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Abstract

The last few years have seen a renewed interest in continua-
tions for expressing advanced control structures in program-
ming languages, and new models such as Abstract Continua-
tions have been proposed to capture these dimensions. This
article investigates an alternative formulation, exploiting the
latent expressive power of the standard continuation-passing
style (CPS) instead of introducing yet other new concepts.
We build on a single foundation: abstracting control as a
hierarchy of continuations, each one modeling a specific lan-
guage feature as acting on nested evaluation contexts.

We show how iterating the continuation-passing conver-
sion allows us to specify a wide range of control behavior.
For example, two conversions yield an abstraction of Prolog-
style backtracking. A number of other constructs can like-
wise be expressed in this framework; each is defined inde-
pendently of the others, but all are arranged in a hierarchy
making any interactions between them explicit.

This approach preserves all the traditional results about
CPS, e.g., its evaluation order independence. Accordingly,
our semantics is directly implementable in a call-by-value
language such as Scheme or ML. Furthermore, because the
control operators denote simple, typable lambda-terms in
CPS, they themselves can be statically typed. Contrary to
intuition, the iterated CPS transformation does not yield
huge results: except where explicitly needed, all continua-
tions beyond the first one disappear due to the extensional-
ity principle (7-reduction).

Besides presenting a new motivation for control opera-
tors, this paper also describes an improved conversion into
applicative-order CPS. The conversion operates in one pass
by performing all administrative reductions at translation
time; interestingly, it can be expressed very concisely using
the new control operators. The paper also presents some
examples of nondeterministic programming in direct style.
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Introduction

Strachey and Wadsworth’s continuations were a break-
through in understanding imperative constructs of program-
ming languages. They gave a clear and unambiguous seman-
tics to a wide class of control operations such as escapes and
coroutines. In recent years, however, there has been a grow-
ing interest in a class of control operators [Felleisen et al. 87]
[Felleisen 88] which do not seem to fit into this framework.
The point of these new operators is to abstract control with
regular procedures that do not escape when they are applied.

This approach encourages seeing not only procedures as
the computational counterpart of functions but extending
this view to continuations as well. However, the published
semantic descriptions, [Felleisen et al. 88] do not actually
represent continuations as functions but as concatenable se-
quences of activation frames, losing the inherent simplicity
of the original functional formalism. Does this mean that
control operators substantially more powerful than jumps
are indeed beyond the limit of a traditional continuation
semantics?

In the following, we present a denotational “standard
semantics” [Milne & Strachey 76], where continuations are
represented with functions and control is abstracted with
procedures, and where programs have natural, purely func-
tional counterparts. In doing so, we replace the fundamen-
tally dynamic control scoping specified by prior definitions of
composable continuations with a properly static approach,
akin to the difference between Lisp and Scheme.

The new idea is that a term is evaluated in a collec-
tion of embedded contexts, each represented by a continu-
ation. The denotation of a term is expressed in extended
continuation-pussing style (ECPS). Essentially, this gener-
alizes ordinary continuation-passing style to a hierarchy of
continuations, one for each context. Very importantly, how-
ever, 1t inherits the characteristic, syntactically restricted
form of a A-calculus without nested function applications.
As such, it still yields semantic specifications where the eval-
uation order of the defined language is independent of the
evaluation order of the defining one [Reynolds 72].

Of course, extended continuation-passing style is in gen-
eral more verbose than plain continuation-passing style.
This suggests introducing new control operators to retain
the ability of expressing programs in direct style, mirroring
the rationale for including call-with-current-continuation
in Scheme [Rees & Clinger 86] [Miller 87, appendix A]. We
will show how such control operators can in fact be system-
atically added to an applicative order A-calculus.



Sections 1 and 2 investigate extended continuation-
passing style and how to convert direct terms in the basic
case of one delimited context. Section 3 illustrates nondeter-
ministic programming with control abstractions. Section 4
describes control operators over several embedding contexts
and their translation to extended continuation-passing style.
After a comparison with related work, our approach is put
into perspective.

1 Extended Continuation-Passing Style

This section extends continuation-passing style (CPS) to one
delimited context. We present it using a conceptually sim-
ple, but somewhat naive CPS conversion algorithm; the next
section addresses more efficient translations. We will use a
A-calculus-like abstract syntax for conciseness; the exten-
sions to a full Scheme-like language should be immediate.

