
Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering
Department of Computer Science

EXTENSION AND OPTIMISING COMPILATION
OF CONSTRAINT HANDLING RULES
Peter VAN WEERT

Dissertation presented in
partial fulfilment of the

requirements for the degree
of Doctor in Engineering

May 2010





EXTENSION AND OPTIMISING COMPILATION
OF CONSTRAINT HANDLING RULES
Peter VAN WEERT

Dissertation presented in
partial fulfilment of the

requirements for the degree
of Doctor in Engineering

Jury:
Prof. Dr. ir. Hendrik Van Brussel, president
Prof. Dr. Bart Demoen, promotor
Prof. Dr. ir. Maurice Bruynooghe
Prof. Dr. ir. Thom Frühwirth (Universität Ulm)
Prof. Dr. ir. Fraņcois Fages (INRIA Paris-Rocquencourt)

May 2010



c© Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

Legal depot number D/2010/7515/58
ISBN number 978-94-6018-219-8



Abstract

Constraint Handling Rules (CHR) is a high-level declarative programming lan-
guage based on multi-headed multiset rewrite rules, combined with aspects of
logic and constraint programming. Originally designed for extending a host
language with user-defined constraint solvers, CHR has evolved into a powerful,
elegant general-purpose language with a wide spectrum of application domains.

The goal of this dissertation is to further improve the practical usability of the
CHR programming language. As a first step, we therefore redesign the language’s
syntax, language features, and operational semantics to allow a more high-level,
declarative programming style. Our streamlined CHR2 syntax allows for more
natural, readable, and concise rule definitions. The operational semantics of
CHR2 programs is designed to be as non-deterministic as possible, while still
facilitating the effective execution control required for practical programming.
In line with the ‘what, not how’ and ‘algorithm = logic + control’ maxims
of declarative programming, the CHR2 system by default fully determines the
execution strategy. When needed though, the programmer may control the order
in which rules and conjunctions are executed using two orthogonal, familiar
execution control constructs: rule priorities and sequential conjunction. Priorities
are specified using symbolic priority constraints, which are more flexible than
earlier proposals, and offer a better separation of logic and control.

We furthermore extended CHR with expressive language abstractions called
aggregates. Aggregates are powerful, concise rule applicability conditions that
collect information from larger parts of the constraint store. Well-known ex-
amples include min, sum, count, and findall. Our proposed framework supports
nested aggregate expressions, efficient incremental aggregate computation and
application-tailored user-defined aggregates. Aggregates eliminate the need for
low-level encodings of aggregate computations commonly found in CHR programs.
The extended CHR language thus fully regains its high-level, declarative nature.

A next crucial aspect of the practical usability of any programming language
is the performance of its implementations. Because CHR2 rules are written at a
very high level of abstraction, uncovering the optimal low-level execution steps
required to evaluate them is very challenging. In the final part of the dissertation,

iii



iv Abstract

we therefore introduce, evaluate and refine many new and existing analyses and
optimisation techniques for CHR programs. Two instances are discussed in more
detail: We revise CHR’s compilation scheme to optimise the space consumption
of recursive programs, and develop novel techniques for optimal—both in space
and in time—reapplication prevention of CHR propagation rules.

Lastly, for CHR to be really useful for practical applications, CHR must be
embedded in a mainstream host language. We therefore developed K.U.Leuven
JCHR, a state-of-the-art CHR system for Java. The thesis addresses both the
language design issues of integrating CHR with imperative host languages, and
the technical challenges faced when compiling CHR to imperative languages.
JCHR is currently one of the most complete and efficient CHR implementations
available, typically outperforming other rule-based systems by several orders of
magnitude. The next-generation JCHR2 system moreover is a first reference
implementation of the improved CHR2 language, extended with negation as
absence.



Beknopte Samenvatting

Constraint Handling Rules (CHR) is een hoog-niveau declaratieve program-
meertaal gebaseerd op meerhoofdige multiset-herschrijfregels, gecombineerd met
aspecten uit logische en constraint-gebaseerde programmeertalen. Hoewel oor-
spronkelijk ontworpen voor het uitbreiden van bestaande gasttalen met gebruikers-
gedefinieerde constraint solvers, is CHR in het voorbije decennium geëvolueerd
tot een krachtige, elegante, algemeen bruikbare programmeertaal, met een breed
spectrum van toepassingsdomeinen.

Deze verhandeling heeft tot doel de praktische bruikbaarheid van CHR als
programmeertaal verder te verbeteren. In een eerste stap, herontwerpen we de
syntax, taalelementen, en operationele semantiek van de taal, teneinde een meer
hoog-niveau, declaratieve programmeerstijl te ondersteunen. Onze gestroomlijnde
CHR2 syntax resulteert in meer natuurlijke, leesbare, en compacte regeldefinities.
De operationele semantiek van CHR2 programma’s is ontworpen om zo non-
deterministisch mogelijk te zijn, maar toch nog de effectieve uitvoeringscontrole
te bieden die onontbeerlijk is voor praktisch programmeren. In overeenstemming
met de ‘wat, niet hoe’ en ‘algoritme = logica + controle’ motto’s van declaratief
programmeren, bepaalt het CHR2 systeem normaal gezien zelf volledig de uitvoe-
ringsstrategie. Echter, wanneer nodig kan de programmeur de uitvoeringsvolgorde
van de regels en conjuncties bijsturen met een combinatie van twee orthogonale,
vertrouwde mechanismes voor uitvoeringscontrole: regelprioriteiten en sequenti-
ële conjuncties. Prioriteiten worden gespecificeerd via symbolische beperkingen
(constraints), die flexibeler zijn dan eerdere voorstellen, en een betere scheiding
bieden van de logische en controle-aspecten van een programma.

Verder breiden we de CHR taal uit met expressieve taalabstracties genaamd
aggregaten. Aggregaten zijn krachtige, bondige regeltoepasbaarheidsvoorwaarden
die informatie verzamelen over grotere delen van de constraint store. Vertrouwde
voorbeelden zijn onder andere min, sum, count, en findall. Het voorgestelde
raamwerk ondersteunt geneste aggregaatsuitdrukkingen, efficiënte incrementele
berekening van aggregaten, en toepassingsspecifieke, gebruikersgedefinieerde aggre-
gaten. Dankzij aggregaten worden typische laag-niveau encoderingen overbodig,
waardoor CHR zijn hoog-niveau, declaratief karakter herwint.

v



vi Beknopte Samenvatting

Een volgend cruciaal aspect van de praktische bruikbaarheid van een pro-
grammeertaal is de performantie van haar implementaties. Omdat CHR2 regels
geschreven zijn op een zeer hoog niveau van abstractie, is het bepalen van de
optimale laag-niveau uitvoeringsstappen om deze regels te evalueren bijzonder
uitdagend. Het laatste deel van de verhandeling introduceert, evalueert en verfijnt
daarom nieuwe en bestaande analyse- en optimalisatietechnieken voor CHR pro-
gramma’s. Twee problemen worden meer gedetailleerd behandeld: We herwerken
het compilatieschema voor CHR om het ruimtegebruik van recursieve programs te
optimaliseren, en ontwerpen nieuwe technieken om op een optimale manier—zowel
qua ruimte als tijd—te voorkomen dat zogenaamde propagatieregels meerdere
malen worden toegepast.

Om CHR echt nuttig bruikbaar te maken voor praktische toepassingen, moet
CHR ingebed worden in een mainstream gasttaal. Daarom hebben we K.U.Leuven
JCHR ontwikkeld, een state-of-the-art CHR systeem voor Java. De thesis be-
handelt zowel taalontwikkelingsaspecten gerelateerd aan de integratie van CHR
met imperatieve gasttalen, alsook de technische uitdagingen die opdagen bij het
compileren van CHR naar dergelijke talen. JCHR is momenteel een van de meest
complete en efficiënte CHR implementaties beschikbaar, en is typisch meerdere
grootteordes efficiënter dan andere regelgebaseerde systemen. Ons JCHR2 sys-
teem is bovendien een eerste referentie-implementatie van de verbeterde CHR2
taal, uitgebreid met negation as absence.



Contents

Abstract iii

Beknopte Samenvatting v

Contents vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
List of Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Symbols xix

Acknowledgements xxi

1 Introduction 1
1.1 Declarative Programming . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Constraint Handling Rules . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals and Overview . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Part I — Background . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Part II — CHR Language Design . . . . . . . . . . . . . . 4
1.3.3 Part III — Optimising Implementation of CHR . . . . . . 5

1.4 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Background 7

2 Rule-based Programming 9
2.1 Rules in Programming . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Production Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vii



viii Contents

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Historical overview . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Matching algorithms . . . . . . . . . . . . . . . . . . . . . 15

3 Logic and Constraint Programming 19
3.1 Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Basics of logic programming . . . . . . . . . . . . . . . . . 20
3.1.2 Operational semantics . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Prolog: programming in logic . . . . . . . . . . . . . . . . 24
3.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . 26

4 Constraint Handling Rules 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 CHR(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3 CHR by example . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.4 Relation to other formalisms . . . . . . . . . . . . . . . . 34

4.2 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Logical semantics . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 The theoretical operational semantics ωt . . . . . . . . . . 38
4.2.3 The refined operational semantics ωr . . . . . . . . . . . . 40

4.3 Program Properties and Analysis . . . . . . . . . . . . . . . . . . 44
4.3.1 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Language Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.1 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.3 Adaptive CHR . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4 Disjunction and search . . . . . . . . . . . . . . . . . . . . 49

4.5 Systems and Implementation . . . . . . . . . . . . . . . . . . . . 50
4.5.1 CHR(LP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.2 CHR(FP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.3 CHR(Java) and CHR(C) . . . . . . . . . . . . . . . . . . 53
4.5.4 Programming Environments . . . . . . . . . . . . . . . . . 54

4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6.1 Constraint solvers . . . . . . . . . . . . . . . . . . . . . . 55
4.6.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.3 Programming language development . . . . . . . . . . . . 57
4.6.4 Industrial CHR use . . . . . . . . . . . . . . . . . . . . . . 60



Contents ix

II CHR Language Design 61

5 A Next Generation CHR Language 63
5.1 Basic Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Rule conditions . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2 Constraint identifiers . . . . . . . . . . . . . . . . . . . . . 65
5.1.3 Constraint arguments . . . . . . . . . . . . . . . . . . . . 66
5.1.4 Priority constraints . . . . . . . . . . . . . . . . . . . . . . 66
5.1.5 Batch and sequential conjunctions . . . . . . . . . . . . . 69
5.1.6 Set semantics . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.7 Functional dependencies . . . . . . . . . . . . . . . . . . . 72

5.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.1 Program normalisation . . . . . . . . . . . . . . . . . . . . 74
5.2.2 The operational semantics ω2 . . . . . . . . . . . . . . . . 75
5.2.3 Compatibility with other semantics . . . . . . . . . . . . . 77
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Aggregates 83
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1 Negation as absence . . . . . . . . . . . . . . . . . . . . . 84
6.1.2 Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Extensible Aggregate Framework . . . . . . . . . . . . . . . . . . 89
6.2.1 Universal aggregate construct . . . . . . . . . . . . . . . . 90
6.2.2 Common aggregates . . . . . . . . . . . . . . . . . . . . . 92

6.3 Language Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1 Aggregates for rule-based programs . . . . . . . . . . . . . 94
6.3.2 Aggregates in CHR and CHR2 . . . . . . . . . . . . . . . 99

6.4 Formal Semantics and Properties . . . . . . . . . . . . . . . . . . 100
6.4.1 Operational semantics . . . . . . . . . . . . . . . . . . . . 100
6.4.2 Logical semantics and formal properties . . . . . . . . . . 101

6.5 Expressiveness case studies . . . . . . . . . . . . . . . . . . . . . 102
6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 CHR for Imperative Host Languages 109
7.1 Impedance Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.1 (C)LP language features . . . . . . . . . . . . . . . . . . . 110
7.1.2 Imperative language features . . . . . . . . . . . . . . . . 112

7.2 Integrated CHR(imperative) Systems . . . . . . . . . . . . . . . 113
7.2.1 Design philosophy . . . . . . . . . . . . . . . . . . . . . . 114
7.2.2 Arbitrary built-in constraints and solvers . . . . . . . . . 115



x Contents

7.3 The K.U.Leuven JCHR Systems . . . . . . . . . . . . . . . . . . 117
7.3.1 Historical overview . . . . . . . . . . . . . . . . . . . . . . 117
7.3.2 JCHR handlers . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.3 JCHR constraints . . . . . . . . . . . . . . . . . . . . . . 121
7.3.4 An integrated CHR(Java) system . . . . . . . . . . . . . . 122
7.3.5 Built-in constraints and solvers . . . . . . . . . . . . . . . 123
7.3.6 Using a JCHR handler . . . . . . . . . . . . . . . . . . . . 125
7.3.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.1 CHR in C . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.2 CHR in Java . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.3 CHR in functional languages . . . . . . . . . . . . . . . . 130
7.4.4 Production Rule Systems . . . . . . . . . . . . . . . . . . 131

III Optimising Implementation of CHR 133

8 Optimising Compilation and Lazy Evaluation 137
8.1 Core language and normal form . . . . . . . . . . . . . . . . . . . 138
8.2 Basic Compilation Methodology . . . . . . . . . . . . . . . . . . . 140

8.2.1 Principal data structures and operations . . . . . . . . . . 140
8.2.1.1 The constraint store . . . . . . . . . . . . . . . . 140
8.2.1.2 Constraint iterators . . . . . . . . . . . . . . . . 140
8.2.1.3 The propagation history . . . . . . . . . . . . . . 141

8.2.2 Basic compilation scheme . . . . . . . . . . . . . . . . . . 142
8.2.3 Extension with negation . . . . . . . . . . . . . . . . . . . 145
8.2.4 Extension with priorities . . . . . . . . . . . . . . . . . . . 146

8.3 Program Analysis and Optimisation . . . . . . . . . . . . . . . . 147
8.3.1 Constraint invariants . . . . . . . . . . . . . . . . . . . . . 148

8.3.1.1 Deriving constraint invariants . . . . . . . . . . 148
8.3.1.2 Unenforced constraint invariants . . . . . . . . . 149

8.3.2 Optimising join computation . . . . . . . . . . . . . . . . 149
8.3.2.1 Loop-invariant code motion . . . . . . . . . . . . 150
8.3.2.2 Constraint indexing . . . . . . . . . . . . . . . . 151
8.3.2.3 Exploiting constraint invariants . . . . . . . . . 152
8.3.2.4 Pre-commit backjumping . . . . . . . . . . . . . 153
8.3.2.5 Post-commit backjumping . . . . . . . . . . . . 153
8.3.2.6 Fragile iterators . . . . . . . . . . . . . . . . . . 154
8.3.2.7 Join ordering . . . . . . . . . . . . . . . . . . . . 155

8.3.3 Reducing constraint store overhead . . . . . . . . . . . . . 157
8.3.3.1 Late indexing . . . . . . . . . . . . . . . . . . . . 157
8.3.3.2 Late allocation . . . . . . . . . . . . . . . . . . . 159



Contents xi

8.3.3.3 In-place and delayed modifications . . . . . . . . 159
8.3.3.4 Lazy indexing . . . . . . . . . . . . . . . . . . . 159

8.3.4 Optimising constraint activation . . . . . . . . . . . . . . 160
8.3.4.1 Removal preference . . . . . . . . . . . . . . . . 160
8.3.4.2 Reducing schedule overhead . . . . . . . . . . . 160
8.3.4.3 Passive removals . . . . . . . . . . . . . . . . . . 160
8.3.4.4 Passive occurrences . . . . . . . . . . . . . . . . 162
8.3.4.5 Dynamic passive occurrences . . . . . . . . . . . 163

8.3.5 Optimising constraint reactivation . . . . . . . . . . . . . 164
8.3.5.1 Selective reactivation . . . . . . . . . . . . . . . 164
8.3.5.2 Delay avoidance . . . . . . . . . . . . . . . . . . 165
8.3.5.3 Generation optimisation . . . . . . . . . . . . . . 165

8.3.6 Program specialisation . . . . . . . . . . . . . . . . . . . . 165
8.3.6.1 Constraint specialisation . . . . . . . . . . . . . 166
8.3.6.2 Guard simplification . . . . . . . . . . . . . . . . 166

8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.4.1 CHR systems . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.4.2 Production rule systems . . . . . . . . . . . . . . . . . . . 167

8.5 Discussion and Related Work . . . . . . . . . . . . . . . . . . . . 168
8.5.1 CHR systems . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.5.2 Production rule systems . . . . . . . . . . . . . . . . . . . 169

8.6 Ongoing and Future Work . . . . . . . . . . . . . . . . . . . . . . 172
8.6.1 Dynamic optimisations . . . . . . . . . . . . . . . . . . . . 173
8.6.2 Global optimisations . . . . . . . . . . . . . . . . . . . . . 174

9 Recursion Optimisations 175
9.1 Sequential Conjunctions and Recursion . . . . . . . . . . . . . . . 176

9.1.1 Basic compilation scheme . . . . . . . . . . . . . . . . . . 176
9.1.2 Problem analysis: recursion and stack overflows . . . . . . 177
9.1.3 Problem demonstration: empirical results . . . . . . . . . 179

9.2 Recursion Optimisations . . . . . . . . . . . . . . . . . . . . . . . 180
9.2.1 Trampoline-based execution . . . . . . . . . . . . . . . . . 180
9.2.2 Explicit stack . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10 Optimising Propagation Rules 187
10.1 Propagation History Implementation . . . . . . . . . . . . . . . . 188

10.1.1 Optimising history maintenance . . . . . . . . . . . . . . 189
10.2 Non-reactive Propagation Rules . . . . . . . . . . . . . . . . . . . 190



xii Contents

10.2.1 Introduction: from fixed to non-reactive CHR . . . . . . . 190
10.2.2 Propagation history elimination . . . . . . . . . . . . . . . 192
10.2.3 Optimised reapplication avoidance . . . . . . . . . . . . . 195

10.3 Idempotence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.3.1 Deriving idempotence . . . . . . . . . . . . . . . . . . . . 200

10.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

10.5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 205

11 Conclusions 207
11.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

11.1.1 CHR language design . . . . . . . . . . . . . . . . . . . . 207
11.1.2 Optimising implementation of CHR . . . . . . . . . . . . 208

11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Appendices 211

A Heuristics for an A? Join Ordering Algorithm 213

B Anti-Monotony-based Delay Avoidance 217

C Benchmarks 221

Bibliography 225

Biography 245

List of Publications 247



List of Figures

4.1 Transition rules of the theoretical operational semantics ωt . . . 39
4.2 Transition rules of the refined operational semantics ωr . . . . . 42
4.3 The Apply transition rule of the priority semantics ωp . . . . . . 48
4.4 A timeline of CHR implementations . . . . . . . . . . . . . . . . 51

5.1 Transition rules of the operational semantics ω2 . . . . . . . . . . 76

8.1 Performance comparison for two famous benchmarks . . . . . . . 169

9.1 Execution of recursive CHR rules . . . . . . . . . . . . . . . . . . 177

10.1 Optimised reapplication avoidance for non-reactive rules . . . . . 197

xiii



xiv List of Figures



List of Tables

2.1 Rule-based programming terminology . . . . . . . . . . . . . . . 18

4.1 Comparison of CHR with related formalisms . . . . . . . . . . . 35

6.1 Predefined aggregates . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Expressivity gained by using aggregates . . . . . . . . . . . . . . 105

7.1 Version history of the K.U.Leuven JCHR System . . . . . . . . . 119
7.2 JCHR’s Java built-in constraints . . . . . . . . . . . . . . . . . . 124

8.1 Performance comparison of state-of-the-art CHR systems . . . . 167
8.2 Performance comparison with production rule systems . . . . . . 168
8.3 Optimisations implemented by state-of-the-art CHR systems . . 170

9.1 Recursion limits for different CHR systems. . . . . . . . . . . . . 179
9.2 Recursion limits for standard CHR benchmark programs . . . . . 180
9.3 Recursion optimisations . . . . . . . . . . . . . . . . . . . . . . . 184

10.1 Benchmark results for two-headed rules . . . . . . . . . . . . . . 202
10.2 Benchmark results for non-reactive CHR rules . . . . . . . . . . . 203
10.3 Benchmark results for idempotent propagation rules . . . . . . . 203

C.1 Software versions used for benchmarking . . . . . . . . . . . . . . 221
C.2 Benchmark descriptions . . . . . . . . . . . . . . . . . . . . . . . 224

xv



xvi List of Tables



List of Listings

2.1 OPS5 encondig of a rule from the Waltz program . . . . . . . . 12
2.2 CLIPS/Jess encondig of a rule from the Waltz program . . . . . 12
2.3 Drools 5 encondig of a rule from the Waltz program . . . . . . . 12

3.1 Example Prolog program . . . . . . . . . . . . . . . . . . . . . . 21

4.1 The leq handler . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Linearised form of the leq handler . . . . . . . . . . . . . . . . . 32
4.3 The primes handler . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Occurrence numbering for the primes handler . . . . . . . . . . . 41

6.1 Dijkstra’s algorithm with and without aggregates . . . . . . . . . 103
6.2 Checking eulerianity in CHR with and without aggregates . . . . 103
6.3 Hopcroft’s algorithm in CHR with and without aggregates . . . . 104
6.4 A Sudoku solver in CHR with and without aggregates . . . . . . 105

7.1 A JCHR implementation of the leq handler . . . . . . . . . . . . 120
7.2 A JCHR2 encoding of the mergesort handler . . . . . . . . . . 121
7.3 A JCHR2 implementation of the gcd handler . . . . . . . . . . . 122
7.4 Declaration of built-in equality solvers in JCHR . . . . . . . . . . 125
7.5 Using a JCHR handler from Java . . . . . . . . . . . . . . . . . . 126
7.6 A CCHR implementation of the leq handler . . . . . . . . . . . 129

8.1 Basic compilation scheme for a positive occurrence . . . . . . . . 143
8.2 Naive compilation using the basic compilation scheme . . . . . . 144
8.3 Basic compilation scheme for a negated conjunction . . . . . . . 145
8.4 Constraint activation, extended to deal with priorities . . . . . . 147
8.5 Loop-invariant code motion . . . . . . . . . . . . . . . . . . . . . 150
8.6 Indexing and exploiting constraint invariants . . . . . . . . . . . 152

xvii



xviii List of Listings

8.7 Optimal join computation . . . . . . . . . . . . . . . . . . . . . . 156
8.8 Passive modification in a rule from Waltz . . . . . . . . . . . . 161

10.1 The fibbo program . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.2 The fib program . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.3 Bank account example . . . . . . . . . . . . . . . . . . . . . . . . 193



List of Symbols

Symbol Description Page
θ (matching) substitution / variable renaming 20
θ(X) instantiation of X after applying substitution θ 20
vars(X) the variables occurring in X 39
∀̄X ∀x1, . . . ,∀xnX with {x1, . . . , xn} = vars(X) 36
∃̄YX ∃x1, . . . ,∃xnX with {x1, . . . , xn} = vars(X)\vars(Y ) 39
πV (X) ∃x1, . . . ,∃xnX with {x1, . . . , xn} = vars(Y ) \ V 43

++ sequence concatenation 39
] multiset union 39
t disjoint union: ∀̄(X = Y tZ ↔ X = Y ∪Z∧Y ∩Z = ∅) 39
[e1, . . . , en] sequence of elements e1, . . . , en 40
X[i] the ith element in sequence X (starting from 1) 40
|X| the size of a set X (or length of a sequence X) 40
[H|T ] [H]++T 42

c/n a predicate or constraint c and n arguments 21
P a CHR program 33
P? a normalised CHR program 33
H host language 30
DH built-in constraint theory 36

CHR(H) CHR with host language H 30
CHRrp CHR with rule priorities 47
CHR∨ CHR with disjunctive rule bodies 49
CHR2 the next generation CHR language defined in this thesis 63

xix



xx List of Symbols

Symbol Description Page
ωt the theoretical operational semantics of CHR 38
ωr the refined operational semantics of CHR 40
ωp the priority semantics of CHRrp 48
ωrp the refined priority semantics of CHRrp 48
ω2 the operational semantics of CHR2 75

c#i an identified CHR constraint c with identifier i 38
c#i:j an occurrenced identified constraint c#i being matched

with its jth occurrence
41

chr(c#i) returns the CHR constraint c 38
id(c#i) returns the CHR constraint identifier i 38

G goal (of a CHR state) 38
A activation stack 41
S CHR constraint store 38
B built-in constraint store 38
T propagation history 38

�P transition between two states in program P 39
�∗P finite sequence of transitions in program P 40



Acknowledgements
I can no other answer make, but, thanks, and thanks.

— William Shakespeare (1564–1616)
English poet and playwright

This dissertation presents the main results of my Ph.D. research carried out at the
Computer Science department of the K.U.Leuven during the past four and a half
year. Its completion would have been impossible without the help and support of
many people to whom I would first like to express my sincere gratitude.

Let me start with the time leading up to the start of my thesis project. First of
all, I owe a great deal of gratitude to Bart Demoen and especially Tom Schrijvers
for their excellent guidance during my master’s thesis on “Constraint Programming
in Java: a user-friendly, flexible and efficient CHR-system for Java”. Not only
did they introduce me to the central topics of this dissertation—Constraint
Handling Rules, programming language design and optimising compilation—they
also showed me that research can be fun, challenging, and rewarding. After I
submitted the thesis, they moreover invited me to write my first paper, and to
present my work at the CHR 2005 workshop in Sitges. This recognition was an
important motivation for me to start as a Ph.D. student the next year.

For a brief time, my career as a Ph.D. student actually started in the SecLang
taskforce of the DistriNet research group, under the supervision of Frank Piessens.
Thank you, Frank, for the confidence and for acting as my supervisor, even if
it was only for four months, and especially for being so understanding when we
decided it was better to switch. It was by no means a fault of yours, I simply
was unable to let go of my master’s thesis: the optimising compilation of JCHR
had become almost a hobby, and the perfectionist in me simply could not shake
the feeling there was still too much room for improvement there.

Thanks also to my officemates of old, Kristof Geebelen, Thomas Heyman,
Eryk Kulikowski, and Koen Yskout, for making those first few months at the
department so enjoyable. Our ‘basement’ office, at the time conveniently located
next to the ping pong table, was no doubt the most lively office I have worked in
at the department. Furthermore, I must thank them and all other members of the

xxi



xxii Acknowledgements

DistriNet Alma gang, Koen Buyens, Kris Demarsin, Bart Elen, Johan Gregoire,
Riccardo Scandariato, Tom Stijnen, Yves Younan, Koen Victor, Kim Wuyts, etc.,
for making our daily Alma trips a treat, even long after I left DistriNet. I almost
regret kicking the Alma diet when I think back to those days.

The research reported in this dissertation finally took off in January 2006
when I joined the DTAI research group to further pursue the research I started
there as a master’s student. A special thanks to my supervisor Bart Demoen for
taking me back. I can honestly say that I cannot imagine a wiser, cleverer, more
inspirational, devoted, or more approachable mentor. Thanks for always being
there when I needed help or guidance, and for encouraging me to find my own
way in my Ph.D. research. Admittedly, it took me quite a while to find it, but in
the end it all turned out well.

As with my thesis topic, it took me some time to settle down into my final
office as well. During the first months as a DTAI member, I moved around the
first floor quite a bit. Even though I did not get to know half of you half as well
as I should like, thanks Manh Thang Nguyen (rest in peace, my dear friend),
Quan Phan, Álvaro Cortés, Johan Wittocx, Hou Ping, Remco Tronçon, Qiang
Fu, and anyone else I may have shared an office with, however briefly, for your
pleasant company.

Work never felt quite like home though until Leslie De Koninck and Jon
Sneyers moved from across the hall into room 01.05 (later labelled 01.171, and
now 01.167) to replace Remco and Fu. I cannot thank them enough for the relaxed,
inspiring and productive atmosphere that always permeated our CHR bastion.
I enjoyed tremendously our successful collaborations, the intense discussions at
the white board, and of course our daily coffee breaks. Even though I do not
drink coffee, these trips to the cafeteria were indispensable moments of relaxation
and socialising. I am also grateful to Jon for allowing me to jettison my guilt for
being somewhat lazy, as he is always so kind as to keeping his desk in an even
more chaotic state than mine.

In April 2009, after completing his excellent Ph.D. in a record-breaking three
and a half year, Leslie left to carry out his life-long dream of living in Australia.
Soon after, being abandoned by his office mate Tom Schrijvers1, Pieter Wuille
stepped up to the difficult task of replacing Leslie. After a trial period of six
months, we decided he could stay. With Pieter there, I also no longer was the
only one haunted by the universal laws of implementation (namely Hofstadter’s
Law2 and the ninety-ninety rule3). You can also always count on Pieter for
citing intriguing engineering trivia and movie quotes, and for computing the most
interesting facts. Thanks also for teaching us that we can also take the stairs for

1Tom visited the Cambridge University Computer Laboratory for six months.
2Hofstadter’s Law: It always takes longer than you expect, even when you take into account

Hofstadter’s Law.
3The first 90% of the code accounts for the first 90% of the development time. The remaining

10% of the code accounts for the other 90% of the development time.



xxiii

our coffee breaks. We have since gone up and down about 53,125 stairs, more
than 10km height difference, allowing me to burn 8,500 calories or more than 29
sausage rolls. This is still only about 36% of the rolls I have eaten—thank you
Alma for your sausage rolls—but a good start nevertheless.

One of the most interesting rewards of doing research and writing papers is
that it gives you the opportunity to see the world. Forever engraved in my memory
are the confusing maze of alleyways and canals in football crazy Venice, the port
cellars in Porto, the rain in Udine, and the cocktail and karaoke bars in Pasadena.
Thanks to all those who made these trips unforgettable: the colleagues from
Leuven that joined me—my fellow CHR team members, Theofrastos Mantadelis,
Quan Phan, Hanne Vlaeminck, etc.—as well as the many new friends I met on
these travels. A honorary mention goes to the countless wonderful people I met at
the Constraint Programming summer schools in Lloret de Mar and St. Andrews.
A special thanks also to Paolo Pilozzi, for driving me across Slovenia (together
with Leslie) and later America (together with Dean Voets in our ever-so-cool
Ford Mustang), allowing me to gaze once more upon the great canyons of the
West—Zion, Bryce, and the ‘big hole’ itself. And who could forget the good
times, and not-so good pizza’s, we had in Vegas!

A big thanks to all the members of the CHR community—Hariolf Betz,
Gregory Duck, Mark Meister, Frank Raiser, Jairson Vitorino, and many more—
for making the CHR workshop, as well as all the social events surrounding them,
an event to look forward to each year. To everyone who has used my JCHR
system, and to Slim Abdennadher and Shehab Alaa El-Din Fawzy for building the
Eclipse plug-in: your input and feedback has been invaluable. Martin Sulzmann, I
cannot thank you enough for your catching enthusiasm, and for taking an interest
in my research and inviting me to stay in Singapore for a month. Thanks Martin,
Edmund Soon Lee Lam, and Kenny Lu Zhuo Ming, for your warm welcome, for
the many hours discussing concurrency issues, and for allowing me to sample
the diverse tastes and cultures Asia has to offer. A special thanks, finally, to
Thom Frühwirth, for inventing CHR, for forever propagating his passion for the
language, for closely following my work ever since the CHR 2005 workshop, for
the stay in the lovely city of Ulm during the CHR Working Week, and for inviting
me to co-organise this year’s CHR workshop and summer school.

Next to research, a Ph.D. student at our department is responsible for teaching
exercise classes. I have always enjoyed doing this tremendously. Thanks to all my
students and colleagues; especially Henk Olivié, whose unsurpassed passion for the
teaching profession certainly rubbed off to all the members of the dedicated BVP
team—Erik Boiy, Nik Corthaut, Pieter-Jan Drouillon, Joris Klerkx, Paolo Pilozzi,
Stefan Raeymaekers, Hanne Vlaeminck, etc.—during the weekly meetings.

The completion of this thesis would furthermore have been impossible without
the help and support of many others outside the department. Firstly, financially,
I am forever indebted to the Research Foundation Flanders (FWO Vlaanderen),



xxiv Acknowledgements

for funding me for four years as a FWO research assistant. Secondly, and more
importantly, my sincere gratitude goes to all my friends, family, and parents. My
friends—Anne-Katrien, Bert, Geert, Geert & Marijke, Kris & Isabel, Pieter &
Eveline, Sven & Femke, just to name a few of my fabulous friends here in Leuven—
thanks for making Leuven my second home, for the West Coast Road Trip, the
weekends in the Ardennes, the relaxing times in France and Switzerland, and so
much more. My family, for the yearly hiking trips to the Alps, the weekends in
the Ardennes, for doing at the very least an excellent job at pretending you enjoy
my quizzes, and so much more. My parents and brother, for introducing me to
the world of computers, for the unconditional love and support, for putting up
with me when I was stressing about deadlines, for driving me back and forth to
Leuven, and so much more. Thanks all for making all the time outside of the
office at least as enjoyable!

To conclude, I would like to thank to the members of the jury, for being the
first to read my text, and for your insightful comments. And finally, thank you
reader, for reading these acknowledgements at least. I hope you enjoy reading
my dissertation as much as I enjoyed preparing and writing it.



Chapter1
Introduction

Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming:
the user states the problem, the computer solves it.

— Eugene C. Freuder (1997, Constraints 2(1):57–61)

1.1 Declarative Programming
Conventional programming languages mostly fall under the umbrella term im-
perative languages. In natural languages, the imperative mood expresses direct
commands or requests. Imperative computer programs similarly specify sequences
of commands for the computer to perform. Much like a cooking recipe, an imper-
ative program specifies all consecutive steps required to produce some desired
result from given input data. Even though the steps have become more high
level, and powerful mechanisms have been developed to structure, group, and
reuse different sequences of steps, most modern-day mainstream programming
languages remain imperative by nature.

The ‘Holy Grail’ of declarative programming1, on the other hand, is that a
program should only describe what the problem is, rather than how to solve
it. Using some intuitive, high-level formalism, a programmer indicates only the
essential characteristics of the problem (or the required solution); the computer

1The notion ‘declarative programming’ has several definitions. It is therefore debatable
whether or not languages such as Constraint Handling Rules or Prolog are ‘declarative’. The
more puristic definition requires declarative programs to have a strict correspondence with a
theory in a suited mathematical logic. As introduced further in this section, in this dissertation
we employ the common, more pragmatic view where declarative languages are high-level
languages, contrasted with imperative ones based on a defining ‘what, not how’ principle.

1



2 Introduction

then determines the best way to solve it. To use another cooking metaphor: you
only describe to your Personal Cook (PC) the desired properties of your favourite
dish, you do not want to have to spell out the recipe.

The advantages of declarative programming are multifold. Software develop-
ment time is reduced, even for complex problems for which the solution algorithm
is far from apparent. Declarative programs are generally more concise and read-
able, making them easier to adapt, maintain, and reason about. Their semantics
(meaning) is well-defined and intuitive, often founded by some mathematical
or logical formalism (see further). Even without knowing how the underlying
implementation actually solves your problem, this facilitates debugging and (auto-
matic) verification of correctness properties. Moreover, domain experts typically
spend a lot of research and effort into the design and implementation of the
algorithms and compilers used to execute declarative programs. The result is
that declarative programs often are at least as efficient and scalable as programs
written in conventional languages.

Declarative languages differ on the formalism used to specify programs. The
three most well-known categories are:

Functional programming languages are based on the evaluation of math-
ematical functions. Examples are LISP, ML, Erlang, and Haskell.

Logic programming languages have their roots in mathematical logic. The
best-known logic programming language is Prolog, but many others exist.

Constraint programming languages employ various types of mathemat-
ical relations between program variables to constrain candidate solutions.
Constraints are typically embedded in logic or imperative languages via
constraint solving libraries (such as ECLiPSe or Gecode).

Logic and constraint programming are introduced in more detail in Chapter 3.
Of particular interest to us is yet another class of declarative programming

languages, commonly referred to as rule-based programming languages. Rule-based
programs consist of high-level, logical if-then rules, and are the descendants of
so-called production rule languages, which were popular in the specification of AI
applications in the 1970s and 1980s. Today, interest in rule-based programming
languages is revived due to the growing proliferation of software solutions based
on business rules. A proper introduction of the rule-based languages paradigm is
found in Chapter 2.

1.2 Constraint Handling Rules
Constraint Handling Rules (CHR) is a rule-based programming language, com-
monly embedded in an existing host language. It elegantly combines aspects from
rule-based, logic and constraint programming.



1.3 Goals and Overview 3

CHR was originally created by Thom Frühwirth in 1991 as a special-purpose
language for the high-level specification of constraint solvers. In constraint
programming, constraint solvers are the software engines that solve the problems
specified in terms of constraints. CHR extends the host language with new,
user-defined constraints by means of a series of logical rules that repeatedly
rewrite these constraints to simpler forms until a solution is found.

The theory and practice of CHR became the subject of an active niche research
field. By now, the theoretical foundations, properties and analyses of CHR are
well understood, and dozens of efficient implementations of CHR exist for Prolog,
Java, Haskell, etc. It has also become clear that CHR is useful as a general-
purpose declarative programming language. This is witnessed by its countless
applications in a wide range of areas, including multi-agent systems, type system
design, and natural language processing. This evolution has only heightened
the need for an even better understanding of CHR programs, and for even more
practical, robust, and efficient CHR systems.

A more thorough introduction to CHR is given in Chapter 4.

1.3 Goals and Overview
The main goal of this dissertation is to improve the practical usability of the
CHR programming language. This goal is actually threefold:

1. ensure that CHR programs can be written effectively and intuitively using
a high-level, declarative programming style

2. ensure that these programs are executed very efficiently
3. integrate CHR with mainstream (imperative) programming languages,

facilitating the use of CHR in real-life applications

We now provide an overview of the more specific goals of the different parts of
this dissertation. After a relatively broad background part, our main contributions
are presented in six chapters, equally distributed over two parts: CHR Language
Design and Optimising Implementation of CHR. Afterwards, a final chapter
offers general conclusions, as well as a perspective on important future research
challenges.

1.3.1 Part I — Background
We find it imperative that this dissertation is accessible to readers without a
background in either rule-based programming or constraint logic programming.
In Chapter 2, we therefore first introduce rule-based programming, and the main
algorithms used for their implementation. Chapter 3 similarly establishes several
basic concepts and terminology from logic and constraint programming.



4 Introduction

Chapter 4 is a more comprehensive overview of the CHR programming lan-
guage. We cover many aspects, ranging from theory to practice. This includes
CHR’s basic syntax and distinguishing characteristics, the different logical and
operational semantics of the language, important program properties, existing
language extensions and implementations, and the wide range of recent CHR-
based applications. In a way, this chapter already reflects a first contribution we
made in the form of (Sneyers, Van Weert, Schrijvers, and De Koninck 2010), a
comprehensive survey of a decade of CHR research.

1.3.2 Part II — CHR Language Design
A critical assessment of the syntax, language features, and operational semantics
of current systems and proposals quickly reveals that CHR’s expressiveness,
usability and declarativeness are frequently lacking. CHR aims at supporting
a very high-level, declarative programming style. In practice, however, systems
typically abide an imperative-like operational semantics, and lack declarative
means of exerting execution control. From times, CHR’s syntax is archaic and
overly verbose, and common tasks require cumbersome low-level encodings that
further nullify the advantages associated with declarative programming.

Based on this analysis, our goal is thus to design a modernised, streamlined
CHR language that eliminates the disadvantages of current approaches, while
integrating and further improving on their advantages. Chapter 5 outlines the core
result of this effort, a next generation CHR language denoted CHR2 . An important
point of attention is the trade-off between execution control and declarativeness.
Of course, an intuitive, predictable runtime behaviour combined with flexible
execution control mechanisms is indispensable for practical programming. But
the declarative ideal entails that control should only be exerted then and there
where needed, as expressed by Kowalski’s maxim ‘Algorithm = Logic + Control’
(Kowalski 1979). By default, it should be the task of the compiler or runtime to
decide the optimal execution strategy. Current approaches by Duck et al. (2004)
and De Koninck (2008) fail to strike the right balance, but a judicious refinement
and combination of their underlying ideas leads to a particularly elegant, practical
language. We formally fix the operational semantics of the CHR2 language, and
compare it in detail with aforementioned existing approaches.

In Chapter 6, we observe that for accumulating information from larger
portions of the constraint store, CHR programmers are forced to resort to
tedious low-level encodings, often cross-cutting the entire program. Practice
learns that this impedes all declarative advantages of programming in CHR. We
therefore investigate the extension of CHR2 with powerful language abstractions
for negation and other aggregates such as sum, min, and findall.

Conventionally, CHR is embedded in Prolog. To maximise the language’s
applicability, proper embeddings of CHR in mainstream imperative (object-



1.4 Bibliographic Notes 5

oriented) languages are required. We therefore developed the K.U.Leuven JCHR
system for Java, which is currently one of the most complete and efficient CHR
systems available. Its successor, JCHR2 , moreover constitutes a first reference
implementation of a substantial subset of CHR2 . In Chapter 7, we outline and
motivate the general system and language design issues and choices, focussing on
a proper, natural integration of CHR and the imperative host.

1.3.3 Part III — Optimising Implementation of CHR
In the final part of the dissertation, we introduce, evaluate and refine new and
existing program analyses and optimisation techniques for CHR programs. CHR
rules are written at a very high level of abstraction. Uncovering the optimal
low-level execution steps required to evaluate them is therefore very challenging,
particularly when evaluating under the semantics of CHR2 , which we purposely
designed to be as nondeterministic as possible.

There is a vast literature on the efficient compilation of CHR, with many
publications introducing different analyses and optimisations. Almost without
exception, however, these are based on the nearly deterministic operational
semantics of current systems, and targeted towards constraint logic host lan-
guages. Besides the foundational work of De Koninck (2008), the optimising
implementation of recent extensions has received little or no attention either.

In Chapter 8, we provide a long overdue comprehensive compendium of
CHR optimisations, ported to an imperative setting and fully extended to an
expressive subset of CHR2 . We put existing CHR compilation techniques in one
accessible, coherent framework, and show how in the JCHR systems we have
further refined, extended, and improved them. We also introduce several (often
previously unpublished) optimisation techniques aimed at optimising both space
and time performance.

Two important optimisations are discussed in more detail in separate chapters.
Chapter 9 explains the issues we experienced with recursive programs, and
why these are considerably aggravated when compiling to an imperative target
language. Our redesigned compilation schemes are aimed at resolving these issues.
Next, in Chapter 9, we fill an important void in CHR implementation research,
namely the optimisation of the expensive propagation histories maintained for
CHR propagation rules.

1.4 Bibliographic Notes
Most of the material in this dissertation is based on earlier publications, often
joint work with other authors. Most chapters though have been considerably
rewritten, corrected, or extended. In particular:



6 Introduction

• Chapter 4 mostly consists of shortened versions of selected sections from
our survey article (Sneyers, Van Weert, Schrijvers, and De Koninck 2010).
• Chapter 5 combines preliminary ideas from (Van Weert, De Koninck, and
Sneyers 2009) and (Van Weert 2010a). They are considerably better mo-
tivated and worked out. The formal semantics in Section 5.2 replaces
the earlier, incorrect version from (Van Weert et al. 2009); all formal
compatibility results in this section are new as well.
• Chapter 6 integrates (Van Weert, Sneyers, Schrijvers, and Demoen 2006a)

and (Sneyers, Van Weert, and Schrijvers 2007). Section 6.3 discusses many
language design issues that were left out of these earlier presentations of
this work. The chapter focusses on language design issues; our efficient
source-to-source implementation of aggregates, presented in (Van Weert,
Sneyers, and Demoen 2008), is only very briefly discussed.
• Chapter 7 is based on (Van Weert, Wuille, Schrijvers, and Demoen 2008).
Among other things, the description of the JCHR and JCHR2 systems has
been reworked considerably.
• Chapter 8 succeeds (Van Weert 2008a; Van Weert, Wuille, Schrijvers, and

Demoen 2008; VanWeert 2010a), three earlier overviews of CHR compilation
methodology (all written for a different intended audience). The new version
is written to be even more comprehensive and clear, and also adds a lot
of previously unpublished material: novel optimisations, extensions and
improvements of existing techniques, etc. An extended presentation of our
contributions on efficiently implementing join ordering algorithms based on
Section 8.3.2.7 and Appendix A will appear as (Van Weert 2010b).
• Chapter 9 presents work published in (Van Weert 2008a) and (Van Weert,
Wuille, Schrijvers, and Demoen 2008), but taking a more high-level view.
It also demonstrates how to extend our optimised compilation techniques
to rule-based languages with priorities.
• Chapter 10 combines (Van Weert 2008c) and (Van Weert 2008b). It adds

some minor optimisations from JCHR, and a discussion on how to extend
our history-related optimisations to richer rule-based languages.

In addition to the work presented in this text, we have also worked on the
language design of actor-based programming languages (e.g. Erlang). We proposed
an extension of such languages with CHR-inspired multi-headed, guarded receive
patterns. We demonstrated their increased expressiveness, explored possible
semantics, and implemented a reasonable first prototype. This work was presented
in (Sulzmann, Lam, and Van Weert 2008).



Part I

Background

7





Chapter2
Rule-based Programming

A few strong instincts and a few plain rules suffice us.

— Ralph Waldo Emerson (1803–1882)
US philosopher, poet, essayist

The term rule-based programming is commonly understood to denote the use
of a family of programming languages that descend from so-called production
rule languages. In essence, CHR is very similar to these rule-based programming
languages. In Section 2.2, we therefore discuss their basic features and application
areas, as well as the standard techniques used in their evaluation.

Rules, however, play a central role in many other programming languages and
formalisms as well. We list some relevant examples in Section 2.1.

2.1 Rules in Programming
• Reduction systems are an important branch of computer science with
applications e.g. in algebra, recursion theory, software engineering, and
programming languages. Popular instances include string rewriting (Book
and Otto 1993), term rewriting (Bezem, Klop, and de Vrijer 2003; Baader
and Nipkow 2003), and graph rewriting (Ehrig and Rozenberg 1999). In
these paradigms, rewrite rules specify how expressions of some formal
language are transformed. Operationally, these rules exhaustively replace
(sub)expressions with simpler, more canonical ones, until some normal form
is reached. We briefly discuss their relation to CHR in Section 4.1.4.

• Active databases use ECA rules (Event Condition Action rules) to auto-
matically respond to specific database events. Widom and Ceri (1996):

9



10 Rule-based Programming

“Active database systems enhance traditional database functionality
with powerful rule-processing capabilities, providing a uniform and
efficient mechanism for many database system applications. Among
these applications are integrity constraints, views, authorisation, stat-
istics gathering, monitoring and alerting, knowledge-based systems,
expert systems, and workflow management. ”

Starting from the early 1990s, there is a vast body of research on active
databases. While ECA rules are mostly heavily inspired by production rules,
both in syntax and evaluation strategies, they are governed by completely
different design and implementation considerations. We therefore refer the
interested reader to e.g. (McCarthy and Dayal 1989; Hanson and Widom
1993; Widom and Ceri 1996; Paton and Díaz 1999).
• Rules play an important role in theoretical computer science as well. Ex-
amples include production rules in formal grammars, and inference rules
in logic and formal systems. Immediate practical applications include the
various rule-based (grammar) formalisms used e.g. in the construction of
parsers and compilers, and to model natural language in computational
linguistics.
• In logic programming, as discussed in Chapter 3, programs consists of
logical formulae or rules (typically Horn clauses).

With the apparent exception of ECA rules, CHR has been applied successfully
to similar tasks as the formalisms listed above. Also, in CHR-related research, a
major recent trend is a deeper, theoretical investigation of CHR’s relationship to
such formalisms (see Section 4.1.4). This has led Frühwirth (2009) to propose
CHR as a lingua franca for rule based programming.

2.2 Production Rules
Section 2.2.1 introduces production rule systems. These rule-based systems
became popular as a tool to implement artificial intelligence applications, and,
more recently, have evolved into one of the key technologies in the implementation
of business rules. We provide a brief historical overview in Section 2.2.2. In
Section 2.2.3, finally, we discuss the standard matching algorithms used by
production rule engines.

2.2.1 Introduction
Modern production systems have a multitude of features. In this quick introduc-
tion, we restrict ourselves to the basic core features shared by all systems. We
discuss some of the most important extensions in Section 2.2.2.



2.2 Production Rules 11

We adopt the terminology employed e.g. by CLIPS and Jess. Table 2.1 at
the end of this chapter provides an overview of alternate terms used by other
rule-based systems and formalisms, including CHR.

Working memory

The working memory (WM) of a traditional production system is a set of facts.
Each fact is a runtime instance of a template. A template has a unique name,
and declares a number of slots. Each attribute has a unique name and often also
a type. Templates and facts are similar to classes and (immutable) objects in
object-oriented languages, or tables and rows in a relational database. By default,
once asserted, attribute values can no longer be changed (see the discussion of
the modify action later).

Rules

A production rule program contains a number of condition-action rules. The left-
hand side (LHS) of a rule is a conjunction of condition elements (CEs), specifying
the conditions under which the rule is applicable. A positive CE specifies that
a fact of a specified class must be present in the WM; a negative CE specifies
it may not be present. CEs mostly also add a number of restrictions on the
fact’s attribute values. The right-hand side (RHS) is a conjunction of actions.
The basic actions are assert and retract that, respectively, add and remove
facts from the WM. Typically, a modify action is also supported, which acts as
syntactic sugar for a retract followed by an assert.

Example 2.1. Listings 2.1–2.3 show an encoding of the same production in
three different systems. The rule is taken from the famous Waltz production
rule program1 which implements Waltz’ seminal algorithm for interpreting line
drawings of three-dimensional scenes (Waltz 1975). A directed edge between two
points is represented as a fact of class edge. Besides the two points (represented
using a single integer number), fact of class edge also have a boolean attribute
joined. The rule detects a particular type of junctions between these edges. The
first CE specifies a stage fact has to be present, whose value attribute indicates
that the aim of the current execution stage is indeed detecting junctions. The
remaining CEs specify that two edges starting from the same base point, but
ending in different points, have to be present, and similarly that no third edge
starting from that point may be present. If the rule is applied, or fired, the RHS
specifies that a corresponding junction fact must be added, and the joined
attribute of both matched edge facts set to true.

1The Waltz program is part of the so-called “Texas benchmark suite” (Miranker et al. 1991),
so named after the University of Texas at Austin, the affiliation of its authors (Brant, Grose,
Lofaso, and Miranker 1991). These benchmarks, particularly Manners and Waltz, are still
the de-facto standard benchmarks for production systems (IllationTM 2007).



12 Rule-based Programming

Listing 2.1 The example Waltz rule in OPS5 (source: Miranker et al. 1991)

(p make_L
(stage ^value detect_junctions)
(edge ^p1 <base> ^p2 <p2> ^joined false)
(edge ^p1 <base> ^p2 {<p3> <> <p2>} ^joined false)
-(edge ^p1 <base> ^p2 {<> <p2> <> <p3>})

-->
(make junction ^type L ^base_point <base> ^p1 <p2> ^p2 <p3>)
(modify 2 ^joined true)
(modify 3 ^joined true)

)

Listing 2.2 The example Waltz rule in CLIPS/Jess (source: Miranker et al.
1991)

(defrule make_L
(stage (value detect_junctions))
?f2 <- (edge (p1 ?base) (p2 ?p2) (joined false))
?f3 <- (edge (p1 ?base) (p2 ?p3&~?p2) (joined false))
(not (edge (p1 ?base) (p2 ~?p2&~?p3)))

=>
(assert (junction (type L) (base_point ?base) (p1 ?p2) (p2 ?p3)))
(modify ?f2 (joined true))
(modify ?f3 (joined true))

)

Listing 2.3 The example Waltz rule in Drools 5 (source: JBoss 2010). Note
that in this encoding plain Java objects are used as facts.
rule "make L"
when

Stage ( value == Stage.DETECT_JUNCTIONS )
$edge1: Edge( $base:p1, $p2:p2, joined == false )
$edge2: Edge( p1==$base, $p3:p2 != $p2, joined == false )
not Edge( p1==$base, p2 != $p2, p2 != $p3 )

then
insert( new Junction($p2, $p3, 0, $base, Junction.L) );
modify( $edge1 ) { setJoined(true) }
modify( $edge2 ) { setJoined(true) }

end



2.2 Production Rules 13

2.2.2 Historical overview
OPS5

Developed in the late 1970s by Forgy (1979), the OPS (“Official Production
System”) family of languages were used primarily for applications in the areas of
artificial intelligence, cognitive psychology, and expert systems. OPS5 was one
of the first really successful production rule languages (Forgy 1981; Brownston,
Farrell, Kant, and Martin 1985; Cooper and Wogrin 1988).

In the 1980s, production systems became the dominant knowledge representa-
tion methodology in expert systems. An expert system is a classic application of
artificial intelligence: it emulates a human advisor, attempting to (interactively)
provide answers to problems where normally human experts would need to be
consulted. The high-level, non-procedural production rules facilitated the process
of gathering and maintaining the necessary large knowledge bases from or even
by domain experts. This process is often called knowledge engineering.

Example 2.2. The R1 (later called XCON, for eXpert CONfigurer) program
was an expert system written in OPS4/OPS5 by McDermott (1980) to assist
in the ordering of DEC’s VAX computer systems. R1 automatically selected
the computer system components based on the customer’s requirements. The
development of R1 followed two previous unsuccessful efforts to write an expert
system for this task, in FORTRAN and BASIC.

R1 was the first commercially successful expert system. Four years after its
initial deployment (Bachant and McDermott 1984), the program had over 3,300
rules, had processed over 80,000 orders, and achieved over 90% accuracy. It was
estimated to be saving DEC millions of dollars a year by reducing the need to
give customers free components when technicians made errors, by speeding the
assembly process, and by increasing customer satisfaction (Kraft 1984). XCON
eventually even surpassed 10,000 rules (McDermott 1994).

One of the key innovations of the OPS systems that allowed it to scale to large
applications was the Rete algorithm used in their implementation (Forgy 1979,
1982). We discuss this in more detail in Section 2.2.3.

CLIPS

CLIPS (“C Language Integrated Production System”) was originally developed
by NASA, from the mid 1980s until the mid 1990s. It was initially created
because other available tools used LISP as the base language, which was deemed
impractical for real applications. Over the years, CLIPS evolved from a prototype
internally used by NASA, to a powerful expert system shell widely used throughout
government, industry, and academia (Giarratano and Riley 1989). For a complete
history of CLIPS, see (Riley et al. 2010). Today, CLIPS is maintained as public



14 Rule-based Programming

domain software, independently from NASA. It remains one of the most efficient
production rule engines available (IllationTM 2007).

CLIPS’ syntax, expressive language constructs, and operational semantics,
have heavily influenced subsequent production systems. Notable features include
salience (rule priorities), new CE types such as forall and exists, support for
nested CEs, and object oriented extensions (Riley et al. 2008).

Jess

Jess started in 1995 as a reimplementation of CLIPS in Java, but has since
evolved to a powerful, popular expert shell for the Java platform (Friedman-Hill
2003; Friedman-Hill 2010). Particular contributions are the ability to directly
manipulate and reason about regular Java objects, and the addition of so-called
backwards chaining capabilities. Jess was used as the reference implementation
for the JavaTM Rule Engine API (Selman et al. 2004).

Business Rules Management Systems

In recent years adoption of rule-based technologies has surged. Blaze Advisor (by
Fair Isaac), ILOG JRules (now acquired by IBM), Haley Rules (now acquired
by Oracle), and PegaRULES (by Pegasystems), are just a few examples of the
numerous commercially successful rule-based systems available today. Production
rules, now known as business rules2, are an established technology in finance,
banking and insurance, and companies all across the board are starting to use
rules to maximise business agility. Modern-day Business Rules Management
Systems (BRMS) are large, feature-rich software platforms. Complementing the
traditional rule execution engine, they typically offer many additional software
components. Their key merit is that multiple users of different skill levels,
including non-technical business users, can access, monitor, edit, add, remove or
deploy rules through various easy-to-use graphical user interfaces. This includes
GUIs—and increasingly also web-based interfaces—where rules can be specified
in near natural language, or by means of spreadsheets.

JBoss Drools

JBoss Drools (Bali 2009; Browne 2009) is probably the only open source, pub-
lically available BRMS that can rival with top commercial products in feature
completeness. It is currently very actively developed. Drools 5 recently seamlessly
integrated powerful Complex Event Processing and workflow capabilities.

2Actually, according to some definitions, production rules are only a specific type of business
rules.



2.2 Production Rules 15

2.2.3 Matching algorithms
While modern BRMSs have made tremendous progress in terms of flexibility, user-
friendliness and ease-of-use, the underlying implementation techniques arguably
have not evolved in pace. Thirty years after its conception by Charles Forgy (1979,
1982), the predominant basis of rule engines today remains the Rete algorithm.
In this section, we outline the basic principles of this seminal matching algorithm,
and compare it with alternative algorithms proposed in research literature.

Matching algorithms

Rule matching algorithms are best explained as if operating using a match-resolve-
act cycle. In the match phase, the so-called agenda is computed. This set contains
all applicable (rule) activations. An activation is a tuple of facts that match the
LHS of some rule, satisfying all its CEs. Then, a single activation is selected from
the agenda. This process is called conflict resolution, and is determined by a
conflict resolution strategy (McDermott and Forgy 1978). It is typically governed
by heuristics (fact recency, LHS complexity, . . . ) or execution control mechanisms
(e.g. salience). The selected activation is fired in the act phase, executing all
actions of the RHS using the implied variable bindings. This cycle is repeated
until the agenda is empty.

Rete

Rete is an incremental matching algorithm. It does not recompute the agenda
from scratch in each match phase, but instead updates it incrementally during
the act phase, adding and removing necessary activations after each action. The
underlying intuition is that the agenda only changes slightly in each iteration.

As the agenda is typically implemented as a priority queue (Cormen et al. 2009,
§6.5), in Rete the distinct match-resolve-act phases are essentially completely
amalgamated. The same is true in all realistic matching algorithms.

The name Rete stems from the Latin word for ‘net’, also used in modern Italian
to mean ‘network’. To efficiently perform agenda updates, the Rete algorithm
maintains a network of nodes, each representing one or more CEs found in the
program. We will only consider positive CEs to illustrate the basic principles.
While the flexibility of adding different kinds of CEs is one of Rete’s merits,
adding e.g. negative CEs already significantly complicates the algorithm. For a
more detailed treatment of Rete, the interested reader is referred to (Forgy 1979;
Giarratano and Riley 1989; Doorenbos 1995).

All asserted and retracted facts are processed by a tree-structured network.
At the root, a fact is first passed to the alpha network. The alpha nodes form a
discrimination network, filtering the fact on its template and slot values. Each
alpha node performs a specific test, conditionally sending the fact to one or more



16 Rule-based Programming

other alpha nodes. The leafs of the alpha network are alpha memories, each
materialising the set of facts matching a single CE. When a fact reaches an alpha
memory it is, depending on the action, either added or removed from it.

The next layer of nodes is called the beta network. Each beta node (or join
node) is associated with two inputs: an alpha memory (the ‘right’ input) and a
beta memory (the ‘left’ input). A beta memory materialises the output of a beta
node, and consists of the set of all fact tuples that match a number of different
CEs. These beta tuples thus represent partially matched LHSs. Each beta node
combines tuples (their left input) with facts (their right input) to obtain extended
tuples, matching one additional CE. For the first layer of beta nodes, the left
input is a special beta memory containing only the empty tuple.

The beta network works as follows. Each update to an alpha memory is
passed to one or more beta nodes. These are said to be right-activated. When a
beta node is right activated, it matches the incoming fact with all tuples of its
left input. All extended tuples that satisfy the node’s matching conditions are
passed to a beta memory, or, in case they represent fully matched activations, to
the agenda. Similarly, each update to a beta memory left-activates beta nodes,
which then match the arriving tuple with all facts from their right inputs.

Alternative matching algorithms

The Rete algorithm is characterised by the following properties:

1. Rete is an eager matching algorithm, meaning it first computes the entire
agenda before selecting the next rule to fire.

2. Rete is an incremental matching algorithm.
3. Rete materialises all partial matches.

The first and third of these properties, while surely beneficial in certain specific
cases, mostly lead to poor space and time performance.

Join indexing Because rules often have overlapping LHSs, naive evaluation
computes the same (partial) matches many times. By materialising all intermedi-
ate matches in beta memories, Rete aims to compute them only once, storing them
for later reuse. We call this join indexing, after a similar technique in database
implementation (see e.g. Valduriez 1987). But, as with all forms of indexing, the
time gained by reusing partial matches should be weighed against the inherent
cost: if indexed matches are rarely reused, or are frequently retracted again, join
indexing only decreases space and time performance. Most studies indeed confirm
that Rete’s injudicious join indexing strategy mostly works counter-productive
(Miranker 1987; Miranker et al. 1990; Miranker and Lofaso 1991; Brant et al. 1991;
Wang and Hanson 1992; Obermeyer and Miranker 1994; Wright and Marshall
2003; Van Weert 2010a).



2.2 Production Rules 17

Based on exactly that observation, Miranker et al. (1987, 1991) designed
the TREAT algorithm. TREAT is an eager, incremental matching algorithm
that never performs join indexing. While this means partial matches may be
recomputed repeatedly, TREAT was found to mostly outperform Rete (Brant
et al. 1991; Wang and Hanson 1992). The reduced memory requirements made
TREAT particularly suited for the integration of rules with databases (Hanson
1992; see also Section 2.1 for a brief discussion on active databases).

Of course, never indexing is not always optimal either (Wang and Hanson
1992). Several authors have therefore proposed hybrid approaches, attempting
to perform join indexing only in those cases where it is beneficial (Fabret et al.
1993; Hanson et al. 1995; Wright and Marshall 2003). The Gator (‘Generalised
TREAT/Rete’) networks proposed by Hanson et al. (1995) additionally allow
more general network structures.

Lazy matching Miranker et al. (1990) and Brant (1993) showed that, typically,
many if not most activations put on the agenda are never actually fired. Eager
matching algorithms therefore spend a considerable amount of time and space
computing superfluous partial matches and activations.

To counter this, Miranker and Brant (1990) proposed a lazy matching al-
gorithm called LEAPS (Lazy Evaluation Algorithm for Production Systems). A
lazy matching algorithm fires each activation as soon as it is computed. Like
TREAT, LEAPS moreover never performs join indexing.

LEAPS served as the basis for the Clips++ system (Obermeyer and Miranker
1994) and its successor Venus (Browne et al. 1994). Aside from the high-level
reconstruction by Batory et al. (1994), very little has been published on the
implementation of LEAPS-based systems, how to optimise the basic algorithm3,
or how to extend it towards more expressive language features.

