J. LOGIC PROGRAMMING 1993:12:1-199

CONSTRUCTIVE NEGATION UNDER THE
WELL-FOUNDED SEMANTICS *

JULIE YUCHIH LIU' | LEROY ADAMS* AND WEIDONG
CHEN

Constructive negation derives constraint answers for non-ground negative
literals. Its incorporation into query evaluation under the well-founded
semantics introduces two problems. One is the detection of repeated sub-
goals and the elimination of redundant answers, which is required in order
to guarantee termination. The other is the interaction between constraint
answers of non-ground negative literals and recursion through negation.
This paper presents SLG ¢ for effective query evaluation with construc-
tive negation under the well-founded semantics. It has two unique features.
First, it supports reduction of constraint answers and redundant answer
elimination and provides the first termination result for goal-oriented query
evaluation with constructive negation for function-free programs. Second,
it avoids repeated computation in a subgoal. Even if a non-ground nega-
tive literal depends upon some ground negative literals whose truth values
are not completely determined when they are selected, the constraints and
bindings for variables in the non-ground negative literal can still be prop-
agated once and for all.

*Supported in part by the National Science Foundation under Grant No. IRI-9314897.

tDepartment of Information Management, Yuan-Ze University, Taiwan. Work was done while
at Southern Methodist University.

{Department of Computer Science, College of the Ozarks, Point Lookout, MO 65726. Work
was done while at Southern Methodist University.

Address correspondence to Weidong Chen, Department of Computer Science and Engineering,
Southern Methodist University, Dallas, Texas 75275-0122.

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$3.50

1. INTRODUCTION

Negation as failure [8] is the dominant mechanism for processing negative literals
in logic programming. Procedurally speaking, a negative literal succeeds if the
corresponding positive literal fails, and it fails if the corresponding positive literal
succeeds. No variable binding or constraint is generated from a negative literal. Not
surprisingly negation as failure is sound for only ground negative literals. Consider
a simple definition of a bachelor:

bachelor(X) - ~married(X), man(X).
with respect to the following database:

married(john). man(john).
married(mary). man(jack).

In most Prolog systems, a query such as bachelor(X) fails even though bachelor(jack)
succeeds. (We use ~ to emphasize the non-monotonic nature of negation in logic
programming.)

Most procedural semantics of logic programs guarantees completeness for only
“non-floundered” queries, whose evaluation does not involve the selection of a non-
ground negative literal [1, 7, 20, 26]. Similar restrictions are placed by bottom
up methods of query evaluation such that negation can be implemented by set
difference [19, 28].

Incompleteness or abrupt termination of query evaluation due to non-ground
negative literals is not satisfactory from users’ point of view. In addition, it is
useful to treat negative literals as generators of constraints, especially from the
constraint logic programming perspective.

In terms of the mechanisms to solve a non-ground negative literal, several distinct
techniques have been developed, with varying degrees to which the corresponding
positive literal is evaluated. In [5, 29, 32], a negative literal is solved using Clark’s
completed definitions at run time, possibly with partial evaluation. Quantified
complex formulas have to be transformed into a disjunctive normal form and be
dealt with explicitly. In [11, 12, 17], substitutions called fail answers are generated
for variables in a negative literal ~A based upon a frontier of the positive literal A.
This is a powerful technique since A does not have to be completely evaluated before
an answer for ~A is derived. Since a subgoal can have many different frontiers,
there 1s an implementation problem how to control the derivation tree of a subgoal
and the choice of frontiers. In [2, 4, 10, 15, 21], constraint answers of a negative
literal are derived by taking the negation of the disjunction of all the answers of its
positive counterpart.

In terms of the semantics, most of the previous work on constructive negation,
with notable exceptions of [10, 11, 21], uses Clark’s completion as the corresponding
declarative semantics. It is known, however, that Clark’s completion has various
drawbacks [24]. The well-founded semantics [30] has been accepted as a more
natural and robust semantics for logic programs.

Przymusinski first studied constructive negation under the perfect model seman-
tics and developed SLSC-resolution for constructive negation of stratified programs
[21]. In [11], Drabent described SLSFA-resolution for constructive negation un-
der the well-founded semantics. However, both SLSC-resolution [21] and SLSFA-
resolution [11] require infinite failure and therefore are not suitable for effective
query evaluation.

This paper focuses on termination and efficient query evaluation under the well-
founded semantics with constructive negation — issues that have received little
attention in the literature. The work that is more closely related to ours is by
Warren [33] and by Damasio [10].

Warren [33] developed a Prolog meta interpreter for constructive negation that
was executed using an OLDT implementation. Constraint answers of negative
literals are represented using anti-subsumption constraints. In fact the use of anti-
subsumption constraints in this paper is motivated by [33]. However, the imple-
mentation in [33] does not handle constraints of the form VU .3V .E properly and
thus is not sound in general. Also recursion through negation is not supported.

The work in [10] is a systematic study of constructive negation in tabled query
evaluation under the well-founded semantics. It extends tabulated resolution for
the well-founded semantics in [1] with constructive negation. For non-ground neg-
ative literals involved in recursion through negation, approximate constraint an-
swers are derived. Due to iterated approximations, constructive negation may be
repeatedly applied to the same non-ground negative literal using slightly different
answers, causing repeated computation inside a subgoal. Although theoretical re-
sults of soundness and search space completeness are established, independently of
the constraint domain used, for constraint logic programs with function symbols,
pragmatic control issues such as redundant answer elimination, termination and re-
peated computation are not incorporated into the formalization. In particular, no
termination result is given for tabled query evaluation with constructive negation.

We extend SLG resolution [7] with constructive negation for effective query eval-
uation under the well-founded semantics. The resulting SLG ¢y resolution has two
major contributions, distinguishing itself from [10] and other previous work on con-
structive negation.

First, we have developed a normal form for constraint answers and a simple
algorithm for redundant answer elimination. This allows us to establish the first
termination result for constructive negation of function-free logic programs.

Second, like SLG resolution [7], SLG ¢y resolution is formalized directly in such
a way that repeated computation is avoided in a subgoal. The key idea is to take
advantage of the difference between ground and non-ground negative literals and to
delay only ground negative literals when dealing with recursion through negation,
Consequently even if a non-ground negative literal depends upon some ground nega-
tive literals whose truth values are possibly undefined, the constraints and bindings
of variables in the non-ground negative literal can still be propagated once and
for all. In other words, each selected non-ground negative literal is solved using
constructive negation at most once. This is an important property of practical
significance since constructive negation is a complex operation and repeated appli-
cations of constructive negation to the same negative literal can cause performance
overhead.

The rest of this paper is organized as follows. Section 2 contains terminology
and definitions used throughout the paper. Section 3 describes a normal form
of constraint answers, detection and elimination of redundant constraint answers
and the derivation of constraint answers through constructive negation. Section 4
illustrates through examples tabled evaluation with constructive negation and how
to avoid repeated computation even if there is recursion through negation. Section
5 presents the formal details of SLG¢on resolution. Section 6 establishes correctness
and termination of SLG ¢y resolution. Finally we conclude with a discussion of

some Issues for future work.

2. PRELIMINARIES

This section defines the terminology and notations used in this paper, including
anti-subsumption constraints, systems in SLG resolution [7], and three-valued sta-
ble models.

2.1. Semantics of Fquality and Anti-Subsumption Constraints

We assume a countable language £LF of function symbols. £LF contains all function
symbols that occur in programs involved in the evaluation of a query, plus a unary
function symbol f’ and a zero-ary function symbol ¢’ that do not occur in any of
the programs or query being considered. The symbols f’ and ¢’ are needed for
two purposes. One is to cope with the “universal query problem” [22], where the
semantics of a program containing a single fact, p(a), may imply YX.p(X) if the
Herbrand universe is {a}. But the empty answer substitution cannot be obtained
for p(X) by SLD resolution. The introduction of new symbols f’ and ¢ eliminates
such situations. The other is to facilitate the reduction of constraint answers.

The Herbrand universe Hi is the set of all ground terms that can be constructed
using function symbols in LF. A substitution @ is of the form {t1/X1,...,tn/Xn},
where all X;’s are distinct variables and each t; is a term different from X;. We
say that 6 is ground if every ¢;(1 < i < n) is ground, i.e., in HU. The domain of
0 is the set {X1,..., X,} of variables. We denote sequences of variables by XY,
etc. and sequences of terms by 3, %, etc.

An atom is of the form p(ty,...,1,), where p is an n-ary predicate symbol and
t1,...,t, are terms. If A is an atom, then A is a positive literal and ~A 1s a negative
literal. A literalis either a positive or negative literal.

Constructive negation can produce constraint answers possibly containing dis-
equations and universal quantifiers. We choose anti-subsumption constraints [14]
and, with a slight abuse of notation, consider (dis)equations over atoms instead
of terms. The anti-subsumption constraints provide a compact representation of
counter-examples [16] or exceptions [3].

Definition 2.1. Let A and B be atoms, and v be a ground substitution. Then
A = B is true under v if Av and Bv are identical ground atoms.

The standard definitions of truth, validity, and (un)satisfiability can be extended
to equations over atoms.

Definition 2.2. [Anti-Subsumption Constraint] Let A and B be atoms with no
variables in common. An anti-subsumption constraint (or simply AS-constraint)
is of the form YX.A # B, where X are all the variables occurring in B. The
variables in A are called free variables, and those in B are called bound variables.

We write A¢ZB as an abbreviation of VX.A # B.

Intuitively, an AS-constraint of the form A€B means that A cannot be an in-
stance of B (if B is viewed as the set of its ground instances). As shown in [16],

constraints in general cannot be converted into a finite disjunction of equations (or
substitutions).

Definition 2.3. A constrained atom, A, is a pair of the form (A, ¢), where A4 is an
atom and ¢ is a conjunction of AS-constraints and ¢ is satisfiable.
Let X be all the free variables in ¢ excluding those in A. The semantics of A,
denoted by |A|, is defined as the set of ground atoms Avr, where v is a ground
substitution such that (3X.¢)v is valid.

For convenience, a constrained atom (A, ¢) is also written as A - ¢. If ¢ is
empty, (A, ¢) is simply viewed as an atom and written as A. For constrained
atoms, subsumption can occur on the atom or on the constraint part.

Definition 2.4. Let A;(¢ = 1,2) be constrained atoms (A;, ¢;) with no variables in
common. A; is subsumed (respectively, AS-subsumed) by A5 if and only if for
some substitution § whose domain is a subset of variables in A,

o A; = Asf (respectively, A1 = A»0 and 6 is a renaming substitution), and

e every AS-constraint in ¢2f is a variant of some AS-constraint in ¢; up to
renaming of variables not occurring in A;.

Aq and As are variants if and only if A is AS-subsumed by A5 and vice versa.

2.2. Adding AS-Constraints to Systems in SLG Resolution

SLG resolution [7] supports tabled query evaluation under the well-founded seman-
tics with negation as failure. It maintains a global table of subgoals and their
partially evaluated rules. In extending SLG resolution with constructive negation,
we generalize some notions in SLG resolution with AS-constraints.

A rule 1s of the form

H - Ll, ceny Ln

where M is a constrained atom (H,¢) and L;(1 < ¢ < n,n > 0) is a literal. If ¢ is
empty, the head H 1s simply written as H. A ground instance of the rule is

(H == Ly, ..., Ln)0

where 6§ is a ground substitution whose domain includes all free variables in the
rule such that ¢# is true.

A logic program (or simply program) P is a set of rules. The Herbrand instanti-
ation of P is the set of all the ground instances of rules in P. The Herbrand base
of P, denoted by HBp, is the set of all ground atoms that are constructed using
predicates in P and terms in HU .

Definition 2.5. A subgoal is a constrained atom. Two subgoals are considered
identical if they are variants of each other. A delayed literal has one of the
following forms:

e ~BP where B is a ground atom:;

. B;f} or ~B7“f}, where B is an atom, and A and H are constrained atoms such
that 7 is subsumed by A and if H is of the form (H, ¢), then B is an instance
of H.

If 6 is a variable substitution, then (B;f‘t)ﬁ is the delayed literal (Bﬁ)ﬁ.

Delayed literals are used in SLG resolution to deal with recursion through nega-
tion when the truth value of a negative literal cannot be determined when it is
selected. The superscript and subscript in a delayed literal provide control infor-
mation for simplifying the delayed literal when its truth value is known later.

