Trying to Unify the Literals : twice(two, four) and twice (two, chree)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,three) , tspSalt(two) ., tspOil (two)
Finding Clause starting with i= 13 ->Clause Found at i= 13

Clause - BEFORE Instantiation
twice (three,six) :- (No Body).

Clause - AFTER Instantiation
twice(three,six) :- (No Body).

Trying to Establish the goals : twice(two, cthree) . tspSalt{two) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : twice(three,six) and twice(two, chree)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,three) , tspSalt{two} ., tspOil (two)
Finding Clause starting with i= 14 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to -»)
Goals : tblspWater(YY00l) , twice(two,YY001l) , tspSalt(two) , tspOil(two)
Finding Clause starting with i= 20 ->Clause Found at i= 20

Clause ~ BEFORE Instantiation
tblspWater (four) :-~ { No Bedy).

Clause - AFTER Instantiation
tblspWater (four) :- (No Body).

Trying to Establish the goals : tblspWater (YY001l) , twice(two,¥YY001l) , tspSalt(t
wo) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals - tblspWater (four) and tblspWatexr (YY001l)
OK - Unification is Successfull

Goals : twice(two, four} , tspSalt(two) , cspOil (two)
Looking for Clause with Predicate: twice

Finding Clause starting with i= 0 ->Clause Found at i= 11
Clause: twice(one,two) :- (No Body).

Clause - BEFORE Instantiation
twice(one,two) :- (No Body).

Clause - AFTER Instantiation
twice(one,two) :~ (No Body).

Trying to Establish the goals : twice(two,four) , tspSalt(two) , tspOil{two)

test3_results

. Page
Listing for Mohan Tadisetty Thu Apr 3 17:44:27 1997 8

Substitutions: (YY00l, £four)
Trying to Unify the Literals : twice(one,two) and twice(two, four)
Unification Failed : Constants not same

***= Unable to Establish the goals - Back Tracking to ->
Goals : twice(two, four) , tspSalt(two) , tspOil{two)
Finding Clause starting with i= 12 ->Clause Found at i= 12

Clause - BEFORE Instantiation
twice(two, four) :- (No Body }.

Clause - AFTER Instantiation
twice(two, four) :- (No Body).

Trying to Establish the goals : twice(two, four) ., tspSalt(two) ., =spOil (two)
Substitutions: No Substitutions

Trying to Unify the Literals : twice(two, four) and twice(two, four)
OK - Unification is Successtull

Goals : tspSalt(two) , tspOil(two)
Looking for Clause with Predicate: tspSalt
Finding Clause starting with i= 0 ->Clause Found at i= 7

Clause: tspSalt(XX) :- haveTspSalt(XX).

Clause - BEFORE Instantiation

tspSalt(XX) :- haveTspSalt (XX).

Clause - AFTER Instantiation

tspSalc (XX025) :-~ haveTspSalt (XX025).

Trying to Establish the goals : tspSalt(two) , tspOil(two)

Substitutions: No Substitutions

Trying to Unify the Literals : tspSaltc(XX025) and tspSalt(two)
OK - Unification is Successfull

Goals : haveTspSalt(two) , tspOil(two)

Looking for Clause with Predicate: haveTspSalt

Finding Clause starting with i= 0 ->Clause Found at i= 23
Clause: haveTspSalt{three) :- (No Body).

Clause - BEFORE Instantiation
haveTspSalt(chree) :- (No Body).

Clause -~ AFTER Instanciation
haveTspSalc(three) :- (No Body).

Trying to Establish the goals : haveTspSalt(two) , tspOil(two)
Substitutions: (XX025, ctwo)

Trying to Unify the Literals : haveTspSalt(three) and haveTspSalz (two)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : haveTspSalt(two) , tspOil(two)
Finding Clause starting with i= 24 ->Clause Found at i= 24

Clause - BEFORE Instantiation
haveTspSalt(four) :- (No Body).

test3 _results

. Page
Listing for Mohan Tadisetty Thu Apr 3 17:44:27 1997 9

Clause - AFTER Instantiation
haveTspSalt(four) :- (No Body).

Trying to Establish the goals : haveTspSalt(two) , tsp0Oil (two)
Substitutions: No Substitutions

Trying to Unify the Literals : haveTspSalt(four) and haveTspSalt(two)
Unification Failed : Constants not same

=** Unable to Establish the goals - Back Tracking to ->
Goals : haveTspSalt(two) , tspOil(two)
Finding Clause starting with i= 25 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->
Goals : tspSalt(two) , tspOil (two)
Finding Clause starting with i= 8 ->Clause Found at i= 8

Clause - BEFORE Instantiation

tspSalc(XX) :- haveTspSalt(YY) , less(XX.YY).

Clause - AFTER Instantiation

tspSalt (XX028) :- haveTspSalt(YY028) , less(XX028,Y¥YY028).
Trying to Establish the goals : tspSalt(two) , tspOil(two)

Substitutions: No Substitutions

Trying to Unify the Literals : tspSalt(XX028) and tspSalt (two)
OK - Unification is Successfull

Goals : haveTspSalc(YY028) , less(two,YY028) , tspOil(two)
Looking for Clause with Predicate: haveTspSalt
Finding Clause starting with i= 0 ->Clause Found at i= 23

Clause: haveTspSalt(three) :~ (No Body).