The matching methodology developed for CHR is very similar to LEAPS,
but adds numerous novel program analyses and optimisation techniques. These
contributions are discussed at length in Part III of this dissertation. A detailed
discussion and comparison of the worst-case time and space complexities of the
different matching algorithms is given in Section 8.5.

3Except for (Obermeyer et al. 1995), which stresses the importance of fact indexing.



18 Rule-based Programming

CLIPS/Jess OPS5 CHR
working memory working memory constraint store
fact working memory element (WME) constraint
template class predicate
slot attribute argument
rule production rule
left-hand side left-hand side head + guard
right-hand side right-hand side body
conditional element condition element occurrence
assert make (add)
retract remove (remove)
salience / priority
agenda conflict set /
activation instantiation rule instance

Table 2.1: Rule-based programming terminology



Chapter3
Logic and Constraint Programming

Logic is the beginning of wisdom, not the end.

— Leonard Nimoy as Spock
in Star Trek VI: The Undiscovered Country (1991)

Logic programming (LP) and constraint programming (CP) are well-known
declarative programming paradigms strongly related to CHR. In this chapter we
establish some basic background and terminology we will sometimes rely on in
later chapters. Readers familiar with LP and CP can skim this chapter.

3.1 Logic Programming
Logic programming (LP) is, in its broadest sense, the use of mathematical logic
for computer programming. Many logic-based formalisms and paradigms fall
under this heading: Answer Set Programming (Simons et al. 2002), Inductive
Logic Programming (Lavrac and Dzeroski 1994; Muggleton and Raedt 1994),
SAT solving (Moskewicz et al. 2001), and many more. Here, we will consider
LP in the narrower sense in which it is more commonly understood, namely the
use of logic as both a declarative and procedural representation language, as
exemplified by the Prolog programming language.

In Section 3.1.1, we will introduce the basic building blocks of (Prolog-like)
LP languages. Section 3.1.2 informally outlines the basic operational semantics
and evaluation strategy of LP programs. More advanced features of Prolog are
briefly discussed in Section 3.1.3.

We refer to (Sterling and Shapiro 1994; Clocksin and Mellish 2003; Bratko
2008) for complete introductions of Prolog, and to (Lloyd 1987; Lifschitz 1996)
for comprehensive discussions of LP foundations.

19



20 Logic and Constraint Programming

3.1.1 Basics of logic programming
Terms The central data type of most logic programming languages is the
(Herbrand) term. A term is either a (logical) variable, a constant, or compound
term. A compound term is inductively defined as f(t1, . . . , tn), where f is a
function symbol, n the arity, and the arguments ti terms. Terms thus represent
trees in a flattened, text-only form.

Example 3.1 (Terms). The following are examples of terms:

X
some_constant
123
f(X, g(A,12,red))

In Prolog, variables are the sole syntactical elements whose identifiers are capital-
ised.

Unification A key operation in logical programming is unification. Formally,
unification can be defined in terms of substitutions.

Definition 3.1 (Substitution). We define a substitution θ = (X1 = τ1∧. . .∧Xn =
τn) as a conjunction of bindings Xi = τi, with Xi a variable and τi 6= Xi a term.
A substitution is a variable renaming if all terms τi are variables.

Definition 3.2 (Instantiation). Applying a substitution θ on a logical expression
E, denoted θ(E), entails simultaneously replacing all occurrences of Xi in E by
τi. The result, θ(E), is called an instantiation of E. After unification, we say
that variables Xi are bound to terms τi.

Definition 3.3 (Unification). A unifier of two expressions E and F is a substi-
tution for which θ(E) ≡ θ(F ), where ≡ denotes syntactical equality. A unifier θ
is a most general unifier (mgu) of E and F if for each unifier σ of E and F , a
substitution γ exists for which σ ≡ γ ∧ θ.

Example 3.2. The mgu of f(X, g(A, 12, red)) and f(h(Y ), g(g(Z), Y, red)) is
X = h(12) ∧ Y = 12 ∧A = g(Z). The terms black and white though cannot be
unified, and neither can f(X) and g(X), or f(12, X) and f(X, red).

If an mgu exists, it is unique (up to variable renaming); otherwise the two
expressions cannot be unified. Operationally, the built-in unification predicate of
LP languages either simultaneously instantiates its two operands, or fails if these
terms cannot be unified. Failure is discussed in more detail later.



3.1 Logic Programming 21

Listing 3.1 Example Prolog program

mother(griet, peter).
father(jos, peter).
father(jos, koen).

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

sibling(X, Y) :- parent(Z, X), parent(Z, Y), X \== Y.

Logical variables Unlike conventional variables in imperative programming
languages, logical variables may truly represent unknowns, that is, they can be
used even if they do not refer to a value. Unification is used to bind variables to
other terms. This is considerably different than the common destructive variable
assignment operation of imperative languages. Unification is monotonic, that
is, terms can only become further instantiated, and variable bindings cannot
be undone (except through backtracking: see later). Expressions such as ‘X =
black,X = white’ or ‘X = X + 1’1 will therefore result in failure.

Variables that are not bound to a constant or compound term are called free
variables. The unification of two free variables is called aliasing. A ground term
does not contain any free variables. The use of non-ground, partially instantiated
terms to represent partial knowledge is quintessential to LP.

Predicates A logic program defines a number of logical predicates, on top of
the built-in predicates provided by the LP language. A predicate is denoted as
a functor/arity pair (predicate and function symbols are called functors). An
atom is a predicate applied to a number of terms.

Example 3.3. Listing 3.1 shows a simple Prolog program, defining four predic-
ates, mother/2, father/2, parent/2, and sibling/2. The intended interpreta-
tion of, for instance, the atom ‘mother(X,Y)’ is that ‘X is mother of Y’.

Clauses Predicates are defined using a number of logical formulae. In Prolog,
these formulae are rules called clauses. A basic Prolog clause is written as
h :- b1, ..., bn. Logically, this corresponds to a so-called Horn clause, which
is an implication of the form h← b1, . . . , bn. Its consequent, called the head, is
a single positive atom; the antecedent, the body, a conjunction of atoms. If the

1Unifications such as X = X + 1, or more generally X = f(X), actually do not result in
failure in Prolog systems, but instead in cyclic terms, where X occurs in the term it is bound to.
Only when the so-called occurs check of the unification algorithm is enabled, these unifications
result in failure. For reasons of efficiency, this occurs check is default disabled.



22 Logic and Constraint Programming

body is the trivial empty conjunction (also denoted true), it may be omitted.
Such clauses are called facts.

Example 3.4. In Listing 3.1, the mother/2 and father/2 predicates are defined
by a number of facts. Next, the parent/2 predicate is defined using two clauses.
The first declares that ‘if X is a mother of Y, then X is a parent of Y’, the second is
analogous. Finally, a single clause defines the sibling/2 predicate. This clause
can be read as ‘X and Y are siblings if (there exists a Z such that) Z is parent of
X, Z is parent of Y, and X and Y are not equal’.

Note that variables occurring in the head are implicitly universally quantified,
whereas variables only occurring in the body are existentially quantified.

3.1.2 Operational semantics
We now informally introduce the standard operational semantics of logic programs,
and Prolog programs in particular.

Backwards chaining LP programs are typically evaluated using a backwards
chaining inference method called SLD resolution. Starting with a conjunction
of goals to resolve—called the query—an LP inference engine works backwards
from the consequent to the antecedent of clauses until it reaches facts or built-in
knowledge to support these goals2.

Backwards chaining is fundamentally opposite to forward chaining, the infer-
ence method used by both production rules (PR; see Chapter 2) and Constraint
Handling Rules (CHR; see Chapter 4). Forward chaining inference starts from
a set of known facts, moving from the antecedent to the consequent of rules to
infer more facts, possibly until a goal is reached. In the case of both PR and
CHR, forward chaining is executed exhaustively, without a real concept of a
goal. Forward chaining is often said to be a data-driven method, in contrast to
goal-driven backward chaining inference.

The operational reading of a Prolog clause ‘h :- b1, ..., bn.’ is thus “to
resolve a goal h, it suffices to resolve b1, b2, . . . , and bn.” A clause is applicable
if the its head unifies with a goal. In that case, the goal may be replaced with
the conjunction in the body. If all goals are resolved, it follows that the query,
with the appropriate variable bindings in place, is a logical consequence of the
program. In that case, the query is said to have succeeded, and the solution is
the conjunction of all generated variable bindings.

Example 3.5. Consider the following trivial Prolog predicate:

hello(world) :- writeln(’Hello, world!’).
2Technically, an LP inference engine actually attempts to refute the negation of the user’s

query, but the resolution process is easier understood without this double negation.



3.1 Logic Programming 23

Suppose the user post a query hello(X), with X a free logical variable. Then
Prolog attempts to unify hello(X) with the head of the clause. Clearly this
succeeds, and the clause’s body is evaluated. As the writeln/1 built-in simply
prints a given term to standard output, the query is fully resolved. As a result of
the unification X is bound to world, so the reported solution is X = world.

Search tree A given goal may unify with multiple clause heads. SLD resolution
thus implicitly defines a tree, called the search tree, of alternative computations.
Each node is associated with a goal conjunction. The root corresponds to the
initial query. In each node, SLD resolution selects a goal conjunct. We call this
the active goal. If the active goal is an atom of a user-defined predicate, each
clause that unifies with it gives rise to a child node. Built-ins similarly imply one
or more child nodes, or none if the built-in fails—for instance a failed unification.
A leaf node is a success node, if its associated goal conjunction is empty (also
denoted true). It is a failure node if its active goal does not unify with any
clause head, or is a failed built-in.

Nondeterminism The abstract SLD resolution mechanism is highly non-
deterministic. It does not specify which conjunct to select as the active goal, nor
in which order the nodes of the search tree are traversed. Prolog implements a
more refined, deterministic instance of SLD resolution. We discuss this next.

Chronological backtracking Prolog expands goal conjuncts left-to-right, in
the order in which they appear in the query or clause body, and tries clauses in
a textual top-down order. In other words: Prolog traverses a naturally defined
search tree in a depth-first manner. Each time the Prolog engine moves to a
child node, the system creates a choice-point. If a failure node is reached, all
variable bindings that were made since the most recent choice-point was created
are undone, and execution continues with the next alternative of that choice-point.
This execution strategy is called chronological backtracking.

If all branches end in a failed node, the query is said to fail. If a success node
is reached, Prolog reports the variable bindings of the solution to the user. In
most systems, the user can request for multiple solutions.

Asides from the built-in backtracking search, Prolog’s SLD resolution method
can be thought of as a generalisation of procedure calls in other languages. When
a predicate is called, it is first fully evaluated before control returns to evaluate
the remainder of the conjunction. For this, Prolog uses a stack, analogous to the
call stack used by conventional languages.

Example 3.6. For the program of Listing 3.1, suppose the user’s query is
‘sibling(peter, X)’. Then the initial active fact unifies with the head of the
sole sibling/2 clause. The goal expands to ‘parent(Z, peter), parent(Z, Y),



24 Logic and Constraint Programming

peter \== Y’, and its first conjunct becomes active. Because two clauses are
now applicable, a choice-point is created. The first clause is tried first, and the
goal becomes ‘mother(Z, peter), parent(Z, Y), ...’, which in the next step
simplifies to ‘parent(griet, Y), peter \== Y’. This branch eventually fails,
because ‘parent(griet, Y)’ only succeeds with ‘Y = peter’ (‘\==’ denotes
(syntactical) disequality). Prolog therefore returns to the aforementioned choice-
point, undoing the binding ‘Z = griet’, and tries the second clause of parent/2.
As a result of this choice, the only solution ‘X = koen’ is found and returned.

3.1.3 Prolog: programming in logic
The Prolog programming language supports several additional language features
not yet discussed. In this section, we briefly introduce e.g. disjunction, negation,
and (extra-logical) built-in predicates.

Disjunction

Next to conjunction, Prolog also supports disjunction in queries and clause bodies.
Extending SLD resolution to disjunction is straightforward: operationally, Prolog
simply tries the different disjuncts of a disjunction in textual order through
chronological backtracking.

Example 3.7. The parent/2 predicate can also be declared using the following
single Prolog clause:

parent(X, Y) :- mother(X, Y) ; father(X, Y).

Negation

The built-in predicate \+/1 provides a form of negation called negation-as-failure.
A goal ’\+ G ’ succeeds if the goal G fails. If G has at least one solution, ’\+ G ’
fails. SLD-NF is the natural extension of SLD resolution with negation as failure.

Negation as failure, initially defined simply as an operational construct,
is fundamentally different from classical logical negation. It is, for instance,
both non-involutive (i.e., ‘\+(\+ G)’ is not the same as G) and non-monotonic
(informally: adding facts or clauses to the program may cause a previously
successful goal ‘\+ G’ to fail).

The formal semantics of negation-as-failure remained an open issue until
Clark (1978) formulated the completion semantics. Over the years, alternative
semantics of logic programs with negation-as-failure (or other forms of negation)
have been studied. Seminal contributions include the stable model semantics by
Gelfond and Lifschitz (1988), and the well-founded semantics by Van Gelder,
Ross, and Schlipf (1991).



3.1 Logic Programming 25

Metaprogramming

Prolog readily facilitates metaprogramming: Prolog programs are themselves
sequences of Prolog terms (:-/2, ;/2, and ,/2 are binary infix operators) that are
easily read, inspected, and manipulated using built-in reflection mechanisms. The
built-in ’=..’/2 for instance can be used to construct and deconstruct compound
terms, and the call/1 predicate dynamically executes a given goal.

Example 3.8. Negation as failure could be implemented as follows:

\+ G :- call(G), !, fail.
\+ _.

Arithmetics

Next to terms, Prolog also supports the data types integer and floating point
numbers, as well as all traditional arithmetic operations and functions. The
’is’/2 built-in predicate evaluates its second argument, a ground arithmetic
expression, and unifies the result with its first argument. If the expression
provided is not fully instantiated, a runtime exception is thrown.

Example 3.9. Suppose the logical variable Y is bound to the integer 1, then
evaluating X is Y + 1 is equivalent with the unification ‘X = 2’. If Y were a
free variable a runtime exception would be thrown. Note the difference with
X = Y + 1. The latter expression simply unifies ‘X’ with the compound term
Y + 1 or ’+’(Y, 1). Expressions such as 1 + 1 is 1 + 1 and 2 = 1 + 1 there-
fore both fail, whereas 1 + 1 = 1 + 1 and 2 is 1 + 1 trivially succeed.

Lists

While Prolog lists are simply terms that represent singly linked lists, the language
does offer convenient syntactic sugar. The empty list is [], and

[X,2,three] ≡ [X|[2,three]] ≡ [X,2|[three]] ≡ [X,2,three|[]]

are all alternative notations for a simple heterogeneous list of three elements.
Internally, this list is represented as the term ’.’(X,’.’(2,’.’(three,[]))).
Prolog offers several list predicates, such as member/2, append/3 and length/2.

All-solution predicates

The findall(Object,Goal,List) predicate is a standard Prolog predicate that
collects data over all solutions of a goal. More precisely: for each solution of the
given Goal, an instantiated copy of Object is added to a list. The final list is
unified with List. If Goal has no solutions, this will be the empty list.



26 Logic and Constraint Programming

Two additional all-solution predicates are bagof/3 and setof/3. Both pre-
dicates are nondeterministic, and backtrack over possible bindings of the free
variables in its Goal that also do not occur in Object. This behaviour can be
overridden using the existential quantifier operator ‘ˆ’. The result of setof/3 is
a sorted, duplicate-free list.

Example 3.10. Calling findall(X-Y,parent(X,Y),L) for the program in List-
ing 3.1 unifies L with the list [griet-peter,jos-peter,jos-koen], and calling
findall(X,parent(X,peter),L) with [griet,jos]. To illustrate bagof/3, con-
sider bagof(X,parent(X,Y),L). This expression has two solutions, delivered by
means of backtracking: ‘Y = peter, L = [griet,jos]’ and ‘Y = koen, L = [jos]’.
The equivalent of findall(X,parent(X,Y),L) in terms of bagof/3 would be
bagof(X,Yˆparent(X,Y),L) (the latter fails though if no solutions are found).

General-purpose programming

Prolog is a general purpose programming language, and provides various non-
logical predicates to perform e.g. input/output. Such predicates have no logical
meaning, and are only useful for the side-effects they exhibit on the system. An
example of the use of writeln/1 was seen in Example 3.5.

3.1.4 Conclusion
While Prolog has roots in formal logic, it is first and foremost an elegant and
powerful general-purpose programming language. It has an imperative-like
operational semantics, extended with built-in chronological backtracking. Many
built-in predicates have no logical semantics, and the semantics of negation-as-
absence is also very controversial. The subset of Prolog that only uses true logical
predicates is called pure Prolog (see e.g. Sterling and Shapiro 1994). Many if not
most real-life Prolog programs though are non-pure, and contain considerable
amounts of procedural code.

3.2 Constraint Programming
Barták (1999) very aptly describes the concept of a constraint as follows:

“Constraints arise in most areas of human endeavour. They formalise
the dependencies in physical worlds and their mathematical abstractions
naturally and transparently. A constraint is simply a logical relation among
several unknowns (or variables), each taking a value in a given domain.
The constraint thus restricts the possible values that variables can take,
it represents partial information about the variables of interest. [...] The
important feature of constraints is their declarative manner, i.e., they specify



3.2 Constraint Programming 27

what relationship must hold without specifying a computational procedure
to enforce that relationship. ”

Example 3.11. Some examples of constraints are:

• Given a partially filled-in 9× 9 grid of digits from 1 to 9, the objective of a
Sudoku puzzle is to complete this grid under the following constraints: all
values in each column, each row, and each of the nine 3× 3 sub-grids must
be mutually distinct.

• The sum of the angles in any triangle equals 180 degrees. The value of each
angle in degrees lies in the closed interval [1, 179].

• Given that the domain of the variables X, Y , and Z is N, the set of natural
numbers, the following constraint problem has a unique solution:

X > Y
Y 6= Z
X = Z + 1
X ≤ 2

Complex real-world problems can effectively be modelled in terms of con-
straints on the variables of a solution, and consequently solved by a constraint
solver.

Constraint programming (CP) is often embedded in a host language. Tradition-
ally, this host language is a logic programming (LP) language. Today most Prolog
implementations include one or more libraries for constraint logic programming
(CLP). As seen earlier in this chapter, standard LP essentially only supports a
single variable domain (Herbrand terms) and a single constraint (equality, solved
via unification). The CLP(X ) framework by Jaffar and Lassez (1987) generalises
LP, and extends it with additional variable domains X , complete with different
types of constraints over variables from that domain.

Example 3.12. We illustrate the CLP paradigm using the following clause:

constraints(X,Y ,Z) :- X > Y , Y \= Z, X = Z + 1, X =< 2.

If this clause is called with free variables in plain Prolog, an exception will
occur. Using a (hypothetical) CLP(N) library though, evaluating a constraint
entails adding it to a so-called constraint store. This results in a failure (in
the Prolog sense) if the underlying constraint solver detects an inconsistency.
Because constraint solving and consistency checking is computationally expensive,
a typical constraint solver only checks so-called local consistency when constraints
are added. In our example, for instance, even though the constraints already imply
a unique solution, the solver probably will not detect this while adding constraints
to the store. Yet, it may e.g. derive that X cannot be zero, and that Y and Z are
at most one. This process is called constraint propagation: possible assignments



28 Logic and Constraint Programming

are removed from the domains associated with variables. Many propagation
algorithms exist, differing both in pruning strength and computational cost.
Propagation alone though is mostly insufficient: to efficiently solve any non-
trivial problem, propagation must be combined with search. In a typical CLP
library, a full run of the more powerful propagation and search algorithms is
initiated by calling specific predicates (commonly called labeling). Propagation
and search work in tandem. A naive depth-first backtracking search algorithm
creates a choice-point, provisionally assigning a value to some unknown variable,
after which propagation is run to further prune variable domains. When a (local)
inconsistency is found, backtracking occurs. In reality, a wide variety of more
intelligent search algorithms is used.

Numerous constraint programming languages and tools exist, standalone or
embedded in some host language (LP, imperative, . . . ), offering a wide variety
of variable domains (integer, rational or real numbers, finite domains, booleans,
. . . ) and constraints (equality, inequalities, arithmetics, global constraints, . . . )
and using an even wider range of propagation and search techniques. A complete
introduction is well outside the scope of this section. For this we refer e.g. to
(Van Hentenryck and Saraswat 1997; Marriott and Stuckey 1998; Rossi, Van Beek,
and Walsh 2006).

Many CP solvers are implemented in an efficient, low-level language (typically
C). While efficient, the resulting systems are not always as flexible and extensible.
Early CP systems were based on a so-called “black-box” approach: it was very
hard to modify them, or to add e.g. new variable domains or constraints. Over the
years, many “glass-box” approaches have been proposed to obtain customisable
CP systems; Frühwirth (1998) provides an overview of this. Because these
approaches remained restricted and low-level, “no box” extensible constraint
solvers have been proposed. It is for this purpose that Frühwirth (1992, 1995,
1998) originally designed the Constraint Handling Rules (CHR) language. In
Chapter 4, we will see that CHR has since evolved into a powerful, general
purpose programming language, used in a wide range of applications.



Chapter4
Constraint Handling Rules

You have to learn the rules of the game.
And then you have to play better than anyone else.

— Albert Einstein (1879–1955)
Swiss-American physicist, philosopher and author

Constraint Handling Rules (CHR) is a declarative, rule-based programming
language, incorporating core elements of both production rules and constraint
logic programming languages. It was originally designed in 1991 by Frühwirth
(1992, 1995, 1998) for the special purpose of adding user-defined constraint
solvers to a host language. Over the last decade though, CHR has matured
to a powerful and elegant general-purpose language with a wide spectrum of
application domains (Sneyers et al. 2010).

This chapter provides a broad overview of the CHR programming language,
covering a wide range of theoretical and practical aspects. We start by introducing
the CHR language, its syntax and distinguishing characteristics in Section 4.1.
Next, Section 4.2 reviews the different formal semantics of CHR, and Section 4.3
surveys important well-studied properties of CHR programs. An overview of
some powerful language extensions is given in Section 4.4. Sections 4.5 and 4.6
conclude our journey from theory to practice by surveying the many existing
implementations and practical applications of the language.

Complementary introductory texts on CHR can be found for instance in
(Frühwirth 1998), (Frühwirth and Abdennadher 2003), and (Frühwirth 2009),
or in other Ph.D. dissertations such as those of Duck (2005), Schrijvers (2005),
De Koninck (2008), and Sneyers (2008). The most comprehensive survey of recent
CHR research and practice, on which several sections of this chapter are based,
is written by Sneyers, Van Weert, Schrijvers, and De Koninck (2010).

29



30 Constraint Handling Rules

4.1 Introduction
This section provides a gentle introduction to the CHR programming language.
We first lay out the general CHR(H) framework and its generic syntax in Sec-
tions 4.1.1–4.1.2. We then introduce CHR, its semantics and distinguishing
characteristics using a number of standard examples (Section 4.1.3). In Sec-
tion 4.1.3, we very briefly compare with closely related paradigms, such as
production rules, term rewriting, and constraint (logic) programming.

4.1.1 CHR(H)
CHR is designed to be a programming language extension, adding user-defined
constraints and rules to a given host language H. We denote the host language
in which CHR is embedded between round brackets: i.e. CHR(H) stands for
CHR embedded in host language H. The traditional host languages for CHR
are CLP languages, and until recently most systems were CHR(Prolog) systems.
In Section 4.5, however, we will see that several CHR implementations exist for
functional and imperative host languages as well. In Chapter 7 we further detail
how to effectively embed CHR in imperative host languages.

In the CHR(H) framework, two types of constraints are distinguished: built-in
constraints and CHR constraints. The former are provided by the host language,
as are the data types used by CHR(H). Prolog’s single data type, for instance, is a
term, and in its pure form it offers only one built-in constraint, namely Herbrand
term equality, solved by the built-in unification mechanism. CHR programs
themselves add CHR constraints to H. Both the formal, logical semantics of
these constraints, and the way they are evaluated by the CHR execution engine,
are fully determined by the rules of the CHR program.

Typically the host language is required to at least provide the trivial built-in
constraints true and false, as well as a syntactic equality constraint over its
data types.1 This equality constraint is required for pattern matching.

4.1.2 Syntax
This section introduces the generic syntax of CHR(H) languages. Specific im-
plementations typically further refine this syntax, tailored towards an optimal
integration with the host language. In Chapter 7, for instance, we thoroughly
discuss the design of CHR embeddings in imperative host languages.

By default, CHR constraint symbols are drawn from the set of predicate
symbols, and denoted by a functor/arity pair. CHR constraints are atoms
constructed from these symbols and the data types provided by the host language
H. Most systems offer syntax to declare CHR constraints, often with type and

1More precisely: only the entailment check (‘ask’ version) of equality is required.



4.1 Introduction 31

mode declarations for their arguments, as well as alternative ways of writing
constraints. For now, these language design issues are abstracted away.

A CHR program is also called a CHR handler. It consists of a sequence of
CHR rules. There are three kinds of rules (n, ng, nb ≥ 1 and n ≥ r > 1):

• Simplification rules: h1, . . . , hn ⇔ g1, . . . , gng
| b1, . . . , bnb

.
• Propagation rules: h1, . . . , hn ⇒ g1, . . . , gng

| b1, . . . , bnb
.

• Simpagation rules: h1, . . . , hr−1 \ hr, . . . , hn ⇔ g1, . . . , gng | b1, . . . , bnb .

The head ‘h1, . . . , hn’ of a rule is a sequence, or conjunction, of CHR con-
straints. A rule with n head constraints is called an n-headed rule. We also use
the term single-headed rule if n = 1, or multi-headed rule if n > 1. The conjuncts
hi of the head are called occurrences. Both the occurrences in a simplification
rule and the occurrences ‘hr, . . . , hn’ in a simpagation rule are called removed
occurrences. All other occurrences are kept occurrences. The body of a CHR
rule is a conjunction of CHR constraints and built-in constraints ‘b1, . . . , bnb

’.
The part of the rule between the arrow and the body is called the guard. It is
a conjunction of built-in constraints. The guard ‘g1, . . . , gng | ’ is optional; if
omitted, it is considered to be ‘true | ’. A rule is optionally preceded by a unique
rule identifier, followed by the ‘@’ symbol. Rules without an explicit identifier
commonly get one implicitly.

4.1.3 CHR by example
This section illustrates some of CHR’s unique characteristics, and explains inform-
ally the meaning of CHR rules, and how a CHR program operates. Operationally,
CHR rules behave much like production rules (cf. Chapter 2).

The CHR runtime operates on a database-like multiset of CHR constraints
called the (CHR) constraint store. This is similar to the working memory of
a production rule system. The fact though that the store is a multiset—i.e.
that multiple instances of syntactically equal CHR constraints can co-exist—is a
distinguishing characteristic of CHR.

A CHR execution or derivation starts from an initial query given by the user.
The derivation proceeds by applying, or firing, rules of the program. When no
more rules can be applied, the derivation ends; the final store is called the solution
or solved form. CHR rules are thus executed using forward chaining, much like
production rules, but contrary to e.g. Prolog: see Section 3.1.2.

A rule is applicable if the current constraint store contains CHR constraints
that match the rule’s occurrences, and for which the guard condition hold. To
determine applicability, CHR uses pattern matching rather than unification.
Formally, a conjunction of CHR constraints C matches a rule’s head H if a
(matching) substitution θ exists for which C ≡ θ(H). As seen in Section 3.1,
unification would entail the existence of a unifier η for which η(C) ≡ η(H).



32 Constraint Handling Rules

Listing 4.1 The CHR(Prolog) program leq, a solver for less-than-or-equal
constraints.
reflexivity @ leq(X,X) ⇔ true.
antisymmetry @ leq(X,Y), leq(Y,X) ⇔ X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) ⇔ true.
transitivity @ leq(X,Y), leq(Y,Z) ⇒ leq(X,Z).

Listing 4.2 The linearised form of the leq handler.

reflexivity @ leq(X,X1) ⇔ X1 = X | true.
antisymmetry @ leq(X,Y), leq(Y1,X1) ⇔ X1 = X, Y1 = Y | X = Y.
idempotence @ leq(X,Y) \ leq(X1,Y1) ⇔ X1 = X, Y1 = Y | true.
transitivity @ leq(X,Y), leq(Y1,Z) ⇒ Y1 = Y | leq(X,Z).

Matching is therefore also referred to as one-way unification. To illustrate the
difference, compare the following CHR(Prolog) example to Example 3.5:

Example 4.1 (Matching). Suppose the store contains a CHR constraint c(X)
with X a free logical variable, and the program contains a rule:

c(world) <=> writeln(’Hello, world!’).

The c(X) constraint does not match with the rule’s head. Matching is only allowed
to instantiate variables occurring in the rule’s head, and not those occurring in
CHR constraints in the store. Conversely, the following rule is applicable for any
c/1 constraint, i.e. c(world), c(peter), c(Y), etc.:

c(X) <=> writef(’Hello, %t!\n’, [X]).

This example also shows that, in practice, CHR typically also allows H host-
language statements (functions, predicates, . . . ) that are not strictly speaking
constraints. In the formal CHR(H) framework, these are mostly still modelled as
‘built-in constraints’ (or assumed not to be used).

Example 4.2 (Non-linear patterns). CHR allows so-called non-linear patterns,
that is, the same variable may occur more than once in the head, possibly in
more than one conjunct. This is for instance the case in the leq handler in
Listing 4.1, a classic CHR(Prolog) program to solve less-than-or-equal constraints
(its operational semantics is demonstrated below in Example 4.3).

For a rule to be applicable, his guard must of course also be satisfied. One
way to understand the non-linear matching mechanism is to view them as implicit
equality guards. In the linearised form or Head Normal Form (HNF) of a rule,



4.1 Introduction 33

all such guards are made explicit. Listing 4.2 contains the linearised form of the
leq program. We will sometimes use P? to denote the normalised (linearised)
version of a CHR program P.

Rules modify the constraint store in the following way. A simplification rule
can be considered as a rewrite rule which replaces the left- with the right-hand
side, provided the guard holds. The double arrow indicates that the head is
logically equivalent to the body, which justifies the replacement. The intention is
that the body is a simpler or more canonical form of the head. In propagation
rules, the body is a consequence of the head: given the head, the body may be
added (if the guard holds). Logically, the body is implied by the head so it is
redundant. However, adding redundant constraints may allow simplifications
later on. Simpagation rules are a hybrid between simplification and propagation
rules: the constraints before the backslash are kept, while the constraints after
the backslash are removed.

Example 4.3 (Rule application). Reconsider the leq CHR(Prolog) program in
Listing 4.1. The first rule, reflexivity, replaces trivial constraints leq(X,X) with
true. Operationally, this entails removing such constraints from the constraint
store. The second rule, antisymmetry, states that leq(X,Y) and leq(Y,X) are
logically equivalent to X = Y. Operationally, this means that constraints matching
the left-hand side may be removed from the store, after which the Prolog built-in
equality constraint solver is used to unify X and Y. The third rule, idempotence,
removes redundant copies of the same leq/2 constraint. It is necessary to do
this explicitly since CHR has multiset semantics. The last rule, transitivity, is a
propagation rule that computes the transitive closure of the leq/2 relation.

An example derivation could be as follows:

leq(A,B), leq(B,C), leq(C,A)
(transitivity) � leq(A,B), leq(B,C), leq(C,A), leq(B,A)
(antisymmetry) � leq(B,C), leq(C,A), A = B
(Prolog) � leq(A,C), leq(C,A), A = B
(antisymmetry) � A = C, A = B

Without the constraints initially propagated by the transitivity rule, no constraint
simplification would have been possible. This illustrates the power of comple-
menting rewrite rules with propagation rules. The example also demonstrates
the interaction with the host language through built-in constraints: solving the
equality constraint in Prolog triggers the antisymmetry rule.

Example 4.4 (General purpose programming). Listing 4.3 lists another simple
CHR program called primes, a CHR variant of the Sieve of Eratosthenes. Dating
back to at least (Frühwirth 1992), this is one of the first examples where CHR is
used more as a general-purpose programming language. Given a query of upto(n)



34 Constraint Handling Rules

Listing 4.3 The CHR program primes, a prime number sieve.

generate @ upto(N) ⇔ N > 1 | prime(N), upto(N-1).
done @ upto(1) ⇔ true.
sieve @ prime(A) \ prime(B) ⇔ B mod A = 0 | true.

with n a natural number, it computes all prime numbers up to n. Provided
N > 1, the first rule (generate) ‘simplifies’ upto(N) to upto(N-1) and adds a
prime(N) constraint. The second rule handles the case for N = 1, removing the
upto(1) constraint (by simplifying it to the built-in constraint true). The third
and most interesting rule (sieve) is a simpagation rule. If there are two prime/1
constraints prime(A) and prime(B), such that B is a multiple of A, the latter
constraint is removed. The effect of this rule is that non-primes are removed.
After exhaustively applying the rules, the solution corresponds exactly to the
prime numbers up to n.

If more than one (simplifying) rule is applicable, CHR chooses one applicable
rule. As discussed in detail in Section 4.2, depending on the operational semantics
used, this choice is either nondeterministic (possibly restricted by e.g. priorities),
based on rule order (similar to Prolog’s refined SLD algorithm).

In any case, CHR is said to commit to these choices. In other words, unlike
in Prolog, alternative options are no longer considered. This is called com-
mitted choice or don’t care nondeterminism, in contrast with the don’t know
nondeterminism used by LP languages (Section 3.1.2).

Example 4.5 (Committed choice). Consider the following simple Prolog (to the
left) and CHR programs (to the right):

throw(Coin) :- Coin = head.
throw(Coin) :- Coin = tail.

throw(Coin) ⇔ Coin = head.
throw(Coin) ⇔ Coin = tail.

In Prolog, for a goal coin(X), the first clause is tried first. If this leads to a
failure, or more solutions are required, the runtime will backtrack over this choice,
and try the second clause. In CHR on the other hand, if one of the rules removes
some coin(X) constraint, the other rule is never tried, even if the chosen rule
leads to failure.

4.1.4 Relation to other formalisms
CHR can be seen as a restricted production rule language (Chapter 2), augmented
with powerful elements from CLP languages (Chapter 3). A comparison of some
key characteristics is given in Table 4.1.

We now briefly discuss the relation of CHR to other well-known formalisms. A
more elaborate comparison with these and other related formalism can be found
(Sneyers et al. 2010, Section 6).



4.2 Formal Semantics 35

CHR PR CLP
Basic element constraint fact / WME predicate
Rules rule production clause
Multi-headed X X
Rule applicability matching matching unification
Non-ground data Xa X
Constraints Xa X
Chaining forward forward backward
Nondeterminism don’t careb don’t care don’t know

Table 4.1: Comparison of CHR with production rules (PR) and Prolog-
like CLP languages.

aMost CHR systems, even for non-CLP host languages (see Chapter 7), support at
least logical variables and simple built-in constraints (e.g. equality).

bExtensions of CHR with don’t know nondeterminism and search are discussed in
Section 4.4.4.

Term rewriting CHR can be considered as associative and commutative (AC)
term rewriting, restricted to flat conjunctions, but augmented with propagation
and constraint-logical language features. The term rewriting literature inspired
many results for CHR, most notably on confluence and termination (see Sec-
tion 4.3). Recently, Duck, Stuckey, and Brand (2006) proposed the ACD term
rewriting, which subsumes both AC term rewriting and CHR.

Join calculus The join-calculus is a calculus for concurrent programming
that inspired languages such as JoCaml, Join Java, and Polyphonic C#. Join-
calculus rules, or chords, are essentially guardless simplification rules with linear
match patterns. Sulzmann and Lam (2007b, 2008) clearly show CHR’s superior
expressiveness (propagation, general guards, non-linear patterns, . . . ).

Petri nets Petri nets are another well-known formalism for modelling and
analysing concurrent processes. Betz (2007) provides a first study of the re-
lation between CHR and Petri nets. CHR is more expressive than standard
place/transition nets (P/T nets), that, unlike CHR, are not Turing complete.
Betz (2007) also presents a translation of a significant subsegment of CHR into
coloured Petri nets, a more expressive, Turing complete extension of Petri net.

4.2 Formal Semantics
The semantics of CHR is defined either as a logical semantics (Section 4.2.1), or
as an operational semantics (Sections 4.2.2–4.2.3). The former formally maps
programs to logical theories, thus forming the formal foundations of the CHR



36 Constraint Handling Rules

language, whereas the latter models the runtime behaviour of programs. As CHR
rules are essentially executable logical specifications, relatively strong soundness
and completeness results have been proven that directly link the operational
semantics to the underlying logical semantics.

4.2.1 Logical semantics
Classical Logic Semantics

The (classical) logical semantics (Frühwirth 1998) of a CHR program—also called
its logical reading or declarative semantics—is defined as the conjunction of the
logical formulas for each rule, with the built-in constraint theory DH. The latter
determines the semantics of the built-in constraints of the host language H; for a
rigorous definition, we refer e.g. to (Schrijvers 2005).

Let x̄ denote the variables occurring only in the body of the rule. We
use ∀̄(F ) to denote universal quantification over all free variables in F . A
simplification rule H ⇔ G | B corresponds to a logical equivalence, under
the condition that the guard is satisfied: ∀̄(G → (H ↔ ∃x̄B)). Similarly, a
propagation rule H ⇒ G | B corresponds to a conditional logical implication
∀̄(G→ (H → ∃x̄B)), and a simpagation rule Hk \ Hr ⇔ G |B to a conditional
equivalence: ∀̄(G→ (Hk → (Hr ↔ ∃x̄B))).

Example 4.6. As an example, consider the program leq of Listing 4.1. The
logical formulas corresponding to its rules are:
∀x, y : x = y→ (leq(x, y)↔ true) (reflex.)
∀x, y, x′, y′ : x = x′ ∧ y = y′ → (leq(x, y) ∧ leq(y′, x′)↔ x = y) (antisym.)
∀x, y, x′, y′ : x = x′ ∧ y = y′ → (leq(x, y)→ (leq(x′, y′)↔ true)) (idemp.)
∀x, y, y′, z : y = y′ → (leq(x, y) ∧ leq(y′, z)→ leq(x, z)) (trans.)

or equivalently:
∀x : leq(x, x) (reflexivity)
∀x, y : leq(x, y) ∧ leq(y, x)↔ x = y (antisymmetry)
true (idempotence)
∀x, y, z : leq(x, y) ∧ leq(y, z)→ leq(x, z) (transitivity)

Note the strong correspondence between the syntax of the CHR rules, their
logical reading, and the natural definition of partial order. CHR’s multiset
semantics, however, is lost in its classical logical reading, as the idempotence rule
corresponds to a logical tautology.

Not all programs, however, have a meaningful classical logical semantics.

Example 4.7. The rules of the primes program of Listing 4.3 have no meaningful
logical reading. The semantics of the sieve rule, e.g., is logically equivalent to:



4.2 Formal Semantics 37

∀a, b : prime(a) ∧ a|b→ prime(b)
This formula nonsensically states a number is prime if it has a prime factor.

Example 4.8. Another distinctive feature of CHR’s operational semantics that
cannot be modelled in classical logic is committed choice. The logical reading of
the simple coin program from Example 4.5 for instance is:

∀x, y : (throw(x)↔ x = head) ∧ (throw(y)↔ y = tail)
which erroneously implies that head = tail.

Linear Logic Semantics

For general-purpose CHR programs such as primes, or programs that rely on
CHR’s multiset semantics, the classical logic reading is often inconsistent with
the intended meaning (see previous section). To overcome these limitations,
Bouissou (2004) and Betz and Frühwirth (2005, 2007) independently proposed
an alternative declarative semantics based on (intuitionistic) linear logic (Girard
1987). By interpreting CHR constraints as linear resources, and CHR rules as
linear implication rather than logical equivalence, Betz and Frühwirth (2005,
2007) obtain surprisingly strong soundness and completeness results.

Example 4.9. The linear logical reading of the sieve rules of the primes program
(Listing 4.3) is:

!∀(a|b( (prime(b)⊗ prime(a)( prime(a)))
which adequately models the intended behaviour of the rule (see Betz and
Frühwirth (2005) for a proper explanation).

Example 4.10. The linear logic reading of the coin-throwing program of Ex-
ample 4.5 is logically equivalent to:

!∀(throw(Coin)( (Coin = head)&(Coin = tail))
In natural language, this formula means “you can always replace throw(Coin)
with either Coin = head or Coin = tail, but not both”. This corresponds to
CHR’s committed-choice and unidirectional forward chaining rule application.

Transaction Logic Semantics

The linear logic semantics is closer to the operational semantics than the CHR
classical logical semantics. However, it still does not allow precise reasoning about
CHR derivations: while derivations correspond to proofs of logic equivalence
of the initial and the final state, it only allows reasoning on the result of an
execution, not on the execution itself. The transaction logic semantics (Meister,
Djelloul, and Robin 2007) aims to bridge this remaining gap between the logical
and operational semantics of CHR.



38 Constraint Handling Rules

4.2.2 The theoretical operational semantics ωt

The operational semantics of CHR describes the runtime behaviour of the lan-
guage’s implementations. The most general operational semantics is the so-called
high-level or theoretical operational semantics (Frühwirth 1998), commonly de-
noted ωt. It models all standard CHR operational characteristics, such as its
multiset store, matching, forward chaining rule firing, and reapplication preven-
tion. Nearly all CHR systems implement this semantics.

The ωt semantics is formulated as a state transition system, where the relation
between consecutive execution states is defined by transition rules.

Execution states

Definition 4.1 (Identified constraints). An identified CHR constraint c#i is a
CHR constraint c associated with a unique constraint identifier i. This integer
number serves to differentiate between copies of the same constraint.
We further introduce projection operators chr(c#i) = c and id(c#i) = i, and
extend them to sequences and sets of identified CHR constraints in the obvious
manner—e.g., id(S) = {i|c#i ∈ S}.

Definition 4.2. An execution state σ is a tuple 〈G,S,B,T〉n, where:
• The goal G is a multiset of constraints to be rewritten to solved form.
• The CHR constraint store S is a set of identified CHR constraints that can
be matched with rules in the program P. Note that due to the constraint
identifiers, S is a set, even though chr(S) is a multiset.
• The built-in constraint store B is an abstract conjunction representing all

built-in constraints that have been posted to the underlying solver. These
constraints are assumed to be solved (implicitly) by the built-in constraint
solver(s) offered by the host language H.
• The propagation history T is a set of tuples, each recording the identities
of the CHR constraints that fired a rule, and the name of the rule itself.
The propagation history is used to prevent trivial non-termination for
propagation rules: a propagation rule is allowed to fire with the same set of
constraints only once.2

• Finally, the counter n ∈ N represents the next integer that can be used to
number a CHR constraint.

2Early work on CHR, as well as some more recent publications (e.g., Bouissou 2004; Duck
et al. 2007; Haemmerlé and Fages 2007), use a token store instead of a propagation history (this
explains the convention of denoting the propagation history with T). A token store contains a
token for every potential (future) rule application, which is removed when the rule is actually
applied. The propagation history formulation is dual, but closer to most implementations.
Confusingly, the term token store has also been used for what is commonly referred to as the
“propagation history” (e.g., Chin et al. 2003; Tacchella et al. 2007).



4.2 Formal Semantics 39

�




�

	

1. Solve. 〈{c} ]G,S,B,T〉n�P 〈G,S, c ∧ B,T〉n
where c is a built-in constraint and DH |= ∃̄∅B.

2. Introduce. 〈{c} ]G,S,B,T〉n�P 〈G, {c#n} ∪ S,B,T〉n+1
where c is a CHR constraint and DH |= ∃̄∅B.

3. Apply. 〈G,K tR t S,B,T〉n�P 〈B ]G,K t S, θ ∧ B,T t {t}〉n
where ρ@ Hk \ Hr ⇔ G |B is a renamed apart rule of P,
θ ∈ matchings(Hk, Hr, G,K,R,B), and t = (ρ, id(K)++ id(R)) /∈ T.

Figure 4.1: The transition rules of the theoretical operational semantics ωt,
defining�P . We use ] for multiset union. For constraint conjunctions B1 and B2,
∃̄B2(B1) denotes ∃X1, . . . , Xn : B1, with {X1, . . . , Xn} = vars(B1)\vars(B2).

We use σ, σ0, σ1, . . . to denote execution states, and Σchr to denote the set
of all execution states.

Transition rules

For a given CHR program P, the transitions are defined by the binary relation
�P⊂ Σchr×Σchr shown in Figure 4.1. The first two transitions add constraints
from the goal to either the built-in and CHR constraint store. The most interesting
transition is Apply, which fires a rule. Formally, matching substitutions and
rule applicability (cf. Section 4.1.3) are defined as follows:

Definition 4.3 (Matching substitutions). Let Hk and Hr be sequences of CHR
constraints, G and B conjunctions of built-in constraints, and K and R se-
quences of identified CHR constraints. Then the set of matchings substitu-
tions matchings(Hk, Hr, G,K,R,B) is defined as those substitutions for which
θ(Hk) = chr(K), θ(Hr) = chr(R), and DH |= (∃̄∅B) ∧ (B→ ∃̄B(θ ∧G)).

Using a matching substitution θ, a rule instance θ(ρ) instantiates a rule ρ
with CHR constraints matching its head. The propagation history prevents
trivial non-termination by ensuring that each rule instance fires at most once (in
particular if ρ is a propagation rule).

Derivations

Execution proceeds by exhaustively applying the transition rules, starting from
an initial state.

Definition 4.4 (Initial state). Given a user-defined query Q, a multiset of CHR
and built-in constraints, an initial execution state is given by 〈Q, ∅, true, ∅〉1.
The set of all initial states is denoted Σinit .



40 Constraint Handling Rules

Definition 4.5 (Final state). A final state ωf = 〈∅,S,B,T〉n is an execution
state for which no transition applies. We distinguish two types of final states. In
a failure state, the built-in constraint store is inconsistent, i.e., DH |= ¬∃̄∅B. All
other final states are successful final states. The set of final states is Σfinal .
Definition 4.6 (Derivation). A derivation D is a (possibly infinite) sequence
of execution states, with D[1] ∈ Σinit, and D[i] �P D[i + 1] for 1 ≤ i < |D|.
For finite derivations D[|D|] ∈ Σfinal . We also use the notational abbreviation
σ1 �∗P σn to denote a finite derivation [σ1, . . . , σn].
Definition 4.7 (Equivalence). All failed states are equivalent. Two successful
final states σ = 〈∅,S,B,T〉n and σ′ = 〈∅,S′,B′,T′〉n′ are equivalent iff a variable
renaming θ exists such that chr(S) = chr(θ(S′)) and DH |= B↔ θ(B′).

Soundness and completeness

Frühwirth (1998) surveys the relatively strong soundness and completeness results
that link the ωt semantics and the classical logical semantics, particularly for
terminating and confluent (also called: well-behaved) CHR programs. As discussed
in 4.2.1, Betz and Frühwirth (2005, 2007) obtained even stronger results when
considering linear logic instead.

4.2.3 The refined operational semantics ωr

The ωt semantics is highly nondeterministic: it does not determine the order in
which constraints are Solved and Introduced, nor does it determine the order
in which the rules are fired by Apply transitions. The actual runtime behaviour
of concrete implementations, however, is mostly far more deterministic. They
use specific matching and evaluation algorithms, under which typically only a
limited subset of all ωt derivations is possible.

As explained in more detail in Section 4.5, most current CHR systems are
based on the implementation strategy developed by Holzbaur and Frühwirth
(2000a). To better model the behaviour of these systems, Duck et al. (2004)
defined the so-called refined operational semantics ωr.

The ωr refinement of ωt is completely analogous to Prolog’s refinement of
the abstract SLD resolution mechanism (cf. Section 3.1.2). That is: CHR rules
are tried in a top-to-bottom textual order, and both queries and rule bodies are
executed from left to right, treating each constraint conjunct like a traditional
procedure call. A central concept is the active constraint. Similar to the active
goal in Prolog, the active constraint traverses all its occurrences in a textual
order, searching for matching rule instances.
Example 4.11. Listing 4.4 shows the occurrence numbers of the primes handler.
Occurrences are numbered, per constraint, in the order in which they are matched
by ωr (i.e. in a top-down, right-to-left manner).



4.2 Formal Semantics 41

Listing 4.4 Occurrence numbering for the primes handler: occurrence numbers
are shown using [j] annotations.

generate @ upto(N)[1] ⇔ N > 1 | prime(N), upto(N-1).
done @ upto(1)[2] ⇔ true.
sieve @ prime(A)[2] \ prime(B)[1] ⇔ B mod A = 0 | true.

We now formally define ωr as a state-transition system (Duck et al. 2004).
This definition is similar to that of ωt in the previous section.

Execution states

Definition 4.8 (Occurrenced constraints). An occurrenced constraint c#i : j
is an identified constraint c#i annotated with an occurrence number j. This
annotation indicates that only matches with the j’th occurrence of c will be
considered when c#i :j is active.

Definition 4.9 (Execution state). A state in ωr is a tuple 〈A,S,B,T〉n, with S,
B, and T defined as in Definition 4.2. The activation stack A is a heterogeneous
sequence of constraints, identified constraints, and occurrenced constraints.

Initial and final states are defined as before. If the top-most element of A is
an occurrenced constraint, it is called the active constraint. Other occurrenced
constraints in A are called suspended constraints.

Transition rules

Figure 4.2 lists the transition rules of ωr. If a rule is fired in a Propagate
or Simplify transition, the body is pushed onto the execution stack A, thus
suspending the previously active constraint. A suspended constraint becomes
active again once all body conjuncts have been activated (for CHR constraints)
or solved (for built-in constraints) in a left-to-right order. In other words, A acts
as a standard call stack, and is used to execute constraints much like procedure
calls are executed in traditional stack-based programming languages.

If the top of the stack is an unidentified CHR constraint c, the Activate
transition adds c to the constraint store, and then activates it (i.e. adds an
occurrence number). This causes all the constraint’s occurrences to be tried in
order. When an occurrenced identified CHR constraint c#i : j is active, only
matches with the j’th occurrence of c’s constraint are considered. Interleaving a
sequence of Default transitions, all applicable rules are fired in Propagate and
Simplify transitions. A constraint remains active, if not temporarily suspended,
until it is removed by a Simplify transition, or until all its occurrences have
been traversed and a Drop transition is applied.



42 Constraint Handling Rules

�

�

�



1. Solve 〈[b|A],S,B,T〉n�P 〈S++A,S, b∧B,T〉n if b is a built-in constraint.
For the set of reactivated constraints S ⊆ S, the following bounds hold:
• Lower bound: ∀S′ ⊆ S :

(
∃ρ ∈ P : ¬applicable(ρ, S′,B) ∧

applicable(ρ, S′, b ∧ B)
)
→ (S′ ∩ S 6= ∅)

• Upper bound: ∀c ∈ S : vars(c) 6⊂ fixed(B)

2. Activate 〈[c|A],S,B,T〉n�P 〈[c#n : 1|A], {c#n} t S,B,T〉n+1 if c is a
CHR constraint (which has not yet been active or stored in S).

3. Reactivate 〈[c#i|A],S,B,T〉n �P 〈[c#i : 1|A],S,B,T〉n if c is a CHR
constraint (re-added to A by a Solve transition but not yet active).

4. Simplify 〈[c#i : j|A],S,B,T〉n�P 〈B++A,K t S, θ ∧ B,T t {t}〉n with
S = K tR1 t {c#i} tR2 t S, if the following holds:
• The j-th occurrence of c in P is Hr[k] in a (renamed apart) rule
ρ@ Hk \ Hr ⇔ G |B

• |R1| = k − 1
• θ ∈ matchings(Hk, Hr,K,R1 ++[c#i]++R2,B)
• t = (ρ, id(K++R1)++[i]++ id(R2)) /∈ T

5. Propagate 〈[c#i : j|A],S,B,T〉n�P 〈B ++ [c#i : j|A],S \ R, θ ∧ B,T t
{t}〉n with S = K1 t {c#i} tK2 tR t S, if the following holds:
• The j-th occurrence of c in P is Hk[k] in a (renamed apart) rule
ρ@ Hk \ Hr ⇔ G |B

• |K1| = k − 1
• θ ∈ matchings(Hk, Hr,K1 ++[c#i]++K2, R,B)
• t = (ρ, id(K1)++[i]++ id(K2 ++R)) /∈ T

6. Drop 〈[c#i :j|A],S,B,T〉n�P 〈A,S,B,T〉n if c has no j-th occurrence in
P.

7. Default 〈[c#i : j|A],S,B,T〉n�P 〈[c#i : j + 1|A],S,B,T〉n if the current
state cannot fire any other transition.

Figure 4.2: The transition rules of the refined operational semantics ωr. All
transitions have as an additional, implicit precondition that DH |= ∃∅B.



4.2 Formal Semantics 43

If the top-most element of A is a built-in constraint, it is passed to the built-in
solver in a Solve transition. As this may affect the entailment of guards, CHR
constraints must be reactivated to ensure all newly applicable rule instances are
found. Solve therefore re-adds a set of reactivated constraints to the stack, which
then become active again, one by one, by a series of Reactivate transitions.

The set of reactivated constraints is not fully determined. Instead, reasonable
lower and upper bounds are specified3. The lower bound ensures that, for each
previously inapplicable rule instance, at least one of the constraints matching
this instance is reactivated. The upper bound specified in the Solve transition
prohibits so-called fixed constraints from being reactivated. If all constraint
arguments are already completely fixed before, adding a new built-in constraint
cannot enable additional rule instances. Formally:

Definition 4.10. A variable v is fixed by constraint conjunction B, denoted
v ∈ fixed(B), iff DH |= ∀θ

( (
π{v}(B) ∧ π{θ(v)}(θ(B))

)
→ v = θ(v)

)
for any

variable renaming θ.

Correspondence The refined operational semantics is an instance of the ab-
stract ωt semantics. That is, all ωr derivations are also valid ωt derivations.

Theorem 4.1. For all derivations D under ωr, there exists a corresponding
derivation D′ under ωt.

Proof. We define the straightforward abstraction function α, that maps states
and derivations of ωr as follows:

α(〈A,S,B,T〉n) = 〈{c ∈ A | c is not of form c#i or c#i :j},S,B,T}〉n
α([]) = []

α([σ1|D]) =
{
α(D) if |D| > 0 and α(σ1) = α(D[1])
[α(σ1)|α(D)] otherwise

Let D be an ωr derivation, then α(D) is a valid ωt derivation (it is easy to verify
that the last state in α(D) is indeed a final state).

Determinism While ωr clearly is far more deterministic than ωt, two sources
of nondeterminism can still be distinguished:

1. In the Solve transition, the concrete set of reactivated constraints is not
fully determined (see earlier). Moreover, the order in which constraints are
reactivated is left open.

3These bounds are not part of the original specification by Duck et al. (2004). They were
introduced by Duck (2005) and Schrijvers (2005) to better reflect actual behaviour of CHR
implementations.



44 Constraint Handling Rules

2. If multiple instances of the same rule (and matching the same active
constraint) are applicable, the order in which they are found in Propagate
and Simplify is not determined.

The motivation is to leave more freedom for efficient constraint store data struc-
tures and other optimisations to CHR implementations.

4.3 Program Properties and Analysis
In this section we discuss important properties of CHR programs: termination
(Section 4.3.1), confluence (Section 4.3.2), and complexity (Section 4.3.3), as well
as (semi-)automatic analysis of these properties.

4.3.1 Termination
Termination analysis attempts to determine whether the evaluation of a given
program will terminate. Due to the following properties of CHR, in particular
the last one (Frühwirth 2000), traditional techniques from logic programming
and term rewriting cannot readily be applied:
• CHR rules are multi-headed
• CHR constraints have a multiset semantics
• CHR propagation rules do not remove any constraints
In recent years though, considerable progress has been made. So much so

that our survey in (Sneyers et al. 2010, Section 3) is already outdated. Pilozzi
and De Schreye (2008) developed innovative termination conditions that can
prove most practical CHR programs terminating, including those that contain
propagation rules. Their approach is strictly more powerful than that of Frühwirth
(2000) and Voets et al. (2007). Building on these results, Pilozzi (2009a) has
developed a system called CHRisTA (CHR Termination Analyser), a constraint-
based automated termination analysor for CHR(LP). This approach scales to
large programs (Pilozzi and De Schreye 2009).

Pilozzi (2009b) also proposed a novel constraint-based approach to termination
analysis, applicable to both logic programming (LP) and CHR. Their approach
elegantly deals with problems such as bounded increase and integer arithmetic,
and is able to prove termination of programs that only terminate for subsets of
the considered queries. This work constitutes a first crucial step towards a first
integrated termination analysor for CHR(LP) (Pilozzi 2009c).

4.3.2 Confluence
A CHR program is called ω-confluent if, for any (initial) state, all ω derivations
from that state result in equivalent final states.



4.3 Program Properties and Analysis 45

In early CHR research, Abdennadher et al. (1997, 1999) derived a decidable,
sufficient and necessary test for proving ωt-confluence of terminating programs,
and proved that confluence implies correctness (consistency of the logical reading;
see Section 4.2). Their test essentially entails identifying all minimal execution
states that constitute sources of nondeterminism (called critical states), and
showing that all possible derivations from such states reconverge to an equivalent
state. Based on this, Bouissou (2004) implemented a confluence analyser in CHR.

The notions of ωr- and ωp-confluence—ωp is the semantics underlying CHRrp:
see Section 4.4.2—were investigated respectively by Duck (2005, Chap. 6) and
De Koninck (2008, Chap. 3). Both studies also discuss practical confluence tests.

Recently, the topic of ωt-confluence received renewed attention. Raiser and
Tacchella (2007) consider confluence of non-terminating programs, and Duck
et al. (2007) introduce the powerful notion of observable confluence. Many ‘non-
confluent’ programs are observably confluent, because apparent non-confluence
originates from critical states that are unreachable in practice. To properly analyse
observable confluence though, more powerful analysers are required capable of
reasoning over various types of constraint store invariants.

Related properties and analyses

Monotonicity The completeness of confluence tests inherently relies on the
monotonicity property of CHR programs. In its pure form, all CHR programs
are monotonic: that is, all applicable rules in a given state remain applicable if
either CHR or built-in constraints are added to the constraint store.

Completion Completion is a technique to transform a non-confluent CHR
program into a confluent one (Abdennadher and Frühwirth 1998), useful for the
extension, modification and specialisation of existing programs. Frühwirth (2005b)
for instance showed related completion techniques can improve the parallelizability
of CHR programs.

Operational equivalence Two programs are operationally equivalent if they
reach equivalent results for each query (Abdennadher and Frühwirth 1999; Ab-
dennadher 2001). Based on operational equivalence, Abdennadher and Frühwirth
(2004) presented a method to remove redundant rules from CHR programs, as
well as techniques to merge two CHR solvers.

4.3.3 Complexity
Computational complexity theory investigates the amount of computational
resources needed to execute an algorithm; the two most important of which are
time (execution time, number of steps) and space (size of the required memory).



46 Constraint Handling Rules

Ad hoc analysis

The complexity of various specific, individual CHR programs has been ana-
lysed. Notable examples include the proven complexity-wise optimality of CHR
implementations of several classical algorithms—such as union-find (Schrijvers
and Frühwirth 2006) and Dijkstra’s algorithm (Sneyers et al. 2006a)—and the
complexity analyses of several CHR-based constraint solvers by e.g. Frühwirth
(2005a) and Meister et al. (2006) (cf. Section 4.6.1).

Meta-complexity results

While ad hoc methods give the most accurate results in practice, they cannot
easily be generalised. Therefore, more structured approaches to complexity
analysis have been proposed by means of meta-complexity theorems.

Building on the elementary CHR termination analysis techniques of (Früh-
wirth 2000), Frühwirth (2001, 2002a, 2002b) investigated the time complexity of
simplification-only programs for naive implementations of CHR. Recent work on
optimising compilation of CHR, however, allows meta-theorems that give much
tighter complexity bounds. We now discuss two distinct approaches.

De Koninck et al. (2007a) establish a close correspondence between CHR and
Ganzinger and McAllester (2002)’s Logical Algorithms (LA) formalism, allowing
the LA meta-complexity result to be applied (indirectly) to a large class of CHRrp

programs (CHRrp subsumes CHR: see Section 4.4.2).
Sneyers et al. (2009) introduce the CHR machine, a new model of computation

similar to the well-known Turing and RAM machine, and establish strong meta-
complexity results. Like Frühwirth (2001, 2002a, 2002b), Sneyers et al. (2009) first
estimate the number of rule applications (CHR machine steps). In a second step,
however, they additionally compute the complexity of individual rule applications.
While the first step only depends on the operational semantics of CHR, the second
strongly depends on the performance of the actual code generated by the CHR
compiler. With this approach, Sneyers et al. (2009) obtain tight bounds for both
time and space complexity.

Complexity-wise completeness of CHR

The most interesting result of Sneyers et al. (2009) is the following complexity-wise
completeness result for CHR (details omitted):

“ For every algorithm [...], a CHR program exists which can be executed by
[an optimising CHR system] with optimal time and space complexity. ”

Complexity-wise completeness implies Turing completeness but is a much stronger
property. Sneyers et al. (2009) argue CHR is the first declarative language for
which such a result can be demonstrated within the pure part of the language,
namely without imperative extensions (i.e. under ωt).



4.4 Language Extensions 47

4.4 Language Extensions
Over the years, weaknesses and limitations of CHR have been identified, for
instance regarding execution control, expressiveness, modularity, incrementality,
and search. In this section we consider extensions and variants of CHR that were
proposed to tackle these issues.

4.4.1 Probabilities
Probabilistic CHR or PCHR (Frühwirth, Di Pierro, and Wiklicky 2002) extends
CHR with probabilistic choice between the applicable rules in any state.

Example 4.12. The following PCHR program simulates a fair coin toss:

throw(Coin) <=>0.5: Coin=head.
throw(Coin) <=>0.5: Coin=tail.

PCHR is implemented by means of a straightforward source-to-source transform-
ation using the framework of Frühwirth and Holzbaur (2003).

Sneyers et al. (2009) identify several important conceptual issues of PCHR,
and propose the novel rule-based probabilistic-logic formalism CHRiSM (Chance
Rules induce Statistical Models). CHRiSM is a particularly powerful, expressive
formalism, that allows elegant embeddings of many probabilistic logic formalisms.
CHRiSM has a cleaner, more natural semantics than PCHR, as the probabilistic
meaning of CHRiSM rules is local, that is, it does not depend on the full program
and runtime information. CHRiSM is implemented using a source-to-source
transformation to CHR(PRISM). PRISM is an established probabilistic extension
of Prolog. CHRiSM directly inherits PRISM’s impressive support for probabilistic
inference tasks, such as sampling, probability computation, and an expectation-
maximisation (EM) learning algorithm.

