
Continuations and Concurrency*

Robert Hieb and R. Kent Dybvig
Indiana University

Computer Science Department
Lindley Hall 101

Bloomington IN 47405

Abstract

Continuations have proven to be useful for implement-
ing a variety of control structures, including excep-
tion handling facilities and breadth-first searching algo-
rithms. However, traditional continuations are not use-
ful in the presence of concurrency, because the notion of
the rest of the computation represented by a continua-
tion does not in general make sense. This paper presents
a new type of continuation, called a process continua-

tion, that may be used to control tree-structured con-
currency. Just as a traditional continuation represents
the rest of a computation from a given point in the com-
putation, a process continuation represents the rest of
a subcomputation, or process, from a given point in the
subcomputation. Process continuations allow nonlocal
exits to arbitrary points in the process tree and allow
the capture of a subtree of a computation as a compos-
able continuation for later use. Even in the absence of
multiple processes, the precise control achievable with
process continuations makes them more useful than tra-
ditional continuations.

1 Introduction

A continuation is an abstract entity that represents the
rest of the computation from a given point in the com-
putation. A language such as Scheme [IS] that pro-
vides access to continuations need not directly support
many traditional imperative control structures such as
loops, “gotos,” and exception handlers. This simplifies
the language and allows the programmer to create new

*This material is based on work supported by the National
Science Foundation under grant number CCR-8803432 and by
Sandia Nation& Laboratories under contract number 0606211.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1990 ACM 089791-350-7/9O/ooO3/0128 $1.50

control structures not anticipated by the language de-
signer. However, traditional continuations do not work
well in the presence of concurrency, since the notion of
the rest of the computation represented by a continu-
ation does not, in general, make sense. In this paper,
we present a new type of continuation, called a process
continuation, that does work well with tree-structured
concurrent processing. Just as a traditional continua-
tion represents the rest of a computation from a given
point in the computation, a process continuation rep-
resents the rest of a subcomputation, or process, from
a given point in the subcomputation. Process continu-
ations provide complete control over process trees, al-
lowing nonlocal exits to arbitrary points in a process
tree and allowing the capture of a subtree of a compu-
tation as a composable continuation for later use. Even
in the absence of multiple processes, the precise control
achievable with process continuations makes them more
useful than traditional continuations.

If we use traditional continuations in the presence
of tree-structured concurrency, we must decide whether
the “current continuation” includes the rest of the com-
putation back to the root of the process tree or whether
it includes only the rest of the computation of the cur-
rent (leaf) process. Either approach is inadequate in
many cases. Restricting continuations to use within a
leaf of the process tree makes exception handling diffi-
cult, since exceptions may need to propagate all of the
way to the root process. On the other hand, if control is
not localized to a leaf process, it is difficult to use non-
local exits or other continuation-based control features
within the leaf process. Furthermore, neither approach
allows us to consider a portion of the process tree as
a single unit; that is, we cannot exit from an arbitrary
subtree of the process tree, nor can we use continuations
to save the state of an arbitrary subtree. We must have
some way to specify how far back in the process tree the
continuation extends; process continuations allow us to
do so.

Not all concurrency is tree-based. A good example of

128

the distinction between tree-based and other forms of
concurrency can be found in Halstead’s Multilisp [lo],
which supports both pcall and future. pcall intro-
duces tree-based concurrency, since it evaluates its ar-
guments in parallel and then applies the value of the first
argument to the values of the remaining arguments as
in a normal procedure call. On the other hand, future
initiates an independent parallel process that does not
“return” a value; instead, the value is requested when
needed, which may not be until after the parent process
has returned from the code that created the future. It
is the notion of returning, with or without values, to the
point of creation that distinguishes tree-based concur-
rency from other forms of concurrency. Other examples
of tree-based concurrency are McCarthy’s amb opera-
tor [13] and related constructs such as parallel and and
or operators. Although we concern ourselves primar-
ily with tree-structured concurrency in this paper, we
do discuss how our mechanism can be adapted to lan-
guages that allow independent concurrent processing.

The programming examples in this paper are written
in Scheme, a dialect of Lisp. Scheme is an appropri-
ate choice since it already provides the ability to con-
trol continuations; although, as we shall see, the level
of control provided is not adequate for controlling con-
currency. We show how Scheme can be extended with
process continuations in a manner that makes it more
suitable for concurrent implementations.