Clause ~ BEFORE Instantiation

haveTspSalt(three) :- (No Body).

Clause - AFTER Instantiation

haveTspSalt(three) :- (No Body).

Trying to Establish the goals : haveTspSalt(YY028) , less(two,YY028) , tspOil(tw
o)

Substitutions: (XX028, two)

Trying to Unify the Literals : haveTspSalt(three) and haveTspSalt(YY028)
OK - Unificaction is Successfull

Goals : less(two,three) , tspOil{two)

Looking for Clause with Predicate: less

Finding Clause starting with i= 0 ->Clause Found at i= 14

Clause: less{(one,two) :- (No Body } -

Clause -~ BEFORE Instantiation
less(one,two) :- (No Body).

Clause - AFTER Instantiation

less(one,two) :— (No Body).

Trying to Establish the goals : less(two,three) , tspOil (two)
Substitutions: (XX028, two) (YY023, chree)

Trying to Unify the Literals : less(one,two) and less(two, three)

test3 results

Listing for Mohan Tadisetty Thu Apr 3 17:44:27 1997

Page
10

Unification Failed : Constants not same

= Unable to Establish the goals - Back Tracking to ->
Goals : less(two,three) , tspOil (two)
Finding Clause starting with i= 15 ->Clause Found at i= 15

Clause - BEFORE Instantiation
less(two, three) :- (No Body).

Clause - AFTER Instantiation
less(two, three) :~ (No Beody).

Trying to Establish the goals : less(two.three) , tspOil {=wo)
Substitutions: No Substitutions

Trying to Unify the Literals : less(two,three) and less(two,three)
OK - Unification is Successfull

Goals : tspOil (two)

Looking for Clause with Predicate: tspOil

Finding Clause starting with i= 0 ->Clause Found at i= 9
Clausa: tspOil(XX) :- haveTspOil (XX).

Clause -~ BEFORE Instantiation
tspOil (X¥XX) :- haveTspCil (XX).

Clause - AFTER Instantiation
tspOil (XX032) :- haveTspOil (XX032).

Trying to Establish the goals : tspCil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : tsp0il(XX032) and tspOil (two)
OK - Unification is Successfull

Goals : haveTspOil (two)

Looking for Clause with Predicate: haveTspOil

Finding Clause starting with i= 0 ->Clause Found at i= 25
Clause: haveTspOil(three) :- (No Body).

Clause - BEFORE Instantiation
haveTspOil (three) :~ (No Beody).

Clause - AFTER Instantiation
haveTspOil(three) :- (No Body).

Trying tc Establish the goals : haveTsp0il (two)

Substitutions: (XX032, two)

Trying to Unify the Literals : haveTspOil (three) and haveTspOil (two)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : haveTspOil (two)
Finding Clause starting with i= 26 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->
Goals : tspOil (two)
Finding Clause starting with i= 10 ~->Clause Found at i= 19

Clause - BEFORE Instantiation

test3 results

. Page
Listing for Mohan Tadisetty Thu Apr 3 17:44:27 1997] [11

tspOil (XX) :- haveTspQil (YY) , less(XX,YY).

Clause - AFTER Instantiation
tspOil (XX034) :- haveTspOil(YY034) , less(XX034,YY034).

Trving to Establish the goals : tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : tsp0il(XX034) and tspOil(two)
OK - Unification is Successfull

Goals : haveTsp0il(YY034) , less(two,YY034)

Looking for Clause with Predicate: haveTspOil

Finding Clause starting with i= 0 ->Clause Found at i= 25
Clause: haveTspOil(three) :- (No Body).

Clause - BEFORE Instantiation
haveTspOil (three) :- (No Body).

Clause - AFTER Instantiation
haveTspOil (three) :- (No Body).

Trying to Establish the goals : haveTsp0il(YY034) , less(two,YY034)
Substitutions: (XX034, two)

Trying to Unify the Literals : haveTspOil (three) and haveTsp0il(YY034)
OK - Unification is Successfull

Goals : less(two, three)

Looking for Clause with Predicate: less

Finding Clause starting with i= 0 ->Clause Found at 1= 14
Clause: less(one,two) :- (No Body).

Clause - BEFORE Instantiation
less (one,two) :- (No Body).

Clause - AFTER Instantiation
less (one,two) :- (No Body).

Trying to Establish the goals : less(two, three)

Substitutions: (XX034, two) (YY034, three)

Trying to Unify the Literals : less(one,two) and less(two, three)
Unification Failed : Constants not same

~+= Unable to Establish the goals - Back Tracking to ->
Goals : less(two, three)
Finding Clause starting with i= 15 ->Clause Found at i= 15

Clause - BEFORE Instantiation
iess(two, three) :- (No Body).

Clause - AFTER Instantiation
iess(two, three) :- (No Body).