The CPS translation is a source-to-source transforma-
tion, which means that new syntactic terms are built as
part of the translation. To emphasize this, we will use the
quotes " " to denote the construction of new syntactic terms.
The construction may be parameterized by A-calculus terms
building syntactic subterms; we enclose these subterms be-
tween braces { }. The value of this distinction will become
apparent in the next section. We can note that " " and
{} correspond to the quasiquote and unquote comstructs in
Scheme.

As usual, names of new bound variables introduced by
the translation are assumed not to collide with existing ones.
The conversion [] to ordinary (call-by-value) CPS is given
by the following well-known equations:
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To simplify the equations, we treat primitive functions as
operators; when a primitive 7 is passed as an argument, it
can be written as Az.7 .

Not every A-calculus term is obtainable as a result of the
CPS conversion. Some of the “unused” terms correspond
to control operators in the source language. For example,
the operator escape (equivalent to Scheme’s call/cc) can
be defined by the equation:

[ek.E] = "AcA[E]}&[k]—"Aar .k aT]

where E1[z — F>] denotes textual substitution of E> for free
occurrences of z in Fj. Yet even with escaping constructs,
the result of the translation is in “ordinary” CPS form, ¢.e.,
with no nested function applications. This suggests that
there is still a considerable amount of untapped expressive
power in the CPS formalism, reflecting control structures
whose translations are more general A-terms. In particular,
we can define the two operators shift and reset, concep-
tually serving as composition and identity for continuation
functions:
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Shift abstracts the current context as an ordinary, com-
posable procedure and reset delimits the scope of such a
context. Shift also differs from escape by not duplicating
the current continuation. For example, we have

14 (10 + £e.c(c100)) = 14 (10+ (10 +100)) = 121

While the effects of these operators are very similar to op-
erators control and prompt of [Felleisen 88], there is a
significant semantical difference between shift/reset and
control/prompt: the context abstracted by shift is de-
termined statically by the program text, while control cap-
tures the context up to the nearest dynamically enclosing
prompt. In general, this leads to different behavior.

We say that the translation results above are expressed in
continuation-composing style. Such definitions lose the im-
portant quality of enforcing strict call-by-value evaluation.
However, we can restore that property by converting the
defining (pure A-calculus) terms once moreinto CPS. Gener-
alizing from the transformation equations to a full language
definition, we can treat a semantics written in continuation-
composing style as a direct semantics and obtain a strategy-
independent “meta-continuation semantics” from it by the
standard CPS conversion. Thus, if we include the defining
equations for shift and reset,
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in a standard call-by-value continuation semantics and
transform the entire result into CPS, we obtain the follow-

ing language definition in ECPS (omitting straightforward
notation for including procedures in the domain of values):
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It is instructive to note how the composition &' (xv)
in the “direct semantics” for shift is sequentialized into
the usual CPS style Ay.sv(Aw.x'w+). Similarly, in reset,
& (...(Az.2)) becomes Ay....(Azy .y ) (Av.kvy).

These equations look somewhat frightening because of all
the +’s. We note, however, that in all equations, except for
shift/reset, the meta-continuations can be elided because
of the extensionality principle, ¢.e., Ay.¢ v is equivalent to
simply ¢. Thus, the entire semantics need not be cluttered
up to describe composable continuations. Also, the static
nature of the translation into CPS induces a naturally static
type system for the language. This aspect is treated in more
depth in [Danvy & Filinski 89].



Let wus finally point out the congruence relation
[Sethi & Tang 80] between the meta-continuation semantics
and an ordinary continuation semantics:

Emc[Elpmery = v (E[Elper)

completely analogous to the traditional congruence between
continuation and direct semantics:

E[Elper = £ (Ea[E]pa)

where pq and p. are related in the usual way [Stoy 81]. In
particular, results concerning recursion and the problem of
nontermination can be carried over directly.