4.4.2 Priorities
While the refined operational semantics reduces most of the nondeterminism of
the ωt semantics, it arguably does not offer the CHR programmer an intuitive
and predictable way to influence control flow. The ωr semantics in a sense forces
the programmer to understand and take into account how CHR implementations
work, to achieve the desired execution control.

CHRrp gives the programmer a much more precise and high-level control
over program execution (De Koninck et al. 2007b; De Koninck 2008). In CHRrp,
the programmer assigns a priority to every rule. A rule’s priority is either a
numeric constant (static priority) or an arithmetic expression involving variables
appearing in the rule’s head (dynamic priority). CHRrp’s semantics ensures that



48 Constraint Handling Rules

�

�

�

�

3. Apply. 〈∅,K tR t S,B,T〉n�P 〈B,K t S, θ ∧ B,T t {t}〉n
where p :: ρ @ Hk \ Hr ⇔ G | B is a renamed apart rule of P,
θ ∈ matchings(Hk, Hr, G,K,R,B), and t = (ρ, id(K) ++ id(R)) /∈ T.
Furthermore, no rule instance with instantiated priority expression θ′(p′)
exists for which these conditions hold, and for which θ′(p′) > θ(p).

Figure 4.3: The Apply transition rule of the priority semantics ωp

rule instances with higher priority are applied first. Dynamic priorities allow
different instances of the same rule to be executed at different priorities.

Example 4.13. An example that illustrates the power of dynamic priorities is
the following CHRrp implementation of Dijkstra’s algorithm:

1 :: source(V) ==> dist(V,0).
1 :: dist(V,D1) \ dist(V,D2) <=> D1 ≤ D2 | true.

D+2 :: dist(V,D), edge(V,C,U) ==> dist(U,D+C).

The priority of the last rule makes sure that new distance labels are propagated
in the right order: first the nodes closest to the source node.

Formally, CHRrp’s semantics, denoted ωp, is a variant of ωt where the Apply
transition rule is replaced with the version depicted in Figure 4.3. Asides from the
obvious priority restriction, there is another important difference: the ωp Apply
rule is only applicable on states with an empty goal. In other words, all CHR
constraints have to be Introduced, and all built-in constraints Solved, before
the next CHR rule is allowed to fire. Without this so-called batch semantics, the
execution control provided by rule priorities would become too nondeterministic.
By first moving all constraints to their respective constraint stores, the ωp avoids
that low-priority rules are allowed to fire only because the constraints required in
higher-priority matches are still in the goal.

De Koninck (2008) furthermore defined a refined operational semantics ωrp
for CHRrp, developed an optimising compiler, and studied language properties
such as ωp-confluence and complexity (see also Section 4.3).

4.4.3 Adaptive CHR
Constraint solving in a continuously changing, dynamic environment often re-
quires immediate adaptation of the solutions, i.e. when constraints are added
or removed. By nature, CHR solvers already support efficient adaptation when
constraints are added. Wolf (1999, 2000, 2000a) introduces an extended incre-
mental adaptation algorithm which is capable of adapting CHR derivations after
constraint retractions as well. An efficient implementation exists in Java (Wolf



4.4 Language Extensions 49

2001a, 2001b; cf. Section 4.5.3). Interesting applications of adaptive CHR include
adaptive solving of soft constraints, discussed in Section 4.6.1, and the realization
of intelligent search strategies, discussed in Sections 4.4.4 and 4.5.3.

4.4.4 Disjunction and search
Next to constraint simplification and propagation, most constraint solvers require
search. Pure CHR though does not offer any support for search. Abdennadher
and Schütz (1998) therefore proposed an extension of CHR with disjunctions in
rule bodies (see also Abdennadher 2000, 2001). The resulting language is denoted
CHR∨ (pronounced “CHR or”), and is capable of expressing several declarative
evaluation strategies, including both bottom-up and top-down evaluation, model
generation and abduction (abduction is discussed in Section 4.6.3). Any (pure)
Prolog program can be rephrased as an equivalent CHR∨ program (Abdennadher
2000, 2001). An interesting aspect of CHR∨ is that the extension comes for free
in CHR(Prolog) implementations by means of the built-in Prolog disjunction and
search mechanism.

As a typical example of programming in CHR∨, consider the following rule:

labelling, X::Domain <=> member(X,Domain), labelling.

Note the implicit don’t known choice in the call to Prolog’s member/2 predicate.
Various ways have been proposed to make the search in CHR∨ programs

more flexible and efficient. Menezes, Vitorino, and Aurelio (2005) present a
CHR∨ implementation for Java in which the search tree is made explicit and
manipulated at runtime to improve efficiency. De Koninck et al. (2006b) extend
both ωt and ωr towards CHR∨. The theoretical semantics leaves the search
strategy undetermined, whereas the refined one allows the specification of various
search strategies. They also realised an implementation for different strategies in
CHR(Prolog) by means of a source-to-source transformation.

For CHR(Java) systems, of course, the host language does not provide built-in
search capabilities. The specification of intelligent search strategies, i.e. more
flexible and powerful than Prolog’s built-in chronological backtracking, has there-
fore received considerable attention in several CHR(Java) systems (Krämer 2001;
Wolf 2005). As described in Section 4.5.3, in these systems, the search strategies
are implemented and specified in Java, orthogonally to the actual CHR program.
Wolf, Robin, and Vitorino (2007) propose an implementation of CHR∨ using the
ideas of (Wolf 2005), in order to allow a more declarative formulation of search
in the bodies of CHR rules, while preserving efficiency and flexibility. Along
these lines is the approach proposed by Robin, Vitorino, and Wolf (2007), where
disjunctions in CHR∨ would be transformed into special purpose constraints that
can be handled by an external search component such as JASE (Krämer 2001; cf.
Section 4.5.3).



50 Constraint Handling Rules

4.5 Systems and Implementation
CHR is first and foremost a programming language. Hence, a large part of CHR
research has been devoted to the development of CHR systems and efficient
execution of CHR programs. In this section, we provide a first overview of these
contributions. A comprehensive discussion of CHR compilation and optimisation
techniques is given in Part III of this dissertation.

Many CHR systems (compilers, interpreters and ports) have been developed,
for many different host languages. Figure 4.4 presents a time line of system
development, branches and influences. We now discuss these systems, grouped
by host language or host paradigm, in more detail.

4.5.1 CHR(LP)
Logic Programming is the natural host language paradigm for CHR. Hence, it is
not surprising that the CHR(Prolog) implementations are the most established.

The seminal work by Holzbaur and Frühwirth (1999, 2000a) has laid the
groundwork for an entire generation of CHR systems. They adapted the compila-
tion scheme of an earlier CHR system for ECLiPSe Prolog (Frühwirth and Brisset
1995) to use for the first time the efficient, flexible attributed variables feature
found in SICStus Prolog. For a long time, the CHR(SICStus) system by Holzbaur
was considered the reference CHR implementation. Its efficient compilation
scheme served as the basis for many other systems, and was formalised in the
refined operational semantics (Duck et al. 2004; cf. Section 4.2.3).

The K.U.Leuven CHR system by Schrijvers and Demoen (2004b) started as a
reconstruction of Holzbaur’s CHR(SICStus) system, created as a benchmark for
Demoen (2002)’s dynamic attributed variables implementation in hProlog. It soon
became clear there was much potential for improvement, and the system gradually
diverged from its roots. It became the central topic of Schrijvers’s seminal Ph.D.
thesis on analyses, optimizations and language extensions of CHR. Schrijvers
(2005) made numerous contributions to the field of optimising compilation of CHR
(cf. Chapter 8). K.U.Leuven CHR is currently available in XSB (Schrijvers et al.
2003; Schrijvers and Warren 2004), SWI-Prolog (Schrijvers, Wielemaker, and
Demoen 2005), YAP, B-Prolog (using Action Rules; Schrijvers, Zhou, and Demoen
2006), SICStus 4 (replacing Holzbaur’s system) and Ciao Prolog. Another system
directly based on the work of Holzbaur and Schrijvers is the CHR library for
the linear logic concurrent constraint programming language SiLCC by Bouissou
(2004). All of these systems compile CHR to host language code. The only
interpreter for CHR(Prolog) is TOYCHR4.

HAL is a constraint logic programming language designed to support the
construction and extension and use of new constraint solvers. The CHR(HAL)

4by Gregory J. Duck, 2003. Download: http://www.cs.mu.oz.au/~gjd/toychr/

http://www.cs.mu.oz.au/~gjd/toychr/


4.5 Systems and Implementation 51

Figure 4.4: A timeline of CHR implementations.



52 Constraint Handling Rules

system by Holzbaur, García de la Banda, Stuckey, and Duck (2005), was developed
in parallel with, and based on much the same principles as, the K.U.Leuven
CHR system. Many of the now standard CHR analyses and optimizations (see
Chapter 8) were developed collaboratively by Duck (2005) and Schrijvers (2005).
HALCHR also pioneered the interaction of CHR with arbitrary built-in constraint
solvers (Duck et al. 2003).

More recently, systems with deviating operational semantics have been de-
veloped. The CHRd system by Sarna-Starosta and Ramakrishnan (2007) runs
in XSB, SWI-Prolog and hProlog. It features a constraint store with set se-
mantics and is particularly suitable for tabled execution. The CHRrp system
by De Koninck (2008) for SWI-Prolog provides rule priorities. We further build
on the foundational work by De Koninck (2008), discussed in Section 4.4.2,
throughout this dissertation.

4.5.2 CHR(FP)
As type checking is one of the most successful applications of CHR in the context
of Functional Programming (see Section 4.6.3), several CHR implementations were
developed specifically for this purpose. Most notable is the Chameleon system
(Stuckey and Sulzmann 2005) which features CHR as the programming language
for its extensible type system. Internally, Chameleon uses the HaskellCHR
implementation5. The earlier HCHR prototype (Chin, Sulzmann, and Wang
2003) had a rather heavy-weight and impractical approach to logical variables
(cf. Section 7.4.3).

The aim of a 2007 Google Summer of Code project was to transfer this CHR-
based type checking approach to two Haskell compilers (YHC and nhc98). The
project led to a new CHR(Haskell) interpreter called TaiChi (Boespflug 2007).

With the advent of software transactional memories (STM) in Haskell, two
prototype systems with parallel execution strategies have been developed: STM-
CHR (Stahl and Melnikov 2007) and Concurrent CHR (Sulzmann and Lam
2008). Sulzmann and Lam (2007a) also explored the use of Haskell’s laziness
and concurrency abstractions for implementing the search of partner constraints.
These systems are currently the only known CHR implementations that exploit
the inherent parallelism in CHR programs. Concurrent CHR also serves as the
basis for Haskell-Join-Rules (Sulzmann and Lam 2007b; cf. Section 4.1.4).

We also mention the Haskell library for the PAKCS implementation of the
functional logic language Curry (Hanus 2006). The PAKCS system actually
compiles Curry code to SICStus Prolog, and its CHR library is essentially a
front-end for the SICStus Prolog CHR library. The notable added value of the
Curry front-end is the (semi-)typing of the CHR code.

5by Gregory J. Duck, 2004. Download: http://www.cs.mu.oz.au/~gjd/haskellchr/

http://www.cs.mu.oz.au/~gjd/haskellchr/


4.5 Systems and Implementation 53

4.5.3 CHR(Java) and CHR(C)
CHR systems are available for the imperative host languages Java and C. These
multi-paradigmatic integrations of CHR and mainstream programming languages
offer powerful synergetic advantages to the software developer: they facilitate the
development of application-tailored constraint systems that cooperate efficiently
with existing components. These advantages, as well as the different conceptual
and technical challenges encountered when embedding CHR into an imperative
host language, are discussed further in Chapter 7.

There are at least four implementations of CHR in Java. The earliest is the
Java Constraint Kit (JaCK) by Abdennadher (2001) and others (Abdennadher,
Krämer, Saft, and Schmauß 2002). The JaCK framework consists of three major
components:

1. JCHR (Schmauß 1999), which uses a CHR dialect intended to resemble Java,
in order to provide an intuitive programming experience. No operational
semantics is specified for this system, and its behaviour deviates from other
CHR implementations.

2. VisualCHR (Abdennadher and Saft 2001), an interactive tool visualising
the execution of JCHR, briefly discussed in Section 4.5.4.

3. JASE (Krämer 2001), the Java Abstract Search Engine, which allows the
specification of tree-based search strategies. The JASE library is added to
the JaCK framework as an orthogonal component. It provides a number of
utility classes that aid the user to implement search algorithms in the Java
host language. A typical algorithm consists of the following two operations,
executed in a loop: a JCHR handler is run until it reaches a fix-point, after
which a new choice is made. If an inconsistency is found, backtracking
is used to return to the previous choice point. JASE aids in maintaining
the search tree, and can be configured to use either trailing or copying to
facilitate backtracking.

The original CHORD system (Constraint Handling Object-oriented Rules
with Disjunctive bodies)6, developed as part of the ORCAS project (Robin
and Vitorino 2006), was a Java implementation of CHR∨ (Menezes, Vitorino,
and Aurelio 2005). Its implementation was built on that of JaCK, adding the
possibility to use disjunctions in rule bodies.

Both JaCK (Schmauß 1999) and CHORD take a different approach compared
to most other CHR compilers. After some preprocessing by the front-end, CHR
programs are essentially interpreted. No major optimisations are performed. The
main issue with these systems are their lacking performance. In (Van Weert
et al. 2005), for instance, JaCK was shown many orders of magnitude slower than
state-of-the-art systems.

6by Jairson Vitorino and Marcos Aurelio, 2005, no longer available



54 Constraint Handling Rules

DJCHR (Dynamic JCHR; Wolf 2001a) is an implementation of adaptive
CHR (see Section 4.4.3). DJCHR uses a compilation scheme similar to the basic
CHR(Prolog) scheme, where the underlying incremental adaptation algorithm
maintains justifications for rule applications and constraint additions. Building
on the approach of Holzbaur and Frühwirth (1999, 2000a), fast partner constraint
retrieval is achieved using a form of attributed variables (Wolf 2001b). Wolf
(2005) shows that DJCHR’s justifications, and in particular those of any derived
false constraint, also constitute an effective basis for intelligent search strategies.
As in JaCK, the different search algorithms are implemented orthogonally to the
CHR program. Wolf’s approach confirms that advanced search strategies are
often more efficient than a low-level, built-in implementation of chronological
backtracking (as in Prolog).

The K.U.Leuven JCHR systems focus both on performance and on integration
with the host language, two areas where earlier CHR(Java) systems were partic-
ularly lacking. K.U.Leuven JCHR handlers integrate neatly with existing Java
code, and it is currently one of the most efficient CHR systems available. The
language design and compilation techniques of the JCHR and JCHR2 systems
are the main topic of this dissertation.

CCHR (Wuille et al. 2007) implements CHR for C. It is heavily inspired by
JCHR. It is an extremely efficient CHR system conforming to the ωr refined
operational semantics. We discuss CCHR in more detail in Section 7.4.1.

4.5.4 Programming Environments

Over the past decade there has been an exponential increase in the number of
CHR systems, and CHR compilation techniques have matured considerably. The
support for advanced software development tools, such as debuggers, refactoring
tools, and automated analysis tools, lags somewhat behind, and remains an
important challenge for the CHR community (cf. Section 11.2).

VisualCHR (Abdennadher and Saft 2001), part of JaCK (see Section 4.5.3),
is an interactive tool visualising the execution of CHR rules. It can be used to
debug and to improve the efficiency of constraint solvers.

Both Holzbaur’s CHR implementation and the K.U.Leuven CHR system
feature a trace-based debugger that is integrated in the Prolog four port tracer.
A generic trace analysis tool, with an instantiation for CHR, is presented by
Ducassé (1999). As briefly discussed in Section 7.3.6, the K.U.Leuven JCHR
systems also provide rudimentary trace-based debuggers.

Schumann (2002) presents a literate programming system for CHR. The
system allows for generating from the same literate program source both an
algorithm specification typeset in LATEX using mathematical notation, and the
corresponding executable CHR source code.



4.6 Applications 55

4.6 Applications
Early successful applications of CHR include the optimal placement of wireless
transmitters (Frühwirth and Brisset 1998, 2000), and the Munich Rent Advisor,
an expert system for estimating the maximum fair rent in the city of Munich
(Frühwirth and Abdennadher 2001). In this section, we give an overview of the
many and diverse recent applications of CHR. A more thorough, exhaustive
survey can be found in (Sneyers, Van Weert, Schrijvers, and De Koninck 2010).

4.6.1 Constraint solvers
CHR was originally designed specifically for writing constraint solvers. Recent
examples of non-trivial constraint solvers written in CHR include:

Soft constraints Bistarelli et al. (2004) present a series of constraint solvers for
finite domain soft constraints based on the framework of c-semirings. A
node and arc consistency solver is presented, as well as complete solvers
based on variable elimination or branch and bound optimisation.

Constraint hierarchies Wolf (2000b) proposes an approach for solving dynam-
ically changing over-constrained problems, modelled using (finite domain)
constraints with hierarchical strengths or preferences using an adaptive
CHR solver (Wolf et al. 2000; Wolf 2001a; see Section 4.4.3).

Interactive constraint satisfaction Alberti et al. (2005) describe the imple-
mentation of a CLP language for expressing Interactive Constraint Sat-
isfaction Problems (ICSP). In the ICSP model incremental constraint
propagation is possible even when variable domains are not fully known.

Lexicographic order Frühwirth (2006a) presented a constraint solver for a
general lexicographic order constraint in terms of inequality constraints
offered by the underlying solver.

Trees Meister et al. (2006) developed a solver for conjunctions of non-flat equa-
tions over rational trees. Djelloul et al. (2007) use it in a more general
solver for (quantified) first-order constraints over finite and infinite trees.

Sequences Kosmatov (2006a, 2006b) has constructed a constraint solver for
sequences, expressing many sequence constraints in terms of two basic
constraints, for sequence concatenation and size.

Non-linear constraints A general purpose CHR-based CLP system for non-
linear (polynomial) constraints over the real numbers was presented by
De Koninck et al. (2006a). The system, called INCLP(R), is based on
interval arithmetic and uses an interval Newton method and constraint
inversion to achieve respectively box and hull consistency. INCLP(R) is
part of the standard SWI Prolog distribution (Wielemaker et al. 2010).



56 Constraint Handling Rules

CHR is ideally suited to create application-specific constraint solvers, as witnessed
by the applications listed in the upcoming subsections.

Scheduling

Abdennadher and Marte (2000) successfully used CHR for scheduling courses at
the university of Munich. A related problem, namely that of assigning classrooms
to courses, is dealt with by Abdennadher, Saft, and Will (2000). An overview of
both applications is found in (Abdennadher 2001).

Spatio-temporal reasoning

In autonomous mobile robot navigation, a crucial topic is automated qualitative
reasoning about spatio-temporal information, including orientation, distances,
directions, topology and time. The use of CHR for spatio-temporal reason-
ing has received extensive research attention. Particularly noteworthy are the
contributions of Escrig and Toledo (1998a, 1998b) and Cabedo and Escrig (2003).

Meyer (2000) has applied CHR for the constraint-based specification and
implementation of diagrammatic environments. CHR allows the integration with
other constraint domains, and extra CHR rules can be added to model more
complex diagrammatic systems. Similar results are obtained with CHRG in the
context of natural language processing (see Section 4.6.3).

Multi-agent systems

FLUX (Thielscher 2002, 2005) is a high-level programming system, implemented
in CHR and based on fluent calculus, for cognitive agents that reason logically
about actions in the context of incomplete information. An interesting application
of this system is FLUXPLAYER (Schiffel and Thielscher 2007), which won the
2006 General Game Playing (GGP) competition at AAAI’06. Seitz, Bauer, and
Berger (2002) and Alberti et al. (2003, 2004, 2006) also successfully applied
CHR-based reasoning in the context of multi-agent systems.

Lam and Sulzmann (2006) explore the use of CHR as an agent specification
language, founded on CHR’s linear logic semantics (see Section 4.2.1). They intro-
duce a monadic operational semantics for CHR, where special action constraints
have to be processed in sequence (discussed also in Section 5.1.5).

Semantic web and Web 3.0

A core problem related to the Semantic Web is the integration and combination
of data from diverse heterogeneous information sources. CHR has proven effective
in the implementation of several powerful mediator-based integration systems
(Bressan and Goh 1998; Firat 2003; Badea, Tilivea, and Hotaran 2004).



4.6 Applications 57

The Cuypers Multimedia Transformation Engine (Geurts, van Ossenbruggen,
and Hardman 2001) is a prototype system for automatic generation of Web-based
presentations adapted to device-specific capabilities and user preferences. It uses
CHR and traditional CLP to solve spatio-temporal constraints.

Automatic Generation of Solvers

Many authors have investigated the automatic generation of CHR-based constraint
solvers from formal specifications.

A first line of work is that of Apt and Monfroy (2001). From an extensional
definition of a finite domain constraint, a set of propagation rules is derived. As
an extension, Brand and Monfroy (2003) propose to transform the derived rules
to stronger propagation rules, for specialised versions of constraints.

A second is that of Abdennadher and Rigotti (2004), who derive both propaga-
tion and specialised simplification rules. Abdennadher et al. (2006) implemented
this algorithm in the Automatic Rule Miner tool. In later work, Abdennadher et
al. (2005, 2008) further improved this approach, and extended it to intentional
definitions where constraints are defined by logic programs.

Brand (2002) proposed a method to eliminate redundant propagation rules
and applies it to rules generated by the algorithm of Abdennadher et al. (2006).

4.6.2 Algorithms
CHR is increasingly used as a general-purpose programming language. Schrijvers
and Frühwirth (2005a, 2006) implemented and analysed the classic union-find
algorithm in CHR. In particular, they showed how the optimal complexity of
this algorithm can be achieved in CHR—a non-trivial achievement since this
is believed to be impossible in pure Prolog (cf. Section 4.3.3). This work lead
to parallel versions of the union-find algorithm (Frühwirth 2005b) and several
derived algorithms (Frühwirth 2006b). This work inspired Sneyers et al. (2009)
to study the complexity of CHR-based algorithms in general, leading to their
fundamental complexity-wise completeness result (cf. Section 4.3.3).

Other examples of elegant and natural CHR implementations of classic al-
gorithms include Dijkstra’s algorithm using Fibonacci heaps (Sneyers et al. 2006a),
the preflow-push maximal flow algorithm (Meister 2006), and Hopcroft’s algorithm
for minimising states in a finite automaton (Sneyers 2008).

4.6.3 Programming language development
Type systems

CHR’s aptness for symbolic constraint solving has led to many applications in the
context of type system design, type checking and type inference. While the basic



58 Constraint Handling Rules

Hindley-Milner type system requires only a simple Herbrand equality constraint,
more advanced type systems require custom constraint solvers.

The most successful use of CHR in this area is for Haskell type classes. Type
classes are a principled approach to ad hoc function overloading based on type-
level constraints. By defining these type class constraints in terms of a CHR
program (Stuckey and Sulzmann 2005), the essential properties of the type checker
(soundness, completeness and termination) can easily be established. Various
extensions, such as multi-parameter type classes (Sulzmann et al. 2006) and
functional dependencies (Sulzmann et al. 2007) are easily expressed. At several
occasions Sulzmann argues for HM(CHR), where the programmer can directly
implement custom type system extensions in CHR.

Coquery and Fages (2003, 2005) presented a CHR-based type checker for
Prolog and CHR(Prolog) that deals with parametric polymorphism, subtyping
and overloading. Schrijvers and Bruynooghe (2006) reconstruct type definitions
for untyped functional and logic programs.

Finally, Chin et al. (2006) presented a control-flow-based approach for variant
parametric polymorphism in Java.

Abduction

Abduction is the inference of a cause to explain a consequence: given B determine
A such that A→ B. It has applications in many areas: diagnosis, recognition,
natural language processing, type inference, etc.

The HYPROLOG system of Christiansen and Dahl (2005a) integrates the
early approach of Abdennadher and Christiansen (2000) with abductive-based
logic programming. Both the abducibles and the assumptions are implemented
as CHR constraints. Gavanelli et al. (2003) introduce two complementary ap-
proaches to implementing abductive logic programming using CHR. The system
of Alberti et al. (2005) extends the abductive reasoning procedure with the
dynamic acquisition of new facts.

Computational linguistics

CHR allows flexible combinations of top-down and bottom-up computation
(Abdennadher and Schütz 1998), and abduction fits naturally in CHR as well
(see Section 4.6.3). It is therefore not surprising that CHR has proven a powerful
implementation and specification tool for language processors.

Penn (2000) focuses on another benefit of CHR, namely the possibility of
delaying constraints until their arguments are sufficiently instantiated. As a
comprehensive case study he considers a grammar development system for HPSG,
a popular constraint-based linguistic theory.

Morawietz and Blache (2002) show that CHR allows a flexible and perspicuous
implementation of a series of standard chart parsing algorithms (cf. also Morawietz



4.6 Applications 59

(2000)), as well as more advanced grammar formalisms. Along the same lines is
the CHR implementation of a context-sensitive, rule-based grammar formalism
by Garat and Wonsever (2002).

A recent application of CHR in the context of natural language processing is
(Christiansen and Have 2007), where a combination of Definite Clause Grammars
(DCG) and CHR is used to automatically derive UML class diagrams from use
cases written in a restricted natural language.

CHR Grammars The most successful approach to CHR-based language pro-
cessing is given by CHR grammars (CHRG), a highly expressive, bottom-up
grammar specification language proposed by Christiansen (2005). Contrary to
other approaches, which mostly use CHR as a general-purpose implementation
language, Christiansen recognises that the CHR language itself can be used as a
powerful grammar formalism. CHRG’s, built as a relatively transparent layer of
syntactic sugar over CHR, are to CHR what DCG’s are to Prolog.

CHRG’s inherent support for context-sensitive rules, combined with extra-
grammatical hypotheses modelled as regular CHR constraints, readily allow the
natural modelling of advanced linguistic phenomena and grammar formalisms
(Christiansen 2005; Aguilar-Solis and Dahl 2004; Dahl 2004).

Using CHRG, Dahl and Blache (2005) develop directly executable specifica-
tions of property grammars. Applications of this approach and its extensions Dahl
and Voll (2004) include the extraction of concepts and relations from biomed-
ical texts (Dahl and Gu 2006), early lung cancer diagnosis (Barranco-Mendoza
2005, Chapter 4), error detection and correction of radiology reports obtained
from speech recognition (Voll 2006, Section 5.2.8), and the analysis of biological
sequences (Bavarian and Dahl 2006).

Christiansen and Dahl (2003) use an abductive model based on CHRG to
diagnose and correct grammatical errors. Other applications of CHRG include
the characterisation of the grammar of ancient Egyptian hieroglyphs (Hecksher,
Nielsen, and Pigeon 2002), linguistic discourse analysis (Christiansen and Dahl
2005b), and the disambiguation of biological text (Dahl and Gu 2007). An
approach similar to CHRG is taken by Bès and Dahl (2003) for the parsing of
balanced parentheses in natural language.

Testing and verification

Another application domain for which CHR has proved useful is software testing
and verification. Ribeiro, Zúquete, Ferreira, and Guedes (2000) present a CHR-
based tool for detecting security policy inconsistencies. Lötzbeyer and Pretschner
(2000) and Pretschner et al. (2004) propose a model-based testing methodology,
in which test cases are automatically generated from abstract models using CLP
and CHR. They consider the ability to formulate arbitrary test case specifications



60 Constraint Handling Rules

by means of CHR to be one of the strengths of their approach. Gouraud and
Gotlieb (2006) use a similar approach for the automatic generation of test cases
for the Java Card Virtual Machine (JCVM).

4.6.4 Industrial CHR use
Although most CHR systems are still research prototypes, there are a few systems
that can be considered to be robust enough for industrial application. We give a
few examples of companies that are currently using CHR.

The New-Zealand-based company Scientific Software & Systems Ltd. is one of
the main industrial users of CHR. CHR is used throughout its flagship product
the SecuritEase stock broking system7. SecuritEase provides front office (order
entry) and back-office (settlement and delivery) functions for stock brokers in
Australia and New Zealand. Inside SecuritEase CHR is used for:

1. implementing the logic to recognise advantageous market conditions to
automatically place orders in equity markets,

2. translating high-level queries to SQL,
3. describing complex relationships between mutually dependent fields on user

input screens, and calculating the consequences of user input actions, and
4. realising a Financial Information eXchange (FIX) server.
The Canadian company Cornerstone Technology Inc.8 has created an infer-

ence engine for solving and optimising collections of design constraints, using
Prolog and CHR. The design constraints work together to determine what design
configuration to use, select components from catalogues, compute dimensions for
custom components, and arrange the components into assemblies. The engine
allows for generating, interactive editing, and validating of injection mould designs.
Part of the system is covered by US Patent 7,117,055.

BSSE System and Software Engineering9, a German company specialising
in the discipline of full automation of software development, uses CHR for the
generation of test data for unit tests.

Agitar Technologies10 use the K.U.Leuven JCHR System in their flagship
product family AgitarOne, a comprehensive JUnit testing product for Java. This
application is discussed in some detail in Section 7.3.7.

At the MITRE Corporation11, CHR is used in the context of optical net-
work design. It is used to implement constraint-based optimisation, network
configuration analysis, and as a tool coordination framework.

7http://www.securitease.com/
8http://www.cornerstonemould.com/
9http://www.bsse.biz/

10http://www.agitar.com/
11http://www.mitre.org/

http://www.securitease.com/
http://www.cornerstonemould.com/
http://www.bsse.biz/
http://www.agitar.com/
http://www.mitre.org/


Part II

CHR Language Design

61





Chapter5
A Next Generation CHR Language

When I first came here, this was all swamp. Everyone said I was
daft to build a castle on a swamp, but I built it all the same, just
to show them. It sank into the swamp. So I built a second one.
That sank into the swamp. So I built a third. That burned down,
fell over, then sank into the swamp. But the fourth one stayed
up. And that’s what you’re going to get, Lad, the strongest castle
in all of England.

— Michael Palin as King of Swamp Castle
in Monty Python and the Holy Grail (1975)

CHR aims at supporting a very high-level, declarative programming style. Adher-
ing to the classic “what, not how” maxim of declarative programming considerably
shortens development time, and vastly improves a program’s understandabil-
ity, maintainability and robustness. Practical experience with current CHR
systems, however, has made it increasingly clear that their syntax, language
features, and semantics is insufficiently practical and declarative. CHR’s syntax
has hardly evolved since its initial conception in 1992. The syntax though is
somewhat archaic and overly verbose, and common tasks require cumbersome
low-level encodings. Moreover, the currently prevalent operational semantics ωr
(cf. Section 4.2.3) is almost fully deterministic, much like an imperative language.
De Koninck (2008) also incontestably established that more declarative means of
exerting execution control are required.

In this chapter, we describe—for lack of a better name—CHR2 , a solid basis
for a next generation of CHR systems. The goals for CHR2 are as follows:

1. maintain the desirable features that made existing systems successful;
2. integrate the advantages of recent advances towards more declarative and

useful CHR systems;

63



64 A Next Generation CHR Language

3. avoid any disadvantages of these earlier approaches that have since become
apparent.

In Section 5.1 we introduce and motivate the principle features of CHR2 . We
focus on the design of a more modern, streamlined syntax, and the declarative
specification of rules, execution control, and program invariants. We then formally
specify the operational semantics of the core CHR2 language in Section 5.1, and
study and discuss its properties in considerable detail.

Later, in Chapter 6, we seamlessly integrate negation and aggregates into
CHR2 , thus creating a particularly powerful, elegant programming language. The
design of JCHR2 , a reference implementation of CHR2 for Java, is discussed in
Chapter 7, and its efficient compilation and optimisation in Part III.

5.1 Basic Building Blocks
5.1.1 Rule conditions
In conventional CHR syntax, the different types of conditions that determine a
rule’s applicability—kept occurrences, removed occurrences, and guard conjuncts—
are grouped in separate segments. Consequently, conditions that logically belong
together must often be written separately. For larger, multi-headed rules, this
hampers both usability and readability, as these restrictions mostly prohibit them
from having an intuitive left-to-right reading.

Example 5.1. The following rule occurs in the RAM simulator program, used
by Sneyers et al. (2009) to show the complexity-wise completeness of CHR (we
reviewed this seminal work earlier in Section 4.3.3):

prog(L,cjump,R,_), mem(R,X) \ pc(L) <=> X 6= 0 | pc(L+1).

This rule simulates the cjump instruction of a Random Access Machine. The RAM
machine’s program and memory are represented as prog resp. mem constraints;
its program counter L is maintained in a single pc constraint.

The mem/2 occurrence is written to the right of the prog/4 occurrence because
the latter logically determines the memory cell’s address R. The pc/1 occurrence,
however, similarly determines the instruction label L required for finding match-
ing prog/4 constraints. But because the pc/1 occurrence is removed, it must
unfortunately be written to the right of the backslash. The guard on X is similarly
separated from the variable’s occurrence in the head.

This situation only further deteriorates when adding new types of rule condi-
tions such as aggregates in Chapter 6.

We therefore propose a more flexible syntax. All rule conditions, including
the conjuncts of the guard, are written on the left-hand side of the rule. Given



5.1 Basic Building Blocks 65

that in most systems all CHR constraints are explicitly declared—typically with
(optional) mode and type information—a CHR compiler can normally easily
distinguish between CHR and built-in constraints. Removed occurrences are
preceded by a ‘-’ modifier. To clarify or disambiguate when needed, the ‘?’
modifier may be used for guard conjuncts, and ‘+’ for kept occurrences.

The arrow symbol ‘=>’ is used to separate a rule’s left- and right-hand side.
The left-hand side now represents all the rule’s applicability conditions, the
right-hand side contains the actions performed when a rule is applied.

Example 5.2. The rule from Example 5.1 can now be written as follows:

-pc(L), +prog(L,cjump,R,_), +mem(R,X), X 6= 0 => pc(L+1).

The ‘+’ modifiers are optional, but we mostly include them as a matter of good
programming style.

Rules without left-hand side are supported. Such rules are especially useful
for specifying the constraints that constitute (part of) the initial constraint store.
They constitute the counterparts of facts in Prolog, and can be thought of as
representing logical implications with antecedent true. Similarly, for rules with
trivial body true, the ‘=> true’ may be omitted1.

Example 5.3. The following two rules illustrate idiomatic use of this syntax:

=> min(0).
+min(X), -min(Y), X ≤ Y.

Conclusion The new CHR2 syntax facilitates cleaner, more readable rules, as
well as a smoother, more natural extension with new types of rule conditions (as
shown e.g. in Chapter 6). It can moreover readily be used alongside traditional
CHR syntax, where ‘==>’ implies a default ‘+’ for all occurrences, and similar
defaults apply for simplification and simpagation rules.

5.1.2 Constraint identifiers
In most operational semantics and implementations of CHR, each constraint
is assigned a unique identifier. We propose the programmer can access these
identifiers explicitly, be it as an abstract data type. Identifiers can be used for
matching, and can be compared using standard constraints such as =, <, ≥, etc.
Other possible operations include remove(id), which removes a constraint from
the constraint store2, and alive(id), to test whether the constraint has been

1Unfortunately, this is not possible in CHR(Prolog) systems, as the resulting conjunctions
(cf. Example 5.3) would be interpreted by the Prolog parser as illegal redefinitions of ‘,’/2.

2Care must be taken when allowing this operation outside rule bodies, as it may break
existing optimisations and analyses.



66 A Next Generation CHR Language

removed or not. We introduce identifiers mainly for use by expert users, and
to facilitate source-to-source transformations for language extensions. Example
transformations that would have benefited greatly from explicit identifiers include
(Van Weert et al. 2006b) and (De Koninck et al. 2007b).

5.1.3 Constraint arguments
In certain cases, production rule (PR) syntax is much more practical and concise
than that of CHR, particularly for CHR constraints with a larger number of
arguments. We therefore incorporate similar syntactic sugar into CHR2 . We
briefly illustrate this by example:

Example 5.4. The Manners benchmark program is a PR program implement-
ing a classic constraint optimisation problem, where the goal is to find an optimal,
acceptable seating arrangement for guests at a dinner party.3

When translated into CHR, it contains several head conjuncts of the form:
‘seating(_, _, _, _, _, L_seat, _)’. One of the rules moreover looks like:

..., -seating(A,B,C,D,E,F,no) => seating(A,B,C,D,E,F,yes), ...

Clearly, CHR’s syntax scales poorly to larger arities. Both for pattern matching
and modifications, programmers must include and/or count irrelevant arguments.
Perhaps even worse, if arguments are added, removed or otherwise rearranged,
changes must be made throughout the entire program.

A simple, elegant solution is obtained by extending the already required
constraint declarations with the possibility of assigning names to constraint
arguments (see for instance Example 5.16 later for a possible syntax). This then
allows syntactic sugar e.g. of form ‘seating{ seat2 = L_seat }’, and:

..., -seating{ path_done = no } # S
=> modify(S, { path_done = yes }), ...

5.1.4 Priority constraints
As seen in Section 4.4.2, in CHRrp, the priority assigned to each rule is an
expression that evaluates to an integer number. For dynamic priorities, this
expression may contain arguments of the constraints matched by the rule.

There are considerable downsides to this approach. Firstly, these priority
numbers impose a total preorder over applicable rule instances, whereas the
programmer mostly wants to enforce only a partial preorder. Unavoidably this
frequently results in unintentional constraints on the execution order. Secondly,
determining a suited priority number for a rule requires global knowledge of

3Manners is part of the “Texas benchmark suite” by Miranker et al. (1991). Another famous
program in this collection is the Waltz program we used earlier in Example 2.1.



5.1 Basic Building Blocks 67

numbers already assigned to other rules. Thirdly, adding new priority numbers
may require renumbering. This leads to a programming style where gaps are left
between successive priorities—i.e., the sequence (10, 20, 30, . . . ) is used rather
than (1, 2, 3, . . . ). Note that the use of line numbers in early, ‘unstructured’
languages such as BASIC and FORTRAN led to similar issues. Especially for
larger programs, CHRrp’s priority numbers thus rapidly become problematic.
Many production rule programs exhibit these issues as well (Miranker et al. 1991;
IllationTM 2007).

Therefore, we propose that rules are no longer assigned numbers. Instead, each
rule is assigned a symbolic rule descriptor, an arbitrary term that may contain
variables occurring in the remainder of the head. This is a generalisation of the
atomic rule names traditionally used in CHR systems. Next, priority constraints
are specified over these descriptors. Supported constraints are =, <, ≤, > and
≥, where ‘larger’ means ‘higher priority’, i.e. ‘must fire before’.4 The operands
of priority constraints are rule patterns, or sets thereof, that are matched with
rule descriptors either statically or dynamically. A program’s priority constraints
thus imply a partial preorder on rule instances.

We briefly introduce priority constraint declarations by example.

Example 5.5. For the classic leq program (cf. Listing 4.1), the following priority
declaration could be used:

priority transitivity < {reflexivity, idempotence, antisymmetry}.

It declares that the transitivity rule has lower priority than the other rules.
For leq, this is required for optimal performance and termination behaviour.

In general, rule descriptors can be arbitrary compound terms, even containing
variables shared with the head (see further). The operands of priority constraints
are (sets of) rule descriptors as well, and matching is used to determine the set of
rules they apply to. The set of rule descriptors matching the first operand is always
implicitly subtracted from the set matching the second operand. This facilitates
the use of the familiar matching wildcard ‘_’. A more convenient shorthand
for the above declarations is thus ‘priority transitivity < _.’ Obviously,
specifying multiple ‘... < _’ or ‘... > _’ constraints in a single CHR2 program
would result in inconsistencies. Two special priorities, lowest and highest, can
be used instead; for instance: ‘priority transitivity = lowest.’ Obviously,
this reintroduces non-locality issues. For larger programs, related rules can be
grouped, and more local ‘lowest’ and ‘highest’ priorities can be introduced.

Example 5.6. Example 4.13 on page 48 showed De Koninck (2008)’s succinct
CHRrp implementation of Dijkstra’s shortest path algorithm:

4This is in contrast with CHRrp, where a higher number indicates a lower priority (cf.
Example 5.7). We find our interpretation more natural, but this is a matter of personal taste.



68 A Next Generation CHR Language

1 :: source(V) ==> dist(V,0).
1 :: dist(V,D1) \ dist(V,D2) <=> D1 ≤ D2 | true.

D+2 :: dist(V,D), edge(V,C,U) ==> dist(U,D+C).

The ‘D+2’ priority is somewhat artificial. And in larger programs, this approach
would result in overlapping priority ranges. In CHR2 , this program becomes:

init @ +source(V) => dist(V,0).
keep_shortest @ +dist(V,D1), -dist(V,D2), D1 ≤ D2.
label(D) @ +dist(V,D), +edge(V,C,U) => dist(U,D+C).

priority keep_shortest > label(_),
label(X) > label(Y) if X < Y.

From CHR2 ’s priority constraints the intended priorities are readily apparent.
Also, the constraints can be stated locally, independently of any other rules. This
example further illustrates the declaration of dynamic priorities by including head
arguments in the rule descriptors, and the ‘if’ construct to declare conditional
priority constraints. Added advantage is that if, for instance, the init rule would
require a priority lower than all label(_) instances, this could be declared in
CHR2 as: ‘priority label(_) > init’. Expressing this in CHRrp is impossible,
as no upper bound on the distance D is known a priori.

Example 5.7. For backwards compatibility, or for smaller programs, integer
numbers can still be used to specify priorities. In CHR(Prolog) for instance, it
then suffices to add the following declaration to regain CHRrp’s semantics:

priority X > Y if ground(X), ground(Y), X < Y.

Related work Priorities are used by many related formalisms, such as produc-
tion rule systems, term and graph rewriting, and constraint (logic) programming.
These approaches either use integer numbers as in CHRrp, or even only a fixed
number of priority levels. An overview is given e.g. by De Koninck (2008, §3.9).
The approach to rule preference closest to our symbolic constraint-based one
seems to be that of preferred answer set programming (Brewka and Eiter 1999).

Conclusion Our symbolic probability constraints offer a more high-level, ex-
pressive and flexible execution control mechanism than CHRrp’s numeric priority
expressions. They achieve a better separation of logic and control, and allow
partial orderings on rule priorities to be specified locally. In Section 6.3.2 we
moreover argue they are better suited for automatic code generation, where all
required priorities are not always known in advance.



5.1 Basic Building Blocks 69

5.1.5 Batch and sequential conjunctions
In most current systems, constraints in the goal and in rule bodies are evaluated
sequentially, left-to-right, as formally specified in the refined operational semantics
(Section 4.2.3). In CHRrp, on the other hand, all constraint conjunctions are
evaluated atomically, in batch—i.e., all constraints are added to their stores before
the next rule is fired (cf. Section 4.4.2).

We believe batch evaluation is indeed a favourable language feature, for the
following reasons:

1. It is indispensable for any non-trivial execution control mechanism that
selects among applicable rule instances: all constraints in a body must be
added to the store before selecting the next rule, precisely because these
constraints determine the set of applicable rules

2. As shown in Chapter 6, batch semantics is similarly essential for a proper
integration of other language extensions such as negation and aggregates.

3. Batch semantics add a natural symmetry to the operational semantics of
the language. Before, a CHR rule only removed constraints in a single state
transition. With batch semantics, the constraints in the body are added
accordingly as well.

4. Batch semantics is a better match with CHR’s declarative origins in logic.
For pure constraints, the order in which they are added should not matter.
Or, more precisely, the user should not (have to) specify this order, at least
not by default. The compiler and runtime should instead decide the optimal
evaluation order.

Nevertheless, left-to-right execution is familiar to most programmers, and
many existing programs heavily rely on it. In fact, the following examples show
that CHR’s conventional sequential execution is often even preferable.

Example 5.8. The following example is given by De Koninck (2008):

a(X) <=> write(’Give a number’), read(Y), Z is X - Y, b(Z).

Bodies containing side-effecting host language statements should obviously be
executed left-to-right. Also, in this case, the value Y must be read before it can be
used in an arithmetic computation. CHRrp’s batch semantics does not guarantee
this. De Koninck (2008) therefore proposes the following encoding:

3 :: a(X) <=> io(yes,write(’Give a number’),Next),
io(Next,read(Y),_), safe_is(Z,X - Y), b(Z).

1 :: io(yes,Call,Done) <=> call(Call), Done = yes.
1 :: safe_is(X,Y) <=> ground(Y) | X is Y.



70 A Next Generation CHR Language

Instantiation exceptions in arithmetic expressions are avoided by an appropriate
guard. Left-to-right execution of IO operations is realised essentially by creating
a chain of io/3 constraints, linked together by free logical variables. Next, the
io/3 are triggered one by one by instantiating these link-variables. This pattern
always works, but puts a heavy burden on the programmer.

Example 5.9. As a slightly more realistic example, consider the following
CHR(Prolog) rule:

fact(N,F) <=> N1 is N-1, fact(N1,F1), F is F1 * N.

If this rule’s body is evaluated atomically, ‘F is F1 * N’ will raise an error
because F1 will be unbound. Again, auxiliary constructs such as safe_is/2 in
the previous example have to be used to mask the impure built-in constraint.

The latter example shows that simply executing built-in constraints from left-
to-right, as pragmatically done by De Koninck (2008)’s CHRrp implementation,
is insufficient. CHR constraints can cause impure effects indirectly.

All examples so far were concerned with impure host-language built-ins.
Even without such host-language interactions, however, the order in which CHR
constraints themselves are evaluated often matters. Firstly, sequential order
facilitates performance tuning. Secondly, constraints that represent operations
or actions generally have to be evaluated sequentially. Such constraints are very
common, particularly in (often non-confluent) general-purpose programs.

Example 5.10. A well-studied example is the union-find algorithm by Schrijvers
and Frühwirth (2006), where the order of union and find operations clearly
determines the result returned by find operations.

Example 5.11. Lam and Sulzmann (2006) demonstrated this issue using a
simple blocks world CHR program with get/1 and putOn/2 actions. Their
solution is based on a special type of CHR constraints and rules, called action
constraints and action rules. They formulated a monadic action CHR semantics,
which determines that action constraints are Introduced sequentially. Action
rules were implicitly given the highest priority (without an explicit notion of
priorities), and at most one action constraint was allowed in the store at all times
(if no action rule is applicable, the computation blocks).

Our more pragmatic solution is far less restricted than that of Lam and
Sulzmann (2006). CHR2 supports two types of conjunctions: batch conjunction,
separated by ‘&’, and sequential conjunction, separated by ‘,’.5 Both types can
be mixed freely (the ‘&’ operator has higher precedence than ‘,’).

Example 5.12. To illustrate this, consider the following CHR2 (Prolog) program
that implements a naive recursive computation of Fibonacci numbers:

5This way, CHR2 remains backwards compatible with ωr-based systems.



5.1 Basic Building Blocks 71

fib(N,M), N =< 1 <=> M = 1.
fib(N,M), N > 1 <=>
(N1 is N-1, fib(N1,M1)) & (N2 is N-2, fib(N2,M2)), M is M1+M2.

Intuitively, before the next conjunct of a sequential body conjunction is
considered, all previous conjuncts are evaluated completely. That is, up to the
same priority as the conjunction’s rule, at least all newly applicable rules have
fired exhaustively. In our example, this ensures that M1 and M2 are instantiated
when the last conjunct is executed.

A batch semantics essentially only guarantees all its constraint conjuncts are
Introduced and Solved before a next rule is allowed to fire. The order in which
batch conjuncts are evaluated is not determined (they may even be evaluated in
parallel). For instance, while both smaller Fibonacci numbers must be computed
first, the order in which this happens is not important.

While intended to be intuitively clear, the complete, precise semantics of
(nested) conjunctions is formally defined in Section 5.2.

Conclusion Even though batch conjunctions are more declarative, sequential
conjunctions form a natural, useful control mechanism, orthogonal to rule pri-
orities. Supporting both types facilitates both logical, declarative constraint
conjunctions, as well as the selective introduction of sequentiality.

5.1.6 Set semantics
Often, constraints exhibit, or should exhibit, set semantics rather than CHR’s
default multiset semantics. The following example illustrates how set semantics
may be crucial for a program’s runtime complexity or termination behaviour.

Example 5.13. The eq program is a typical CHR program. It nicely captures
the three standard rules in the definition of an equivalence relation, modelled
here as a binary equiv/2 CHR constraint:

reflexivity @ equiv(X,X) <=> true.
symmetry @ equiv(X,Y) ==> equiv(Y,X).

transitivity @ equiv(X,Y), equiv(Y,Z) ==> equiv(X,Z).

Due to its symmetry rule, this program typically leads to infinite derivations of
propagated duplicate constraints. Obviously, it needs a rule of form:

idempotence @ equiv(X,Y) \ equiv(X,Y) <=> true.

De Koninck (2008) indisputably demonstrated that under ωr such constraint
store invariants cannot be adequately enforced. Unfortunately, as noted also by
De Koninck, priorities do not fully solve the problem either: giving this rule the



72 A Next Generation CHR Language

highest priority may not be enough to guarantee termination.6 The reason is
that its semantics, ωp, does not determine which of the two duplicate constraints
is removed. If the wrong duplicate is consistently removed, infinite derivations
remain possible. The same is true for ω2 , the operational semantics of CHR2 we
define later.

De Koninck (2008) therefore proposed an encoding where set semantics
constraints are added in two phases. For our example (using CHR2 syntax):

check_duplicate @ -new_equiv(X,Y), +equiv(X,Y).
no_duplicate @ -new_equiv(X,Y) => equiv(X,Y).

priority check_duplicate > no_duplicate.

In the query and rule bodies, all equiv constraints moreover have to be replaced
with new_equiv. Also, for non-ground CHR constraints the idempotence rule
must be retained, as variable instantiations may introduce additional duplicate
CHR constraints (as in ‘new_equiv(X,Y), new_equiv(X,Z), Y = Z’).

Such encodings are unnecessarily impractical and error-prone. De Koninck
(2008) acknowledged this shortcoming, but neglected to work out an adequate
solution. Set semantics, however, is prevailing in many CHR programs. In fact,
CHR programs that actually use multiset constraints probably are more the
exception than the rule. As discussed in Section 4.2, multiset semantics also
matches poorly with CHR’s classical logical foundation. Similar observations were
made e.g. by Betz et al. (2009), whose persistent constraints have set semantics,
and Sarna-Starosta and Ramakrishnan (2007), whose CHRd system only offers
set semantics constraints.

We propose that in CHR2 set semantics constraints can be declared as part
of the CHR constraint declarations (nearly every system already requires CHR
constraints to be declared explicitly). The precise syntax used is system-dependent.
Using a CHR(Prolog)-style syntax, this gives for instance:

:- chr_constraint equiv/2 # set.

Each time a set semantics constraint is told, the constraint store is first
checked for syntactically identical constraints. If present, the newly asserted
constraint is silently removed. Duplicates caused by later unifications are resolved
nondeterministically.7

5.1.7 Functional dependencies
A second important constraint invariant is the existence of functional dependencies
(FDs) between constraint arguments. Functional dependencies are an established

6The reflexivity rule must also be given the highest priority, but that is not the point.
7This nondeterminism is kept after careful consideration. More fine grained control is always

possible in CHR2 through explicit encoding (using e.g. explicit constraint identifiers).



5.1 Basic Building Blocks 73

concept in relational databases, and were first studied in detail for CHR by Duck
(2005). We briefly introduce the basic notion using CHR rules:
Example 5.14. The following CHR rule expresses a functional dependency:

c(X,Y1,_), c(X,Y2,_) ==> Y1 = Y2.

The first argument is said to functionally determine the second: for all c/3
constraints with the same first argument, the second argument will be equal as
well. Often, one or more arguments functionally determine all other arguments:

c(W,X,Y1,Z1), c(W,X,Y2,Z2) ==> Y1 = Y2, Z1 = Z2.

We call this a full functional dependency. In practice, constraints with full
dependencies usually have set semantics as well:

c(W,X,Y1,Z1) \ c(W,X,Y2,Z2) <=> Y1 = Y2, Z1 = Z2.

Duck (2005) studies mainly the latter type, which he calls set semantics functional
dependencies.

De Koninck (2008) showed that enforcing functional dependency invariants
in CHR suffers from the same execution control issues as set semantics. This is
especially true for set semantics functional dependencies:
Example 5.15. A more efficient CHR2 program to compute Fibonacci numbers
than that of Example 5.12 might look like this:

table @ +fib(N,M1), -fib(N,M2) => M1 = M2.
priority table = highest.

+fib(N,M), N ≤ 1 => M = 1.
+fib(N,M), N > 1 => fib(N-1,M1) & fib(N-2,M2), M = M1 + M2.

The intention is that Fibonacci numbers are computed top-down, but results
for lower values of N are reused instead of recomputed. This technique is called
memoisation or tabling. For this to work as intended here, the table rule must
remove the fib/2 constraint that has not yet fired the propagation rule.

Analogous to the set semantics annotation, we therefore argue CHR2 systems
should support concise functional dependency declarations. We briefly introduce
a possible syntax by example.
Example 5.16. In JCHR2 (cf. Section 7.3), the constraints of the ram handler
could be declared as follows (note again the named constraint arguments):
public constraint pc(int label) # fd( --> label), // or singleton

mem(int addr, int val) # fd(addr --> val), // or key(addr)
prog(int label, int, int, int) # fd(label --> _); // key(label)

Here ‘-->’ denotes a set semantics FD (‘->’ is used for regular FDs). Shorthand
notation ‘key’ for full set semantics FDs, and ‘singleton’ for singleton constraints
(for which at most one instance exists), are also supported.



74 A Next Generation CHR Language

5.2 Operational Semantics
The main goal of the operational semantics of CHR2 is that it facilitates an
effective, declarative programming style. On the one hand, it should stimulate the
user to focus in the first place on the program’s logic, by means of unordered logical
CHR rules and constraint conjunctions. On the other hand, it must facilitate
both intuitive and precise execution control. Any unintentional restrictions on
the execution strategy must be avoided though at all costs.

For our definition of the operational semantics of CHR2 in Section 5.2.2, we
assume a CHR2 program P is first normalized by a series of source-to-source
transformations, as outlined in Section 5.2.1.

5.2.1 Program normalisation
In a normalized program, denoted P?, each rule has the following normal form:

r :: p @ H,G⇒ B1, . . . , Bn

with H and G conjunctions of CHR and built-in constraints respectively. For
rules with an empty head, H = $init, with $init/0 a special CHR constraint.
All syntactic sugar, such as that of Section 5.1.3, is expanded.

All rule bodies are reduced to sequential conjunctions of batch conjunctions
Bi that themselves no longer contain nested conjunctions. The transformation
used when bodies are otherwise nested is best introduced by example:

Example 5.17. The rule in Example 5.12 is transformed into a set of rules of
the following form. Note that we apply the common convention that compiler-
generated names start with a ‘$’ symbol:

$rule1 @ fib(N,M) <=> $aux1(N,M1) & $aux2(N,M2), M is M1+M2.

$aux($rule1,1) @ $aux1(N,M1) <=> N1 is N-1, fib(N1,M1).
$aux($rule1,2) @ $aux2(N,M2) <=> N2 is N-2, fib(N2,M2).

priority $aux(X,_) > X.

Each sequential conjunction nested inside a batch conjunct is thus encoded
as a single CHR constraint, which is expanded back to its original form by a
corresponding auxiliary rule. By exhaustively applying this transformation, all
rule bodies are reduced to the required normal form.

Set semantics and functional dependency invariants could in principle be
incorporated in the Introduce and Solve transitions of the semantics (see later).
To simplify the semantics and its discussion though, we again opted to employ
a straightforward transformational approach. The required auxiliary constructs
have been discussed in Sections 5.1.6 and 5.1.7.



5.2 Operational Semantics 75

Lastly, all constraint removals are made explicit as conjuncts of the first batch
B1 using the remove/1 operation defined in Section 5.1.2. Each rule is assigned
a unique identifier ρ implicitly (required for the propagation history).

5.2.2 The operational semantics ω2

The operational semantics ω2 defines the semantics of any normalized CHR2
program P? as a state-transition system.

Definition 5.1 (Action). In a body conjunction (either sequential or batch), an
action is either a CHR or built-in constraint, or a remove(id) operation. The
former type of action is called an addition, the latter a removal.

Definition 5.2 (Execution state). An ω2 state is a tuple 〈G,A,S,B,T〉n, with S,
B, T, and n defined in Definition 4.2 (page 38). The goal G is a set of actions, and
the stack A is a sequence of tuples (G, p,A) with G a sequence of sets of actions
(a sequential conjunction of batch conjunctions), p an instantiated rule descriptor
that determines the priority of these actions, and A the set of applicable rule
instances from right before the previous batch was evaluated. We further define
the projection operator prio(A) = {p | ∃(G, p,A) ∈ A}.

Given an initial query Q, i.e. a sequence of batches of constraints, the initial
state is 〈∅, [(Q′, lowest, ∅)], ∅, true, ∅〉1. In Q′, the first batch of Q is extended
with $init, to accommodate normalized headless rules (see Section 5.2.1).

Figure 5.1 shows the transitions of the ω2 semantics. The first three transitions
execute all actions of a given batch conjunction. The Solve and Introduce
transitions are identical to their counterparts in ωt and ωp (Figure 4.1); the
Remove transition is a straightforward extension to deal with (explicit) removals.
As in ωp (Figure 4.3), batch semantics is enforced by requiring the goal to be
empty before any of the last three transitions applies.

The Apply transition is also similar to that of ωp, in the sense that no rules
with a higher priority may be applicable. With the set of matching substitutions
matchings(H,G, S,B) defined analogously to Definition 4.3, the set of applicable
rule instances is defined as follows:

Definition 5.3. For a set of instantiated rule descriptors P , the set of applicable
rule instances, denoted applicable(P,S,B,T), consists of those rule instances (ρ ::
θ(p), S), for which ρ is a rule of form ρ :: p @ H,G ⇒ B1, . . . , Bm, S ⊆ S,
θ ∈ matchings(H,G, S,B), (ρ, id(S)) /∈ T, and ∀p′ ∈ P : DH |= B→ θ(p) ⊀ p′.

As explained next, the Apply transition contains some additional conditions
though related to sequential conjunctions.



76 A Next Generation CHR Language

�




�

	

1. Solve 〈{b} ]G,A,S,B,T〉n�P? 〈G,A,S, b ∧ B,T〉n
where b is a built-in constraint.

2. Introduce 〈{c} ]G,A,S,B,T〉n�P? 〈G,A, {c#n} ∪ S,B,T〉n+1
where c is a CHR constraint.

3. Remove 〈{remove(id)} ]G,A,S,B,T〉n�P? 〈G,A,S′,B,T〉n
with S′ = {c#i ∈ S | i 6= id} (if not already removed, c#id is removed).

4. Apply 〈∅,A,S,B,T〉n�P? 〈B1, [([B2, . . . , Bm], θ(p), A)|A],S, θ ∧ B,T′〉n
where ρ :: p @ H,G ⇒ B1, . . . , Bm is a renamed apart rule of P for
which S ⊆ S, θ ∈ matchings(H,G, S,B), T′ = T t (ρ, id(S)), and ∀(ρ′ ::
θ′(p′), S′) ∈ applicable(prio(A),S,B,T) : θ′(p′) � θ(p). Moreover, A =
applicable({θ(p)} ∪ prio(A),S,B,T) and ∀p′ ∈ prio(A) : p′ � θ(p).

5. Batch 〈∅, [([B|Bs], p, A)|A],S,B,T〉n�P? 〈B, [(Bs, p,A′)|A],S,B,T〉n
with A′ = applicable({p} ∪ prio(A),S,B,T) such that A′ ⊆ A.

6. Pop 〈∅, [([], p, A)|A],S,B,T〉n�P? 〈∅,A,S,B,T〉n
The Pop transition is eagerly applied whenever possible.

Figure 5.1: The transition rules of the operational semantics ω2 . All transitions
have as an additional, implicit precondition that DH |= ∃∅B.



5.2 Operational Semantics 77

Sequential conjunction

The precise semantics of sequential conjunction warrants further discussion. The
intuition is that a sequential conjunct is only evaluated after the previous conjunct
is ‘fully evaluated’. That is, all rules ‘caused’ by adding the previous batch must
have been fired. The Batch transition contains our attempt at formalising this
intuition: the next batch may only be evaluated when all rule instances that
are applicable were already applicable before the previous batch was evaluated.
Moreover, in order to obtain intuitive priority invariants, as long as a rule of some
priority p is not fully evaluated, no rules of priority lower than p are allowed to
fire. This is enforced by the last condition in the Apply transition (the same
condition also occurs in Definition 5.3).8

5.2.3 Compatibility with other semantics
In this Section, we formally verify the compatibility of ω2 semantics with all
relevant existing CHR semantics.

Compatibility with ωt

We define an abstraction function α2 from ω2 states and derivations to their ωt
counterparts. Define removals(G) = {x ∈ G | x is of form remove(id)}. Then,
the abstraction of states is defined as follows:

α2 (〈G,A,S,B,T〉n) = 〈G ∪
[ ⋃

(G,p,A)∈A

( ⋃
B∈G

(
B \ removals(B)

))]
,S,B,T}〉n

The abstraction of derivations though is slightly complicated by Remove trans-
itions. First, we should only consider programs that, prior to normalisation, do
not contain any explicit remove(id) actions. For non-propagation rules, however,
normalisation does add a number of removal actions to the first batch of the
body—one for each removed occurrence. In ω2 , Solve and Introduce transitions
are allowed to occur prior to the Remove transitions that remove the removed
occurrences. In ωt, this is not possible.

However, neither the order in which removals occur, nor their order with
respect to addition actions, has any effect on the the first Batch, Pop, or Apply
transition that follows. We therefore first define an auxiliary abstraction function
that essentially performs all removals in a state’s goal atomically throughout the
entire remaining derivation:

8In (Van Weert et al. 2009), we presented an earlier, incorrect version of the ω2 semantics.
It was flawed in several ways, not in the least because it allowed these natural ωp-like priority
invariants to be broken.



78 A Next Generation CHR Language

Definition 5.4. Let σ = 〈B,A,S,B,T〉n and R = {c#id ∈ S | remove(id) ∈ B}.
Then βσ([〈G,A,S,B,T〉n|D′]) = [〈G,A,S \R,B,T〉n|βσ(D′)].