Definition 2.6. An X-rule G 1s of the form:
H - Ll, ceey Ln

where n > 0, H is a constrained atom and each L;(1 < ¢ < n) is an atom, the

negation of an atom, or a delayed literal. If n = 0, GG is called a fact. If every

Li(1 <i<n,n>0)is a delayed literal, GG is called an answer.

A computation rule is an algorithm that selects from the body of an X-rule GG a
literal L that is not a delayed literal (if there is any).

Given a computation rule R, an annotated X-rule is either

e an X-rule that does not have a selected atom, or

e a pair of the form (G, £(G)), where G is an X-rule that has a selected atom
and 3((G) is a set of constrained atoms.

In tabled query evaluation, a set of answers 1s maintained for each subgoal and
each selected atom is solved using answers of the corresponding subgoal. The
annotation of an X-rule G with a selected atom is used to indicate what answers
have been returned to the selected atom.

Definition 2.7. Let P be a program, and R be a computation rule. A system S
is a set of pairs of the form (A : T'), where A is a subgoal and T is a multiset
of annotated X-rules, such that no two pairs in & have the same subgoal. If
(A :T) €8, Ais said to be a subgoal in S, and each element in T is an
annotated X-rule of subgoal A in S, and if the element is an X-rule GG or of the
form (G, X(G)), then G is called an X-rule of subgoal A in 8. If G is an answer,

then G is called an answer of subgoal A.

SLG resolution [7] is essentially a process of transforming an initially empty
system into a system that contains only subgoals that are encountered during the
evaluation of a query and their answers. The correctness of SLG resolution is
established based upon three-valued stable models [23] by relating annotated X-
rules of subgoals in a system § to a program P.

Annotated X-rules of subgoals in a system & can be viewed as partial answers of
subgoals. The correctness of SLG resolution is established by associating a program
with &, denoted by P(S), and studying the relationship between three valued stable
models of P and P U P(S).

The program P(S) is defined as follows. A new predicate is introduced for
every subgoal A in § and every constrained atom H = (H,¢) that is subsumed
by A. Atoms of the new predicate will be written as B;f‘t, where B is an instance
of H. Let (G, of the form H :- Ly, ..., L,, be an X-rule of a subgoal in a system
S, where H = (H, ¢) for some atom H and some conjunction ¢ of AS-constraints.
Then we denote by G the rule of the form, (H#,) - L}, ..., L!,, where for each

e Llis L;if L; is not a delayed literal;

K3

o Llis ~BE if L; is a ground negative delayed literal of the form ~B?;

e Llis L;if L; is a delayed literal of the form B;f}: or ~B7“f}:.

K3

We denote by P(S) the program that is the set of all rules G4, where G is an
X-rule of a subgoal A in S. In general, P(S) depends upon P.

For every subgoal A in a system S and for every constrained atom H subsumed by
A, A may or may not have an X-rule with 7 in the head. Nevertheless, for technical
reasons, we include in the Herbrand base of P U P(S) and the Herbrand base of
P(S8) all ground atoms of the form B;f} for every constrained atom H subsumed by
A and for every atom B in |H|.

2.8, Three-Valued Stable Models

Let £, u, t be truth values ordered by f < u < t. An wierpretation I of a
program P is a mapping from HBp to {f u,t}. I can be represented as a partition,
Pos(I) UUnd(I)U Neg(I), of HBp, where Pos(I) (respectively, Und(I), Neg(I))
is the set of ground atoms A such that I(A4) = t (respectively, u, f). I can also be
viewed as the set Pos(I) U{~B|B € Neg(I)} of ground literals.

Let Py and Py be programs such that HBp, C HBp,, and let I be an interpre-
tation of Pa. Then the restriction of I to Py, denoted by I|p,, is the interpretation
of P, whose mapping is the restriction of I to HBp,.

An interpretation [is a model of a program P if and only if for every rule in its
Herbrand instantiation

A - Ll, ceey Ln

if all L;’s are true in I then A is true in [and if A is false in I then at least one of
the L;’s 1s also false in [.

We assume that there is a special ground atom u. Atom u is always undefined
(u € Und(I)). Tt can appear only in the body of a rule in a program. A non-
negative program is a finite set of rules whose bodies do not contain any negative
literals, but may contain atom u.

An interpretation I can also be determined by specifying Pos(I) and Und(I).
Let P be a program possibly containing undefined atom u in the bodies of rules,
and I be an interpretation of P. We define 7p(I) such that

e A€ Pos(rp(I)) if and only if there is a rule A - Ly, ..., L, in the Herbrand
instantiation of P and all L;’s are true in I;

o AcUnd(rp(l))if A¢ Pos(rp(I)) and there is a rule A - Ly, ..., L in the

Herbrand instantiation of P and all L;’s are true or undefined in .

Theorem 2.1 ([7, 23]). Let P be a non-negative program. Then P has a unique
least three valued model, denoted by LPM(P). Furthermore, Tp has a least fized
point, which coincides with p 1w and LPM(P).

Definition 2.8. ([23]) Let P be a program and I be an interpretation of P. The
quotient of P modulo I, denoted by %, is the non-negative program obtained
from the Herbrand instantiation of P by

e deleting every rule with a negative literal in the body that is false in 7; and
e deleting every negative literal in the body of a rule that is true in 7; and

e replacing every negative literal with u in the body of a rule that is undefined
in 1.

I 1s a three valued stable model of P if I is the least three valued model LPM(?).
The set of all three valued stable models of P is denoted by S73(P).

The notion of three valued stable models is a generalization of both the well
founded partial model [30] and the (two-valued) stable models [13].

Theorem 2.2 ([23]). Let P be a program, and WF(P) be the well founded partial
model of P. Then WF(P) is the smallest three valued stable model of P. Stable
models as defined by Gelfond and Lifschitz coincide with two valued stable models.

3. CONSTRAINT ANSWERS

This section describes algorithms for reducing constrained atoms to a normal form,
detecting redundant constraint answers and deriving constraint answers of a nega-
tive literal from those of its positive counterpart.

3.1. Sitmple Congunction of AS-Constraints and Reduced Constrained
Atoms

We start with AS-constraints in a constrained atom.

Lemma 3.1. An AS-constraint A¢B is valid if and only if A and B are not unifiable,
and s unsatisfiable if and only if there exists a substitution 0 such that A = B@.

PRrOOF. Let X and Y be variables occurring in A and B, respectively. By Definition
2, A¢B is an abbreviation of VY .(A # B). Since the domain for each variable is
the Herbrand universe HU, A¢B is valid if and only if for all ground terms ¢ and
5, A[t/X] # B[5/Y], i.e., A and B are not unifiable.

A¢ B is unsatisfiable if and only if for all ground terms ¢, there exist § such that
A[t/X] = B[5/Y]. If X is Xy,..., X, let £ be f'(c), ..., f*(c'), where f' and ¢/
are the new function and constant symbol. Then there exist 5§ for Y such that
A[t/X] = B[5/Y]. Since ¢ and f' do not occur in A or B, by replacing terms
in 7 with the corresponding variables in X on both sides, we derive a substitution

{s’/Y} such that A = B[s'/Y], where s is obtained from 5 by replacing terms in
with the corresponding variables in X. O

A conjunction of AS-constraints is semple if no conjunct is valid or unsatisfiable.
An empty conjunction is treated as true and an empty disjunction is treated as

false.

Lemma 3.2. A simple conjunction of AS-constraints is satisfiable .

ProoF. Let A1¢€By A ... A A,éB, be a simple conjunction of AS-constraints. By
Lemma 3.1, no A;(1 < i < n) is subsumed by By, ie., A; # B;0 for any sub-
stitution 8. Let X = X1, ..., X} be all the free variables in the conjunction, and
t=f'(c"), ..., f"(¢') be ground terms that are constructed out of the new constant

symbol ¢ and the new function symbol f'. Then (A1¢€By A ... A A, &B,)[t/X] is
true in the Herbrand universe Hi{. O

Given an atom A as a query, an answer for A is represented by a constrained
atom of the form (H, ¢), which is also written as

H ¢

where H 1is an instance of A and ¢ is a simple conjunction of AS-constraints. Let
Y be the free variables in H and X be all the free variables in ¢ excluding those in
Y. The constraint part of the answer can be represented by 3X.¢. The following
lemma shows that the existential quantification of X can be pushed into each AS-
constraint in ¢, which is useful for answer reduction.

Theorem 3.1. Let ¢ = ¢1/\... ANy, be a simple conjunction of AS-constraints, X and
Y be a partition of all the free variables of ¢. Then 3X.¢—(IX.¢1A...AIX .¢y)

15 valid.

ProoF. It is obvious that 3X.¢ — (3X.¢1 A ... ATX.4,). For the other direction,
suppose that for some 3,

(AX . g1 A .. ATX .6,)[5/Y]
holds. Let each ¢;(1 < i < n) be of the form 4;(X,Y)&€B;. Then 3X.A;(X,5)¢B;

holds. Let [be the total number of occurrences of variables and function symbols
in ¢[5/Y]. Suppose that X is of the form X1, ..., Xz. Let 7 be fF1(c'), ..., f1H*(c).
Then A;(%,5) is not an instance of B;. Otherwise, by replacing ¢ with X, we can
derive that A4;(X,3) is an instance of B;, contradictory with the assumption that
3X.A4;(X,5)€B; holds. Therefore ¢[t/X,5/Y] holds, and so does 3X .¢[5/Y]. O

Using the semantic properties of AS-constraints, we show that constrained atoms
can be reduced to a normal form and redundant answers can be detected using basic
operations such as variant checking and set membership.

Definition 3.1. A constrained atom A of the form (A, ¢) is reduced if

11t should be mentioned that Lemma 3.2 holds in the Herbrand universe Hi/, but not in the
domain of all ground terms constructed from constant and function symbols in a program. For
instance, the simple conjunction

(p(X,Y)gp(U,U)) A (p(Y, Z)p(V, V) A (p(X, Z)gp(W, W))

is unsatisfiable in the domain {a,b}, but is satisfiable in H.

10

e ¢ is a simple conjunction of AS-constraints; and
e every AS-constraint in ¢ contains a free variable in A; and

e no two AS-constraints in ¢ are variants of each other up to renaming of
variables not occurring in A.

Lemma 3.3. For any constrained atom A, there exists a reduced constrained atom

A’ such that |A| = |A'|.

ProoF. Let A be of the form (A, ¢) and ¢ be of the form ¢1 A ... A ¢,,. Let X be
all free variables of ¢ that do not occur in A. By Theorem 3.1,

IX . ¢ = IAX ¢ A ... ATX .6,

A’ is obtained from A according to Definition 1. O
Let A be a constrained atom. We call A" a reduced form of A if A’ is reduced
and |A'| = |AJ.

Lemma 3.4. Let Ay and As be two reduced constrained atoms. If Ay is subsumed
(resp. AS-subsumed) by Aa, then |Ai| C | Az, and if Ay and As are variants,
then |Aq| = |As|.

Proor. It follows from definitions and Theorem 3.1. O
The subsumption or AS-subsumption of constrained atoms can be used to detect
redundant answers.

Fzample 3.1. Consider the following recursive and function-free program:

p(X) = ~q(X,Y), p(Y).
p(a).
q(X, X).

The query p(X) has an infinite number of answers represented as constrained atoms:

~—

p(a).
p(X) - Q(_)(a a)¢Q(Va V)
p(X) = Y (g(X, Y1) Eq(Ve, Vi) A A cicn(a(Ys, Yigr)a(Vigr, Vigr)) A a(Ya, a)@q(Vagr, Vagr)).

where n > 1. By Theorem 3.1, the existential quantification of ¥;’s can be pushed
into individual AS-constraint. Since only ¢(X,Y1)€q(V1, V1) has a free variable X
occurring in the atom p(X), the last (series of) answer can be reduced to:

p(X) - IV1.9(X, Y1)€q(V1, V1).

allowing query evaluation to terminate.

11

3.2. Deriwving Answers of Negative Literals

For constrained atoms to be sufficient for answer representation, they have to be
closed under negation. Applying negation to an existentially quantified conjunc-
tion of AS-constraints can result in quantified equations. We show how to solve
quantified equations and derive constraint answers of negative literals.