2 Metacircular Interpreters and Compilers

The traditional CPS translation equations of the last sec-
tion, while simple, tend to produce unnecessarily large re-
sults. The problem is that the constructed terms contain
many - and 5-redexes, which must usually be post-reduced
in a separate pass [Steele 78]. However, it is possible to avoid
building them at all, by performing the reduction directly
in conjunction with the translation. The key is to represent
continuations in the converted terms as semantic functions
operating on pieces of abstract syntax, rather than as syn-
tactic terms. This seems to be a new approach to practical
CPS conversion, and one which can be expressed very con-
cisely by using exactly the new operators we are defining!
The goal of the efficient translation is to build from a
syntactic term F a term with the same meaning as [E] but
without the residual redexes of the latter. We express this
using a new conversion function [ ] that defers building new
syntactic terms until their context of use is known:
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The result of converting a term £ in an empty context
is then given by [E](Az.z). Note how most of the A’s ap-
pearing in these equations are semantical, i.e., not directly
within " " and thus will not appear explicitly in the converted
term. This is the motivation for having the continuation &
available as a functional object that can be applied directly
to any syntactic term, rather than a syntactic A-abstraction
leaving many administrative redexes to post-reduce.

In fact we can do even better: in the equation for func-
tion application, the syntactic A-abstraction can often be
n-reduced away, though this is awkward to express in equa-
tional style. Such a reduction is possible when the semantic
continuation « is a function of the form Aa." £ {a}" where a
is not used to build F. For example, this is the case for a
tail call in a function abstraction, such as the call to f in
(lambda (x) (£ (g x))).

Let us now observe that the equations for [] are written
in a CPS-like style, but with occasional nested function ap-
plications. This situation is precisely what shift/reset are
intended for. We can thus fold the equations back into direct
style, using the new operators:
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This set of equations can be seen as a meta-circular com-
piler from a language with the new control operators into its
purely functional subset. Alternatively, it translates terms
of a Scheme-like language (i.e., A-calculus + escape) into
standard CPS. Such a conversion has a practical interest for
compiling, from [Steele 78] to [Appel & Jim 89], and thus
constitutes a significant example of using shift/reset: even
the pure CPS translation is expressed naturally using the
new control operators.

As with all meta-circular definitions, we need to boot-
strap it. If we have an interpreter for a language with
shift/reset, we can use it to execute the translator on it-
self, obtaining a CPS converter written in pure A-calculus.
On the other hand, we can get an interpretive semantics for
the extended language by translating a trivial (i.e., defining
shift in terms of shift, etc.) self-interpreter into ECPS. This
ensures an automatic consistency between the two methods
of language definition.

3 An Application: Nondeterministic Programming

It is well-known that continuation passing-style can be
used to simulate backtracking in, e.g., Prolog programs
[Mellish & Hardy 84]. In this “downward success” model
of nondeterministic execution, alternatives at choice points
are considered in sequence. However, such an approach re-
quires the entire program to be expressed with explicit suc-
cess continuations, complicating its structure considerably.
Moreover, in this case simple escaping operators such as
call-with-current-continuation are not powerful enough to
avoid an actual translation.

With shift/resetin the language, on the other hand, all
the control aspects of backtracking can be abstracted into
just two primitives, permitting the rest of the program to
be written in a natural, direct style. We express the non-
deterministic choice as repeated invocations of the success
continuation with each of the possible choices; dead ends
or failures correspond to discarding the current branch of
control:

(define flip
(lambda () (shift c (begin (c #t) (c #f) (fail)))))

(define fail
(lambda () (shift c "no")))



As an example, let us consider the implementation of a
nondeterministic finite automaton for recognizing languages
denoted by regular expressions [Aho, Hopcroft, & Ullman
74]. While conceptually simple, this application demon-
strates the essence of choice and failure in a traditional set-
ting. We will represent the sequence of input symbols as a
list. If the automaton recognizes a prefix of this sequence,
it returns the remainder; otherwise, it fails. The regular ex-
pressions 71 12, 71|72 and r* are encoded as (& r1 r2), (/ r1
r2) and (* r), respectively. We see that accepting an input
string is indeed reduced to verifying a sequence of guesses
generated by the oracle flip:

(define ndfa
(lambda (r 1)
(if (atom? r)
(if (and (not (null? 1)) (equal? (car 1) r))
(cdr 1)
(fail))
(case (car r)
[(&) (let ([11 (ndfa (cadr r) 1)1)
(ndfa (caddr r) 11))]
[(/) (if (flip)
(ndfa (cadr r) 1)
(ndfa (caddr r) 1))]
[(*¥) (if (flip)
1
(let ([11 (ndfa (cadr r) 1)])
(ndfa r 11)))1))))