Using this, we extend α2 to arbitrary ω2 derivations D. For the trivial
derivation α2 ([σ]) = [α2 (σ)]. Otherwise D = [σ0, σ1|D′] starts with a transition
σ0 � σ1. In case this transition is an Apply transition, we define α2 (D) =
[α2 (σ0)|α2 (βσ1([σ1|D′]))]. In all other cases, α2 is defined analogously to the α
abstraction function used in Section 4.2.3 for ωr:

α2 (D) =
{
α2 ([σ1|D′]) if α2 (σ0) = α2 (σ1)
[α2 (σ0)|α2 ([σ1|D′])] otherwise

Theorem 5.1 (ωt correctness). Suppose the program P does not contain any
explicit removal actions. Let P ′ be equal to P?, only without the explicitized
removals (i.e. all nested conjunctions are still normalised). Then for every P?-
derivation D under ω2 , a corresponding P ′-derivation α2 (D) exists under ωt. If
a state σf is a final state under ω2 , then α2 (D) is a final state under ωt.

Proof sketch. Correctness holds because, compared to ωt, ω2 only adds restrictions
on the order of Apply, Solve and Introduce transitions. The full proof is by
induction on derivation length.

In fact, the theorem still holds without the normalisation to P ′, but then the
abstraction function must be extended to further collapse all Apply transitions
corresponding to generated rules.

Theorem 5.2 (ωt completeness). Let P be a program without explicit removals
or sequential conjunctions, and whose priority constraints imply all rule instances
either have equal or incomparable priority. Then for every P-derivation D under
ωt, a corresponding P?-derivation D′ exists under ω2 for which α2 (D′) = D.

Proof sketch. The derivation D′ can easily be constructed from D not removing
CHR constraints from the store in Apply transitions, but instead adding the
obvious remove(id) actions to the goal, and introducing the necessary Remove
transitions after each Apply. Moreover, a correct stack argument A is easily
added to each state. Because all rule bodies consist of a single batch conjunction,
after every Apply transition, the stack contains one single element (containing
an empty sequence of batches). Once all actions of the rule’s single batch
are evaluated, a Pop transition must always be added to D′ by definition.
Consequently, the stack A will never contain more than one (trivial) tuple, D′
will never contain a Batch transition, and in the starting state of every Apply
transition inD′, the stack will be empty. In other words, the stack never influences
rule applicability. Therefore, the derivation D′ thus constructed is a valid ω2

derivation.



5.2 Operational Semantics 79

As a consequence of Theorem 5.1 the soundness and completeness results
for CHR programs with respect to their different logical semantics discussed in
Section 4.2.2 still hold for ω2 . Theorem 5.2 implies that for CHR2 programs with
batch conjunctions only, and without (real) priority constraints, every execution
strategy under ωt (including ωr) is consistent with ω2 .

In the next two subsections, we obtain even stronger compatibility results
with specific instances of ωt.

Compatibility with ωp

Any CHRrp program (where all bodies are batch conjunctions) can be turned
into an equivalent CHR2 program by adding priority constraints such as those
defined in Example 5.7. The reverse is not always true: not every CHR2 program
can readily be executed under CHRrp. A set of CHR2 rule descriptors may
form a partially (or even totally) ordered set that is not locally finite, that is,
there may be unbounded intervals of rule descriptors. We have given a concrete
counterexample earlier in Example 5.6. Any CHR2 program with static rule
priorities only though can be trivially transformed into a CHRrp program.

Let P be any CHRrp program, and P? the same program normalized and
augmented with priority constraints as in Example 5.7. Then, with α2 defined as
before, the following strong equivalence theorems can be proven:

Theorem 5.3 (ωp correctness). Let D be any P?-derivation under ω2 , whose
initial state contains only one batch sequence. Then there exists a corresponding
P-derivation α2 (D) under ωp. If a state σf is a final state under ω2 , then it
α2 (D) is a final state under ωp.

Proof. By induction on the length of the derivation.

Theorem 5.4 (ωp completeness). For every P-derivation D under ωp, a corres-
ponding P?-derivation D′ exists under ω2 for which α2 (D′) = D.

Proof. Analogous to Theorem 5.2.

When running a CHRrp program under ω2 , all results obtained are correct
(Theorem 5.3) and no possible outcome is lost (Theorem 5.4). All results by
De Koninck (2008) on confluence and complexity of CHRrp programs therefore
still apply for this subset of CHR2 programs. Extending these results to more
general CHR2 programs is possible as well.

Conversely, let P be any CHR2 program that can be transformed into a
CHRrp program P’ (see earlier), e.g. by computing a linear extension of the
partial order implied by the priority constraints. Then Theorem 5.4 still holds
for P’ and P—i.e., such programs can correctly be executed using CHRrp—but
Theorem 5.3 does not: in general, CHR2 allows derivations that are not allowed



80 A Next Generation CHR Language

by CHRrp—i.e., turning the partial order into a total order adds (unintentional)
restrictions on the execution order.

Compatibility with ωr

Let P be any CHR program with sequential conjunction only, and P? its nor-
malized version augmented with priority constraints implying that all rules have
equal priority. Then, with α2 defined as before, and α as in Section 4.2.3:

Theorem 5.5 (ωr completenes). For every P-derivation D under ωr, there exists
a corresponding P?-derivation D′ under ω2 for which α2 (D′) = α(D).

Proof sketch. In ωr, adding a constraint c in a Introduce and Solve transition is
always followed by one or more constraint (re)activations. These, by construction,
recursively and exhaustively fire all rules that became applicable by adding c.9 In
other words, the condition in the Batch transition will always be fulfilled when
constructing D′.

In other words, ωr correctly enforces sequential conjunction, and any ωr-
compliant system can be used to execute existing programs.

The obvious correctness theorem—similar to Theorems 5.1 and 5.3—does not
hold. That is: by design, ω2 allows derivations that are not necessarily allowed
under ωr. This stems from two reasons:

1. The first and most obvious reason is that ωr forces rules to be executed in
textual order.

2. A second reason is the nondeterminism in the ω2 semantics of sequential
conjunction. While, after each sequential conjunct, ω2 enforces the ex-
haustive application of newly applicable rule instances, it purposely allows
rule applications that were already applicable earlier as well. In principle,
any applicable rule instance found during the evaluation of a sequential
conjunct should be allowed to fire, even if it was already applicable before.
It is not even clear in general how this could (reasonably) be avoided. In
fact, in ωr, the Solve transition is nondeterministic for analogous reasons:
see Section 4.2.3. Nevertheless, ωr specifies more precisely the set of rule
instances that may fire after each sequential conjunct (and not only their
order).

In (Van Weert et al. 2009), we formulated a refined instance of ω2 , that, when
used to evaluate legacy CHR programs, precisely reduces to the ωr semantics.10

9Due to the underdetermined Solve transition, rule instances that were already applicable
prior to adding c may also fire. This is allowed though by the ω2 semantics.

10The ω2
r semantics of (Van Weert et al. 2009) is incorrect when it comes to dealing with

priorities, but this could easily be fixed.



5.2 Operational Semantics 81

Such a semantics could constitute the basis for fully backwards compatible CHR2
systems. For a while, it was implemented by JCHR2 (Section 7.3), until it became
clear that it prohibited certain rule application reorderings a compiler should be
allowed to make. While an optional ‘backwards compatible’ mode might remain
useful, we purposely do not formulate any refined semantics here. As discussed
in the next section, new CHR2 programs should in principle only rely on what is
determined by the ω2 semantics.

5.2.4 Discussion

The ω2 semantics is specifically crafted to be as nondeterministic as possible,
while still fixing the essential semantical properties of CHR2 ’s basic building
blocks introduced in Section 5.1. Obviously, it is difficult to validate ω2 ’s suit-
ability or utility. In Section 5.2.3, we verified a first prerequisite, namely the
compatibility with established, related operational semantics. The real question
though is whether it strikes the right level of determinism, facilitating a naturally
controllable runtime behaviour, but without abolishing CHR’s high-level, logical,
declarative nature.

We believe a good way to characterize a good CHR operational semantics
is: “a theoretical semantics that needs no refining”, or “an ωt that needs no
ωr”. The ωr semantics was introduced because ωt, while it has nice declarative
properties, was found to nondeterministic for practical programming. The nearly
deterministic ωr semantics though requires users to reason on a very specific
execution mechanism, completely in contrast to the declarative ‘what, not how’
motto. In fact, users always almost completely fix the execution strategy, even
if they do not intend it. An arbitrarily chosen order of sequential conjuncts or
rules still determines the evaluation order. A normative ωr semantics therefore
demeans CHR’s logical, declarative roots, injecting several low-level, procedural,
imperative characteristics into its semantics.

CHRrp and ωp were designed towards a similar goal, but are still not free of
similar determinism-related issues: they determine a total, global order on rule
instances, yet lack the sequential control required by many practical programs.

Unlike De Koninck (2008), we explicitly do not formulate a refined operational
semantics for CHR2 . As already pointed out at the end of the previous section,
once users start to rely on it, any such semantics would prohibit future improve-
ments in execution strategies. Well-written CHR2 programs should only rely on
what is determined by the ω2 semantics. Of course, only hands-on experience
can truly determine whether this is sufficient for practical programming. We are
therefore developing a reference implementation of CHR2 (Java). This system,
called JCHR2 , is discussed in more detail in later chapters.



82 A Next Generation CHR Language

5.3 Conclusions
In this chapter, we outlined the basic building blocks of a next generation CHR
language called CHR2 . For the first time since the conception of the CHR
language, we propose to modernise the syntax of rules. We have clearly shown
that the streamlined, backwards compatible CHR2 syntax allows for more natural,
readable, and concise rule definitions. We furthermore introduced compact syntax
for the declaration of common constraint invariants, invaluable both as program
documentation and for advanced compiler optimisations.

Compared to current generation ωr-based CHR systems, the operational
semantics ω2 of CHR2 programs is considerably less deterministic. The order
in which rules are defined is no longer significant, and by default logical, more
declarative batch conjunctions are used. Precise execution control can be added
effectively and intuitively in the form of sequential conjunctions and rule priorities.
Unlike before, sequentiallity is optional, and priority constraints allow for local
specifications of rule priorities. Completely in line with the declarative ideal, any
redundant constraints on the execution strategy are avoided. Essentially, ω2 is a
first theoretical operational semantics that needs no refining, a semantics that is
very high-level and declarative, yet still facilitates the effective execution control
required for practical programming. We have proven that ω2 is fully compatible
with all relevant operational semantics of CHR.

The CHR2 language is designed to be a solid, extensible basis for additional
language features. In Chapter 6, for instance, we show that—unlike tradtional
ωr-based systems—CHR2 is ideally suited to host aggregates. As with any high-
level declarative language, CHR2 offers a lot of freedom to the compiler. The
challenging problem of efficiently executing CHR2 programs is discussed in detail
in Part III. A reference implementation of CHR2 (Java), JCHR2 , is introduced in
Section 7.3.



Chapter6
Aggregates

A programming language is low level when its programs
require attention to the irrelevant.

— Alan Perlis (1922–1990)
American computer scientist

A frequently recurring class of programming idioms where CHR’s conciseness
and expressiveness is lacking is the aggregation of information from nontrivial,
possibly unbounded parts of the constraint store. Examples include counting the
number of constraints that meet certain conditions, and finding the minimal value
for some constraint’s argument. Each individual CHR rule only considers a fixed,
bounded number of constraints, equal to the number of conjuncts in its head.
Aggregations therefore always require an explicit encoding using multiple auxiliary
rules and constraints. Such ad hoc approaches are repetitive, cumbersome and
error-prone, and the resulting auxiliary constructs tend to cross-cut the entire
program. This severely handicaps all advantages of declarative programming,
such as conciseness, readability and maintainability.

We propose an extension of CHR with aggregates, in which heads may contain
aggregate conditions ranging over CHR constraints. With language support for
aggregates the programmer can express the aggregate logic concisely in single
self-contained rules, exhibiting all advantages of declarative programming.

Overview In Section 6.1, we use illustrative examples to further motivate
the need for proper aggregation abstractions. Next, we introduce a powerful,
extensible aggregate framework, first informally in Sections 6.2 and 6.3, and
then more formally in Section 6.4. Using four case studies, Section 6.5 clearly
demonstrates the added expressiveness. Finally, Section 6.6 compares with related

83



84 Aggregates

work, and Section 6.7 concludes and offers some prospects for future research.
We implemented both negation as absence and aggregates for CHR(SWI-

Prolog) using source-to-source transformations to optimised, regular CHR rules.
These contributions are presented in detail in Van Weert, Sneyers, et al. (2006b,
2008). This chapter focusses solely on language design aspects.

6.1 Motivation
As CHR is Turing complete (see Section 4.3.3), no language extension can add
computational power. Nevertheless, we will show that aggregates are invaluable
when it comes to expressiveness, maintainability and conciseness.

We start in Section 6.1.1 by discussing negation as absence. The need for this
specific aggregate has been particularly felt by CHR programmers. We will show
that explicitly encoding even this deceptively simple aggregate is cumbrous and
non-trivial. In Section 6.1.2, we illustrate these issues carry over to other, more
general aggregate functions.

6.1.1 Negation as absence
The traditional interpretation of CHR simplification in the declarative specifica-
tion of constraint solvers is that CHR constraints are not so much removed as they
are rewritten to a simpler, more canonical form—hence the term simplification.
This is also reflected in the logical interpretation of CHR simplification as logical
equivalence (Section 4.2.1).

CHR, however, can also be viewed as a forward chaining, data-driven language,
much like production rules (augmented with elements of CLP languages). It is
in this respect that CHR is increasingly being used as a general programming
language, in a wide range of applications. In fact, CHR implementations of more
advanced constraint solvers typically also apply CHR this way (e.g. INCLP(R)
by De Koninck et al. (2006a); cf. Section 4.6.1). In these cases, CHR ‘constraints’
commonly represent procedural data, such as flags, locks, or other execution con-
trol constructs, or elements in some data structure, resource handlers, properties,
etc. Often, the lack or removal of such information is perceived as meaningful.
The CHR language though offers no constructs to test the absence of CHR
constraints, or to react to their removal.

Example 6.1. Already more than a decade ago, CHR programmers have felt
the need for negation as absence. In 1997, Christian Holzbaur wrote a CHR port
of a classical production rules program that solves (McCarthy 1963)’s famous
‘Monkey and Banana’ toy AI planning problem. In 9 out of the 25 rules, the
original program tested for the absence of constraints (recall from Chapter 2
that negation as absence is an established feature in production rule languages).



6.1 Motivation 85

Holzbaur therefore wrote a ’not’/1 auxiliary predicate to use in the guard of
the ported rules. The following lines are taken verbatim from his program1:

:- op(900,fy,not).
% There is no such fact (’not exists’ in SQL)
not Fact :- find_constraint( Fact, _), !, fail.
not _.

Note the fitting comment by Holzbaur, as well as the striking analogy with the
definition of negation as failure in Example 3.8 on page 25.

Unfortunately, while concise and readable, this approach is unportable and
particularly inefficient. The reason is that the find_constraint/2 built-in of
the now deprecated CHR(SICStus) system linearly traverses (using backtracking)
all constraints in the CHR constraint store.

Common approach: explicitly encoding absence tests

Over the years, several patterns to encode negation in CHR itself have become
popular among CHR practitioners.

Example 6.2. We illustrate these idioms using the following CHR rule:

person(X), ∼married(X) ==> single(X).

It uses a negation as absence extension of CHR—written using a prefix ‘∼’
modifier—to express that: “If a person X is not married, then that person is
single.” In regular CHR, this can be encoded in at least the following ways (see
also Frühwirth 2009, §6.1.2):

1. CHR constraints in the guard While in theory CHR only allows built-
in constraints in the guard, in practise calling a CHR constraint from the
guard does work in most CHR(Prolog) systems. This is frequently exploited
to explicitly encode absence tests as follows:

person(X) ==> not_married(X) | single(X).
married(X) \ not_married(X) <=> fail.
not_married(_) <=> true.

2. Two-phase commit This second pattern consists of replacing the body
with an auxiliary constraint, and only applying the body if no constraints
matching the negated heads are found:

person(X) ==> maybe_single(X).
married(X) \ maybe_single(X) <=> true.
maybe_single(X) <=> single(X).

1As found on the CHR Website (2010).



86 Aggregates

This idiom works in any system that implements the refined operational
semantics (or supports execution control by other means). The disadvantage
is that it is only effective in case of propagation rules2.

3. Provisional commit A slightly shorter variant is to commit provisionally,
immediately retracting the added constraints again if necessary:

person(X) ==> single(X).
married(X) \ single(X) <=> true.

Since built-in constraints can generally not be retracted, this pattern is only
applicable for CHR constraints. It is also quite error-prone: if the single/1
is not removed immediately, other rules may erroneously match with it.
Under the ωr semantics this can mostly be accomplished by putting the
necessary simpagation rules first.3 The result though is that program logic
becomes scattered, severely hampering readability and maintainability.

Example 6.3. A real-life instance of the ‘two-phase commit’ idiom introduced in
Example 6.2 is found in the CHR(Prolog) implementation of Dijkstra’s algorithm
by Sneyers et al. (2006a):

dist(N,L), edge(N,N2,W) ==> L2 is L+W, relabel(N2,L2).
dist(N,_) \ relabel(N,_) <=> true.
relabel(N,L) <=> doi(N,L).

Using negation, these three rules can be written as one single rule, eliminating the
need for the auxiliary constraint relabel/2 and the dependency on the execution
order of the refined semantics:

dist(N,L), edge(N,N2,W), ∼dist(N2,_) ==> L2 is L+W, doi(N,L2).

Unlike Holzbaur’s approach, these encodings work in most CHR systems, and
allow the CHR compiler to exploit available index structures. They do, however,
inherently rely on (procedural) execution control mechanisms, and are quite
verbose (typically one extra constraint and two extra rules per negation).

Reacting to removal

All approaches seen so far only test for the absence of certain constraints. This,
however, only covers the passive aspect of negation as absence. The active aspect
of negation entails reacting to constraint removal, that is, rules are expected to
fire after constraints matching negated conditions are removed.

2CHR2 facilitates effective encodings of this pattern for other rules as well through the
explicit removal operation of Section 5.1.2.

3As nicely shown by De Koninck (2008) though, such patterns unfortunately do not always
work in the non-ground case, nor when more than one of these rules are required.



6.1 Motivation 87

Example 6.4. A well-known CHR pattern to maintain the minimal element of
a collection consists of the following two rules:

c(X) ==> min(X).
min(X) \ min(Y) <=> X ≤ Y | true.

Unfortunately these rules cannot consistently keep the minimum if elements
are removed. In (Van Weert et al. 2006b), we generalised this pattern as follows
(using CHR2 syntax and execution control here):

invalid_min @ -min(X), ∼c(X).
new_min @ +c(X), ∼(c(Y), Y < X) => min(X).
filter_min @ +min(X), -min(Y), X ≤ Y.

priority filter_min = highest, invalid_min > new_min.

When a minimal element c(X) is removed, the semantics of negation dictates that
the invalid_min rule must react to this, and remove the corresponding min(X)
constraint. Similarly, the new_min rule must add a new, correct minimum. The
priorities are required to make everything happen in the right order.

Implementing the above example in plain CHR requires cross-cutting changes
to all rules that remove a c/1 constraint, each time ensuring the minimum is
correctly updated when needed. Using negation as absence, reacting to removal
becomes manageable.

Nonetheless, the pattern of Example 6.4 remains quite verbose, and dependent
on subtle execution control issues. More powerful language abstractions are
therefore indispensable. In the case of Example 6.4, retrieving and maintaining a
minimum should be provided by a suited min aggregate.

6.1.2 Aggregates
Example 6.5. Suppose that the two CHR constraints client(ClientId) and
account(AccountId,ClientId,Balance) constitute a (simplified) representa-
tion of the clients and accounts of a bank. Initially, one of the business rules of
the bank states:

“A platinum client is a client whose account balance is $25,000 or more.”

This is readily expressed using the following CHR rule:

client(C), account(_,C,B) ⇒ B ≥ 25000 | platinum(C).

Clients, however, are allowed to have multiple accounts, so at some point the
bank manager prefers to change the bank’s rule to:

“ A platinum client is a client whose accumulated sum of
account balances is $25,000 or more. ”



88 Aggregates

Unfortunately, expressing this in CHR is no longer straightforward.

We now compare three different approaches to implement the extended busi-
ness rule of Example 6.5. The first two are possible in current CHR systems,
whereas the third one uses aggregates.

Naive approach

If the maximum number of accounts per client is limited to some fixed number n,
all possible cases are expressed in CHR as:

client(C), account(_,C,B) ==> B >= 25000 | platinum(C).
...
client(C), account(_,C,B1), ..., account(_,C,Bn)
==> B1+...+Bn >= 25000 | platinum(C).

Software engineering methodology dictates that the above replication of code
is highly undesirable: it is hard to read and hard to maintain. This approach
also scales very badly performance-wise, as the number of combinations tried
during matching increases exponentially. Moreover, exhaustively enumerating all
possible cases is clearly impossible if n is unbounded.

Common approach

A more concise solution, commonly used by CHR practitioners, is to introduce
an auxiliary constraint acc_balance/2:

client(C), acc_balance(C,Sum) ==> Sum > 25000 | platinum(C).

This concisely captures the logic of platinum clients in a single rule. A second
advantage over the naive approach is that it facilitates an unbounded number of
accounts per client. This approach remains, nevertheless, inadequate, because
it necessitates the maintenance of the accumulated balance. This inherently is
a cross-cutting concern, as it requires invasive modifications to all parts of the
original code that alter the balance of an account:

deposit(A,X), account(A,C,B) <=> account(A,C,B+X).
...
withdraw(A,X), account(A,C,B) <=> B > X, account(A,C,B-X).

All these rules, spread throughout the entire program, have to be adjusted to
update accumulated_balance accordingly:

deposit(A,X), account(A,C,B), acc_balance(C,Acc) <=>
account(A,C,B+X), acc_balance(C,Acc+X).



6.2 Extensible Aggregate Framework 89

...
withdraw(A,X), account(A,C,B), acc_balance(C,Acc) <=>

B > X, account(A,C,B-X), acc_balance(C,Acc-X).

Also, the accumulated balance has to be initialised for new clients:
client(C) ==> acc_balance(C,0).

Several variations to the above maintenance scheme can and have been
concocted, but they all require similar modifications scattered throughout the
entire program. As a result, this approach also displays poor compliance with
common software quality criteria: it is very error-prone, and it impairs the
readability and maintainability of the program, as the logic of many rules becomes
tangled with obfuscating auxiliary code.

Aggregates

The use of aggregates shares the benefits of the previous approach, whilst dispens-
ing with its drawbacks. Using an aggregate condition (in italics), the platinum
client business rule is again declaratively expressed in a single rule, independent
of the number of accounts:

client(C), sum(B,account(C,_,B),Sum)
==> Sum > 25000 | platinum(C).

No further changes to the program are required. A perfectly correct behaviour is
already guaranteed implicitly by the aggregate’s semantics.

As a result, the program is more declarative, readable and maintainable.
The programmer’s productivity is improved, because he is relieved from the
cumbersome and repetitive task of implementing aggregates, and can entirely
focus on his application domain.

6.2 Extensible Aggregate Framework
We have developed a generic framework for the specification of aggregates for rule-
based languages. It is built on top of a universal aggregate language construct,
powerful enough to express any aggregate function (Section 6.2.1). Not only can
numerous predefined aggregates be supported directly by transforming them to
this general construct, our approach also facilitates the specification of application-
tailored aggregates by end users (Section 6.2.2).

Once we have established how aggregates can be specified, several more
design issues arise when embedding them into CHR rules. These are discussed in
Section 6.3. For now, it suffices to know that aggregates are extra rule applicability
conditions, written at the left-hand side of CHR rules. Recall from Section 5.1.1
that, by design, CHR2 ’s syntax readily allows such extensions.



90 Aggregates

6.2.1 Universal aggregate construct
An aggregate is essentially a function that returns a single value—albeit possibly
a list or a set—computed from some specific subset of the CHR constraint store,
without modifying the store. In this section we define a generic, high-level
universal aggregate construct. Any aggregate can be formulated in terms of this
construct (cf. Sneyers et al. 2007, §4.4 for a classification of expressible aggregates
in terms of required computational resources).

To allow system implementors and end users to easily and effectively im-
plement new aggregates, we believe the concrete format and syntax used must
be host language dependent. Throughout this chapter, we will use Prolog as a
host-language, and adopt the syntax used by our CHR(Prolog) reference imple-
mentation (Van Weert et al. 2008). We occasionally hint at possible equivalent
constructs for other host languages.

In our CHR(Prolog) framework, the universal aggregate construct is:

aggregate(Init, Inc, Dec, Final, Element, Goal, Result)

Briefly, the function of the seven arguments is as follows:

Init a predicate that returns the initial working value;
Inc a predicate that takes the current working value and an element, and

returns a new incremented working value;
Dec similar, but returns a decremented working value (optional);
Final a predicate that takes a working value and returns the result;
Element a template to describe an element for a given Goal;
Goal a conjunction of CHR constraints, guards, and aggregates;
Result returns the result of the aggregate.

The first four arguments determine the different procedures used to compute an
aggregate. In our case, these are Prolog terms that determine which predicates
must be called (after extending these terms with some extra arguments). In
CHR(C), however, function pointers could for instance be used, whereas a
typical CHR(Java) implementation would require a class to be specified, whose
objects implement some specific interface that exposes the corresponding methods.
Alternatively, an implementation could support syntax to define these four
procedures directly in the CHR source code itself.

The last three arguments are analogous to the arguments of the well-known
findall/3 Prolog predicate discussed in Section 3.1.3 on page 25. Again, for
other host languages, other variants may be more appropriate.

Example 6.6. The aggregate in Example 6.1.2 is equivalent to:

client(C), aggregate(=(0),plus,minus,=,B,account(C,_,B),Sum)
==> Sum > 25000 | platinum(C).



6.2 Extensible Aggregate Framework 91

Here, the term ‘=’ denotes Prolog’s built-in ’=’/2 unification predicate, and
‘=(0)’ unification with zero. The auxiliary predicates plus/3 and minus/3 are
trivially defined as:

plus(X,Y,Z) :- Z is X + Y. minus(X,Y,Z) :- Z is X - Y.

Operational semantics (informal)

Using Example 6.6 as a running example, we now illustrate the basic operational
principles of how and when an aggregate value is computed:

How The working value W0 of the aggregate is initialised by calling Init(W0)4.
In the case of sum, this results in an initial working value W0 = 0. This value
is then incremented once for each of the n matchings of Goal, by invoking
Inc(Wi−1, Element,Wi) for 1 ≤ i ≤ n. The order in which the matches are
found is undetermined. For sum, the predicate plus/3 increments the working
value with the value of Element (B in the example). Finally, the last working
value Wn is finalised by calling Final(Wn, Result). Often, like for sum, this
simply unifies the last working value with Result5. The aggregate’s computation,
and in particular the finaliser predicate, is allowed to fail (in the Prolog sense). In
that case, the aggregate is undefined and the rule containing it is not applicable.
For instance, max or avg aggregates may fail when there are no elements.

The optional decrement predicate Dec is only used for an alternative com-
putation strategy, where aggregate values are maintained incrementelly. This is
often required to obtain the correct runtime complexity. For more information
on these crucial implementation aspects, we refer to (Van Weert et al. 2008).

When Operationally, a rule containing an aggregate is tried when one of the
other head constraints is activated or reactivated; we call this a passive aggregate
computation. It is also tried when one of the CHR constraints in the Goal
of the aggregate is added, reactivated, or removed; this is an active aggregate
computation. In the banking example of Section 6.1.2, for instance, there is
a passive aggregate computation when a new client is added, and an active
aggregate computation when an account is added or removed.

4We often use pseudo-Prolog code of the form Predicate(X1,...,Xn) to denote the term
obtained from adding a series of arguments to a given term Predicate. Note that this term
may already contain arguments. The first arguments given to the predicates that compute an
aggregate can thus be provided by the user. This feature is used in the aggregate expression of
Example 6.6 to pass ‘0’ to the unification predicate. This could even be used to pass values
from other occurrences in the head to the aggregate computation process.

5This is actually a slight simplification of what actually happens. The precise (matching)
semantics of the Result argument is specified further in Section 6.3.1.5.



92 Aggregates

Aggregate Meaning Aliases
findall(X,G,L) L is a list of X’s for every match of G collect
count(G,C) G matches C times nb
exists(G) G exists (count(G,C), C > 0)
\+G no G exists (count(G,0)) none
∼G no other G exists no
forall(G,C) for every match of G, condition C holds implies
min(X,G,M) M is the minimal X for all matches of G minimum
min(X,G,M,D) . . . with default value D (min/3: no match) minimum
argmin(X,G) G is matched such that X is minimal findmin
takemin(X,G) like argmin(X,G), but G is removed rmin

(max/3, max/4, argmax/2, and takemax/2 are analogous)
sum(X,G,R) R is the sum of X over all matches of G
prod(X,G,R) . . . product . . . product
avg(X,G,R) . . . (arithmetic) average . . . average
stddev(X,G,R) . . . standard deviation . . .
var(X,G,R) . . . variance . . . variance

Table 6.1: The predefined aggregates offered by our reference implementation.
Most aggregates have goal (G; also C in forall/2), element (X), and result
(L, M, R, . . .) arguments as defined in the universal aggregate construct.

6.2.2 Common aggregates
Predefined aggregates

Any implementation should offer concise, familiar shorthands for at least the most
common aggregates. Table 6.1 lists the aggregates predefined in our reference
system. Their declarative meaning should be intuitively clear. Some remarks:

• The findall/3 aggregate is the CHR counterpart of the well-known Prolog
predicate with the same name (see Section 3.1.3 on page 25).
• The forall/2 construct is not really an aggregate, but rather syntactic

sugar for nested aggregates, as explained in Example 6.13 in Section 6.3.1.2.
• The semantical differences between the two negation as absence aggregates
are discussed in Sections 6.3.1.8 and 6.3.1.9.
• For all arithmetic aggregates, the X argument must evaluate to a ground

arithmetic expression at runtime. Any expression that may be used on the
right-hand side of the is/2 Prolog built-in can be used (cf. Ex. 6.6).
• For most arithmetic aggregates, if no matches for its goal G are found,
then the rule is not applicable. Exceptions are sum/3 and prod/3, which
evaluate to the respective default values 0 and 1, and min/4 and max/4,
where the default value is specified by the user.



6.3 Language Design 93

Many of these aggregates can be trivially expressed in terms of the universal
aggregate construct. In certain cases, further optimisation and non-trivial data
structures for optimal incremental maintenance are required. For these and other
implementation details, we refer to (Van Weert et al. 2008).

User-defined aggregates

To specify custom aggregates, a user may use the general aggregate/7 notation
directly in the head of rules. However, as this is overly verbose, it is useful to
have a macro facility to define abbreviations for commonly used aggregates. The
CHR host language usually offers such a facility, e.g. term expansion in Prolog,
or C’s macro language. We prefer to integrate some macro facility in the CHR
language itself for reasons of portability, and to avoid possible conflicts with CHR
compilation6. The proposed syntax is as follows:

:- chr_expansion head ---> body.

This replaces any occurrence of head in the head of a rule with body, where head
is a single atom, and body can be any conjunction of atoms.

Example 6.7. A sum aggregate could be defined as (cf. Example 6.6):

:- chr_expansion sum(E,G,R)
---> aggregate(=(0),plus,minus,=,E,G,R).

Example 6.8. Using this simple macro expansion construct, it is also possible
to assign application-specific names to (special cases) of existing aggregates. For
instance, in a program that reasons over graphs the in- and out-degree of a node
N could be defined as:

:- chr_expansion in_degree(N,C) ---> count(edge(_,N), C).
:- chr_expansion out_degree(N,C) ---> count(edge(N,_), C).

Not only are these user-defined aggregate names more user-friendly then the
general aggregate/7 construct, they also vastly increase the readability and
maintainability of the resulting programs.

The above is just a rather primitive, ad-hoc macro facility. More advanced
source-to-source transformations are possible using the so-called meta CHR rules
we introduced for (Van Weert, Sneyers, and Demoen 2008).

6.3 Language Design
In the previous section we have shown how to specify an aggregate, and outlined
the basic principles of how aggregate values are computed at runtime. We now

6In Prolog, CHR compilation itself is often realised through term expansion.



94 Aggregates

explore the various language design issues encountered when embedding these
aggregates in rule-based programs. This includes issues such as the types of
supported aggregate goals, the precise matching semantics of aggregate conditions,
and their interaction with the other conditions in the rule’s head. In Section 6.3.1,
we explore various interesting design alternatives, and motivate our choices.
Section 6.3.2 then discusses some significant issues we encountered when adding
aggregates to existing CHR systems, and how these are fully resolved in CHR2 .

6.3.1 Aggregates for rule-based programs
First some basic properties that have not been stated explicitly:

• If a Goal shares variables occurring in the context surrounding the aggregate
expression—typically a rule’s head, but it could also be the Result of
another aggregate; cf. Section 6.3.1.2—this gives rise to implicit equality
guards. In other words: the same pattern matching semantics is used for
these Goals as for a normal head.
• A Result variable behaves as any other variable in the rule’s head (see
also Section 6.3.1.5). It can thus be used for matching, in guards, and in
the rule’s body. Variables introduced in a Template or a Goal, but not
used elsewhere in the rule’s head, are in principle local to the aggregate
(alternative semantics though are discussed in Section 6.3.1.7), and cannot
be used in other left-hand side conditions or the rule’s body.

Many of the now following language design issues are (partly) concerned with
either the Template, the Goal, or the Result argument of aggregates as well.
We denote this in parenthesis in the subsection title.

6.3.1.1 Complex aggregate goals ( Goal)

Until now we have only shown examples of aggregates over a simple Goal, i.e.,
consisting of a single CHR constraint. We of course support more complex
aggregate goals as well, containing guarded joins of CHR constraints. The same
pattern matching semantics applies as for regular CHR heads. An aggregate goal
is analogous to any left-hand side in CHR2 (Section 5.1.1), only without any ‘+’
or ‘-’ modifiers. As in CHR2 , the aggregate processor can normally distinguish
between CHR and built-in constraints in an aggregate goal, and the ‘?’ modifier
may be used to clarify or disambiguate as needed.

Example 6.9. The count( (platinum(C), account(_,C,B), B < 0), N ) ag-
gregate counts the number of accounts owned by platinum clients that have
negative balances. Its goal is a conjunction of two CHR constraints, joined by a
common variable, and a built-in constraint as guard.



6.3 Language Design 95

6.3.1.2 Nested aggregates ( Goal)

Even more expressiveness is realised by allowing nested aggregates, that is, ag-
gregate expressions inside the goal of another aggregate. While fully supporting
nested aggregates complicates the implementation, the added expressiveness is
well worth the effort, as clearly illustrated by the following examples:

Example 6.10. To get the client C with the largest total balance, we can use
e.g. ‘argmax(S, (client(C), sum(B,account(_,C,B),S)))’.

Example 6.11. In constraint solving the first-fail principle is a well-known
labelling heuristic that, each time a choice-point is created, selects the variable
with the smallest domain (Haralick and Elliott 1979). Suppose for instance that
a simple Sudoku puzzle solver has a cand(P,V) constraint if V is a candidate
value of the unknown Sudoku cell at position P. First-fail labelling could then be
implemented using ‘takemin(N,(cand(P,V),count(cand(P,_),N)))’. The full
Sudoku program is shown in Listing 6.4 of Section 6.5.

Example 6.12. A connected directed graph is Eulerian if for every node, the
number of outgoing edges is equal to the number of incoming edges. In Listing 6.2
of Section 6.5, we show this takes many rules to check this property in CHR.
Using nested aggregates, this condition is succinctly expressed as:

forall
(
node(N), (count(edge(N,_),X), count(edge(_,N),X))

)
Or, using the syntactic sugar introduced in Example 6.8:

forall
(
node(N), (in_degree(N,X), out_degree(N,X))

)
Example 6.13. The forall ‘aggregate’ itself is defined as a nested negation:

:- chr_expansion forall(G,C) ---> \+(G, \+C).

6.3.1.3 Empty heads and goals ( Goal)

Rules whose head contain only aggregates, and similarly, aggregate Goals without
CHR constraint conjuncts, should be supported as well. This can always be
implemented as syntactic sugar using the same technique as before in Section 5.2.1,
when normalising CHR2 rules—that is, the introduction of a kept occurrence of
a special, always-present $init/0 CHR constraint.

6.3.1.4 Multiple aggregates ( Template)

If more than one aggregate occurs in the same rule, the order in which the
different aggregates are computed is by default left-to-right. This gives some
control on the order in which aggregates are evaluated. Of course, the compiler
is allowed to change this order if it finds more optimal join orderings. The join
ordering problem is discussed in more detail in Section 8.3.2.7.



96 Aggregates

We have opted to allow variables occurring in the surrounding context to be
used in Templates. This does give rise though to nonsensical expressions such
as ‘min(X, c(X), Y), max(Y, c(Y), X)’. This could be interpreted either as
being equivalent to either “min(X, c(X), Y), max(A, (c(A), A == Y), X)”,
or “max(Y, c(Y), X), min(B, (c(B), B == X), Y)”. To avoid confusion, we
therefore propose the aggregate processor rejects such expressions.

6.3.1.5 Matching semantics ( Result)

In Section 6.2.1, we stated that after the last working value Wn is computed,
Final(Wn,Result) is evaluated. In pseudo-Prolog code, this is equivalent with
‘Final(Wn,F), Result = F’, that is, the finalised last working value F is simply
unified with the Result argument of the aggregate. To obtain a more natural,
uniform semantics, we actually use matching for the Result argument of an
aggregate instead of unification, completely equivalent to the arguments of regular
occurrences (matching or one-way unification is explained in Section 4.1.3).

6.3.1.6 Nondeterministic aggregates ( Result)

All aggregates seen so far are (semi-)deterministic, in the sense that given a fixed
matching for the remainder of the rule’s head, either a single unique Result is
computed, or the aggregate fails and has no Result. One could imagine though
nondeterministic aggregates with multiple correct Results.

Example 6.14. For partially ordered Element types, extrema aggregates such
as min/3, max/3, upper/3 and lower/3 (the latter compute upper and lower
bounds) may have multiple equally correct Results.

At least three possible semantics could be given to an applicable rule instance
containing a nondeterministic aggregate:

1. Don’t care nondeterminism: One of the solutions is nondeterministically
chosen in a committed choice manner.

2. Don’t know nondeterminism: All solutions are tried nondeterministically
using search. When for some chosen solution the computation fails, back-
tracking occurs and a next solution is tried.

3. Exhaustive application: A propagation rule instance may fire multiple times,
once for each correct Result. For other rules, this semantics reduces to
committed choice.

The same three semantics can in principle be applied to nondeterministic
guards as well. For guards, all current CHR(Prolog) systems we know of have
opted for a committed choice semantics. For uniformity (and ease of implementa-
tion), we have chosen an analogous semantics for aggregates. But the other two
options are definitely worth considering as well (also for CHR guards!).



6.3 Language Design 97

6.3.1.7 Constructive aggregates ( Goal)

As mentioned earlier, the only natural semantics for variables in an aggregate’s
Goal that are shared with the surrounding context is the common matching
semantics. For non-nested aggregates, this context is the rule’s head, and these
variables can thus be used in the rule’s guards or body as well. However, it may
be interesting to allow other variables, i.e. those that do not occur in the head or
the aggregate’s Result, to be used in a rule’s body as well.

Example 6.15. Consider the following simple rule:

∼c(X) => writeln(X).

A possible semantics for this aggregate generates all values X for which no
constraint c(X) exists. The problem though is that, in general, there exists an
infinite number of X’s that satisfy that condition.

This is related to constructive negation in CLP, a challenging issue studied by
many researchers, both from a theoretical and implementation point of view (see
e.g. Stuckey 1995; Fages 1997).

Example 6.16. Constructive variants of other aggregates are possible as well:

min(X,c(X,Y),M) => writeln(Y-M).

With a CHR constraint store containing c(1,2), c(3,2), c(4,3), possible
constructive answers are 2-1 and 3-4. This is analogous to the bagof/3 and
setof/3 ISO Prolog predicates (discussed earlier in Section 3.1.3). As with these
predicates, explicit existential variables could be introduced (which of course can
no longer be used outside the aggregate):

min(X,Y^c(X,Y),M) => writeln(M).

For the same store, the above rule would simply print 1. In other words, marking
all free variables as existential reduces this constructive aggregate to the regular
min aggregate we have used so far.

Constructive aggregates are a challenging part of future work. Several ques-
tions regarding their semantics and implementation are still open.

6.3.1.8 Distinct matches ( Goal)

In CHR, different occurrences of the same constraint predicate in a single head
are not allowed to match the same CHR constraint. It seems sensible to extend
this matching semantics to for instance negation as absence and exists.

Example 6.17. This is illustrated by the following family example:



98 Aggregates

ss @ +parent(X,Y), -parent(X,Y).
only_child @ +parent(X,Y), ∼parent(X,_) => only_child(Y).

priority ss > only_child.

The first rule is a standard set semantics CHR rule for the parent/2 constraint.
The second rule expresses the only child relation. Without CHR’s distinct matches
semantics, both rules would need to be rewritten, as the first rule would simply
remove all parent/2 constraints, and the second would never fire.

Similar observations hold for the exists aggregate, but less for other ag-
gregates. In our prototype implementation, we only experimented with distinct
matching semantics for the ‘∼’ aggregate. All other aggregates, including ‘\+’
and exists (for now), allow overlapping constraint matches.

6.3.1.9 Fire-once versus fire-many semantics

This subsection considers the semantics of propagation rules containing aggregates.
Traditionally, CHR operational semantics enforce a fire-once policy, where every
rule instance is allowed to fire at most once. However, when the rule’s head
contains aggregates, the question arises whether or not a rule instance should be
reapplied if the values of these aggregates change.

Example 6.18. Reconsider for instance this rule from Example 6.4:

new_min @ +c(X), ∼(c(Y), Y < X) => min(X).

Suppose at some point this rule fires with X=5, and that c(2) is added next. The
rule instance with X=5 now no longer is applicable. If later c(2) is removed again,
the intended semantics is clearly that the instance for X=5 fires again.

We found that for negation as absence, a fire-many semantics seems more
appropriate (Van Weert et al. 2006a). Negation though is an instance of a specific
type of aggregates: if its value changes, the rule’s applicability changes with it.
Other aggregates that share this property are e.g. exists and forall. A suitable
fire-many semantics for such aggregates may be stated informally as: “A rule
instance may be applied once each time it becomes applicable”.

Example 6.19. In retrospect, this semantics may warrant further refinement.
Reconsider the only_child rules of Example 6.17. When the set semantics rule
removes a duplicate parent/2 constraint, the only_child rule, however briefly,
has become inapplicable and applicable again. It arguably is not a desirable
operational semantics to re-apply in such cases.

In general, the value of an aggregate may change without affecting the rule’s
applicability. One attempt to generalise the fire-many semantics is: “An instance



6.3 Language Design 99

may be applied once each time an aggregate’s value changes”. Fire-many semantics
may lead to unwanted reapplications, or even non-termination.

In our prototype implementation, aggregates have a fire-once semantics. Only
for negation, we have experimented with both options: the ‘\+’ predefined
aggregate has fire-once semantics, whereas ‘∼’ has fire-many semantics.

6.3.1.10 Aggregates outside rule heads

So far, we only considered aggregate expressions in the head of CHR goals.
Clearly, (efficiently) querying the CHR store outside a rule’s head—i.e., in a rule’s
body, or even from user code or via interactive queries—is equally useful. In fact,
this is frequently requested missing feature of current CHR systems. Most offer
only limited support for inspecting the CHR store (iteration over or sometimes
counting of all constraints of a given predicate). Efficiently supporting aggregate
queries—or other complex queries containing joins etc.—over the CHR constraint
database (think SQL) is an important area of future work. The main issue is
that such features require considerably different implementation techniques, as
the structure of queries is not known in advance. For now, all required queries
must be anticipated and encoded explicitly as a CHR rule.

6.3.2 Aggregates in CHR and CHR2
In Van Weert et al. (2006a, 2007), we disclosed many practical issues that surfaced
when adding aggregates to the ωr-based K.U.Leuven CHR system in SWI Prolog.
Some are related to the unexpected behaviour of aggregates in ωr-based programs,
others to our implementation based on source-to-source transformation:

1. Due to the sequential, piece-wise execution of rules in ωr-based systems,
rules often fire with aggregate results that reflect inconsistent, intermediate
execution states. Common examples are:

(a) Modifications, where the old constraint is removed, but the new,
modified version is not yet added.

(b) The lack of atomic constraint additions often results in unintended
runtime behaviour. Sometimes subtle reorderings of constraint con-
junctions can fix this, but not always. With the only_child rule in
Example 6.17, for instance, it is impossible to add both parent’s of
a child without propagating an only_child constraint. Several more
examples are given in (Van Weert et al. 2006a, 2007).

2. Examples where the deficient execution control mechanism of traditional
systems has proven inadequate to implement aggregates are:

(a) The results of nested aggregate must be fully computed before they
are used in matchings for an outer aggregate’s goal.



100 Aggregates

(b) After a built-in constraint is added, all affected matchings with an
aggregate’s goal must be (re)considered before using its result.

(c) For aggregates with fire-many semantics, the propagation history must
be updated before reconsidering rule matchings.

In Van Weert et al. (2006a, 2007), we managed to solve most (not all)
of these issues using complex, ad-hoc, low-level encodings. Obviously, this
complicated our implementation tremendously. Moreover, in the resulting system,
the programmer often has to reason on the low-level ωr-like execution semantics
of aggregates, in order to tune the execution order e.g. by reordering rules or
constraint conjunctions, or by adding low-level pragmas.

In CHR2 (and to a lesser extend CHRrp), all these issues can be solved
naturally thanks to batch semantics and priorities, regaining all advantages of
declarative programming, both in the extended CHR language, as in its (source-
to-source) implementation. CHR2 ’s priority constraints, which allow local priority
declarations, are particularly convenient in the context of automatic program
transformation because predicting which code still has to be generated often is
impractical (e.g. with nested aggregates). Also, in our case, multiple aggregates—
with the exception of nested aggregates of course—should be allowed to be
computed independent from each other (or even in parallel). CHRrp’s global
priority numbers cannot express these constraints.

6.4 Formal Semantics and Properties
6.4.1 Operational semantics
We modify the definition of the transition rules of CHR semantics to deal with
(nested) aggregate/7-expressions. We use two mutually recursive definitions:

Definition 6.1. With A a conjunction of aggregates, and S ⊆ S, we redefine
the set of matching substitutions matchings(H,G,A, S,S,B) as follows:{

θ | chr(S) = θ(H) ∧ DH |= B→ ∃̄B(θ ∧G ∧ ∀a ∈ A : agg_cond(a,S,B))
}

Definition 6.2. We define the aggregate condition as follows, for an aggregate a
of form aggregate(s, i, f, d,X,G,R), where G consists of conjunctions of CHR
constraints C, built-in constraints B, and (nested) aggregates A:

agg_cond(a,S,B) = s(V0) ∧
n∧
k=1

i(Vk−1, θk(X), Vk) ∧ f(Vn, R)

with V0, . . . , Vn fresh variables, and ∀k : θk ∈ Θk with

{Θ1, . . . ,Θn} = {Θ = matchings(C,B,A,H,S,B) | H ⊆ S ∧Θ 6= ∅}



6.4 Formal Semantics and Properties 101

The definition is unambiguous if the increment predicate i corresponds to a
commutative operator.

The extended definition of matchings can, in principle, be plugged in to any
‘theoretical’ operational semantics of CHR. Doing so, however, does not always
result in a good fit. Batch semantics, for instance, is a highly desirable property.
That is why the ωp semantics of CHRrp (Section 4.4.2), or the ω2 semantics
of CHR2 (Section 5.2), are better suited to host aggregates than traditional
incremental operational semantics such as ωt (Section 4.2.2). This is discussed in
more detail in Section 6.3.2.

Refined operational semantics

Aggregates may also be incorporated into more ‘refined’ operational semantics
of CHR, that is, those operational semantics that are based on the concept of
active constraints (see Section 4.2.3). Besides the standard ωr semantics, another
example is e.g. ωrp for CHRrp (Section 4.4.2). We specified such refined semantics
for CHR with negation as absence in Van Weert et al. (2006a, 2009) In line with
our argumentation in Section 5.2, however, we feel that such refined operational
semantics should in principle be avoided.

Fire-many semantics

We discussed fire-many semantics for propagation rules with aggregates in Sec-
tion 6.3.1.9. While it is not immediately clear how to specify such a semantics
for aggregates in general, for aggregates like negation as absence, exists, and
forall, it can informally be formulated as: “A rule instance may be applied once
each time it becomes applicable”. This can readily be accomplished by extending
any semantics of CHR with a transition rule that eagerly removes all propagation
history tuples as soon as they no longer are applicable (see e.g. Van Weert et al.
(2006a, 2007, 2009)).

6.4.2 Logical semantics and formal properties
Both negation as absence and aggregates in general are introduced as operational
concepts, much like negation as failure in Prolog (cf. Section 3.1.3). This of course
has immediate consequences for the language’s formal semantics and properties.
For one, CHR extended with aggregates is clearly no longer monotonic; that is:
adding constraints may invalidate previously applicable or applied rule instances.
Therefore:

1. the extended language no longer has a direct correspondence to either
classical or linear logic (Section 4.2.1), which both are monotonic logics.



102 Aggregates

2. all results that rely on CHR’s monotonicity property are no longer directly
applicable. Current confluence checks, in particular, inherently rely on
monotonicity, as discussed in Section 4.3.2. Nevertheless, confluence for the
extended language remains an interesting and desirable property. In a way,
negation as absence actually facilitates writing confluent programs.

Example 6.20. A common pattern in ωr-based systems looks as follows:
A, B ⇔ C.
A ⇔ D.

where all capital letters represent conjunctions of CHR constraints. Clearly,
such programs are rarely ωt-confluent. Using negation, an elegant form of
confluence can be regained by changing the second rule to the complement
of the first: ‘A, ∼B ⇔ D.’

Of course, the same holds for CHR programs that explicitly compute non-
monotonic aggregates using on lower-level auxiliary constructs. These programs
require some execution control mechanism for correctness.

A detailed study of the logical semantics and other important properties of
the extended CHR programs is left as future work.

6.5 Expressiveness case studies
To demonstrate the expressiveness added by aggregates, we now present four
different case studies. For four existing programs, we identified the code used
to compute (nested) aggregates, and replaced it with the equivalent aggregate
conditions. This is shown in Listings 6.1–6.4. The replaced code is indicated using
italics and underlining. Note that all programs, including those with aggregates,
assume an ωr-based execution strategy. It is not important, however, to fully
understand all programs (see below for references to more detailed explanations);
the main point is that the programs with aggregates are more concise, readable,
and easier to understand than the original versions.

The four case studies in question are:

Dijkstra: a well-known CHR program by (Sneyers et al. 2006a) that imple-
ments Dijkstra’s single source shortest path algorithm. To obtain the correct
runtime complexity, the original program is complemented by a fairly com-
plex CHR-based implementation of a Fibonacci heap (Cormen et al. 2009,
Chapter 19). When using aggregates, this is taken care of implicitly by the
incremental aggregate implementation (cf. Van Weert et al. 2008).

Euler: a simple program that checks whether a given connected directed graph
is Eulerian; we explained this case earlier in Example 6.12.



6.5
Expressiveness

case
studies

103
Listing 6.1 Dijkstra: a CHR implementation of Dijkstra’s single-source shortest path algorithm. The original imple-
mentation requires an additional implementation of a priority queue with the operations insert(+,+), decr_key(+,+),
and extract_min(-,-). The maintain pragma indicates the aggregate has to be maintained (the implementation will
again use a priority queue; see Van Weert et al. 2008). The passive pragma is required by lack of better execution
control mechanisms in the ωr-based prototype.
:- chr_constraint edge(+,+,+), dijkstra(+), distance(+,+),

scan(+), label(+,+), . . . . . . . . . . . . . .relabel(+,+).
dijkstra(A) <=> label(A,0), scan(A).

scan(A) \ label(A,D) <=> distance(A,D).
scan(A), distance(A,D), edge(A,B,W) ==> . . . . . . . . . . . . . . . .relabel(B,D+W).

. . . . . . . . . . . . . . .distance(B,_) . .\. . . . . . . . . . . . . . .relabel(B,L) . . . . .<=> . . . . . .true.
label(B,X) \ relabel(B,L) <=> L >= X | true.
label(B,X) , relabel(B,L) <=> label(B,L), decr_key(B,L).

. . . . . . . . . . . . . .relabel(B,L). . . . .<=> . . . . . . . . . . . .label(B,L), insert(B,L).
scan(A) <=> extract_min(B,_) | scan(B).
scan(_) <=> true.

:- chr_constraint edge(+,+,+), dijkstra(+), distance(+,+),
scan(+), label(+,+).

dijkstra(A) <=> label(A,0), scan(A).
label(A,X) \ label(A,Y) <=> X =< Y | true.
scan(A) \ label(A,D) <=> distance(A,D).
scan(A), distance(A,D), edge(A,B,W), . .\+. . . . . . . . . . . . . . . .distance(B,_)

==> label(B,D+W).

scan(A), argmin(L,label(B,L))#maintain#passive <=> scan(B).
scan(_) <=> true.

Listing 6.2 Euler: a CHR program that checks whether or not a connected digraph is Eulerian. The passive
pragma is added for performance reasons (would not be required if the query had batch semantics).

:- chr_constraint node(+), edge(+,+), euler,

. . . . . . . . .test(+), degree(+,+), get_d(+,?).
euler, node(N) . . . .==>. . . . . . . . . .test(N).

. . . . . .euler <=> true.

. . . . . . . . . .test(N), edge(N,_) ==> degree(in, 1).

. . . . . . . . . .test(N), edge(_,N) ==> degree(out,1).

. . . . . . . . .test(N) . . . . .<=> get_d(in,X), get_d(out,X).
degree(X,Y), degree(X,Z) <=> degree(X,Y+Z).
get_d(X,Q), degree(X,Y) <=> Q = Y.
get_d(X,Q) <=> Q = 0.

:- chr_constraint node(+), edge(+,+), euler.

euler, . . . . . . . . .forall(node(N).,

.(count(edge(N,_),X) ., . count(edge(_,N),X) .)

. . . . . . . . . . . .)#passive <=> true.

. . . . . .euler. .. . . .<=>. .. . . . . . .fail.



104
A
ggregates

Listing 6.3 Hopcroft: a CHR implementation of Hopcroft’s algorithm for minimising states in a finite automaton
(Hopcroft 1971). The ‘#m’ annotation is a short-hand notation for the ‘#maintain’ pragma, which states that the
aggregate’s value has to be maintained incrementally (cf. Van Weert et al. 2008). Understanding the full program is
not necessary (see Sneyers (2008, §5.3) for a detailed explanation), simply note that the rules with aggregates are far
more readable than their original counterparts (recall from Table 6.1 that nb/2 is an alias for count/2).
:- chr_constraint state(+), delta(+,+,+),

input(+), final(+), init, loop, b(+,+),
a(+,+,+), l(+,+), k(+), part(+,+), mov(+,+),
c(+,+), new_l(+,+,+), inv(+,+), fix(+,+),

. . . . . . . . . . . . . .add_a(+,+,+), nb_a(+,+,+).

init, final(S) \ state(S) <=> b(1,S).
init \ state(S) <=> b(2,S).
b(I,S), input(A) ==> nb_a(A,I,0), . . . . . . . . . . . . . .add_a(A,I,S).

delta(_,A,S) .\. . . . . . . . . . . . . . .add_a(A,I,S). . . . .<=> . . . . . . . . . . .a(A,I,S).

. . . . . . . . . . . . . .add_a(_,_,_) . . . .<=>. . . . . . .true.
a(A,I,_) ==> nb_a(A,I,1).
nb_a(A,I,X), nb_a(A,I,Y) <=> nb_a(A,I,X+Y).

init <=> k(3), add_to_l(1,2), main_loop.
add_to_l(J,K), input(A), nb_a(A,J,X), nb_a(A,K,Y)

==> (X =< Y -> l(A,J) ; l(A,K)).
add_to_l(_,_) <=> true.

main_loop, l(A,I) <=> part(A,I).
main_loop <=> true.
part(A,I), a(A,I,X), delta(T,A,X) \ b(J,T) <=> bp(J,T).
part(_,_), bp(J,_)#passive \ k(K) <=> do_part(J,K).

do_part(J,K) \ bp(J,T)#passive <=> b(K,T), fix(J,T).
fix(J,T) \ a(_,J,T) <=> nb_a(A,J,-1).
fix(J,T) <=> true.

do_part(J,K) <=> add_to_l(K,J), k(K+1).
part(_,_) <=> main_loop.

:- chr_constraint state(+), delta(+,+,+),
input(+), final(+), init, loop, b(+,+),
a(+,+,+), l(+,+), k(+), part(+,+), mov(+,+),
c(+,+), new_l(+,+,+), inv(+,+), fix(+,+).

init \ state(S), nb(final(S),B) <=> b(2-B,S).

b(I,S), input(A), . . . . . . . .exists(delta(_,A,S) .) ==> a(A,I,S).

init <=> k(3), add_to_l(1,2), main_loop.
add_to_l(J,K), input(A), nb(a(A,J,_),X)#m, nb(a(A,K,_),Y)#m

==> (X =< Y -> l(A,J) ; l(A,K)).
add_to_l(_,_) <=> true.

main_loop, l(A,I) <=> part(A,I).
main_loop <=> true.
part(A,I), a(A,I,X), delta(T,A,X) \ b(J,T) <=> bp(J,T).
part(_,_), bp(J,_)#passive \ k(K) <=> do_part(J,K).

do_part(J,K) \ bp(J,T)#passive <=> b(K,T), fix(J,T).
fix(J,T) \ a(_,J,T) <=> true.
fix(J,T) <=> true.

do_part(J,K) <=> add_to_l(K,J), k(K+1).
part(_,_) <=> main_loop.



6.5
Expressiveness

case
studies

105
Listing 6.4 Sudoku: a CHR implementation of a simple Sudoku solver. The auxiliary predicate row_col_box/2
succeeds iff the given coordinates are in the same row, column, or box.

:- chr_constraint solve, val(+,+), cand(+,+),
nb_cand(+,+), . . . . . . . . . .solve(+).

. . . . . .solve. .. . . .<=>. .. . . . . . . . . . . .solve(1).
solve. . . .(N), cand(P,V), nb_cand(P,N)

<=> (val(P,V) ; N>1, nb_cand(P,N-1)), solve. . . .(1).

. . . . . . . . . .solve(N) . . . . .<=> . . . . .N<9 . . .|. . . . . . . . . . . . . . .solve(N+1).
solve. . . .(_) <=> true.
cand(P,_) ==> nb_cand(P,1).
nb_cand(P,X), nb_cand(P,Y) <=> nb_cand(P,X+Y).
val(P,_) \ nb_cand(P,_) <=> true.
val(P,_) \ cand(P,_) <=> true.
val(P,V) \ cand(Q,V), nb_cand(Q,N)

<=> row_col_box(P,Q) | N>1, nb_cand(Q,N-1).

:- chr_constraint solve, val(+,+), cand(+,+).

solve, . . . . . . . . . . . . . .takemin(N,(cand(P,V) .,nb(cand(P,_),N) . .))
<=> (val(P,V) ; N>1), solve.

solve <=> true.

val(P,_) \ cand(P,_) <=> true.
val(P,V) \ cand(Q,V), nb(cand(Q,_),N)

<=> row_col_box(P,Q) | N>1.

original aggregates % gained
Program C R B C R B C R B

banking 6 4 493 5 3 300 17% 25% 39%
Dijkstra 6 9 497 5 6 266 17% 33% 46%
+FibHeap +10 +22 +1211 +0 +0 +0 69% 81% 84%
Euler 6 8 351 3 2 141 50% 75% 60%
Hopcroft 18 19 985 16 14 789 11% 26% 20%
Sudoku 5 9 456 3 4 245 40% 56% 46%

Average (not counting FibHeap) 29% 48% 43%

Table 6.2: Expressivity gained by using aggregates, in terms of the number of
CHR constraints (C), CHR rules (R), and bytes (B).



106 Aggregates

Hopcroft: a CHR program explained in detail in Sneyers (2008, §5.3) that
implements Hopcroft (1971)’s algorithm for minimising states in a finite
automaton. The version that uses aggregates is even closer to the standard
pseudo-code description given in Sneyers (2008, §5.3).

“Our main point here is that the pseudo-code [...] can be translated
quite easily to CHR rules. [...] Although conciseness and readability
are obviously somewhat vague notions, we would argue that the CHR
program is as concise and readable as the pseudocode description on
which it is based. Additionally the CHR program is executable and
achieves the optimal O(n logn) time complexity. ”

Sudoku: a straightforward CHR program that solves Sudoku puzzles using the
standard first-fail principle, as explained in Example 6.11.

We can quantify the gained conciseness by using aggregates in terms of the
number of constraints, rules, and bytes in the program. Table 6.2 lists these
numbers. We have also included figures for the motivational banking example of
Section 6.1.2. In the selected case studies, on average, almost half of the original
code dealt with the computation of aggregate values.

In our reference implementation, all aggregate-based programs still retain the
correct space and time complexities. This is verified in (Van Weert et al. 2008).

6.6 Related Work
Constructs related to aggregates are found in many languages. In this section we
briefly discuss some of them.

SQL SQL is the standard query language for databases, and is well-known
to include several aggregate functions (ISO 2003). Because, unlike CHR (cf.
Section 4.3.3), SQL is not Turing-complete, these aggregates are very important
as they add computational power to the language. The original SQL standard
only supports five aggregate functions: min, max, count, sum, and avg. Practise
though showed that users often require to aggregate data in many other ways.
To meet this need, all major database systems added numerous other built-in
aggregate functions, some of which were standardised in later revisions of the SQL
standard7. More recently, many database systems also include the possibility to
extend the database query language with user-defined aggregates.

7E.g. every and any/some in SQL-99 and several statistical aggregates in SQL-2003.



6.6 Related Work 107

Rule-based Programming As seen in Chapter 2, production rule (PR) sys-
tems have always offered support for negation as absence. Following CLIPS,
many support exists and forall aggregates as well, though not always in
a nested fashion. Note that these atypical aggregates do not return a result,
but simply represent applicability conditions. Not long after our research was
conducted, major PR systems such as Jess and Drools independently started to
introduce accumulate constructs, analogous to our aggregate/7. Of the studied
PR systems, Drools is currently the only one to have a full-featured aggregate
framework, more or less analogous to our proposal. At the time of writing, Jess
7.1, for instance, does not support:

• predefined or user-definable syntactic shorthands for common aggregates
• efficient incremental aggregate maintenance
• nested aggregates

To implement aggregates, all PR systems extend the Rete network with special
node types (cf. Section 2.2.3). Our approach is the first to both incorporate ag-
gregates with lazy rule evaluation, and to employ source-to-source transformations
as an implementation technique.