Trying to Establish the goals : less(two,three)
Substitutions: No Substitutions

Trying to Unify the Literals : less(two,three) and less(two,three)
OX - Unificaticn is Successtfull

**xx QUCCESS ~ User’s Query is Established **~*

test3 results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:37 1997 1
pasta (XX) :- cupFlour (XX) , egg (XX)} , tblspWater (YY } , twice (XX .
YY) , tspSalt (XX) , tspoil (XX) .

cupFlour (XX) :~ haveCupFlour (XX).

cupFlour (XX) :- haveCupFlour (YY) , less (XX , ¥YY¥).

cupMilk (XX) :- haveCupMilk (XX).

cupMilk (XX) :- haveCupMilk (YY) , less (XX , YY).

egg (XX) :- haveEgg (XX).

egg (XX} :- haveEgg (YY) , less (XX , YY).

tspSalt (XX) :- haveTspSalt (XX).

tspSalt (XX)} :- haveTspSalt (YY) , less (XX , YY).

tspOil (XX) :- haveTspOil (XX).

tspOil (XX) :- haveTspOil (YY) ., less (XX , YY).

twice (one , two).

twice (two , four).

twice (three , six).

less (one , two).

less (two , three).

less (three , four).
tblspWater (cne).
tblspWater (two).
tblspWater (three).
tblspWater (four).
haveCupFlour (three).
haveEgg (two).
haveTspSalt (four).
haveTspOil (three).

test4

Listing for Mohan Tadisetty

Page

Thu Apr 3 17:44:46 1997 1

*** Proceeding for Database creatiocn **~

cest4
25

Input Clauses File:
Number of clauses:

Clause Errors 0
Database is created Successfully

*** Proceeding tc build the Query
Input Query File: gry

Query Errors = 0

User’'s Query : pasta(two)

*** Datalog Interpreter is Trying

Goals : pasta(two)

Loocking for Clause with Predicate:
Finding Clause starting with i= 0

Clause: pasta(XX) :- cupFlour (XX)

pSalt(XX) , tspOil(xXX).

Clause - BEFORE Instantiation
pasta(XX) :- cupFlour(XX) .,
) ., tspOil (XX).

Clause - AFTER Instantiation
pasta(XX001l) :—- cupFlour(XX001)
Y001l) , tspSalt(Xx001l} ,

Trying to Establish the goals
Substitutions: No Substitutions

Trying to Unify the Literals

OK - Unification is Successfull
Goals cupFlour (two) , egg(two)
t{two} , tspOil (two)

Looking for Clause with Predicate:
Finding Clause starting with i= 0
Clause: cupFlour (XX)

Clause ~ BEFORE Instantiation
cupFlour (XX) :- haveCupFlour(XX).

Clause - AFTER Instantiation
cupFlour (XX002)

Trying to Establish the goals
wice(two,¥Y00l) , tspSalt(cwo) ,
Substitutions: (XX001, two)
Trying to Unify the Literals

OK ~ Unification is Successfull

Goals haveCupFlour (twoj ,
pSalt{two) , tspOil (two)

Loocking for Clause with Predicate:
Finding Clause starting with i= G
Clause: haveCupFlour (three) :-
Clause - BEFORE Instantiation
haveCupFlour (three) :

egg (X¥X) ,

egg (XX001)
tspOil (XX001).

pasta (¥xX001)

cupFlour(two}
spOil (two)

B}
159
-

upFlour (XX002)

—~
3 59

egg(two) ,

* %

to Establish User’s Query **~*

pasta

~>Clause Found at i= 0

., egg(XX) , tblspWater(YY) , twice(XX,YY) , ts
tblspWater (YY) twice (XX, YY) tspSalc (XX

tblspWater(YY001l) , twice(XX001l.Y

casta (two)

and pasta(two)

tblspWater (YY001l) , ctwice(two,¥YY00l) , tspSal
cupFlour

~->Clause Found at i= 1

:~ haveCupFlour (XX) .

:~ haveCupFloux (¥XX002).

egg(two) , tblspWater(Yv001l) ,

ané cupFlour(two)

tblspWwater (¥YY00l) , twice(two,YY001l) , ts
naveCupFlour

~->Clause Found at i= 21

{ No Body).

(No Body }.

test4d_results

Listing for Mohan Tadisetty Thu Apr 3 17:44:46 1997

Page
2

Clause - AFTER Instantiation

haveCupFlour (three) :-— (No Body).

Trying to Establish the goals : haveCupFlour(twc) , egg(two) , tblspWater(YY0O0l)
, twice(two,YY001l) , tspSalt(two) , tspOil(two)

Substitutions: (XX001, two) (XX002, two)

Trying to Unify the Literals : haveCupFlour(three) and haveCupFlour(two)

Unificaction Failed : CTonstants not same

*** Unable to Establish the goals - Back Tracking to ->

Goals : haveCupFlour(two) , egg(two} , tklspWater(YY00l) , twice(two,¥YY00l) , ts
pSalt{two} ., tspOil(two)

Finding Clause starting with i= 22 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->

Goals : cupFlour(two) , egg({two) , tblspWater(Yv00l) , twice({two,¥YY001l) , tspSal
t(two) , tspOil{two)

Finding Clause starting with i= 2 ->Clause Found at i= 2

Clause - BEFORE Instantiation

cupFlour(XX) :- haveCupFlour (YY) , less(XX,YY).