The remainder of the paper is organized as follows. In
Section 2, we provide a brief overview of the Scheme lan-
guage; this section can be skipped by those already fa-
miliar with Scheme. In Section 3, we discuss traditional
continuation control strategies and show how they are
inadequate for controlling concurrent processes. We
also discuss some recently proposed continuation control
mechanisms and demonstrate that they too fail to pro-
vide adequate solutions to concurrent processing prob-
lems. In Sections 4 and 5, we introduce process con-
tinuations and show how they can be used to control
processes in a simple, consistent manner. In Section 6,
we present a simple operational semantics for a variant
of the X-calculus with process continuations. In Sec-
tion 7, we describe how process continuations may be
implemented. Finally, in Section 8, we conclude with
some remarks about the usefulness of process continu-
ations in the absence of concurrency and about the use
of process continuations in the presence of concurrency
that is not tree-based.

2 Scheme

The examples in this paper are expressed in Scheme,
a dialect of Lisp. Scheme inherits from Lisp its use
of prefix notation for all syntactic expressions, includ-

ing procedure applications. Scheme also inherits many
of Lisp’s syntactic forms and primitive procedures, es-
pecially those used to manipulate lists and symbols.
Scheme might also be considered a dialect of Algal-60
[15], as it inherits from Algol-60 its lexical scoping and
block structure.

Scheme differs from traditional Lisp dialects and from
Algol-60 in that it supports “first-class” procedures. A
Scheme procedure can be passed as an argument to an-
other procedure, returned as a value from another pro-
cedure, or stored indefinitely while retaining the lexi-
cal bindings in effect when the procedure was created.
In short, a Scheme procedure is given status equal to
that of other Scheme objects, such as numbers, sym-
bols, strings, and lists. The following example defines
a procedure, make-cell, that accepts any object as an
argument (the initial contents of the cell) and returns
a pair of procedures that may be used to retrieve or
change the value in the cell:

(define make-cell
(lambda (z)

(cons (lambda () z)
(lambda (VI) (set! z v)))))

The define expression binds the identifier make-cell
to the value of the outermost lambda expression. A
lambda expression creates a new procedure with the
formal parameters given in the list following the key
word lambda. The procedure body consists of the ex-
pression or expressions following the formal parameter
list. The value of the last expression in the body is re-
turned as the value of a procedure application. In this
case, the body is itself a procedure application specify-
ing that the value of the identifier cons is to be applied
to the values of the two inner lambda expressions, The
set! expression in the last line of the program assigns
the identifier x the value of the identifier V.

The procedure bound to cons creates a pair, which is
one of the basic Scheme object building blocks. Thus,
the result of applying make-cell to an object is a pair
of procedures. The first procedure of the pair, when
applied (to no arguments), returns the current value of
the identifier t. The second procedure of the pair, when
applied to a single argument, changes the value of the
identifier x to this argument. The procedure car is used
to retrieve the first half of the pair and the procedure
cdr is used to retrieve the second half of the pair. For
example, the value of

is 1. Within the body of the let expression, x is bound

129

to the result of applying make-cell to 0.
A let expression may be thought of as a procedure

application, since

(let ([z v] . . .) el e2 . . .)

is equivalent to

((lambda (z . . .) el e2 . . .) TJ . . .)

In fact, let may be defined as a syntactic extension in
Scheme, using extend-syntax:

(extend-syntax (let)
[$t ([bxdv] (. . .) el e2 . . .)

am a x.. .) el e2 . . .) v . . .)I)’

This extend-syntax expression specifies that any oc-
currence of a let expression following the given pattern
is to be converted into the corresponding direct lambda
application.

Several syntactic forms and procedures not described
in this section are used in the examples of this pa-
per. Some are described as they are used; the remain-
der should be self-explanatory. Detailed descriptions
of these syntactic forms and procedures may be found
in the references [16, 41. One of the most interesting
Scheme procedures, and the one that plays the most
significant role in this paper, is cull/cc, which is intro-
duced in the following section.

