JOURNAL OF COMPUTER AND SYSTEM SCIENCES 55, 355-369 (1997)
ARTICLE NO. SS971528

Can Datalog Be Approximated?

Surajit Chaudhuri

Microsoft Research, One Microsoft Way, Redmond, Washington 98052

and

Phokion G. Kolaitis*

Computer Science Department, University of California, Santa Cruz, California 95064

Received April 15, 1995; revised August 24, 1995

In this paper, we investigate whether recursive Datalog predicates can
be approximated by finite unions of conjunctive queries. We introduce
a quantitative notion of error and examine two types of approximation,
namely, absolute approximation and relative approximation. We also
stipulate that the approximations obey certain qualitative criteria,
namely we require them to be upper envelopes or lower envelopes of
the Datalog predicate they approximate. We establish that absolute
approximation by finite unions of conjunctive queries is not possible,
which means that no unbounded Datalog predicate can be approximated
by a finite union of conjunctive queries in such a way that the error is
bounded uniformly by the same constant on all finite databases. After
this, we examine relative approximations, i.e., approximations that
guarantee bounds for the error relative to the size of the Datalog
predicate under consideration. Although such approximations exist in
some cases, we show that for several large and well-studied classes of
unbounded Datalog predicates it is not possible to find finite unions of
conjunctive queries that satisfy the aforementioned qualitative criteria
and have the property that the relative error of the approximation is
bounded by a constant. Finally, we consider first-order approximations
and obtain sharp negative results for the approximability of the trans-
itive closure query by first-order queries. © 1997 Academic Press

1. INTRODUCTION

The optimization problem for relational algebra queries
has been studied extensively and some of the techniques
developed for solving this problem have been incorporated
in commercial relational products. In particular, efficient
evaluation techniques exist for the class of Select-Project-
Join queries, a class that contains all conjunctive queries.
On the other hand, relational algebra has rather limited
expressive power, since it does not have a built-in recursion
mechanism. To remedy this situation, the query language

* Part of the research on this paper was carried out while this author was
visiting the Computer Science Department of Stanford University supported
by a 1993 John Simon Guggenheim Fellowship. Research also partially
supported by NSF Grants CCR-9108631 and CCR-9307758. E-mail:
kolaitis(@cse.ucsc.edu.

Datalog and its extensions were introduced and studied in
depth during the past decade (see [U89]). Datalog has
augmented expressive power that makes it possible to
express queries, such as tramsitive closure, that cannot be
expressed in relational algebra or, equivalently, in first-
order logic. Naturally, a great deal of attention has been
devoted to optimization of Datalog programs. In general,
Datalog queries are intrinsically harder to compute than
first-order queries, since Datalog can express queries, such as
path systems, that are complete for polynomial time [Co74],
while all first-order queries are computable in logarithmic
space. At first sight, it appears promising to identify Datalog
programs that give rise to first-order queries, so that known
optimization techniques from relational algebra can be
applied. It is clear, however, that this approach cannot be
applied to interesting Datalog programs, since “true” recursive
Datalog queries are not first-order expressible.

Our goal in this paper is to investigate whether Datalog
queries can be approximated in a reasonable way by
“simpler” queries, such as finite unions of conjunctive queries
or first-order queries. Although such a prospect is certainly
attractive, several issues have to be addressed and resolved
in order to establish the viability of this approach to optimiza-
tion. First, one must formalize the concept of approximation
and spell out what makes an approximation a “good” one.
Next, one must present evidence that such approximations
will indeed be useful. Finally, and perhaps more importantly,
one must determine whether “good” approximations of
Datalog exist in the first place and, if yes, how they can be
found. We now examine each of these issues separately.

What is a “good” approximation of a Datalog query? It
is clear that the approximating objects ought to be
efficiently computable and “simpler” than the object they
approximate. Since every Datalog query can be viewed as
an infinite union of conjunctive queries, the most natural
choice is to take finite unions of conjunctive queries as
approximating objects. Additional conditions are needed,

355 0022-0000/97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.

356

however, in order to ensure that the approximating objects
constitute “reasonable” approximations. These conditions
should reflect qualitative or quantitative aspects of the
relationship between the approximating objects and the
objects of approximation. On the qualitative side, one could
use the concept of containment between queries and require
that over any database the approximating object returns a
superset (or, a subset) of the collection of tuples that
the recursive predicate evaluates to. We refer to such
approximating objects as upper envelopes (respectively,
lower envelopes). Since containment induces a partial-order
among approximating objects, we can define the notion of
minimal upper and lower envelopes, a notion that was investi-
gated in [C93]. Unfortunately, qualitative properties alone,
such as containment and minimality, do not guarantee that
approximations are reasonable. Indeed, as shown in [C93],
there are Datalog programs for which the size of every minimal
upper envelope differs from that of the recursive predicate
by an order of magnitude in the size of the database. Such
approximations are clearly unreasonable.

In this paper, we introduce a quantitative concept of error
in order to compare the approximating object with the
object of approximation. To this effect, we define the error
in approximating a Datalog query by some other query to
be the cardinality of the symmetric difference of these two
queries. Using this concept of error, we can formalize the
concept of “good” approximation and define two different
types of approximations. We first introduce absolute approxi-
mations, i.€., approximations guaranteeing that the error
is bounded uniformly by the same constant on all finite
databases. Since such guarantees are quite ambitious and
often infeasible, we relax this stringent requirement and
consider also relative approximations, i.e., approximations
that ensure bounds for the error relative to the size of the
Datalog predicate. These concepts are in direct analogy
with concepts of error and approximation in combinatorial
optimization, where researchers have investigated extensively
the existence of efficient approximation algorithms for
intractable maximization and minimization problems (see
[GJ79; PS82]).

Let us now discuss some possible applications of approxi-
mations. In decision-support scenarios, where the queries
are asked over large databases and are frequently modified
(e.g., applications used in stock markets), approximations
to the answer provide the user with feedback that can be
used to modify the query. Approximations are also valuable
in the context of efficiently evaluating queries, provided the
use of approximation does not affect the answer to the query.
For example, an upper envelope can be used to obtain
approximations to recursive predicates that restrict sideways
information passing in various rewriting schemes. Further
applications of upper envelopes are presented in [C93].

We are now ready to turn to the task of determining
whether or not “good” approximations of Datalog predicates

CHAUDHURI AND KOLAITIS

exist. Of course, we know that perfect approximations do
exist for predicates in bounded Datalog programs, since
these are exactly the Datalog predicates that are equivalent
to finite unions of conjunctive queries [1086; Na89]. Can
we then approximate umnbounded Datalog predicates by
finite unions of conjunctive queries? We show here that if a
Datalog predicate is unbounded, then absolute approxima-
tions of this nature do not exist. As a matter of fact, we
establish a stronger result, namely, the error introduced in
approximating a truly recursive predicate by a finite union
of conjunctive queries cannot be bounded by any “reasonable”
quantity that depends only on the size of the database
under consideration. Moreover, in this result the approxima-
tions need not be upper envelopes or lower envelopes of the
predicate they approximate. In view of this negative result,
we examine relative approximations. Although such approxi-
mations exist in some cases, we show that for several large
and well-studied classes of unbounded Datalog predicates it
is not possible to find relative approximations that are finite
unions of conjunctive queries and satisfy the qualitative
criteria of being an upper envelope or lower envelope. In
particular, these nonapproximability properties are shared
by all unbounded monadic predicates and all unbounded
predicates in chain programs. After this, we take a closer
look at unbounded Datalog predicates that possess relative
approximations and investigate the question of whether the
error of approximation can be made arbitrarily small. We
establish that for a large class of such predicates there is a
threshold on the error of relative approximations. Finally,
we entertain the possibility of using arbitrary first-order
queries as approximating objects. In particular, we focus on
the transitive closure query T'C, one of the most thoroughly
analyzed Datalog queries, and show that 7C does not have
any “reasonable” relative first-order approximations. This
result constitutes a strong generalization of the well-known
theorem asserting that 7C is not a first-order definable
query [AU79; Fa75].

The results reported in this paper are established using
homomorphism techniques and Ehrenfeucht-Fraissé games.
In the past, these methods have been used widely in database
theory and finite model theory respectively in order to
obtain results of qualitative character, including an analysis
of containment and equivalence between conjunctive queries,
and lower bounds for first-order expressibility. The technical
innovation developed here is the systematic use of these
tools in obtaining results of quantitative flavor that
strengthen considerably their qualitative counterparts.

2. PRELIMINARIES

A vocabulary o is a finite set of relation symbols. If n is a
positive integer, then a n-ary query Q on ¢ is a function
defined on databases over ¢ and such that for every
database D over ¢ the value Q(D) of the query Q on D is a

CAN DATALOG BE APPROXIMATED?

n-ary relation on D that is preserved under isomorphisms.
A Boolean query Q on ¢ is a collection of databases over ¢
that is closed under isomorphisms. Equivalently, a Boolean
query is a function Q that is defined on databases over g,
takes 0 or 1 as values, and has the property that if D; and
D, are two isomorphic databases over g, then Q(D,) = Q(D,).