Logic Programming (LP) Semantics of aggregates have been widely studied
in the context of LP (Kemp and Stuckey 1991; Pelov 2004). The best-known
practical implementations are the all solutions predicates findall/3, bagof/3
and setof/3 of ISO-Prolog (ISO 1995), introduced in Section 3.1.3 (the latter
two are nondeterministic and constructive; cf. Sections 6.3.1.6–6.3.1.7). Other
aggregates can be implemented in terms of these generic predicates.

More specifically, the semantics and implementation of many types of negation
has received tremendous amount of attention in LP and non-monotonic reasoning
research. We have already briefly discussed negation as failure in Section 3.1.3,
and constructive negation in Section 6.3.1.7. A comprehensive survey of the
fundamental approaches of negation in LP is (Apt and Bol 1994).

Functional Programming Aggregates are a special case of catamorphisms or
folds from category theory, which are widely applied in functional programming
(Meijer et al. 1991). While aggregates usually consider implicit and unstructured
collections of data (sets and multisets), catamorphisms deal with explicit and
tree-shaped algebraic data structures. Many laws for fold have been established
using various equational reasoning techniques, e.g. for the parallel (or incremental)
computation of folds (Hu and Takeichi 1997).

Imperative Programming Imperative (object-oriented) languages often deal
with aggregates in a low-level way: by explicit iteration over collections of objects.
The elementary iterator design pattern captures this concept (Gamma et al.



108 Aggregates

1995). However, more and more, the need for a higher-level syntax becomes
apparent. Mainstream language designers increasingly turn towards declarative
(mostly functional) languages for a solution. The C# extension LINQ e.g. offers
a SQL-like syntax for querying data structures (Calvert and Kulkarni 2009).
Its implementation is based on various higher-order functions, e.g. the generic
Aggregate function is really a fold. Modern languages such as Erlang, JavaScript,
Python, Ruby, and Scala all support fold-like constructs as well8.

6.7 Conclusions
In this chapter, we presented aggregates as a powerful new language feature for
CHR. As illustrated by a number of case studies, aggregates eliminate the need
for tedious, cross-cutting auxiliary code, and increase the language’s expressive-
ness and conciseness considerably. Aggregates integrate seamlessly with CHR2 ,
resulting in a particularly elegant, very high level programming language.

Our aggregate framework concerns a general aggregates infrastructure that not
only allows for a rich set of predefined aggregates, but also caters for user-defined
application-specific aggregates. We have fully explored the semantical design
space for embedding aggregates into a rule-based language, and provided a first,
efficient implementation (cf. Van Weert et al. 2008). We also explained how
CHR2 resolves all issues earlier reported with our earlier prototypes.

6.7.1 Future work
Many interesting topics of the extended language are still to be researched, ranging
from theory to practise. Some were pointed out earlier in this chapter: a deeper
investigation of interesting alternative language design choices (constructive or
nondeterministic aggregates, fire-many semantics, etc.; cf. Section 6.3), the study
of formal logical semantics, as well as important program properties such as
confluence and termination (Section 6.4).

Finally, various ways can be investigated to improve the efficiency of our
implementation. In Part III, we already fully integrate negation as absence into
the optimising compiler. While we still believe a source-to-source approach is
a viable technique for the general framework, other common aggregates could
be further integrated into the analyses and compilation scheme, exploiting more
low-level support from runtime data structures. A crucial topic for future work is
also the development of static and dynamic techniques to automatically select the
optimal aggregate computation strategy: on-demand or incremental, or maybe
even hybrid strategies. This is related to our ongoing research into dynamic
constraint store indexing (Section 8.6.1).

8A nice overview table of this is found in Wikipedia, The Free Encyclopedia at http:
//en.wikipedia.org/w/index.php?title=Fold_(higher-order_function)&oldid=347910350

http://en.wikipedia.org/w/index.php?title=Fold_(higher-order_function)&oldid=347910350
http://en.wikipedia.org/w/index.php?title=Fold_(higher-order_function)&oldid=347910350


Chapter7
CHR for Imperative Host Languages

Computer programming is an art, because it applies accu-
mulated knowledge to the world, because it requires skill and
ingenuity, and especially because it produces objects of beauty.
A programmer who subconsciously views himself as an artist
will enjoy what he does and will do it better.

— Donald Knuth (born 1938)
American computer scientist

CHR is usually embedded in a CLP host language, such as Prolog or HAL
(Chapter 3). Real world, industrial software however is mainly written in im-
perative, object-oriented programming languages. For many problems though,
declarative approaches are more effective. Applications such as planning and
scheduling often lead to special-purpose constraint solvers. Because a seamless
cooperation with existing components is indispensable, these solvers are mostly
written in the mainstream language itself. Such ad-hoc constraint solvers are
notoriously difficult to maintain, modify and extend.

A multi-paradigmatic integration of CHR and mainstream programming
languages therefore offers powerful synergetic advantages to the software developer.
A user-friendly and efficient CHR system lightens the design and development
effort required for application-tailored constraint systems considerably. Adhering
to common CHR semantics further facilitates the reuse of numerous constraint
handlers already written in CHR. And conversely, a proper embedding of CHR in
a mainstream language enables the use of innumerous existing software libraries
and components in CHR programs.

Moreover, imperative host languages are better suited for efficient evaluation
of rule-based programs. The indexing data structures and complex nested loops
required can be implemented more effectively in an imperative language. This

109



110 CHR for Imperative Host Languages

aspect is explained in detail in Chapter 8. This chapter focusses on language
design and integration aspects.

Early CHR embeddings in imperative languages often either lack performance
(Abdennadher et al. 2002; Vitorino and Aurelio 2005), or are designed to experi-
ment with specific extensions of CHR (Wolf 2001a). Also, in our opinion, these
systems do not provide a sufficiently natural embedding of CHR in the imperative
host language. Instead of integrating the specifics of the new host into an elegant
combined language, they unduly port the (C)LP host environment as well. This
needlessly enlarges the paradigm shift for imperative programmers. We will show
that a tighter integration of both worlds leads to a useful and powerful language
extension, intuitive to both CHR adepts and imperative programmers.
Overview Section 7.1, reviews the different problems and challenges met when
embedding CHR in an imperative host. Next, we outline our views on effectively
designing integrated CHR(imperative) systems in Section 7.2. This design is
followed by the K.U.Leuven JCHR Systems, as demonstrated in Section 7.3.
Finally, Section 7.4, compares with related approaches.

7.1 Impedance Mismatch
CHR was originally designed to use a (C)LP language as a host. Integrating it
with imperative languages therefore gives rise to particular challenges. Imperative
host languages do not provide certain language features used by many CHR
programs, such as logical variables, search, and pattern matching (Section 7.1.1).
Conversely, the CHR system must be made compatible with the properties of
the imperative host. Unlike Prolog for instance, many imperative languages are
statically typed, and allow destructive update (Section 7.1.2).

7.1.1 (C)LP language features

Logical variables

Imperative languages do not provide logical variables (Section 3.1.1). Unless they
have been assigned a value, no reasoning is possible over imperative variables.
Many algorithms written in CHR, however, use constraints over unbound logical
variables, or require two, possibly unbound variables to be asserted equal (variable
aliasing; first discussed in Section 3.1.1). The unavailability of a corresponding
feature would limit the usefulness of a CHR system in imperative languages.
From experience we know that logical variables facilitate several convenient
programming patterns, giving CHR an edge over e.g. production rule systems
(Chapter 2). Therefore a logical data type, together with the necessary library
routines to manipulate it, has to be implemented for the host language.



7.1 Impedance Mismatch 111

Built-in constraints
More general than variable aliasing, CLP languages provide built-in constraint
solvers for CHR. While Prolog provides only one true built-in constraint, equality
over Herbrand terms, more powerful CLP systems such as HAL offer multiple
types of constraint solvers (see Duck, Stuckey, García de la Banda, and Holzbaur
2003). Imperative languages on the other hand offer no real built-in constraint
support. To allow high level programming with constraints in CHR guards and
bodies, underlying constraint solvers may need to be implemented from scratch.
In Section 7.2.2 we discuss the effective design of built-in constraint solvers that
interact with CHR systems.

Symbolic computation
(C)LP languages facilitate the manipulation of symbolic expressions (typically
Herbrand terms), which makes them—and consequently CHR(CLP) systems—
particularly suited for symbolic computation, parsing, program transformation,
and so on. Imperative languages typically have no built-in support for symbolic
data (terms). They do, however, offer a much richer set of (compound) data
types, which at least for many other applications are more appropriate than
symbolic term representations. The challenges that arise when manipulating
these with CHR are discussed further in Section 7.1.2.

Pattern matching
CHR uses pattern matching to find applicable rules. In logical languages, pattern
matching is readily available through unification1, even on elements of compound
data structures (Herbrand terms). These matches are referred to as structural
matches. Imperative hosts typically do not provide a suited language construct
to perform pattern matching on its (compound) data types.

Search
To solve non-trivial constraint problems constraint simplification and propagation
alone is not always enough. Many constraint solvers also require search. As
pure CHR does not provide search, many CHR systems therefore implement
CHR∨ (pronounced “CHR-or”), an extension of CHR with disjunctions in rule
bodies. In fact, CHR(Prolog) and other CHR(CLP) systems implement CHR∨
for free, given the built-in support for (at least) chronological backtracking these
languages typically offer. This was discussed at length in Section 4.4.4. Providing
search for a CHR system embedded in an imperative host, however, requires an
explicit implementation of the choice and backtracking facilities.

1Although CHR’s pattern matching is different from unification, as explained in detail in
Section 4.1.3, it is relatively easy to implement matching using the built-in unification facilities
of a typical logical language.



112 CHR for Imperative Host Languages

We have chosen not to address this issue at this time. In Section 7.4 we
show that earlier work extensively studies such combinations of CHR with search
(Krämer 2001; Wolf 2005). Their results show the lack of built-in search can
be an opportunity, rather than a misfortune, as custom, more powerful search
strategies become possible.

There remain however some interesting challenges for future work, as undoing
changes made after a choice-point becomes particularly challenging if arbitrary
imperative data types and operations are allowed. The only practical solution
seems to be a limitation of the host language code used in those CHR handlers
that need to support search. We briefly return to this in Section 7.2.1.

7.1.2 Imperative language features
Static Typing
Unlike Prolog, many imperative languages are statically typed. A natural imple-
mentation of CHR in a typed host language would also support typed constraint
arguments, and perform the necessary type checking. Calling arbitrary external
host language code is only possible if the CHR argument types have a close
correspondence with those of the host language.

Complex Data Types
The data types provided by imperative languages are typically much more diverse
and complex than those used in logical languages. An effective embedding
of CHR should support host language data types as constraint arguments as
much as possible. In Section 7.1.1 we saw that in (C)LP embeddings, CHR
handlers use structural matches on symbolic terms to specify the applicability
of rules. Providing structural pattern matching on arbitrary compound data
structures provided by imperative languages requires specific syntax, and has
certain semantical issues, as discussed in the next three subsections.

Modification
Contrary to logical languages, imperative languages allow side effects and de-
structive updates. When executing imperative code, arbitrary fields may therefore
change. If these are inspected by CHR guards, these modifications may require
constraint reactivations. Modifications to a constraint’s arguments could also
render inconsistent the index data structures used by an efficient CHR implement-
ation (see Section 8.3.2.2). In general it can be very hard or impossible for the
CHR handler to know when the content of values has changed. In the production
rule literature this is referred to as the Modified Problem (da Figueira Filho and
Ramalho 2000; Pachet 1995; 2004). We prefer the term modification problem, as
‘modified problem’ wrongfully suggests the problem is modified.



7.2 Integrated CHR(imperative) Systems 113

Behavioural Matches

As structural matches over imperative data types are often impractical (see above),
guards test for properties of constraint arguments using procedure calls. This
is particularly the case for object-oriented host languages: if constraints range
over objects, structural matches are impossible if encapsulation hides the objects’
internal structure. Guards are then forced to use public inspector methods
instead. Matching of objects using such guards has been coined behavioural
matches (Bouaud and Voyer 2004). So, not only can it be difficult to determine
when the structure of values changes (the modification problem), it can be difficult
to determine which changes affect which guards.

Non-monotonicity

The traditional specification of CHR and its logical readings assume monotonicity
of the built-in constraints, that is: once a constraint is entailed, it remains
entailed. When a non-monotonic host language statement is used in a guard, the
corresponding rule no longer has a logical reading. This issue is not exclusive to an
imperative host language, but certainly more prominent due to the possibility of
behavioural matches and destructive updates. A consequence of using imperative
data structures as constraint arguments is indeed that, often, they change non-
monotonically. CHR rules that were applicable or that have already been applied
can thus become inapplicable by executing host language code.

This problem is more a semantical issue than a practical one. It seems
inevitable that when using extra-logical host language code, a CHR program has
no consistent logical reading. In fact, as seen in Section 3.1.3, this is also true for
Prolog. We therefore use the concept of pure CHR, which is analogous to that of
pure Prolog. Note though that the lack of a logical reading does not diminish
the practical usefulness of ‘impure’, general purpose CHR.

7.2 Integrated CHR(imperative) Systems

A CHR system for an imperative host language should aim for an intuitive and
familiar look and feel for users of both CHR and the imperative language. This
entails a combination of the declarative aspects of CHR—high-level programming
in terms of rules and constraints, both built-in and user-defined—with aspects
of the host language. As outlined in Section 7.1, such a combination leads to a
number of language design challenges. In this section we outline our general view
on these issues. Section 7.3 then provides an extensive case study, the K.U.Leuven
JCHR system (Van Weert et al. 2005). A second system designed following the
same principles, CCHR (Wuille et al. 2007), is briefly discussed in Section 7.4.1.



114 CHR for Imperative Host Languages

7.2.1 Design philosophy
Our design philosophy is mostly contrary to the one adopted by related systems,
such as HCHR, JaCK and DJCHR. As seen in Section 7.4, these systems limit
the data types used in CHR rules to typed logical variables (JaCK) or Herbrand
terms (HCHR and DJCHR). Also, they typically severely restrict the interaction
with host language code, if at all possible. However, while this limitation to LP
data types is overly restrictive and arguably counterintuitive, some limitations
may indeed be in order once e.g. search is provided. We come back to this later.

As noted by Frühwirth et al. (1992) in the context of CLP:

“The key aspect in the CLP(X) scheme is to provide the user with more
expressiveness and flexibility concerning the primitive objects the language
can manipulate. Clearly the user wants to design his application using
concepts that are as close as possible to his domain of discourse, e.g. he
wants to use sets, boolean expressions, integers, rationals or reals, instead
of coding everything as uninterpreted structures, i.e. finite trees [Herbrand
terms], as is advocated in logic programming. ”

We believe the key aspect of the CHR(H) scheme is analogous. The user wants to
design his application using concepts familiar to him from the host language. We
therefore believe that any natural, practical embedding of CHR should allow CHR
rules to contain (arbitrary) statements and expressions from the host language
H. As motivated in the introduction of this chapter, this is indispensable for a
seamless cooperation with software components written in the host language. To
avoid data type mismatches when calling imperative code, it follows that CHR
constraints best range over regular host language data types. Moreover, it avoids
the performance penalty incurred by constantly encoding and decoding of data
when switching between CHR and host language.

So, whereas in aforementioned related systems all host language data has to
be coded as logical variables or terms, we propose the exact opposite. Logical
variables and other (C)LP data types, such as finite domain variables or Herbrand
terms, can be encoded as host language data types. The CHR compiler should
however provide syntactic sugar for (C)LP data types and built-in constraints to
retain CHR’s high-level, declarative nature of programming.

Operational semantics

In (Van Weert, Wuille, Schrijvers, and Demoen 2008), we argued for the refined
operational semantics ωr (Section 4.2.3). The left-to-right execution of guards
and bodies is familiar to imperative programmers, and eases the interleaving
with imperative host language statements. Moreover, to allow an easy porting
of existing CHR solvers, support for the same familiar semantics is at least as
important as a similar syntax.



7.2 Integrated CHR(imperative) Systems 115

From Chapter 5 though, it should be clear that CHR2 ’s ω2 semantics is a far
better choice. Firstly, it possesses all aforementioned advantages of ωr. Secondly,
it combines this with superior priority-based execution control, intuitive even to
users unfamiliar with CHR execution or rule-based programming. And thirdly, it
allows not only familiar sequential, imperative style programming, but also an
optimal integration of logical (batch) conjunctions of constraints. The latter is
indispensable for powerful, more advanced language features (Chapter 6).

Opposite design philosophies?

The limitations imposed by systems such as JaCK and DJCHR—discussed at
length in Section 7.4—could in principle be motivated by the fact that they
need to be able to undo changes made in CHR bodies, either for search or for
adaptation. It is in general unclear how to do this effectively for unrestricted
imperative code (cf. Section 7.1.1).

Systems such as JaCK and DJCHR thus essentially become very special-
purpose libraries, tailored to exactly those applications where CHR(CLP) systems
already excel in. Practice shows, however, that even CHR(Prolog) systems are
increasingly used for general purpose programming. Arguably, this is even an
intrinsic part of their success. And in fact the same can be said about Prolog
itself (cf. Section 3.1.3). Such programs do not always use search or adaptation,
and can often be expressed just as naturally without term encodings.

In our systems, we have therefore focused on providing a tight, natural
integration of imperative host language features with CHR. Our approach leads
to elegant integrated languages, that truly play to their combined strengths.

We do believe though that these seemingly opposite philosophies by no means
exclude each other. For instance, while we have not yet fully pursued this, we
still maintain that our systems can be extended with search. Depending on the
implementation techniques used, some restrictions on allowed language constructs
may be in order. But to us it is important that these restrictions are only imposed
for those rule bodies that need to be ‘backtrackable’.

Both approaches can thus be seen as starting at the two opposite ends of
a spectrum from special- to general-purpose CHR systems. The ultimate goal
should be to meet somewhere in the middle, combining the best of both worlds.

7.2.2 Arbitrary built-in constraints and solvers
Above, we argued that arbitrary host language expressions should be allowed. In
this section, we show that it remains worthwhile to consider constraints separately,
and discuss how to model and design built-in constraints and solvers for use in
(imperative) CHR systems.

The semantics of CHR assumes an arbitrary underlying constraint system.
Imperative languages however offer hardly any built-in constraint support (Sec-



116 CHR for Imperative Host Languages

tion 7.1). Typically, only asking whether two data values are equal is supported
natively, or testing inequalities of numeric values (or other ordered data types).
Solvers for more advanced constraints have to be implemented explicitly.

In any case—whether they either built in the host language itself, or realized as
a host language library, or even by another CHR constraint handler (see below)—
we call these solvers built-in constraint solvers, and their constraints built-in
constraints. Our imperative CHR systems support a number of predefined built-
in constraints, either as abstractions of host-language constructs, or as efficient
solver libraries. They moreover have extensible designs, and facilitate the addition
of user-defined built-in constraint solvers.

The interaction between a CHR handler and the underlying constraint solvers
is well understood, and can be managed effectively. In our design, we follow the
approach by Duck, Stuckey, García de la Banda, and Holzbaur (2003). They
distinguish three types of interaction:

1. A built-in constraint solver optionally provides procedures for telling new
constraints. Using these procedures, new constraints can be added to the
solver’s constraint store in bodies of CHR rules and the initial query.

2. Similarly, it optionally offers procedures for asking whether a constraint is
entailed by its current constraint store or not. These procedures are used
for constraints that occur in guards.

3. In case constraint can be asked, a built-in solver must finally alert CHR
handlers when changes in their constraint store might cause entailment
tests to succeed. The CHR handler then checks whether more rules can be
fired. Constraint solvers should relieve the user from the responsibility of
notifying the CHR handlers, and notify the CHR solver to only reconsider
affected constraints. For efficiency reasons, this is typically solved by adding
observers2 to the constrained variables. This is discussed in more detail in
Section 8.3.5.

Example 7.1. Reconsider the leq handler from on page 32. The handler uses
one built-in constraint, namely equality over logical variables. For an imperative
host language, this constraint will not be natively supported, but implemented as
a library. All rules use the ask version of this built-in constraint to check whether
the equality of certain logical variables is entailed. The antisymmetry rule is the
only rule using the tell version of this constraint. Each time two variables are
told equal, the CHR handler must be notified that additional matchings may be
possible.

Essential in our design is that we do not require all built-in constraints to
have both an ask and a tell version. Constraints natively supported by an
imperative host language for instance, such as built-in equality and disequality

2The standard observer pattern is explained e.g. by (Gamma et al. 1995).



7.3 The K.U.Leuven JCHR Systems 117

checks, typically only have an ask version. Also, traditionally, built-in constraints
implemented by a CHR handler only have a tell version.

For a CHR constraint to be used in a guard, it requires both an entailment
check, and a mechanism to reactivate constraints when the constraint becomes en-
tailed (as explained above). Properly supporting ask versions of CHR constraints
remains an open research problem. Two initial approaches exist: Schrijvers et al.
(2006) researched automatic entailment checking, whereas Fages et al. (2008)
more pragmatically propose a programming discipline where the programmer
himself is responsible for specifying the entailment checks.

Conclusion We distinguish constraints from arbitrary host language statements
because their interaction with CHR handlers is predictable and better understood.
They are monotonic, the compiler can reason on which tell versions affect which ask
versions, and the modification problem can be solved efficiently and transparently
to the user. A secondary reason is that a CHR compiler may support well-
established C(L)P-like syntactic sugar to state these constraints (as assumed e.g.
in the leq handler of Listing 4.1).

7.3 The K.U.Leuven JCHR Systems
The K.U.Leuven JCHR System, JCHR for short, is a state-of-the-art, high-
performance CHR(Java) system (Van Weert et al. 2005). Its upcoming successor,
JCHR2 , is designed to be a next generation CHR2 (Java) system. Their architec-
ture follows the general principles outlined in Section 7.2. This section outlines
and illustrates some of our more specific language design choices to effectively
integrate CHR and Java. For a comprehensive, fully detailed description of JCHR,
we refer to the system’s user’s manual (Van Weert 2006).

The original JCHR system is freely available at Van Weert 2010c, and has
already proven useful in several applications (Section 7.3.7). We now first provide
a short historical overview of JCHR, and briefly introduce JCHR2 .

7.3.1 Historical overview
JCHR was first developed as a master’s thesis project (Van Weert 2005). At that
time, two other CHR systems for Java existed: JaCK and DJCHR. As discussed
in Section 7.4, however, these systems either lacked performance, or implemented
a non-standard variant of CHR. The objective was to develop the first state-of-
the-art CHR system for a mainstream, imperative host language. From the start,
an important goal was to research the advantages such a host could offer with
respect to performance, as imperative languages facilitate low-level optimisations
and highly optimized data structures, that are hard or impossible to achieve in
Prolog.



118 CHR for Imperative Host Languages

The resulting K.U.Leuven JCHR System was presented to the CHR community
at the 2005 CHR Workshop. From Van Weert et al. (2005):

“User-friendliness is achieved by providing a high-level syntax that feels familiar
to both Java programmers and users of other CHR embeddings, and by full
compliance to the refined operational semantics. Flexibility is the result of
a well thought-out design, allowing e.g. an easy integration of built-in con-
straint solvers and variable types. Efficiency is achieved through an optimized
compilation to Java and the use of a very efficient constraint store.”

JCHR fully leveraged the performance expectations. Van Weert et al. (2005)
reported that the system was already up to orders of magnitude faster than other
CHR(Java) and state-of-the-art CHR(Prolog) systems.

The JCHR system has been further improved and extended considerably since
then. A summary of the system’s version history is given in Table 7.1. From the
listed system improvements, four general themes can be ascertained:

1. Natural integration with Java
2. Ease of programming
3. Static program analysis
4. Optimized compilation and evaluation

Throughout this section, we will further highlight the first two themes; the latter
two are discussed in later chapters.

A recent development is JCHRIDE, an Eclipse-based integrated development
environment for JCHR created by Abdennadher and Fawzy (2008).

The next generation JCHR2 system

Over the years, it became increasingly clear that ωr-based CHR systems have
important problems and limitations (Chapters 5–6). The development for JCHR’s
successor therefore started early 2009. A primary incentive was a long overdue
proper performance comparison with mainstream production rule systems.

The JCHR2 effort resulted in the development of the CHR2 language discussed
earlier in Chapter 5. The current (internal) prototype of JCHR2 is a nearly
complete implementation of CHR2 (nonreactive CHR and static priorities only),
extended with negation as absence (Chapter 6). In (Van Weert 2010a), we
demonstrated the effectiveness of our design, and showed that JCHR2 outperforms
prominent production rule systems by up to several orders of magnitude, both in
time and in space. We discuss this further in Section 8.4.2.

7.3.2 JCHR handlers

Example 7.2. As an obligatory first example, Listing 7.1 shows JCHR’s version
of the leq handler. Aside from the additional type and constraint declarations



7.3 The K.U.Leuven JCHR Systems 119

05/05 - 1.0.0–1.0.3 • Master’s thesis 2004–2005

11/05 - 1.1.0–1.1.4 • Pragma passive

11/05 - 1.2.0 • Constraint + Handler classes

12/05 - 1.3.0–1.3.3 • Anonymous variables (_) in rule heads
• Handler implements Collection<Constraint>

09/06 - 1.4.0 • Improved command-line tool
• Type inference for variables in rule heads
• Subsumption analysis
• Join ordering
• Trace debugger

10/06 - 1.5.0–1.5.1 • Support for packages, static imports, . . .
• Constraint access modifiers
• Never stored analysis
• Set semantics analysis
• Observation analysis
• Delay avoidance

03/08 - 1.6.0 • On-the-fly compilation
• Singleton constraint optimisations
• Functional dependency analysis
• Improved built-in equality solvers

? - 1.7.0 • Refactoring to be.kuleuven.jchr packages
• Tell-by-asking
• Specialized indexes
• Conditional indexes
• Dynamic never stored optimisation
• Lazy indexing
• Optimal reactivation prevention (Van Weert 2008b)

Table 7.1: Version history of the K.U.Leuven JCHR System, with a selected
overview of advancements. A more comprehensive list, as well as more information
on the above improvements, can be found at (Van Weert 2010c).



120 CHR for Imperative Host Languages

Listing 7.1 A JCHR implementation of the leq handler.

package be.kuleuven.jchr.examples.leq;

import be.kuleuven.jchr.runtime.*;

public handler leq<T> {
public solver EqualitySolver<T> builtin;
public constraint leq(Logical<T>, Logical<T>) infix =<;

rules {
reflexivity @ X =< X <=> true;
antisymmetry @ X =< Y, Y =< X <=> X = Y;
idempotence @ X =< Y \ X =< Y <=> true;
transitivity @ X =< Y, Y =< Z ==> X =< Z;

}
}

required, the original CHR(Prolog) rules can be used almost verbatim. It uses
several of JCHR’s distinguishing features which we discuss in this section.

JCHR handlers are completely analogous to Java class, interface and enum
type definitions. As Listings 7.1–7.3 show, the actual handler definition has the
exact same block structure as any Java type definition. That is: a handler
declaration is embedded into Java at exactly the same level as for instance class,
interface, or enum blocks. A .jchr source file thus also starts with optional
package and import statements (static imports are also supported), all completely
equivalent in semantics to their Java counterparts. JCHR2 further strengthens
the analogy with Java classes even further, and conveniently allows handlers to
declare user-defined Java fields and methods.

A JCHR handler moreover declares a number of JCHR constraints, possibly
which built-in constraint solvers to use, and of course a number of JCHR rules.
These CHR-specific declarations are discussed further in Sections 7.3.3–7.3.4.

Generic handlers

JCHR is a statically typed CHR dialect. The system fully supports Java’s generic
types though (Bracha 2004; Gosling, Joy, Steele, and Bracha 2005). This eases
e.g. the transition from untyped Prolog to strongly typed Java. To the best of
our knowledge the K.U.Leuven JCHR system is the first typed CHR-system that
adequately deals with polymorphic handlers this way.

Example 7.3. The leq handler, for instance, defines inequality constraints over
any Java reference type T.



7.3 The K.U.Leuven JCHR Systems 121

Listing 7.2 A JCHR2 encoding of the mergesort handler.

public handler mergesort<T extends Comparable<? super T>> {
local constraint arrow(+T From, +T To) infix ’->’;
public constraint merge(int, +T);

X ’->’ A \ X ’->’ B <=> A < B | A ’->’ B;
merge(N,A), merge(N,B) <=> A < B | merge(N+1, A) & A ’->’ B;

}

Example 7.4. Generics are relatively powerful. Listing 7.2 shows a JCHR2
handler implementing mergesort over any Java type T implementing the standard
Java Comparable interface. The language constructs used to bound the type
parameter T are analogous to regular Java generics.

Note also JCHR2 ’s streamlined syntax: JCHR’s original rules block has been
deprecated, and arithmetic is fully supported by the front-end.3

7.3.3 JCHR constraints

In JCHR, all constraints—both built-in and user-defined—range over plain Java
types (cf. Section 7.2). All Java types are allowed in principle, from primitive
and enum types, to regular reference types (i.e. interface and classes). For all
constraints the familiar CLP prefix notation is used, and for binary constraints
infix notation is supported as well (Listings 7.1–7.2). As in most CHR systems,
all JCHR constraints have to be declared explicitly. Unlike CHR(Prolog) systems
though, statically declaring argument types for constraints is mandatory.

Example 7.5. Listing 7.3 lists the JCHR2 version of the classic gcd CHR
handler, which computes the greatest common divider of any number of (positive)
integer values. The declared gcd/2 constraint has a single argument of Java’s
primitive long type. If, for instance, larger numbers would be required, this
could simply be replaced by e.g. the built-in class java.math.BigInteger. The
‘M >= N’ guard would remain valid, as JCHR knows to test this built-in constraint
as ‘M.compareTo(N) >= 0’ (see Section 7.3.5). In this case, ‘M-N’ still would have
to changed to ‘M.subtract(N)’ though.

Example 7.6. In line with our motivation in Section 7.2.1, logical variables are
simply implemented as Java classes— see e.g. the leq handler in Listing 7.1.

3Compare also with Prolog’s version: ‘N1 is N+1, merge(N1,A)’!



122 CHR for Imperative Host Languages

Listing 7.3 A JCHR2 implementation of the gcd handler.

public handler gcd {
public constraint gcd(long n);

-gcd(0);
-gcd(M), +gcd(N), M >= N => gcd(M-N);

}

Encapsulation

The standard Java encapsulation mechanism is used to restrict access to a
handler’s constraint store. JCHR therefore supports Java-like access modifiers for
JCHR constraints. Basically, two different operations are restricted: adding new
constraints to the store, and inspecting the constraint store. The semantics of the
standard Java access modifiers is obvious. Next to these, JCHR also supports the
local modifier, which means that anyone can inspect the store of that constraint,
but the constraints can only be told locally by the handler itself.

Example 7.7. The Dijkstra handler adapted from (Sneyers et al. 2006a)
contains idiomatic use of the three basic access modifiers:

public constraint edge(int,int,int), dijkstra(int);
local constraint distance(int,int);
private constraint scan(int,int), relabel(int,int);

dijkstra/1 and edge/3 are declared public, as they constitute the user’s input
graph. The distance/2 constraints are local, as they are the computed output
of the program. Both remaining constraints are internal auxiliary constraints,
and are completely hidden from external code.

The potential benefits of encapsulation for the programmer are well-known
from software engineering. The JCHR compiler also uses them to infer some
basic control flow information. To the best of our knowledge, we are the first to
make this important distinction between public and private constraints.

7.3.4 An integrated CHR(Java) system
Next to constraints, JCHR guards and bodies may contain most Java statements
and expressions.4 Naturally, in guards, next to built-in ask constraints only those
expressions can be used that return boolean values.5

4JCHR originally only supported a very limited subset of expressions and statements due to
restrictions in the parser’s design. In JCHR2 these restrictions have mostly been eliminated.
JCHR2 moreover always allows arbitrary Java code in the form of {...} blocks.

5More precisely: types that can be coerced to boolean—for instance Boolean,
LogicalBoolean and Logical<Boolean> are also allowed.



7.3 The K.U.Leuven JCHR Systems 123

The modification problem In Section 7.1.2, we introduced the modification
problem. For built-in constraints this is solved as outlined in Section 7.2.2, that is,
using the standard observer design pattern (Gamma et al. 1995). Constrainable
types such as Logical implement an interface called ConstraintObservable,
through which interested JCHR constraints register. The built-in solvers then
notify these constraints of relevant changes.

Any user-defined class can similarly implement this interface. The user is
responsible for ensuring that the relevant notification events are sent to the
observing JCHR constraints. JCHR2 also support other alternatives. Firstly,
JCHR2 supports more methods for selectively reactivating subsets of JCHR
constraints explicitly from user-code. And secondly, it supports so-called bound
properties of JavaBeansTM, a standardized, more general observer-based modific-
ation notification mechanism for Java (Hamilton et al. 1997).

However, in many cases, the outcome of guards cannot or does not change.
JCHR therefore uses the notion of fixed methods and types. Basically, fixed
methods consistently return the same value, and for fixed types all public inspector
methods are fixed. Many frequently used Java types are fixed: String, the eight
‘wrapper’ types (Integer, Boolean, . . . ), BigInteger and BigDecimal, URL,
etc. Any method and type can be declared fixed, for instance by using the
@JCHR_Fixed annotation.

Often also when non-fixed types are used, the user nevertheless knows the
relevant objects are never changed (at least not in such a way that it affects
rule guards). For these cases, JCHR offers the ‘+’ type modifier. In the merge
handler of Listing 7.2, for instance, such modifiers indicate (promise) that the
‘=<’ order used in the guards does not change over time. Another typical example
is the java.util.Date class. While it is mutable, in many typical uses the date
value nevertheless never changes once fixed.

7.3.5 Built-in constraints and solvers
As indicated earlier, JCHR’s built-in constraints range over plain Java types.
Built-in constraints and solvers are modelled as proposed in Section 7.2.2.

Built-in Java ask constraints

By default, JCHR offers the so-called Java built-in constraints shown in Table 7.2.
These correspond directly to typical ‘constraints’ found in Java. For several of
these, the JCHR constraints provide convenient, more high-level syntactic sugar:
e.g. ‘A.equals(B)’ becomes ‘A = B’, and ‘A.compareTo(B) < 0’ simply ‘A < B’
(cf. Example 7.5 and Listing 7.2). Only ask versions of these constraints are
supported. To allow tell-like versions of these and other ask-only constraints
though, we recently added support for a form of negation as failure to JCHR.



124 CHR for Imperative Host Languages

Primitive typesa
Prefix Infix
eq = or ==
neq !=

geq >=
gt >
leq <= or =<
lt <

Reference typesb
Prefix Infix
eq = or ==
neq !=
ref_eq ===
ref_neq !==

Comparablesc
Prefix Infix

geq >=
gt >
leq <= or =<
lt <

Table 7.2: The Java built-in ask constraints supported by JCHR. They can
all be written both prefix and infix.

aFor boolean primitives, only equality and inequality can be asked.
bBy default, object equality (eq and neq) is tested using the equals method; for enum

types reference comparison (==) is used. Reference comparison can be enforced via the
ref_eq (===) and ref_neq (!==) constraints. As in Java, reference (dis)equality can only
be tested if the static types of the operands are comparable (possibly after coercion).

cThese are all types assignable (after coercion) to java.lang.Comparable<T>. Com-
monly used Comparables include String, enum types, Boolean, BigInteger, Date, etc. For
equality constraints, JCHR treats them as a reference type.

Example 7.8. This notation for instance allows more convenient variants (to
the right) of the following very common JCHR patterns (to the left):

H1 ==> !g1 | fail.

H2 <=> !g2 | fail.
H2 <=> true.

!

H1 ==> g1.

H2 <=> g2.

In this JCHR pseudo-code, ‘!’ denotes negation (as in Java), and g1 and
g2 are ask-only constraints. The new ‘tell-by-asking’ option allows g1 and g2 to
be used in the body nevertheless. The semantics is equivalent to the original
program: if the built-in constraints do not hold, the computation fails.

User-defined solvers

JCHR is designed to be extensible with user-defined built-in solvers. These
may override the above default constraints, or implement entirely new built-in
constraints. The following example illustrates the basic principle:

Example 7.9. The K.U.Leuven JCHR System contains an efficient reference
implementation for equality over logical variables. Its interface declaration is
shown in Listing 7.4. It declares a single binary eq constraint which can also be
written using infix notation. This solver is used in the leq example of Listing 7.1.



7.3 The K.U.Leuven JCHR Systems 125

Listing 7.4 The declaration of a generic built-in equality constraint solver
interface using annotations.
@JCHR_Constraint(

identifier = "eq", arity = 2, idempotent = YES,
ask_infix = {"=", "=="}, tell_infix = "=",
negatedIdentifier = "neq", negatedInfix = "!="

)
public interface EqualitySolver<T> {

@JCHR_Tells("eq") public void tellEqual(Logical<T> X, T val);
@JCHR_Tells("eq") public void tellEqual(T val, Logical<T> X);
@JCHR_Tells("eq") public void tellEqual(Logical<T> X, Logical<T> Y);

@JCHR_Asks("eq") public void askEqual(Logical<T> X, T val);
@JCHR_Asks("eq") public void askEqual(T val, Logical<T> X);
@JCHR_Asks("eq") public void askEqual(Logical<T> X, Logical<T> Y);

}

The solver declaration tells the JCHR compiler to use an EqualitySolver<T>
as a built-in solver. From the annotation, the JCHR compiler knows to use the
askEqual method to check the implicit equality guards, and to use the tellEqual
method in the body of the antisymmetry rule.

Using these @JCHR_Constraint annotations, the JCHR compiler can be in-
formed of several other important properties, most only applicable to binary
constraints: transitivity, (anti/a)symmetry, (ir/co)reflexivity, etc.6 Such know-
ledge is required for a variety of optimisations, most notably proper guard
reasoning (Section 8.3.6.2). JCHR is the first CHR system that can be informed
of such useful meta-data for arbitrary constraints this way.

7.3.6 Using a JCHR handler
Using a JCHR handler from Java is straightforward. For each handler foo, the
JCHR compiler generates a corresponding handler FooHandler, with for each of
the (non-private) JCHR constraints an inner class. We use the following example
to illustrate how easy it is to create JCHR handlers, and to use them in tandem
with built-in constraint solvers.

Example 7.10. Listing 7.5 contains an example usage of the classes generated
for the leq handler of Listing 7.1 and the built-in solver of Listing 7.4.

First a new built-in EqualitySolver and an LeqHandler are created. Note
that the constructor of the LeqHandler class requires a built-in constraint solver

6For the example in Listing 7.4, the default values derived by the system are correct.



126 CHR for Imperative Host Languages

Listing 7.5 A code snippet illustrating how the JCHR leq handler and equality
built-in solvers are called from Java code.

1 ...
2 EqualitySolver<Integer> builtin = new EqualitySolverImpl<Integer>();
3 LeqHandler<Integer> handler = new LeqHandler<Integer>(builtin);

4 Logical<Integer> A = new Logical<Integer>(),
5 B = new Logical<Integer>(), C = new Logical<Integer>();

6 handler.tellLeq(A, B); // A =< B
7 handler.tellLeq(B, C); // B =< C
8 handler.tellLeq(C, A); // C =< A

9 // all CHR constraints are simplified to built-in equalities:
10 assert handler.getLeqConstraints().isEmpty();
11 assert builtin.askEqual(A, B);
12 assert builtin.askEqual(B, C);
13 assert builtin.askEqual(A, C);
14 ...

to be provided (line 2). In this particular example, we will be solving constraints
over Integer objects.

Adding JCHR constraints to the handler is just as straightforward (lines 6–8),
be it inadvertently more verbose than from within JCHR rules. Logical variable
objects also have to be created first (lines 4–5). Constraint objects can only be
created by JCHR handlers; constraints are added by calling the generated tell
methods (if encapsulation permits).

In lines 10–13 it is verified that all JCHR constraints are indeed simplified
to built-in constraints. A number of inspector methods are generated (provided
encapsulation permits), that allow the final JCHR constraint store to be inspected.
These methods return objects implementing the standard java.util.Collection
interface. In the example, the getLeqConstraints() method returns an in-
stance of Collection<LeqHandler.LeqConstraint>. In fact, the handler object
itself implements Collection<Constraint>, with Contraint an interface im-
plemented by all generated JCHR constraint classes. Hence, in our example,
handler.isEmpty() would also have been correct (line 10).

Constraint systems Unlike CHR(Prolog) systems, JCHR allows multiple
constraint systems of cooperating solvers and handlers to co-exist independently.
Each handler belongs to a constraint system. If not assigned a constraint system
explicitly; a default constraint system object is used.7

7By default, one constraint system is created (on demand) per execution thread.



7.3 The K.U.Leuven JCHR Systems 127

Debugging JCHR programs The JCHR and JCHR2 systems both come
with experimental though already useful debugging tools. JCHR handlers can
be configured to generate trace events at rule applications, constraint additions,
activations and removals, and so on. These events can be logged, used to gather
runtime statistics, or for more advanced debugging purposes. The JCHR system
for instance contains a debugger with a Swing-based GUI that visualizes the
JCHR constraint store, supports coarse-grained breakpoints and event-per-event
execution of JCHR programs. JCHR2 at the moment only has a command-line
debugger, but allows more fine-grained breakpoints, as well as regular-expression
based querying of the constraint store at each step.

7.3.7 Applications
Over the years, JCHR has been used by several people, both from academia and
from industry.

Of course, JCHR is first and foremost developed as a research vehicle, to
demonstrate and further improve the language and architecture proposed in this
dissertation. JCHR has been used extensively for benchmarking CHR’s perform-
ance (e.g. by Sneyers et al. 2006a; 2009; and Christiansen, Westh, Basbous, and
Christiansen 2006), and for researching new compiler optimisations (Van Weert
et al. 2008; Van Weert 2008b).

JCHR has also been applied for teaching purposes in declarative programming
language courses and student projects.

Although still mostly a proof-of-concept research prototype, JCHR has been
proven robust enough for practical applications. It is used in at least two
commercial applications, both in the area of software verification. BSSE System
and Software Engineering8, a German company specialising in the discipline of
full automation of software development, once used JCHR for the generation of
test data for unit tests. And Agitar Technologies9, a US-based company with
worldwide distributors and resellers, uses JCHR in their flagship product family
AgitarOne. As reported by Daniel and Boshernitsan (2008):

“ AgitarOne is a comprehensive unit testing product for Java developed at
Agitar Software. It combines tools for software agitation (a technique for
exploratory testing), regression test generation, reporting, and continuous
integration. Test generation is supported in AgitarOne by two distinct
test generation engines [Agitar’s Agitator and Agitar’s Mockitator]. [...]
Agitar’s Mockitator (internal code-name) is a static test generation engine
that creates regression tests based on static program analysis. [...] The
Mockitator engine generates test inputs statically by constructing a chain

8http://www.bsse.biz/
9http://www.agitar.com/

http://www.bsse.biz/
http://www.agitar.com/


128 CHR for Imperative Host Languages

of path conditions for each code path that needs to be covered. As a code
path is traversed backward, the conditions are translated into a system of
constraints to be incrementally processed by a propagating constraint solver
based on constraint handling rules. This arrangement, previously proposed
in testing literature, enables early rejection of infeasible paths.”

7.4 Related work
Even though (C)LP remains the most common CHR host language paradigm, an
increasing number of other CHR implementations have appeared. We introduced
these earlier in Section 4.5; here we further discuss related CHR embeddings in
imperative and functional host languages, focussing on how they deal with the
issues raised in Section 7.1. We pay extra attention to the CCHR system by
Wuille et al. (2007): being heavily inspired by JCHR, it most closely resembles
our work.

Of course, countless other declarative paradigms have been integrated and
compiled to imperative host languages. We only consider production rules,
introduced in Chapter 2, because this formalism is most closely related to CHR.

7.4.1 CHR in C
CCHR (Wuille, Schrijvers, and Demoen 2007) is an integration of CHR with
the programming language C, strongly inspired by JCHR both in design and
implementation strategy (Wuille 2007). It thus follows several of the principles
outlined in Section 7.2. CHR code is embedded into C code by means of a cchr
block. This block can not only contain CCHR constraint declarations and rule
definitions, but also additional data-type definitions and imports of host language
symbols. Host language integration is achieved by allowing arbitrary C expressions
as guards, and by allowing arbitrary C statements in bodies. Functions to add or
reactivate CHR constraints are made available to the host language environment,
so they can be called from within C.

Constraint arguments are typed, and can be of any C data type except
arrays. Support for logical data types is provided, both in the host language
and within CHR blocks. CCHR does not have a concept of built-in constraint
solvers as introduced in Section 7.2.2. All ‘ask’ requests are simply host-language
expressions, and ‘tell’ constraints are host-language statements, which have to
be surrounded by curly brackets. It is however possible to declare macro’s
providing shorter notations for certain operations, a workaround for C’s lack
of polymorphism. When a data type is declared as logical, such macro’s are
generated automatically.

Rules follow the normal CHR(Prolog) syntax, yet are delimited by a semicolon
instead of a dot. This latter would cause ambiguities since the dot is a C operator.



7.4 Related work 129

Listing 7.6 A CCHR implementation of the leq handler.
cchr {

logical log_int_t int;
constraint leq(log_int_t,log_int_t);

reflexivity @ leq(X,X) <=> true;
antisymmetry @ leq(X,Y), leq(Y,X) <=> { telleq(X,Y); };
idempotence @ leq(X,Y) \ leq(X,Y) <=> true;
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z);

}

void test(void) {
cchr_runtime_init();
log_int_t a=log_int_t_create(), b=log_int_t_create(),

c=log_int_t_create();
leq(a,b); leq(b,c); leq(c,a);
int nLeqs=0; cchr_consloop(j,leq_2,{ nLeqs++; });
assert(nLeqs==0);
assert(log_int_t_testeq(a,b));
assert(log_int_t_testeq(b,c));
assert(log_int_t_testeq(c,a));
log_int_t_destruct(a);
log_int_t_destruct(b);
log_int_t_destruct(c);
cchr_runtime_free();

}

CCHR implements the standard refined operational semantics.

Example 7.11. Listing 7.6 shows how to implement the leq handler in CCHR.
It is equivalent to the JCHR/Java code shown in Listings 7.1–7.5. The first line
starts the cchr block. The next line declares log_int_t as a logical version of
the built-in C data type int. The third line declares a leq constraint that takes
two logical integers as argument. The four rules of the leq handler look very
similar to those of Listing 4.1. Equality of logical variables is told using the
generated telleq() macro.

The test() function shows how to interact with the CHR handler from within
C. The first line of the function initializes the CHR runtime. The next line creates
three log_int_t variables (a, b and c), and is followed by a line that adds the
three leq constraints leq(a,b), leq(b,c) and leq(c,a). The next line counts
the number of leq constraints left in the store. The next four lines assert that
no CHR constraints are left, and that all logical variables are equal (in C, if
the argument of assert evaluates to 0, the program is aborted and a diagnostic



130 CHR for Imperative Host Languages

error message is printed). The function ends with the destruction of the logical
variables used, and the release of all memory structures created by the CCHR
runtime.

Conclusion CCHR truly is much like its host language: a quite low-level (for
CHR standards that is), but potentially extremely efficient CHR system. It
follows the general design philosophy motivated in Section 7.2.1, though not (yet)
the design principles of Section 7.2.2.

7.4.2 CHR in Java
Aside from the K.U.Leuven JCHR systems, there exist at least three other
CHR(Java) systems. These are introduced earlier in Section 4.5.3. In this section,
we provide some additional comments on their language design.

In JaCK (the Java Constraint Kit; Abdennadher et al. 2001, 2002), CHR
constraints only range over typed logical variables. All Java objects thus have to
be wrapped in logical variables. Only static Java methods can be called from a
rule’s body. The CHORD system took a similar approach.

In DJCHR (Dynamic JCHR;Wolf 2001a), constraints range only over Herbrand
terms. Integration of the host language in the CHR rules is not supported. The
system seems mainly created to experiment with the incremental adaptation
algorithm of (Wolf, Gruenhagen, and Geske 2000).

Both JaCK and DJCHR were extended to support a wide range of search
strategies (Krämer 2001; Wolf 2005). As discussed earlier in Section 4.5.3, in
both systems search has to implemented in Java, orthogonally to the actual CHR
handlers. Interestingly, (Wolf 2005) clearly shows that the use of advanced search
strategies can be more efficient than a low-level, host language implementation of
chronological backtracking (as in Prolog).

7.4.3 CHR in functional languages
When embedding CHR in functional languages, many of the same challenges are
met. Typically, functional languages are statically typed, and do not provide
search or built-in constraints. Structural matching on compound host language
data on the other hand is mostly readily available (nevertheless, none of the
CHR(Haskell) systems seem to fully exploit this).

HCHR provides a type-safe embedding of CHR in Haskell, leveraging the the
built-in Haskell type checker to type check HCHR programs (Chin, Sulzmann,
and Wang 2003). HCHR constraints only range over typed logical variables and
terms, encoded as a polymorphic Haskell data type. Unification and matching
functions are generated automatically for each type (this is similar to the approach
taken by CCHR, cf. Section 7.4.1). Haskell data structures therefore have to



7.4 Related work 131

be encoded as terms when used in a HCHR constraint, and reconstructed again
when retrieving answers. No Haskell functions can be called from HCHR rule
bodies, which seems inherent to their approach to type-safety:

“One of [the enhancements of HCHR we are currently looking into] is to
be able to call Haskell functions from CHR rules. This has been shown to
be important in many applications. However, this is non-trivial. If function
calls instead of terms are allowed in the rules, we will not be able to build
the unifiers because unification is defined only on terms.”

The Chameleon system (Stuckey, Sulzmann, andWazny 2004) is a Haskell-style
language that incorporates CHR. It has been applied successfully to experiment
with advanced type system extensions (Stuckey and Sulzmann 2005). Chameleon’s
back-end CHR solver is HaskellCHR (Duck 2004). To allow Prolog-style Herbrand
terms with logical variables, this system includes a WAM implementation for
Haskell, written in C. It is the only Haskell CHR system we know of to provide
search (chronological backtracking to be precise). HaskellCHR is not intended to
be used stand-alone, but as a back-end to Chameleon.

The more recent TaiChi (Boespflug 2007) system, as well as both STM-based
parallel CHR(Haskell) prototypes, Concurrent CHR (Sulzmann and Lam 2008)
and STMCHR (Stahl and Melnikov 2007), all lack syntactic preprocessing. They
are basically interpreters, for which the user has to explicitly encode CHR rules
using Haskell data types. In this encoding, the body is typically limited to a
Haskell list of CHR and built-in constraints of some fixed type, thus prohibiting
any interaction with the host language.

Conclusion Even though both HCHR and Chameleon provide syntactic pre-
processing, most CHR(Haskell) typically simply encode CHR(LP) rules as Haskell
data types. They moreover do not allow interaction with Haskell, or support built-
in constraints beyond term equality. In our opinion, none of the CHR(Haskell)
approaches we considered have therefore succeeded at obtaining a useful general-
purpose language extension.10

7.4.4 Production Rule Systems
Modern Java-based production rule systems such as Jess (Friedman-Hill 2003,
2010) and Drools (Browne 2009; Bali 2009; JBoss 2010) seamlessly integrate
with the host Java. In this respect, their language design philosophy is similar
to ours—though naturally without the concepts of logical variables or built-in
constraints. Admittedly, these systems, and Drools in particular, offer much more

10As discussed in Section 4.5, Chameleon of course is very useful (Stuckey and Sulzmann
2005), but it is created for a very specific purpose only (the design of type system extensions).



132 CHR for Imperative Host Languages

powerful pattern matching syntax for Java objects. Drools for instance supports
the full MVEL expression language (Brock et al. 2010) to specify matchings and
guard conditions.

Interestingly, in Jess and Drools, Java objects can be asserted directly into
the working memory, and rules then match on these objects directly. In CHR
speak: objects take up the role of CHR constraints. In Drools this is even the
default mode of operation.

Example 7.12. Systems such as Drools excel at matching Java objects in
rule conditions. Future CHR(Java) systems should take inspiration from this.
As a simple example, for objects of class Person, a rule condition of form
‘Person(name = "Peter")’—note the capitalisation—could for instance be syn-
tactic sugar for ‘$person(P), ?(P.getName() == "Peter")’. Extend JCHR2
with similar and other object matching syntax is part of future work.

To (partially) solve the modification problem, a technique called shadow
facts is commonly used.11 Consistency of the Rete network (cf. Section 2.2.3)
is maintained by keeping a clone of any modifiable object referred to by facts
in an internal data structure. The user remains responsible for notifying the
rule engine of any changes to these objects made outside rule program. The
techniques used are similar to those we are developing for JCHR2 :12 either
modifications are signalled via fact handles obtained when the data was first
asserted, or JavaBeansTM bound properties are used (Hamilton et al. 1997).

11Drools 5 seems to have abandoned this technique, replacing it with more efficient modifica-
tion handling.

12At the time of writing, JCHR2 ’s support is still in a very experimental stage. No doubt
more can still be learned from studying the approach taken by production rule engines.



Part III

Optimising Implementation
of CHR

133





Chapter8
Optimising Compilation
and Lazy Evaluation

Efficiency is intelligent laziness.

— Arnold Glasgow (1905-1998)
American humorist and author

Considerable research has been devoted to the efficient compilation and execution
of CHR programs, mostly with Prolog as the host language. An early, very
influential implementation was the SICStus implementation by Holzbaur and
Frühwirth (2000a). Its operational semantics was the basis for the refined
operational semantics ωr (see Section 4.2.3), and its compilation scheme has been
adopted by state-of-the-art systems such as HALCHR (Holzbaur et al. 2005; Duck
2005) and K.U.Leuven CHR (Schrijvers and Demoen 2004b; Schrijvers 2005).

In recent years, CHR research has produced a large body of novel static
program analyses and optimisation techniques to further improve the performance
of such ωr-based CHR systems: Duck 2005; Duck and Schrijvers 2005; Holzbaur
et al. 2005; Schrijvers 2005; Schrijvers et al. 2005; Sneyers et al. 2006b; 2008;
De Koninck and Sneyers 2007; Van Weert 2008b; Sarna-Starosta and Schrijvers
2008a; 2008b. Almost all these contributions were developed and described for
the aforementioned CHR(HAL) and CHR(Prolog) systems.

Other recent developments include the introduction of improved control
mechanisms and operational semantics (Chapter 5) and expressive new language
features (Chapter 6). The impact of these augmentations on CHR’s compilation
and optimisation techniques had only been scarcely studied. Sole exception is
the compiler for CHRrp developed by De Koninck (2008), which introduces and
incorporates several important optimisations.

137



138 Optimising Compilation and Lazy Evaluation

The contributions we make in this chapter can be summarised as follows:
1. We show how to port the classic CHR(Prolog) compilation scheme to an

imperative setting. CHR evaluation revolves around nested loops and
efficient index data structures. We explain how to fully exploit the added
technical advantages imperative target languages therefore offer. Later, in
Chapter 9, we identify and address one of their main technical disadvantages
(related to the performance of recursion in the generated code).

2. We provide a clear survey that places the many optimisations developed,
described in as many different publications, in one coherent framework.
Where appropriate we explain interactions and trade-offs between them.
Even though introduced and illustrated for an imperative host language,
the accessible overview provided in this section is useful for any reader
interested in optimised compilation of rule-based languages.

3. We introduce many previously unpublished optimisations and techniques
developed for the different K.U.Leuven JCHR Systems (Chapter 7), and
show how we have significantly improved or refined existing ones.

4. We show how CHR’s standard execution scheme and optimisations can be
adapted—without sacrificing on efficiency—to deal with recent expressive
language features, such as batch semantics, rule priorities, and negation as
absence. Our approach for adding priorities builds further on the founda-
tional work by De Koninck (2008).

Overview In Section 8.1, we first specify a restricted, normalised core language
used in the remainder of the chapter. Then, Section 8.2 introduces the basic
compilation methodology, including the principal data structures and operations,
and a basic, naive compilation scheme. In Section 8.3, we gradually add the more
advanced analyses and optimisations used by a state-of-the-art CHR compiler.
Throughout, we employ a tutorial-style presentation, using high-level pseudocode
and many clarifying examples. We empirically evaluate our approach in Sec-
tion 8.4, and compare it with related work in Section 8.5. To conclude, Section 8.6
overviews ongoing research, and some promising directions for future reseach.

8.1 Core language and normal form
In this chapter, we essentially consider a subset of CHR2 extended with negation
as absence. This corresponds more or less to what is currently implemented by
JCHR2 . We will abstract from aspects related to the integration with the Java
host language; those were covered in sufficient detail earlier in Chapter 7. Instead,
we focus on demonstrating the fundamental aspects of our compilation methods
for the extended CHR2 language.



8.1 Core language and normal form 139

For ease of presentation, we consider only a restricted core language. When
relevant, we will explain how to handle other aspects of the full JCHR2 language
as well. By default though, we assume the following restrictions:

1. we only consider static priority constraints
2. programs do not explicitly access rule identifiers (Section 5.1.2)
3. no nested negation is allowed

We refer to (De Koninck 2008) for techniques to deal with dynamic priorities.
For convenience, all rules are furthermore assumed to be transformed into a

normal form. The normalisation steps taken include:
1. all nested conjunctions are flattened as in Section 5.2.1
2. priority constraints are reduced to CHRrp-style static priority numbers
3. all rule heads are linearised as discussed in Section 4.1.3
To transform static priority constraints into static priority numbers, we use

a standard topological sorting algorithm (see e.g. Cormen et al. 2009, §22.4).
From Section 5.2.3 we know this is always possible, but also that this process
potentially introduces many unspecified priority constraints. Researching how to
exploit the increased freedom offered by the priority constraints—starting with
the choice between alternative linear extensions—is part of future work. Because
it better matches with the implementation, we let a lower number denote a higher
priority, exactly as in CHRrp.
Example 8.1. The following rule occurs in the CHR2 version of the ram
simulator by Sneyers et al. (2009). It is used as a running example in the
upcoming sections (for a brief introduction to the ram handler: see Example 5.1).

add @ -pc(L), +prog(L,add,B,A),
-mem(A,X), +mem(B,Y) ⇒ mem(A,X+Y) & pc(L+1).

Using ‘::’ to denote the priority number, the rule’s normal form is as follows:
add :: 0 @

-pc(L), -mem(A, X),
+prog(L1, I, B, A1), +mem(B1, Y),
?(L1 = L, I = add, B1 = B, A1 = A)

⇒
mem(A, X+Y) & pc(L+1).

In normalised rule heads, all occurrences are linearised—that is, all guards
are made explicit—and rule conditions of the same kind are grouped together—
first all removed occurrences, followed by the kept ones,1 then the guards, and
finally the similarly linearised negated conjunctions (if any). All rule bodies, are
sequential conjunctions of batch conjunctions (cf. Section 5.2.1).

1In CHR’s syntax (and its conventional normal form), the kept occurrences precede the
removed ones. CHR compilers though consider removed occurrences first (cf. Section 8.3.4.1).



140 Optimising Compilation and Lazy Evaluation

8.2 Basic Compilation Methodology
CHR programs are typically statically compiled to host-language code. This
allows the generation of specialised, highly optimised code. In Section 8.2.2, we
introduce the basic compilation scheme, and extend it to deal with negation
and priorities in Sections 8.2.3 and 8.2.4. This scheme is still fairly naive and
inefficient. It is designed, however, to be clear, and obviously correct with respect
to the ω2 semantics of Section 5.2. In Section 8.3, we gradually transform it into
a highly optimised, efficient compilation scheme.

Before introducing the compilation scheme, we first describe the principal
data structures and operations it uses in Section 8.2.1.

8.2.1 Principal data structures and operations
8.2.1.1 The constraint store

The central data structure is the CHR constraint store. Efficient storage and
retrieval of constraints is crucial for performance. The actual implementation of
the constraint store (and its indexes: see Section 8.3.2.2) is outside the scope of
this section. Instead, we simply list its basic properties and operations.

As in most CHR operational semantics, each constraint is assigned a unique
constraint identifier , an increasing integer number that may also serve as a
timestamp. In the pseudo-code used throughout this chapter, a CHR constraint
is denoted as c(X )#id. We often make the transition from an identifier id to its
corresponding constraint implicitly, much like a pointer in imperative languages.
The basic constraint store operations are the following:

create(c/n,X) creates a new constraint of given predicate c/n with n argu-
ments X, and returns its unique identifier

store(id) adds the referenced constraint (created earlier with the create
operation) to the constraint store

remove(id) removes the constraint from the constraint store data structures;
subsequent calls of alive(id) return false

alive(id) tests whether the corresponding constraint is alive, that is: not yet
removed by the remove operation

lookup(c/n ) Returns an iterator (see below) over all stored constraints of
predicate c/n

8.2.1.2 Constraint iterators

To iterate over (subsets of) the constraint store, we use the well-known iterator
abstraction (see e.g. Gamma et al. 1995). Even though every CHR implementation



8.2 Basic Compilation Methodology 141

relies on some form of iterators, we have been the first to explicitly fix their
necessary requirements (Van Weert et al. 2008). We require the iterators returned
by lookup operations to have at least the following four properties:

1. robust: even if constraints are added or removed while a constraint iteration
is interrupted, iteration can be resumed without failure

2. correct: iterators only return live constraints
3. complete: all constraints that were stored at the moment of the iterator’s

creation are returned at least once (if still live)
4. weakly duplicate-free: an uninterrupted iteration does not contain duplicates;

if the constraint store is modified while iteration is suspended, constraints
returned prior to that suspension may be returned once more

A preferred property is moreover that iterators are strongly duplicate-free, which
entails that they never return a constraint more than once.

Iterators offered by predefined data structures typically do not have all required
properties. Iterators returned by the standard Java data structures, for instance,
are not robust under modifications (Bloch et al. 2010). The following fragment is
found in the API specifications of these Java classes:

“The iterators returned [...] are fail-fast: if the [underlying data structure]
is structurally modified at any time after the iterator is created, in any way
except through the iterator’s own remove or add methods, the iterator will
throw a ConcurrentModificationException. ”

There are at least two naive approaches to implementing robustness:

1. Before the iteration starts, create a complete list of (references to) all
current constraints. This dedicated copy is only used by the iterator, and
is thus never structurally modified during iteration.

2. After an interruption, if a modification has occurred, restart the iteration
from scratch (thus sacrificing strongly duplicate-freeness).

Both approaches result in obvious inefficiencies. An efficient iterator imple-
mentation returns any first or next constraint in (amortised) constant time.
Efficiently implementing a robust constraint iterator can be hard, depending on
the underlying data structures (cf. Section 8.3.2.2).