3 Traditional Continuations

Continuations are commonly used in denotational se-
mantics as a basis for deriving the meaning of con-
trol operations in imperative languages. Many pro-
gramming languages provide control operations such
as jumps and exits that modify a program’s continua-
tion. The programming language Scheme makes con-
tinuations available as procedures via the procedure
call-with-current-continuation, commonly abbreviated
call/cc. The argument to call/cc is itself a procedure of
one argument, which is passed a procedure reptesent-
ing the continuation of the call/cc application. When
a continuation created by call/cc is applied to a value,
execution of the program continues from the point at
which the call to call/cc occurred, with the value re-
turned as the result of the call to cull/cc. For example,

(call/cc (lambda (k) (+ (k 0) 1)))

evaluates to 0.
Suppose we wish to compute the product of a list of

numbers, avoiding any multiplications if one or more el-
ements of the list are zero. We can do this by traversing

the list recursively, performing the multiplications only
after the end of the list has been found, and exiting if
we find zero before we find the end of the list:

(define product0
(lambda (1s exit)

(cond
[(null? 1s) l]
[(= (cur 1s) 0) (exit O)]
[else (* (cur 1s) (product0 (cdr 1s) exit)) IN>

Using call/cc, we can provide producta with an appro-
priate continuation that can be used as the value of exit:

(define product

&(y$ (14
ca cc

(lambda (exit)
(product0 1s exit)))))

In the presence of concurrent processing, the simplest
uses of continuations can present difficulties. Suppose
we wish to add the products of two lists:

(+ (product listl) (product listz))

The fact that product is defined using call/cc need not
concern the programmer who uses it. However, in a
concurrent system, it is no longer clear what is meant
by a given call/cc or continuation application. Suppose
pcall is used to allow the products of the lists to be
computed concurrently:

(pcall + (product listl) (product listz))

In order for this to work properly, the effects of ob-
taining and invoking the current continuation within
product must be local to the corresponding arm of the
pcall expression.

But suppose we wish to multiply rather than sum
the products of the two lists. If the product of one
list is zero the combined product will be zero, so the
entire calculation may as well be aborted. This can be
achieved by passing a suitable escape continuation to
producta:

(call/cc
(lambda (k)

(* (product0 list1 k)
(product 0 list 2 k))))

However, if we attempt to compute the product of the
two lists concurrently using the same approach we find
that we can no longer restrict the effects of continuations
to a single branch of the process tree:

130

(call/cc
(lambda (k)

(pcall * (product(j listl k) (producto list2 ~))))

The intent here is to abort all branches of the pcall,
whereas before we wished to affect only a single branch.
There is, however, no way to make such distinctions
with call/cc. Either call/cc and continuations must af-
fect the entire process tree or they must affect single
branches of the process tree; there is no way to desig-
nate subtrees.

Problems also arise when continuations are used for
modeling process abstractions, such as coroutines [ll]
and engines [6, 41. In such cases, continuations must be
saved so a process can be resumed. Again, it is difficult
to specify how much of the process tree is to be affected,
but another problem also arises. Such applications typi-
cally involve a two-part operation: first, the current con-
tinuation is captured, and second, another continuation
is invoked. Once concurrency is introduced, the delay
between the capture of one continuation and the invoca-
tion of the other continuation becomes significant. For
example,

(call/cc (lambda (k) (k e)))

may no longer be equivalent to e in all contexts. If it
occurs while other processes are executing, side-effects
might occur between the capture of the continuation
and its subsequent invocation, in which case these side-
effects might be repeated when the continuation is later
invoked. Although this problem can be alleviated by
introducing concurrency control operators to give a pro-
cess exclusive control by suspending other processes, the
use of such operators is likely to be expensive and error-
prone.

Some of the problems inherent in abortive continua
tions can be solved by using “functional” continuations.
Felleisen, et al. [S], introduced a new control operator,
F, that is similar to call/cc in that it captures the cur-
rent continuation and passes it to its argument. How-
ever, F differs from call/cc in two ways. One differ-
ence is that the captured continuation is compositional
rather than abortive. When a functional continuation
is invoked, it does not replace the current continuation;
instead, the value of the computation originally cap-
tured by F is returned to the continuation in which the
functional continuation was invoked. The other differ-
ence is that, although the continuation created by F
does not abort the current continuation, F does. That
is, the current continuation is aborted at the same time
it is captured, rather than when another continuation
is invoked. Consequently, none of the functionality of
call/cc is lost.