Let ¢ be asimple conjunction of AS-constraints of the form (A1 €H1A...AAEH)
and Z be some free variables in ¢. By Theorem 3.1,

Suppose that each H; has variables W;, where 1 <4 < n. Then
~37.¢ = NZAW (A = H))V ..VYZIW, (A, = H,)

We introduce a modification of the unification algorithm [18] for solving quantified
equations, where all universal quantifiers precede existential quantifiers 2. Each
disjunct V?EIWZ'(AZ' = H;) can be transformed into a substitution.

Let E be a conjunction of equations, which can be viewed also as a finite set
of equations. F is in solved form if F is {X1 = t1,...,X,, = {,}, where all X;’s
are distinct variables and do not occur in ¢;’s. We solve quantified equation sets of
the form VU3V .E, where U and V are disjoint sets of variables that occur in £.
(Quantified variables that do not occur in F can be eliminated.) All variables in
E that are not in U or V are called free variables. The algorithm proceeds non-
deterministically by choosing an equation e € E to which it applies the following
transformations when they become applicable:

1. For f(t1,...,tn) = g(s1,...,8m), if f and ¢ are identical function symbols,
then n = m and replace the equation by t; = sy, ..., t; = s,; otherwise halt
with failure.

2. For X = X, where X is a variable, delete the equation.

3. Fort = X, where ¢ is not a variable and X is a variable, replace the equation
by X =t.

4. For X =Y, where X and Y are distinct variables, there are several cases:

a. if X isin V and X occurs in other equations, replace X by Y wherever
it occurs in other equations;
If X is not in V but Y isin V and Y occurs in other equations, replace
X =Y by Y = X and replace Y by X wherever it occurs in other
equations;

b. if both X and Y are in U, or one of X and Y is in U/ and the other is
a free variable, then halt with failure;

c. otherwise, both X and Y are free variables. If X occurs in other equa-
tions, replace X by Y wherever it occurs in other equations.

5. For X =t, where X is a variable and ¢ is a term that is not a variable, there
are several cases:

2Comon and Lescanne [9] considered equational problems that involved Boolean operators,
but with no existential quantifiers inside the scopes of universal quantifiers.

12

d. if X appearsin ¢, or X isin U, then halt with failure;

e. if X isin V and X does not occur in ¢ and X occurs in other equations,
replace X by t wherever it occurs in other equations;

f. if X is a free variable, we consider several cases for ¢:

f.1. If t contains some variables in U/, then halt with failure;

f.2. If t is of the form f(t1,...,t,), containing some variable in V but
no variable in U, then replace the equation with X = f(Zy, ..., Z,)
and 7y = t1,...,Z, = t, and replace X by f(Z1,...,Z,) in other
equations, where 7y, ..., Z, are new distinct variables;

f.3. Otherwise, all variables (if any) in ¢ are free variables. If X occurs
in other equations, then replace X by ¢t wherever it occurs in other
equations.

The algorithm terminates when no further transformation can be applied or when
failure 1s reported.

Theorem 3.2. The extended unification algorithm applied to YU .3V .E, where E is
a finite set of equations, returns fatlure iof and only of VU .GV .E s unsatisfiable.
Otherwise, it returns a finite set of equations E* wn solved form such that

YU.AV.E < VU .3V.E*

The proof of Theorem 3.2 is in the appendix. The set of equations in solved form
returned by the modified unification algorithm satisfies the following properties:

e free variables are bound to terms with free variables only; and
e there is no binding for any universally quantified variable.

Let £™ be E%, UET where E7%, . is the set of all equations in E* for bindings of

ree exist)
free variables and £7 ,, be the set of all equations in £ for bindings of existentially

exis

quantified variables in V. Then

VUIV.E -VYU3IV.E* — E;, AVUIV.E: ., — E},..
Therefore YU .3V .E can be reduced to a substitution.
As an example, VX.3Y.f(¢(X),a) = f(Y,Z), where Z is a free variable, can be
reduced to YX.Y.(Y = ¢(X)AZ = a). By omitting the binding for the existentially
quantified variable Y, we obtain Z = a.

Definition 3.2. Let S be a system and A’ be an atom that is a subgoal in § such
that all X-rules of A" in § are answers. Let H; = (H;, ¢;)(1 <7< m,m > 0) be
all the constrained atoms that are answers of A" and H; = (H;, ¢;)(m+1<i <
n,n > 0) be all the constrained atoms that occur in the head of some answer of
A" with delayed literals. Let Z;(1 < i < n) be all free variables in ¢; that do not
occur in H;. Let

~|) @ =HATZe)y) (A =HATZieAHDR) | (1)
1<i<m m+1<i<n

13

be converted into a digjunction of the form:

\/ (05 Ao ADy) (2)

1<j<k

where k& > 1, 6; is a variable substitution, ¢; is a simple conjunction of AS-
constraints, and D; is either empty or a negative delayed literal N(H’)ﬁll for

some i(m+ 1 <i < n). Then we call
(~A'6;,¢;) - Dj
for each j(1 < j < k) an answer of ~A" in S.

The intuition is the following equivalence:

A — \/ (A/:Hi/\5|7i.¢i)\/ \/ (A/:Hi/\37i~¢i/\(Hi)%Il)
1<i<m m+1<i<n

By applying negation on both sides, we obtain:

~A /\1gigm(A¢Hi \% (A/ =H; A NE|72¢>Z))/\
Amsr<icn(A'EH V(A" = Hi N(~3Z3.¢: V (37560 A ~(Hi)3,))))
(3)
Formulas ~3Z;.¢; can be converted into a variable substitution using the extended
unification algorithm. Thus the formulain (1) can be converted into a digjunction

in (2).

4. CONSTRUCTIVE NEGATION AND TABLED EVALUATION

Tabled evaluation has been used successfully for effective query processing under
the well-founded semantics [1, 10, 7, 28]. In particular, SLG resolution [7] not only
has various desirable theoretical properties, including goal-orientedness, polynomial
time data complexity, answer sharing and preservation of all three-valued stable
models, but also has been implemented efficiently [6, 25, 27], delivering excellent
performance for query evaluation. This section discusses informally how to extend
SLG resolution [7] with constructive negation. For simplicity, we consider query
evaluation for only function-free programs.

4.1. Tabled Evaluation with Constraints

Given a function-free program P and a query atom @, SLG resolution [7] transforms
rules in P that are relevant to @ into answers. An intermediate state of query
evaluation, called a system, is represented as a set of pairs of the form (A : T),
where A is a subgoal and [is a multiset of annotated X-rules.

In SLG resolution [7], a subgoal is an atom and two subgoals are identical if
they are variants of each other. When an atom A is selected from the body of a
rule, a transformation in SLG resolution called NEW SUBGOAL introduces A as a
new subgoal into a system only if it is not identical to any existing subgoal. This
avoids possible loops evaluating the same subgoal repeatedly. (Formal definitions
of all transformations will be presented in the next section.)

14

With AS-constraints, we choose to represent a subgoal as a constrained atom.
The AS-constraints from a calling environment restrict further the search space
for answers of a subgoal. AS-subsumption is used for detecting repeated subgoals.
That 1s, a new subgoal is created if it is not AS-subsumed by any subgoal in the
current table. Other notions of subgoals and redundant subgoals are also possible,
e.g., atoms and subsumption of (constrained) atoms, with different implementation
tradeoffs.

The NEW SUBGOAL transformation ensures that each subgoal A is evaluated only
once using rules in a program P. Every occurrence of a selected atom A in the body
of a rule is solved using answers from a global table instead of using rules from a
program. A transformation called POSITIVE RETURN returns each new answer of A
to every rule that has a selected atom A. The annotation associated with an X-rule
keeps track of what answers have been returned.

With AS-constraints, an answer can be a constrained atom in general. Reduc-
tion and AS-subsumption of constrained atoms allow us to detect and eliminate
redundant answers, avoiding possible loops generating redundant answers of the
same subgoal.

It is possible to have subgoals that depend upon each other even if the pro-
gram P is positive. When all answers have been computed and returned to rules
with corresponding selected atoms,; these rules with selected atoms are disposed by
a transformation called COMPLETION, leaving only answers of subgoals in a sys-
tem. The three transformations, namely NEW SUBGOAL, POSITIVE RETURN and
COMPLETION, are sufficient for positive programs.

FErample {.1. Consider a query p(X,Y’) with respect to the following program:

pIX,Y) = r(X, Y)gr(X1, X1), q(X, Y).
PX,Y) = s(X, Y)gs(a, b).

g(X, X) - 1(X).

g(X,Y) = p(X,Y).

Initially the system i1s empty. The first transformation to be applied i1s always NEW
SUBGOAL that introduces a new subgoal into a system. The initial subgoal is
p(X,Y) from the query and its rules are obtained by resolving p(X,Y) :- p(X,Y),
on p(X,Y) in the body, with rules in the program. The new system has a single
subgoal:

p(X,Y) - T(X,Y)QT(Xl,Xl),q(X,Y) {}

p(X,Y) : p(X,Y) - s(X,Y)QS(Cl,b)

(To save space, we show only rules of individual subgoals instead of the entire
system every time.) The first rule of p(X,Y’) has a selected atom ¢(X,Y). To
keep track of answers that have been returned, each rule with a selected atom
is annotated by a set of constrained atoms, where two constrained atoms are
considered identical if they are variants of each other. The annotation is initially
empty, represented by {}. (For convenience we write an annotated X-rule of the
form (G, X(G)) as G followed by X((G) in all examples.)

Even though the selected atom is ¢(X,Y), it is also restricted by the constraints

in the body of the rule for p(X,Y"). Thus the new subgoal is (¢(X,Y), 7(X,Y)é&r(X1, X1)):

(q(X’Y)’r(X’Y)QT(Xl’Xl)) : q(X’Y) - T(X,Y)QT(Xl,Xl),p(X,Y) {

15

Notice that due to the propagation of the constraint »(X,Y)¢r(X;, X1) from the
calling environment to ¢(X,Y"), the program rule ¢(X, X) - (X)) does not generate
any rule for the subgoal, avoiding the potentially expensive evaluation of ¢(X) .

Similarly p(X,Y) is selected, which is restricted by the constraint »(X, Y)&r(X1, X1).
However, no new subgoal is created since (p(X,Y),r(X,Y)¢r(X1,X1)) is AS-
subsumed by p(X,Y). Therefore the subgoal for the selected atom p(X,Y) in
this case is p(X,Y), not (p(X,Y), r(X,Y)&r(X1, X1)). In other words, the subgoal
for a selected atom is determined by both the relevant rule and the subgoals that
exist in the global table when the atom is selected.

The answer for p(X,Y") can be returned to the selected p(X,Y) in the rule for
q(X,Y):

(Q(X’Y)’T(X’Y)Qr(Xl’Xl)) :
Q(X’Y) - T(X,Y)QT(Xl,Xl),p() {p(X,Y) - S(X’Y)Qs(a’b)}
9 X,Y) - r(X,Y)Qr(Xl,Xl),s(X Y)é¢s(a,b)

Similarly the answer for (¢(X,Y), r(X,Y)¢€r(X1, X1)) can be returned to the se-
lected ¢(X,Y) in the rule for p(X,Y), generating another answer for p(X,Y):

p(X,Y):
p(X,Y) - r(X,Y)Er(X1, X1),¢(X,Y)
{Q(X’Y) - r(X,Y)Qr(Xl,Xl),S(X,Y)Qs(a,b)}
p(X,Y) - s(X,Y)¢s(a,b)
p(X,Y) - r(X,V)eEr(X1, X1), s(X,Y)¢s(a,b)

With variant checking of repeated answers, the new answer for p(X,Y) is also
returned to the subgoal for ¢(X,Y"), but no new answer is generated thanks to
elimination of redundant answers:

(Q(X’ Y)’ T(X’ Y)Qr(Xl’Xl)) :

(X)) - r(X,Y)Er(X1, X1), p(X,Y)
{ p(X,Y) - s(X,Y)¢s(a,b) }
p(X,Y) - r(X,V)eEr(X1, X1), s(X,Y)¢s(a,b)
(X,Y) - r(X,Y)Er(X1, X1), s(X,Y)és(a,b)

),
At this point, the set of subgoals {p(X,Y), (¢(X,Y), »(X,Y)¢r(X1,X1))} is com-

pletely evaluated for two reasons:

e it is self contained in the sense that subgoals in the set depend upon each
other and only through selected atoms; and

e all answers have been returned as indicated by the annotations associated
with rules that have a selected atom.