A conjunctive query is a query definable by a positive
existential first-order formula having conjunction as its only
Boolean connective, i.e., by a formula of the form

(zy) - Tz, U(X1y oo X,0s 215 e

b} Zm)a

where Y(x,, ..., X,,, Z;, ., Z,,) 1S a conjunction of atomic
formulas over the vocabulary o. The free variables x4, ..., x,,
in the formula defining the query Q are called the distinguished
variables of Q. For example, the formula (3z)(P(x, z) A

R(z, y)) defines a conjunctive query Q with x and y as its
distinguished variables. We will often represent conjunctive
queries using logic programming notation, in particular the
above query can be written as: Q(x, y): —P(x, z), R(z, y).
A union of conjunctive queries is a query definable by a
(possibly infinite) disjunction of positive existential for-
mulas having the same free variables.

Let Q and Q' be two n-ary queries over a vocabulary o.
We say that Q is equivalent to Q', and write Q= Q’, if
Q(D)=Q'(D) on every finite database D over . We say
that Q is contained in Q', and write Q < Q', if on every finite
database D over g we have that Q(D) is a subset of Q'(D).

The containment relation between conjunctive queries
was analyzed by Chandra and Merlin [CM77], while the
containment relation between unions of conjunctive queries
was studied by Sagiv and Yannakakis [SY81]. In particular,
we have the following result from [SYS81].

THeOREM 2.1. Let Q=),.,Q,and Q' =\J,., Q; be two
queries that are the unions (finite or infinite) of the conjunctive
queries Q,, iel, and Q;, jeJ, respectively. Then Q<= Q' if
and only if for each i€ I there is some j € J such that Q; = Q;.

We assume familiarity with the Datalog query language
(see [U891]). A Datalog program = is a finite set of definite
Horn clauses without function symbols. The predicates that
occur in the head of the rules are called IDB predicates
(intentional database predicates), while the rest are called
EDB predicates (extensional database predicates). Datalog
programs can be given both declarative and operational
semantics. On every database D, a Datalog program 7 gives
rise to a monotone operator from a sequence of values for
the IDB predicates to another sequence of values for these
predicates obtained by applying once the rules of the
program. The declarative semantics of 7 on the database D
is defined as the least fixpoint of this operator on D and
consists of a sequence of relations P*(D) on D, one for each
IDB predicate P. It is well known that this declarative

357

semantics is equivalent to an operational semantics obtained
by applying the rules of the program repeatedly until
the least fixpoint is reached. More specifically, for each
IDB predicate P we have that P*(D)=)2, P'(D), where
P'(D) is the ith stage of P in the “bottom-up” evaluation of
7 on D, i.e., the value for the IDB predicate P obtained by
applying at most i times the rules of the program on D. It is
easy to verify that the stages of P form a monotone sequence
of queries, that is to say, if i < j, then P’ = P/. Moreover, for
each i>1 the query P’ is a finite union of conjunctive
queries that are called the ith level expansions of P. As an
example, consider the following Datalog program:

P(x, y): —E(x, z), P(z, y)
P(x, y): —=R(x), T(x, y)
P(x, y): —E'(x,)

T(x, y): —S(x, y).

For this program, P'(x, y)=E'(x, y); thus, E'(x, y) is the
only I-level expansion of P. On the other hand, P has three
2-level expansions, since

PX(x, y)=E'(x, y) v E(x, 2), E'(z, y) v R(x), S(x,).

Let = be a Datalog program and let P be one of its IDB
predicates. If D is a finite database, then there is a smallest
integer m > 1 such that P*(D)= P"(D) and, consequently,
P™(D)=P"(D) for all m' >m. In general, this integer m
depends on D and may increase beyond any bounds as
the database varies. If this is the case, then we say that the
predicate P is unbounded in 7, otherwise we say that P
is bounded in . More precisely, a Datalog predicate P is
bounded in a program 7 if there exists a positive integer
m =1 such that on every finite database D

P*(D)=P"(D).

Using structural and preservation properties of positive
existential formulas, one can show that if P*(D)= P"(D)
on all finite databases D, then P (D) = P™(D) on all infinite
databases D. Thus, although boundedness is formally defined
with respect to finite databases, it is robust enough to
extend to infinite databases as well.

The concept of boundedness was introduced and studied
first in the context of the universal relation database model
by Maier, Ullman, Vardi [MUV84] and then in the context
of Datalog by Ioannidis [1086] and Naughton [Na89].
Since that time, boundedness has been investigated in depth
from both an algorithmic and a structural standpoint. On
the algorithmic side, Gaifman et al. [GMSV87] showed
that it is an undecidable problem to determine whether a
given IDB predicate P is bounded. On the structural side,

358

by applying the characterization of containment between
unions of conjunctive queries in [SY81], it is not hard to
show that a predicate P is bounded in a Datalog program
n if and only if there is a query Q such that Q is a finite union
of conjunctive queries and P* is equivalent to O, ie.,
P=(D)=Q(D) on all finite databases. Ajtai and Gurevich
[AG94] extended significantly this result by establishing a
deeper characterization of boundedness, which asserts that
a predicate P is bounded in a Datalog program = if and only
if there is a first-order definable query Q such that P is
equivalent to Q.

3. APPROXIMATION AND ERROR

Let P be a predicate that is unbounded in a Datalog
program 7 and suppose that, instead of evaluating P*, we
are only interested in “approximating” P~ by a “simpler” or
“easier” query Q. There are two separate issues that have to
be addressed in order to formalize this idea and extract a
precise concept from it, namely, we must decide on what
queries to use as approximations of unbounded Datalog
predicates and on criteria for the “goodness” of the
approximations.

What makes a query “simpler” or “easier” than an
unbounded Datalog query? If we have efficient evaluation
methods in mind, the most natural choice is to consider
finite unions of conjunctive queries as approximating
objects. Since P~ is an infinite union of conjunctive queries,
this amounts to “approximating” P* by finite unions of
similar building blocks. Later on, we will relax thisrequirement
and consider arbitrary first-order queries as approximating
objects; i.e., we will attempt to approximate Datalog queries
by queries expressible in relational algebra.

The second issue is to formulate quantitative and qualitative
criteria that reflect the “goodness” of the approximation. If
aquery Qisused to approximate P, then on a given database
D the value P~ (D) of the Datalog predicate may differ from
the value Q(D) of the query in that P*(D) contains tuples
that are not in Q(D) and vice versa. This difference between
P~ and Q can be measured by utilizing the following quan-
titative concept of error.

DerFiNiTION 3.1. Let P be an IDB predicate in a Datalog
program 7 and let Q be a query of the same arity as P. The
error 6(P, Q)(D) in approximating P by Q over a database
Dis

o(P, Q)(D)=|P*(D)— Q(D)| + |Q(D) — P*(D)|.

Thus, the error is the sum of the cardinalities of the two
one-sided errors. Equivalently, the error 6(P, Q)(D) is equal
to the cardinality |P*(D) A Q(D)| of the symmetric dif-
ference P<(D) A Q(D). Notice that we can define the error
o(Q*, 0)D)=|0*(D) A Q(D)| for any two queries Q* and

CHAUDHURI AND KOLAITIS

Q of the same arity, in other words Q* need not be of the
form P~ for some Datalog predicate P.

In addition to meeting quantitative criteria, it is natural
to require that the approximations obey also certain
semantic restrictions that capture qualitative aspects of the
relation between approximating objects and the objects of
approximation [C93].

DerFmiTION 3.2. Let P be an IDB predicate in a Datalog
program 7 and let Q be a query of the same arity as P. We
say that Q is an upper envelope of P if P* < Q. Similarly, we
say that Q is a lower envelope of P if Q = P™.

Upper and lower envelopes are in many respects analogous
to feasible solutions of combinatorial optimization problems.
In the case of minimization problems, the value of the objec-
tive function on a feasible solution is bigger than or equal to
the optimum, while in the case of maximization problems
this value is less than or equal to the optimum. Upper
envelopes approximate unbounded Datalog predicates
“from above,” whereas lower envelopes approximate such
predicates “from below.” Thus, upper envelopes can be
viewed as feasible solutions of minimization problems and
lower envelopes as feasible solutions of maximization
problems.

Notice that there is an abundance of lower envelopes
that are finite unions of conjunctive queries, in particular
each stage P', i > 1, is such a lower envelope of P. Observe
also that if a query Q is an upper envelope or a lower
envelope of a Datalog predicate P, then the (two-sided)
error o(P, Q)(D) introduced above reduces to one of the
two one-sided errors, since J(P, Q)(D)=|Q(D)— P*(D)|
for an upper envelope Q, while 6(P, Q)(D)=|P*(D)— Q(D)|
for a lower envelope Q.