The abortive nature of F solves one of the concur-
rency problems. Since F, rather then the invoked con-
tinuation itself, aborts the current continuation, we no
longer have to protect against changes to the computa-
tional state during the interval between the capturing
of the continuation and the installation of a new contin-
uation. Instead, we can require that F, in the presence
of concurrency, halt all computation before it captures
the current continuation and passes it to its argument.
However, since F always aborts the complete computa-
tion, it is still inadequate for controlling tree-structured
concurrency.

In a later paper Felleisen introduced the notion of a
“prompt” operator (written “#“) to provide finer con-
trol over F [7]. The prompt establishes the base of a
computation for subsequent calls to F. The continuation
captured by F extends only to the last prompt, and the
current continuation is aborted only to the last prompt.
When a value finally returns to a prompt application, it
simply falls through to the continuation of the prompt
application. Unfortunately, prompts replace the prob-
lem of capturing too much of a continuation with the
problem of capturing too little of a continuation. Since
the continuation captured and aborted by F only ex-
tends to the last prompt, we have control only over the
subtree with the last prompt as its base. Achieving con-
trol over larger portions of a process tree requires either
complete knowledge of all prompts in the process tree
or complicated protocols for recognizing when a control
operation arrives at the desired point in the process tree.

4 Process Continuations

What we lack is a mechanism that allows the program
to request the current continuation back to any given
point. Prompts allow us to request only the continua-
tion back to a single point, the one established by the
last prompt, since all other prompts are “shadowed.” It
is as if we were programming in a block-structured lan-
guage that restricts us to one variable name. In order
to allow a program finer control over continuations, we
introduce the notion of a process. Abstractly, a process
represents a subcomputation that can be controlled in-
dependently of the computation as a whole. A process
continuation is simply the continuation of that subcom-
putation, i.e., an abstract entity representing the rest
of the subcomputation from a given point in the sub-
computation.

The operator spawn is used to create processes.
When applied to a procedural argument, spawn invokes
(spawns) the procedure as a process. spawn passes the
procedure one argument, a process controller. When a
process is spawned, a unique root is added to the pro-
cess tree. When a controller is invoked, it captures and

131

aborts the current continuation back to the root estab-
lished by the invocation of the spawn that created the
controller. Application of a controller is valid only when
its root is in the continuation of the application. The
continuation returned by a controller is also a process,
since, when it is invoked, its root is reinstated and subse-
quent applications of the controller are valid. Invocation
of a process continuation does not replace (abort) the
current continuation; instead, the process continuation
is composed with the current continuation. The root
of a process continuation is removed either by a normal
return from the spawned process or by the application
of the process controller. Once the root has been re-
moved, further invocations of the controller are invalid
until the process continuation has been reinstated.

For instance, in the following example the controller
is returned as the result of the call to spawn and then
applied:

((spawn (lambda (c) c))
(lambda (k) k))

Since the controller’s root no longer exists, its applica-
tion is invalid. The following example is also invalid,
but for a different reason:

(spawn (lambda (c)
(c (lambda (k)

(c (lambda w m))>

Here the controller is applied twice. The first applica-
tion (in the second line) is valid. The second application
(in the third 1 ine is not valid, since the controller’s root)
has been removed from the current continuation by the
first application. On the other hand, in the followingex-
ample both controller applications are valid, since the
process continuation, including its root, is reinstated
before the outermost application occurs:

(spawn (lambda (c>
(c (c (lambda (k)

(k (lambda vd vm

The result of this expression is a procedure that returns
its argument, since after the second call to the controller
nothing remains to be done in the continuation except
to return. Several more interesting and useful examples
are given in the following section.

In the presence of concurrency, the effect of a control
operation must be defined in terms of the branches of a
process tree. By “process tree,” we mean simply a tree-
structured continuation record. Since traditional con-
tinuation control operators are derived from the notion
of representing continuations as stacks, it is not surpris-
ing that such operators are inadequate for controlling

concurrency. The spawn operator, on the other hand,
is designed specifically for the control of tree-structured
concurrency.