The COMPLETION transformation is applied to the set of subgoals, disposing all
rules that have a selected atom. The final system for the evaluation of the initial
query p(X,Y) is as follows:

p(X,Y): p(X,Y) - s(X,Y)é&s(a,b)
YY) p(X,Y) = (X, Y)er(X1, X1), s(X,Y)s(a, b)
(a3, Y), (X V) Er(Xa, Xa)) 1 g(X,) = (0 V) Er(Xn, X), s(X, Y)és(a,)

16

4.2. Constructive Negation and Recursion through Negation

For stratified negation [21], a transformation for negation as failure or constructive
negation can be added. The real challenge is to handle recursion through negation.
The reason is that given a fixed computation rule, e.g., left-most, the truth values
of the instances of a negative literal and the constraints of its variables may not be
completely determined when the negative literal is selected.

In SLG resolution[7], where negation as failure is used, a transformation called
DELAYING 1s introduced that postpones the application of negation as failure to a
ground negative literal. This allows query evaluation to proceed and continue to
solve the remaining literals in a rule body. Answers of a subgoal may now contain
delayed ground negative literals. These delayed ground negative literals may turn
out to be true or false later. Query evaluation then consists of a goal-oriented phase
coupled with a bottom-up phase. The goal-oriented phase solves positive literals
and propagates their variable bindings and uses negation as failure whenever pos-
sible. The bottom-up phase determines and propagates the truth values of delayed
ground negative literals, using two additional transformations called SIMPLIFICA-
TION and ANSWER COMPLETION. Since all variable bindings have been propagated
in the goal-oriented phase, the bottom-up phase essentially deals with a ground pro-
gram. This approach avoids repeated computation inside a subgoal and is carefully
formalized in SLG resolution [7].

With constructive negation, non-ground negative literals may also be involved
in recursions through negation. Unlike the truth value of a ground negative literal,
the constraints of a non-ground negative literal may have to be determined incre-
mentally through several iterations. Consequently constructive negation may be
applied to the same negative literal several times, causing repeated computation
within a subgoal.

Our approach i1s motivated primarily by implementation considerations and tries
to avoid repeated computation within a subgoal by delaying only ground negative
literals. This means that variable bindings and constraints can be propagated
through constructive negation once and for all and that only the truth values of
delayed ground negative literals need to be propagated iteratively. Still constructive
negation has to deal with constraint answers that are in general three-valued. We
show next how constructive negation interacts with delayed ground negative literals.

Frample 4.2. Let the query m(X) be evaluated with respect to the following
program assuming a left-most computation rule:

17

Several applications of NEW SUBGOAL lead to a new system:

m(X): m(X) - ~¢(X)

q(a) - ~r
X):

4(X) q(b) - ~s
r ro-~S, T

5 5 - ~r

Following SLG resolution [7], we delay ground negative literals to break cycles
through negation. A delayed ground negative literal is denoted by ~B® where
B is a ground atom. Delayed literals are never selected by a computation rule,
although they could be simplified away later if they turn out to be true or false.
The new system is as follows:

()) - ~a()
o [

Notice that the subgoal ¢(X) is completely evaluated with two answers with
delayed literals. By Definition 2, we derive three answers of ~¢(X) in the system:

(~a(X), (s a(a) A g(X) (D))
~q(a) = ~q(a)!Y)
~q(b) - ~q(b)1)

Solving ~q(X) by constructive negation leads to the following rules for m(X):

m(X) - q(X)&q(a), ¢(X)&q(b)

m(x): | m(a) - ~g(@)ly
m(b) = ~q(b)%)

The evaluation of subgoal r continues with the selection of r in its rule body.
An application of COMPLETION to the singleton set {r} of subgoals disposes the
rule for r. Since r is completely evaluated with no answers, all occurrences of
~7" can be deleted. The final system is as follows after all delayed literals have
been simplified away using SIMPLIFICATION:

m(x): | ™) = a(X)ga(@).9()Eq(b)

m(b)
q(f() © q(a)

Our approach avoids repeated computation inside a subgoal and is different from
that in [10]. In [10], two different contexts are used, one for computing true answers
(in a T-search tree) and the other for computing possibly true answers (in a TU-
search tree). A mnegative literal in a T-search tree is resolved using possible true

18

answers, while a negative literal in a TU-search tree is resolved using true answers.
Initially nothing is definitely true and everything is possibly true. For the query
m(X) in Example 2, the first iteration will derive possibly true answers of ¢(a), ¢(b),
and s, and no definitely true answers. With the refined set of true and possibly true
answers from the first iteration, the second iteration will derive one true answer for
m(X), i.e., m(X) - ¢(X)eq(a), q(X)¢q(b), possibly true answers ¢(a) and ¢(b), and
s as both true and possibly true. The iterative process continues until a fixed point
is reached for the set of true and possibly true answers. Constructive negation may
be applied to ~¢(X) multiple times whenever ¢(X) has a different set of possibly
true answers, causing repeated computation.

We are able to avoid repeated computation when loops through negation can
be broken by delaying ground negative literals. In the most general case, however,
non-ground negative literals may have to be delayed. For example, when a query
p(X) is evaluated with respect to the following program:

p(X) - ~q(X)
p(a).
¢(X) - ~p(X)
q(b).

there is a cycle through negation between p(X) and ¢(X). Variable bindings and
constraints for ~p(X) and ~¢(X) have to be propagated iteratively. It remains
an open problem how to support constructive negation under the well-founded
semantics in general while avoiding any repeated computation within a subgoal.

5. TRANSFORMATIONS AND SLG¢cny DERIVATIONS

SLG resolution [7] is a goal-oriented method of tabled evaluation for normal logic
programs. In this paper, we consider query evaluation with constructive negation
for function-free programs and extend SLG resolution with AS-constraints and
constructive negation.

In Section 2 we already extended the notions of subgoals, X-rules, and systems
in SLG resolution with AS-constraints. With the definition of reduced constrained
atoms in Section 3.1, we assume that each subgoal is a reduced constrained atom
and each constrained atom in () of an annotated X-rule (G, X(G)) is also re-
duced. This section continues with formal definitions of an extension of SLG reso-
lution with AS-constraints.

Definition 5.1. Let P be a program, R be a computation rule, § be asystem and ¢
be an X-rule of some subgoal in S, of the form (H, ¢) - L1, ..., Ly, where n > 0,
such that GG is not an answer. Suppose that L; is selected for some i(1 < i < n)
when the computation rule R is applied to G. We say that A is the subgoal of
the selected literal L; if

e [; is a negative literal of the form ~B and A is B; or

e [L;isan atom B and A is either some subgoal in § that AS-subsumes (B, ¢)
or (B, ¢) if no subgoal in & AS-subsumes (B, ¢).

19

The notion of the subgoal of the selected literal of an X-rule embodies the idea
of AS-subsumption for subgoals.

Definition 5.2. [X-resolution] Let GG be an X-rule, of the form (H, @) :- L1, ..., Ly,
and L; be the selected atom of G for some ¢(1 < ¢ < n). Let C' be an X-rule and
C', of the form (H', ¢') - L}, ..., L], be a variant of C' with variable renamed so
that G and C” have no variables in common. Then G is X-resolvable with C' if
L; and H’ have a most general unifier ¢ and (¢ A ¢')f is satisfiable. The X-rule:

((H, ¢ A ¢/) - Ll, ceny Li—la Lll, ceny L;n’ LZ'+1, ceey Ln)g

1s the X-resolvent of G with C if G 1s X-resolvable with C'.

X-resolution is used for resolution with a rule in a program or with an answer
of a subgoal that is a fact. If an answer has delayed literals, X-factoring is used to
return the answer to the selected atom of an X-rule.

Definition 5.3. [X-factoring] Let S be a system. Let G be an X-rule of a subgoal
Ain 8, of the form (H,¢) :- L1, ..., Ly, and let L; be the selected atom of G
for some (1 < ¢ < n). Let A’ be the subgoal of L; and C be an answer of A’
in §, and €, of the form (H',¢’) :- L}, ..., L., be a variant of C' with variables
renamed so that G and C” have no variables in common, and m > 0. Then the
X-rule:

(HO,60 A¢'0) = L10, .., Li_10, (LiO){iys 40, Lis10, .., Ln0

is the X-factor of G with C', where @ is the most general unifier of L; and H'.

Definition 5.4. Let S be a system and let (A :T') € §, where A is a subgoal and
I' is a multiset of annotated X-rules. Then

o A succeeds if I' contains a fact H that is a variant of A;
o A failsif T ={};
o Ais completed if all annotated X-rules in I' are answers;

e a positive delayed literal of the form B;f‘t is successful if I' contains a fact H;

B;f} is failed if A is completed and does not have any answer in I' with H in
the head.

Let B be a ground subgoal in 8. Then ~B? is successful if B fails, and is failed if
B succeeds. A system 8 is completed if every subgoal in § is completed.

Definition 5.5. [CN-resolution] Let & be a system and A be an atom that is a
completed subgoal in §. Let G be an X-rule, of the form (H,¢) - L1, ..., Ly,
and L; be the selected literal of the form ~A. Let C be a variant of an answer of
~Ain 8, of the form (~A', ¢') :- L' where L’ is either empty or a delayed literal,
such that G and C have no variables in common. Then G is CN-resolvable with

20

C if L; and ~A’ have a most general unifier 6 and (¢ A ¢')f is satisfiable. The
X-rule:

((H, ¢ A ¢/) - Ll, ceny Li—la L/, LZ'+1, ceny Ln)g
is the C'N-resolvent of G with C if G is CN-resolvable with C'.

Definition 5.6. Let & be a system and A be a non-empty set of subgoals in §
that are not completed. A is said to be completely evaluated if for every subgoal

A € A, either
o A succeeds; or

o let A: T €8, where I' is a multiset of annotated X-rules, and every anno-
tated X-rule in T’ that is not an answer of A is of the form (G, X(G)) such
that

— (has a selected atom L, and
— the subgoal A’ for the selected atom I is completed or in A, and
— for every constrained atom H that occurs in the head of some answer

of A in 8§, H € (G).

The following definition will be used in the transformation ANSWER COMPLE-
TION.

Definition 5.7. Let S be a system, and let A be a subgoal in & and H be a
constrained atom that occurs in the head of some answer of A. Then H is
supported by A if either

e A is not completed; or

e there is an answer GG of A with H in the head such that for every positive
delayed literal of the form B;f‘ti in the body of GG, H; is supported by A;.

Starting with the empty system of subgoals, each transformation transforms one
system into another. Let P be a program, R be an arbitrary computation rule, and
) be a query atom. The following are all the transformations in SLG resolution
that are tailored to function-free programs and extended with AS-constraints. &
and 8 are systems and I's possibly with subscripts are multisets of annotated
X-rules.

. Let A be a constrained atom that is either () or the subgoal

of the selected literal of some X-rule of some subgoal in § such that A is not
AS-subsumed by any subgoal in §. Let A’ be the atom constrained in A.
Then s

SU{(A D)}

where I' is a multiset of annotated X-rules that contains, for each X-resolvent

G of A - A’ with a rule in P,

21

— G if GG does not have a selected atom, or

— (G, {}) if G has a selected atom.

e [POSITIVE RETURN | Let & = {(A: {{G,X(G))}UTl'4)} US', where G has a
selected atom, and A’ be the subgoal of the selected atom of G and (A’ :
{C}UT4) €8, and C be an answer of A’ with a constrained atom H in
the head such that H ¢ X(G). Let G’ be the X-resolvent of G with C if C'
i1s a fact, or the X-factor of G with C' if C has some delayed literals in its
body. Then

S
{A:{GEG)U{HNIUTcUT4) U S

where ['¢ is the singleton set {G'} if G’ does not have a selected atom or
the singleton set {{(G’, {}) if G’ has a selected atom.

e [CONSTRUCTIVE NEGATION | Let & = {(A : {G}UT4)} US’ and G have a
selected negative literal ~A’ such that A’ is a completed subgoal in §. Let
I'" be the multiset of annotated X-rules that contains, for every CN-resolvent
G’ of G with an answer of ~ A’ either GG itself if G’ does not have a selected
atom or (G’,{}) if G’ has a selected atom. Then

S
(A T'UL) US

o Let § = {(A: {G}UT4)} US" and G have a selected ground

negative literal ~B. Then

S
(A {GTUT) US

where G is G with the selected ground negative literal ~B replaced by ~B%.

e [COMPLETION

A is a non-empty set of subgoals in § that is completely evaluated

all X-rules of subgoals in A that are not answers are deleted

o [SIMPLIFICATION | Let § = {(A : {G} UT4)} U8 and G have a delayed
literal L. Then
S S

if L is successful ——————— if L 1s failed

(A {GTUT)IUS (A TIUs

where G’ is G with L deleted.

e [ANSWER COMPLETION | Let A be a subgoal in 8 and ‘H be a constrained
atom that occurs in the head of an answer of 4 such that H is not supported

by A. Then

S
delete all answers of A with H in the head

22

Definition 5.8. Let P be a function-free program, R be an arbitrary computation
rule, and @) be a function-free query atom. An SLGcn derivation for) is a
finite sequence of systems &g, 81, ..., S such that:

e & is the empty system {}; and

e every S;41, where 0 < ¢ < n, i1s obtained from &; by an application of one of
the transformations.