Clause - AFTER Instantiation

cupFlour (XX004) :- haveCupFlour(YY004) , l1ess(XX004.,YY004).

Trying ctc Establish the goals : cupFlour(two) , egg{two) , tblspWater(yv00l) , ¢t
wice(two,¥YY001l) , tspSalt(two) , tspOil(two)

Substitutions: No Substitutions

Trying to Unify the Literals : cupFlour(¥X004) and cupFlour(two)

OK - Unification 1is Successfull

Goals : haveCupFlour(YY004) , less(two,¥YY¥004) , egg(two) , tblspWater(YY001l) , ¢t
wice(two,¥Y001l) , tspSalt{two) , tspOil(two)

Looking for Clause with Predicate: haveCupFlour
Finding Clause starting with i= 0 ->Clause Found at i= 21
Clause: haveCupFlour (chree) :- (No Body).

Clause - BEFORE Instantiation
haveCupflour (three) :- (No Body).

Clause - AFTER Instanciation
haveCupFlour (three) :- (No Body).

Trying to Establish the goals : haveCupFlour(YY004) , less(two,¥YY004) , egg(two)
, tblspWater(YY00l) , twice(two,YY001l) , tspSaltc(cwo) , tspOil(two)

Substitutions: (XX004. two)

Trying to Unify the Literals : haveCupFlour (three) and haveCupFlour (YY004)

OK - Unification is Successfull

Goals : less(two,three) . egg(two) , tblspWater(yy00l) , twice(two,YY001l) , tspS
alt(two) , tspOil{two)

Looking for Clause with Predicate: less

Finding Clause starting with i= 0 ->Clause Found at i= 14

Clause: less(one,two) :- (No Body).

Clause - BEFORE Instantiation
less(one,two) :- (No Body).

testd_results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:46 1997 3

Clause - AFTER Instantiation

less{(one,two) :- (No Body).

Trying to Establish the goals : less(two,three) , egg(two) , tblspWater(YYQ00l) ,
twice(two,YY001l) , tspSalt(two) , tspOil(two)

Substitutions: (XX004, two) (YY004, chree)

Trying to Unify the Literals : less(one,two) and less(two, three)

Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to -»>

Goals : less(two, three) , egg(two) , tbispWater(¥Y¥00l) , twice(two,¥YY001l) , tspS
alt(two) , tspOil(two)

Finding Clause starting with i= 15 ->Clause Found at i= 15

Clause - BEFORE Instantiation

less (two, three) :- (No Body).

Clause -~ AFTER Instantiation

less(two, three) :- (No Body).

Trying to Establish the gcals : less(two,three) , egg(two) , tblspWater(YY00l) ,
twice(two, YY001l) , tspSalt(two) , tspOil(two)

Substitutions: No Substitutiocons

Trying to Unify the Literals : less(two,three) and less(two, three)
OK - Unification is Successfull

Goals : egg(two) , tblspWater(YY001l) , twice(two,¥YY00l) , tspSalt(two) , tspOil(
two)

Looking for Clause with Predicate: egg

Finding Clause starting with i= 0 ->Clause Found at i= 5

Clause: egg(XX) :- haveEgg({XX).

Clause - BEFORE Instantiation
egg({XX) :- haveEgg(XX).

Clause - AFTER Instantiation
egg (XX008) :- haveEgg(XX008).

Trying to Establish the goals : egg(two} , tblspWater(YY001l) , twice(two,¥YY001l)
, tspSalt(two) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : egg(XX008) and egg(twol
OK - Unificacion is Successfull

Goals : haveEgg(two) , tblspWater(YY00l) , twice(two,YY00l) , tspSalt(two) , tsp
Oil (two)

Looking for Clause with Predicate: haveEgg

Finding Clause starting with i= 0 ->Clause Found at i= 22

Clause: haveEgg(two) :- (No Body).

Clause -~ BEFORE Instantiation

haveEgg({two) :- (No Body).

Clause ~ AFTER Instantiation

haveEgg(two) :- (No Body).

Trying to Establish the goals : haveEgg(two) , tblspWater(YY00l) , twice({two,YY(
01) , tspSalt(two) , tspQil(two)

test4 results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:46 1997 4

Substitutions: (XX008, two)
Trying to Unify the Literals : haveEgg(two) and haveEgg(two)
OK - Unification is Successfull

Goals : tblspWater(YY00l) , twice(two,¥YY00l) , tspSalt(two) , tspOil(two)
Looking for Clause with Predicate: tblspWater

Finding Clause starting with i= 0 ->Clause Found at i= 17

Clause: tblspWater(one) :- (No Body).

Clause - BEFORE Instantiatiocon

tblspWater (one) :- (No Body).

Clause - AFTER Instantiation

tblspWater{(one) :- (No Body).

Trying to Establish the goals : tblspWater(YY00l) , twice(two,YY001l) , tspSalt(:c
wo) , tspOil(two)

Substitutions: (XX008, two)

Trying to Unify the Literals : tblspWater{one) and tblspWatcer(YY001l)

OK - Unification is Successiull

Goals : twice(two,one) , tspSalt{two) , tspOil (two)
Looking for Clause with Predicacte: twice

Finding Clause starting with i= 0 ->Clause Found at i= 11
Clause: twice(one,two) :- (No Body).