(define accept
(lambda (r 1)
(let ([11 (ndfa r 1))
(if (null? 11) '"accepted" (fail)))))

The function accept will return to the point of call when-
ever the input 1 is in the language denoted by the expres-
sion r. This algorithm corresponds exactly to the follow-
ing continuation-composing style procedure (where we have
unfolded f1ip and fail and uncurried the translation, for
clarity):

(define ndfa-c
(lambda (r 1 k)
(if (atom? r)
(if (and (not (null? 1)) (equal? (car 1) r))
(k (cdr 1))
"no')
(case (car r)
[(&) (ndfa-c (cadr r) 1
(lambda (11) (ndfa-c (caddr r) 11 k)))]
[(/) (begin (ndfa-c (cadr r) 1 k)
(ndfa-c (caddr r) 1 k)
"no")]
[(*) (begin (k 1)
(ndfa-c (cadr r) 1
(lambda (11) (ndfa-c r 11 k)))
"no")1))))

(define accept-c
(lambda (r 1 k)
(ndfa-c r 1
(lambda (11) (if (null? 11) (k "accepted") "no"))))

Here, the argument k of accept-c will be invoked when-
ever the string is accepted.

Let us note again that since we have expressed the back-
tracking primitives using the existing operator shift, the
ECPS semantic formalism immediately gives a proper de-
notational description of this facility. In fact, as noted in

section 1, n-reduction permits us to write virtually all of
the semantics in ordinary CPS style, involving the meta-
continuation only for expressing the denotations of £1ip and
fail.

As a more complex example, we may consider the problem
presented in [Abelson & Sussman 85, pp 254-255]: gener-
ating all triples of distinct positive integers ¢, § and k less
than or equal to a given integer n that sum to a given integer
s. The solution given there amounts to filtering admissible
triples from a stream of possible triples, built out of three
streams of numbers. Let us see how to solve it using our
nondeterministic operators instead.

We first define a procedure choice, returning an “appro-
priate” integer between 1 and n. Then we can generate the
triples naively in a very straightforward way:

(define choice
(lambda (n)
(if (< n 1)
(fail)
(if (flip) (choice (- n 1)) n))))

(define triple
(lambda (n s)
(let* ([i (choice n)]
[j (choice (- i 1))]
[k (choice (- j 1))1)
(if (= (+ 1 j k) s)
(list i j k)
(fail)))))

Now (reset (display (triple 9 15))) prints the triples
as they are generated. Sometimes, however, we want to
collect all the results in alist (¢f. the bagof predicate found in
many Prolog systems). A possible way to obtain this would
be to update a list of solutions imperatively. However, a
purely functional alternative exists as well, this time using
shift to define a procedure emit:

(define emit
(lambda (n) (shift ¢ (cons n (c ’())))))

with the property that every time it is applied to an argu-
ment, it adds that argument to a list of “answers”. For
example, (reset (begin (emit 1) (emit 2) (emit 3) ’()))
yields (1 2 3). The 7 () for ending the list is actually redun-
dant in this case, since the return value of (emit 3) could be
exploited instead.

This definition can also be converted naturally into
ECPS. However, if we try to combine emit with flip/fail,
the collection and generation interfere. We want to specify
that once a solution has been generated, subsequent back-
tracking should not attempt to retract it. A direct solution
to this problem would be to first convert the generator (é.e.,
triple) into continuation-composing style, and then invok-
ing it with emit as a continuation, so that only the collection
process would manipulate contexts directly. However, this
staging requires us to deal with CPS-converted programs
explicitly, losing the benefit of having a direct style gener-
ator. What we need instead is a way to express that the
CPS-conversion of emit should itself contain a shift, i.e.,
we want a definition of emit that would translate into

(define emit-c
(lambda (n k)
(k (shift ¢ (cons n (c 2()))))))



Writing (collect E) as syntactic sugar for
(begin (reset (emit E)) ()

the translation of (collect (triple 9 15)) into CPS be-
comes:

(begin (triple-c 9 15
(lambda (t) (emit-c t (lambda (x) x))))
>())

which is just what we want. This is the subject of section
4. Using the operator shifts defined there, instead of shift
in emit, we get exactly the desired behavior, i.¢e., separating
generation and collection into different levels.