8.2.1.3 The propagation history

The propagation history is a set of rule instances, used to prevent unwanted
reapplication. It supports the two obvious operations addToHistory(rule,id)
and inHistory(rule,id), where rule denotes a rule’s unique identifier, and id



142 Optimising Compilation and Lazy Evaluation

a sequence of constraint identifiers. A third operation, cleanHistory(), removes
all rule instances that are no longer applicable. History implementation and
optimisation is detailed in Chapter 10.

8.2.2 Basic compilation scheme
A central concept in our evaluation strategy is the active constraint (see also
the refined operational semantics in Section 4.2.3). By default each added
constraint is activated once; reactivation is discussed later in Section 8.3.5. The
active constraint goes through all its occurrences in the program, searching for
applicable rule instances. We perform lazy matching, i.e., each time an applicable
rule instance is found, it is fired immediately. As seen in Section 2.2.3, this
constitutes the fundamental difference with eager matching algorithms such as
Rete and TREAT, which first compute all applicable instances before selecting
one to fire. We further discuss related work also in Section 8.5.

The basic activate procedure for a constraint c with n positive occurrences
has the following form:

procedure activate(c(X )#id)
if not alive(id) return
if occurrence_c_1(id, X) return
...

if occurrence_c_n(id, X) return
end

By default, an active constraint traverses its occurrences in a top-down, left-to-
right order (later sections refine this occurrence order). An occurrence procedure
returns false if the active constraint is still alive after firing all applicable rule
instances matching that occurrence, and true otherwise.

We now introduce the basic compilation scheme for each individual occurrence
procedure occurrence_c_i. Our presentation assumes a rule in the following
generic normal form (cf. Section 8.1 for the normalisation process):

ρ :: p @
-c1(X1), . . . , -cr(Xr), +cr+1(Xr+1), . . . , +cn(Xn),
?g1, . . . , ?gγ , ∼N1, . . . ,∼Nm

⇒
b1(Y1) & . . . & bδ(Yδ).

with ∼Ni = ∼(ci,1(Xi,1), . . . , ci,ni
(Xi,ni

), ?gi,1, . . . , ?gi,γi
). All X s denote se-

quences of mutually distinct variables, all bs are built-in or CHR constraint
predicates, ρ a unique identifier, and p a static priority number à la CHRrp.
For ease of presentation, we only consider bodies consisting of a single batch
conjunction here. Sequential conjunctions are dealt with in Chapter 9.



8.2 Basic Compilation Methodology 143

Listing 8.1 The basic compilation scheme for the j-th positive occurrence of
constraint ci, an occurrence ±ci(Xi) in a rule ρ in normal form (with m = 0).

1 procedure occurrence_ci_j(idi,Xi)
2 foreach c1(X1)#id1 in lookup(c1)
3

. . .
4 foreach ci−1(Xi−1)#idi−1 in lookup(ci−1)
5 foreach ci+1(Xi+1)#idi+1 in lookup(ci+1)
6

. . .
7 foreach cn(Xn)#idn in lookup(cn)
8 if alive(id1) and ... alive(idn)
9 if allDifferent(id1,...,idn)
10 if g1 and . . . and gγ
11 if not inHistory(ρ,id1,...,idn)
12 addToHistory(ρ,id1,...,idn);
13 remove(id1); ...; remove(idr);
14 ida1 = create(b1, Y1); store(ida1);

15
...

16 idaδ = create(bδ, Yδ); store(idaδ);
17 cleanHistory();
18 activate(ida1); ...; activate(idaδ);
19 if not alive(idi) return true
20 end
21 end
22 . .

.

Listing 8.1 shows the basic compilation of a single occurrence ci in a rule
without negation. We further assume the body only contains CHR constraints.
Adding built-in constraints or even arbitrary host language statements is not
hard. The problem of efficiently reactivating CHR constraints is examined later
in Section 8.3.5; until then we mostly ignore this aspect of CHR execution.

Lines 2–7 constitute a nested iteration over all n− 1 join partners, i.e. con-
straints that may match the remaining positive occurrences. If the active con-
straint fixes some variables shared with the remainder of the head, it is said to
seed the search for matching partners. A rule instance is valid if all its constraints
are alive (line 8) and mutually distinct (line 9), and all guard constraints are
satisfied (line 10). After verifying that it has not fired before (line 11), the rule
instance is fired: the history is updated (line 12), the necessary constraints are
removed (line 13), and the different batch conjunctions from the body are ex-
ecuted (lines 14–24). After the nested loops (not shown) follows a ‘return false’
statement, signalling the next occurrence procedure must be called.



144 Optimising Compilation and Lazy Evaluation

Listing 8.2 Naive compilation of the (removed) pc(L) occurrence of the ram
simulator rule of Ex. 8.1.

1 procedure occurrence_pc_1(id1,L)
2 foreach mem(A,X)#id2 in lookup(mem)
3 foreach prog(L1,I,B,A1)#id3 in lookup(prog)
4 foreach mem(B1,Y)#id4 in lookup(mem)
5 if alive(id1) and alive(id2) and alive(id3) and alive(id4)
6 if allDifferent(id1, id2, id3, id4)
7 if L1 = L and I = "add" and A1 = A and B1 = B
8 if notInHistory(add,id1,id2,id3,id4)
9 addToHistory(add,id1,id2,id3,id4);
10 remove(id1); remove(id2);
11 ida1 = create(mem,A,X+Y);
12 store(ida1);
13 ida2 = create(pc,L+1);
14 store(ida2);
15 cleanHistory();
16 activate(ida1); activate(ida2);
17 return true
18 end
19 end
20 . .

.

Example 8.2 (Running example). The naive compilation of the pc occurrence
of Example 8.1—the first occurrence of pc/1 in the ram handler—is shown in
Listing 8.2. This example is used as a running example later in Section 8.3.

Added constraints are activated left-to-right, each traversing occurrences in a
top-down, left-to-right order. This is still more or less in line with the conventional
refined operational semantics of CHR, and leads to a clean, natural default
operational behaviour. A crucial difference though with ωr-based execution is
that constraints are only activated (line 18) after all other constraints have been
created and added to the store (lines 14–16), as is required by the ω2 (and ωp)
semantics of batch conjunction. In traditional ωr-based CHR systems, each
constraint is activated immediately after it is created (and stored). As said
earlier, ωr-like sequential conjunctions are dealt with in Chapter 9.

The correctness of the scheme heavily relies on the properties of the constraint
iterators we established in Section 8.2.1.2. Their robustness property ensures
suspended iterations can always be resumed, even if meanwhile the underlying
constraint store has been altered. Completeness guarantees all necessary candidate
partner constraints are tried at least once. Partners added after an iteration



8.2 Basic Compilation Methodology 145

Listing 8.3 The basic compilation scheme for the i’th negated conjunction of
rule ρ in normal form. Apart from line 8, this is completely analogous to the
positive case (Fig. 8.1).

1 procedure negated_ρ_i(id1,...,idn,X1,...,Xn)
2 foreach ci,1(Xi,1)#idn1 in lookup(ci,1)
3

. . .
4 foreach ci,ni

(Xi,ni
)#idnni

in lookup(ci,ni
)

5 if alive(id1) and ... alive(idn)
6 if allDifferent(id1,...,idn,idn1,...,idnni

)
7 if gi,1 and . . . and gi,γi

8 return true
9 end
10 . .

.

started must not be included, because these have already been active themselves.
The duplicate-freeness property finally, avoids trivial non-termination in the
nested loops. For weakly duplicate-free iterators, the propagation history will
intercept any duplicate rule instances found.

8.2.3 Extension with negation
Adding negation to the basic compilation scheme is relatively straightforward.
Only two extensions are required. Firstly, for each negated conjunction, a test of
form

if not negated_ρ_i(id1,...,idn,X1,...,Xn)

is added between lines 10 and 11 of Fig. 8.1 (1 ≤ i ≤ m). These negation
conditions ensure the constraint store does not contain constraints matching
the negated conjunctions. The basic compilation scheme for these procedures is
shown in Fig. 8.3. The arguments passed are the identifiers and variables of the
constraints matched in the positive part of the head.

Secondly, removed constraints must be activated, since removing constraints
may cause new rule instances to become applicable. Suited calls to the obvious
activate(∼c(X )#id) procedures are thus added to the body evaluation, which
in turn use neg_occurrence_ci,j_k(id,Xi,j) procedures generated for each
negative occurrence ci,j . The main difference with the positive case of Listing 8.1
is that all n positive occurrences must be matched. The removed constraint’s
arguments can be used to seed the join though.

The basic compilation scheme in this section corresponds closely to the lazy
matching algorithm LEAPS (cf. Section 2.2.3). The main difference is the way
reapplication is prevented. We discuss this further in Sections 8.5 and 10.5.1.



146 Optimising Compilation and Lazy Evaluation

8.2.4 Extension with priorities
Priorities add the restriction that no rule instance may fire if any instance of
higher priority is applicable. Consequently, an active constraint should only
consider an occurrence after all other constraints have tried all their occurrences
of higher priority. For this, we introduce a final runtime data structure called
the schedule. The items on the schedule are called continuations, and represent
added or removed constraints that still have to be activated starting from some
priority. The schedule—technically a priority queue; see e.g. Cormen et al. (2009,
§6.5)2—efficiently supports the following operations:

schedule(X) adds a continuation X of form c(X )#id@p or ∼c(X )#id@p to
the schedule

pollScheduled() removes and returns a next scheduled continuation with
minimal priority number p

scheduledPriority() returns the minimal priority number p of all scheduled
continuations, or +∞ if the schedule is empty

We assume c(X )#id@p continuations are automatically removed from the
schedule when or after the c(X )#id constraint is killed.

Removed and added constraints are thus no longer activated directly, but
simply scheduled at their highest priority. In other words, all calls of activate
(e.g. lines 18 and 24 of Listing 8.1) are replaced with suited calls of schedule(X).
After all batch conjuncts are scheduled, the following procedure is called, with
pactive the priority of the applied rule:

procedure activate(pactive)
while scheduledPriority() < pactive

activate(pollScheduled(), pactive);
end

end

This calls updated versions of the activate procedures of Section 8.2.2, which
now take the form shown in Listing 8.4; the scheme for removed constraints is
analogous. Using a switch statement to start at the right priority, the active
constraint keeps trying occurrences3 until it is either removed, or until it has to
yield control to the previously active constraint or to some other constraint on the
schedule. The occurrence order is changed to reflect priorities. For occurrences
of the same priority, the familiar top-down order is used by default.

2For static priorities an efficient schedule is easily obtained as a straightforward array of
lists, one for each static priority number. For dynamic priorities more complex priority queue
data structures are required, as discussed by De Koninck (2008).

3Our switch statement’s fall through mechanism ensures that, if no return is executed,
occurrences of lower priority are tried as well.



8.3 Program Analysis and Optimisation 147

Listing 8.4 Activation of c constraints, extended to deal with priorities. We
assume occurrences fi to li have priority pi (that is: li = fi+1), with pi+1 < pi.

1 procedure activate(c(X )#id@p, pactive)
2 switch p
3 case p1
4 . . .
5 case pi
6 if occurrence_c_fi(id, X) return
7

...
8 if occurrence_c_li(id, X) return
9 if pi+1 ≥ pactive or pi+1 > scheduledPriority()

10 schedule(c(X )#id@pi+1)
11 return
12 end
13 case pi+1
14 . . .
15 end
16 end

For now, we opted to follow De Koninck (2008), and do not consider occur-
rences of the same priority as a previously active constraint. In other words, the
following invariant holds: at most one constraint is active at any given priority.
For single-batch rule bodies, this is allowed by ω2 : the semantics only requires
all rule instances of strictly higher priority to fire, and intentionally remains
nondeterministic with respect to rules of equal (or incomparable) priority. While
the above invariant simplifies certain analyses and optimisations, it arguably
results in a somewhat irregular runtime behaviour (for instance for recursive
rules). We return to this subtle design choice in Chapter 9.

8.3 Program Analysis and Optimisation
This section provides a comprehensive compendium of CHR program analyses
and compiler optimisations, applied to the basic compilation scheme introduced
in Section 8.2. Clearly, it is not possible to discuss all techniques in full detail.
We therefore place the many contributions in one unified, accessible framework,
and refer to relevant literature for more detailed information.

A main goal is to divulge the lessons learned and experience gained while
developing the different K.U.Leuven JCHR systems (Section 7.3), and to highlight
several innovating contributions made in this context. These range from extensions



148 Optimising Compilation and Lazy Evaluation

of existing techniques to CHR2 language features, over improved optimisations
facilitated by the imperative host language, to completely new optimisation
techniques applicable in principle in any CHR system. As a quick visual aid,
we have annotated each subsection with a box, indicating whether or not that
particular compiler optimisation is implemented in JCHR and JCHR2 , and to
which extend the presented content is new.
Example 8.3. An example box would be �� ��XX extended , which would indicate
that that particular technique is implemented in JCHR2 (the checked second
box), but not in the original JCHR system (the unchecked first box). The label
used in the (optional) third box denotes our main contribution in the context of
the optimisation at hand. Labels used are:
extended We extended that particular optimisation idea to either priorities or

negation as absence.
improved We (considerably) improved the optimisation.
first We were the first to introduce this technique, which has since been incor-

porated by other system.
new Like first, but to the best of our knowledge this optimisation is currently

exclusively performed by our JCHR systems.

8.3.1 Constraint invariants
In Sections 5.1.6–5.1.7, we introduced set semantics and functional dependencies,
two very important common constraint invariants. These invariants are not only
important for the programmer though, they are also invaluable information for
a CHR compiler. Knowing about constraint invariants facilitates, among other
things, optimal indexing (Section 8.3.2.3) and join ordering (Section 8.3.2.7),
both decisive for the runtime complexity of CHR programs.

8.3.1.1 Deriving constraint invariants �� ��XX

Most CHR systems do not support invariant declarations such as those proposed
for CHR2 . Instead, it is common practice in CHR programming to specify
constraint invariants by adding the appropriate rules (as discussed at length in
Sections 5.1.6–5.1.7). It therefore remains very important that CHR compilers
are capable of deriving constraint invariants from such rules. In fact, they may
even be derived from rules that enforce more specific invariants:
Example 8.4. The following rule adapted from the Fibonacci heap program by
Sneyers et al. (2006a) implies min is a singleton constraint:

keep_min @ +min(_,A), -min(_,B), A≤ B.

For detailed descriptions of algorithms used to derive constraint invariants,
we refer to (Holzbaur et al. 2005; Duck 2005; Duck and Schrijvers 2005).



8.3 Program Analysis and Optimisation 149

8.3.1.2 Unenforced constraint invariants �� ��XX new

Unavoidably, enforcing constraint invariants involves a runtime overhead: both
for set semantics and functional dependencies, the constraint store has to be
checked for matching constraints. As discussed in Section 8.3.2.2, specific index
data structures are required to efficiently perform these operations. In the best
case, these indexes are useful for join computations as well, but often indexes have
to be created specifically for the efficient enforcement of constraint invariants.
However, very often the programmer knows:

a) the user queries are duplicate-free
b) the program never produces duplicate constraints

Up to a point, for specific cases, the latter property could be derived from the
program by the compiler. In general though such an analysis is hard (no doubt
even undecidable). We therefore provide specific variants for our constraint
invariant declarations for which no runtime tests are generated. Consequently,
no redundant, relatively expensive indexing structures must ever be created just
to enforce invariants that are known to hold.

Example 8.5. In JCHR2 ’s current syntax, the constraint declarations for the
ram program shown earlier in Example 5.16 can safely be changed to:

constraint pc(int label) # ∗singleton,
mem(int addr, int val) # ∗key(addr),
prog(int label, int, int, int) # ∗key(label);

While not affecting the operational semantics, this knowledge can be exploited
by the compiler. These annotations are also invaluable as part of a program’s
documentation, and could be verified automatically if desired, either when running
the program in a debugging mode, or maybe someday even by static program
verification. Statically verifying e.g. that the ram program maintains these
invariants, given a correct query, would be straightforward.

8.3.2 Optimising join computation
The most critical part of any rule-based system is the search for matching partner
constraints to form rule instances. This section surveys several techniques to
optimise this process, called join computation. Over the course of this section,
it should become clear that the effectiveness and applicability of most of these
optimisations is largely determined by the order in which partner constraints are
looked up. The problem of finding the optimal join ordering is discussed last in
Section 8.3.2.7. Until then, we assume all partner constraints are looked up in a
fixed, left-to-right order.



150 Optimising Compilation and Lazy Evaluation

Listing 8.5 Optimised compilation of the ram simulator example of Listing 8.2
after loop-invariant code motion.

1 procedure occurrence_pc_1(id1,L)
2 foreach mem(A,X)#id2 in lookup(mem)
3 foreach prog(L1,I,B,A1)#id3 in lookup(prog)
4 if L1 = L and I = "and" and A1 = A
5 foreach mem(B1,Y)#id4 in lookup(mem)
6 if id2 6= id4 and B1 = B
7

. . .

We mostly explain and illustrate join computation optimisation for the positive
part only (Listing 8.1 extended with negation conditions). All techniques surveyed
though equally apply to joining negated conjunctions (Listing 8.3).

8.3.2.1 Loop-invariant code motion �� ��XX extended

All tests, particularly identifier comparisons and most guards, should normally
be performed as early as possible. The following example clarifies this:

Example 8.6. The improved compilation of the ram simulator example intro-
duced in the previous section is listed in Listing 8.5. Moving the ‘L = L1’ guard
to line 4, for instance, avoids enumerating all mem(B1,Y) memory cells before the
right program instruction is found.

For kept occurrences, if after the body’s execution the search for join partners
is resumed4, hoisting a test is only correct if the body cannot change the outcome
of the test. These tests are called loop-invariant. If tests that are not loop-
invariant are hoisted, they may not be retested after the execution of the body,
in which case inner loops may cause rule instances to fire for which these tests
no longer hold. In pure CHR, all guards are monotonic, and are thus always
loop-invariant. For negation conditions, non-pure guards, and liveness tests,
however, the compiler cannot a prio assume they are loop-invariant:
• A negated condition is loop-invariant if the body never adds, either directly
or indirectly, constraints that match that condition.
• Non-monotonic guards are treated similarly to negated conditions.5

4The search is also never resumed—that is, besides when the active occurrence is a removed
occurrence—if none of the lookups return an iterator: see Section 8.3.2.3.

5Often the compiler has insufficient knowledge on arbitrary host language statements to
properly reason on loop-invariance. JCHR2 therefore offers the following meta data facilities:

– Java methods can be declared to be monotonic (using e.g. annotations)
– individual guards can be declared loop-invariant (using a pragma)



8.3 Program Analysis and Optimisation 151

• A liveness test is loop-invariant if the corresponding matched constraint
cannot be (indirectly) removed by firing the rule. As iterators only return
live constraints (cf. Section 8.2.1), such liveness tests can simply be omitted.

To determine loop-invariance, static control flow analysis is used, e.g. based
on some form of abstract interpretation. Techniques to deal with tests that are
not loop-invariant, or for which loop-invariance cannot be proven, are discussed
later in Section 8.3.2.5.

Caveat Moving a test to an outer loop may increase the number of times
it is called (e.g. if inner iterations are frequently empty). Unfortunately, for
computationally more expensive tests such as negation condition or even expensive
guards, loop-invariant code motion may thus unwittingly decrease performance.

8.3.2.2 Constraint indexing �� ��XX improved

Efficient, selective lookups of candidate join partners are of paramount importance.
Therefore, indexes on the constraint store are used. Essentially, this incorporates
one or more guards into the lookup operation, such that it (very efficiently)
returns only those constraints that satisfy these guards.
Example 8.7. In Listing 8.5, line 3 iterates over all prog constraints, each time
immediately testing the ‘L1 = L’ guard. The constraint’s invariants, however,
imply there is at most one prog constraint with given label L (see Examples 5.16
and 8.5). Retrieving this single constraint using an appropriate index reduces
the time complexity of this part of the join computation from linear to constant.
A similar reasoning applies to the lookup of the mem constraint (lines 5–6).

We now very briefly discuss indexing techniques used in JCHR and other
current CHR systems. For a more extensive overview, we refer for instance to
(Sneyers 2008, Chapter 7).

For lookups of join partners via one or more known arguments, tree-, hash-,
or array-based indexes are used (Duck 2005; Holzbaur et al. 2005; Schrijvers 2005;
Sneyers et al. 2006a). Tree-based indexes cannot only be used for equality-based
lookups, but also for pruning the join partner search space in case of inequality
guards (Duck 2005). The other two types are particularly interesting as they
offer (amortised) constant time operations.

Because constraint indexes are used extensively, finetuning these data struc-
tures is very important. It also pays to implement specialised indexes for common
cases. JCHR e.g. uses specialised data structures for integer and finite domain
(enums, booleans, . . . ) arguments, never-removed constraints, etc.

For technical reasons, these indexes are commonly only used for ground
arguments. JCHR was the first system to also allow hash indexing on non-
ground variables, using an observer-based approach to maintain data structure
consistency. De Koninck (2008) has since used this approach for CHRrp as well.



152 Optimising Compilation and Lazy Evaluation

Listing 8.6 Our running example using indexing, and exploiting functional
dependency and set semantics invariants.

1 procedure occurrence_pc_1(id1,L)
2 foreach mem(A,X)#id2 in lookup(mem)
3 prog(L1,I,B,A1)#id3 = lookup_s(prog,{L1=L})
4 if id3 6= nil and I = "and" and A1 = A
5 mem(B1,Y)#id4 in lookup_s(mem,{B1=B})
6 if id4 6= nil and id4 6= id2
7

. . .

The indexing technique for unbound logical variables commonly used by
CHR(Prolog) implementations is attributed variables (Holzbaur and Frühwirth
1999; 2000a). With this technique, variables contain references to all constraints
in which they occur. This allows constant time lookups of partner constraints via
shared variables. Inspired by this concept, Sarna-Starosta and Schrijvers 2008a
devised an improved internal representation of CHR(Prolog) argument values
that constitutes an efficient alternative to standard indexing.

While indexes often improve performance substantially, even result in better
runtime complexity, each index also involves a non-negligible maintenance cost.
Current CHR systems generally eagerly introduce indexes whenever possible. If
indexes are not or only scarcely used, or constraints are continuously added and
removed, indexes may therefore even have a negative impact on performance.
Section 8.3.3 discusses techniques to reduce indexing overhead.

8.3.2.3 Exploiting constraint invariants �� ��XX

Firstly, if (derived) invariants imply a lookup returns at most one constraint,
more efficient index structures can be used, and specialised lookup routines that
return a single constraint instead of an iterator (Holzbaur et al. 2005). We call
such specialised procedures singleton lookups, and denote them lookup_s.

Example 8.8. Listing 8.6 shows the optimised compilation of the ram example.
If the specialised singleton lookup_s operations on lines 3–4 use proper indexing,
both partners are found in O(1) time, instead of O(p×m), with p the number of
RAM program instructions, and m the number of used memory cells. Also, the
functional dependency of the prog constraint was used to select optimal indexing
(line 3). When unaware of this invariant, the compiler would tyically add a
redundant index on the combination of the first, second and fourth arguments.

A second, equally important invariant-based optimisation is hence that, by
reducing the number of maintained indexes, functional dependencies tend to
improve both space and time performance considerably (Holzbaur et al. 2005).



8.3 Program Analysis and Optimisation 153

8.3.2.4 Pre-commit backjumping �� ��XX new

We say a constraint in lines 1–7 of Listing 8.1 (i.e., the active constraint or some
join partner) seeds either a guard, a negation condition, or a partner constraint
lookup, if it binds variables required to execute the latter.

Example 8.9. The following rule head is taken from the Waltz program:

initial_boundary_junction_L @
-stage("find initial boundary"),
+junction(P1, P2, _, Base, "L"),
-edge(Base, P1, Q1, _, Plotted1),
-edge(Base, P2, Q2, _, Plotted2),
∼(junction(_, _, _, B, _), B > Base)

⇒ ...

Suppose the partners of an active stage constraint are matched in the order they
appear in the head. Then the only constraint seeding the negation condition
is the one matched by the junction occurrence. Therefore, when the negation
condition fails, resuming the nested iteration over edge constraints is pointless.
Instead, the next junction constraint should be tried.

The backjumping optimisation ensures that when a guard or negation condition
fails, or when a partner constraint lookup returns an empty iterator, a jump is
executed to resume the inner-most seeding loop. This loop corresponds to the
last seeding partner constraint in the join order. Only if this partner is retrieved
using a singleton lookup, the loop immediately surrounding that lookup is taken.
If there is no inner-most seeding loop—either because there is no seeding partner,
or because all partners prior to and including the inner-most seeding partner
have set semantics—true is simply returned.

Without backjumping, a phenomenon called trashing occurs, where inner
loops are iterated exhaustively, only to find the test or lookup always fails.6
Analogous optimisations are used in constraint solvers and logic programming.

JCHR2 is currently the only system to implement this form of backjumping
during the search for partner constraints. Particularly for rules with many heads,
the potential performance gains of backjumping are significant.

8.3.2.5 Post-commit backjumping �� ��XX first

Section 8.3.2.1 discussed loop-invariant code motion, and some of its limitations.
We now show how a second form of backjumping allows tests that are not loop-
invariant to be moved into outer loops nevertheless. The concepts trashing,
backjumping, and seeding loop were introduced in Section 8.3.2.4.

6In the case of Example 8.9, with proper indexing, trashing would actually be limited, as by
functional dependency only a single matching edge constraint exists for each inner loop.



154 Optimising Compilation and Lazy Evaluation

Liveness tests Resuming search after a constraint matched by an outer loop
is removed—by the rule itself or indirectly by some activated constraint—is a
clear source of trashing. The solution is to move those liveness tests of line 8
of Listing 8.1 that may change by evaluating the body to after line 19, that is:
after the evaluation of the body. The liveness of the outermost loop’s constraint
is tested first, and so on. If one of the partners tests dead, a backjump is used to
the corresponding loop. If the dead partner is a singleton partner, the inner-most
seeding loop is used instead, or true is returned if no such loop exists. Of course,
if the rule itself removes some partner, the jump becomes unconditional.

Negation conditions and guards Similarly, a non-invariant negation condi-
tion or guard may be hoisted into outer loops as long as it is retested after each
commit. If the test fails, a jump to its inner-most seeding loop is performed, or
true is returned if no such loop exists.

Unlike liveness tests and most guards, testing negation conditions can be
expensive. It therefore pays to detect whether the body always adds constraints
matching the condition. In this case, the backjump becomes unconditional.

Example 8.10. The following rule in the Manners program is a classic example
of a common pattern in rule-based programs with negation:

make_path @ ..., ∼path(Id, N1, _) ⇒ path(Id, N1, S);

Before something is added to the store, an often more general pattern (though
not always) is used to check something similar is not already present. In such
cases retesting the negated head is often pointless.

To detect these cases, the analysis used to detect loop invariance as sketched
in Section 8.3.2.1) is readily extended.

Post-commit backjumping was first introduced for JCHR (Van Weert 2005),
and was later incorporated into CCHR as well (Wuille 2007). CHR(Prolog)
systems on the contrary use standard backtracking search, i.e. without pre- or
post-commit backjumping, and are therefore more prone to trashing effects.

8.3.2.6 Fragile iterators �� ��XX improved

Due to the highly dynamic nature of the constraint store, the robustness property
of iterators is hard to implement efficiently (see Section 8.2.1.2). We therefore
distinguish so-called fragile iterators. These are leaner, more efficient iterators
without any extra tests and facilities required for robustness. Depending on the
underlying index structure, such iterators can be implemented with a superior
complexity (cf. Section 8.2.1.2 for potential inefficiencies due to robustness). But
even if guaranteeing robustness involves only an (amortised) constant overhead,
the performance gains are significant, since iterators are typically very heavily
used during a program’s execution.



8.3 Program Analysis and Optimisation 155

Fragile iterators though should be handled with due care, as they may fail or
produce incorrect results if resumed after structural modifications to the store.
To preserve correctness, fragile iterators are thus only used in the following cases:

1. If after the execution of the body the iterator is never resumed, e.g. if the
active constraint is removed, or due to an unconditional backjump to a
more outer loop.

2. If static control flow analysis shows the body is guaranteed not to modify
the relevant part of the constraint store. Certain iterators, moreover, still
function correctly as long as only constraints are added. In this case, only
the possibility of constraint removals should be analysed.7

3. None of the iterators used to test negated conditions (Listing 8.3) have to
be robust.

Example 8.11. In the RAM running example, all iterators used may be fragile
as the rule removes the active constraint.

Certain CHR(Prolog) systems distinguish universal and existential join com-
putations for kept and removed active occurrences respectively (Holzbaur et al.
2005; Schrijvers 2005). The more fine grained application of fragile iterators,
however, is pioneered by the imperative CCHR and JCHR systems.

8.3.2.7 Join ordering �� ��XX improved

Because the effectiveness of all optimisations in this section is determined by
the order in which join partners are looked up, a program’s time complexity is
often determined by the join order. It determines the earliest position where
guards, constraint indexes, functional dependencies, etc. can be used to prune
the search space. The general goal behind join ordering is to maximise this
pruning, in order to minimise the number of join partners tried. In general,
join ordering is NP complete. The optimal join order may moreover depend on
dynamic properties, such as the size of the constraint store, the selectivity of
guards, etc. If no functional dependencies are declared or derived, a compiler
must rely on heuristics to determine the join order.

Example 8.12. Line 2 of Listing 8.6 iterates over all mem constraints. Lacking
any information on A (or L), no index can be used. Using the join order depicted
in Listing 8.7, however, all lookups become optimal. For determining this join
order, functional dependencies are indispensable (cf. Example 8.5).

7The removal of constraints that have already been iterated over is typically not a problem.
JCHR exploits this property to allow fragile iterators even for rules that remove the corresponding
partner constraint.



156 Optimising Compilation and Lazy Evaluation

Listing 8.7 Optimal join computation for our running example.

1 procedure occurrence_pc_1(id1,L)
2 prog(L1,I,B,A1)#id3 = lookup_s(prog,{L=L1})
3 if id3 6= nil and I = "and"
4 mem(A,X)#id2 = lookup_s(mem,{A1=A})
5 if id2 6= nil
6 mem(B1,Y)#id4 = lookup(mem,{B1=B})
7 if id4 6= nil and id4 6= id2
8

. . .

To date, De Koninck (2008, Chapter 6) and Sneyers (2008, Chapter 9)8

provide the most comprehensive treatment of join ordering for CHR. They
derive a reasonable cost formula for join computations that can be heuristically
approximated, either statically or dynamically. They also adapt an efficient
algorithm from data base literature that joins a specific, relatively common type
of rule heads in O(n logn) time.910

The work of De Koninck and Sneyers was entirely theoretical though. In
JCHR2 , we made the first concrete implementation of their proposed approach
for static join ordering. We created three distinct join orderers:

1. A simple, naive branch and bound search that exhaustively enumerates all
possible join orderings, using the standard branch and bound technique to
filter the search space. This join orderer is used only for the simplest rules,
as it does not scale at all to rules with many heads.

2. A second, more efficient exhaustive join orderer based on the A? algorithm
(Hart, Nilsson, and Raphael 1972). Our algorithm incrementally extends
partial joins, occurrence per occurrence, based on heuristics. How an
admissible, efficient heuristics can be obtained from the cost function of
De Koninck and Sneyers is explained in detail in Appendix A.

3. While the A? join orderer scales reasonably well, join ordering is NP com-
plete, so any exhaustive algorithm is bound to be infeasible in general.

8Both chapters are based on their joint workshop paper (De Koninck and Sneyers 2007).
9De Koninck (2008) and Sneyers (2008) wrongfully call their algorithm a KBZ algorithm, and

accredit it to Krishnamurthy, Boral, and Zaniolo (1986). The algorithm they actually describe is
the IK algorithm of Ibaraki and Kameda (1984). The core contribution of Krishnamurthy et al.
(1986) was that they showed that, in terms of the CHR join order problem, the IK algorithm
can be adjusted to compute the join order of all n active constraints in O(n2) time instead of
O(n2 logn). This is the actual KBZ algorithm.

10The version of the IK algorithm described by Krishnamurthy et al. (1986), and copied by
De Koninck and Sneyers (2007), is not entirely correct. It uses a step where chains of nodes
are merged. However, these chains are not necessarily sorted on rank. The normalisation it
performs at the root of the merged chain does not solve the problem. The real Ibaraki and
Kameda (1984) algorithm correctly normalises (sorts) both chains before merging.



8.3 Program Analysis and Optimisation 157

In JCHR2 , we found A? is best only used for heads with up to about 8
conjuncts. For larger heads, local search is used, more specifically a random-
restart hill climbing algorithm. Our current version corresponds more or
less to the ‘iterative improvement’ algorithm of Swami and Gupta (1988).

This combination seems to work well in practice. Still, we only have scratched
the surface, and more experimentation is required to determine:

a) whether the assumptions made by the cost function of De Koninck and
Sneyers, and the heuristics used to estimate it, are indeed appropriate.

b) the right parameters for the local search algorithm (starting points, local
moves, stopping criteria, etc.). Moreover, alternative randomised algorithms
(genetic algorithms, simulated annealing, etc.) may be better suited; cf. the
survey by Steinbrunn et al. (1997).

Many more issues must be further investigated, including first-few answers
(cf. De Koninck 2008; Sneyers 2008; Bayardo and Miranker 1996), join strategies
besides nested-loop joins, a-priori guards besides equality, etc.

The most important open problem though is that, short of reliable estimates
for e.g. cardinalities and selectivities, static join ordering frequently produces
suboptimal results. In (Van Weert, De Koninck, and Sneyers 2009), we proposed
cardinality annotations to mend this shortcoming. They allow the user to specify
the cardinalities and selectivities of stored constraints at different points during
execution. These annotations are not only invaluable to the compiler, but
also as program documentation. While these annotations help, they rely on
the programmer to supply sufficient and correct information. The only really
efficacious solution therefore is dynamic join ordering, as discussed in Section 8.6.1.

8.3.3 Reducing constraint store overhead
Indexes are imperative for the efficient retrieval of candidate join partners. Each
index, however, increases the cost of the store and remove operations, and adds
a constant factor overhead in memory consumption. In Section 8.3.2.3, we already
saw how functional dependencies are crucial in reducing the number of indexes.
Here, we introduce further optimisations to reduce constraint store overhead.

8.3.3.1 Late indexing �� ��XX improved

Naively, constraints are stored immediately after being created. A constraint’s
lifetime, however, is often very short. In fact, a constraint is frequently killed
shortly after its activation. The goal of late storage (Holzbaur et al. 2005;
Schrijvers et al. 2005; Duck 2005; Schrijvers 2005) is to defer storing constraints
as long as possible. Consequently, active constraints often get killed without



158 Optimising Compilation and Lazy Evaluation

being stored. This avoids the considerable overhead of constraint store additions
and removals. The performance gain is particularly significant if indexes are used.

With late storage, constraints are only stored when they may be observed.
An active constraint c is observed through an index I if, before execution control
returns to c, any other active constraint (positive or negative) causes c to be looked
up using I—either as a positive join partner, or while testing a negation condition.
The static program analysis that determines when and where constraints must
be stored is called the observation analysis, and is typically based on abstract
interpretation. Late storage is worked out formally in an ωr-based setting by
Schrijvers, Stuckey, and Duck (2005).

Late indexing, first proposed by De Koninck (2008), goes beyond late storage
by selectively adding constraints to required subsets of indexes only, instead of all
indexes at once. The approach outlined here further refines that of De Koninck
(2008), and allows indexing to be postponed (and hence avoided) even more.

In our compilation scheme in Listing 8.1, late indexing postpones the store
operations of lines 14–16. A constraint is only stored there in those indexes
through which it may be observed by negation conditions before it is activated
itself. By default, however, a constraint is only indexed while active, when it is
about to relinquish control in one of these three cases:

1. prior to the execution of a body conjunction
2. when yielding control at a transition to a lower priority (see Section 8.2.4,

Listing 8.4, lines 9–11)
3. after all occurrences have been traversed.
In the first case, the initially activated constraints are obvious. The invariant

established in Section 8.2.4 further ensures only rules of strictly higher priority
are considered before the previously active constraint regains control.11 In case
of a transition from priority pi to pi+1, any constraint scheduled between pi and
pi+1 may be activated12, and only occurrences of priority higher or equal to pi+1
are considered. From this, the observation analysis can accurately determine the
required indexing operations.

Our late indexing optimisation may change the order in which rules fire13,
as active constraints do not always observe not-yet-indexed constraints. All
applicable instances are still found though when these constraints are activated
themselves. As the ωr semantics does not allow this, this is another fundamental
difference with the conventional late storage optimisation for CHR. It is not yet
fully clear when more eager indexing is preferred (cf. Section 8.3.4.4).

11Once sequential conjunctions are added in Chapter 9, this invariant no longer holds, and
the observation analysis must be adjusted accordingly.

12Actually, added constraints scheduled at pi+1 do not have to observe the previously active
constraint, as that constraint will also still be activated at pi+1.

13Changing the rule order may affect performance, either positively or negatively. This effect
can typically be controlled using priorities.



8.3 Program Analysis and Optimisation 159

8.3.3.2 Late allocation �� ��XX

Since constraints are not always (or never: cf. Section 8.3.4.4) stored, constraint
representations do not always have to be created either. Late allocation and late
storage are considered separately, because allocation may be required prior to
storage. For prioritised programs, for instance, constraints typically have to be
added to the schedule (although not always: cf. Section 8.3.4.2).

8.3.3.3 In-place and delayed modifications �� ��XX

The in-place modifications optimisation by Sneyers et al. (2006b) reuses the
original constraint’s representation, simply assigning a new identifier, and over-
writing the modified arguments. Affected indexes still have to be updated, but
indexes independent of the modified arguments require no update.

Example 8.13. Both constraints added by the add rule of our running example
are modifications of removed constraints. Consequently, lines 10–14 of Listing 8.2
can be replaced for instance by (the constraint and argument declarations of
these these constraints are shown in Example 8.5):

ida1 = modify(id2, {value = X+Y})
ida2 = modify(id1, {label = L+1})

The first operation requires no updates to indexes at all because no index exists
on the value argument of mem (cf. Example 8.8).

There are cases where modifications do not occur in the same batch, or even
in the same rule. For these cases Sneyers et al. (2006b) developed the so-called
suspension reuse optimisation. The idea is to keep a pool of recently removed
CHR constraints which are also not removed from the index data structures,
but simply marked dead. If a modified constraint is then added, the constraint
modification can again take place with less overhead.

Of course, suspension reuse itself has a non-negligible overhead. Also, these
optimisations may alter the order in which constraints are returned by iterations,
which may drastically change a program’s performance. Sneyers et al. (2006b)
discuss these caveats and trade-offs in more detail.

8.3.3.4 Lazy indexing �� ��XX new

The goal of the JCHR’s recent lazy indexing optimisation is to only build and
maintain those indexes that are actually used. In its simplest form, an index is
not built until the first time it is used by a lookup operation. At that point, the
runtime traverses all relevant constraints and builds the index (of course at least
one constraint list or index is always kept eagerly). In our current implementation,
once an index is used and created, newly added constraints are also added to it.



160 Optimising Compilation and Lazy Evaluation

This straightforward optimisation already achieves promising results. We also
experimented with more advanced on demand indexing strategies, but further
research is required. Full dynamic indexing would e.g. also entail destructing less
used indexes, and better runtime heuristics to decide which indexes to create or
destruct—e.g. only keep indexes that are ‘sufficiently used’, rather than ‘at least
once’ in our current lazy indexing scheme. See also Section 8.6.1.

8.3.4 Optimising constraint activation
8.3.4.1 Removal preference �� ��XX

Any CHR compiler uses the following heuristic: when a single rule contains
multiple occurrences of the same constraint, by default, an active constraint tries
the removed occurrences of that rule first. This is also explicitly required by
the refined operational semantics. Removing the active constraint rather than
constraints already stored can considerably improve performance (due to late
indexing; cf. Section 8.3.3.1), or even avoid non-termination (cf. e.g. Section 5.1.6).

8.3.4.2 Reducing schedule overhead �� ��XX improved

Redundant calls of schedule operations have to be avoided as much as possible.
De Koninck (2008) introduced the following optimisations:

1. If firing a rule is known never to activate constraints of higher priority, the
call to activate(p) can clearly be omitted.

2. This call is also omitted if the active constraint is removed: control always
returns to a loop in activate(p), which already checks the schedule for
more scheduled activations.

3. Constraints can be activated directly, i.e. without going through the schedule,
if their priority is known to be higher than that of the activating rule, and
than that of all other constraints activated by that rule.

In JCHR2 , we added the following fourth optimisation, further improving the
case where the active constraint is removed (the second item in the above list):

4. Instead of returning true or false, (certain) occurrence methods return
the next constraint to activate, or specific default values otherwise. This
often saves first adding a constraint to the schedule in a body, only to
immediately remove it again in an activate(p) loop.

8.3.4.3 Passive removals �� ��XX new

Recall from Section 8.2.3 that removed constraints normally become active as well.
Of course, if a constraint has no negative occurrences, its removal is not activated.



8.3 Program Analysis and Optimisation 161

Listing 8.8 JCHR2 version of the make_L rule from the Waltz program (cf.
Listings 2.1–2.3). It contains two opportunities for passive modification.
make_L @

+stage(DETECT_JUNCTIONS),
-edge(Base, P2, false, L1, Plotted1),
-edge(Base, P3, false, L2, Plotted2),
∼edge(Base, _, _, _)

=>
junction(Base, P2, P3, 0, Junction.L) &
edge(Base, P2, true, L1, Plotted1) &
edge(Base, P3, true, L2, Plotted2);

We now determine two additional, very common patterns for which the activation
of removed constraints may be avoided: duplicate removals and modifications. The
resulting passive removals avoid superfluous traversals of negative occurrences,
which in turn leads to more passive negative occurrences—as discussed shortly in
Section 8.3.4.4—and improves the results of static control flow analyses. Passive
removals thus potentially enable many additional optimisations.

Passive duplicate removals Many heads contain two occurrences, one re-
moved and one kept, that match identical or almost identical constraints. In fact,
all rules that enforce set semantics, possibly combined with functional depend-
ency, fall in this category. In these cases, activating the removed constraint is
superfluous when static analysis shows all negative occurrences match with the
constraint matching the kept occurrence.

Passive modifications Modifications occur frequently, and involve a removed
constraint being replaced (often even in the same batch conjunction) with a
new, only slightly different version. For modifications, activating the removed
(modified) constraint is only necessary in those cases where negative occurrences
exist with guards (implicit or explicit) on the modified arguments.

Example 8.14. Listing 8.8 shows the JCHR2 encoding of the Waltz production
rule shown earlier in Listings 2.1–2.3. The removal of the edge constraints in this
rule can be done passively. The Waltz program contains no negative occurrence
of edge that considers the modified join argument.

We plan to further generalise the idea of passive modifications as follows.
If a modification is not passive, the active removal should still only consider
those negative occurrences that contain guards on the modified fields. Similar
extensions of the passive duplicate removals are possible as well. This is related
to some of the program specialisation techniques discussed in Section 8.3.6.



162 Optimising Compilation and Lazy Evaluation

8.3.4.4 Passive occurrences �� ��XX extended

An occurrence, positive or negative, is passive if static analysis shows the corres-
ponding rule can or must not fire with an active constraint matching it. Passive
occurrences are skipped by active constraints. Detecting passive occurrences
is very important, not only because superfluous searches for join partners are
avoided, but also because index structures only required for these searches can be
discarded, and because they improve the results of static control flow analyses.

We now review a number of standard passive occurrence optimisations. We
also generalise the passiveness idea to passive negated occurrences.

Subsumption optimisation One occurrence subsumes another occurrence if
each constraint that matches the latter also matches the former, taking into ac-
count join partners, negation conditions and guards. If an occurrence is subsumed
by another occurrence in the same non-propagation rule, the former occurrence
can be made passive. If an occurrence is subsumed by occurrences in earlier rules
(of higher priority), subsumption analysis may also detect redundant rules (often
indications of programming mistakes). This standard CHR optimisation is best
described by Sneyers et al. (2008). In JCHR2 , we extended this principle to rules
that contain the negation-based pattern of Example 8.10.
Example 8.15. Both Example 8.9 and Listing 8.8 contain a rule from the Waltz
program with two edge occurrences that subsume each other. In both cases, one
of these occurrences can thus be made passive.
Example 8.16. The idempotence and antisymmetry rules of the classical leq
program similarly contain subsuming occurrences (see Listing 4.1).

Never removed optimisation If no actively removed constraint can match
some negative occurrence, that occurrence can be made passive.14

Never stored optimisation Certain common idioms in rule-based program-
ming involve constraints that are always removed at some point.
Example 8.17. The ram program contains a rule:

illegal @ -pc(_) ⇒ fail.
priority illegal = lowest.

If fires only if the simulated RAM program reaches an illegal state (the fail
statement halts execution in a failed state). Such an unconditional removal at a
lower priority occurs frequently, and is similar to e.g. default cases in the pattern
matching constructs of functional languages, or in switch statements of modern
imperative programming languages.

14Allowing explicit constraint removals from the host language as in Section 5.1.2 complicates
the analysis required for this optimisation.



8.3 Program Analysis and Optimisation 163

Example 8.18. In the Waltz program, each rule involves a stage occurrence.
When all rules of some stage have fired, rules such as the following move to a
next stage (again at some lower priority):

done_plotting @ -stage("plot remaining edges") ⇒ stage("done").

In both cases, constraints are always removed at some lower priority. As the
following example will help elucidate, this may lead to passive occurrences.

Example 8.19. In the ram program, all occurrences of the pc constraint are
removed (all rules resemble the add rule of Example 8.1). Combined with the
illegal rule of Example 8.17, this suggests pc constraints should never be stored.
If pc constraints are made never stored, non-pc occurrences can never lead to
complete rule instances, and can all be made passive. This drastically improves
performance: mem constraints are never activated, less indexes are built for prog
constraints, and so on.

For ωr-based CHR systems the never stored optimisation is relatively straight-
forward (Duck 2005; Holzbaur et al. 2005). In general, however, for this optimisa-
tion to work, constraints must be indexed more eagerly (mem and prog constraints
in Example 8.19) to ensure that the never stored active constraints observe their
passive partners. This trade-off with late indexing (Section 8.3.3.1) is not yet
fully understood, and should be further investigated.

8.3.4.5 Dynamic passive occurrences �� ��XX new

Recently, in JCHR, we added a dynamic variant of the standard never stored
optimisation discussed in the previous subsection. If, for some occurrence, a
cheap dynamic test shows the constraint store for a required partner constraint is
empty, that occurrence, or group of occurrences, is skipped during a constraint’s
activation. This optimisation manages to compensate for those cases where the
compiler fails to derive the never stored property of constraints. It also facilitates
the lazy indexing optimisation introduced in Section 8.3.3.4.

Example 8.20. A CHR programmer unaware of the never stored optimisations
performed by CHR compilers —and, in fact, we cannot stress enough that
programmers should not be expected to learn of such optimisations—is far less
likely to include rules such as the ram program’s default rule in Example 8.17.
The same is true for many programs. As discussed in Example 8.19, the never
stored optimisations are quintessential for the ram program’s performance. Our
dynamic never stored optimisation, when combined with lazy indexing, achieves
nearly optimal performance even when the default rule is not stated.

Similar ideas have been proposed in production rule literature. Batory (1994)
calls it active rule optimisation, and Doorenbos (1995) introduced its Rete
equivalent, which he coined unlinking.



164 Optimising Compilation and Lazy Evaluation

8.3.5 Optimising constraint reactivation
CHR constraints are reactivated when newly added built-in constraints may
enable additional rule applications. Up till now, we have mostly ignored this
aspect of CHR evaluation. We now survey techniques used to reduce reactivation
overhead. While we only discuss built-in constraints here, in most systems these
techniques should be extended to arbitrary host statements (see also Chapter 7).

8.3.5.1 Selective reactivation �� ��XX

A naive approach reactivates all (non-fixed, cf. Definition 4.10) stored constraints
for each built-in constraint added. This corresponds to the unoptimised Solve
transition in the refined operational semantics (Section 4.2.3). Always reconsider-
ing all constraints though is clearly excessive. Changes in a built-in constraint
store are typically restricted to a limited set of variables. Obviously, only those
CHR constraints whose arguments contain these affected variables should be
reactivated. Essentially, we therefore add to every constrained (logical) variable a
list of references to CHR constraints it is involved in. These are used by built-in
solvers to selectively reactivate affected constraints only. In OO terms this corres-
ponds to the observer design pattern (Gamma et al. 1995). Analogous techniques
are used by typical CP constraint solvers (Rossi et al. 2006). Implementations
of CLP and CHR(Prolog) libraries typically use attributed variables for this
(Holzbaur 1992; Holzbaur and Frühwirth 1999; Schrijvers and Demoen 2004b).

Several additional optimisations are possible to further improve the selectivity
of constraint reactivations:
• If two unbound (logical) variables are told equal, only the constraints
observing one of these variables have to be reactivated. This is correct
because all rules that become applicable by telling this equality constraint
necessarily contain constraints over both variables.
• Often, the outcome of an occurrence’s guard is known never to change by
adding built-in constraints (e.g. if there is no guard, or the constraint’s
arguments are ground). In this case, there is no need to reconsider this
occurrence during reactivation. The property is called anti-monotonicity,
and is treated in detail in Section 10.2.1.
• Duck et al. (2003) employ so-called wake conditions for a more fine grained

selection of possibly affected occurrences that are reconsidered after react-
ivation. This becomes particularly interesting for more complex built-in
constraints, such as finite domain constraints.

Refined operational semantics of CHR typically prohibit these last two optim-
isations that selectively skip occurrences on reactivation. This is an indication
that such semantics may be too deterministic (see however the caveat for the
generation optimisation in Section 8.3.5.3).



8.3 Program Analysis and Optimisation 165

8.3.5.2 Delay avoidance �� ��XX

In the previous subsection, we already briefly introduced anti-monotonous guards,
a term coined by Schrijvers and Demoen (2004a) which we discuss in more detail
in Section 10.2.1. If all guards on some argument of a particular constraint
predicate are anti-monotonous, constraints of that predicate do not have to
register as observer of that argument. Schrijvers and Demoen (2004a) called
this delay avoidance. Technically, this optimisation is again not allowed by the
standard refined operational semantics (Section 4.2.3). The formal adjustments
required to ωr’s Solve transition are discussed in Appendix B.

8.3.5.3 Generation optimisation �� ��XX improved

In an ωr-based system, if a rule fires, the active constraint is suspended until
the body is fully evaluated. During this time, this suspended constraint may
be reactivated. When the execution continues with the suspended constraint,
rules that match that constraint have already been fired during its reactivation.
Searching for more partner constraints, and continuing with further occurrences,
is then superfluous. This may save a lot of redundant work.

This optimisation has been implemented in several ways. Schrijvers (2005)
uses an integer field called the generation of a constraint (incremented each time
the constraint is reactivated). In (Van Weert et al. 2008; Van Weert 2008a), we
proposed a slightly more efficient version based on boolean field (set to false
before the body, and to true after each reactivation). We moreover extended
this idea to prevent the same constraint from being reactivated twice.

One caveat though that has never been mentioned: in general, the correctness
of the generation optimisation (see Schrijvers 2005 for a formal proof) requires
that all occurrences are tried during reactivation. Care must therefore be taken
when combining it with the selective reactivation optimisations discussed in
Section 8.3.5.1.

In CHRrp and our current CHR2 compilation scheme, the standard generation
optimisation is not applicable, since only rules of strictly higher priority are
considered15 while an active constraint is suspended. It does give rise to a
related problem though, where multiple instances of the same constraint are
either active or on the schedule at different priorities. Properly filtering such
redundant continuations is part of future work.

8.3.6 Program specialisation
Frühwirth (2005d) add redundant, specialised rules to a CHR program; these rules
capture the effect of the original program for a particular goal. In more recent work,

15Once we abandon this restriction in Chapter 9, the generation optimisation becomes
applicable again.



166 Optimising Compilation and Lazy Evaluation

Tacchella et al. (2007) adapt the conventional notion of unfolding to CHR. While
both these studies only approach program transformation from a theoretical point
of view, such techniques are surely interesting for optimisation. In Section 9.4.2,
for instance, we discuss some potential unfolding-based optimisations. We now
review other practical applications of program specialisation.

8.3.6.1 Constraint specialisation �� ��XX

Sarna-Starosta and Schrijvers (2008b) proposed source-to-source transformations
to specialise constraints and rules based on manifest argument values in occur-
rences. These specialisations improve the accuracy of static program analyses,
constraint indexing, and occurrence dispatch (see also Section 8.6.2).

8.3.6.2 Guard simplification �� ��XX extended

For each occurrence, guard simplification looks at removed occurrences earlier
in the active constraint’s occurrence order to remove redundant guards, thus
also facilitating other analyses such as passive occurrence detection. The most
powerful guard reasoner for CHR is created by Sneyers et al. (2008).

We extended the guard simplification principle to negation conditions:

Example 8.21. The following excerpt, adapted from the Dijkstra program by
Sneyers et al. (2006a), illustrates a common idiom with negation:

scanned @ -relabel(N), +dist(N, _).
not_scanned @ -relabel(N), ∼dist(N, _) ⇒ ...

No matter which occurrence an active relabel constraint considers first, if
the that rule does not fire, the other rule is always applicable, and the second
dist lookup can be omitted. It also becomes apparent that the relabel con-
straint is never stored, which may enable many additional optimisations (see
Section 8.3.4.4).

Example 8.22. If a constraint matching a negated condition is always removed
at some higher priority, the tests for these negated conditions can be omitted.

8.4 Evaluation
8.4.1 CHR systems
In this section, we compare the performance of JCHR with other CHR systems.
An overview of these systems was given earlier in Section 4.5.3.

In (Van Weert et al. 2005), we compared JCHR with two other CHR(Java)
systems, JaCK and DJCHR. The conclusion was clear: due to its optimising



8.4 Evaluation 167

JCHR YAP SWI SICStus CCHR
leq(100) 0.09 5.81 (1.55%) 13.4 (0.67%) 9.64 (0.93%) 0.29 (30.9%)
primes(4096) 0.27 2.68 (10.2%) 4.79 (5.69%) 4.15 (6.57%) 0.25 (107%)
tak(500,450,405) 0.05 0.19 (26.0%) 0.54 (9.25%) 0.86 (5.84%) 0.07 (68.8%)
Dijkstra(16384) 1.96 3.59 (54.6%) 9.23 (21.3%) 34.2 (5.73%) 1.98 (98.8%)
RAM_fib(200k) 0.77 25.1 (3.07%) stack overflow 95.1 (0.81%) 5.47 (14.1%)
union(50k) 0.41 1.38 (29.3%) 3.39 (12.0%) 8.70 (4.67%) 294 (138%)

Table 8.1: Benchmark comparing performance for some typical CHR programs in
several systems. The average runtime in seconds is given with between parentheses
the relative performance of JCHR.

compilation scheme and efficient indexing, JCHR’s performance was far superior
both in time and in space, typically by many orders of magnitude, and often with
a better complexity. As JCHR is the only CHR(Java) system that has evolved
since, we do not repeat these results here.

For this section, we compared JCHR with more recent, state-of-the-art systems:
the K.U.Leuven CHR system for YAP, SWI, and SICStus Prolog, and the CCHR
system for C. Table 8.1 shows the results. The imperative CHR systems JCHR
and CCHR are significantly faster than the Prolog systems, typically by one
or two orders of magnitude. This is partly because the generated Java and C
code is (just-in-time) compiled, whereas the Prolog code is interpreted. Other
contributing factors are the more efficient indexing structures, and different
analyses and optimisations that are performed: Table 8.3 provides an overview.
The performance of JCHR and CCHR is mostly about the same.

8.4.2 Production rule systems
We compared JCHR2 with two established production rule engines. Clips was
chosen as a reference, because a recent performance survey suggests it is currently
the most efficient system available (IllationTM 2007). Jess is a more recent Java-
based implementation. We refer to Section 2.2.2 for a brief discussion on these
systems. The results measured are shown in Table 8.2.

We used standard CHR and production rule benchmarks only, without optim-
ising the programs for either system. The three systems ran equivalent programs
(using automatic source-to-source transformation mostly), and fired exactly the
same rules. Only for the nondeterministic WaltzDB benchmark, the three systems
fired slightly different rule instances.

The Clips-to-JCHR transformation used for the last six benchmarks declares
all constraints as set constraints (see Section 5.1.6). By manually adding better
invariant declarations—such as functional dependencies and unenforced invariants
(cf. Section 8.3.1.2)—further performance gains were possible: Manners(256)
for example ran in 70ms, Waltz(100) in 617ms, about 3 and 2 times faster resp.



168 Optimising Compilation and Lazy Evaluation

CLIPS 6.3 Jess 7.1 JCHR2
Dijkstra(8192) 16.3 34 22.2 (136%) 25 1.24 (7.60%) 447
primes(2048) 2.02 1.88 3.59 (178%) 1.05 0.07 (3.46%) 54.2
RAM_fib(50k) 12.2 45.1 36.1 (296%) 15.2 0.69 (5.62%) 803
union(25k) 40.7 5.5 10.4 (25.6%) 21.6 0.28 (0.70%) 793
Manners(256) 48.6 0.69 361 (742%) 0.09 0.19 (0.39%) 202
sudoku 3x3-p17 0.85 9.59 4.57 (539%) 1.78 0.44 (52.3%) 19.8

3x3-p17 (stress) 3.06 3.2 54 (1754%) 0.18 1.10 (36%) 8.96
Waltz(100) 6.25 4.47 32.1 (513%) 0.87 1.12 (18%) 24.9
WaltzDB(32) 2.8 9.52 12.9 (461%) 2.01 0.42 (15.1%) 53.7
wordgame(200) 4.49 4.55 5.51 (123%) 3.72 2.92 (65.1%) 6.98

Table 8.2: Comparison with state-of-the-art production rule systems. For
each system, a first column gives the average running time in seconds (between
parentheses is the relative performance compared to Clips), and a second the
average rule application rate in kRAPS (1,000 Rule Applications Per Second).

This clearly shows the importance of invariant annotations.
JCHR2 outperformed state-of-the-art production rule engines, often by several

orders of magnitude. Admittedly, this comparison should be taken with a grain
of salt, as JCHR2 is the only system that compiles its programs. However, since
Clips is implemented in C rather than Java, one could argue that the comparison
between JCHR and Clips is reasonably fair.

More importantly though: JCHR mostly scales better with larger problem
sizes, often with better asymptotic time complexity. This is clearly shown in
Figure 8.1. These results are in line with earlier findings that compare lazy
matching algorithms similar to ours with Rete (Miranker et al. 1991; Obermeyer
and Miranker 1994). We discuss this related work shortly in Section 8.5.

Finally, while measuring and comparing actual memory usage of different
systems is hard, our experiments did confirm space performance of lazy evaluation
is superior as well. Space complexity is also discussed in Section 8.5.

8.5 Discussion and Related Work
8.5.1 CHR systems
An overview of existing CHR systems and their basic implementation methodology
was given earlier in Section 4.5. In Table 8.3, we provide a brief overview of the
optimisations implemented by the K.U.Leuven CHR, JCHR and CCHR systems.
The extent in which other systems apply these optimisations varies greatly.
HALCHR, for instance, is a similarly optimising compiler for HAL, whereas
most CHR(FP) and CHR(Java) systems are relatively naive interpreter-based



8.5 Discussion and Related Work 169

 0

 25

 50

 75

 100

 125

 0  64  128  192  256

Jess

Clips

JCHR

(a) Manners

 0

 5

 10

 15

 20

 25

 30

 0  25  50  75  100

Jess

Clips

JCHR

(b) Waltz

Figure 8.1: Performance comparison for two famous benchmarks.
Graphs show average total runtime in seconds.

prototypes. We refer to Section 4.5 for additional references.

8.5.2 Production rule systems
In Section 2.2.3, we briefly introduced the most important matching algorithms
used by production rule systems. Our basic lazy evaluation scheme of Section 8.2.3
for CHR with negation is very similar to the LEAPS algorithm by Miranker
et al. (1990). As discussed in detail in Section 10.5, the main difference is the
way reapplication is prevented. Even the most elaborate description of LEAPS
though, that by Brant (1993), does not describe how to incorporate priorities,
or how to optimise beyond the basic algorithm of Section 8.2.3.16 The only
publication on LEAPS optimisation know of is (Obermeyer et al. 1995), where
the importance of indexing is stressed.

On possible optimisations and variants of Rete-like matching algorithms, on
the other hand, there is a considerable literature. We cannot possibly cover all
related work, and refer to (Doorenbos 1995) for an excellent introduction of Rete
and its most common optimisations. For specific optimisations, we refer to the
related work sections of the many CHR publications cited earlier. To the best of
our knowledge though, many of the optimisations and analyses in this chapter
have never been applied to production rule systems.

In Section 2.2.3, we already discussed in sufficient detail why Rete’s perform-
ance is often lacking. The two fundamental reasons are the eager computation of
all applicable rule instances, and the injudicious application of join indexing (beta
memories). This is well-documented in production rule literature, and several
alternative matching algorithms have since focused on improving join indexing

16More precisely, LEAPS corresponds to a naive version of the CHR compilation scheme
presented later in Chapter 9; we discuss this in Section 9.4.1.



170 Optimising Compilation and Lazy Evaluation

Optimisation Prolog JCHR CCHR
Invariant derivation (§8.3.1.1) X X

Unenforced invariants (§8.3.1.2)
Loop-invariant code motion (§8.3.2.1) X X X

Indexing (§8.3.2.2) X X X
Exploiting invariants (§8.3.2.3) X

Pre-commit backjumping (§8.3.2.4) X
Post-commit backjumping (§8.3.2.5) X X

Fragile iterators (§8.3.2.6) ± X X
Join ordering (§8.3.2.7) ± X ±
Late storage (§8.3.3.1) X X ±

Late allocation (§8.3.3.2) X ±
Memory reuse (§8.3.3.3) ±
Lazy indexing (§8.3.3.4) X

Passive occurrences (§8.3.4.4) X X ±
Dynamic passive occurrences (§8.3.4.5) X

Selective constraint reactivation (§8.3.5.1) X X X
Delay avoidance (§8.3.5.2) X X

Generations (§8.3.5.3) X X X
Constraint specialisation (§8.3.6.1)

Guard simplification (§8.3.6.2) X

Recursion optimization (§9.2) X X
Distributed history (§10.1) X X X

Non-reactive history elimination (§10.2) X X
Idempotence (§10.3) X X

Table 8.3: Summary of all relevant ωr-related optimisations and their imple-
mentations in K.U.Leuven CHR, K.U.Leuven JCHR and CCHR (development
versions at time of writing). Of course, this overview does not fully reflect the
considerable difference in strength of the static analyses, the extent of optimisa-
tion, and runtime data structures. Optimisations though that are clearly only
implemented in an ad-hoc or restricted manner are indicated with ‘±’.