Clause - BEFORE Instantiation
twice(one,two) :- (No Body).

Clause - AFTER Instantiation

twice(one,two) :- (No Body).

Trying to Establish the gcals : twice(two,one) , tspSalt{two) , tspOil(two)
Substitutions: (XX008, two) (YY00l1l, one)

Trying to Unify the Literals : twice(one,two) and twice(two,one)

Unification Failed : Constants nct same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,one) , tspSalt(two) , tspQil(two)
Finding Clause starting with i= 12 ->Clause Found at i= 12

Clause - BEFORE Instantiation
twice(two, four) :- (No Body).

Clause - AFTER Instantiation
twice({two, four) :- (No Body).

Trying to Establish the goals : twice(two,one) , tspSalt(two) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify cthe Literals : twice(two, four) and twice(two,one)
Unification Failed : Constants not same

= Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,one) , tspSalt(two) , tspOil(two)
Finding Clause starting with i= i3 ->Clause Found at i= 13

Clause - BEFORE Instantiaticn
twice (three,six) :- (No Body).

testd results

. Page
Listing for Mohan Tadisetty Thu Apr 3 17:44:46 1997 5

Clause - AFTER Instantiation
twice(three,six) :- (No Body).

Trying to Establish the goals : twice(tws,one) , tspSalct(two) , tspOil (two)
Substitutions: No Substitutions

Trying to Unify the Literals : twice(three,six) and twice(two,one)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,one) , tspSalt{two) , tspOil (two)
Finding Clause starting with i= 14 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->
Goals : tblspWater(YY00l)} , twice(two,YY00l) , tspSalt(two) , tspOil{two)
Finding Clause starting with i= 18 ->Clause Found at i= 18

Clause - BEFORE Instantiation
tblspWater(two) :- (No Body).

Clause - AFTER Instantiation
tblspWater(two) :- (No Body).

Trying to Establish the goals : t=blspWater(YY00l) , twice(two,YY001l) , =spSalt(t
wo) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : tblspWater(two) and tblspWater (YY001)
OK - Unification is Successfull

Goals : twice(two,two) , tspSalt{two) , tspOil(two)
Looking for Clause with Predicate: twice

Finding Clause starting with i= ¢ ->Clause Found at i= 11
Clause: twice(one,two) :—- (No Body).

Clause - BEFORE Instantiation
twice(one,two) :- (No Body).

Clause - AFTER Instantiation

twice(one,two) :- (No Body).

Trying to Establish the goals : twice(two.two) , tspSalt{two) , tspOil (two)
Substitutions: (¥YY00l, two)

Trying to Unify the Literals : twice(onsz,two) and twice(two, two)

Unification Failed : Constants not same

*** Unable ro Establish the goals - Back Tracking to ->
Goals : twice(two,two) , tspSaltc(two) , tspOil{two)
Finding Clause starting with i= 12 ->Clause Found at i= 12

Clause - BEFORE Instantiation
twice(two, four) :- (No Body).

Clause - AFTER Instantiation
twice(two, four) :- (No Body).

Trying to Establish the goals : zwice(twc,two) , tspSalt{two) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : cwicel(two,four) and twice(two, two)

test4_results

. Page
Listing for Mohan Tadisetty Thu Apr 3 17:44:46 1997 6

Unification Failed : Constants not same

+ Unable to Establish the goals -~ Back Tracking to ->
Goals : twice(two,two) , tspSalt(two) , tspOil{two)
Finding Clause starting with i= 13 ->Clause Found at i= 13

Clause - BEFORE Instantiation
twice(three,six) :- (No Body).

Clause - AFTER Instantiation
twice(three,six) :- (No Body).

Trying to Establish the goals : twice(two,two) , tspSalt(two) , tspOil(two)
Substitutions: No Substitutions

Tryving to Unify the Lirerals : twice(three,six) and twice(two, two)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,two) , tspSalt(two) , tspOil (two)
Finding Clause starting with i= 14 ->Clause Not found

~ Unable tec Establish the goals - Back Tracking to ->
Goals : tblspWater(YY00l) , twice(two,YY001l) , tspSalt(two) , tspOil({two}
Finding Clause starting with i= 19 ->Clause Found at i= 19

Clause - BEFORE Instantiation
tblspWater (three) :~ (No Body).

Clause - AFTER Instantiation
tblspWater(three) :- (No Body).

Trying tc Establish the goals : tblspWater(YY00l) , ctwice(two,YY001l) , tspSalt(t
wo) , tspQil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : tblspWater(three) and tblspWater(YvY001l)
OK - Unification is Successfull

Goals : twice(two, three) , tspSalt(two) , tspOil(two)
Looking for Clause with Predicate: twice

Finding Clause starting with i= 0 ->Clause Found at i= 11
Clause: twice(one,two) :- (No Body).

Clause - BEFORE Instantiation
twice{one,two) :- (No Body).

Clause - AFTER Instantiation

twice(one, two) :- (No Body).