Each spawn application creates a new process subtree
with a unique root, and each application of a concurrent
operator adds two or more branches to a process tree.
The application of a controller is valid only if it occurs
in a subtree of its root. Similarly, the continuation cre-
ated (and aborted) by a controller consists of the entire
subtree of its root. Since process continuations can be
applied more than once, more than one instance of the
same‘root can occur in a process tree. Consequently,
we add one more rule: the continuation captured (and
aborted) by a controller consists of the smallest com-
plete subtree containing both the controller’s root and
the controller’s application.

One can think of spawn as a version of # that creates
a new F each time it is used; the new F recognizes only
the root established by this use of #, and the new root
is recognized only by the new F. If we had an indefinite
supply of matched # and F operators, we could define
spawn approximately as (Ap.#i(p3i)). However, this
definition does not accurately reflect when application
of the controller 3i is valid. F captures a continuation
only up to a # application; the # application itself is
left as part of the continuation of the F application. If,
instead, F captured a continuation up to and including
a # application, the approximate definition would be
more accurate.

5 Examples

Using spawn, nonlocal exits can be established that do
not suffer from defects inherent in the use of call/cc or
and F. Unlike call/cc, spawn can be constrained eas-
ily to ensure that the continuation used to exit from a
computation cannot also be used to resume the parent
computation. Furthermore, since spawn does not need
to capture the continuation of its invocation, establish-
ing an exit point with spawn does not affect concurrent
processes. Also, there is no restriction to a single level
.of exits as there is with # and F. The following exam-
ple shows how spawn can be used to provide a general-
purpose nonlocal exit capability:

(define spawn/exit
(lambda (proc)

(spawn (lambda (c)
(proc (lambda (exit-value)

(c (lambda (p)
exit-vahe))))))))

Here proc is spawned as a process that is not given com-
plete access to its controller. Instead, it is given a mod-

132

ified controller that it can use only to abort its com-
putation and return a value. The modified controller
invokes the real controller with a procedure that throws
away the process continuation and returns exit-value as
the value of the spawned process. Using spawn/exit, a
computation may exit from any level, since spawn op-
erations may be nested arbitrarily. Furthermore, once
a computation has returned or has been suspended, use
of the exit procedure is invalid.

We can use spawn/exit with the producta procedure
defined in Section 3 to add the concurrently-computed
products of two lists:

(pcall +
(spawn/exit (lambda (exit)

(product0 l&l exit)))
(spawn/exit (lambda (exit)

(product0 list2 exit))))

By placing the spawn/exit outside of the pcall, we can
also use it to compute the product of the concurrently-
computed products of two lists, aborting both interme-
diate computations if a zero element is found in either
list :

(spawn/exit
(la(;t$ (exit)

*
(product0 listl exit)
(product0 list2 exit))))

By the placement of spawn, or in this case spawn/exit,
we specify exactly how much of the computation is
aborted, avoiding the problems with traditional contin-
uations described in Section 3.

As was the case with the inclusion of call/cc in
Scheme, including spawn in a concurrent programming
language reduces the number of control operators that
must be supplied as primitives. We can start with a
simple forking operator and use it with spawn to create
sophisticated concurrency operators. For example, it is
straightforward to derive parallel-or using spawn and
pcall. The semantics of parallel-or resemble the se-
mantics of regular Scheme or. The distinction is that
or evaluates its arguments from left to right, return-
ing the first nonfalse value without evaluating the rest
of its arguments, whereas parallel-or evaluates its ar-
guments concurrently, returning the value of the first
argument to complete with a nonfalse value (and aban-
doning evaluation of any remaining arguments).

First we define first-true using pcall and the proce-
dure spawn/exit defined above. The procedure first-true
applies two procedures concurrently and returns either
the value of the first procedure to return with a true
value, or false if neither procedure returns a true value.