In the next two sections, we will investigate the existence
of upper and lower envelopes satisfying certain quantitative
performance guarantees that are obtained by imposing
bounds on the error.

4. ABSOLUTE APPROXIMATION

The most desirable quantitative performance guarantee of
an approximation is for it to be an absolute approximation,
which means that it induces an error that is bounded by a
fixed constant uniformly on all finite databases. In this section,
we show that bounded programs constitute the only class of
Datalog programs for which we can find absolute approxi-
mations that are unions of conjunctive queries. As a matter of
fact, a considerably stronger result holds, namely, if the
bound on the error is some “reasonable” function of the size
of the database, then the program must be bounded. More-
over, in this result the approximations are not required to
satisfy any qualitative criteria, such as being an upper enve-
lope or a lower envelope of the predicate they approximate.

CAN DATALOG BE APPROXIMATED?

DEerFINITION 4.1. A function g from positive numbers to
non-negative numbers is sublinear if for every positive
integer / there exists a positive integer n such that g(/n) <n.

This definition is, perhaps, better grasped by considering
the class of functions that fail to satisfy it. If a function g is
not sublinear, then there is an integer / such that for all
multiples n of / we have that g(n)>n/l. It is obvious that
every constant function is sublinear. The functions g(x) =
ﬁ and g(x) = x/In(x) are sublinear as well, while the functions
g(x) =x?and g(x) = 3x are not.

We now show that the existence of a sublinear bound on
the error is a necessary and sufficient condition for equiv-
alence of queries that are arbitrary unions of conjunctive
queries.

THEOREM 4.2. Let Q* and Q be two queries of the same
arity that are unions (finite or infinite) of conjunctive queries.
Then the following statements are equivalent:

) Q*=Q,ie., Q% D)= Q(D)onevery finite database D.

(1

(2) There is a sublinear function g such that 6(Q*, Q)(D)
< g(|D|) on every finite database D, where |D| is the size of
the database D.

(3) For every countable database D, there is a positive
integer k such that 6(Q*, Q)(D)<k.

Proof. 1Tt is obvious that condition (1) implies condition
(2). For the converse, assume that O* and Q are conjunctive
queries of the same arity such that condition (2) holds, but
O* # Q. It follows that there is a finite database D such that
O*(D)— Q(D) # & or Q(D)— Q*(D) # . In the first case,
there is at least one tuple a of elements from D such that
aec Q*(D)— Q(D). Since g is a sublinear function, there is
an integer n such that g(/n) <n, where /= |D| is the size of
the database D. Let D, be a database consisting of n disjoint
copies of D, and let a, be the replica of the tuple a in the ith
copy of D, 1 <i<n. Notice that there are homomorphisms
h; from D to D, mapping a to a;, and homomorphisms /4
from D, to D mapping a, to a, 1 <i<n. Since conjunctive
queries are preserved under homomorphisms, it follows that
a,e Q*(D,,)— Q(D,) for every i <n. Thus, 6(Q*, Q)(D,) >
n>g(ln)=g(|D,|), contradicting the hypothesis in condi-
tion (2) that the error is bounded by the sublinear function g.
A symmetric argument works also for the case that Q(D) —
0*(D) # &.

Note that if a conjunctive query is satisfied in an infinite
database D by some tuple a from D, then there is a finite
D’ < D that contains a and has the property that the con-
junctive query is satisfied in D’ by a. From this fact and the
preservation of conjunctive queries under homomorphisms,
it follows that if Q* and Q are two unions of conjunctive
queries that take the same values on all finite databases,
then they take the same values on all infinite databases. In
turn, this shows that (1) = (3). Finally, the direction (3)=>(1)

359

is proved along the lines of (2) = (1), the only difference being
that we have to take a countably infinite union of disjoint
copies of a finite database D such that 0*(D)— Q(D)# &. |

As an immediate consequence of the preceding Theorem 4.2
we derive the following characterization of boundedness of
Datalog predicates.

THEOREM 4.3. Let P be an IDB predicate in a Datalog
program . Then the following statements are equivalent.

(1)

(2) There is a finite union Q of conjunctive queries and a
sublinear function g such that on every finite database D we
have that 6(P, Q)(D)<g(|D|), where |D| is the size of the
database D.

(3) There is a finite union Q of conjunctive queries such
that for every countable database D there is a positive integer
k for which 6(P, Q)(D) <k.

The predicate P is bounded in .

Proof. To show (1)=(2), recall that each stage P’,
i=1, is a finite union of conjunctive queries. Thus, if
there is a positive integer m such that P*(D) = P"(D)on all
finite databases D, then we can take Q = P™ and guarantee
that 6(P, Q)(D)=0 on all finite databases D. For the con-
verse direction, if Q is a finite union of conjunctive queries
such that the error J(P, Q)(D) is bounded by some sub-
linear function of the size of D, then from Theorem 4.2 it
follows that P> is equivalent to Q and, hence, as mentioned
earlier in Section 2, P must be bounded. The direction
(1)=(3) is a consequence of the fact that if a Datalog
predicate is bounded on finite structures, then it is also
bounded on all infinite structures. Finally, (3) = (1) follows
from Theorem 4.2. ||

The preceding Theorem 4.3 implies that every unbounded
Datalog predicate exhibits a remarkable robustness, namely,
not only it is not equivalent to any finite union of conjunctive
queries on finite databases, but also its difference on finite
databases from any finite union of conjunctive queries can
not be kept within any “reasonable” bounds that depend on
the size of the database only.

5. RELATIVE APPROXIMATION

In this section, we study approximations of Datalog
predicates that satisfy more relaxed quantitative perfor-
mance guarantees, but at the same time meet the qualitative
criterion of being an upper envelope or a lower envelope.
The motivation for the quantitative performance guarantees
that we are about to introduce comes from the work on
approximation algorithms for combinatorial optimization
problems (see [GJ79, PS82]). Given an instance I of an
optimization problem 2, an approximation algorithm A4 for
2 returns a feasible solution S that is used to approximate

360

the optimum of 2. More precisely, if A(7) is the value of the
objective function f of 2 on the feasible solution S produced
by the algorithm A, then A(7) is viewed as an approxima-
tion of the optimum value OPT(I) of 2 on the instance /
(the optimum value OPT(I) is assumed to be a positive
number). The performance of the algorithm A4 is measured
by the relative error of A on I, i.e., by the quotient |OPT (1)
—A(I)|/OPT(I). In particular, if g(x) is a function taking
nonnegative values, then A4 is said to be a g(x)-approximation
algorithm for 2 if for every instance I of 2 the relative error
of A on I'is bounded by g(|/]), which means that |OPT(I) —
A(I)| <g(|1]) OPT(I). In direct analogy to the above, we
now introduce the concepts of relative approximation for
Datalog predicates.

DerINITION 5.1. Let P be an IDB predicate in a Datalog
program 7, let Q be a query of the same arity as P, and let
g(x) be a function from positive numbers to nonnegative
numbers:

e The query Q is g(x)-approximation of P if 6(P, Q)(D)
<g(|D]) |P“(D)| on every finite database D, where |D| is
the size of the database D.

o The query Q is a k-approximation of P if Q is a g(x)-
approximation of P, where g(x) =k for all x. We say that Q
is a constant approximation of P if Q is a k-approximation
of P for some k > 0. Similarly, we say that Q is a sublinear
approximation of P if it is a g(x)-approximation of P for
some sublinear function g.

Our goal in this section is to investigate whether Datalog
predicates possess constant approximations that are both
finite unions of conjunctive queries and upper or lower
envelopes of the Datalog predicates they approximate.
Stipulating that the approximation is a union of conjunctive
queries is analogous to seeking polynomial-time approxima-
tion algorithms for NP-optimization problems, while, as
explained earlier, the restriction to upper envelopes and
lower envelopes is analogous to requiring that the approxi-
mation algorithms produce feasible solutions.

Let P be an IDB predicate in a Datalog program z. There
are two cases in which it is obvious that we can find
approximations of P that meet all the above requirements.
First, if P is bounded in 7, then any stage P” such that
P= = P™ is such an approximation. Second, if Q is a lower
envelope of P, then for every k>1 we have that Q is a
k-approximation of P, albeit an uninteresting one, since in
this case

o(P, Q)(D) = |P*(D)—Q(D)|
= [P7(D)| - |Q(D)| < [P*(D)].

In particular, even if P is an unbounded Datalog
predicate, each stage P’ of P is a finite union of conjunctive

CHAUDHURI AND KOLAITIS

queries that is both a lower envelope of P and a k-approxima-
tion of P for every k > 1. This situation reinforces the analogy
between lower envelopes and feasible solutions of maximiza-
tion problems. Indeed, approximation algorithms for maxi-
mization problems produce values that are less than or equal
to the optimum; thus, the algorithms are interesting only
when the relative error is less than 1. In contrast, approxima-
tion algorithms for minimization problems produce values
that are bigger than or equal to the optimum; thus, any
uniform bound on the relative error is acceptable.