Similarly, we can use shifts to produce a single Boolean re-
sult from the nondeterministic automaton, independently of
how many ways there are to “parse” the input as a regu-
lar expression. Again, conceptually we want to express the
following:

(define decide
(lambda (r 1)
(escape k (begin (accept-c r 1 (lambda (a) (k #t)))
#£))))

This corresponds to a “joining of nondeterministic paths”:
only if all execution threads fail to accept do we return #f.

4 Generalizing to More Contexts

Many control operators can be defined with respect to ex-
tended continuation-passing style. This section investigates
the generalization of shift to give control over an arbitrary
number of embedding contexts, abstracting them as a sin-
gle procedure. Correspondingly, reset is generalized to re-
set arbitrarily many embedding contexts. This extends the
meta-continuation semantics of section 1.

Nested contexts may be used in two settings. In a pro-
gram they can be used to order meta-level actions such as
backtracking, accumulating results, and so on, as in section
3. When designing a language, they can be used to order
dynamic features such as an environment for fluid or logical
variables, exceptions, a store, i/o streams, and so on.

4.1 Notation

In this section, we are considering the types of terms that
have been repeatedly converted into CPS, say m times. We
manifest this by subscripting the domain of answers with
the number of conversions:

Ans; = Contit1 — Ansi

where 0 < ¢ < m and Ans,, = Ans

4.2 A family of semantics

Let us consider a family of continuation semantics indexed
with a number of contexts. FEach valuation function &,
is passed an expression, an environment, m continuations,
and returns an answer. Each procedure is passed a value,
m continuations, and returns an answer. Each continuation
is passed a value, the rest of the continuations, and returns
an answer. This is captured in the following. (Figure 1

displays the full family of continuation semantics with the
answer domain type expanded.)

En  Exp— Env — Ansg
Proc = Val — Ansg
Cont, = Val — Ans;

When m = 1, this semantics defines Scheme. In par-
ticular, call-with-current-continuation abstracts the mth
continuation.

When m = 2, this semantics coincides with the meta-
continuation semantics of section 1.

Fach m-41-semantics is a traditional continuation seman-
tics of the m-semantics (¢f. section 4.3 for their congruence),
and thus the relation between Cont; and Cont, 1, also holds
between Proc and Cont; — actually, 6y as defined in figure
1 is the denotation of the identity procedure.

Alternatively the domain equations could be set up to define
procedures as continuation transformers, and correspond-
ingly each Cont; would be a Cont;41 transformer, instead of
the rather long types of figure 1. However these more com-
pact types would impede the n-reductions that keep ECPS
terms concise.

4.3 A family of congruences

The new congruence of continuation semantics mentioned
in section 1 can be generalized to the family of congruence
relations displayed in figure 2, starting from the traditional
direct semantics &. Each semantics &£,41 1s the result of
the CPS conversion of &,, considered as a direct semantics.

4.4 A family of control operators

Resetting n contexts (where 0 < n < m) is a natural gen-
eralization of section 1. We abstract n continuations on the
n+1st one and install » initial #; continuations (cf figures
3 and 4).

Extending shift is also a natural generalisation of sec-
tion 1. We want to shift n contexts (where 0 < n < m)
into a procedural object. This is captured by evaluating
the body of the shift,-expression in an environment bind-
ing the shift,-identifier to a procedural abstraction of these
contexts, and with n initial ; continuations. When invoked,
the control abstraction will restore the n continuations and
abstract the n current continuations in the n-41st one (cf
figures 3 and 4).

4.5 Translation to extended continuation-passing style

From the general definitions of shift and reset above, we
immediately obtain the equations for n = 0:

¢ok.E = E[k—Av.2]
(EYo = E

With these at the base, we can express how every operator
is converted into a lower-numbered one by the CPS transla-
tion.