(define first-true
(lambda (Proc1 procn)

(spawn/exit
(lambda (return)

(p-11 (let f’[v (procl)l)
i v

(return v)
(lambda (v) II)))

w&b (Prom
121

(return v)

v)))))))

first-true spawns a process that uses pcall to evaluate
the procedures prcq and pracz concurrently. If either
procedure returns a true value, the process controller is
used to abort the process and return that value. Oth-
erwise, an identity procedure and a false value will be
returned as the arguments to pcall, resulting in the re-
turn of a false value from the call to first-true. It is now
straightforward to define parallel-or as a syntactic ex-
tension:

(extend-syntax (parallel-or)
[(parallel-or el es)
(first-true (lambda () ei) (lambda () ex))])

Because the examples above use the process controller
for nonlocal exits, the continuation created by the pro-
cess controller has not been used. The next example
shows how process continuations can be used to allow
processes to be suspended and resumed:

(define parallel-search
(lambda (tree predicate?)

(spawn
(lambda (c)

(define search
(lambda (tree)

(unless (empty? tree)
(pcall

(lambda (x y 2) #f)
(when (predicate? (node tree))

(c (lambda (k)
(cons (node tree)

(lambda ()

@ #f>))>>)
(search (left tree))
(search (right tree))))))

(search tree)

#f))))

The parallel-search procedure takes a tree and a predi-
cate as arguments. Before initiating the search it uses

133

spawn to set up a controller it can use to suspend the
search whenever a suitable node is found. pcall is used
to allow the branches of the tree to be searched concur-
rently. Since the real results are returned through the
controller, the procedure applied by pcall ignores the
values of its arguments. When predicate? is satisfied for
a node, the controller is invoked to suspend the search
and return a tentative answer along with a procedure
that can be used to resume the search. False is returned
when there are no more nodes in the tree.

The following procedure uses parallel-search to return
all of the nodes of a tree that satisfy a given predicate:

(define find-all
(lambda (tree predicate?)

(define nezt
(lambda (result)

(if result
(cons (car result)

(next ((cdr result))))

‘ON)
(next (parallel-search tree predicate?))))

6 Semantics

To clarify the semantics of spawn we provide an opera-
tional semantics for the X-calculus extended with con-
trol operators. Although such a language is unrealisti-
cally simple, a semantic specification for it can be ex-
tended naturally to more complete languages containing
the spawn operation. To the usual X-calculus expression
types constants, variables, abstractions and applications
we add labeled expressions and control expressions:

e --tc (constants)

I x (variables)

1 Xx.e (abstractions)

I
1 Yf,

(applications)

(labeled expressions)

I et1 (control expressions)

The set v E values consists of constants and abstrac-
tions. In the operational semantics values represent
terms that cannot be further evaluated and may be
passed as arguments or returned as answers. The set
1 E labels can be any countable set.

A program is an expression with no free variables. We
define a machine that rewrites a program until it is a
value. The rewrite rules rely on the notion of a context,
which is an expression with a single hole. The symbol
[7 represents the hole in a context. A context is filled
by substituting an expression for the hole, resulting in
a complete expression. The notation C[e] indicates the

operation of filling the context C with the expression e.
Here we are interested in evaluation contexts:

Evaluation contexts determine when a term may be
evaluated. Here we have specified leftmost, outermost
evaluation.

By using evaluation contexts we are able to dispense
with a separate control component for our machine. Our
machine is further simplified by using ,&substitution in-
stead of an environment to record the results of appli-
cations; this simplification is made possible by the lack
of assignments. Consequently, we are able to define a
machine in terms of only one component, the program.
A program is evaluated by rewriting it according to the
following rules:

C[(Xx . e)v] * C[e[x t- v]] (1)

C[l : v] * C[v] (2)

Cl[l : C2[e t ZJ] =S- C~[e (Xx. 1 : G[x])]

if 1 does not label CZ (3)

The first rule is the usual P-substitution rule for re-
ducing applications in the call-by-value X-calculus. The
second rule specifies that the value of a labeled expres-
sion is simply returned to the immediate context. The
interesting rule is the last rule, which determines how
control expressions are evaluated. A control expression
is reducible only if it occurs within a labeled expression
with a matching label. If it does, the body of the con-
trol expression is applied to an abstraction created from
the context of the control expression up to and includ-
ing the matching label. The application itself occurs in
a context that does not include the abstracted context.
Since a control operation can occur in a context in which
there is more than one matching label, the rule specifies
that the innermost label determines the applicable con-
text. We say that 1 labels a context C if C = Cr [I : Cz]
for some contexts Cl and Cz.