The preceding remarks suggest that a finite union Q of
conjunctive queries is a nontrivial constant approximation
of an unbounded Datalog predicate P only when one of the
following two conditions is true:

e (Qis both an upper envelope of P and a k-approxima-
tion of P for some k >0

e Qisboth alower envelope of P and a k-approximation
of P for some k < 1.

In the sequel, we consider certain large and well-studied
classes of Datalog programs and establish that nontrivial
approximations do not exist for any unbounded predicates
in programs belonging to these classes. On the other hand,
we also demonstrate the existence of unbounded Datalog
predicates that possess non-trivial approximations.

5.1. Monadic Datalog Predicates

A predicate P is monadic if it has arity one. A Datalog
program 7 is monadic if every IDB predicate of 7 is monadic.
In recent years, monadic Datalog programs have been the
focus of extensive study that has shown them to possess
several desirable properties (see [CGKV88; KA89]). Our
next result establishes that for monadic predicates (and,
a fortiori, for monadic Datalog programs) boundedness
tantamounts to the existence of nontrivial constant
approximations.

THEOREM 5.2. Let P be a monadic IDB predicate in
a Datalog program rw. Then the following statements are
equivalent:

(1)

(2) Thereis a query Q that is a finite union of conjunctive
queries and either Q is both an upper envelope of P and a
k-approximation of P for some k=0 or Q is both a lower
envelope of P and a k-approximation of P for some k < 1.

The predicate P is bounded.

Proof. The nontrivial part is to show that condition (2)
implies condition (1). Assume first that Q is a finite union of
conjunctive queries that is both an upper envelope of P
and a k-approximation of P for some k>0. Towards a
contradiction, assume also that P is unbounded in 7, which
implies that P* = Q. Since P < Q, it follows that there is
a finite database D and a single element (tuple of length 1)

CAN DATALOG BE APPROXIMATED?

a from D such that ae Q(D)— P*(D). Let m=max{l,
|P*(D)|} and let B be the database obtained from D by
adding mn “clones” of the element a for some n > k; that is
to say, B is obtained from D by augmenting the universe of
D with mn new elements «,, .., a,,, that have exactly the
same connections to other elements of D as a does, but have
no connections to each other. We now claim that
o(D)uv{ay, .. a,,} =O(B) and P*(B)=P”(D).

The first claim is proved using the preservation of Q
under homomorphisms and the fact that for every i <mn
there is a homomorphism /4, from D to B that maps a to a;.
From the existence of these homomorphisms and the
preservation of P under homomorphisms, we can also
concludethat P (D) < P*(B). Theinclusion P*(B) = P*(D)
follows from the hypothesis that P is a unary predicate, the
fact that P~ is preserved under homomorphisms, and the
existence of a homomorphism / from B to D that is the iden-
tity on elements of D and maps each «; to a, | <i<mn.
Indeed, since P is unary, the new elements ¢, ..., a,,, are the
onlytuples from Bthat haveachancetobein P*(B) — P*(D).
These elements, however, do not enter P*(B), since,
otherwise, the element a would have entered P*(D). Thus,
we have verified the second claim, namely P*(B) = P*(D).
The two claims yield a contradiction, because they imply
that 6(P, Q)(B) =mn >k |P*(B)|.

To complete the proof, assume next that Q is a finite
union of conjunctive queries that is both a lower envelope of
P and a k-approximation of P for some k <1. Thus, on
every finite database B we have 6(P, Q)(B)=|P*(B)| —
|O(B)| <k |P*(B)| and, consequently, |P”(B)|<|Q(B)I/
(1 — k) (the hypothesis that k <1 is used at this point). If P
is unbounded in 7, then there is a finite database D such that
P=(D)— Q(D)# . Using the same argument as before,
we can show that for every positive integer n there is a
database Bsuch that Q(B) = Q(D)and |P*(B)| = |Q(B)| +n.
By taking n>k |Q(D)|/(1 —k), we have that |P*(B)| >
|O(B)|/(1 —k), which is again a contradiction. Thus, P must
be bounded in 7. |

Closer examination of the above proof of Theorem 5.2
reveals that the only property of P~ used was the fact that
P~ is a union of unary conjunctive queries. Thus, the same
proof yields the following stronger result.

THEOREM 5.3. Let Q* and Q be two queries that are
unions (finite or infinite) of unary conjunctive queries. Then
the following statements are equivalent:

(1) O0*=0Q, ie, O¥(D)=Q(D) on every finite data-
base D.

(2) Either Q is both an upper envelope of Q* and a

k-approximation of Q* for some k=0 or Q is both a lower
envelope of Q* and a k-approximation of Q* for some k < 1.

361

5.2. Beyond Monadic Predicates

In this section, we extend the nonapproximability results
for monadic programs (Theorem 5.2) to certain large classes
of Datalog programs that are not monadic.

With every conjunctive query Q one can associate a
connection graph in which there is a node for every variable
in the query and an edge between any two variables for
which there is some literal in the query such that both
variables occur in this literal. The distance between two
variables is the length of the shortest path between the
corresponding nodes in the connection graph of the query.
We say that a conjunctive query Q is connected if its connec-
tion graph is connected.

DerNITION 5.4, Let P be an IDB predicate of arity at
least two in a Datalog program n. We say that P is an
unbounded distance predicate if the following two conditions
are satisfied:

o Each expansion of P is connected.

o For every positive integer n, there exists an expansion
of P such that the distance between some pair of distinguished
variables is at least n.

Many interesting Datalog programs contain IDB predicates
that satisfy the above constraints. In particular, the zrans-
itive closure query and the same-generation [U89 | query are
definable by unbounded distance predicates. Notice that if P
is an unbounded distance predicate in a Datalog program 7,
then P is also unbounded in #. Our next result shows that
unbounded distance predicates do not possess upper
envelopes that are nontrivial constant approximations.

THEOREM 5.5. Let P be an unbounded distance predicate
in a Datalog program w. Then, there is no finite union Q of
conjunctive queries such that Q is both an upper envelope
of P and a k-approximation of P for some k = 0.

Proof. Towards a contradiction, assume that O =, O,
is a finite union of conjunctive queries that is an k-approxi-
mating upper envelope of P where k>0. Furthermore,
assume that m is the largest distance between any two
variables in any of the connection graphs of Q. Since P is
an unbounded distance predicate, there exists an expansion
@ of P, where the distance between some pair of distinguished
variables (say, s and ¢) is u where u > m. Moreover, since Q
is an upper envelope, there is some r such that ¢ = Q,.
However, there are no two connected variables in Q, that
have distance equal or more than u. Therefore, O, contains
at least two variables that are in different components of the
connection graph.

Let D be a database containing exactly one reflexive tuple
for each predicate (for example, R(«, a, ...a)). If we consider
a database D;, j>1, consisting of j disjoint (renamed)
clones of the database D, then |P*(D))| = j. Since Q, has at

362

least two connected components, |Q,(D,)| = j* and, conse-
quently, |Q(D;)| = j>. As a result, we have that d(P, Q)(D;)
> (j—1) |P”(D,)| for every j>1, which, in turn, implies
that Q can not be a constant approximation of P. ||

Theorem 5.5 does not rule out the possibility that for
certain unbounded distance predicates there may exist finite
unions of conjunctive queries that are both lower envelopes
and k-approximations for some k < 1. We conjecture that
such lower envelopes do not exist for any unbounded distance
predicate. If this conjecture is true, then unbounded
distance predicates will turn out to have the same non-
approximability properties as monadic predicates. In what
follows, we confirm this conjecture for a large subclass of
unbounded distance predicates.

DErFINITION 5.6. Let P be an IDB predicate of arity at
least two in a Datalog program n. We say that P is an
unbounded chain predicate if the following two conditions
are satisfied:

o Each expansion of P is connected.

o For every positive integer n, there exists an expansion
of P such that the connection graph of the expansion is a
path and the distance between some pair of distinguished
variables is at least n.

A comparison of Definition 5.6 with Definition 5.4 shows
that the set of unbounded chain predicates is a proper
subset of unbounded distance predicates. Nonetheless,
unbounded chain predicates encompass a large class of
queries that contains properly the class of unbounded IDB
predicates in chain programs [AP87]. In particular, the
standard program defining same-generation [U89] query is
not a chain program, but its IDB predicate is an unbounded
chain predicate. Furthermore, unlike predicates in chain
programs, neither an unbounded chain predicate nor the
EDB predicates used to define it need be binary. We now
show that unbounded chain predicates share the non-
approximability properties of monadic predicates.

THEOREM 5.7. Let P be an unbounded chain predicate in
a Datalog program .