[€ns1k.E] AkEnk' {[E]} (Ao.2) [k — Aar' &' (k' (5 a))n]
[(E)nni] = Ars ({IE]} (Ae.2))n”



En ¢ Exp— Env — Cont; — ... — Contiy1 — ... — Cont,, — Ans
6o € Proc = Val — Conty — ... — Cont;41 — ... — Cont,, — Ans = Contg
6; € Cont; = Val — Cont;41 — ... — Cont,, — Ans

where 6; = AvK;41Ri42 ... Km .Kit1UKi42 ... Km, for 0 < n < m, and 0, = Av.v
Intuitively, each #; transmits a result to an outer context, when 1 < n < m

Kit2, ..., and K., can be n-reduced in the definitions of 6,

Figure 1: A family of m continuation semantics
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Figure 2: A family of congruences

Each environment and continuation is superscripted with the number of contexts. By introducing two new
control operators for each context, we obtain a family of congruent semantics of a language £,, for each n.
Each L;-program has the same meaning in any L;, for § > :. The only changing summand in the value
domain are procedures, as accounted for in figure 1.
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and 8; = AVK;41 ... Km Kit10Kit2 ... Ky Tor 1 <4< m

Figure 3: Two families of control operators: shift, and reset,

Km

En[{EYn]pk1 .. Bnkngl
Eménk . Elpri ... 6n

En[ENpb1 ... 0n(Av.00vK1 ... Knknyl)
En[ENp[[k] — plb1...0x

where p = Avk! ... Ky Kppq00vK1 ... Kn(Aw.Bowk] ... K Kpy)

and 6; = Avkiq1.kiy1v for 1 <i<m

Figure 4: Definition of shift, and reset, where all the outer continuations have been n-reduced




Intuitively, in shift,; the innermost context is captured as
the continuation &, and the n outer ones as k'; they are then
composed into one primitive function bound to k.

4.6 A family of control combinators

There are two common patterns in the definitions of shift,,
and reset,: a series of contexts are abstracted in a contin-
uation; and a series of #; are installed. We can capture this
pattern in a family of regular combinators A,, for abstracting
and R,, for resetting contexts:

Ap: Ansp—1 — Anso = [Cont, — Ansy,] — Ansg
Anfrr. .. 6m = f(Av.bovk1 ... Kp)Ent1 ... bm

R, : Ansy — Ans, — Ans

Rann+1 oo Rm = f61 e enlﬁn+1 .. KRm

where 6; = AvK;41Ki42 ... Km .Kit1UKi42 ... Km
and 0 <1< m.

Given A, and R, we can reexpress the semantics of the
families of control operators as follows, n-reducing all the
outer continuations:

Em[(E)nlp = Antar (Rn(Em[E]p))
Enlénk.Elp = An(Ac.Ry (En[E] p[[k] — Av.Apnt1 (cv)]))

Because A, and R, are regular, this description respects

Cps.t

In the rest of this section, we describe how to implement A,
and R, using Church numerals and untyped combinators.
This description relies on observing that all the 8; are ex-
tensionally equal to the polymorphic constant § = Avk.kv.
Confusing all the §; is type incorrect since it discards type
information. However, this description can be transliterated
into Scheme as a definitional interpreter.

Inductive combinators can be expressed without ellipses
using combinatory logic and Church numerals [Barendregt
85]:

[

For example, we can define the family of regular dupli-
cating combinators:

Wy, =n(BW)K such that W, MN=MN...N
S—

n

KI
1 = SBn

st.nMN=MM(...(MN)..))
———

n

+1o

R, applies its one argument to n instances of §. It may

be defined as:
R, E=W,FE8

where again 0 = Avk.kv = C1

1A combinator is regular when its first argument does not dis-
appear, is not duplicated, and occurs first in the resulting combi-
nation. The following usual combinators are regular: compositor
B = Xfge.f(gz), permutator C = Afzy.fyez, identity I = Az.z,
cancellator K = Azy.x, distributor S = Afgz.fz(ge), and duplicator
W =AXfz fre.

A, combines a function and n continuations. It may be
defined using an auxiliary family:

Anf = Zl6o=270

zi = f
Zif_l_1 = )\a.)\fcn_i.Zlf()\v.avnn_i)
B(Bz))C

= C(BBB)Cz! = B(CBC)BZ/
This yields the two possible definitions:
An = Ag.n(C(BBB)C)g8 = Ag.n(B(CBC)B)gb

As usual, defining combinators makes it possible to de-
rive an instruction set for implementing a semantic specifi-
cation.