8.5 Discussion and Related Work 171

performance. We refer to Section 2.2.3 for details and references.
For improved performance, several recent rule engines provide a so-called

sequential matching algorithm. From a given working memory, this algorithm
first computes the conflict set, and then fires all computed instances, but without
activating facts (i.e., without inserting assertions and retractions in the Rete
network). This seems a rather ad hoc workaround to the inherent overhead of
the Rete network. Clearly, lazy matching is a much cleaner, more satisfactory
solution to Rete’s performance issues.

Worst-case complexities

In our experience, lazy matching is often poorly understood. It has barely
received any attention by production rule research, and has the reputation of
being complex and difficult to comprehend (Batory et al. 1994). A common belief
is that LEAPS has better asymptotic space and time complexity than Rete and
TREAT. While in practice this is mostly true, general worst-case claims such as
in (Batory et al. 1994; Miranker 1998) typically do not hold.

Time complexity Firstly, time complexity is often in the first place dominated
by orthogonal factors, such as join ordering and proper indexing. But even when
ignoring this, it should be clear that for time complexity no general claims
can hold when comparing LEAPS, Rete and TREAT. An example is trivially
constructed, for instance, where join indexing is required for the optimal time
complexity. And conversely, it is equally straightforward to see that eagerly
computing all applicable rule instances may lead to worse time complexity. We
do believe though that a lazy matching algorithm, when combined with proper
selective join indexing (cf. Section 8.6), should in principle have superior time
complexity in practice.

Space complexity In Chapter 10, we show that the worst-case space complex-
ity of CHR’s lazy evaluation strategy is O(|S|n), with n is the maximum number
of (positive) occurrences in a rule’s head. This corresponds to the size of the
propagation history.17 Brant (1993) determined the same holds for LEAPS.18

Clearly, the worst-case space complexity of eager matching algorithms is also at
least O(|S|n), the size of the conflict set. TREAT, for instance, has this exact
same space complexity. The beta network that Rete keeps, however, may indeed
consume more space in the worst case. Brant (1993) uses the overly conservative
bound of O(|S|n+m), with n+m the largest total number of occurrences in a rule,
counting both positive and negative occurrences. For typical implementations of

17Provided the history is optimally garbage collected (Section 10.1). The worst-case is
attained if this n-headed rule is reactive (Section 10.2), or contains negation (Section 10.5.2).

18At least for OPS5 rules; cf. Section 10.5.2.



172 Optimising Compilation and Lazy Evaluation

Rete though, tighter bounds can be derived, only slightly worse than that of lazy
matching. For the OPS5 rules that Brant (1993) considers, for instance, Rete’s
worst-case space complexity is actually O(|S|n+1), or even just O(|S|n) if a more
efficient implementation of negated conditions is used. The actual complexity
depends on the way negative conditions are implemented, and the extent to which
join indexing is used.

Still, in practice, the actual space behaviour of lazy matching algorithms
is indeed typically superior. In Chapter 10, we determine that most rules and
programs do not require a history. For positive-only, non-reactive programs, for
instance, the worst-case space complexity is only O(|S|) (Brant (1993) showed this
also holds for LEAPS). For CHR and LEAPS, the worst-case space consumption is
thus hardly ever reached in practice. The actual memory consumption measured
for algorithms that perform eager matching or join indexing though, rapidly
reaches complexities close to their worst case bounds.

8.6 Ongoing and Future Work
Despite the already generally positive results, there is still considerable room for
improvement. By now, the behaviour and optimisation of ωr-based systems is
by quite well understood. The deterministic nature of ωr though made this still
relatively easy, when compared to e.g. the highly nondeterministic ω2 semantics.
With JCHR2 , we only have just begun researching how to optimally exploit the
added freedom this semantics offers. While more challenging, this freedom should
be seen as an important opportunity for more advanced, automated optimisation
of CHR programs.

Some other, more specific important areas of future work include:

Join indexing Join indexing is a technique extensively used by Rete-like match-
ing algorithms, as introduced in Section 2.2.3. As far as we know, lazy
evaluation has never been combined with join indexing. In certain cases, a
judicious application of join indexing, however, is required for an optimal
runtime complexity. Static or dynamic techniques have to be investigated
to determine when to use join indexing: see also Section 8.6.1.

Concurrency Leveraging the full power of current and future multi-core and
many-core processors demands highly concurrent software. In fact, in
Section 11.2, we consider this one of the ‘grand challenges’ of CHR. Many
important problems are still open in this area, from language features and
semantics, to analysis, implementation, and optimisation.

In the next two subsections we discuss some promising research directions we
are currently pursuing in a bit more detail.



8.6 Ongoing and Future Work 173

8.6.1 Dynamic optimisations
CHR research and implementation so far has mainly focused on the static analysis
and optimisation of programs. Static techniques often fail though. In these cases,
dynamic optimisations should be investigated.

We already added some initial dynamic optimisations to JCHR2 , such as
lazy indexing (Section 8.3.3.4) and dynamic passive occurrences (Section 8.3.4.5).
While results are promising, these contributions only constitute a first, relatively
small step towards dynamically optimising rule evaluation. Dynamic counterparts
for indexing and join ordering in particular are urgently needed. As an initial,
exploratory approach, we are also considering program recompilation using
runtime statistics gathered by profiling tools.

Dynamic indexing

As discussed earlier, both fact and join indexing inherently involve non-negligible
maintenance overhead. Statically deciding which indexes to use is hard, and the
eager approach taken by current CHR compilers (and current production rule
systems as well) frequently leads to index data structures with a disproportionate
overhead. Possible dynamic optimisation techniques include the dynamic adding
or removing of indexes, or on-demand index population. The results obtained
with our still relatively simple lazy indexing strategy show such optimisations are
crucial. In the context of eager matching algorithms, related ideas are proposed
e.g. by Fabret et al. (1993), Hanson et al. (1995), and Wright and Marshall (2003)
(cf. also Section 2.2.3).

Dynamic join ordering

Unlike Miranker and Lofaso (1991), we strongly believe static join ordering alone
is insufficient. Functional dependencies and the cardinality annotations proposed
in (Van Weert et al. 2009) help, but in general the lack of information renders it
impossible to statically finding the optimal join ordering. In the worst case, there
even is no single optimal join ordering, when the right join order depends on
runtime characteristics (cf. De Koninck and Sneyers 2007). A wrong join order
often results in suboptimal time complexity.

Unfortunately, dynamic join ordering does not match well with the static
compilation techniques used by current state-of-the-art CHR systems. Ideally, a
more dynamic interpreter-based execution should be used, preferably combined
with just-in-time compilation. In other words, this would require us to completely
redesign our CHR systems. Such a redesign is arguably also already required
though to improve the scalability of CHR systems to larger, real-life programs
(one of the ‘grand challenges’ listed in Section 11.2).



174 Optimising Compilation and Lazy Evaluation

8.6.2 Global optimisations
CHR compilers currently focus on locally optimising the join computation of
individual occurrences. For larger programs, global optimisations are in order:

Optimised occurrence dispatch

By default, an active constraint linearly traverses all occurrences, even when only
a small subset may lead to rule instances.

Example 8.23. A typical example is the stage constraint in the Waltz program
(see Examples 8.9 and 8.18). Depending on its single argument, only a very
restricted subset of the occurrences should be considered.

For this example, using switch statements significantly improves performance.
In general, the activate procedure of Fig. 8.4 should where possible incorporate
guards or negated conditions to improve occurrence dispatch. This is clearly an
area where we should profit from Rete and TREAT research (these algorithms
perform occurrence dispatch using a so-called alpha network).

Inlining and merging occurrence procedures

Several occurrences (of the same priority) often compute similar joins. Their
procedures can be inlined and merged to produce more efficient code.

Example 8.24. Most rules in the ram program have the same form as the add
rule used in our running example. For each occurrence, an active pc fact first
retrieves a prog fact. This lookup should be done only once. Next, a switch
statement on its instruction field could single out which rule is applicable in
constant time.

Clearly, such optimisations go well beyond simple occurrence dispatch. They
also subsume optimisations such as guard simplification, and facilitate several
others al well. We believe them to be an important next step in the state-of-the-art
of efficient rule execution.

Such optimisations require a considerable effort. The current, preliminary
implementation of this optimisation in JCHR2 shows mixed results. For the ram
program, for instance, it improves performance considerably. For several other
programs, however, performance is reduced, for different reasons. Additional
research is required to determine when to use occurrence merging.



Chapter9
Recursion Optimisations

The proverbial German phenomenon of the verb-at-the-end about
which droll tales of absentminded professors who would begin a
sentence, ramble on for an entire lecture, and then finish up by
rattling off a string of verbs by which their audience, for whom the
stack had long since lost its coherence, would be totally nonplussed,
are told, is an excellent example of linguistic recursion.

— Douglas Hofstadter (born 1945)
American mathematician, cognitive scientist, and author

In this chapter, we identify several challenges related to the evaluation of
recursive CHR programs. We show and explain why these issues are particularly
grave when compiling to imperative target languages. We therefore developed
a new optimised compilation scheme and runtime system, capable of efficiently
executing sequential conjunction and recursion.

While this research was initially performed in the context of ωr-based systems
(Van Weert, Wuille, Schrijvers, and Demoen 2008), the same technical issues
resurface when adding sequential conjunctions to the compilation scheme for
CHR2 . Chapter 8 only considered rule bodies with batch semantics. This allowed
us to sidestep recursion issues by only allowing a single active constraint per
priority level (cf. Section 8.2.4). In general, the body of a normalised CHR2 rule
is a sequential conjunction of batch conjunctions (cf. Sections 5.2.1 or 8.1). For
such rules in particular, recursion must be treated differently.

Section 9.1.1 starts by outlining the obvious, naive way of adding sequential
conjunctions to CHR2 ’s compilation scheme, using an approach similar to the
one taken by traditional ωr-based systems. In Section 9.1.2 then, we show this
leads to critical performance issues with the host’s (implicit) call stack. Our

175



176 Recursion Optimisations

analysis explains why imperative target languages are particularly ill-equipped
to deal with the naive code generated for recursive CHR programs. With this is
mind, we completely redesigned the execution methodology of our JCHR and
CCHR systems (Van Weert et al. 2008; Van Weert 2008a). In JCHR2 , we have
since extended these techniques to deal with CHR2 ’s batch conjunctions and rule
priorities. We discuss these contributions in Section 9.2.

9.1 Sequential Conjunctions and Recursion
9.1.1 Basic compilation scheme
Naively adding sequential conjunction to the basic compilation scheme of Sec-
tion 8.2.2, i.e. the one without priorities, is quite straightforward. We simply
repeat lines 14–18 in Listing 8.1 once for each batch conjunction in the sequence,
thus adding and activating the constraints batch per batch. An important point
to note is that for purely sequential conjunctions, this reduces precisely to the
standard scheme used by ωr-based systems (Holzbaur and Frühwirth 2000a; Duck
2005; Schrijvers 2005; Van Weert et al. 2008).

Effectively combining sequential conjunction with the schedule-based solution
for priorities of Section 8.2.4 requires two additional changes though. First, recall
the semantics of sequential conjunctions established in Chapter 5. In essence, it
requires that before moving to a next sequential conjunct, at least all those rule
instances have fired that both:

1. have higher or equal priority; and
2. became applicable by, or at some point after, adding the constraints of the

previous sequential conjunct

Any natural, meaningful semantics for sequential conjunctions must have these
same properties. We now discuss both above items in turn.

Firstly, recall from Section 8.2.4 that our initial scheme does not consider
occurrences with a priority equal to that of the previously fired rule; i.e. it only
considers occurrences of strictly higher priority. De Koninck (2008) explicitly
preferred this unusual execution strategy because it eases certain program analyses
and optimisations. Even for pure batch semantics though, we already find this
often results in unexpected behaviour. But regardless, for sequential conjunctions,
it clearly is no longer an option. As a first step, we therefore adjust the comparisons
with pactive to include equal priorities as well, both on line 9 of Listing 8.4, and
in Section 8.2.4’s activate procedure.

Secondly, when a rule is fired at some priority, the schedule often already
contains continuations of equal priority. By the above revision of the activate
procedure, these now become activated as well. In other words: not only those
rule instances that became applicable by evaluating a sequential conjunct are



9.1 Sequential Conjunctions and Recursion 177

activate(0)

activate(0)

loop(1000)

activate(0)

loop(999)

loop(998)

...

(a) Call stack

loop(1000)

println(1000)

loop(1000-1)

println(999)

loop(999-1)

println(998)

...

(b) Tail recursion

loop(1000)

println(1000)

loop(1000-1)

println(999)

loop(999-1)

println(998)

...

...

(c) Non-tail recursion

Figure 9.1: Execution of recursive CHR rules.

fired, but possibly also some that were already applicable before. While this is
allowed by the ω2 semantics, it arguably leads to unexpected runtime behaviour.
We therefore introduced two new schedule operations:

saveSchedule(pactive) All items that are scheduled at pactive when this oper-
ation is called are ignored by subsequent calls of scheduledPriority and
pollScheduled; items scheduled later are still observed as normally.

restoreSchedule() Restores the schedule items saved by the last call of
saveSchedule(pactive) (only called if scheduledPriority() > pactive).

Calls to these operations are added before and after a sequential rule body.

9.1.2 Problem analysis: recursion and stack overflows
As most declarative programming languages, CHR does not provide language
primitives for loops. Any non-trivial CHR program therefore contains recursion.
For such programs, the naive compilation scheme of Section 9.1.1 generates a set
of mutually recursive host language procedures. It relies on the host language’s
compiler or interpreter to adequately deal with recursion. If not, the naive
compilation scheme will typically lead to call stack overflows.

Example 9.1. To demonstrate this elementary issue, we use this CHR rule:
tail @ loop(N) ⇔ N > 0 | println(N), loop(N-1).

and its variant obtained by reversing the order of the sequential conjunction:
non-tail @ loop(N) ⇔ N > 0 | loop(N-1), println(N).

The execution of the query loop(1000) using these rules is illustrated in
Figures 9.1(b) and 9.1(c) respectively. Note that by reversing the order of the
conjunction, the order in which the numbers are printed is reversed as well. So
both programs are by no means equivalent.



178 Recursion Optimisations

Figure 9.1(a) shows the resulting call stack when using naive call-stack-based
execution. In ωr-based systems, the interleaving calls of activate(0) that
result from our unoptimised1 schedule-based scheme are not present. Without
optimisation, the call stack thus always consumes space linear in the number of
recursive calls. A stack overflow occurs when the space allocated for the call
stack is insufficient to hold the required stack frames.

The empirical results of Section 9.1.3 confirm that for recursive CHR programs
stack overflows are indeed problematic. But what they mostly show is that
for imperative CHR systems, the problem is significantly worse. In the next
subsection, we briefly explain this observation.

Tail call optimisations

One technique used to reduce the performance impact of recursion is called
tail call optimisation. Particularly for programming languages that advocate
a recursive programming style, such as most logical and functional languages,
tail call optimisation is considered indispensable. A procedure call is said to be
in tail position if it is the last operation executed before the calling procedure
returns. In Example 9.1, for instance, the call of loop(N-1) in the tail rule is a
tail call. As clearly visible in Figure 9.1(b), when execution returns from a tail
call, no further operations are required, and execution immediately returns to
the previous caller. The idea of tail call optimisation is that, instead of adding a
new stack frame for each tail call, the stack frame of the previous caller is simply
overwritten, such that control immediately returns there instead.

Even though similar optimisations are in principle possible in imperative host
languages (Probst 2001), in practice, they are only scarcely performed. The GCC
C compiler (Free Software Foundation 2010), for instance, only optimises tail
calls in specific cases (Bauer 2003). Typical implementations of the Java Virtual
Machine (Lindholm and Yellin 1999), including the reference implementation
HotSpot (Sun Microsystems, Inc. 2010), do not perform tail call optimisations at
all.2

Tail calls in CHR

For CHR rules, intuitions regarding tail calls can be deceiving. That is: the
last conjunct of a rule’s body does not necessarily correspond to a tail call. In
most cases, if the active constraint matches a kept occurrence, more partner
constraints must still be searched, or more occurrences tried, after the evaluation

1For presentation purposes, we ignore for now the schedule-related optimisations discussed
earlier in Section 8.3.4.2. Their impact is discussed in Section 9.2.1.

2One often cited reason is that tail call optimisations would interfere with Java’s stack
walking security mechanism (though this security folklore has recently been challenged by
Clements and Felleisen 2004).



9.1 Sequential Conjunctions and Recursion 179

JCHR CCHR SWI YAPJRE 1.5 JRE 1.6
tail 35,900 3,200 ∞ ∞ ∞
non-tail 38,700 3,200 0.5M 3.3M ±∞

Table 9.1: Recursion limits for different CHR systems. The number indicate
the approximate value of N for which the recursive rules of Example 9.1
resulted in stack overflow for the different systems when called with initial
query loop(N). Here, ∞ indicates the program ran in constant space, and
±∞ indicates the limit was available (virtual) memory.

of the last body conjunct. For simpagation rules, therefore, the applicability of
tail call optimisations may even depend on which constraint is active.

It is therefore much less likely that recursive CHR programs can be rewritten
to use tail recursion than in e.g. in typical functional or logical programming
languages, This means that even for CHR(Prolog) systems, many recursive CHR
programs will put a heavy burden on the call stack. However, as shown next by
the numbers in Section 9.1.3, unlike imperative execution environments, Prolog
interpreters are typically designed to withstand deeply recursive clauses.

9.1.3 Problem demonstration: empirical results
We used the rules of Example 9.1 to test the approximate recursion limits for
different CHR implementations. Table 9.1 contains the results measured for the
original K.U.Leuven JCHR and CCHR systems, compared with those of the
K.U.Leuven CHR implementations in SWI-Prolog and YAP Prolog.

For all systems but JCHR, the tail rule ran in constant space. Note that
this is an example where even the GCC compiler performs the required tail call.
This is not always the case though (Bauer 2003). Executing the compiled JCHR
handler with the HotSpot Client JVM (Sun Microsystems, Inc. 2010), rapidly
resulted in stack overflow. Using version 1.5 of the Java Runtime Environment
(JRE), a stack overflow occurred for N equal to 35,900. With JRE 1.6 the
situation even worsened by another order of magnitude.

For the rule without tail recursion, the results for JCHR of course remained
unchanged. For both SWI Prolog and CCHR, the native call stack has a static
upper bound. For CCHR, the test resulted in stack overflow after around half a
million recursive calls, for SWI after around 3.3 million. YAP Prolog’s call stack
grows dynamically, so YAP is only limited by available (virtual) memory. These
numbers demonstrate that Prolog systems shine at handling deep recursive calls,
even if tail call optimisation is not applicable. Programs written in imperative
languages, on the other hand, are clearly expected to use iteration instead of
recursion.



180 Recursion Optimisations

JCHR SWI JCHR SWI
beer(N) 3,500 ∞ primes(N) 4,800 ∞

dijkstra(N) 2,100 ∞ primes_swapped(N) 4,800 3.4M
fibbo(N) 1,800 timeout ram_fib(N) 300 20,000

gcd(N) 4,300 4.5M

Table 9.2: Recursion limits for several standard CHR benchmark programs
(JRE 1.6 was used for JCHR). The numbers in the second and third column
indicate the approximate value of N for which the benchmark results in stack
overflow; ∞ indicates the benchmark ran in constant stack space.

We also tested the recursion limits for more realistic CHR benchmark programs.
Table 9.2 confirms that the performance of CHR’s traditional compilation scheme
is unacceptable in Java. JCHR’s poor performance on the Dijkstra problem
was also observed by Sneyers et al. (2006a, 2009). Due to the lack of tail
call optimisations and the limited size of the call stack, stack overflows occur
unacceptably fast when executing recursive JCHR programs. Depending on the
version and platform, this can already be after a few thousand recursive calls.

Obvious examples of CHR programs that should, but do not, run in constant
stack space include primes and ram. For the latter, SWI Prolog also does
not manage to perform tail call optimisation. To guarantee executions with
optimal space complexity of such CHR programs (cf. also Sneyers et al. 2009’s
seminal result discussed in Section 4.3.3 which relies on this ram program), CHR
compilers should therefore perform tail call optimisations themselves.

9.2 Recursion Optimisations
Since improving the optimisations of the host environment is seldom an option,
we designed novel compilation schemes for CHR that avoid execution stack
overflows. The first is very easy to implement, but deals only with tail recursion
(Section 9.2.1). The second typically takes a substantial implementation effort,
but is necessary for the efficient execution of more general recursive CHR programs
in imperative host languages (Section 9.2.2).

9.2.1 Trampoline-based execution
A first optimisation we worked out is based on a popular technique to eliminate
tail calls, called a ‘trampoline’ (Baker 1995; Ganz, Friedman, and Wand 1999).
The basic idea is that, by default, tail calls are no longer called directly. Instead,
a closure representing this tail call is returned to a loop that is running lower on
the call stack.



9.2 Recursion Optimisations 181

We described such a trampoline-based scheme for ωr-based (imperative) CHR
systems in detail in (Van Weert, Wuille, Schrijvers, and Demoen 2008). In essence,
the execution scheme looks as follows, with C a CHR constraint:

procedure trampoline(C)
while C != nil

C = activate(C)
end

end

As long as only tail recursion is used, the call stack never grows much higher than
this trampoline loop, and tail-recursive CHR programs run in optimal constant
stack space.

For our approach for general CHR2 programs of Section 9.1.1, it turns out that
we get trampoline-like behaviour almost for free. Concretely, the schedule-related
optimisation ideas of Section 8.3.4.2 simply have to be applied to tail calls. In a
naive implementation, the call stack for tail recursive rules would look like the
one in Figure 9.1(a). Note that the activate(p) calls interleaving the actual rule
applications even preclude tail call optimisations by the host. In Section 8.3.4.2
though, we already suggested that if the active constraint is removed, no new
activate loop should be started. By applying the same reasoning on tail calls,
the activate loops effectively act as trampolines, and tail calls no longer consume
stack space.

9.2.2 Explicit stack
Trampoline-style execution only works for tail calls. Many (mutually) recursive
CHR rules though are not tail recursive. Often, these cannot even easily be
rewritten to such a form (Section 9.1.2). Such programs thus require large call
stacks to execute, which in imperative languages, and in Java in particalar, very
easily results in stack overflows (Section 9.1.3). We therefore redesigned JCHR’s
and CCHR’s execution strategies to explicitly manage data structures for the
control flow of a CHR program themselves. It might seem that the overflow is
just shifted from the stack to the heap. However, for a language like Java, the
heap is typically substantially larger than the call stack.3 Moreover, we of course
still make sure tail calls run in constant space.

Our high-level presentation here highlights the basic principles of JCHR2 ’s
execution strategy. It extends the techniques we introduced in (Van Weert et al.
2008; Van Weert 2008a) towards batch conjunctions and priorities.

3If the standard heap size is insufficient, the HotSpot JRE can be configured to allocate
more heap memory. A similar option for the call stack seems to have no effect for all HotSpot
versions we tested.



182 Recursion Optimisations

Step 1: continuations To explicitly manage the control flow of a CHR
program, we need a mechanism to:

1. save the execution state after each sequential conjunct; and
2. restore this state again later to resume execution from that point.

The general concept that accomplishes this is called a continuation, an abstract
representation of the control state. In our case, each continuation must represent
at least:
• which part of the body to execute next (if any)
• any (still required) local variables
• for kept occurrences, the current active constraint, partner constraints and
constraint iterators

While in C implementing continuations is facilitated by goto statements,
resuming complex nested loops in Java is quite involved (cf. Van Weert 2008a).
More detailed information on how to implement continuations for CHR programs
is provided in (Van Weert et al. 2008; Van Weert 2008a).

Step 2: execution stack Next, the CHR runtime is extended with a final
data structure: the (CHR) execution stack. Unlike in (Van Weert et al. 2008;
Van Weert 2008a), each continuation on the stack also has a priority number
associated with it. Obviously, each new continuation that is pushed on the stack
will have a priority number less than or equal to all other priorities on the stack.
We call the priority associated with the top of the stack, clearly the smallest
number (highest priority), the priority bound. For an empty stack, this bound is
defined as +∞. At runtime, occurrences with a priority number larger than this
bound (i.e. occurrences of lower priority) are never considered.

In the basic compilation scheme, once all constraints of a sequential conjunct
are scheduled, a continuation is created and pushed onto the stack, and then
execution returns to a main control loop. This loop has the following form:

1 while true
2 while not scheduleEmpty() and scheduledPrio() ≤ prioBound()
3 activate(pollScheduled())
4 end
5 if stackEmpty() return
6 call(pop())
7 end

Scheduled constraints are repeatedly activated until the priority bound is
reached (lines 2–4). The constraint activation code of Listing 8.4 (called on line 3)
is similarly adjusted to use the priority bound. When line 5 is reached, all newly
applicable rule instances of higher or equal priority than the last continuation



9.3 Evaluation 183

pushed on the stack have fired. Calling this continuation (line 6), either executes
the next conjunct of a sequential conjunction, resumes the search for more
partner constraints, or continues with remaining occurrences of a previously
active constraint.

This scheme is a correct implementation of ω2 . Essentially, ω2 ’s stack A is
explicitly managed by the CHR runtime, instead of mapped onto the implicit
call stack of the host environment. Moreover, tail calls are executed in constant
stack space, as the new loop still acts as a trampoline.

Step 3: optimisation Explicitly maintaining a stack unavoidably entails
constant time overheads when compared to the traditional, call-based compilation
scheme. The host environment’s call stack is able to use more specialised low
level mechanisms. This is particularly the case for high-level host languages such
as Java. The following minor optimisations are therefore all the more required to
reduce this overhead:

• For tail calls, of course no continuation is pushed.
• For certain common patterns, continuations can be reused. JCHR e.g. uses

a very efficient undoPop() operation instead of creating and pushing a new,
equivalent continuation.

• Doubly reactivated constraints are removed from the stack without travers-
ing their occurrences (this an extension of the generation optimisation of
Section 8.3.5.3).

• If static control flow analysis shows that activating a constraint (of equal
priority) does not result in recursion, the original scheme without the
explicit call stack is used.

We refer to (Van Weert 2008a) for details on these optimisations.

9.3 Evaluation
Table 9.3 contains the results measured when comparing JCHR’s improved
compilation scheme with its traditional one. Our improved scheme solves all
stack overflow issues. All tail recursive programs run in constant stack space, and
the remaining recursive handlers become limited only by available heap space.
From the table it is clear that this more than sufficient.

The numbers also confirm that the optimisations summarised at the end of
the previous section manage to reduce the overhead resulting from explicitly
maintaining the call stack. There where a comparison is possible, the optimised
improved compilation scheme is never more than 20% slower than the traditional
scheme. For one benchmark, the improved scheme is even slightly faster.



184 Recursion Optimisations

Traditional Improved scheme
scheme unoptimised optimised

beer(2,000) 7,553 7,341 (-3%) 7,058 (-7%/-4%)
bool(1,000,000) 4,106 5,216 (+27%) 4,914 (+20%/-6%)
dijkstra(5,000) overflow@2,100 1,230 1,065 (-13%)

fib(33) 9,366 12,816 (+37%) 10,934 (+17%/-15%)
gcd(64,000,000) overflow@4,300 5,529 5,519 (-0%)

leq(300) 3,821 5,537 (+45%) 4,309 (+13%/-22%)
mergesort(100,000) 10,581 12,262 (+16%) 11,310 (+7%/-8%)

primes(10,000) overflow@4,700 4,991 4,396 (-13%)
ram_fib(150,000) overflow@300 3,144 2,991 (-5%)

union(210,000) 2,637 2,685 (+2%) 2,637 (+0%/-2%)

Table 9.3: Empirical comparison between the different compilation schemes of
the K.U.Leuven JCHR system for several recursive CHR programs. The second
column gives timings (in average milliseconds) when using the traditional scheme.
For the remaining columns, JCHR maintained its own stack. Two versions were
tested: a fairly naive one, and one where the optimisations briefly listed at the
end of Section 9.2.2 were applied. The percentages between parentheses give
the relative difference with the traditional scheme (if applicable), and in the last
column also between the unoptimised and the optimised version.

We already verified the competitiveness of our imperative systems using several
typical recursive CHR programs in Section 8.4.1. For these benchmarks, JCHR
and CCHR efficiently managed their own call stack, performing trampoline-like
tail call optimisations there were applicable. The stack overflow reported in
Table 8.1 for the ram program is caused by the SWI Prolog system failing to
perform the necessary tail call optimisations (see also Table 9.1).

The benchmark results thus show that, for compiling CHR to imperative
languages, and in particular to Java, our new, improved compilation scheme is
superior to the traditional one. All stack overflow issues are resolved, and our
optimisations reduce the overhead to an acceptable level.

9.4 Conclusions
When ported to an imperative setting, the traditional compilation scheme used
for CHR(Prolog) suffers from critical performance issues when executing recursive
CHR programs. In our initial JCHR and CCHR systems, the generated code for
such programs therefore scaled poorly, as executions constantly failed due to call
stack overflows.

The work presented in this chapter constitutes a first analysis of the elementary
issues recursion and tail calls in the context of CHR. We demonstrated that the



9.4 Conclusions 185

poor performance of CHR with imperative hosts stems from both:

1. a lack of proper tail call optimisations by typical compilers or interpreters
2. the limited stack space allocated by imperative runtime environments

The former issue even implies many (tail recursive) programs executed with a
suboptimal space complexity (linear instead of constant).

We therefore designed and implemented improved compilation schemes for
both JCHR and CCHR. Our empirical results confirm our new approach is
superior, in particular for compiling to Java. All stack overflow issues are
efficiently resolved as follows:

• When applicable, tail call optimisations are performed using trampoline-
style execution. This way, optimal stack space complexity is guaranteed,
independent of the compiler or interpreter used for the generated code.

• There were needed, our CHR runtime explicitly manages the call stack.
Using several additional optimisations, we managed to reduce the resulting
overhead to an acceptable level.

In this chapter, we gave a high-level overview of the fundamental techniques
used. We moreover outlined how in JCHR2 we extended our earlier ωr-oriented
approach to obtain an effective, more general compilation scheme for (imperative)
CHR2 systems. More information on our ωr-based compilation schemes can be
found in (Van Weert, Wuille, Schrijvers, and Demoen 2008); for JCHR an even
more detailed, technical description is also given in (Van Weert 2008a).

9.4.1 Related work
Countless (actually most) declarative programming languages have been compiled
to imperative host languages, many using similar techniques to manage recursion.
We only mention a few that seem most relevant.

Schinz and Odersky (2001) discuss tail call elimination in their Funnel-to-Java
compiler. They introduce a trampoline variant that performs ‘higher jumps’:
that is, execution only returns to the trampoline after a recursion depth counter
has reached a certain threshold; until then regular Java method calls are simply
used for tail calls. They list several declarative languages that are compiled to
Java, each using the trampoline technique. Our solution is more general as it
deals with all instances of (recursive) calls, not tail calls alone.

Of the most prominent, state-of-the-art CHR systems, JCHR and CCHR
are currently the only systems that explicitly optimise for recursion. CHRrp

sidesteps the issue by only allowing a single active constraint per priority. And, as
discussed earlier, in ωr-based CHR(Prolog) systems the issue is less of a problem
because the host’s interpreter mostly adequately copes with recursion. We have



186 Recursion Optimisations

not studied the approach or performance of e.g. CHR(FP) systems. Compilers for
functional host languages though are normally similarly designed for an optimal
execution of recursive functions.

Most production rule systems (cf. Chapter 2) are Rete-based, and operate
using explicit match-recognise-act iterations, where all recursion is inherently
broken by returning to a single control loop. Apparent exception is the LEAPS
algorithm. Much like our approach, LEAPS essentially manages an explicit stack
of continuations, each representing an active fact and a set of iterators. Miranker
et al. (1990) and Brant (1993) give very low level descriptions of this algorithm
in terms of fact pointers, which was later reconstructed by Batory et al. (1994)
and described using far more intelligible, high-level concepts.

9.4.2 Future work
It is well-known that many recursive procedures can be transformed into equivalent
iterative forms. The latter can typically be executed far more efficiently.

Example 9.2. The primes program, for instance, contains the following common
CHR rule pattern to implement a loop:

candidate(1) <=> true.
candidate(N) <=> N > 1 | prime(N), candidate(N-1).

Obviously, this could be transformed into an equivalent iteration of the form:

procedure candidate(N)
while N > 1

...
end

end

While a trampoline-based approach guarantees the correct complexity, the
constant factors of the above loop would be significantly better. To transform
recursive programs to iterative ones, techniques such as unfolding/folding are
typically used, e.g. in functional and logical languages (Burstall and Darlington
1977; Debray 1988). For CHR, such program tranformation techniques have only
been scarcely researched (Tacchella et al. 2007), and are not yet applied by any
implementation.



Chapter10
Optimising Propagation Rules

If Beethoven had been killed in a plane crash at the age of 22,
it would have changed the history of music. . . and of aviation.

— Tom Stoppard (born 1937)
British playwright

An important, distinguishing feature of CHR are propagation rules. Unlike most
rewrite rules, propagation rules do not remove the constraints matched by their
head. They only add extra, logically implied constraints. To avoid trivial non-
termination, each CHR rule is applied at most once with the same combination
of constraints. This requirement stems from the formal study of properties such
as termination and confluence (Section 4.3), and is reflected in the operational
semantics implemented by almost all systems (Section 4.2).

To prevent reapplication, a standard CHR runtime system maintains a so-
called propagation history, containing a tuple for each constraint combination
that fired a rule. Efficiently implementing a propagation history is challenging.
Even with the implementation techniques discussed in Section 10.1, maintaining
a propagation history remains expensive. For a given program, the worst-case
space complexity of a history is O(|S|n), with |S| the size of the constraint store,
and n the maximum number of occurrences in a (propagation) rule’s head (cf.
Section 10.1). Clearly, this often dominates the worst-case space complexity of
the entire CHR program. Our empirical observations confirm the history often
has a significant impact on both space and time performance.

Existing literature on CHR compilation nevertheless pays only scant attention
to history-related optimisations. We mend this discrepancy by introducing several
novel approaches to history-related performance issues. We show that for almost
all CHR rules the propagation history can be eliminated completely, using either

187



188 Optimising Propagation Rules

innovative, alternate techniques to prevent rule reapplication (Section 10.2),
or by proving that reapplication has no observable effect (Section 10.3). We
implemented these optimisations in two state-of-the-art CHR implementations,
K.U.Leuven CHR for SWI-Prolog and K.U.Leuven JCHR. Experimental results
confirm the relevance and effectiveness of our optimisations (Section 10.4). For
those cases where histories are still needed, an efficient history implementation
nevertheless remains important. We briefly review existing approaches and some
minor contributions of our own in Section 10.1.

All optimisations in this chapter are worked out for CHR systems
that implement the refined operational semantics, including formal
correctness proofs in the ωr framework. Section 10.5.2 discusses ex-
tensions towards more recent variants and extensions of CHR.

10.1 Propagation History Implementation
It is as stated by Duck (2005, Section 4.3.4):

“The propagation history is very easy to implement naively,
but quite challenging to implement efficiently. ”

In this section, we briefly explore the design space for the implementation of
propagation histories. We point out the challenges involved, review existing
approaches, and conclude with introducing some minor improvements.

Obviously, tuples have to be stored in some efficient data structure, e.g. a
balanced tree or a hash table. Naively implemented, tuples are only added to the
propagation history, but never removed (as is the case in the formal ωr semantics;
cf. Section 4.2.3). This potentially leads to unbounded memory use.

In terms of our compilation scheme of Section 8.2.2, the main challenge is
thus efficiently implementing the cleanHistory() operation. All tuples referring
to removed constraints are trivially redundant. Formally, for a constraint store S
and a history T, these are all tuples not in live(T,S) = {(ρ, I) ∈ T | I ⊆ id(S)}.
Yet even with perfect garbage collection, the history’s worst-case space remains
O(|S|n), with n the maximum number of occurrences in a propagation rule’s
head. This typically dominates the space complexity of the entire CHR program.

Practice, moreover, shows that eagerly removing redundant tuples after each
constraint removal is not feasible due to unreasonable time or space overheads (cf.
also Duck 2005). CHR implementations therefore commonly use ad-hoc garbage
collection techniques, which may result in excessive memory use in the worst
case, but perform adequately in practice.1

1In Section 6.3.1.9, we established that for CHR rules with aggregates that require fire-many
semantics, cleanHistory() must remove more history tuples than just T \ live(T, S). For such
rules, an eager, relatively expensive removal policy seems unavoidable in general. We further
discuss history management of such rules in Section 10.5.2.



10.1 Propagation History Implementation 189

One technique is to lazily remove redundant tuples during history checks, as
used in CHR(HAL) by Duck (2005). A second technique is denoted distributed
propagation history maintenance (Schrijvers 2005). With this technique, there
is no global history data structure. Instead, the runtime representation of each
individual CHR constraint contains (a subset of) the history tuples they occur in.
When a constraint is removed, the corresponding part of the propagation history
is removed as well. Both techniques could easily be combined.

We refer to (Duck 2005; Schrijvers 2005) for more information on the imple-
mentation of propagation histories in current CHR systems. Most detailed design
choices, however, are not fully covered by these theses. The following example
summarises the choices we made in our K.U.Leuven JCHR system.

Example 10.1. By default, JCHR maintains a distributed propagation history
using hash tables. Separate tables are kept per rule, and stored only in the active
constraint. Checking the history thus entails checking a hash table in all partners
constraints whose occurrence is not passive (of course, the tuple object and hash
code are only created once). History tuples contain integer constraint identifiers
rather than constraint objects to restrict memory leakage. For single-headed
rules, a boolean field is used instead of a hash table.

10.1.1 Optimising history maintenance
We now introduce three minor optimisations for distributed propagation history
maintenance. More specifically, we start from JCHR’s default maintenance
scheme outlined in Example 10.1. Our optimisations similarly apply to e.g. global
histories as well though. To the best of our knowledge, this is the first time these
optimisations for CHR history maintenance are introduced.

Firstly, an inHistory check is typically immediately followed by addToHistory
(cf. Listing 8.1 in Section 8.2.2). These instructions can be merged into one.

Secondly, the arity of history tuples can be reduced as follows:
1. If all but one occurrence is passive (cf. Section 8.3.4.4), the identifier for

the active constraint is removed from the tuples.
2. The identifiers for occurrences that are uniquely functionally determined

(i.e. with a set semantics functional dependency; cf. Section 5.1.7), and
whose matching constraints cannot be removed, are similarly left out.

By itself, the performance gains of such tuple reductions are only marginal.
When reduced to zero, however, a simple boolean field in the active constraint
suffices. And when reduced to one, tuples no longer have to be created, and
considerably more efficient hash table data structures can be used.

Thirdly, for two-headed propagation rules, a similar optimisation is always
possible. By default, history tuples for a two-headed rule contain two constraint
identifiers. It is however more efficient to simply store, in each constraint, the



190 Optimising Propagation Rules

identifiers of all partner constraints it fired with whilst active. This avoids the
creation of tuples, and allows for more efficient hash tables.

For the last optimisation, care must be taken though when both heads are
occurrences of the same constraint, as for instance in the transitivity rule of the
leq program. One possibility is to maintain a separate history per occurrence.
A more elegant trick though is to use the negated partner constraint identifier if
the the active constraint matches one of the occurrences.

10.2 Non-reactive Propagation Rules
Section 10.2.1 contains a first proper study of what we coined non-reactive CHR
rules. This is the class of CHR rules that are never matched by a reactivated
constraint. As illustrated, a substantial portion of CHR rules is non-reactive.
In Section 10.2.2, we prove that the history of certain non-reactive propagation
rules can be eliminated, as CHR’s operational semantics ensures these rules are
never matched by the same constraint combination. For the remaining non-
reactive rules, we introduce an innovative, more efficient technique to prevent
rule reapplication in Section 10.2.3, and prove its soundness.

10.2.1 Introduction: from fixed to non-reactive CHR
Non-reactive CHR constraints are never reactivated when built-in constraints are
added. Formally:

Definition 10.1. A CHR constraint c/n is non-reactive in a program P under
a refined operational semantics ω?r (ωr or any of its refinements: see further) iff
for any Solve transitions of the form 〈[b|A],S,B,T〉n�P 〈S++A,S, b ∧ B,T〉n
in any ω?r -derivation D the set of reactivated constraints S ⊆ S does not contain
constraints of type c/n. A rule ρ ∈ P is non-reactive iff all constraints that occur
in its head are non-reactive in P.

The most obvious instances are so-called fixed constraints.2 A CHR constraint
predicate c/n is fixed, if, for all runtime constraints c of this predicate, all
argument values are always fixed—formally: vars(c) ⊆ fixed(∅) (Def. 4.10 in
Section 4.2.3). If all constraint arguments are fixed, no rules become applicable
when adding built-in constraints. Which CHR constraints are fixed is derived
from their mode declarations, or using groundness analysis (Schrijvers et al. 2005).

Example 10.2. The fibbo handler depicted in Listing 10.1, performs a bottom-
up computation of all Fibonacci numbers up to a given number. The constraint

2For CHR(Prolog), fixed constraints are often also called ground constraints.



10.2 Non-reactive Propagation Rules 191

Listing 10.1 A handler from (Frühwirth 2005c), referred to here as fibbo,
that performs a bottom-up computation of all Fibonacci numbers up to a given
number. All constraint arguments are fixed integer values.

:- chr_constraint up_to(+int), fib(+int,+int).
up_to(U) ⇒ fib(0,1), fib(1,1).
up_to(U), fib(N - 1,M1), fib(N,M2) ⇒ N < U | fib(N + 1,M1 + M2).

Listing 10.2 A classic CHR handler (cf. e.g. Frühwirth 2005c) that computes
Fibonacci numbers using a top-down computation strategy with memoisation.

:- chr_constraint fib(+int,?int).
fib(N,M: 1) \ fib(N,M2) ⇔ M1 = M2.
fib(N,M) ⇒ N ≤ 1 | M = 1.
fib(N,M) ⇒ N > 1 | fib(N-1,M1), fib(N-2,M2), M = M1 + M2.

declarations3 specify all arguments are fixed instances of the host language’s int
type (the ‘+’ mode declaration indicates a constraint’s argument is fixed).

In theory, for ωr, a CHR constraint predicate is non-reactive if and only if
it is fixed. This follows from the loose upper bound for the set of reactivated
constraints in its Solve transition (see Figure 4.2 on page 42). The following
example shows why the class of non-reactive constraints should be larger:

Example 10.3. Listing 10.2 lists an alternative Fibonacci handler, this time
using a top-down computation strategy with memoisation. The fib/2 constraint
is not fixed, and is typically called with a free (logical) variable as second
argument—hence the ‘?’ mode declaration. Reactivating fib/2 constraints is
nevertheless pointless, as there are no guards on its second argument. Adding
built-in constraints therefore never results in additional applicable rules.

Using unbound, unguarded arguments to retrieve the outcome of a computa-
tion is very common in CHR. The standard ωr semantics nevertheless allows such
constraints to be reactivated. In general, CHR constraints should only be reactiv-
ated if additional built-in constraints may cause more guards to become entailed.
This is insufficiently specified in ωr. To address this issue, we reintroduce the
concept of anti-monotonicity, first defined by Schrijvers and Demoen (2004a):

Definition 10.2. A conjunction of built-in constraints B is anti-monotone in a
set of variables V iff ∀B1, B2((πvars(B)\V (B1 ∧B2)↔ πvars(B)\V (B1))

→ ((DH 6|= B1 → B)→ (DH 6|= B1 ∧B2 → B)))
3The syntax is based on that of the K.U.Leuven CHR system.



192 Optimising Propagation Rules

Definition 10.3. A CHR program P is anti-monotone in the i’th argument of
a CHR constraint predicate c/n, iff for every occurrence c(x1, . . . , xi, . . . , xn) in
P?, the guard of the corresponding rule is anti-monotone in {xi}.

In this definition, P? denotes the linearised normal form of a program P
(pattern linearisation was introduced in Section 4.1.3).

A CHR program is always anti-monotone in fixed or unguarded constraint ar-
guments. Moreover, several typical built-ins are anti-monotone in their arguments.
In Prolog, for instance, var(X) is anti-monotone in {X}. Using anti-monotonicity,
we now define ω′r, a slight refinement of ωr:

Definition 10.4. Let delay_varsP(c) denote the set of variables occurring in
an (identified) CHR constraint c in which P is not anti-monotone. Then ω′r is ob-
tained from ωr by replacing the upper bound on the set of reactivated constraints
S in its Solve transition with “∀c ∈ S : delay_varsP(c) 6⊂ fixed(B)”.

In Appendix B, we provide a a formal proof that ω′r is indeed an instance
of ωr. The appendix also clarifies the difference with the similar yet incorrect
formulation by Schrijvers and Demoen (2004a).

Most rules in general-purpose CHR programs are non-reactive under ω′r. Sev-
eral CHR systems, including the K.U.Leuven CHR and JCHR systems, already
implement this refinement of ωr (see Section 8.3.5.2). In the next two subsec-
tions, we prove that for non-reactive CHR rules the expensive maintenance of a
propagation history can always be avoided.

10.2.2 Propagation history elimination
Because non-reactive CHR constraints are only active once, non-reactive propaga-
tion rules often do not require a history:

Example 10.4. The sum/2 constraint in Listing 10.3 computes the sum of a
client’s account balances using a common CHR programming idiom to compute
aggregates. Similar code is also generated by the source-to-source transformations
used to implement aggregates in (Van Weert et al. 2008). The idiom uses a
(typically non-reactive) propagation rule to generate a number of constraints,
from which, after simplification to a single constraint, the result can be retrieved.

In the example, when the active gen/1 constraint considers the generate rule,
it iterates over candidate account/2 partner constraints. Assuming this iteration
is duplicate-free (we discuss this property shortly), the generate rule never fires
with the same constraint combination under ωr, even if no propagation history
is maintained. Indeed, the generate rule only adds sum/1 constraints, which,
as there is no get/1 constraint yet in the store (the body of the sum_balances
rule is executed from left to right), only fire the simplify rule.



10.2 Non-reactive Propagation Rules 193

Listing 10.3 CHR rules computing the sum of the account balances of a client.
These rules may be part of some larger CHR-based banking application.

:- chr_constraint account(+client, +float), sum(+client, ?float).
:- chr_constraint gen(+client), sum(+float), get(?float).
sum_balances @ sum(C, Sum) ⇔ gen(C), get(Sum).
generate @ gen(C), account(C,B) ⇒ sum(B).
simplify @ sum(B1), sum(B2) ⇔ sum(B1 + B2).
retrieve @ get(Q), gen(_), sum(Sum) ⇔ Q = Sum.

A common mistake is to assume that the history is thus superfluous for all
non-reactive CHR rules. The following example shows this is not the case:

Example 10.5. Reconsider the fibbo handler of Listing 10.1. If an up_to(U)
constraint is activated, the first rule adds two fib/2 constraints. Next, the second
rule propagates all required fib/2 constraints, each time with an active fib/2
constraint. After this, control returns to the suspended up_to(U) constraint, and
advances to its second occurrence. Some mechanism is then required to prevent
the second (non-reactive) propagation rule to add erroneous fib/2 constraints.

So, non-reactive propagation rules can match the same constraint combination
more than once. This occurs if one or more partner constraints for an active
constraint in rule ρ were added by firing ρ or some earlier rule with the same active
constraint. We say these partner constraints observe the corresponding occurrence
of the active constraint in ρ. This is similar to the notion of observation discussed
earlier in Section 8.3.3.1 in the context of late store optimisations. Formally:

Definition 10.5. Let the k’th occurrence of a rule ρ’s head be the j’th occurrence
of constraint predicate c/n. Then this occurrence is unobserved under a refined
operational semantics ω?r iff for all Activate or Default transitions of the form4:

〈A0,S,B,T〉_�P 〈[c#i :j|A],S,B,T〉_
(A0[1] = c#i or A0[1] = c#i : j − 1) the following holds: ∀(ρ, I) ∈ T : I[k] 6= i,
and similarly for all transition sequences starting with a Propagate transition

〈A,S,B,T〉_�P 〈B++A,S′,B′,T′〉_�?
P 〈A,S′′,B′′,T′′〉_

with A[1] = c#i :j, ∀(ρ, I) ∈ T′′\T′ : I[k] 6= i.

Let ω†r denote the semantics obtained from ω′r by adding the following condition
to its Propagate and Simplification transitions: “ If the j’th occurrence of c
is unobserved under ω′r, then T′ = T ”. Also, to prevent trivial reapplication
in a consecutive sequence of Propagate transitions (see e.g. Example 10.4),
propagation in ω†r is defined to be duplicate-free:

4We use ‘_’ to denote that we are not interested in the identifier counter.



194 Optimising Propagation Rules

Definition 10.6 (Duplicate-free Propagation). Propagation in a refined opera-
tional semantics ω?r is duplicate-free iff for all ω?r -derivations D of a CHR program
P where the j’th occurrence of c is kept, the following holds:

if



σ1�P σ2�?
P σ
′
1�P σ

′
2 is part of D

σ1 = 〈[c#i :j|A],S, . . .〉_ and σ′1 = 〈[c#i :j|A],S′, . . .〉_
σ1�P σ2 is a Propagate transition applied with constraints H ⊆ S
σ′1�P σ

′
2 is a Propagate transition applied with constraints H ′ ⊆ S′

between σ2 and σ′1 no Default transition occurs of the form
σ2�?

P 〈[c#i :j|A], . . .〉_�P 〈[c#i :j + 1|A], . . .〉_�?
P σ
′
1

then H 6= H ′.

Before we link this with the notion of duplicate-free constraint iterators
from Section 8.2.1.2, we first proof the soundness of eliminating the history of
unobserved CHR rules, by showing ω†r and ω′r are equivalent:

Theorem 10.1. Define the mapping function α† as follows:

α†(〈A,S,B,T〉n) = 〈A,S,B, {(ρ, I) ∈ T | ρ is not unobserved}〉n

If D is an ω′r derivation, then α†(D) is an ω†r derivation. Conversely, if D is an
ω†r derivation, then there exists an ω′r derivation D′ such that α†(D) = D′.

Proof. If D is an ω′r derivation, then α†(D) is clearly an ω†r derivation.
For the reverse direction, let D be an ω†r derivation, and D′ the derivation

obtained from D by adding the necessary tuples to the propagation history. That
is, for each Propagate or Simplify transition in D of the form

〈A,S,B,T〉n�P 〈B++A,S′,B,T〉n
the corresponding transition in D′ becomes of the form

〈A,S,B,T〉n�P 〈B++A,S′,B,T ∪ {(ρ, I)}〉n (10.1)

All Propagate and Simplify transitions in D′ now have form (10.1). It suffices
to show that for all these transitions (ρ, I) /∈ T (note that we used ∪ and not t,
as the disjointness of the union is is exactly what still needs to be shown).

Suppose there exist transitions of form (10.1) in D′ for which (ρ, I) ∈ T.
Without loss of generality, we may consider the first such transition. Suppose the
active constraint c#i :j matched the k’th occurrence in ρ’s head. Then, clearly,
this occurrence must be unobserved, and D′ starts with the transition sequence

D[1] �?
P 〈A0,S0,B0,T0〉n0 (A0[1] 6= c#i :j)

�P 〈[c#i :j|A′],S0,B0,T0〉n0

�?
P 〈[c#i :j|A′],S,B,T〉n

�P 〈B++[c#i :j|A′],S′,B,T ∪ {(ρ, I)}〉n



10.2 Non-reactive Propagation Rules 195

with [c#i :j|A′] = A, I[k] = i and (ρ, I) ∈ T. The sequence of transitions without
this last invalid Propagate transition is the beginning of a valid ω′r derivation.
Therefore, by Definition 10.5, (ρ, I) /∈ T0 (the j’th occurrence of c is unobserved,
and I[k] = i). Prior to the invalid Propagate transition, the non-reactive c#i :j
active constraint repeatedly appears on top of the activation stack in a sequence
of zero or more Propagate transitions:

. . .�P 〈[c#i :j|A],S0,B0,T0〉n0 �P 〈B1 ++[c#i :j|A],S′0,B0,T0 ∪ {(ρ, I1)}〉n0

�?
P 〈[c#i :j|A],S1,B1,T1〉n1

�P 〈B2 ++[c#i :j|A],S′1,B1,T1 ∪ {(ρ, I2)}〉n1

. . .
�P 〈[c#i :j|A],Sm,Bm,Tm〉nm

with Sm = S, Bm = B, Tm = T, and nm = n. By Definition 10.5:

∀i′ ∈ [1,m] : ∀(ρ, I ′) ∈ Ti′ \ (Ti′−1 ∪ {(ρ, Ii′)}) : I ′[k] 6= i′

and consequently (by induction):

Θ = {(ρ, I ′) ∈ T \ T0 | I ′[k] = i} = {(ρ, I1), . . . , (ρ, Im)}

Because propagation is duplicate-free, (ρ, I) /∈ Θ. Consequently, as I[k] = i,
(ρ, I) /∈ T \ T0. And we already showed that (ρ, I) /∈ T0, so (ρ, I) /∈ T. By
contradiction, no (first) transition of form (10.1) can exist with (ρ, I) ∈ T.

Implementation

In the terminology of Section 8.2.1.2, most constraint iterators used in CHR
implementations are strongly duplicate-free. For such iterators, the requirement
of Definition 10.6 is directly met. For those iterators that are only weakly
duplicate-free, a temporary table of already seen identifiers can be kept as long
as the iterator is in use.

The main difficulty in the implementation of this optimisation though is
deriving that a rule is unobserved. The abstract interpretation-based late storage
analysis of Schrijvers, Stuckey, and Duck (2005) can be adapted for this pur-
pose. We discussed this analysis that derives a similar observation property in
Section 8.3.3.1. The details are beyond the scope of this section.

10.2.3 Optimised reapplication avoidance
Non-reactive CHR rules that are not unobserved, such as the second rule in
the fibbo handler of Example 10.5, do require some mechanism to prevent
reapplication. Moreover, even if a rule is unobserved, this does not mean the
compiler is capable of deriving it. In this section we therefore present a novel, very



196 Optimising Propagation Rules

efficient technique that prevents the reapplication of any non-reactive propagation
rule without maintaining a costly history.

The central observation is that, when a non-reactive rule is applied, the active
constraint is always more recent than its partner constraints:

Lemma 10.2. Let P be an arbitrary CHR program, with ρ ∈ P a non-reactive
rule, and D an arbitrary ω′r derivation with this program. Then for each Simplify
or Propagate transition in D of the form

〈[c#i :j|A],S,B,T〉n�P 〈A′,S′,B′,T t {(ρ, I1 ++[i]++I2)}〉n (10.2)

the following holds: ∀i′ ∈ I1 ∪ I2 : i′ < i.

Proof. Assume i′ = max(I1 t I2) with i′ ≥ i. By CHR’s definition of matching
substitutions (Definition 4.3), i′ 6= i, and ∃c′#i′ ∈ S. This c′#i′ partner constraint
must have been stored in an Activate transition. Since i′ = max(I1 t {i} t I2),
in D, this transition came after the Activate transitions of all other partners,
including c#i. In other words, all constraints in the matching combination of
transition (10.2) were stored prior to the activation of c′#i′. Also, in (10.2),
c#i is back on top of the activation stack. Because c is non-reactive, and thus
never put back on top by a Reactivate transition, the later activated c′#i′ must
have been removed from the stack in a Drop transition. This implies that all
applicable rules matching c′ must have fired. As all required constraints were
stored (see earlier), this includes the application of ρ in (10.2). By contradiction,
our assumption is false, and i′ < i.

Let ω‡r denote the semantics obtained from ω′r by replacing the propagation
history condition in its Simplify and Propagate transitions with:

If ρ is non-reactive, then ∀i′ ∈ id(H1 ∪H2) : i′ < i and T′ = T. Otherwise,
let t = (ρ, id(H1)++[i]++ id(H2)), then t /∈ T and T′ = T ∪ {t}.

Propagation in ω‡r is again duplicate-free, as defined by Definition 10.6. Similarly
to Theorem 10.1, the following theorem proves that ω′r and ω‡r are equivalent:

Theorem 10.3. Define the mapping function α‡ as follows:
α‡(〈A,S,B,T〉n) = 〈A,S,B, {(ρ, I) ∈ T | ρ is a reactive CHR rule}〉n

If D is an ω′r derivation, then α‡(D) is an ω‡r derivation. Conversely, if D is an
ω‡r derivation, then there exists an ω′r derivation D′ such that α‡(D) = D′.

Proof. If D is an ω′r derivation, then, by Lemma 10.2, α‡(D) is an ω‡r derivation.
For the reverse direction, let D be an ω†r or ω‡r derivation, and D′ obtained

from D by adding the necessary tuples to the propagation history, as in the proof
of Theorem 10.1. I.e., all Propagate and Simplify transitions in D′ have form
(10.1). It again suffices to show that for all these transitions (ρ, I) /∈ T.



10.2 Non-reactive Propagation Rules 197

procedure up_to(U)#id : 2
foreach fib(N,M2)#id2 in ...
foreach fib(N-1,M1)#id1 in ...

if N < U
if id < id1 and id < id2
. . .

(a) Efficient reapplication avoidance using iden-
tifier comparisons

procedure up_to(U)#id : 2
foreach fib(N,M2)#id2 in ...
if id < id2 and N < U
foreach fib(N-1,M1)#id1 in ...
if id < id1
. . .

(b) After loop-invariant code motion

Figure 10.1: Optimised reapplication avoidance for non-reactive rules. These
listings show pseudocode for the second occurrence of the up_to/1 constraint in
the fibbo program of Listing 10.1.

First, we show that Lemma 10.2 still holds for the derivation D. That is,
for all transitions of D of form (10.1), if the active constraint matched the k’th
occurrence in ρ’s head, then I[k] = max(I). By definition of ω†r, this is true for
the tuples that were not added to the history in the original derivation D. For
those added in both D and D′, this also holds by definition of ω†r and Lemma 10.2.

Suppose, for some transition of form (10.1), that (ρ, I) ∈ T, and that the active
constraint matched the k’th occurrence of ρ. Then I[k] = max(I). Moreover,
when the (ρ, I) tuple was first added to the history, by uniqueness of constraint
identifiers, the active constraint was the same constraint as active in the considered
constraint. As propagation is duplicate-free in D, and the active constraint is
non-reactive, this is not possible.

Implementation

As duplicate-freeness is easily enforced as before in Section 10.2.2, implementing
identifier-based reapplication prevention is trivial.

Example 10.6. Figure 10.1(a) shows the generated code for the second oc-
currence of the up_to/1 constraint in Lisiting 10.1. For the query up_to(U),
the propagation history for the corresponding rule would require O(U) space.
Because all constraints are non-reactive, however, no propagation history has to
be maintained. Simply comparing constraint identifiers suffices.

In Section 8.3.2.1 we discussed loop-invariant code motion optimisation, an
optimisation aimed at checking guards and other tests as soon as possible in the
nested loops. Contrary to a propagation history check, identifier comparisons
are eligible for code motion, as illustrated in Figure 10.1(b). This can prune the
search space of candidate partner constraints considerably.

In fact, Lemma 10.2 does not only apply to propagation rules, but also to
simplification and simpagation rules. Whilst maintaining a history for non-



198 Optimising Propagation Rules

propagation rules is pointless, comparing partner constraint identifiers in outer
loops is not, as they can avoid redundant iterations of nested loops.

10.3 Idempotence
Constraints in CHR handlers that specify traditional constraint solvers typically
range over unbound variables, and are thus highly reactive. Without a history,
constraint reactivations are likely to cause reactive propagation rules to fire
multiple times with the same combination. For constraint solvers, however, such
additional rule applications generally have no effect, as most ‘pure’ constraints
have set semantics. This was discussed in detail in Section 5.1.6. A stronger
property, called idempotence, than set semantics is required though. For idem-
potent rules, we can prove that the propagation history may be eliminated as well.
Because the history is a relatively expensive data structure, this can considerably
improve performance.

Example 10.7. Suppose for the classic leq program of Listing 4.1 that the
(reactive) transitivity propagation rule is allowed to fire a second time with
the same constraint combination matching its head, thus adding a leq(X,Z)
constraint for the second time. If the earlier told duplicate is still in the store,
this redundant leq(X,Z) constraint is immediately removed by the idempotence
rule. Otherwise, the former duplicate must have been removed by either the
reflexivity or the antisymmetry rule. It is easy to see that in this case X
= Z, which implies the new, redundant leq(X,Z) constraint is again removed
immediately by the reflexivity rule.

We say the leq/2 constraint of the above example is idempotent. With
live(T,S) defined as in Section 10.1, idempotence is formally defined as:

Definition 10.7. A CHR constraint predicate c/n is idempotent in a CHR
program P under a refined semantics ω?r iff for any state σ = 〈[c|A],S,B,T〉n in a
ω?r derivationD with c a CHR constraint, the following holds: if earlier inD a state
〈[c′|A′],S′,B′,T′〉n′ occurs with DH |= B → c = c′, then σ�?

P 〈A,S′′,B′′,T′′〉n′′

with S′′ = S, live(T′′,S) = live(T,S), and DH |= πvars(B)∪vars(D[1])(B′′)↔ B.

In words, an idempotent constraint c for which a syntactically equal con-
straint c′ was told earlier in the same derivation, is removed without making any
observable state change. Since ‘�?

P’ denotes a finite derivation, telling duplicate
idempotent CHR constraints does not affect termination either.

We do not consider arbitrary, extra-logical host language statements here, and
assume all built-in constraints b are idempotent, that is: ∀b : DH |= b∧ b↔ b. By
adding “If DH |= (B∧ b)↔ B, then S = ∅ ” to the Solve transition of ωr (or any
of its refinements in Section 10.2), we avoid redundant constraint reactivations



10.3 Idempotence 199

when idempotent built-in constraints are told. This is correct, as Solve’s upper
bound on S already specifies that any matching that was already possible prior
to b’s addition may be omitted from S. Most CHR systems implement this
optimisation. Denote the resulting semantics ωidemr .
Definition 10.8. A CHR rule ρ ∈ P is idempotent (under ωidemr ) iff all CHR
constraint predicates that occur in its body are idempotent in P.