1. There is no finite union Q of conjunctive queries such
that Q is both an upper envelope of P and a k-approximation
of P for some k =0.

2. There is no finite union Q of conjunctive queries such
that Q is both a lower envelope of P and a k-approximation
of P for some k < 1.

Proof. The first part of the theorem follows immediately
from Theorem 5.5, since every unbounded chain predicate is
also an unbounded distance predicate. Thus, we focus on
the second part. Towards a contradiction, assume that Q is
a finite union of conjunctive queries that is both a lower

CHAUDHURI AND KOLAITIS

envelope of P and a k-approximation of P for some k < 1.
Theorem 2.1 implies that there is a stage P’ of P such that
Q< P'c P*. Therefore, the stage P’ is both a lower
envelope of P and a k-approximation of P for some k < 1. It
follows that |P“(D)| — |P'(D)| <k |P*(D)| on every finite
database D and, as a result, |P*(D)| <k’ |P!(D)|, where
k'=1/(1 —k)>1. Recall that the stage P’ is a union of
finitely many conjunctive queries that are called the /th level
expansions of P. Note that the connection graphs of these
expansions need not be paths. Since each expansion of P is
connected, there is a positive integer d such that the maxi-
mum distance between any two variables in the connection
graph of every /th level expansions of P is at most 2d.

Using the second condition in the definition of unbounded
chain predicate, for every positive integer j > d we can find
an expansion ¢ of P such that the connection graph G, of
@ is a path and for some pair (x, y) of distinguished
variables the distance between them in G, is at least 2. Let
us name the sequence of variables in the path from x to y as
v(1)---v(2j) and for simplicity let us assume that the
distance between x and y is 2j, so that x is being identified
with v(1), while y is being identified with v(2j).

Let D be the database whose objects are the variables
v(1)---v(2j) and whose facts are the literals of the con-
junctive query ¢. The following two statements about this
database are true:

1. P*(D) contains a tuple that has both v(1) and v(2j)
among its attribute values.

2. P!(D) contains no tuple that has v(j—d— p) and
v(j+d+q) among its attribute values, where 0<p,
g<j—d.

The first statement is true, because D is the expansion ¢
of P in which »(1) and v(2j) (i.e., x and y) are among its
distinguished variables. The second statement holds because
of the following property of containment mappings: If y is a
containment mapping from « to 5, and m and n are two
variables in o, then the distance between y(m) and y(n) in
is less than or equal to the distance between m and #n in a.
Since the distance between any two variables in every
expansion of P’ is at most 2d and the distance between
v(j—d— p) and v(j+d+ g) in the connection graph G, of
@ is greater than 2d, it follows that no tuple in P/(D) can
have both v(j—d— p) and v(j+ d + ¢q) among its attribute
values.

The above properties of the database D lead us to a new
database D’. The desired key property of D’ is that it is an
extension of D such that tuples that have as attribute values
v(j—d—p) and v(j+d+q) as above are in P*(D'), but
notin P/(D’). Let D , be a database having the same domain
as D and obtained from D by renaming the literals of D in
such a way that each variable v(j—d—i) with i>p is
renamed to v(j—d— p). Similarly, let D, be the database

CAN DATALOG BE APPROXIMATED?

obtained from D by renaming the literals of D in such a way
that each variable v(j+d+s) with s>g¢q is renamed to
v(j+ d+ q). Using the fact that the connection graph G, of
@ is a path, it can be shown that P over the database
DuD,uD, contains at least one tuple with attribute
values v(j—d— p) and v(j+ d+ g) as above. With this as
motivation, define the database D’ as

DI:DU(U Djdp>U<U Dj+d+q>’
P q

where 0 <p, ¢ <j—d. Note that P*(D’) must contain at
least (j — d)? tuples, one for each pair of choices of p and q.
Otherwise, (1) cannot be true; i.e., P*(D) cannot contain a
tuple that has both v(1) and v(2j) among its attribute values.
Furthermore, the connection graph for D’ (when viewed as
a query) is precisely the same as that of ¢ (i.e., G,), because
all new literals introduced in D’ are “reflexive” and, thus, do
not affect the distance between two distinct variables in D.
As a consequence, for every object (variable) u of D’ and for
every positive integer ¢, there are at most 2 variables in D at
a distance ¢ from u. In particular, there are at most 4d
variables whose distance from u is at most 2d, which is
the maximum distance between any two variables in an
expansion of P’). Keeping this observation in mind, let us
compute an upper bound for the number of tuples in P'(D").
For this, we consider the choices for the value of the first
attribute of any tuple in P'(D’). The value of such an
attribute can be any one of the 2/ variables v(1) --- v(2j) in
D’. However, for any given choice of such a variable, say u,
every other attribute value in the tuple must be a variable in
D’ that is at a distance at most 2d from u. Therefore, by
applying our previous observation, we conclude that there
are at most 2jL tuples in P/(D’), where L is a quantity that
depends only on d and the arity of the predicate P. On
the other hand, by our earlier assumption, |P*(D’)| <
k' |P'(D')|, which implies that (j—d)><2k'jL. Notice
that, since P is an unbounded chain predicate, j can be
made arbitrarily large. In particular, we can choose j>
2(d + k' L), which, however, violates the previously derived
inequality (j — d)? < 2k'jL. This completes the proof of the
theorem. ||

5.3. Counterexamples

The results obtained up to this point suggest that perhaps
no unbounded Datalog predicate can be approximated in a
nontrivial way by upper or lower envelopes that are finite
unions of conjunctive queries. We now dispel this possibility
by showing that the preceding nonapproximability results
do not extend to arbitrary unbounded Datalog predicates.

ExampLE 5.8. Let R be an unbounded binary IDB
predicate in a Datalog program p, let E be a binary EDB

363

predicate not occurring in p, let P be a binary IDB predicate
not occurring in p, and let 7; be the Datalog program
obtained from p by adding the following two rules:

P(X, J’) _E(x7 J’)
P(X9 y) _E(ys X), R(ya X).

The unboundedness of R in p implies that P is unbounded
in 7,. Observe, however, that P is not an unbounded
distance predicate in 77,. Let Q(x, y) be the query E(x, y) v
E(y, x).Itis obvious that Q1is both a finite union of conjunctive
queries and an upper envelope of P. Moreover, Q is a
l-approximation of P, since on every finite database D

o(P, Q)(D)=[Q(D)| — |P(D)| < |E| < [P*(D)].

Let Q'(x, y) be the query E(x, y), which is obviously both
conjunctive query and a lower envelope of P. A moment’s
reflection shows that Q' is also an 3-approximation of P,
since on every finite database D

o(P, Q') (D) =P (D)| - Q' (D) <|E|<|Q'(D)].

Note that the above construction is not an isolated
example of an unbounded and approximable Datalog
predicate, but rather a whole family of examples having the
same structure. Next, we construct a somewhat different
family of unbounded and approximable Datalog predicates
that will be of interest to us in the sequel.

ExaMpPLE 5.9. Let T be an unbounded unary IDB
predicate in a Datalog program t, let E be a binary EDB
predicate not occurring in 7, let P be a binary IDB predicate
not occurring in 7, let S be a unary IDB predicate not
occurring in 7, and let 7, be the Datalog program obtained
from 7 by adding the following four rules:

P(x,y): — E(x, y)
S(x): —E(x, z)
S(x): — E(z, x)

P(x,x): —S(x), T(x)

As in the previous example, P is unbounded in 7,, but it
is not an unbounded distance predicate in 7,. It is easy to
verify that the following finite union Q of conjunctive queries is
both an upper envelope of P and a 2-approximation of P:

Q(X, J’) —E(X, y)
O(x,x): —E(x, z)
O(x, x): — E(z, x).

364

Let Q'(x, y) be the query E(x, y), which is obviously both
a conjunctive query and a lower envelope of P. Since
|P*(D)| <3 |E| on every database D, it follows that Q' is
also an 2/3-approximation of P.

There are two different issues that are raised by the above
examples. The first is whether it is possible to delineate the
boundary between approximability and nonapproximability
of unbounded Datalog predicates. This could be achieved
by finding general conditions that are sufficient for approxi-
mability and also by identifying additional syntactic or
structural properties of unbounded IDB predicates that
yield non-approximability results similar to the ones obtained
in Theorems 5.2 and 5.5. The second issue is whether
unbounded and approximable Datalog predicates can be
approximated up to any desired degree of accuracy. In the
next section we embark on an investigation of this second
issue.