The integer n is called the length of the SLG ¢y derivation. If no transformation
is applicable to 8y, 8y, is called a final system of Q).
SLGeon resolution is the process of constructing an SLG ¢y derivation for a
function-free query atom ¢ with respect to a function-free program P under a
computation rule R.

6. SOUNDNESS AND COMPLETENESS OF SLGcy RESOLUTION

Given a function-free program P and a function-free query atom A, SLG oy reso-
lution transforms A :- A into a set of answers. The set of answers for A provides
a more direct representation of true and false instances of A with respect to the
declarative semantics of P. This section shows that SLG ¢y resolution terminates
for all function-free programs and queries, preserves all three-valued stable models,
and computes the well-founded semantics.

6.1. Termination and Data Complexity

We establish the first termination result for goal-oriented query evaluation with
constructive negation for function-free programs. The proof is in the appendix.

Theorem 6.1 (Termination). Let P be a function-free program, R be an arbitrary
computation rule, and @ be a function-free query atom. Then: (1) there exists
an integer n such that the length of every SLGcon derivation for Q) is bounded
by n; and (2) every final system for Q is either completed or involves recursion
through non-ground negative literals.

For function-free programs, van Gelder et el [30] has shown that computing the
well founded semantics has a polynomial time data complexity. The notion of data
complexily, as defined by Vardi [31], is the complexity of evaluating a database
query when the query is fixed and the database is regarded as input. In [7], we
have shown that SLG resolution has a polynomial time data complexity for query
evaluation with negation as failure under the well-founded semantics. With con-
structive negation, the number of distinct constraint answers may be exponential.

Fzample 6.1. Consider the following program:

succ((al,)az). o suce(an_1, apn).
p(X, ZT)L — WX, 7)), suce(X,Y),p(Y, 7).
p(X, 7)) - max(X),q¢(X, 7).

23

WX, 72) - ~r(X, W, 7).
WX, 72) - ~s(X, W, 7).
(X, X, a).
s(X, X, b).

s

b
For subgoal p(0, 7), its constraints are all the disjuncts in the disjunctive normal

form of

(r(aq, Wy, Z)¢r(Xy, Xi, a) V s(a;, Wi, Z)€s(X;, X, b))
1<i<n

The number of such constraint answers 1s 2”.

It remains open whether some more compact representation of constraints can
be used to preserve the polynomial time data complexity of query evaluation with
constructive negation under the well-founded semantics. A similar example can be
constructed without negation but with constraints. Thus the more general problem
is whether polynomial data complexity can be achieved for query evaluation of
function-free constraint logic programs.

6.2. Relating Partial Answers of Subgoals to a Program

Given a function-free program P and a function-free query atom @, the X-rules
of a subgoal A represent partial answers of A with respect to P. The constrained
atom in the head of an X-rule captures the variable bindings and constraints; the
delayed literals in the body of an X-rule are partially solved since their variable
bindings and constraints have been propagated; and the remaining literals in the
body of an X-rule are yet to be solved with respect to P.

To relate X-rules of subgoals in a system § to a program P, we defined a program
P(S8) associated with & (in Section 2).

Definition 6.1. Let P be a function-free program, R be an arbitrary computation
rule, and @ be a function-free query atom. Let & be a system in an SLGcyn
derivation for). We associate with § a set of ground literals I(S) as follows:

(a) if the Herbrand instantiation of P(S) has a fact B;f‘t, then B € I(S) and
B € I(8);

(b) if a subgoal A in S is completed and H is a constrained atom that is sub-
sumed by A and B is an atom in [H|, then ~Bf € I(S) if the Herbrand
instantiation of P(S) does not contain any rule with B;f} in the head;

(¢) if a subgoal A in S is completed and B is in |.A| and the Herbrand instan-
tiation of P(S) does not contain any rule with B;f} in the head for any H,
then ~B € I(S) and NB;f}, € I(8) for every constrained atom M’ subsumed
by A such that B € [H’|.

The difference between (b) and (c) in Definition 1 is as follows. In (b), even
though the Herbrand instantiation of P(S) does not contain any rule with B;f‘t in
the head, it may still contain some rule (or even fact) with B;f}, for some constrained
atom H’ subsumed by .A. This is not possible in (c).

24

Lemma 6.1. Let P be a function-free program, R be an arbitrary computation rule,
and @ be a function-free query atom. Let Sy,...,S, be an arbitrary SLGcon
derivation for Q. Then I(Sy) C ... C I(Sy).

ProoFr. The lemma follows from two observations. One is that answers of a subgoal
that are facts are never deleted by any transformation. The other is that when a
subgoal A is completed, no new answers can be added although existing answers
can be simplified. O

Let P be a function-free program and S be a system in an SLG ¢ derivation
for a function-free query atom . To relate the semantics of P(S) to P, we look

at the least partial model LPM(%), where J is an interpretation of PU P(S)

and %(8) is the quotient of P U P(S) modulo J. Notice that

PUPS) P U (S)
J - J J
J has to satisfy certain symmetric requirements in order for the comparison between
? and @ to be meaningful since P(S) is essentially derived from P by solving
literals in rule bodies.

Definition 6.2. Let P be a function-free program, R be an arbitrary computation
rule, and @ be a function-free query atom. Let & be a system in an SLGcyn
derivation for (). Let J be an interpretation of P U P(S). J is symmetric on a
subgoal A in 8 if for every atom B € |A|,

e J(B) =t if and only if J(B;f}) = t for some constrained atom H subsumed
by A such that B € |H|; and

e J(B)="1if and only if J(B;f}) = f for every constrained atom H subsumed
by A such that B € |H]|.

J is a symmetric interpretation of P U P(S) if J is symmetric on every subgoal in
S. S is a symmetric system if for every symmetric interpretation J of P U P(S)

such that I(S) C J, LPM(%) is symmetric.

6.3. Preservation of Three-Valued Stable Models

The following key theorems show that every system in an SLG¢n derivation for
a function-free query atom () is a symmetric system and that three-valued stable
models are preserved. Their proofs are in the appendix.

Theorem 6.2. Let P be a function-free program, R be an arbitrary computation
rule, and Q) be a function-free query atom. Let Sy, 81,...,8, be an arbitrary
SLGen derivation for QQ, where « is an integer. Then for every i(0 < i <),
I(8;)) CWF(P UP(S))) and S; is a symmelric system.

Theorem 6.3. Let P be a function-free program, R be an arbitrary computation rule,
and @ be a query atom, and S be a final system for Q@ that is completed. Then:

25

(a) for every I € ST3(P), there exists a symmetric interpretation M of PUP(S)
such that M|p = I and M|psy € ST3(P(S)); and (b) for every I € ST3(P(S)),
there exists a symmetric interpretation M of P U P(S) such that M|ps)y = I
and M|p € ST3(P).

6.4. Computation of the Well-Founded Semantics

The primary purpose of SLG¢n resolution is to compute answers of a query with
respect to the well-founded partial model of a function-free program. Let § be a fi-
nal and completed system that is derived for a function-free query atom with respect
to a function-free program P. We show that WF(P) coincides with WF(P(S)) as
far as ground instances of subgoals in § are concerned. Moreover, for every ground
atom B € |A| of a subgoal A in &, B is true in WF(P) if and only if B € |H]|
for the head H of some answer of A that has an empty body, and B is false in
WZF(P) if and only if B ¢ |H| for the head of any answer of A. In other words, the
truth values of ground instances of subgoals relevant to a query can be determined
directly from the answers in &, without any further derivation.

Theorem 6.4. Let P be a function-free program, R be an arbitrary computation rule,
and Q) be a query atom, and S be a final system for Q) that s completed. Then
there exists a symmetric interpretation J of P U P(S) such that J|p = WF(P)

ProoF. By Theorem 2.2, WF(P) € ST3(P). By Theorem 6.3, there exists a
symmetric interpretation M of P U P(S8) such that M|p = WF(P) and M|p(s) €
ST3(P(S)). By Theorem 2.2, WF(P(S)) C M|p(s). Therefore for every subgoal
Ain § and for every B € |A|,

o if B;f‘t € WF(P(S)) for some constrained atom H subsumed by A, then
B# € M]|ps). Since M is symmetric, B € M|p = WF(P); and

o if ~Bfj € WF(P(S)) for every constrained atom H subsumed by A, then
~B7“f‘t € M|p(s) for every constrained atom H subsumed by A. Since M is
symmetric, ~B € M|p = WF(P).

For the other direction, WF(P(S)) € ST3(P(S)). By Theorem 6.3, there exists
a symmetric interpretation M of P U P(S) such that M|ps) = WF(P(S)) and
M|p € ST3(P). By Theorem 2.2, WF(P) C M|p. Therefore for every subgoal A
in § and for every B € |A|,

e if B € WF(P), then B € M|p. Since M is symmetric, there exists a
constrained atom H subsumed by .A such that B# € Mlpsy = WF(P(S));

o if ~B € WF(P), then ~B € M|p. Since M is symmetric, for every con-
strained atom H subsumed by A, ~Bf € Mlpsy = WF(P(S)).

Let J be an interpretation of P U P(S) such that J|p = WF(P) and J|ps) =
WZF(P(S)). Then J is a symmetric interpretation by the arguments above. O

Theorem 6.4 says only that the set of answers in a final system & preserves the
well-founded partial model as a whole as far as instances of subgoals relevant to
a query are concerned. The following theorem establishes further that the truth

26

values of ground instances of subgoals in the well-founded partial model of the
original program can be determined by simply looking at the heads of answers in
S, without any further derivation.

Theorem 6.5. Let P be a function-free program, R be an arbitrary computation rule,
and Q) be a query atom, and S be a final system for Q) that s completed. Then
for every subgoal A in S and for every B € |A|, (a) B € WF(P) if and only if
B € |H| for the head H of some answer of A in S that has an empty body; and
(b) ~B € WF(P) if and only if B & |H| for the head H of any answer of A in
S.

ProoF. Let I be the interpretation of P(S) such that I = I(S)|p(s). By Theorem
6.4, it suffices to prove that I = WF(P(S)). I € WF(P(S)) by Theorem 6.2.

For the other direction, it suffices to show that I € ST3(P(S)), ie., I =
LPM(ﬂlél). Since § is a final system, no transformation can be applied. For
every negative literal ~BE that occurs in P(S), since ~BP cannot be simplified
using SIMPLIFICATION, I(BE) = u. Since ANSWER COMPLETION cannot be applied
to 8, for every subgoal A in § and for every constrained atom H in the head of
some answer of A, H is supported by A. After every occurrence of NBE is replaced
with u, the program P(S8) is stratified and let J be the perfect model of the re-
sulting stratified program. By a structural induction over the definition of H being
supported by A,

o J(Bjf) =t for every B € |H| if and only if A has an answer with in the
head and an empty body;

o J(B#) =ufor every B € |H| if and only if .A has some answers that have M
in the head and all answers of A4 that have H in the head have some delayed
literals.

Therefore I = .J and I € ST3(P(S)). By Theorem 2.2, WF(P(S))C 1. O

7. FUTURE WORK

We have presented SLG ¢ v resolution for effective query evaluation of function-free
programs with constructive negation under the well-founded semantics. Termina-
tion is guaranteed due to the reduction of constraint answers to a normal form,
redundant answer elimination and tabled evaluation.