Trying to Establish the goals : twice(two,three) , tspSalt{two) , tspOil(two}
Substitutions: (YY00l, three)

Trying to Unify the Literals : twice(one,two) and twice(two, three)

Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,three) , tspSalt(two) , tspOil(two)
Finding Clause starting with i= 12 ->Clause Found at i= 12

Clause - BEFORE Instantiation

test4_results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:46 1997 2

twice (two, four) :- (No Body).

Clause - AFTER Instantiation
twice (two, four) :— (No Body).

Trying to Establish the goals : twice(two,three) , tspSalt(two) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : twice(two, four) and twice(two, chree)
Unificaticn Failed : Constants not same

= Unable tc Establish the goals - Back Tracking to ->
Goals : twice(two, three) , tspSalt(two) , tspOil (two)
Finding Clause starting with i= 13 ->Clause Found at i= 13

Clause ~ BEFORE Instantiation
twice (three,six) :- (No Body).

Clause ~ AFTER Instantiation
twice (three,six) :- (No Body).

Trying to Establish the goals : twice(two,three) , tspSalt{two) , tspOil(two)
Substicutions: No Substitutions

Trying to Unify the Literals : twice(three,six) and twice(two, three)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two,three) , ctspSalt(two) , tspOil (two)
Finding Clause starting with i= 14 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->
Goals : tblspWater(YYC0l) , twice(two,YY00l) , ctspSalt(two) , tspOil(two)
Finding Clause starting with i= 20 ->Clause Found at i= 20

Clause - BEFORE Instantiation
tblspWater (four) :- (No Body).

Clause - AFTER Instantiation
tblspWater (four) :- (No Body).

Trying to Establish the goals : tblspWater(YY00l) , twice(two,YY00l) , tspSalt(tc
wo) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : tklspWater(four) and tblspWater (YY001l}
OK - Unification is Successfull

Goals : twicel(two, four) , tspSalt(two) , tspOil (two)
Looking for Clause with Predicate: twice

Finding Clause starting wicth i= 0 ->Clause Found at i= 11
Clause: twice(one, two) :~ (No Body).

Clause - BEFORE Instantiation
twice (one,two) :- (No Body).

Clause -~ AFTER Instantiation
twice (one, two) :- (No Body).

Trying to Establish the goals : twice(two, four) , tspSalt(two) , =spOil (two)

testd _results

Listing for Mohan Tadisetty Thu Apr 3 17:44:46 1997

Page

Substitutions: (YY001l, four)
Trving to Unify the Literals : twice(one,two) and twice(two, four)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two, four) , tspSalc(two} , tspOil (two)
Finding Clause starting with i= 12 ->Clause Found at i= 12

Clause -~ BEFORE Instantiation
twice(two, four) :- (No Body).

Clause - AFTER Instantiation
twice (two, four) :- (No Body).

Trying to Establish the goals : twice(two, four) , tspSalt(two) , tsp0il(two)
Substitutions: No Substitutions

Trying to Unify the Literals : twice(two, four) and twice(two, four)
OK - Unification is Successfull

Goals : tspSalt(two) , tspOil(two)

Looking £for Clause with Predicate: tspSalt

Finding Clause starting with i= 0 ->Clause Found at i= 7
Clause: tspSalt(XX) :- haveTspSalc(XX).

Clause -~ BEFORE Instantiation

tspSalt (XX) :- haveTspSalt(XX).

Clause - AFTER Instantiation

tspSalt (XX025) :- haveTspSalt(XxX025}.

Trying to Establish the goals : tspSalt(two) , tspOil (two)

Substitutions: No Substitutions

Trying to Unify the Literals : tspSalt(XX025) and tspSalt(two)
OK - Unification is Successfull

Goals : haveTspSalt(two) , tspQil(two)

Looking for Clause with Predicate: haveTspSalt

Finding Clause starting with i= 0 ->Clause Found at i= 23
Clause: haveTspSalt(four) :~ (No Body).

Clause - BEFORE Instantiation
haveTspSalt(four) :- (No Body).

Clause - AFTER Instantiation
haveTspSalt(four) :- (No Body).

Trying to Establish the goals : haveTspSalt(two) , tsp0il (two)
Substitutions: (XX025, two)

Trying to Unify the Literals : haveTspSalt(four}) and haveTspSalt(two)
Unification Failed : Constants nct same

+ Unable to Establish the goals - Back Tracking to ->
Goals : haveTspSalt(two) , tspOil{two)
Finding Clause starting with i= 24 ->Clause Not found

= Unable to Establish the goals - Back Tracking to ->
Goals : tspSalt(two) , tspOil{two)
Finding Clause starting with i= & ->Clause Found at i= 8

testd4d _results

Listing for Mohan Tadisetty

Thu Apr 3 17:44:46 1997

Page
9

Clause - BEFORE Instantiation

tspSalt(XX) :- haveTspSalt(YY) ., less(XX,YY).