6. UPPER AND LOWER APPROXIMATION SCHEMES

It is well known that, unless P = NP, certain combinatorial
optimization problems, such as MAX SAT, have an
approximation threshold (see [Pa94]). This means that
there is a constant ¢ > 0 and a polynomial-time approxima-
tion algorithm with relative error bounded by ¢, but no
polynomial-time approximation algorithm achieves relative
error bounded by a constant ¢’ <c¢, unless P=NP. In
contrast to this, certain other combinatorial optimization
problems, such as KNAPSACK, possess polynomial-time
approximation schemes, that is to say for each ¢ >0 there
is a polynomial-time algorithm that approximates the
optimization problem with relative error bounded by e.
In direct analogy with polynomial-time approximation
schemes, we introduce here the concepts of upper and lower
approximation schemes for Datalog predicates.

DEerFINITION 6.1. Let P be an IDB predicate in a Datalog
program 7 and let Q,, n>1, be a sequence of queries such
that each Q,, is a finite union of conjunctive queries of the
same arity as P.

o The sequence Q,, n>1, is an upper approximation
scheme of P if each Q,, is an upper envelope of P and for
every ¢ > 0 there is an integer n(¢) such that the query O,
is an g-approximation of P.

e The sequence Q,, n=1, is a lower approximation
scheme P if each Q,, is an lower envelope of P and for every
&> 0 there is an integer n(¢) such that the query Q,,,, is an
g-approximation of P.

Observe that if Q,, n>=1, is an upper (or lower)
approximation scheme of P, then the sequence Q)=
", 0;, n=1 (respectively, the sequence Q,=U7_, O,,
n>=1), is also an upper (or lower) approximation scheme

CHAUDHURI AND KOLAITIS

of P. In other words, if P has an upper (or lower) approxi-
mation scheme, then there is a decreasing (respectively,
increasing) sequence of queries Q,, n>=1, that forms an
upper (or lower) approximation scheme of P. Next, we claim
that if Q,, n>1, is an upper (or a lower) approximation
scheme of P, then ()_,0Q0,=P~ (respectively,

> 10, =P%). For this, it is enough to show that for every
finite database D there is an integer n such that |Q,(D)—
P*(D)|=0. If D is a finite database such that P*(D)= &,
then we can take any integer n such that Q, is a -approxima-
tion of P. Otherwise, we take an integer n such that Q,, is a
1/(2 | P*(D)|)-approximation of P. In this case, we have that
10D)—P*(D)| <} and, hence, |Q,(D)—P*(D)|=0,
since |Q,(D)— P*(D)| must be a non-negative integer.
Finally, note that if Q,, n>1, is a lower approximation
scheme of P, then the sequence P”, n > 1, of the stages of P
is also a lower approximation scheme of P. Indeed, since each
Q" is a lower envelope of P=J;7_, P", it follows that for
each n there is an m such that Q" < P™. The next proposition
summarizes the preceding observations.

PROPOSITION 6.2. Let P be an IDB predicate in a Datalog
program 7.

o If Q,, n=1, is an upper approximation scheme of P,
then P*=N\7_, Q,.
o IfQ,,n=1,is alower approximation scheme of P, then
Pr=;_,0,.
e P has a lower approximation scheme if and only if the
sequence P", n=1, of the stages of P is a lower approxima-

tion scheme of P.

We do not know of any unbounded Datalog predicates
that possess an upper or a lower approximation scheme.
This leads us to formulate the following problem.

OPEN PROBLEM. Let P be an IDB predicate in a Datalog
program 7. Prove or disprove that the following statements
are equivalent:

(1)
(2)
3)
In what follows, we confirm the equivalence of the above
statements for a large class of Datalog predicates. Before

stating the result precisely, we need to give the following
definitions.

The predicate P is bounded in 7.
There is an upper approximation scheme of P.

There is a lower approximation scheme of P.

DEerFINITION 6.3. We say that a conjunctive query 0 is
reflexive if one of the variables occurs at least twice in the
head of 8; otherwise, we say that 6 is a nonreflexive query.

DEerFINITION 6.4. Let 7 be a Datalog program and let P
be an IDB predicate of 7.

CAN DATALOG BE APPROXIMATED?

e We say that a rule r of 7 is reflexive if one of the
variables occurs at least twice in the head of r; otherwise, we
say that r is a nonreflexive rule.

e We say that P is a reflexive predicate of 7 if P occurs
in the head of at least one reflexive rule of 7; otherwise, we
say that P is a nonreflexive predicate of 7.

Remark 6.5. The above definition implies that if P is a
nonreflexive Datalog predicate, then every expansion ¢ of P
is a nonreflexive conjunctive query. Moreover, if 0 is a
conjunctive query such that ¢ =0, then § must also be
a nonreflexive conjunctive query. Indeed, otherwise there
can be no containment mapping from 6 to ¢ (and, hence,
@ £0).

Note that in Example 5.8 the predicate P is nonreflexive,
while in Example 5.9 the predicate P is reflexive. Our next
result establishes that nonreflexive Datalog predicates are
bounded if and only if they possess upper or lower
approximation schemes.

THEOREM 6.6. Let P be an unbounded and nonreflective
predicate of arity s in a Datalog program 7.

o For every upper envelope Q of P that is a finite union of
conjunctive queries and for every constant k <1(s*—1), the
query Q is not a k-approximation of P.

o For every lower envelope Q of P that is a finite union of
conjunctive queries and for every constant k < 1/s°, the query
Q is not a k-approximation of P.

As aresult, if P is an unbounded and nonreflexive predicate
in a Datalog program r, then P has neither an upper nor a
lower approximation scheme.

Proof. Let P be an unbounded and nonreflexive binary
predicate in a Datalog program n. Assume first that Q is a
finite union of conjunctive queries that is an upper envelope
of P. Let Q' be the finite union of conjunctive queries
consisting of precisely the nonreflexive conjunctive queries
in Q. We claim that Q' is an upper envelope of P. Indeed,
since P < Q, for every expansion ¢ of P there is a conjunctive
query 0 in Q such that ¢ < 0. Moreover, since P is a non-
reflexive Datalog predicate, each such expansion ¢ of Pisa
nonreflexive query and, hence, from Remark 6.5 we conclude
that 6 is also a nonreflexive conjunctive query. Thus, we
have that P* < Q' < Q and, consequently, if D is a finite
database, then J(P, Q')(D)<d(P, Q)(D)<k. Therefore,
without loss of generality, from now on we assume that all
expansions in Q are nonreflexive conjunctive queries.

Since P is unbounded, Q # P~. Therefore, there exists a
nonreflexive conjunctive query 6 € Q such that 6 £ P~. Let
D be the “representative database” of 6, i.e., the objects in D
are the variables in 6 and the facts in D are the literals in the
body 6. Let t be the tuple from D corresponding to the
distinguished variables of §. Note that te Q(D)— P*(D).

365

Moreover, since t is the tuple corresponding to the head
of 6, all variables of t must be distinct, say (4, ..., Z,). For
every positive integer n, let D, be the database obtained
from D by adding n “clones” ¢, ;, 1 < j<n, of each variable 7,,
1 <i<s. From the preservation of the queries Q and P~
under homomorphisms, it follows that if j1, ..., jse {1 ---n},

then (¢, ;, ..., t, ;)€ Q(D,) — P™(D,). As a result,

|0(D,) — P*(D,)| =n". (1)
Next, we will find an upper bound on the cardinality

|P<(D,)| of P* on the database D,,. If a tuple a = (a, ..., a,)

belongs to P*(D,), then there are three cases to consider:

(1) ais an element of P*(D);

(ii) at least one, but not all, of the a;’s, 1 < j<s, is an
element of D;

(i)
Note that the number of possible tuples in case (ii) is
bounded by n*~ (s, | D|), where fis a function of s and |D|
only (a trivial such bound is #n*~'s | D|*). We now estimate
an upper bound for (iii). Altogether, there are sn clones;
hence, the total numbers of s-tuples of clones is (sn)*. How-
ever, it is clear that for every jl, ..., jne {1, .., n}, none of
the n* tuples (¢, ;,.., 1, ;) belongs to P*(D,), since
(ty, .., t;) ¢ P(D) and there are homomorphisms from D,
to D mapping (¢, j, .., L, ;) to (zy, .., t;). Therefore, an
upper bound on the number of tuples in (iii) is (sn)* — n*. As
a result,

each a;, 1 < j<s, is one of the clones.

|P“(D,)| <|P*(D)| + f(s, |D|) + (ns)* —n*. (2)

From the above equations (1) and (2), it follows that

|P~(D,)| T |P(D)| +n* (s, |D]) + (ns)* —n*

Thus, if Q is a k-approximation of P for some k, then for all
positive integers n

5

n

k> :
|P=(D)| +n"~ f(s, |D|) + (ns)* —n"*

Hence, by letting n — oo, we conclude that k> 1/(s* —1).
The proof proceeds essentially along the same lines if Q is
a query that is both a lower envelope of P and a finite union
of conjunctive queries. In this case, there is some (non-
reflexive) expansion ¢ of P* that is not contained in Q.
Thus, we clone the representative database of ¢. The only
difference is in computing an upper bound of |[P*(D,)]|,

366

since here we cannot exclude the tuples (¢, ; --- ¢, ;), Where

Jl, ., jse{1...,n}. It follows that in this case

5. Js

5

n

k>—r0 - .
|P=(D)| +ns~f(s, |DI) + (ns)*

Hence, by letting n — oo, we conclude that k> 1/s°. ||

Theorem 6.6 asserts the following for binary nonreflexive
Datalog predicates P and binary queries Q that are finite
unions of conjunctive queries:

1. If Qs an upper envelope of P and a k-approximation
of P, then k> 1/3.

2. If Qis an lower envelope of P and a k-approximation
of P, then k> 1/4.

Note that Theorem 6.6 applies to the predicate P in
the program 7, below, which was introduced earlier in
Example 5.8:

P(X, J’) —E(X, J/)
P(X, y) 7E(y’ X), R(J/’ X).