5 Comparison with Related Work

The idea of representing “the rest of the computation” as
a function or a procedure has occurred more or less inde-
pendently in [van Wijngaarden 66] for transforming Algol
60 programs to eliminate all labels, in [Mazurkiewicz 71]
for proving algorithms, and in [Fischer 72] to prove the
generality of a deletion implementation strategy, based
on adding a functional argument and transforming re-
turns into calls [Morris 72]. Continuations were presented
as a device for formalizing control flow in the denota-
tional specification of programming languages with jumps
[Strachey & Wadsworth 74]. This device was character-
ized as yielding language specifications independent of the
evaluation order of the defining language [Reynolds 72]
[Plotkin 75]. Relations between direct and continuation se-
mantics were investigated in [Reynolds 74], together with
their congruence [Sethi & Tang 80]. Continuation-passing
style was made popular in [Steele & Sussman 76], and con-
version to CPS has become a common device for com-
piling Scheme [Steele 78] and more recently ML programs
[Appel & Jim 89].

Programming with continuations has appeared as an
intriguing possibility offered by control operators such as
Landin’s J, Reynolds’s escape, and call-with-current-
continuation in Scheme. Such first-class continuations are
more general than MacLisp’s catch/throw mechanism and
ML’s exceptions since they allow a previous scope to be
restored, just like applying a functional value reestablishes
an earlier environment. First-class continuations have been
investigated mainly as powerful, but unstructured devices
requiring a deep intuition and operational skill [Friedman,
Haynes, & Kohlbecker 84] [Haynes & Friedman 87]. How-
ever, some progress has been made towards a more declar-
ative view of them, based on a category-theoretical duality
between values and continuations [Filinski 89].

Recent trends in investigating first-class continuations
require the ability of composing them [Felleisen et al. 87].
This has been explored in GL [Johnson 87], where contin-
uations were composed in the semantic equations. Unfor-
tunately this makes the semantics order-dependent, com-
parably to converting a meta-circular interpreter contain-
ing shift and reset only once. The approach is changed
in [Johnson & Duggan 88], where continuations are com-
posed by appending their representation, precisely as with
the control operator in [Felleisen et al. 88]. Further, since



a continuation represents a context, context delimiters have
been introduced in [Felleisen 88] as prompts. In our frame-
work, a prompt naturally is the direct style counterpart of
initializing the continuation of a CPS program with the iden-
tity function.

Formal descriptions of the control/prompt approach
rely on representing continuations as prompt-delimited se-
quences of activation frames, and their composition as
the concatenation of these sequences. In contrast, the
shift/reset approach is based on viewing a program as
computing a function expressed in extended continuation-
passing style. For example, and as in section 1,

(let ([f (lambda (x) (shift k (k (k x))))]1)
(+ 1 (reset (+ 10 (f 100)))))

is really just another way of expressing

(let ([f-c (lambda (x k) (k (k x)))]1)
(+ 1 (f-c 100 (lambda (v) (+ 10 v)))))

while prompt/control admits no such simple static interpre-
tation.

The operator control is often referred to as Felleisen
& Friedman’s F operator. Its operational definition leaves
some room for variation, and one restricted form, also known
as F-, 1s characterized by wrapping a prompt around all con-
tinuation applications. The effect is to close the extent of a
context at the point of abstraction, instead of joining it to
the context at the point of application. This is very much
like building an explicit closure with FUNCTION around a
LAMBDA in Lisp 1.5, which experience has shown to be prefer-
able in general for both theoretical and practical reasons,
leading to lexically scoped procedures in Scheme. In fact,
F- coincides operationally with shift; for the simple case of
one delimited context, just like static and dynamic scoping
agree when the latter is used in a controlled way.

[Sitaram & Felleisen 90] proposes a hierarchy of control
operators. In that framework, specialized operators are de-
fined within the language using control and prompt. Using
them instead of the general primitives control and prompt re-
alizes the hierarchy. In contrast, our approach is fundamen-
tally hierarchic rather than being based on any particular
discipline of programming. In fact, our development is simi-
lar to what Strachey and Wadsworth proposed in their orig-
inal report [footnote 11]: to associate a continuation with
each embedding context.