The labeling primitives are used to define the spawn
operation. The only complication is that each spawn
application needs a unique label that can be used both
to label the context of the application and to build
a process controller that can capture the correct con-
text. Given a unique label 1, we could define spawn as
(AZ. 1 : 3: (XX. 2 1 I)). The simplest way to find such a
label without complicating the semantics is to examine
the entire program. Thus, we define spawn applications
using a rewrite rule that has access to the entire pro-
gram:

C[spawn v] * C[I : v (Xx. 2 1 l)]

where 1 4 labels(C[v])

where labels(e) is the set of labels occurring in e.

134

7 Implementation

Continuations are usually represented as a stack of pro-
cedure activation records. In the presence of continu-
ations, this stack is often implemented as a linked list
to facilitate the capture and invocation of continuations
as objects. It is also possible to employ a true stack by
copying continuations that have been captured before
they are modified [3, 2, 11. With either implements
tion, it is possible to place a constant bound on the
amount of work that must be performed by the contin-
uation operations regardless of the size of the current
continuation [53.

Process continuations can be implemented in a simi-
lar manner. However, instead of a single stack of acti-
vation records, the system maintains a stack of labeled
stacks, the process stack. A call to spcawn results in the
addition of an empty stack to the process stack; this
new stack is assigned a unique label associated with the
process controller created by the call to spawn. This
label defines the root of the process. When a process
controller is invoked, all stacks down to and including
the stack with the associated label are removed from the
process stack and packaged into a process continuation.
It is an error if the process stack contains no stack with
the appropriate label.

When a process continuation is invoked, its saved
stacks are pushed onto the current process stack. Be-
cause the base of the saved stacks is the stack with the
label associated with the process controller that created
the process continuation, invocation of the process con-
troller is again valid. As mentioned earlier, it is possi-
ble to invoke a process continuation while the process
is active, resulting in more than one occurrence of the
associated label in process stack. In this case, the con-
troller removes only the stacks down to and including
the topmost labeled stack.

A concurrent implementation of process continua-
tions can be accomplished by using a process tree in-
stead of a process stack. A call to spawn adds an empty
labeled stack to the branch of the tree in which the call
occurs. When the process controller is subsequently in-
voked, the subtree of stacks rooted at the corresponding
labeled stack is pruned from the tree and packaged into
a continuation. This operation may require cooperation
from other processors to suspend concurrently executing
branches of the subtree. Some mechanism for mutual
exclusion is needed to prevent more than one processor
from attempting to remove the same subtree at the same
time. When a process continuation is invoked, the saved
subtree is grafted onto the current tree of stacks. Be-
cause continuations are represented as stacks or trees of
stacks, operations involving process controllers and pro
cess continuations are linear with respect to the number

of control points (labels and forks) within the process
continuation rather than with respect to the size of the
process continuation itself.

8 Conclusions

In this paper we have dealt with tree-structured concur-
rency, where concurrent computations eventually com-
plete and return to the parent process that initiated
them. The spawn operator provides a program with
precise control over the tree-structured continuations
that result from programming with concurrent opers
tors similar to p&l. Using spawn, a program is able
to achieve nonlocal exits without interfering unneces-
sarily with concurrent computations, and is also able
to save and restore selected subtrees of the program’s
continuation. Some programming languages also pro-
vide operations to create independent parallel processes,
i.e., processes that do not return to a parent process.
Since both tree-structured and other forms of concur-
rency may coexist in the same language, it is reasonable
to define the meaning of spawn operations in such sit-
uations. One possibility is to treat such combinations
of dependent and independent processes as a forest of
trees, in which control operations affect only the tree in
which they occur.

Although we have focussed on the usefulness of pro-
cess continuations in the presence of concurrency, it
should also be noted that even without concurrency
there are clear advantages and no disadvantages to pro-
viding spawn in lieu of cull/cc. One common criticism of
call/cc is that it is too powerful, in that it always manip-
ulates the continuation of an entire program. Programs
written with spawn are more easily analyzed, because
the effects of a process controller created by spawn are
limited to the dynamic context of the call to spawn and
because access to the controller can be restricted.