Recall that P has an upper envelope that is a union of two
conjunctive queries and a l-approximation of P. With
some extra effort, it can be shown that 1 is actually the
approximation threshold of P by upper envelopes that are
finite unions of conjunctive queries. Recall also that P has
a lower envelope that is a conjunctive query and a 1/2-
approximation of P. As it turns out, 1/2 is actually the
approximation threshold of P by lower envelopes that are
finite unions of conjunctive queries. Thus, the bounds
derived in the preceding Theorem 6.6 do not constitute the
approximation thresholds of all unbounded and nonreflexive
Datalog predicates.

Let us now revisit the program 7, below, which was
introduced in Example 5.9,

P(x, y): —E(x, y)
S(x): —E(x, z)
S(x): —E(z, x)

P(x, x): —S(x), T(x),

where 7 is an unbounded predicate in a Datalog program z.
The predicate P is reflexive in 7, and, thus, Theorem 6.6 does
not apply to it. Recall that P has a lower envelope that is a
conjunctive query and a 2/3-approximation of P. Using an ad
hoc argument, it can be shown that P does not have a lower
approximation scheme. Moreover, 2/3 turns out to be the
approximation threshold of P by lower envelopes that are
finite unions of conjunctive queries. We now describe briefly
this argument. Let Q be a query that is both a lower envelope

CHAUDHURI AND KOLAITIS

of P and a finite union of conjunctive queries. We will show
that there is a finite database on which the error of
approximating P by Q equals 2/3. It is clear that on every
finite database D

(D) = {(dls dy): D = E(d,, d,)

v {(dsdz) A S(d)) A (v T'”(d]))”,

m=1

where 7", m > 1, are the stages of 7. Moreover, since Q is a
finite union of conjunctive queries, there is a positive integer
m, such that for every database D

Q(D)g{(dladz):D = E(d,, d,)
v [(d,=d,) A S(dy) A T’"o(d])]}.

Since 7T is an unbounded predicate, there is a database D’
over the EDB predicates of the program t such that
|T*(D')—T"™(D')] =2 (otherwise, T" would be an
absolute approximation of 7, contradicting Theorem 4.3).
Let ¢ and b be two elements of 7*(D')— T"(D"). Using
these two elements, extend D’ to a database D* over the EDB
predicates of 7, in which E is interpreted by the singleton
{(a, b)}. It follows that Q(D*)={(a, b)}, while P*(D*) =
{(a, b), (a, a), (b, b)}. Thus, the error of approximating P by
Q on D* is 2/3, which implies that 2/3 is indeed the approxi-
mation threshold of P by lower envelopes that are finite
unions of conjunctive queries.

As mentioned earlier, we have not found any examples of
unbounded Datalog predicates that possess an upper or a
lower approximation scheme. It should be pointed out,
however, that such examples can be constructed easily for
Datalog(#), the extension of Datalog that allows for
inequalities in the bodies of the rules. Indeed, assume that T
is an unbounded IDB predicate in a Datalog program 7 and
let 74 be the following Datalog(#) program:

P(x, y): —x#y
P(x, x): — T(x).
We claim that the sequence P, m > 1, of the stages of Pis a

lower approximation scheme of P. It is easy to see that for
every database D and every m > 1,

[P=(D)| —[P"D) _ 1D _ 1
|P=(D)| |DI*—D |D|—1

(3)

Given a number ¢ >0, let n be a positive integer such that
1/(n— 1) <e. Then the stage P achieves an approximation
error less than ¢. Indeed, if a database D has at most n

CAN DATALOG BE APPROXIMATED?

elements in its universe, then P*(D) = P"Z(D), so in this case
the error is equal to 0. If D has more than n elements, then the
above inequality (3) implies that the approximation error is
atmost 1/(|D|—-1)<1/(n—1)<e.

It should be emphasized that structural results about
Datalog programs do not always extend to similar results
about Datalog(#) programs. A relevant case in point is the
aforementioned result by Ajtai and Gurevich [AG9%4], which
asserts that an IDB predicate P in a Datalog program n
defines a first-order query if and only if P is bounded
in 7. This result, however, fails for IDB predicates in
Datalog(#). It is conceivable that a similar difference
exists between Datalog and Datalog(#) on the issue of
boundedness versus approximation schemes.

7. FIRST-ORDER APPROXIMATION

So far, we have attempted to approximate unbounded
Datalog queries using finite unions of conjunctive queries as
approximating objects. In view of the nonapproximability
results for monadic predicates and for unbounded chain
predicates established in Section 5, it is natural to ask
whether it is possible to obtain positive results by enlarging
the class of approximating objects. The obvious candidate for
this task is the class of first-order queries. Since first-order
queries are essentially equivalent to relational algebra or
relational calculus queries, this endeavor is an attempt to
approximate recursive Datalog queries by queries expressible
in a recursion-free, but relationally complete, language.

Clearly, ifa Datalog query is shown not to be approximable
by any first-order query, then, a fortiori, this Datalog query
isnot first-order definable. Thus, any such nonapproximability
results yield nonexpressibility results as a by-product. We
begin our investigation by observing that in many cases the
converse is also possible, i.e., nonexpressibility results can
be used to derive nonapproximability counterparts.

ProrosiTION 7.1.
Boolean query

Let Q* be a n-ary query such that the

(Ixq ---3x,,) O*(xq,5 wr X,,)

is not first-order definable. Then the following hold for the
query Q*:

o There does not exist a first-order query Q that is both an
upper envelope of Q* and a k-approximation of Q* for some
k=0.

o There does not exist a first-order query Q that is a
k-approximation of Q* for some k < 1.

Proof. We claim that if Q were a first-order query
satisfying one of the above conditions, then
(Elxl e Elxn) Q*(xl 5 eee

5 xn) g (Elxl e Elxn) Q(xla] xn)

367

and, consequently, the Boolean query (3x;---3x,)
0*(xy, ..., x,) would be first-order definable. Indeed, sup-
pose that Q is a first-order query that is a k-approximation
of O* for some k < 1. Thus, on every finite database D we
have that |Q*(D) — Q(D)| + |Q(D) — 0*(D)| <k |Q*(D)|.
If 0*(D) = &, then | Q*(D) — O(D)| +|Q(D) — Q*(D)| =0
and, hence, O*(D)=Q(D)= . If, on the other hand,
0*(D)+# ¢, then Q(D) # J, since, otherwise, |Q*(D)| <
k |Q*(D)|, which is ruled out by the assumption that k < 1.
The argument for the case in which Q* satisfies the first
condition is similar (and simpler). ||

We illustrate the uses and limitations of Proposition 7.1
by focusing on two of the most thoroughly studied Datalog
queries namely, the transitive closure query TC, which asks
“is there a path from x to »?” and the cycle query, which
asks “is x on a cycle?” Notice that the transitive closure
query is an unbounded chain predicate, while the cycle
query is monadic, as they are defined by the IDB predicates
in the Datalog program 7 below:

TC(X, y) —E(X, y)
TC(x, y): —E(x,z), TC(z, y)
Cycle(x): — TC(x, x).

It is well known that the Boolean query acyclicity, which
asks “is the graph acyclic?,” is not first-order definable (see
[Fa75; FSV93]). Since acyclicity is the complement of the
Boolean query (3x) Cycle (x), we can apply Proposition 7.1
and conclude that the Cycle query is not k-approximable by
any first-order query Q such that ecither Q is an upper
envelope of Cycle and k is an arbitrary constant or Q is an
arbitrary first-order query and k < 1. In contrast to this,
Proposition 7.1 gives no information as to whether the
transitive closure query TC is first-order approximable,
since

(3x)(3y) TC(x, y) = (3x)(Fy) E(x,).