[Danvy & Filinski 89] investigates abstracting control in
one delimited context, as in section 1 and 2. It also presents
a number of examples and a static type system.

[Danvy 89] contrasts imperative and functional abstrac-
tions of control by modeling them with the cancellator and
with the Curry combinators, respectively. It also stresses the
duality between sharing data structures and sharing control
when constructing these data structures.?

Abstracting control and evaluating a term in a series of em-
bedded contexts can be related to computational reflection
and the reflective tower [Smith 82]. Leaving aside the fact
that a reflective tower addresses all the elements of the com-
putational field and not only control, our contexts corre-
spond to the levels in the reflective tower. In particular, the

?For example, listing the suffixes of a list encourages sharing the
tails of the original list. Symmetrically, listing the prefixes of a list
encourages sharing the construction of these prefixes, as treated in
Pavel Curtis’s (Algorithms) of Lisp Pointers I1-3/4.

valuation function is comparable to the continuation-passing
counterpart of the valuation function in a traditional con-
tinuation semantics for Scheme though there are infinitely
many contexts:

Exp — FEnv — Cont — MCont — Ans

where MCont = Cont™ in [Wand & Friedman 88]

and MCont = (Cont x Env)* in [Danvy & Malmkjaer 88].
Finally reifying continuations and composing them [Malm-
kjeer 89] pushes and pops continuations off the meta-
continuation, dynamically, which necessitates reflexive
types. This is not the case for our description, and thus
computation never goes up and down in the tower.

Conclusions and Issues

This article presents continuations as functions represent-
ing embedding contexts when evaluating A-terms with con-
trol operators. This view is structured by making A-terms
with control operators denote purely functional A-terms in
extended continuation-passing style, combining the concise-
ness of direct style and the expressive power of extended
continuation-passing style. It offers a naturally hierarchical
framework to specify programming languages with advanced
control structures independently from any evaluation order
and in a statically typable way, which captures the original
motivations for continuations.

This development has lead us to generalize the algorithm
of translation from direct style to CPS and ECPS, and to for-
mulate it meta-circularly. More notably, this investigation
made it possible to improve the efficiency of the translation,
by distinguishing between syntactic (run time) and seman-
tic (compile time, or rather translation time) A-abstractions
and thus avoiding both building and post-reducing - and
n-redexes.

The translation can still be improved by generalizing
Reynolds’s concept of serious and trivial terms [Reynolds
72]: a n-trivial term is a term that does not need to be
passed the nth, n+1st, etc. continuations because it does
not use them but merely transmits them unchanged. Such
a term need not be translated further.

We have implemented both semantics and translations
by transliterating the semantic equations into Scheme, defin-
ing de facto yet another dialect of Scheme. Due to 5-
reduction, computations only pay for the contexts they ac-
tually use.

There are many possible developments to this work. For ex-
ample, the set of control operators presented here is some-
what arbitrary, and not completely satisfactory, in the sense
that the desirable relation

tnk.kE = E

does not hold for n > 2. Also it might be necessary to select
a continuation representing a specific outer context; or each
continuation up to another context, e.g. with

¢(k, ..., kn).E

Work is going on to devise other families of operators char-
acterized by simpler relations or more closely corresponding
to some particular pattern of use.

One might also consider having infinitely many contin-
uations so that it would be possible to abstract arbitrarily



many contexts. However, this raises some deep foundational
problems. An idea is to construct the inverse limit of the
CPS conversion. On the other hand, having a limited num-
ber of contexts may correspond to a computational reality.
Again, this is left for further research.

Finally, there appear to be some deep connections be-
tween our development and the monad-based computational
A-calculus described in [Moggi 89]. One would expect the
generalized notion of continuation presented here to be ex-
pressible as a suitable monad structure over the A-calculus.
Furthermore, the ability to compose and reset continuations
in turn seems sufficient to encode any such structure as an
instance of the ECPS formalism. This potential equivalence
is currently being investigated.

The study of advanced control structures in programming
languages is still a comparatively young area of computer
science, and it is yet far from clear what directions it will
take. We believe, however, that the basic idea of a general-
ized continuation-passing style, expressed in a functional,
statically typed framework stands an excellent chance of
eventually leading towards a better understanding of ab-
stracted control.
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