Like SLG resolution [7], SLG ¢y resolution is formalized directly in such a way
that repeated computation is avoided in a subgoal. This is achieved by delaying
only ground negative literals. It remains a challenge to extend SLG ¢y resolution
to general cases where non-ground negative literals may have to be delayed, while
avoiding any repetition of computation in a subgoal. Delaying non-ground nega-
tive literals directly means that constructive negation can be applied even if the
constraints and bindings of variables in a negative literal are not completely deter-
mined. This achieves the same effect that is realized by the notion of frontiers in
[11, 12] and the TU-forests in [10]. The open problem is how to control the delaying
of non-ground negative literals and the iterated propagation of constraints so that
repetition of computation is avoided.

27

Several minor aspects of SLG ¢ resolution can be refined. In all anti-subsumption
constraints, we have AZ B, where A and B are atoms of the same predicate. Clearly
the predicate in A and B is irrelevant and may be even confusing for answer reduc-
tion and redundant answer elimination. For example, p(X,Y)é€p(a, b) is equivalent
to ¢(X,Y)éq(a,b). A simple solution is to replace the predicate with a standard
tuple constructor of the same arity.

For simplicity of formalization, we have considered only variant checking for
redundant answers. Obviously just like repeated subgoals, one may also use AS-
subsumption for redundant answers, although the resulting formalization may be
more complicated due to the way X-rules in a system are related to a program in
the correctness for SLG ¢y resolution.

ACKNOWLEDGMENT

The authors thank David S. Warren, Luis M. Pereira, Terrance Swift and Carlos
Damasio for discussions on constructive negation and thank the anonymous referees
for their careful reading of the paper and comments.

REFERENCES

1. R. Bol and L. Degerstedt. Tabulated resolution for well founded semantics. In Intl.
Logic Programming Symposium, October 1993.

2. G. Bossu and P. Siegel. Saturation, nonmonotonic reasoning and the closed world
assumption. Artificial Intelligence, 25(1):13-63, 1985.

3. W.L. Buntine and H.-J. Birckert. On solving equations and disequations. Journal
of ACM, 41(4):591-629, July 1994.

4. D. Chan. Constructive negation based on the completed database. In Robert A.
Kowalski and Kenneth A. Bowen, editors, Proc. 5th Int. Conf. and Symp. on Logic
Programming, pages 111-125, 1988.

5. D. Chan. An extension of constructive negation and its application in coroutining.
In Proc. North American Conference on Logic Programming, October 1989,

6. W. Chen, T. Swift, and D.S. Warren. Efficient top-down computation of queries
under the well-founded semantics. Journal of Logic Programming, 24(3):161-199,
September 1995.

7. W. Chen and D.S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of ACM, 43(1):20-74, January 1996.

8. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293—-322. Plenum, New York, 1978.

9. H. Comon and P. Lescanne. Equational problems and disunification. Journal of
Symbolic Computation, 7:371-425, 1989.

10. C. Damdsio. Paraconsistent Extended Logic Programming with Constraints. PhD
thesis, Dept. de Informatica, Universidade Nova de Lisboa, 1996.

28

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

W. Drabent. What is failure? an approach to constructive negation. Acta Infor-
matica, 32(1):27-59, 1995.

F. Fages. Constructive negation by pruning. Journal of Logic Programming, to
appear.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R.A. Kowalski and K.A. Bowen, editors, Joint Intl. Conference and Symposium
on Logic Programming, pages 1070-1080, 1988.

M. Johnson. A negation meta interpreter using anti-subsumption constraints.
posted to comp.lang.prolog, 1992.

T. Khabaza. Negation as failure and parallelism. In IEEFE Symposium on Logic
Programming, pages 7075, March 1984.

J.-L. Lassez and K.G. Marriott. Explicit representation of terms defined by counter
examples. Journal of Automated Reasoning, 3(3):1-17, September 1987.

J. Matuszynski and T. Naslund. Fail substitutions for negation as failure. In E.L.
Lusk and R. A. Overbeek, editors, North American Conference on Logic Program-
meng, pages 461-476, 1989.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transac-
tions on Programming Languages and Systems, 4(2):258-282, 1982.

J.F. Naughton and R. Ramakrishnan. Bottom-up evaluation of logic programs. In
Jean-Louis Lassez and Gordon Plotkin, editors, Computational Logic: Essays in
honor of Alan Robinson, pages 640-700. MIT Press, 1991.

T.C. Przymusinski. Every logic program has a natural stratification and an iter-
ated least fixed point model. In ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 11-21, 1989.

T.C. Przymusinski. On constructive negation in logic programming. In North
American Conference on Logic Programming, October 1989.

T.C. Przymusinski. On the declarative and procedural semantics of logic programs.
Journal of Automated Reasoning, 5:167-205, 1989.

T.C. Przymusinski. The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae, 13:445-463, 1990.

T.C. Przymusinski and D.S. Warren. Well founded semantics: Theory and imple-
mentation. Draft, 1990.

I. V. Ramakrishnan, Prasad Rao, Konstantinos Sagonas, Terrance Swift, and
David S. Warren. Efficient tabling mechanisms for logic programs. In Leon Ster-
ling, editor, Intl. Conference on Logic Programming, pages 697-711. MIT Press,
1995.

K.A. Ross. A procedural semantics for well founded negation in logic programs.
Journal of Logic Programming, 13(1):1-22, 1992.

K. Sagonas, T. Swift, and D.S. Warren. XSB as an efficient deductive database
engine. In ACM SIGMOD Conference on Management of Data, pages 442-453,
1994.

29

28. P. Stuckey and S. Sudarshan. Well-founded ordered search. In Proceedings of the
13th Conference on Foundations of Software Technology and Theoretical Computer
Sceence, 1993. LNCS 761.

29. P.J. Stuckey. Constructive negation in constraint logic programming. In Proceed-
ings of the 6th IELEFE Annual Symposium on Logic in Computer Science, pages
328-339, 1991.

30. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general
logic programs. Journal of ACM, 38(3):620-650, July 1991.

31. M. Vardi. The complexity of relational query languages. In ACM Symposium on
Theory of Computing, pages 137-146, May 1982.

32. M. Wallace. Negation by constraints: A sound and efficient implementation of
negation in deductive databases. In IFEF Symposium on Logic Programming,
pages 253-263, 1987.

33. D.S. Warren. The XOLDT System. SUNY at Stony Brook, 1992.

A. PROOFS OF THEOREMS 3.2, 6.1, 6.2 AND 6.3

Proof of Theorem 3.2: The theorem claims that the extended unification algo-
rithm applied to YU.3V.E, where E is a finite set of equations, returns failure if
and only if YU .3V .E is unsatisfiable. Otherwise, it returns a finite set of equations
E* in solved form such that

YU.AV.E < VU .3V.E*

The proof is similar to that in [18]. We consider those cases that are specific to the
modified unification algorithm.

Let X =Y be an equation that is selected, where X and Y are distinct variables.
In (b), either both X and Y are universally quantified, or one of X and Y is
universally quantified and the other is a free variable. In both cases, the quantified
set of equations is unsatisfiable.

Consider the case of X = ¢, where X is a variable and ¢ i1s not a variable. In
(d), if X is universally quantified, the quantified set of equations is unsatisfiable.
In (f.1), X is a free variable and ¢ contains a universally quantified variable and
the quantified set of equations is not satisfiable. In (f.2), X is a free variable and ¢
contains some variables in V that are existentially quantified. To avoid binding X
to any term containing variables in V', we introduce new distinct variables 71, ..., Z,
if ¢ is of the form f(¢1,...,t,). The equation is replaced by X = f(71,..., Z,) and
71 =11, 0, Zn = 1y

Each transformation preserves all solutions. The process of transformations ter-
minates for any finite set of equations. In addition, when it terminates without
failure, the resulting set of equations is in solved form. O

Proof of Theorem 6.1: Let P be a function-free program, R be an arbitrary
computation rule, and ¢ be a function-free query atom. Theorem 6.1 claims that

(1) there exists an integer n such that the length of every SLG ¢y derivation
for @ 1s bounded by n; and

30

(2) every final system for @ is either completed or involves recursion through
non-ground negative literals.

ProoF. (1). Since both P and @ are function-free, all atoms that occur in a
system in an SLG ¢y derivation are function-free. The number of atoms that are
not variants of each other is finite. The number of reduced constrained atoms that
are not variants of each other, denoted by N, is finite, even though it may be
exponential in the number of constant symbols in P and Q.

The number of subgoals in a system & is bounded by N'. For each subgoal, the
number of initial X-rules introduced by NEW SUBGOAL is bounded by the number
of rules in P, which is finite. The number of X-rules that can be generated directly
from an X-rule G is

¢ bounded by some number dependent upon A in the case of CONSTRUCTIVE
NEGATION,

e bounded by N in the case of POSITIVE RETURN, and
e 1 in the cases of DELAYING and SIMPLIFICATION.
Each of the resulting X-rules that is generated directly from G either

e has the same number of delayed literals as G and has one literal less than GG
that is not delayed; or

e has the same number of literals that are not delayed as G and has one delayed
literal less than G'.

The number of literals in the body of each X-rule is bounded by the maximum
number of literals in a rule body in P. This i1s because delayed literals in the
body of an answer are never propagated by POSITIVE RETURN or CONSTRUCTIVE
NEGATION.

Finally cOMPLETION and ANSWER COMPLETION only delete X-rules. Thus there
exists some integer n such that the length of each SLG¢n derivation for @ is
bounded by n.

(2). Let S be a final system for). By definition, no transformation is applicable
to §. Suppose that S is not completed. Then there must be at least one subgoal A
that has an X-rule with a selected negative literal ~B such that the subgoal B is
not ground and is not completed. Otherwise, either DELAYING or CONSTRUCTIVE
NEGATION is applicable. We say that there is a non-ground negative edge from A
to B in §. Consider the graph that is composed of all the non-ground negative
edges in §. If the graph is acyclic, then some transformation must be applicable
to subgoals (that are not completed) in the graph with no out-going non-ground
edges, a contradiction with the assumption that § is a final system. If the graph is
cyclic, then the cycles through negation involve only non-ground negative literals,
which cannot be broken by DELAYING. O

Before proving Theorem 6.2 and Theorem 6.3, we establish several lemmas that
relate the program associated with a system & to an original program P.

Lemma A.1. Let P be a function-free program, R be an arbitrary computation rule,
and @) be a function-free query atom. Let § be a system in an arbitrary SLGcon
derivation for Q. Then for every symmetric interpretation J of P U P(S) such

31

that I(S) C J, (a) J satisfies Equivalence (3) in CONSTRUCTIVE NEGATION; and
(b) if a new system S’ is derived from S by replacing an X-rule G of a subgoal
A with X-rules Gy, ..., Gy using CONSTRUCTIVE NEGATION, then for every rule
- p(S)
in —5= of the form

B;f} -G
where H is the constrained atom in the head of G and B € |H|, there exists a
rule in ﬂf—l of the form

B;f}l =g

for some i(1 < i < k) where H; is the constrained atom in the head of G; and
B € |Hi|, and vice versa.

ProoF. Since (b) follows from (a), it is sufficient to prove (a). Let # be an arbitrary
ground substitution that is applied to both sides of the equivalence (1). For the
direction of —, suppose that ~A’0 € J. Then A'6 ¢ |H;| for every i(1 < i < m)
since J is an interpretation and I(S) C J. Thus the first conjunct on the right side
of (3) holds. If A’ & [H;]| for every i(m + 1 < i < n), then the second conjunct is
also true. Otherwise, for every i(m+1 < i < n) such that 4’6 € |H;|, N(A’H)ﬁll eJ
by the symmetry of J and so the second conjunct still holds.

Suppose that the right side of (3) is false. Then either the first conjunct is false
or the second conjunct is false. If the first conjunct is false, then A’ € |H;| for
some (1 <7< m). Thus A'0 € I(S) C J and so ~A’0 is false in J. If the second
conjunct is false, then A’6 € |H;| for some i(m + 1 < i < n) such that (A’H)ﬁll Is
true. The symmetry of J implies A’6 € J and so ~A’0 is false in J.

The other direction, <, is similar and the details are omitted. O

Lemma A.2. Let P be a function-free program, R be an arbitrary computation rule,
and Q) be a function-free query atom. Let Sy, 81, ...,8y be an arbitrary SLGeon
derivation for @, where o is an integer. Then for every i(0 < 7 < «) and for
every symmetric interpretation J of P U P(S;) such that Up<j<;1(S;) C J, and
for every subgoal A in S; that is not completed and for every B € |A|, if B :- ¢
5 in ?, then B;f} & s ﬂf—’l for some constrained atom H subsumed by A
such that B € [H|.