Our main technical contribution in this section a sharp
nonapproximability result for the transitive closure query.
The proofs of our earlier nonapproximability results
involved methods, such as homomorphism techniques, that
are tailored for unions of conjunctive queries. Since we
allow here arbitrary first-order queries as approximations, a
different technical tool is needed. In what follows, we use
Ehrenfeucht—Fraissé games to establish nonapproximability
of the query TC by first-order queries. In the past, the
method of combinatorial games has been used extensively
in database theory and finite model theory to establish
qualitative results that take the form of lower bounds for
expressibility in database query languages and various
logics (cf. [Fa75; KV90; FSV93]). What we offer here is an

368
apparently new use of combinatorial games that makes it
possible to obtain results of quantitative character.

THEOREM 7.2.
Closure query TC.

The following hold for the Transitive

o There does not exist a first-order query Q that is both an
upper envelope of TC and a k-approximation of TC for some
k=0.

o There does not exist a first-order query Q that is a
k-approximation of TC for some k <1.

Proof. This proof requires familiarity with Ehrenfeucht—
Fraissé games for first-order logic. We refer the reader to
[Fa75; FSV93] for the relevant background on this topic.

For the first part of the theorem, let Q be a first-order
definable query that is both an upper envelope of TC and a
k-approximation for some k > 0. Let ¢(x, y) be a first-order
formula defining Q and let m be the quantifier rank of
@(x, y). We consider two undirected graphs G and H that
are defined as

e Gisa “very large” cycle; i.e., the number of nodes of G
is “much larger” than m. For our purposes, it is enough to
take a cycle with n nodes, where n > 3"

e H is the disjoint union of n copies Gy, ..., G, of the
cycle G. Thus, H has n” nodes in total.

Let (a, b) be a pair of nodes in G such that the distance
between a and b is at least 3”. Using standard facts about
Ehrenfeucht—Fraissé games (see [FSV93]), it is not hard to
see that the following holds: if (¢, d) is a pair of nodes from
H such that ¢ and d are in different connected components
(cycles) of H, then for every first-order formula (x, y) of
quantifier rank m

Gl la,b)=HE (e d).

In particular, the above equivalence holds for the formula
¢(x, y) that defines the query Q. Since G = TC(a, b) and
TC < Q, it follows that H = ¢(c, d) for every pair (¢, d) of
nodes of H such that ¢ and d are in different cycles of H. As
a result, |Q(H)| =n*—n?, since there are n> —n pairs of
different cycles in H and each such pair contains n? pairs
(¢, d) as above. On the other hand, it is clear that |TC(H)]
=n®. Thus, §(TC, Q)(H)>=n—2 and, hence, the error
cannot be bounded by any constant k > 0.

For the second part of the theorem, let Q be a first-order
definable query that is a k-approximation of 7C for some
k <1 (note that here we are not assuming that Q is a lower
envelope of TC). We consider the following two cases that
are determined by the behavior of the query Q on “very
large” cycles. In the first case, we assume that there is some
“very large” cycle G of cardinality » on which the query Q
contains a pair (a, b) of nodes such that the distance from a
to b is “sufficiently large.” In this case, the proof proceeds as

CHAUDHURI AND KOLAITIS

before; namely, we take a graph H that consists of n copies
of the cycle G and show that |Q(H)| = n* — n?, while | TC(H)|
=n>. In the second case, we must have that on all “very
large” cycles the query Q contains only pairs of nodes that
are not “very far apart”, i.e., their distance is at most 3",
where m is the quantifier rank of the first-order formula that
defines the query Q. From this, it follows that |Q(G)| = O(n)
on all “very large” cycles G with n nodes. On the other hand,
since Q is a k-approximation of TC, we must have that
|TC(G)| — [Q(G)] < |TC(G) — O(G)| <k |[TC(G)|. Thus,
|TC(G)| (1 —k)<|Q(G)|, which is a contradiction, since
|TC(G)| =n? |Q(G)|=0(n),and k<1. |

Remark 7.3. Several remarks are in order now.

e Theorem 7.2 implies immediately that the transitive
closure query TCisnot first-order definable on finite databases.
This well-known result had been established earlier also
using games ([Fa75]) or quantifier-elimination ([AU79]).

e The proof of the first part of Theorem 7.2 actually
shows that no first-order upper envelope of TC is a
sublinear approximation of TC.

¢ On the other hand, 7C turns out to have a 2-approxima-
tion Q that is a finite union of conjunctive queries, but is not
an upper or a lower envelope of TC. Thus, the hypothesis
that Q is an upper envelope is indispensable in proving the
first part of Theorem 7.2. To see this, let Q(x, y) be the
query E(x, y) v E(y, x). Itis clear that Q is a finite union of
conjunctive queries that is neither an upper nor a lower
envelope of TC. Furthermore, it is easy to verify that on
every finite graph G

oTC, Q)G) < |EI+|TC(G) <2 |TCG)

and, consequently, Q is a 2-approximation of 7C.

It remains an interesting open problem to determine
whether or not the nonapproximability properties of TC are
shared by all unbounded chain predicates.

ACKNOWLEDGMENTS

We thank Moshe Y. Vardi for listening to an informal presentation of
some of the work reported here and for asking penetrating questions that
made us realize that our proof of Theorem 4.3 can be extended to a proof
of Theorem 4.2.

REFERENCES
[AP87] F. Afrati and C. H. Papadimitriou, The parallel complexity of
simple chain queries, in “Proceedings, 6th ACM Symp. on
Principles of Database Systems, 1987,” pp. 210-213.
M. Ajtai and Y. Gurevich, DATALOG vs First-Order Logic,
J. Comput. System Sci. 49 (1994), 562-588.
A. V. Aho and J. D. Ullman, Universality of data retrieval
languages, in “Proceedings, 6th ACM Symp. on Principles of
Programming Languages, 1979,” pp. 110-117.

[AGY4]

[AUT9]

[Co74]

[CGKV88]

[CM77]

[C93]

[Fa75]

[FSV93]

[GMSV87]

[GI79]

CAN DATALOG BE APPROXIMATED?

S. A. Cook, An observation of time-storage trade-off, J. Comput.
System Sci. 9 (1974), 308-316.

S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and M. Y.
Vardi, Decidable optimization problems for database logic
programs, in “Proc. 20th ACM Symp. on Theory of Com-
puting,” pp. 447-490.

A. K. Chandra and P. M. Merlin, Optimal implementation
of conjunctive queries in relational databases, in “Proc. 9th
ACM Symp. on Theory of Computing, New York, 1977,”
pp. 77-90.

S. Chaudhuri, Finding nonrecursive envelopes for recursive
predicates, in “Proceedings, 12th ACM Symp. on Principles
of Database Systems, Washington, DC, 1993.”

R. Fagin, Monadic generalized spectra, Z. Math. Logik 21
(1975), 89-96.

R. Fagin, L. Stockmeyer, and M. Y. Vardi, On Monadic NP
vs. Monadic co-NP, in “Proc. 8th IEEE Conf. on Structure in
Complexity Theory, 1993,” pp. 19-30.

H. Gaifman, H. Mairson, Y. Sagiv,and M. Y. Vardi, Undecidable
optimization problems for database logic programs, in “Proc.
2nd IEEE Symp. on Logic in Computer Science, Ithaca,
1987,” pp. 106-115.

M. R. Garey and D. S. Johnson, “Computers and Intractability
—A Guide to the Theory of NP-Completeness,” Freeman,
San Francisco, 1979.

[1086]
[KAS89]

[KV90]

[MUV84]

[Na89]

[PS82]

[Pa%4]

[SY81]

[U89]

[Va82]

369

Y. E. Toannides, Bounded recursion in deductive databases,
Algorithmica 1 (1986), 391-385.

P. Kanellakis and S. Abiteboul, Deciding bounded recursion
in database logic programs, SIGACT News 20 (4), 1989.

P. G. Kolaitis and M. Y. Vardi, On the expressive power of
Datalog: Tools and a case study, in “Proc. 9th ACM Symp.
on Principles of Database Systems, 1990,” pp. 61-71.

D. Maier, J. D. Ullman, and M. Y. Vardi, On the foundations
of the universal relation model, ACM Trans. on Database
Systems 9 (1984), 283-308.

J. F. Naughton, Data independent recursion in deductive
databases, J. Comput. Syst. Sci. 38 (1989), 259-289.

C. H. Papadimitriou and K. Steiglitz, “Combinatorial
Optimization-Algorithms and Complexity,” Prentice—Hall,
Englewood Cliffs, NJ, 1982.

C. H. Papadimitriou, “Computational Complexity,” Addison—
Wesley, Reading, MA, 1994.

Y. Sagiv and M. Yannakakis, Equivalences among relational
expressions with the union and difference operators, J. Assoc.
Comput. Mach. 27, No. 4 (1981), 633-655.

J. D. Ullman, “Principles of Database and Knowledge Base
Systems,” Vol. 2, Computer Science Press, New York, 1989.
M. Y. Vardi, The complexity of relational query languages,
in “Proc. 14th ACM Symp. on Theory of Computing, San
Francisco, 1982,” pp. 137-146.

Printed in Belgium