Our work is based on work by Felleisen, et al. 18, 7,9].
In [$] and [7], new continuation control mechanisms are
introduced. In 191, a continuation algebra is developed
that makes it convenient to specify the semantics of
different models of continuations. Johnson and Dug-
gan [12] have developed a notion of partial continu-
ations that also extends traditional continuation con-
trol. However, none of these mechanisms are adequate
for process-oriented programming. In a related work,
Sitaram and Felleisen [17] introduce techniques to con-
strain the effects of prompts and functional continua-
tions. They do so, however, by developing complicated
protocols on top of primitive control structures, and
they do not address concurrency issues. Miller [14] does
address the issue of using continuation control in a par-
allel Scheme implementation. In his implementation,
concurrency is based on placeholders, which are simi-

135

lar to Halstead’s futures, and thus he does not treat
the problems inherent in using continuations to control
tree-based concurrency.

References

[l] David H. Bartley and John C. Jensen, “The Imple-
mentation of PC Scheme,” Proceedings of the 1986 ACM
Conference on Lisp and Functional Programming, Au-
gust 1986, 86-93.

[2] William D. Clinger, Anne H. Hartheimer, and Eric
M. Ost, “Implementation Strategies for Continuations,”
Proceedings of the 1988 ACM Conference on Lisp and
Functional Programming, July 1988, 124-131.

[3] R. Kent Dybvig, Three Implementation Models for
Scheme, University of North Carolina at Chapel Hill De-
partment of Computer Science Technical Report #87-
011 (PhD Dissertation), April 1987.

[4] R. Kent Dybvig, The Scheme Programming Lan-
guage, Prentice-Hall, 1987.

[5] R. Kent Dybvig and Robert Hieb, “Representing
Control in the Pressence of First-Class Continuations”
(submitted for publication).

[6] R. Kent Dybvig and Robert Hieb, “Engines from
Continuations,” Computer Languages 14, 2, 1989, 109-
123.

[7] Matthias Felleisen, “The Theory and Practice of
First-class Prompts,” Proceedings of the Fifteenth An-
nual ACM Symposium on Principles of Programming
Languages, January 1988, 180-190.

[8] Matthias Felleisen, Daniel P. Friedman, Bruce Duba
and John Merrill, “Beyond Continuations,” Indiana
University Computer Science Department Technical Re-
port No. 216, 1987.

[9] Matthias Felleisen, Mitchell Wand, Daniel P. Fried-
man and Bruce F. Duba, “Abstract Continuations: A
Mathematical Semantics for Handling Full Functional
Jumps,” Proceedings of the 1988 ACM Conference on
Lisp and Functional Programming, July 1988, 52-62.

[lo] Robert H. Halstead, Jr., “Multilisp: A Language
for Concurrent Symbolic Computation,” ACM Trans-
actions on on Programming Languages and Systems 7,
4 October 1985, 501-538.

[ll]. Daniel P. Friedman, Christopher T. Haynes and
Mitchell Wand, “Obtaining Coroutines with Continua-
tions,” Computer Languages 11, 3/4, 1986, 143-153.

[12] Gregory F. Johnson and Dominic Duggan, “Stores
and Partial Continuations as First-Class Objects in a

Language and its Environment,” Proceedings ojthe Fij-
teenth Annual ACM Symposium on Principles of Pro-
gramming Languages, January 1988, 158-168.

[13] John McCarthy, “A Basis for a Mathematical The-
ory of Computation,” Computer Programming and For-
mal Systems, ed. by P. Braffort and D. Hirschberg,
North Holland, 1963, 33-70.

[14] James S. Miller, MultiScheme: A Parallel Process-
ing System Based on MIT Scheme, Laboratory for Com-
puter Science, Massachusetts Institute of Technology
Technical Report #402 (PhD Dissertation), September
1987.

[15] Peter Naur, et al., “Revised Report on the Algo-
rithmic Language ALGOL 60,” Communications of the
ACM 6, 1, January 1963, 1-17.

1161 Jonathan A. Rees and William Clinger, eds., “The
Revised3 Report on the Algorithmic Language Scheme,”
SIGPLAN Notices 21, 12, December 1986.

[17] Dorai Sitaram and Matthias Felleisen, “Control De-
limiters and their Hierarchies,” to appear in Lisp and
Symbolic Computation.

136