ProoF. The proof is based upon an induction on z. The basis case, ¢ = 0, is trivial
since Sy is empty.

Let ¢ be an integer 3 + 1. Then &; is obtained from &g by one of the transfor-
mations. The cases of COMPLETION, SIMPLIFICATION, and ANSWER COMPLETION
are trivial since they affect only subgoals that are completed in §;. The case of
NEW SUBGOAL follows from the use of most general unifier in X-resolution in de-
riving the initial X-rules of a new subgoal. The case of POSITIVE RETURN follows
from the inductive hypothesis since it only adds another X-rule to a subgoal that
is not completed. The case of DELAYING follows directly from the symmetry of J.
The case of CONSTRUCTIVE NEGATION follows directly from Lemma A.1 and the
inductive hypothesis. This concludes the inductive proof of the lemma. O

Lemma A.3. Let P be a function-free program, R be an arbitrary computation rule,
and Q) be a function-free query atom. Let Sy, 81, ...,8y be an arbitrary SLGeon
derivation for @, where o is an integer. Then for every i(0 < 7 < «) and for

32

every symmetric interpretation J of P U P(S8;) such that Up<;<;1(S;) C J, and
for every subgoal A in S; that is not completed and for every B € |A|, if B;f} -6

P(8;) P
J

15 n for some constrained atom H subsumed by A, then B :- & 1s in T

such that

Undelay(s) C ¢ and & — Undelay(s) C Uo<;<il(S;)

where Undelay(s) = {B'| B' or (B’)ﬁi occurs in s for some subgoal A’ and some
constrained atom H' subsumed by A'}, and & is viewed as a set of atoms.

Proo¥r. Intuitively SLG o derivation tries to solve literals in the body of an X-
rule. If a literal cannot be solved completely when it is selected, it may be replaced
with some delayed literal. This lemma essentially says that literals that are de-
layed or not solved at all come from some rule in the original program P, i.e.,
Undelay(s) C &, and the other literals, i.e., £ — Undelay(s), have been solved based
upon answers of subgoals that have been computed, i.e., Uy<j<iI(S;).

The proof is based upon an induction on ¢. The basis case, ¢ = 0, is trivial since
Sy is empty.

Let ¢ be an integer 8+ 1. Then &; is obtained from &g by one of the transfor-
mations. The cases of COMPLETION, SIMPLIFICATION, and ANSWER COMPLETION
are trivial since they affect only subgoals that are completed in §;. The case of
NEW SUBGOAL follows from the use of the most general unifier in X-resolution in
deriving the initial X-rules of a new subgoal. The case of DELAYING follows directly
from the symmetry of J, and the case of CONSTRUCTIVE NEGATION follows from
Lemma A.1.

Let A be a subgoal in Sg and G be an X-rule with a constrained atom H in the
head and a selected atom in the body. Suppose that a new X-rule G’ is added by
POSITIVE RETURN with a constrained atom H’ in the head when 8; is derived from
8p. Suppose that B#, - ¢ isarulein @ that is obtained from a ground instance
of (G')A. Then by the definition of POSITIVE RETURN, there exists a rule, B;f‘t - <

in @ that is obtained from a ground instance of G* such that Undelay(s') C
Undelay(s) and Undelay(s) —Undelay(s’) C I(Sg). By inductive hypothesis, there
isarule B :- £ in ? such that Undelay(c) C € and &€ — Undelay(s) C Up<j<pI(S)).
Therefore Undelay(¢’) C & and & — Undelay(<’) C Up<j<il(S;) and the lemma
holds. O

Lemma A.4. Let P be a function-free program, R be an arbitrary computation rule,
and Q) be a function-free query atom. Let Sy, 81, ...,8y be an arbitrary SLGeon
derivation of), where o is an integer. Then for every i(0 < ¢ < «) and for
every symmetric interpretation J of P U P(S8;) such that Up<j<;1(S;) C J, and
for every subgoal A in S; that is not completed and for every X-rule G of A in
S;, of the form

H — Left, Ay, Right

where Ay is the selected atom of G and for every constrained atom Hy in X(G),

there exists some X-rule G* of A in S; such that for every rule in ﬂf—’l of the
form

A
B - Siept, B1, Srignt

obtained from a ground instance of G* such that By € [Hy|, there exists a rule

33

P(}S’), obtained from a ground instance of (G*)*, of the form

A
BH* “— Sleft,Sright

or
Bft. — Sefts (Bl)ﬁi s Sright

where H* s the constrained atom in the head of G* and Ay is the subgoal for

the selected atom of G.

ProoF. The proof is based upon an induction on ¢. The basis case, ¢ = 0, is trivial.

Let ¢ be a successor ordinal @ 4+ 1. Then &; is obtained from Sz by one of
the transformations. For the case of NEW SUBGOAL, the annotation X(G) of any
initial X-rule GG of a new subgoal is always empty and the lemma holds by inductive
hypothesis. The cases of COMPLETION, SIMPLIFICATION, and ANSWER COMPLETION
hold by inductive hypothesis, because they affect only X-rules of subgoals that are
completed in §;. For DELAYING, the symmetry of J implies that @ = @ and
so the lemma holds by inductive hypothesis. The case of CONSTRUCTIVE NEGATION
follows from Lemma A.1 and the inductive hypothesis.

For POSITIVE RETURN, let GG be an active X-rule of A in Sg, of the form

H — Left, Ay, Right

where A is the selected atom. Let A; be the subgoal of the selected atom A;. For
every Hq € X((), there exists an answer C of A; with H; in the head in Sy such
that POSITIVE RETURN is applied to GG by using C' when &; is derived from Sg. Let
G’ be the X-resolvent of G with C' if C' has an empty body, and be the X-factor of
G with C if C has some delayed literals in its body. Then G’ satisfies the properties
of G* as specified in the lemma, and the lemma holds by inductive hypothesis. O

Proof of Theorem 6.2: Let P be a function-free program, R be an arbitrary
computation rule, and @ be a function-free query atom. Let 8y, &, ..., 8, be an
arbitrary SLG oy derivation for), where « is an integer. Theorem 6.2 claims that
for every i(0 < i < «), I(S;) C WF(P U P(S;)) and S; is a symmetric system.

The proof is based upon an induction on ¢. For the basis case, i = 0, 8y 1s the
empty system and I(Sp) is the empty set and P(Sp) is the empty program. The
lemma holds trivially.

For the inductive case, we prove the following:

(a) LPM(%(S’)) is symmetric for every symmetric interpretation J of P U
P(8;) such that Up<;<;1(S;) C J;

(b) I(8;) C WF(PUP(S)).

Let J be an arbitrary symmetric interpretation of P U P(S;) such that I(S;) C J.
Then Up<j<;I(S;) € J by Lemma 6.1. Thus (a) implies that S; is a symmetric
system. We show that (a) implies (b) and then prove (a).

(a) = (b). By inductive hypothesis, I(S;) C WF(P U P(S;)) for every j(0
j <). Since P is independent of P(S;) for every j(0 < j < i), Uo<j<il(S;)]
WF(P U P(S;)). By Lemma 6.1, I(S;) C I(S;) for every j(0 < j < 1i). By the
definition of I(S;), I(S;i)|p(s,) € WF(P U P(S;)). Thus

Uogj<il(S;) CWF(PUP(S:))

<
-

We construct an interpretation J of P U P(S;) as follows:

34

o Jlp=WF(P);

o for every subgoal A in §; and every constrained atom H subsumed by A and
every B € |H|,

~ if Bff € Uo<;<il(S;), then Bf € J;
— if ~Bf, € Uo<j<iI(S;), then ~B# € J;
— otherwise, J(B;f}) =J(B)

Clearly Up<j<il(S;) C J since Up<j<il(S;) € WF(P U P(S;)). It can also be
verified that J is a symmetric interpretation of P U P(S;).

Let M = LPM(%Z). Since J|p = WF(P) and P is independent of P(S;),
M|p = WF(P) as WF(P) is a three-valued stable model of P. By (a), M is
symmetric. By the definition of I(S;), every literal of the form B;f‘t or NB;f‘t in I(S;)
isin M and in WF(PU P(S;)), where A is a subgoal in S;, H is a constrained atom
subsumed by A, and B € |H|. Since M is symmetric, I(S;)|p € M|p = WF(P).
Thus I(S;) C WF(P U P(S))).

Now that we have established that (a) implies (b), we prove (a). Let ¢ be an
integer #41. Then S; is obtained from S3 by one of the transformations. By Lemma
6.1, 1(Ss) = Up<;<il(S;). Let My = LPM(EEEe)y and M; = Lpam(22EED)
By inductive hypothesis, Mg is a symmetric interpretation of P U P(Sz). We prove
that M; is symmetric by a case analysis of the transformations.

NEW SUBGOAL: Suppose that A is a new subgoal that is introduced and B is
an arbitrary ground atom in |A|. Then the Herbrand instantiation of P contains a
rule of the form B — ¢ if and only if the Herbrand instantiation of P(S;) contains a
rule of the form B;f‘t — ¢ for some constrained atom H subsumed by 4. Therefore
M; is symmetric on A. Subgoals in Sg are not affected, and (a) holds by inductive
hypothesis.

DELAYING: Since J is a symmetric interpretation of PUP(S;) and Up<j < 1(S;) C
J, it can be verified that @ = ﬂf—’l. Thus M; = Mg and (a) holds by inductive
hypothesis.

SIMPLIFICATION: Let A be a subgoal that is completed in Ss and G be an answer
of A. Let L be a delayed literal in the body of G. If L is a negative delayed literal,
it can be verified that 2520 — ﬂf—’l based upon the assumption on J. Thus
M; = Mp and (a) holds by inductive hypothesis.

If L is a positive delayed literal of the form B;‘ti’ where A; is a subgoal in Sp
and Hp is subsumed by Ay, there are two cases. If L is successful, then A; has an
answer C' in Sg that has ; in the head and an empty body. Then L is deleted
from the body of G. Clearly for every ground instance h of B, hﬁi can always be
derived using C41 in P(S;). Thus M; = My and (a) holds by inductive hypothesis.
The case that L is failed is similar.

ANSWER COMPLETION: Let U be the set of all pairs (A, H) in Sg such that A
is a subgoal and H be the head of some answer of A such that H is not supported
by A. Then S; is obtained from Sg by deleting all the answers of .4 that have H
in the head, for some (A, H) € U.

By definition, for every pair (A, H) € U, A is completed and for every answer G
of A that has H in the head, there exists a positive delayed literal in the body of
G, of the form (Bl)ﬁi, where H; is not supported by Ay, i.e., (A1, H1) € U. Thus

35

for every pair (A, H) € U and every atom B in H|, ~Bfi € Mz and ~Bjf; € M;.
Hence M; = Mp and (a) holds by inductive hypothesis.

POSITIVE RETURN: First, POSITIVE RETURN does not affect subgoals that are
completed in Sg. In particular, for every completed subgoal A in Sz and every
answer C' of A that is not disposed in Sp, and for every positive delayed literal in
the body of C', of the form B;‘ti’ Aj is also completed. The reason is that a positive
delayed literal is created by POSITIVE RETURN from an X-rule with a selected atom,
and an X-rule of a subgoal with a selected atom is disposed only by COMPLETION.
By inductive hypothesis; M; remains symmetric on all completed subgoals in &;,
which are precisely completed subgoals in Sg.

Second, let A be an arbitrary subgoal in §; that is not completed, and let B
be an arbitrary atom in |A|. By Lemma A.2, B € M; implies B;f‘t € M; for some
constrained atom H subsumed by A, and if ~B7“f‘t € M; for every constrained atom
'H subsumed by A, then ~B € M;.

For the other direction, let P’ = w. Recall that M; = TIT;‘). We show by
induction on k that for every k > 0, and for every subgoal A in §; and every atom
B in |A|, if Bf € Und(rlyf) for some constrained atom H subsumed by A, then
B € Und(M;) U Pos(M;), and if B;f‘t € POS(TITDIf) for some constrained atom H
subsumed by A, then B € Pos(M;).