Clause - AFTER Instantiation

tspSalt (XX027) :- haveTspSalt(YY027) , less(XX027.YY027).
Trying to Establish the goals : tspSalt(two) , tspOil(two)

Substitutions: No Substitutions

Trying to Unify the Literals : tspSalt(XX027) and tspSalc(two)
OK - Unification is Successfull

Goals : haveTspSalt(YY027) , less(two,YY027) , tspOil(two)
Looking for Clause with Predicate: haveTspSalt
Finding Clause starting with i= 0 ->Clause Found at i= 23

Clause: haveTspSalt(four) :- (No Body).

Clause - BEFORE Instantiation

haveTspSalt(four) :- (No Body).

Clause - AFTER Instantiation

haveTspSalt(four) :- (No Body).

Trying to Establish the goals : haveTspSalt(YY027) , less(two,¥YY027) , tspOil(tw
o)

Substitutions: (XX027, two)

Trying to Unify the Literals : haveTspSalt(four) and haveTspSalt (YY027)

OK - Unification is Successfull

Goals : less(two, four) , tspOil{(two)

Looking for Clause with Predicate: less

Finding Clause starting with i= 0 ->Clause Found at i= 14
Clause: less(one,two) :— (No Body).

Clause - BEFORE Instantiation
less(one,two) :- (No Body).

Clause - AFTER Instantiation

less(one,two} :-~ (No Body).

Trying to Establish the goals : less(two, four) , tspOil (two)
Substitutions: (XX027, two) (YY027, four)

Trying to Unify the Literals : less(one,two) and less(two, four)

Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : less(two, four) , tspOil(two)
Finding Clause starting with i= 15 ->Clause Found at i= 15

Clause - BEFORE Instantiation
less(two, three) :~ (No Body).

Clause - AFTER Instantiation
less(two,three) :- (No Body).

Trying to Establish the goals : less(two, four) , tspOil (two)
Substitutions: No Substitutions

Trying to Unify the Literals : less(two,three) and less(two, four)

testd_results

. Page
Listing for Mohan Tadisetty Thu Apr 3 17:44:46 1997 10

Unification Failed : Constants not same

*** Unakle to Establish the goals - Back Tracking to ->
Goals : less(two, four) , tspQil(two)
Finding Clause starting with i= 16 ->Clause Found at i= 16

Clause - BEFORE Instanciation
less(three, four) :- (No Body).

Clause - AFTER Instantiation
less (three, four) :- (No Body).

Trying to Establish the goals : less(two,four) , tspOil(two)
Substitutions: No Substitutions

Trying to Unify the Literals : less(three, four) and less(two, four)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->
Goals : less(two, four) , tspOil (two)
Finding Clause starting wicth i= 17 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->
Goals : haveTspSalt(Yv027) , less(two,YY027) , tspOil (two)
Finding Clause starting with i= 24 ->Clause Not found

= Unable to Establish the goals - Back Tracking toc ->
Goals : tspSalt(two) , tspOil (two)
Finding Clause starting with i= 9 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->
Goals : twice(two, four) , tspSalt({two) , tspOil(two)
Finding Clause starting with i= 13 ->Clause Found at i= 13

Clause - BEFORE Instantiation
twice(three,six) :- (No Body).

Clause - AFTER Instantiation

twice(three,six) :- (No Body).

Trying toc Establish the goals : twice(two, four) , tspSaltc(two) , tspOil (two)
Substitutions: No Substitutions

Trying to Unify the Literals : twice(three,six) and cwice(two, tour)

Unification Failed : Constants not same

=> Unable to Establish the goals - Back Tracking tc ->
Goals : twice(two, four) , tspSalt(two) , tspOil(two)
Finding Clause starting with i= 14 ->Clause Not found

*=> Unable to Establish the goals - Back Tracking to ->
Goals : tblspWater(YY00l) , twice(two,YY00l) , tspSalt(two) , tspOil(two)
Finding Clause starting with 1= 21 ->Clause Not found

= Unable to Establish the goals - Back Tracking to ->

Goals : haveEgg(two) , tblspWater(YY00l) , twice(two,¥YY00l) , tspSalc(two) , tsp
0il (two)

Finding Clause starting with i= 23 ->Clause Not found

*** Unable to Establish the goals - Back Tracking tc ->

test4_results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:46 1997 11
Goals : egg(two)} , tblspWater(¥YY00l) , twice(two,Y¥YY00l) , tspSalt(two) , tspOill
two)

Finding Clause starting with i= 6 -~>Clause Found at i= 6

Clause - BEFORE Instantiation

egg (XX) :- haveEgg(YY) , less(XX,YY).

Clause - AFTER Instantiation

egg (XX033) :- haveEgg(YY033) , less(XX033,YY033).

Trying to Establish the goals : egg(two) , tblspWater(YY00l) , twice(two,YY001l)
, tspSalt(two) , tspOil(two)

Substitutions: No Substitutions

Trying to Unify the Literals : egg(XX033) and egg(two)

OK - Unification is Successfull

Goals : haveEgg(YY033) , less{two,YY033) , thlspWater(YY00l) , twice(twoc,YY00l)
, tspSalt(two) , tspOil(two)

Looking for Clause with Predicate: haveEgg
Finding Clause starting with i= 0 ->Clause Found at i= 22
Clause: haveEgg(two) :- (No Body).

Clause - BEFORE Instantiation
haveEgg(two) :- (No Body).