The basis case, & = 0, is trivial since TITD? = 0, in which every ground atom is false.
For the inductive case, k41, consider any rule of the form B;f‘t —¢in P’. By Lemma
A.3, there is a rule B — £ in P’ such that Undelay(s) C & and & — Undelay(s) C
Uo<j<il(S;) = 1(Ss). The definition of I(Ss) implies that 1(Ss)|p(s,) € Mg. Since
Mp is symmetric by inductive hypothesis, every ground atom in ¢ — Undelay(s) is
in Mg. As Mg|p = M;|p, every ground atom in ¢ — Undelay(s) is in M; too. If
B# € Und(TITDIfH) due to a rule B#f «— ¢, then B is in Und(Mg) U Pos(M;) due
to the rule B — ¢ by inductive hypothesis. Similarly, if B;f‘t € Pos(rﬂf“), then
B € Pos(M;).

This concludes the induction on k. Thus for every subgoal A that is not com-
pleted in S; and for every ground atom B in |A|, if B;f} € M; for some constrained
atom H subsumed by A, then B € M;, and if ~B € M;, then ~B7“f} € M; for every
constrained atom H subsumed by A.

This concludes the proof that M; is symmetric, and so (a) holds.

CONSTRUCTIVE NEGATION: Like POSITIVE RETURN, CONSTRUCTIVE NEGATION
does not affect subgoals that are completed in Sg. By inductive hypothesis, M;
remains symmetric on subgoals that are completed in Sg, which remain completed
n Sz

Notice that CONSTRUCTIVE NEGATION does not introduce any new subgoals.
Consider a subgoal A in Sg that is not completed in Sg and an arbitrary ground
atom B € | A|. There are two possibilities for A. One is that A is not completed in
S; and the other is that .4 becomes completed in S; after CONSTRUCTIVE NEGATION
is applied to its only X-rule that has a selected (negative) literal. In the former
case, the rest of the argument is the same as in the case for POSITIVE RETURN based
upon Lemma A.2 and Lemma A.3. In the latter case, Lemma A.2 and Lemma A.3
are not applicable to A in §; since it is completed in §;, but are applicable to A in
8p in which it is not completed. Together with Lemma A.1, the same argument in
the case for POSITIVE RETURN goes through.

COMPLETION: Following the same argument as in POSITIVE RETURN, COMPLE-

36

TION does not affect subgoals that are completed in Sg. In particular, M; and
Mg coincide on all literals of the form B;f} or ~B7“f}, where A is a subgoal that is
completed in Sg. In addition, Mg|p = M;|p. By inductive hypothesis, M; remains
symmetric on all subgoals that are completed in Sp.

By definition, cOMPLETION disposes all X-rules of some subgoals that are not
answers, and so P(S;) can be obtained from P(Sp) by deleting some rules. There-
fore M; < Mg (with respect to the truth ordering). Lemma A.2 together with
M; < Mg implies by inductive hypothesis that M; is symmetric on all subgoals
that are not completed in §;.

Let A be a non-empty set of subgoals that are completely evaluated in Sp such
that all X-rules of subgoals in A that are not answers are disposed by COMPLETION.
It remains to show that M; is symmetric on subgoals in A. Let P’ = w. Since
M; < Mg and Mg|p = M;|p, it suffices to prove that for every k > 0, and for every
subgoal A € A and every ground atom B in | A,

(1) iftBe Und(rlyf), then Bf € Und(TITDIf)UPos(Tny) for some constrained atom
‘H subsumed by A; and

(2) if B e POS(TITDIf), then B;f‘t € POS(TITDIf) for some constrained atom H sub-
sumed by A.

The basis case, & = 0, 1s trivial since 7'1,1(,J = . For the inductive case, suppose

that B € Und(TITDIfH) U POS(TII,],H_l), and the derivation of B uses a rule of the form
w. By Lemma A.2, B;f} — ¢
is a rule in w for some constrained atom H subsumed by A.

If Bff «— ¢is arule in P/, then (1) and (2) hold by inductive hypothesis. Oth-
erwise, since A is in A, either A succeeds, in which case (1) and (2) hold, or A has
an X-rule G in 8§ of the form

B — £ € P'. However, B « £ is also a rule in

H — Left, Ay, Right

with a selected atom A, and B;f} — ¢ is obtained from a ground instance of G4
and is of the form

B;‘t = glefta Blagright

where B is a ground instance of A;. By assumption on B, By € Und(rlyf) U
POS(TITDIf). By inductive hypothesis on k, (1) and (2) hold for By and (Bl)éi for
the subgoal A; of the selected atom A; and some constrained atom H; subsumed
by Aj. Since A is completed in S;, H; must be in X(G). By Lemma A .4, there
exists some constrained atom H’ subsumed by A such that

Bfyy — &iept, Eright

or
A
Bfy — Eiepr, (B1)3 s Erignt

is a rule in @.
The number of positive literals in the body of an X-rule is bounded by the
maximumnumber of literals in the body of a rule in P, which is finite. By repeatedly

applying the same argument for Bff «— ¢ to Bft, — &y, (Bl)ﬁi,fnght, we will

37

eventually obtain some B;f}* for some constrained atom H* subsumed by A such
that (1) and (2) hold for B and Bj.. This concludes the induction on k.

This concludes the proof for the case of coMPLETION. O

Proof of Theorem 6.3: Let P be a function-free program, R be an arbitrary
computation rule, and @ be a query atom, and § be a final system for) that is
completed. Theorem 6.3 claims the following:

(a) forevery I € ST3(P), there exists a symmetric interpretation M of PUP(S)
such that M|p = I and M|ps) € ST3(P(S));

(b) for every I € ST3(P(S)), there exists a symmetric interpretation M of
P U P(S) such that M|psy =1 and M|p € ST3(P).

Since § is a final system that 1s completed, all X-rules of subgoals in § are
answers. Thus P(S) and P are independent of each other. By Theorem 6.2, S is a
symmetric system.

For (a), let T € ST3(P). By Theorem 2.2, WF(P) C I. By Theorem 6.2,
I(S) CWF(PUP(S)). Since P and P(S8) are independent of each other, WF(P U
P(8)) = WF(P)UWF(P(S)). Thus I(S)|p € WF(P) C I. We construct an
interpretation Jy of P U P(S) as follows:

L 4 Jo|p:[;

o for every subgoal A in § and every constrained atom H subsumed by A and
every B € |H|,

~ if Bf; € I(S), then Bf} € Jo;
~ if ~B# € I(8), then ~B% € Jo;
— otherwise, J(B;f}) = Jo(B)

The existence of Jy is ensured by the fact that I(S) C WF(PUP(S)) and WF(P) C
I. Tt can also be verified that J is a symmetric interpretation.

Notice that I(S) C Jo. Let My = LPM(%D(S)). By Theorem 6.2, § is a
symmetric system and so My is symmetric. Since P and P(S) are independent of
each other, My|p = LPM(%) and My|ps) = LPM(%). As Jolp =1 €
ST3(P), Mglp=1.

Both My and Jy are symmetric and Mg|p = Jo|lp = I. Thus for every ground
subgoal B in 8, Mo(BE5) = Jo(BE) = I(B). Since S is completed, all negative
literals occurring in P(8) are of the form ~BE where B is a ground atom, or
~B7“f}, where A is not a ground atom. The latter form of negative literals in P(S) is
derived from CONSTRUCTIVE NEGATION. Note that CONSTRUCTIVE NEGATION can
be applied to a selected negative literal only if the positive counterpart 1s completed
as a subgoal. Thus after P(S) is simplified by replacing each occurrence of NBE
with its truth value in Jg (or My), P(S) must be stratified, say with a stratification

Py UPyU...UP,. Under such stratification, My and LPM(MAD'%) coincide on

all ground atoms in the lowest stratum since Mo(BE) = Jo(BE) = I(B) for every
ground subgoal B in §.

For each (1 < i < k), we construct interpretations J; and M; of P U P(S) as
follows:

L 4 Jz'|P :I;

38

o for every subgoal A in § and every constrained atom H subsumed by A and
every B € |H|,

— if B € I(S), then Bf € J;;

~ if ~B# € I(8), then ~Bf} € J;;

—if B;f‘t belongs to a stratum less than or equal to i, then JZ'(B;f}) =
M;_1(B3)

— otherwise, JZ'(B;f}) = Ji(B)

o M;=LPM(ELEL

The same arguments for Jy and My can be used to verify that both J; and M; are
symmetric interpretations such that J;|p = M;|p = I for every i(1 < i < k). In ad-
dition, based upon the aforementioned stratification of P(S), My = LPM(MAZQ)
and My|p = I. Since P and P(S) are independent of each other, My|ps) €
ST3(P(S)).

This concludes the proof for Part (a) of the lemma, and we now show that Part
(b) of the lemma holds. Let I € ST3(P(S)).

By Theorem 2.2, WF(P(S)) C I. By Theorem 6.2, I(S) C WF(P U P(S)).
Since P and P(S8) are independent of each other, WF(P U P(S)) = WF(P)U
WF(P(S)). Thus I(S)|ps)y € WF(P(S)) C I. As shown in Part (a), WF(P U
P(S8)) is a subset of some symmetric interpretation of P U P(S). Thus there exists
some symmetric interpretation Jy of P U P(S) such that

e I(S) C Jy; and
o Jo(BE) = Jo(B) = I(BE) for every ground subgoal B in S.

Let My = LPM(%D(S)). By Theorem 6.2, My is symmetric.

Following the same argument in Part (a), the program P(S) is stratified after
every occurrence of ~BE where B is a ground subgoal in 8, is replaced with its
truth value in Jy (or equivalently in T), with a stratification, say Py U...U Py. Since
I € ST3(P(S)), I coincides with the unique perfect model of P, U ... U P;. In
addition, I and My coincides on ground atoms in the lowest stratum P;.

For each (1 < i < k), we construct interpretations J; and M; of P U P(S):

e J; is some symmetric interpretation such that
— I(S) C J;; and
~ Ji(BE) = J;(B) = I(BE) for every ground subgoal B in §; and

— Ji and M;_ coincide on all ground atoms in HBp(s) whose stratum in
the aforementioned stratification is less than or equal to ¢;

J; exists since M;_1 is a symmetric interpretation that contains I(S).
o M;=LPM(ELE))

By the same arguments for Jy and My, M; is a symmetric interpretation for every
Z(l S 1 S k’), and Mk|p(5) =1.
We partition the Herbrand base HBp into HI31 U HB2, where HB; is the set of

all atoms B such that B € |.A| for some subgoal A in 8, and HB2 = HBp — HB;.
We construct a symmetric interpretation M of P U P(S) as follows:

39

o M|pisy = Mi|ps)y =1I; and
o M(B) = My(B) for every B € HB1, where B € | A| for some subgoal A in
S.

For atoms in ‘HBs, their truth values in M are chosen as follows. We construct a
program Psipp from the Herbrand instantiation of P by

e deleting every rule whose head is an atom in HBy;

e deleting every rule whose body contains a positive literal B such that B €

HB; and M(B) =1{;

e deleting every rule whose body contains a negative literal ~B such that

B € HBy and M(B) = t;

e replacing each positive literal B in the body of a rule with wif B € HB;
and M(B) = u;

o replacing each negative literal ~B in the body of a rule with uwif B € HB;
and M(B) = u.

Consider each ground atom in Psp,p; as a new propositional symbol, and let Mg be
an arbitrary three-valued stable model of Py viewed as a propositional program.
Then for every atom B € HBs,

o if B occurs in Pyimpr, M(B) = Mg (B);
e otherwise, M(B) =f.

Notice that M is a symmetric interpretation of P U P(S) such that M|ps) =1
and I(S) € M. Let M’ = LPM(%(‘S)). By Theorem 6.2, M’ is symmetric.
We show that M = M’. First, since M|ps) = I and [€ ST3(P(S)) and P
and P(S) are independent of each other, M'|psy = [= M|p(s). Second, for
every atom B € HBy, M'(B) = M(B) as both M and M’ are symmetric and
M'|psy = M|ps). Third, for every atom B € HBy, M'(B) = M(B), which can
be verified by the construction of Psjppr and the usage of a three-valued stable

model Mg of Pyippr in the definition of M. Thus M = M.

Since M = M’ = LPM(%(S)) and P and P(S) are independent of each other,
Mlp = LPM(MLL;)a which implies that M |p € ST3(P). Furthermore, M|ps) =
and M is symmetric, and so (b) holds. O