Clause - AFTER Instantiation
haveEgg(two) :- (No Body).

Trying to Establish the goals : haveEgg(YY033) , less(two,¥Y033) , tblspWater(YY
001) , twice(two,YY001l) , ctspSalt(two) , tspOil (two)

Substitutions: (XX033, two)

Trying to Unify the Literals : haveEgg(two) and haveEgg(YY033)

OK ~ Unification is Successfull

Goals : less(two,two) , tblspWater(YY00l) , twice({two,¥YY001l) , tspSalct{two) , ts
pOil (two)

Looking for Clause with Predicate: less

Finding Clause starting with i= 0 ->Clause Found at i= 14

Clause: less(one,two) :- (No Body).

Clause -~ BEFORE Instantiation

less(one,two) :- (No Body).

Clause - AFTER Instantiaticn

less(one,two} :- (No Body !.

Trying to Establish the goals : less(two,two) , thlspWater (YY00l) , twice(two,¥Y
001) , cspSalt(two) , tspOil{two)

Substitutions: (XX033, two) (YY033, two)

Trying to Unify the Literals : less({one,two) and less(two, cwo)

Unification Failed : Constants not same

= Unable to Establish the goals - Back Tracking to ->

Goals : less(two,two) , tbispWater(YY00l) , twice(two,¥Y00l) , tspSaltc(two) , ts
pOil {two)

Finding Clause starting with i= 15 ->Clause Found at i= 15

Clause - BEFORE Instantiation
less(two, three) :- (No Body).

testd_results

Listing for Mohan Tadisetty Thu Apr 3 17:44:47 1997

Page
12

Clause ~ AFTER Instantiation

less(two, three) :- (No Body).
Trying to Establish the goals : lass(two,two) , tbhlspWater(YY00l) , twice(two,YY
001) ., tspSalt(two) , tspOilitwo)

Substitutions: No Substitutions

Trying to Unify the Literals : less(two,three) and less(two, two)
Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->

Goals : less(two.,two) ., tblspWater(YY00l) , twice(two,YY001l) , tspSaltc(two) , ts
pOil (two)

Finding Clause starting wich i= 16 ->Clause Found at i= 16

Clause - BEFORE Instantiaticn
less(three, four) :- (No Body).

Clause -~ AFTER Instantiation

less(three, four) :- (No Body).
Trying to Establish the goals : less(two,two) , tblspWater(YY00l) , twice(two,YY
001) , tspSalt{two) , tspOil{two)

Substitutions: No Substitutiosns

Trying to Unify the Literals : less(three, four) and less(two, two)
Unification Failed : Constants not same

**+* Unable to Establish the goals - Back Tracking to ->

Goals : less(two,two) , tblspiWater(YY00l) , twice(two,YY001l) , tspSalt(two} , Cs
pOil (two)

Finding Clause starting with i= 17 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->

Goals : haveEgg(YY033) , less(two,YY033) , tblspWater(YY00l) , twice(two,¥Y00l)
, tspSalt(two) , tspOil (two)

Finding Clause starting with i= 23 ->Clause Not found

= Unable to Establish the goals - Back Tracking to ->

Goals : egg(two) , tblspWater(YY00l) , twice(two,¥YY001l) , tspSalt(two) , tspOil(
two)

Finding Clause starting with i= 7 ->Clause Not found

= Unable to Establish the goals - Back Tracking to ->

Goals : less(two,three) , egg({two) , tblspWater(YY00l) , twice(two,YYQ00l) ., tspsS
alt(two) , tspOil(cwo)

Finding Clause starting with i= 16 ->Clause Found at i= 16

Clause - BEFORE Instantiacticn
less(three, four) :- (No Body).

Clause -~ AFTER Instantiaticn

less(three, four) :- (No Body).
Trying to Establish the goals : less(two,three) , egg(two) , tblspWater(YY001l) .,
twice(two,¥YY001l) , tspSalt({two) , tspOil(two)

Substitutions: No Substitutions

Trying to Unify the Literals : less(three, four) and less(two, three)

testd_results

Page

Listing for Mohan Tadisetty Thu Apr 3 17:44:47 1997 13

Unification Failed : Constants not same

*** Unable to Establish the goals - Back Tracking to ->

Goals : less(two,three) , egg(two) , tblspWatcer (YY00l) , twice(two,YY00l} , tspS
alc({two) , tspOil (two)

Finding Clause starting with i= 17 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to -»>

Goals : haveCupFlour(YY004) , less(two,YY004) , egg(two) , tblspWater(YY00l) , ¢
wice(two,YY001) , ctspSalt(two) , tspOil(two)

Finding Clause starting with i= 22 ->Clause Not found

*** Unable to Establish the goals - Back Tracking to ->

Goals : cupFlour{two) , egg(two) , tblspWater (YY00l) , twice (two,YY001l) , tspSal
t{two) , tsp0Oil (two)

Finding Clause starting with i= 3 -~>Clause Not found

*** Unable to Establish the goals - Back Tracking to ->
Goals : pasta(two)
Finding Clause starting with i= 1 ->Clause Not found

*** FAILURE - User’s Query CAN’'T BE Established =*=*~*

testd results