We now prove that an idempotent propagation rule may be fired more than
once with the same combination of constraints, without affecting a program’s
operational semantics. Let ωidem′

r denote the semantics obtained by adding the
following phrase to the Simplify and Propagate transitions of ωidemr :

If the rule ρ is idempotent, then T’ = T; otherwise, . . . (as before)
Assuming then that propagation for ωidem′

r is duplicate-free5 in the sense of
Definition 10.6, the ωidem′

r semantics is equivalent to ωidemr . More precisely:
Theorem 10.4. If D′ is an ωidem′

r derivation, then there exists an ωidemr deriv-
ation D with D[1] = D′[1] such that a monotonic function α can be defined from
the states in D to states in D′ for which
• α(D[1]) = D′[1]
• if α(D[i]) = D′[k] and α(D[j]) = D′[l] with i < j, then k < l

• if α(〈A,S,B,T〉n)=〈A′,S′,B′,T′〉n′ then DH |= πvars(B)∪vars(D[1])(B′)↔ B,
A′ = A, S′ = S, and live(T′,S) = live(T,S) \ {(ρ, I) ∈ T | ρ is idempotent}.

Conversely, if D is an ωidemr derivation, then an ωidem′

r derivation D′ exists with
D′[1] = D[1] for which a function with the same properties can be defined.

Proof sketch. An ωidem′

r derivation D′ only differs from the corresponding ωidemr

derivation D when a Propagate transition fires an idempotent propagation rule
ρ using a combination of constraints that fired ρ before. This ωidem′

r transition
has form σ0 = 〈A,S,B,T〉n�P 〈B ++A,S,B,T〉n = σ1. Because ρ’s body B
is idempotent, it follows from Definition 10.7 that the remainder of D′ begins
with σ1�?

P σ
′
0 = 〈A,S,B′,T′〉n, with DH |= πvars(B)∪vars(D[1])(B′) ↔ B, and

live(T′,S) = live(T,S). Because σ′0 is thus essentially equivalent to σ0, we simply
omit states σ1 to σ′0 in the corresponding ωidemr derivation D.

Given above observations it is straightforward to construct the mapping
function α and the required derivations for both directions of the proof.

For multi-headed propagation rules, reapplication is often cheaper than main-
taining and checking a propagation history. The experimental results of Sec-
tion 10.4 confirm this. Still, heuristics should probably be used though to estimate
the cost of reapplication versus the cost of maintaining a history.

5In this case a finite number of duplicate propagations would also not be a problem.
Consequently, weakly duplicate-free iterators, for instance, are sufficient (cf. Section 8.2.1.2).



200 Optimising Propagation Rules

10.3.1 Deriving idempotence
The main challenge lies in automatically deriving that a CHR constraint is
idempotent. A wide class of idempotent CHR constraints should be covered:

Example 10.8. Many CHR-based constraint solvers contain a rule such as:
in(X,L1,U1) \ in(X,L2,U2) ⇔ L2 ≤ L1, U2 ≥ U1 | true.

Here, ‘in(X,L,U)’ denotes that the variable X lies in the interval [L, U]. The in/3
constraint is probably idempotent (it depends on the preceding rules). There
is however an important difference with the leq/2 constraint in Example 10.7:
by the time the constraint is told for the second time, the earlier told duplicate
may now be replaced with a syntactically different constraint—in this case: a
constraint representing a smaller interval domain.

Theorem 10.5 provides a sufficiently strong syntactic condition for determining
the idempotence of a CHR constraint. It uses arbitrary pre-orders on the
constraint’s arguments. For the three arguments of the in/3 constraint in
Example 10.8 for instance, the pre-orders =, ≤ and ≥ can be used respectively.

Let P? again denote the linearised normal form of a CHR program P, and
bi(B) and chr(B) the conjunction of built-in respectively CHR constraints that
occur in a constraint conjunction B. Then:

Theorem 10.5. A CHR constraint predicate c/n is idempotent in P under ωidemr

if for a series of pre-orders C1, . . . ,Cn:

1. There exists a rule of the form “c(y1, . . . , yn) \ c(x1, . . . , xn)⇔ G | true.”
in P? with DH |= (x1 C1 y1 ∧ . . . ∧ xn Cn yn)→ G.
Let ρ be the first such rule occurring in the P? sequence.

2. All rules in P? prior to ρ that contain an occurrence of c/n have a trivial
body ‘true’, and do not contain any removed occurrences apart from possibly
that c/n occurrence.

These first two conditions ensure that newly told duplicate c/n constraints are
always removed without adding or removing any constraints, if either the original
duplicate is still alive, or if it has been replaced with a ‘smaller’ version. The
third condition deals with the final remaining case where the original duplicate is
not replaced with a ‘smaller’ version, but truly removed by simplification:

3. Consider a set of n mutually distinct variables V = {x1, . . . , xn}. Define
Φ = πV (G ∧ bi(B)) for all removed occurrences of c/n in a rule of P? that
can be renamed to the form ‘Hk \ Hr1 , c(x1, . . . , xn), Hr2 ⇔ G | B’ (Hk,
Hr1 , and Hr2 may be empty), such that ¬∃c(y1, . . . , yn) ∈ Hk ∪ chr(B) :
DH |= G∧bi(B)→ (x1C1y1∧ . . .∧xnCnyn). For each of these occurrences,
either DH |= Φ↔ false, or the following two conditions hold:



10.3 Idempotence 201

(a) There exists a rule in P? that can be renamed to the form
‘c(x1, . . . , xn)⇔ G |B’, such that bi(B) = B and DH |= Φ→ (G∧B).
Let ρ′ be the first such rule occurring in the P? sequence.

(b) All rules in P? prior to ρ′ that contain an occurrence of c/n can be re-
named to “Hk \Hr⇔G |B” with Hk++Hr = H1 ++[c(x1, . . . , xn)]++
H2, such that either
- DH |= Φ→ ¬G; or
- Hr ⊆ [c(x1, . . . , xn)] ∧ (bi(B) = B) ∧ DH |= (Φ ∧G)→ B; or
- ∃c(y1, . . . , yn) ∈ H1 ∪ H2 : DH |= (Φ ∧ G) → (x1 C1 y1 ∧ . . . ∧
xn Cn yn).

Proof. Let P be an arbitrary CHR program, and suppose that in this program
the four conditions listed in Theorem 10.5 hold for CHR constraint c/n. Let D
be an arbitrary ωidemr derivation of P of the form

〈Q, ∅, true, ∅〉1�?
P σ
′ = 〈[c′|A′],S′,B′,T′〉′n�?

P σ = 〈[c|A],S,B,T〉n

with c and c′ CHR constraint of type c/n such that DH |= B→ c = c′. Clearly,
D 3 σ′�P 〈[c′#n′|A], {c′#n′} ∪ S′,B′,T′〉n′+1, that is: at some point earlier in
the derivation the duplicate constraint c’#n’ was added to the constraint store.
Suppose now that DH |= π∅(B) (the case with DH |= ¬π∅(B) is straightforward),
and that σ�P σ0 = 〈[c#n|A], {c#n} ∪ S,B,T〉n+1�?

P 〈A,S′′,B′′,T′′〉n′′ . Then
it remains to be shown that S′′ = S, DH |= πvars(B)∪vars(D[1])(B′′) ↔ B, and
live(T,S) = live(T′′,S′′). For the derivation starting from σ0, with active con-
straint c#n, we consider two cases. Let C denote the pre-order on c/n constraints
defined as c(x1, . . . , xn)C c(y1, . . . , yn)↔ x1 C1 y1 ∧ . . . ∧ xn Cn yn, then:

Case A ∃c′′#n′′ ∈ S : DH |= B→ cC c′′

Let ρ be the rule as defined in condition 1. Then appl(ρ, [c′′#n′′], [c#n],B),
so the active constraint c#n is removed when it reaches rule ρ. By condition 2,
none of the rules that are applied with c#n active before it is removed (by an ap-
plication of ρ or earlier) remove or add any constraints. Therefore, no other CHR
constraint becomes active before c#n is removed, and σ0�?

P 〈A,S,B′′,T′′〉n′′

with πvars(B)∪vars(D[1])(B′′)↔ B (only matching substitutions may be added to
B), and live(T,S) = live(T′′,S) (all rules fired involve c#n).

Case B ¬∃c′′#n′′ ∈ S : DH |= B→ cC c′′

Given this assumption, the c′#n′ constraint must have been removed from the
store at some point in the derivation. Moreover, this occurred when matching an
occurrence that, after renaming, had form “Hk \ Hr1 , c(x1, . . . , xn), Hr2 ⇔ G |B”.
If for this rule the following holds:



202 Optimising Propagation Rules

SWI JCHR
tree 2-hash hash 2-hash

eq(35) 3,465 N/A6 47 37 (79%)
leq(70) 3,806 2,866 (75%) 85 65 (76%)

Table 10.1: Benchmark results (in average milliseconds) for two-headed rules.

∃c(y1, . . . , yn) ∈ Hk ∪ chr(B) : DH |= G ∧ bi(B)→ (x1 C1 y1 ∧ . . . ∧ xn Cn yn)
(10.3)

then a constraint c′′#n′′ with DH |= B→ c = c′ C c′′ existed in, or was added to
the store S at the moment c′#n′ was removed. This constraint, in turn, must
have been removed, so we apply the above reasoning again, only this time for
c′′#n′′ instead of c′#n′.

After a finite number of times, c′#n′, or one of its derived constraints c′′#n′′,
must have been removed by a rule for which formula (10.3) does not hold.
For V = {x1, . . . , xn}, define Φ = πV (G ∧ bi(B)) as in the Theorem. The
case where DH |= Φ ↔ false is trivial, so assume DH |= Φ 6↔ false. Then
DH |= B → Φ, and conditions 3(a) and (b) hold. By condition 3(a), ∃ρ′ ∈
P? : appl(ρ′, ∅, [c#n],Φ), and thus ∃ρ′ ∈ P? : appl(ρ′, ∅, [c#n],B). This rule ρ′
furthermore does not add CHR constraints, nor does it add built-in constraints
that are not already entailed by B. Condition 3(b) then ensures that none of the
rules applied whilst c#n is active, and before the c constraint is removed (by an
application of ρ′ or earlier), remove or add CHR constraints, or add unentailed
built-in constraints. Therefore, analogously to Case A, σ0�?

P 〈A,S,B′′,T′′〉n′′

with live(T′′,S) = live(T,S) and DH |= πvars(B)∪vars(D[1])(B′′)↔ B.

10.4 Evaluation
We implemented the optimisations introduced in this paper in the K.U.Leuven
CHR system for SWI-Prolog, and in the K.U.Leuven JCHR system for Java, and
evaluated them using standard CHR benchmarks and constraint solvers.

Table 10.1 shows some empirical results measured for our improved history
implementation for two-headed rules. The new hash tables are about 25% faster.
Since the K.U.Leuven CHR system normally maintains the history using a
balanced tree, the hash table actually improves the time complexity.

More important though are the benchmark timings for our history elimination
optimisations. These are given in Tables 10.2 and 10.3. In both tables, the history

6In the current SWI implementation, the history of a two-headed propagation rule is only
optimised if there are no other propagation rules in the program. In JCHR, this is irrelevant,
as JCHR maintains a separate history per rule.



10.4 Evaluation 203

SWI JCHR total # n-head. prop.
history non-react history non-react non-react+ rules 1 2 3 >

fibbo(1000) 15,929 4,454 (28%) 70 67 (95%) 21 (30%) 3 1 - 1 -
fibbo(3000) timeout timeout 542 464 (86%) 153 (28%) 3 1 - 1 -
floyd-warsh(30) 11,631 9,706 (83%) 368 188 (51%) 186 (51%) 21 3 2 1 -
interpol(8) 5,110 1,527 (30%) 43 41 (95%) 37 (86%) 5 - 2 - -
manners(128) 849 561 (66%) 328 322 (98%) 317 (97%) 8 - - 1 -
nsp_grnd(12) 547 169 (31%) 10 6 (60%) 5 (50%) 3 1 1 - -
nsp_grnd(36) 81,835 10,683 (13%) 1,434 502 (35%) 494 (34%) 3 1 1 - -
sum(1000,100) 6,773 3,488 (51%) 215 135 (63%) N/A 4 - 1 - -
turing(20) 10,372 7,387 (71%) 761 280 (37%) 276 (36%) 11 1 4 1 5
wfs(200) 2,489 2,143 (86%) 71 67 (94%) 67 (94%) 44 - 4 - -
AVERAGE 51.1% 71.5% 56.2%

Table 10.2: Benchmark results (in average ms) for non-reactive CHR rules.

SWI JCHR total # n-headed prop.
history idempotence history idemp. rules 1 2 3 >

eq(35) 3,465 1,931 (56%) 47 19 (40%) 4 - 1 - -
leq(70) 3,806 1,236 (32%) 85 35 (41%) 4 - 1 - -
interval(21) 22,622 17,611 (78%) 8 5 (62%) 25 1 4 5 2
interval(42) timeout timeout 54 28 (52%) 25 1 4 5 2
minmax(15) 4,826 3,631 (75%) 133 82 (63%) 55 2 4 - -
nsp(12) 1,454 1,036 (71%) 12 8 (67%) 3 1 1 - -
nsp(36) timeout timeout 1,434 621 (43%) 3 1 1 - -
nsp_grnd(12) 547 164 (30%) 10 6 (60%) 3 1 1 - -
nsp_grnd(36) 81,835 10,485 (13%) 1,365 496 (36%) 3 1 1 - -
timepoint(16) 1,684 1,312 (78%) 404 317 (78%) 7 - 2 - -
AVERAGE 54.1% 54.2%

Table 10.3: Benchmark results (in average ms) for idempotent CHR rules.

columns contain the reference timings (in milliseconds) when using a propagation
history, and the last five columns provide an overview of the number of rules and
propagation rules in the different programs.

The non-react columns in Table 10.2 contain the results when the optimisations
of Section 10.2 are used. For the ‘non-react+’ measurements, loop-invariant code
motion was applied to the identifier comparisons (cf. Section 10.2.3; currently
only implemented in JCHR7). If the history was eliminated using the optimisation
of Section 10.2.2, code motion is not applicable (N/A). Table 10.3 shows the
results for the idempotence-based history elimination of Section 10.3.

Significant performance gains were measured. The benchmarks run about

7In JCHR, after code motion, identifier comparisons are integrated in the constraint iterators
themselves. These iterators moreover exploit the fact that the stored constraints are often
sorted on their identifiers. This can further improve performance.



204 Optimising Propagation Rules

two times faster on average, and scale better as well. For SWI, we even expect
considerable better timings once the identifier comparisons are integrated into
the loop-invariant code motion optimisation. Our numbers may also suggest a
hash-based history (JCHR) is better suited than a tree-based one (SWI).

The space complexity of the propagation histories has become optimal as well.
Unoptimised, the worst-case space consumption of a propagation history, O(|S|n),
is linear in the number of possible rule applications. Using our optimisations,
propagation histories consume no space at all. This may even improve the space
complexity of the entire CHR program.

10.5 Conclusions
While there is a vast literature on CHR compilation and optimisation, propagation
histories never received much attention. Maintaining a propagation history,
however, comes at a considerable runtime cost, both in time and in space, even
when applying the optimisations we introduced in Section 10.1. In this work, we
resolved this apparent discrepancy, and introduced several innovative optimisation
techniques that circumvent the maintenance of a history for the majority of CHR
propagation rules:

• We introduced the notion of non-reactive CHR constraints and rules, and
showed that for non-reactive CHR propagation rules very cheap constraint
identifier comparisons can be used to prevent reapplication. These com-
parisons can moreover be moved early in the generated nested loops, thus
pruning the search space of possible partner constraints. An optimisation
that is even applicable for non-propagation rules. We also identified the
class of non-reactive rules for which the history can be eliminated entirely.

• While rules in general-purpose CHR programs are mostly non-reactive, CHR
handlers that specify a constraint solver typically are not. We therefore
introduced the concept of idempotence, and found that most rules in the
latter handlers are idempotent. We presented a sufficient syntactic condition
for the idempotence of a CHR constraint, and showed that if a propagation
rule is idempotent, it may safely be applied more than once matching the
same combination of constraints. Interestingly, reapplication is mostly
cheaper than maintaining and checking a history.

We proved the correctness of all our optimisations and analyses in the formal
framework of CHR’s refined operational semantics ωr, and implemented them
in two state-of-the-art CHR systems. Our experimental results show significant
performance gains (almost 50% on average) for all known benchmarks that
extensively use constraint propagation. Moreover, for most CHR programs, the
worst-case space complexity is reduced from O(|S|n) to O(|S|).



10.5 Conclusions 205

10.5.1 Related work
Section 10.2.2 can be seen as an extension and formalisation of an optimisation
briefly presented by Duck (2005). This ad-hoc optimisation was restricted to
fixed CHR constraints, and lacked a formal correctness proof. Besides this, no
real work on propagation history optimisation existed prior to ours. As discussed
next though, there have been some proposals to abandon the history, typically
accompanied by the introduction of set semantics or idempotent constraints.

Since the propagation history contributes to significant performance issues
when implementing CHR in a tabling environment (see e.g. Schrijvers and Warren
2004), Sarna-Starosta and Ramakrishnan (2007) propose an alternative set-based
CHR semantics, and argues that it does not need a propagation history. Our
results, however, show that abandoning CHR’s familiar multiset-based semantics is
not necessary: indeed, our optimisations eliminate the history-related performance
issues whilst preserving the ωr-semantics.

More recently, Betz, Raiser, and Frühwirth (2009) proposed ω! as a more
declarative alternative for ωt. Unlike ωt, ω! has no propagation history. They
introduce a new type of CHR constraints, called persistent constraints. These
are the equivalent of replicated (‘banged’) resources in linear logic, or replicated
processes !P in process calculi. Persistent constraints are (theoretically) never
removed from the store, and are therefore inherently idempotent. It is not yet
clear what the impact this new, more elegant semantics will have though.

Lastly, in the context of production rules (cf. Chapter 2), we recently re-
discovered that the LEAPS algorithm uses timestamp comparisons to prevent
reapplication, analogously to our approach in Section 10.2.3. We discuss this
further in the upcoming future work section.

10.5.2 Future work
All formal results in this chapter apply to ωr-based CHR systems only. In future
work, we will extend these results to more general CHR2 programs. Extending
idempotence is simply a matter of adjusting the analysis used to determine rule
idempotence. How to (best) extend our identifier-based reapplication prevention
techniques to priorities and negation, however, requires further research.

Priorities

For ωr-based systems, we proved that identifier- and history-based reapplication
prevention are completely equivalent. The semantics of current priority-based
formalisms CHRrp and CHR2 , however, are far less deterministic than ωr. Due
to the schedule and late indexing optimisations (Section 8.3.3.1), constraints are
no longer always activated in increasing order of identifiers. Consequently, while
identifier comparisons remains possible, it will affect the rule application order.



206 Optimising Propagation Rules

That is: certain rule applications will be stopped, not because they have already
fired, but because they will fire in the future.

Negation

More problematic though are rules that contain negation as absence. Firstly,
for a correct implementation of their fire-many semantics (cf. Section 6.3), the
ad-hoc garbage collection techniques of Section 10.1 that are used by current
systems are no longer sufficient. Propagation history tuples of rule instances that
become inapplicable because constraints matching a negated condition are added,
must be removed eagerly. This is a relatively expensive operation, but seems
unavoidable in general. To explain why, we must first discuss the algorithm used
by LEAPS (Miranker et al. 1990; Brant 1993; Batory et al. 1994). For simplicity,
we use CHR terminology (cf. Table 2.1).

Similar to the positive case, LEAPS assigns a timestamp to each removed
constraint to represent the time of its removal. For an active removed constraint,
a rule instance is again only valid if its removal timestamp is larger than any
other timestamp of matched head conditions. New is that timestamps of negated
heads—for which matching removed constraints now of course may also have
observed the same rule instance before—are always taken into account as well.
For this, a so-called shadow store is maintained that contains (in principle) all
removed constraints. When some active constraint, added or removed, checks a
negation condition (cf. Section 8.2.3), this shadow store is now also checked, and
if some shadowed removed constraint exists with a timestamp larger than that of
the active constraint, the rule does not fire.

There are two serious problems with this approach though:
1. Firstly, the LEAPS algorithm only considered OPS5 rules, that is, all

negated conditions consist only consist of a single (possibly guarded) occur-
rence (cf. Section 2.2.2). We believe the shadow store approach cannot be
(efficiently, if at all) extended to more complex negated conjunctions that
consist of a join of multiple constraint occurrences.

2. Secondly, a shadow memory suffers from exactly the same garbage collection
issues as a propagation history. Keeping track of all removed constraints
indefinitely is clearly not an option. It can be hard to determine though
when removed facts are no longer needed, perhaps even harder than for
propagation history tuples. And even if redundant shadow constraints are
optimally reclaimed, Brant (1993) shows the shadow store still has the exact
same worst-case space complexity as a history, that is O(|S|n).

For fire-many rules, in general, a history with an eagerly implemented
cleanHistory() operation may therefore be the only solution. For single-
occurrence negated conditions, further experimentation is required to determine
which approach is best: keeping a propagation history or a shadow store?



Chapter11
Conclusions

Ideas are like rabbits. You get a couple and learn how
to handle them, and pretty soon you have a dozen.

— John Steinbeck (1902–1968)
American writer

11.1 Contributions
Our goal was the design and implementation of a more practically usable, declar-
ative CHR system. We now briefly summarise how each chapter contributed to
this goal.

11.1.1 CHR language design
In Chapter 5, we proposed CHR2 as a solid basis for a next generation of more
declarative and practical CHR systems. CHR2 offers a more elegant, streamlined
syntax, and allows the program’s logic to be specified using truly declarative rules.
Among other things, CHR2 also offers convenient syntax to declare constraint
invariants, a feature that has proven invaluable for the optimising compilation
in Part III. We formally specified and studied the operational semantics of the
CHR2 language, and designed it to be as non-deterministic as possible while still
effectively controllable. Unlike in the currently prevalent ωr-based systems, the
CHR2 system itself normally fully decides the execution strategy. If needed, rule
application can be controlled using a combination of two orthogonal, familiar
control mechanisms: selective sequentiality (similar to existing ωr-based systems)
and priority constraints (further improving on the work of De Koninck (2008)).

Next, in Chapter 6, we further extend CHR2 with aggregates such as negation
as absence, sum, min, and findall. By eliminating the need for cumbersome,

207



208 Conclusions

cross-cutting, and error-prone auxiliary constructs, these powerful language
extensions improve CHR’s expressiveness and conciseness considerably, as shown
by a number of case studies. All pragmatic advantages of declarative programming
are thus regained. We have fully explored the language design space for aggregate
conditions, and worked out a very general framework that supports e.g. user-
defined and nested aggregates. We moreover outlined why CHR2 is far better
suited to host aggregates than traditional CHR variants (that is, compared e.g.
to the implementation for ωr-based CHR systems we presented in Van Weert
et al. 2008).

In the final chapter of Part II, we presented our general design philosophy
for natural, practical embeddings of CHR in imperative host languages. We
highlighted the design challenges faced, and motivated and discussed our design
decisions. Unlike other approaches, our focus has been on the seamless integration
and interaction with the imperative host. As a substantial proof-of-concept case
study, we implemented the K.U.Leuven JCHR system. The result is a user-
friendly, flexible, and highly efficient CHR system for Java, that has already been
used in at least two industrial applications. Its successor, JCHR2 , is also a first
reference implementation of a substantial subset of CHR2 .

11.1.2 Optimising implementation of CHR
In Chapter 8, we port the classic CHR(Prolog) compilation scheme to an imper-
ative setting, and present numerous existing and new CHR optimisations in one
coherent framework. We extended the basic evaluation methodology and optim-
isations to the more expressive and less deterministic CHR2 language, extended
with negation as absence. We introduced many new optimisations and techniques
developed for the different K.U.Leuven JCHR systems, and discussed how we have
significantly improved or refined existing ones. The resulting JCHR systems are
shown to consistently outperform other CHR systems and mainstream production
rule systems, typically by several orders of magnitude.

The last two chapters treat two important compiler optimisations in greater
detail. In Chapter 9, we demonstrated the technical problems we experienced with
recursive CHR programs—and any non-trivial CHR program is recursive—when
using the traditional compilation scheme. Particularly when compiling to an
imperative target language, executing recursive programs frequently resulted in
call stack overflows. We therefore redesigned the compilation scheme. Using
our improved techniques, recursive CHR programs now scale properly, also for
imperative host languages. Tail recursive CHR programs even execute in optimal
constant stack space, independent of the host language.

Chapter 10 deals with reapplication prevention of CHR propagation rules.
We found that the traditional approach of maintaining a propagation history
is overly costly, both in space and in time. We therefore developed two novel



11.2 Future Work 209

optimisation techniques to improve the performance of propagation rules. Firstly,
for non-reactive CHR rules—most rules in general-purpose CHR programs are non-
reactive—reapplication can be prevented far more efficiently by simply comparing
the timestamps of the CHR constraints involved in the rule application. Secondly,
for idempotent CHR rules—which most rules in constraint solvers are—we showed
that allowing reapplication is not only allowed, but, more interestingly, mostly
cheaper than preventing it as well. All optimisations are formally proven correct
in the ωr framework. Together, our two optimisations ensure that for the majority
of CHR propagation rules reapplication prevention no longer consumes space.
Empirical evaluation shows that propagation-intensive benchmarks run about
twice as fast.

11.2 Future Work
Much progress has been made by CHR research in the past decade. However,
a few difficult questions are still unresolved, and in the meantime many more
problems have become apparent. In our view the following three topics are grand
challenges that must be addressed by the CHR research community in the next
decade. These three grand challenges are not only of technical interest, they are
also vital for the further adoption of the CHR community and user-base.

1. Programming environments and tools. If measured by current stand-
ards, which dictate that a language is only as good as its tools, CHR is
a poor language indeed. Modern IDE support for CHR is virtually non-
existent (sole exception is the rudimentary JCHRIDE tool by Abdennadher
and Fawzy (2008)), and CHR’s (ad-hoc) debugging tools are still very
immature. While several strong theoretical results have been obtained in
the field of program analysis for CHR, little (if any) effort has been made
to embody these results into a practical tool for day-to-day programming.
For example, programmers have to manually check for confluence, and,
in the case of non-confluence, complete their solvers by hand. There is a
great opportunity for taking these theoretical results and establishing their
practical relevance by creating the right tools.

2. Parallelism, concurrency. Recent theoretical work (Frühwirth 2005b;
Meister 2006) confirms CHR’s inherent aptness for parallel programming.
Truly leveraging the full power of current and future multi-core processors
through CHR, however, requires practical, efficient, concurrent implement-
ations. Currently, these implementations are still in early stages (cf. Sec-
tion 4.5 for a discussion of some early Haskell-based prototypes). Many
important problems are still to be researched in this domain, from language
features and semantics, to analysis, implementation, and optimisation.



210 Conclusions

3. Scaling to real-life programs. Strong theoretical results have been
obtained concerning the performance of CHR, and these have also been
reflected in the actual runtimes of CHR programs. However, CHR is still
at least one or two orders of magnitude slower than most conventional
programming languages and constraint solvers. This becomes particularly
apparent for CHR applications that surpass the toy research programs of
10 lines: industrial applications for instance, such as those mentioned in
Section 4.6.4, easily count 100 to 1,000 lines or more. Our compilation
scheme is insufficiently capable of handling such programs. Some potential
scalability aspects are:

• huge constraint stores that have to be persistent and/or distributed;
• dynamic optimisations and JIT compilation, as discussed in Section 8.6;
• incremental compilation, run-time rule assertion;
• reflection, higher-order / meta-programming

These and other aspects must be investigated to achieve further industrial
adoption.



Appendices

211





AppendixA
Heuristics for an
A? Join Ordering Algorithm

Based on their generic cost formula for CHR join ordering, De Koninck (2008,
Chapter 6) and Sneyers (2008, Chapter 9) propose a heuristic for the use in an
A?-based join ordering implementation. In this appendix, we show first that this
heuristical underestimate is incorrect, and then derive a correct, equally efficiently
computable heuristic. We only consider regular CHR heads here. The extension
towards more expressive head conditions is not hard.

We assume the reader is familiar with the A? algorithm (Hart et al. 1972);
join ordering was introduced in Section 8.3.2.7. Briefly, A? is used to implement
(nested-loop) join ordering as follows. The algorithm maintains a pool of partial
joins (initially a single, empty join). In each iteration, the most promising
partial join is heuristically selected, and gives rise to n new partial joins, one for
each remaining join partner. To improve the runtime complexity from O(n!) to
O(n · 2n), a closed set—a standard A? optimisation—of already expanded joins is
used, where different permutations of the same set of join partners is treated as
identical. A detailed discussion is outside the scope of this appendix.

For a given set of remaining, not-yet-joined occurrences, the problem at hand
is thus to find a lower bound on the estimated cost of computing the remainder
of the join, with ‘cost’ defined by the cost formula of De Koninck and Sneyers
(2007). This heuristic must be admissible, that is, it may never exceed the actual
remaining cost estimate given by the cost formula.

For a detailed description of the cost function, including full formal definitions,
underlying assumptions, etc., we refer to (De Koninck 2008; Sneyers 2008). For
brevity, we only give incomplete, informal descriptions. We distinguish two types

213



214 Heuristics for an A? Join Ordering Algorithm

of guards: a-priori guards—tested using indexes—and a-posterio guards—the
remaining guards. For simplicity, we assume only simple equality guards are
tested a priori.1 Our heuristics are based on the following concepts:

• The minimal multiplicity µmin of an occurrence is heuristically estimated
as the expected number of constraints that satisfy the (implicit) a-priori
equality guards on the occurrence’s arguments, assuming all shared variables
are given (or in other words: assuming it is looked up as the last partner
in the join order, using optimal equality indexing). If a set semantics
functional dependency exists, for instance, µmin is equal to 1.
• The maximal (a-posteriori) selectivity σmax? of an occurrence is is heurist-
ically estimated as the expected probability that the a-posteriori guards
hold for a given constraint matching the a-priori guards, again assuming all
these guards can be tested. Note that the maximal selectivity is actually
the minimal probability of entailment.
• We further define γmin = µmin · σmax? for each occurrence, intuitively the
minimal cardinality of the set of constraints matching that occurrence.

Important is that, for each occurrence, these values only have to be estimated
once. We refer to the work of De Koninck and Sneyers for a detailed description
on how to estimate individual multiplicities and selectivities.

Suppose a partial join has length n, and a set X of partners yet has to be
joined. Let Θ be any join order starting with the n already fixed partners. Then
the actual cost formula that determines the cost of joining the remaining partners
X in that join order is of the form:2

Cost(X) = |J nΘ | ·
|X|∑
i=1

((i−1∏
j=1

µΘ(n+ j) · σΘ
? (n+ j)

)
· µΘ(n+ i)

)
(A.1)

with |J nΘ | the size of the partial join (cf. De Koninck and Sneyers 2007), and µΘ(i)
and σΘ

? (i) the actual multiplicities and selectivities of joining the ith partner of
Θ. Because |J nΘ | depends only on the fixed partial join, the goal of good heuristic
H is to be a tight lower bound on the remaining sum.

Original heuristic

Let CX be the sequence of γmin values of the occurrences in X, sorted from
small to large, and M0

X and S0
X the sequences of µmin and σmax? values of the

1We also estimate the a-priori selectivity σeq = 1 (cf. De Koninck and Sneyers 2007).
2We have reordered the original cost formula considerably. It is trivial though to verify that

our version is equivalent to that of De Koninck (2008) and Sneyers (2008).



215

corresponding heads, that is: ∀i : CX [i] = M0
X [i] · S0

X [i]. To compute the CX ,
M0
X , and S0

X sequences, it suffices to sort all occurrences of a given head once.
Using this notation, the heuristic of De Koninck and Sneyers is given by:

H0(X) =
|X|∑
i=1

(i−1∏
j=1

CX [j]
)
·M0

X [i] (A.2)

Unfortunately, this heuristic is inadmissible. The premise of this heuristic is
that, by sorting the γmin values, the sum in (A.2) is minimized. To show that
this premise does not hold, we swap the elements α and β of sequences C, M0
and S0 (1 ≤ α < β ≤ |X|), thus obtaining the sum:

H ′0(X) =
|X|∑
i=1

(i−1∏
j=1

C ′X [j]
)
·M ′0X [i]

Clearly, the terms for i < α and i > β remain unchanged after swapping, and

H0(X)−H ′0(X) =
(α−1∏
j=1

CX [j]
)
·
(
M0
X [α]−M0

X [β]

+
(
CX [α]− CX [β])

)
·
(
M0
X [α+ 1] + . . .

)
+
(
S0
X [α]− S0

X [β]
)
·M0

X [α] ·M0
X [β] ·

β−1∏
k=α+1

CX [k]
)

If the heuristics’ premise were correct, then H0(X) ≤ H ′0(X). But then
not only must CX [α] ≤ CX [β], but also M0

X [α] ≤ M0
X [β] and S0

X [α] ≤ S0
X [β].

In general, however, sorting their products does not guarantee that sequences
M0 and S0 are sorted. A counter-example is easily obtained by C = [1, 3],
M0 = [2, 15] and S0 = [0.5, 0.2], where the latter is not sorted.

Correct heuristics

A first correct underestimate is derived as follows. Observe that the ith term in
the sum of the actual cost (A.1) is given by a product of i σΘ

? and i+ 1 µΘ values.
A correct lower bound for the ith term is thus the product of the i smallest σmax? ,
and the i+ 1 smallest µmin values. First, we therefore sort both the σmax? and
the µmin values of all occurrences in X in two sequences SX and MX . Again, in
practice, two global S and M lists are computed, from which SX and MX are
readily derived. The heuristic H1 is given by:

H1(X) =
|X|∑
i=1

(i−1∏
j=1

MX [j] · SX [j]
)
·MX [i]



216 Heuristics for an A? Join Ordering Algorithm

This heuristic only coincides with H0 if the sequences M0
X and S0

X happen to be
sorted, which as shown earlier is not always the case.

In H1, we observe that M [i] and S[i] generally do not originate from the same
occurrence, while in the actual cost, the µΘ(i) · σΘ

? (i) factors do belong to the
same occurrence. An alternative underestimate is thus obtained as follows. We
again use a sequence CX defined as before, and the smallest minimal multiplicity
of all occurrences in X, i.e. MX [1]. Then

H2(X) =
|X|∑
i=1

(i−1∏
j=1

CX [j]
)
·MX [1]

Again, each term is an obvious underestimate of the corresponding term in
the actual cost. The difference with H0 is that instead of multiplying with M0

X(i),
each term is multiplied with MX [1], a trivially safe underestimate.

The MX [1] factor is a potentially very poor underestimate, but there does
not seem to be obvious way to improve it. Note that there is no clear winner
when comparing H1 and H2. Obviously:

H1(X) = MX [1] ·
|X|∑
i=1

(i−1∏
j=1

SX [j] ·MX [j + 1]
)

and so

H1(X)−H2(X) = MX [1] ·
|X|∑
i=1

(i−1∏
j=1

SX [j] ·MX [j + 1]−
i−1∏
j=1

CX [j]
)

Although neither of the these heuristics is thus superior in itself, we can construct
one that is as follows:

H3(X) = MX [1] ·
|X|∑
i=1

max
(i−1∏
j=1

SX [j] ·MX [j + 1],
i−1∏
j=1

CX [j]
)

This is the heuristic currently used by JCHR2 . It provides the best possible
underestimates, while still remaining admissible and efficiently computable. We
need only to compute three sorted sequences M , S, and C containing the values
for all occurrences in the head once. Using these sequences, computing the
heuristics then has a reasonable runtime cost linear in the number of remaining
partners.



AppendixB
Anti-Monotony-based Delay
Avoidance

This appendix introduces the formal changes to the Solve transition of the
refined operational semantics ωr required for both anti-monotony-based delay
avoidance (Section 8.3.5.2) and the optimisation of non-reactive propagation rules
(Section 10.2). It corrects earlier formulations by Schrijvers and Demoen (2004a).
In the context of delay avoidance, they proposed the following version of Solve:
1. Solve† 〈[b|A],S,B,T〉n�P 〈S++A,S, b∧B,T〉n if b is a built-in constraint
and S ⊆ S such that ∀c ∈ S \S : ∃V1, V2 : vars(c) = V1∪V2∧V1 ⊆ fixed(B)∧
all variables in V2 appear only in arguments of c that are anti-monotone in P .

We defined anti-monotonicity is defined in Section 10.2.1 (Definitions 10.2–10.3).

Proposition B.1. Using the notation we used in Section 10.2, this Solve†
transition is equivalent to:

1. Solve‡ 〈[b|A],S,B,T〉n�P 〈S ++A,S, b ∧ B,T〉n if b is a built-in con-
straint and S ⊆ S such that ∀c ∈ S \S : delay_varsP(c) ⊆ fixed(B).

Proof. Let c ∈ S \ S, with S defined as in Solve†. Then sets V1 and V2 exist,
as defined in Solve†. By definition, V2 ⊆ vars(c)\delay_varsP(c), and thus
V2 ∩ delay_varsP(c) = ∅. Therefore, delay_varsP(c) ⊆ V1 ⊆ fixed(B).

Conversely, assume c ∈ S \ S, with S defined as in Solve‡. Then the required
sets V1 and V2 exist: V1 = delay_varsP(c) and V2 = vars(c) \ V1.

Schrijvers and Demoen (2004a) then provide a proof that the resulting se-
mantics is correct with respect to the original refined operational semantics ωr,
where Solve is specified as:

217



218 Anti-Monotony-based Delay Avoidance

1. Solve? 〈[b|A],S,B,T〉n�P 〈S++A,S, b ∧ B,T〉n where b is a built-in
constraint and S ⊆ S such that vars(S \S) ⊆ fixed(B).

That is, all constraints with at least one non-fixed argument have to be reactivated.
The original specification of the ωr semantics therefore explicitly prohibit any
form of delay avoidance for non-fixed arguments.

Example B.1. Consider for instance the following CHR program:

c(X) ⇒ X = 2, b.
c(_), a ⇔ true.
c(_), b ⇔ true.

For the query ‘a, c(X)’ with X a free logical variable, Solve? specifies that
the c(X) constraint has to be reactivated when ‘X = 2’ is added to the built-in
constraint solver, which leads to a final constraint store {b#3}. This is the only
final store allowed by the original refined semantics. However, as the program is
clearly anti-monotone in c’s argument, the Solve‡ transition might not reactivate
c, which then leads to an incorrect final constraint store {a#1}.

This counterexample shows the proof by Schrijvers and Demoen (2004a) must
be wrong. The essential problem is that Solve? specifies that constraints with
non-fixed arguments have to be reactivated, even if the newly added built-in
constraint does not enable any new matchings with them. This problem is
not restricted to delay avoidance. It was first noted by both Duck (2005) and
Schrijvers (2005) in a different context:

Example B.2. Suppose we slightly alter our previous example as follows:

c(X) ⇒ Y = 2, b.
c(_), a ⇔ true.
c(_), b ⇔ true.

For the query ‘a, c(X)’ with X a free logical variable the original Solve?
transition specifies that the c(X) constraint must be reactivated when ‘Y = 2’
is added to the built-in constraint solver. The only final store allowed by the
original refined semantics is thus {b#3}. However, actual CHR implementations
will not reactivate the c(X) constraint, as the newly added ‘Y = 2’ constraint
does not affect X, the only variable occurring in c(X).

Because the original refined operational semantics is thus inconsistent with
the behaviour of actual (Prolog) CHR implementations, a slightly more relaxed
version of the Solve transition was defined in (Duck 2005; Schrijvers 2005). This
is also the version of ωr we presented in Section 4.2.3. The following theorem
shows that our definition of Solve’ in Section 10.2 is correct with respect to this
relaxed ωr semantics:



219

Theorem B.2. Let P be an arbitrary CHR program, and σ = 〈[b|A],S,B,T〉n
an arbitrary state with b a built-in constraint. If σ�P 〈S++A,S, b ∧ B,T〉n is a
valid Solve’ transition of ω′r, then it is a valid ωr Solve transition as well.

Proof. By definition of Solve’, S ⊆ S, and
(1) ∀c ∈ S : delay_varsP(c) 6⊂ fixed(B),
(2) ∀H ⊆ S : (H = K++R ∧ ∃ρ ∈ P :

¬appl(ρ,K,R,B) ∧ appl(ρ,K,R, b ∧ B))→ (S ∩H 6= ∅).
As the lower bound of the Solve transition in ωr is also exactly (2), it suffices
to prove that ∀c ∈ S : vars(c) 6⊂ fixed(B). This is obvious given (1), as by
definition ∀c : delay_varsP(c) ⊆ vars(c).

The optimised semantics by Schrijvers and Demoen (2004a) remains incorrect
even with respect to this relaxed ωr semantics. The reason is that their Solve‡
transition only restricts the constraints that are not reactivated. The constraints
that are reactivated, on the other hand, are not restricted:

Example B.3. The following last variant of our example demonstrates this:

c ⇒ X = 2, b.
c, a ⇔ true.
c, b ⇔ true.

For the query ‘a, c’ the Solve transition of Figure 4.2 specifies that the c
constraint may not be reactivated when the ‘X = 2’ constraint is told. This
leads to the only final store allowed by the ωr semantics of Section 4.2.3, namely
{b#3}. The Solve‡ transition, however, allows the c’s reactivation. The resulting
semantics thus may lead to an incorrect final constraint store {a#1}.

The final theorem show that our Solve’ transition is indeed stronger then
Solve‡ (Proposition B.1), since it never reactivates more constraints:

Theorem B.3. Let P be a CHR program, and σ = 〈[b|A],S,B,T〉n a state with
b a built-in constraint. If σ�P 〈S++A,S, b∧B,T〉n is a valid Solve‡ transition,
and σ�P 〈S′++A,S, b ∧ B,T〉n a valid Solve’ transition of ω′r, then S′ ⊆ S.

Proof. By definition of Solve‡: ∀c ∈ S\S : delay_varsP(c) ⊆ fixed(B), and by
definition of Solve’: S′ ⊆ S ∧ ∀c ∈ S′ : delay_varsP(c) 6⊂ fixed(B). Therefore
clearly (S\S) ∩ S′ = ∅, and thus (S′ ⊆ S ∧ S′ ∩ (S\S) = ∅)→ S′ ⊆ S.



220 Anti-Monotony-based Delay Avoidance



AppendixC
Benchmarks

This appendix contains detailed information on the platforms and benchmark
programs used in the main text.

The benchmarks for Table 9.1 were performed on a Intel R© CoreTM 2 Duo 6400
system with 2 GiB of RAM; all other benchmarks were run on an Intel R©Pentium R©4
CPU 2.80GHz with 1GiB of RAM. In all cases, a Linux operating system was
used. Table C.1 lists the software versions used for the different benchmarks.

Table 8.1 YAP 6.0.4, SWI 5.8.3, SICStus 4.1.1, JCHR 1.7, GCC 4.2.4,
Eclipse SDK 3.5.1, HotSpotTM JRE 1.6.0

Table 8.2 CLIPS 6.30β, Jess 7.1p2, JCHR2 (initial prototype), Ec-
lipse SDK 3.4.2, HotSpotTM JRE 1.6.0

Table 9.1 SWI 5.6.50, YAP 5.1.2, GCC 4.1.3, JCHR 1.6.0

Tables 9.2–9.3 SWI 5.6.55, JCHR 1.6.1, JDK 1.6.0, HotSpot JRE 1.6.0

Tables 10.1–10.3 SWI 5.6.55 (modified), JCHR 1.6.0 (modified), JDK 1.6.0,
HotSpot JRE 1.6.0

Table C.1: Software versions used for benchmarking.

221



222 Benchmarks

The benchmark programs are mostly either standard CHR or production rule
benchmarks, or benchmarks created from standard CHR handlers found on the
CHR Website (2010). Table C.2 describes all benchmarks used.

For several shortest-path benchmarks pseudo-random sparse graphs of O(N)
nodes and edges are generated using a graph generator created by Sneyers et al.
(2006a, 2009). These graphs consist of a Hamiltonian cycle of N edges with
weight 1 from node i to node i + 1 (and node N to node 1), and 3N random
weight edges, 3 from every node to some randomly chosen other.

Benchmark Description, origin, author, . . .
beer(N) Produce the lyrics of the well-known ‘N Bottles of

Beer’ song using CHR (without system IO). The ori-
ginal program written by Jon Sneyers appears on http:
//99-bottles-of-beer.net/.

bool(N) Classic CHR benchmark from (Schrijvers 2008): per-
forms N -digit binary addition, using an encoding as
ternary constraints over booleans

dijkstra(N) Using Dijkstra’s algorithm to find the shortest path in
a sparse graph with O(N) nodes and edges. Sneyers,
Schrijvers, and Demoen (2006a) describe this benchmark
in detail.

eq(N) Classical CHR benchmark that solves a circular list of
N equivalence constraints (cf. Example 5.13).

fib(N) Top-down computation of the N first Fibonacci num-
bers with tabling (origin: Frühwirth 2005c; see also
Example 10.3).

fibbo(N) Bottom-up computation of the N first Fibonacci num-
bers (origin: Frühwirth 2005c; cf. Example 10.5).

floyd-warsh(N) Finding the shortest path between all pairs of nodes
of a sparse graph of O(N) nodes and edges using the
Floyd-Warshall algorithm.

gcd(N) Classic CHR benchmark (Schrijvers 2008) that computes
the greatest common divisor of N and 2 using Euclid’s
algorithm.

interpol(N) Linear interpolation of some points up to depth N . Au-
thor: Paolo Pilozzi.

interval(N) Using T. Frühwirth’s interval domain solver (CHR Web-
site 2010), to solve a sequence of O(N) addition con-
straints over N variables.

continued on the next page. . .

http://99-bottles-of-beer.net/
http://99-bottles-of-beer.net/


223

Benchmark Description, origin, author, . . .
leq(N) Classic CHR benchmark that solves a circular list of N

less-or-equal constraints (cf. Example 4.3).
manners(N) Port of the classic production rules benchmark Miss

Manners, a constraint optimisation problem that finds an
optimal seating arrangement for N dinner party guests
under certain given constraints. Part of the standard
“Texas benchmark suite” by Miranker et al. (1991) (see
also IllationTM 2007).

mergesort(N) Sorts N integer numbers using mergesort (program au-
thor: Thom Frühwirth; origin: CHR Website 2010)

minmax(N) Based on a solver for inequality, minimum and maximum
constraints on ground terms, written by T. Frühwirth
and C. Holzbaur (CHR Website 2010). The benchmark
consists of solving N − 1 maximum constraints over N
integer variables.

nsp(N) Finding the shortest path between all pairs of nodes of
a sparse graph of O(N) nodes and edges using a naive
shortest path algorithm. Constraint arguments are free
logical variables.

nsp_grnd(N) Variant of the above benchmark where constraint argu-
ments are ground integer values instead.

primes(N) Classic CHR benchmark (Schrijvers 2008): determine all
primes numbers up to N using the Sieve of Eratosthenes.

primes_swapped(N) Variant of the previous handler, where non-tail recur-
sion is used instead of tail recursion (analogous to Ex-
ample 9.1).

RAM_fib(N) A benchmark by Sneyers et al. (2009): it computes
N Fibonacci-like numbers using a CHR-based RAM
simulator (addition is replaced by multiplication to avoid
arithmetic operations on large numbers).

sudoku A large program consisting of 86 rules that solves Sudoku
puzzles, especially designed to benchmark Rete-based
production rule systems (see e.g. IllationTM 2007; the
program and the benchmark puzzles are available for
instance at Friedman-Hill 2010). The benchmark can be
run in two modes: one using a directed search (non-stress
mode), and one using a naive search (stress mode).

sum(N ,M) Computes the sum of the balances of the accounts of N
clients, where each client has M accounts with pseudo-
random balances. See Example 10.4.

continued on the next page. . .



224 Benchmarks

Benchmark Description, origin, author, . . .
tak(X,Y ,Z) Computation of Gabriel and McCarthy’s version of the

Takeuchi function, an often-used benchmark for testing
recursion optimisations.

timepoint(N) Solve 1000N difference constraints over 1000N time
points using T. Frühwirth’s and C. Holzbaur’s time
point constraint handler (CHR Website 2010).

turing(N) Using a Turing machine simulator to execute a Turing
program to copy a sequence of N consecutive cells. The
simulator was written by Sneyers (2008).

union(N) Performs N disjoint set unions using an optimal union-
find algorithm. Benchmark by (Schrijvers and Frühwirth
2006).

Waltz(N) Part of the ‘Texas benchmark suite’ (Miranker et al.
1991), so named after the University of Texas at Austin,
the affiliation of its authors (Brant, Grose, Lofaso, and
Miranker 1991). This standard production rule bench-
mark interpretes line drawings of some three-dimensional
scene using Waltz (1975)’s seminal algorithm (cf. Ex-
ample 2.1).

WaltzDB(N) A more general version of the previous benchmark, de-
signed to handle drawings with junctions of four to six
lines, while Waltz only does junctions of two or three
(Miranker et al. 1991).

wordgame(N) Solves the classic cryptarithmetic puzzle ‘GERALD +
DONALD = ROBERT’ N times using naive generate-
and-test (origin: Friedman-Hill 2010).

wfs(N) Computes the well-founded semantics of a simple 3-
valued logic program (benchmark origin: Schrijvers and
Demoen 2004b; Schrijvers 2005).

Table C.2: Descriptions of all benchmarks used in this dissertation.



Bibliography

In this bibliography, the following acronyms for common workshop, conference,
book series and journal names are used:
CP — Intl. Conference on Principles and Practice of Constraint Programming
ENTCS — Electronic Notes in Theoretical Computer Science (published by Elsevier)
ICLP — International Conference on Logic Programming
LNAI — Lecture Notes in Artificial Intelligence (published by Springer)
LNCS — Lecture Notes in Computer Science (published by Springer)
LOPSTR — Intl. Symposium on Logic-Based Program Synthesis and Transformation
PPDP — Intl. ACM SIGPLAN Conf. Principles & Practice of Declarative Programming
TPLP — Theory and Practice of Logic Programming (by Cambridge University Press)
WFLP —-Intl. Workshop on Functional and (Constraint) Logic Programming
WLP — Intl. Workshop on (Constraint) Logic Programming
WLPE — Intl. Workshop on Logic Programming Environments

Abdennadher, S. 1997. Operational semantics and confluence of constraint propaga-
tion rules. In CP ’97 (Schloß Hagenberg, Austria), G. Smolka, Ed. LNCS, vol. 1330.
Springer, 252–266.
Abdennadher, S. 2000. A language for experimenting with declarative paradigms.
In RCoRP ’00(bis): Proc. 2nd Workshop on Rule-Based Constraint Reasoning and
Programming (Singapore), T. Frühwirth et al., Eds.
Abdennadher, S. 2001. Rule-based constraint programming: Theory and practice.
Habilitationsschrift, Institute of Computer Science, LMU, Munich, Germany.
Abdennadher, S. and Christiansen, H. 2000. An experimental CLP platform for
integrity constraints and abduction. In FQAS ’00: Proc. 4th Intl. Conf. Flexible Query
Answering Systems (Warsaw, Poland). Springer, 141–152.
Abdennadher, S. and Fawzy, S. 2008. JCHRIDE: An Integrated Development
Environment for JCHR. In WLP ’08, S. Schwarz, Ed. University Halle-Wittenberg,
Institute of Computer Science, Technical report 2008/08, Dresden, Germany, 1–6.
Abdennadher, S. and Frühwirth, T. 1998. On completion of Constraint Handling
Rules. In Maher and Puget (1998), 25–39.

225



226 Bibliography

Abdennadher, S. and Frühwirth, T. 1999. Operational equivalence of CHR
programs and constraints. In CP ’99 (Alexandria, Virginia, USA), J. Jaffar, Ed. LNCS,
vol. 1713. Springer, 43–57.
Abdennadher, S. and Frühwirth, T. 2004. Integration and optimization of rule-
based constraint solvers. In LOPSTR ’03 (Uppsala, Sweden), M. Bruynooghe, Ed.
LNCS, vol. 3018. Springer, 198–213.
Abdennadher, S., Frühwirth, T., and Holzbaur, C., Eds. 2005. Special Issue on
Constraint Handling Rules. Theory and Practice of Logic Programming, vol. 5(4–5).
Cambridge University Press.
Abdennadher, S., Frühwirth, T., and Meuss, H. 1999. Confluence and semantics
of constraint simplification rules. Constraints 4, 2, 133–165.
Abdennadher, S., Krämer, E., Saft, M., and Schmauß, M. 2002. JACK: A
Java Constraint Kit. In WFLP ’01, Selected Papers (Kiel, Germany), M. Hanus, Ed.
ENTCS, vol. 64. Elsevier, 1–17. See also http://pms.ifi.lmu.de/software/jack/.
Abdennadher, S. and Marte, M. 2000. University course timetabling using Con-
straint Handling Rules. In Holzbaur and Frühwirth (2000b), 311–325.
Abdennadher, S., Olama, A., Salem, N., and Thabet, A. 2006. ARM: Automatic
Rule Miner. In LOPSTR ’06, Revised Selected Papers (Venice, Italy). LNCS, vol. 4407.
Springer.
Abdennadher, S. and Rigotti, C. 2004. Automatic generation of rule-based
constraint solvers over finite domains. ACM TOCL 5, 2, 177–205.
Abdennadher, S. and Rigotti, C. 2005. Automatic generation of CHR constraint
solvers. In Abdennadher, Frühwirth, and Holzbaur (2005), 403–418.
Abdennadher, S. and Saft, M. 2001. A visualization tool for Constraint Handling
Rules. In WLPE ’01 (Paphos, Cyprus), A. Kusalik, Ed.
Abdennadher, S., Saft, M., and Will, S. 2000. Classroom assignment using
constraint logic programming. In PACLP ’00: Proc. 2nd Intl. Conf. and Exhibition on
Pract. Appl. of Constraint Techn. and Logic Programming (Manchester, UK).
Abdennadher, S. and Schütz, H. 1998. CHR∨, a flexible query language. In
Andreasen, Christiansen, and Larsen (1998), 1–14.
Abdennadher, S. and Sobhi, I. 2008. Generation of rule-based constraint solvers:
Combined approach. In King (2008).
Aguilar-Solis, D. and Dahl, V. 2004. Coordination revisited – a Constraint
Handling Rule approach. In IBERAMIA ’04: Proc. 9th Ibero-American Conf. on AI
(Puebla, Mexico). LNCS, vol. 3315. 315–324.
Alberti, M., Chesani, F., Gavanelli, M., and Lamma, E. 2005. The CHR-based
implementation of a system for generation and confirmation of hypotheses. In Wolf,
Frühwirth, and Meister (2005), 111–122.
Alberti, M., Daolio, D., Torroni, P., Gavanelli, M., Lamma, E., and Mello,
P. 2004. Specification and verification of agent interaction protocols in a logic-based
system. In SAC ’04: Proc. 19th ACM Symp. Applied Computing (Nicosia, Cyprus),
H. Haddad et al., Eds. ACM Press, 72–78.



Bibliography 227

Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., and Torroni,
P. 2006. Compliance verification of agent interaction: a logic-based software tool.
Applied Artificial Intelligence 20, 2–4, 133–157.
Alberti, M., Gavanelli, M., Lamma, E., Mello, P., and Milano, M. 2005. A
CHR-based implementation of known arc-consistency. In Abdennadher, Frühwirth,
and Holzbaur (2005), 419–440.
Alberti, M., Gavanelli, M., Lamma, E., Mello, P., and Torroni, P. 2003.
Specification and verification of agent interaction using social integrity constraints.
In LCMAS’03: Logic and Communication in Multi-Agent Systems (Eindhoven, the
Netherlands). ENTCS, vol. 85(2). Elsevier, 94–116.
Andreasen, T., Christiansen, H., and Larsen, H., Eds. 1998. FQAS ’98: Proc.
3rd Intl. Conf. on Flexible Query Answering Systems (Roskilde, Denmark). LNAI, vol.
1495. Springer.
Apt, K., Kakas, A., Monfroy, E., and Rossi, F., Eds. 2000. New Trends in
Constraints, Joint ERCIM/Compulog Net Workshop, October 1999, Selected papers
(Paphos, Cyprus). LNCS, vol. 1865. Springer.
Apt, K. R. and Bol, R. 1994. Logic Programming and negation: A survey. Journal
of Logic Programming 19, 9–71.
Apt, K. R. and Monfroy, E. 2001. Constraint programming viewed as rule-based
programming. TPLP 1, 6, 713–750.
Baader, F. and Nipkow, T. 2003. Term Rewriting and all that. Cambridge University
Press.
Bachant, J. and McDermott, J. 1984. R1 revisited: Four years in the trenches.
AI Magazine 5, 3.
Badea, L., Tilivea, D., and Hotaran, A. 2004. Semantic Web Reasoning for
Ontology-Based Integration of Resources. PPSWR ’04: Proc. 2nd Intl. Workshop on
Principles And Practice Of Semantic Web Reasoning 3208, 61–75.
Baker, H. G. 1995. CONS should not CONS its arguments, part II: Cheney on the
M.T.A. SIGPLAN Notices 30, 9, 17–20.
Bali, M. 2009. Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing.
Barranco-Mendoza, A. 2005. Stochastic and heuristic modelling for analysis of
the growth of pre-invasive lesions and for a multidisciplinary approach to early cancer
diagnosis. Ph.D. thesis, Simon Fraser University, Burnaby, Canada.
Barták, R. 1999. Constraint Programming: In pursuit of the Holy Grail. In Proc.
Week of Doctoral Students (WDS’99) (Prague, Czech Republic). MatFyzPress, 555–564.
Batory, D. 1994. The LEAPS algorithms. Tech. Rep. CS-TR-94-28, University of
Texas.
Batory, D., Thomas, J., and Sirkin, M. 1994. Reengineering a complex application
using a scalable data structure compiler. SIGSOFT Softw. Eng. Notes 19, 5, 111–120.
Bauer, A. 2003. Compilation of functional programming languages using GCC—Tail
calls. M.S. thesis, Institut für Informatik, Technische Univ. München.



228 Bibliography

Bavarian, M. and Dahl, V. 2006. Constraint based methods for biological sequence
analysis. J. Universal Comp. Science 12, 11, 1500–1520.

Bayardo, Jr., R. J. and Miranker, D. P. 1996. Processing queries for first-few
answers. In CIKM ’96: Proc. fifth intl. Conf. Information and Knowledge Management.
ACM, New York, NY, USA, 45–52.

Bès, G. G. and Dahl, V. 2003. Balanced parentheses in NL texts: a useful cue in
the syntax/semantics interface. In Proc. Lorraine-Saarland Workshop on Prospects
and Advances in the Syntax/Semantics Interface (Nancy, France). Poster Paper.

Betz, H. 2007. Relating coloured Petri nets to Constraint Handling Rules. In Djelloul,
Duck, and Sulzmann (2007), 33–47.

Betz, H. and Frühwirth, T. 2005. A linear-logic semantics for Constraint Handling
Rules. In CP ’05 (Sitges, Spain). LNCS, vol. 3709. Springer, 137–151.

Betz, H. and Frühwirth, T. 2007. A linear-logic semantics for Constraint Handling
Rules with disjunction. In Djelloul, Duck, and Sulzmann (2007), 17–31.

Betz, H., Raiser, F., and Frühwirth, T. 2009. Persistent constraints in Constraint
Handling Rules. In WLP ’09 (Potsdam, Germany), A. Wolf and U. Geske, Eds.

Bezem, M., Klop, J.-W., and de Vrijer, R. 2003. Term rewriting systems. Cam-
bridge University Press.

Bistarelli, S., Frühwirth, T., Marte, M., and Rossi, F. 2004. Soft constraint
propagation and solving in Constraint Handling Rules. Computational Intelligence:
Special Issue on Preferences in AI and CP 20, 2 (May), 287–307.

Bloch, J. et al. 2010. The Collections framework: API’s and developer guides.
http://java.sun.com/javase/6/docs/technotes/guides/collections/.

Boespflug, M. 2007. TaiChi:how to check your types with serenity. The
Monad.Reader 9, 17–31.

Book, R. V. and Otto, F. 1993. String-rewriting systems. Springer, London, UK.

Bouaud, J. and Voyer, R. 2004. Behavioral match: Embedding production systems
and objects. In Pachet (2004).

Bouissou, O. 2004. A CHR library for SiLCC. Diplomarbeit, Technical University of
Berlin, Germany.

Bracha, G. 2004. Generics in the Java Programming Language. Sun Microsystems.

Brand, S. 2002. A note on redundant rules in rule-based constraint programming. In
Joint ERCIM/CologNet Intl. Workshop on Constraint Solving and Constraint Logic
Programming, Selected papers (Cork, Ireland). LNCS, vol. 2627. Springer, 279–336.

Brand, S. and Monfroy, E. 2003. Deductive generation of constraint propagation
rules. In RULE ’03: 4th Intl. Workshop on Rule-Based Programming (Valencia, Spain),
G. Vidal, Ed. ENTCS, vol. 86(2). Elsevier, 45–60.

Brant, D. A. 1993. Inferencing on large data sets. Ph.D. thesis, University of Texas
at Austin.

http://java.sun.com/javase/6/docs/technotes/guides/collections/


Bibliography 229

Brant, D. A., Grose, T., Lofaso, B., and Miranker, D. P. 1991. Effects of
database size on rule system performance: Five case studies. In Proc. 17th Intl. Conf.
Very Large Data Bases (VLDB’91). Morgan Kaufmann.
Bratko, I. 2008. Prolog programming for Artificial Intelligence, Fourth ed. Pearson
Education Canada.
Bressan, S. and Goh, C. H. 1998. Answering queries in context. In Andreasen,
Christiansen, and Larsen (1998), 68–82.
Brewka, G. and Eiter, T. 1999. Preferred answer sets for extended logic programs.
Artif. Intell. 109, 1–2, 297–356.
Brock, M. et al. 2010. MVEL. http://mvel.codehaus.org/.
Browne, J. C., Emerson, A., Gouda, M., Miranker, D. P., et al. 1994. A new
approach to modularity in rule-based programming. In Proc. 6th Intl. Conf. Tools
with AI. IEEE Comp. Society.
Browne, P. 2009. JBoss Drools Business Rules. Packt Publishing.
Brownston, L., Farrell, R., Kant, E., and Martin, N. 1985. Programming
expert systems in OPS5: an introduction to rule-based programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.
Buccafurri, F., Ed. 2003. AGP ’03: Joint Conf. Declarative Programming APPIA-
GULP-PRODE (Reggio Calabria, Italy).
Burstall, R. M. and Darlington, J. 1977. A transformation system for developing
recursive programs. Journal of the ACM 24, 1, 44–67.
Cabedo, L. M. and Escrig, M. T. 2003. Modeling motion by the integration of
topology and time. J. Universal Comp. Science 9, 9, 1096–1122.
Calvert, C. and Kulkarni, D. 2009. Essential LINQ. Addison-Wesley.
Chin, W.-N., Craciun, F., Khoo, S.-C., and Popeea, C. 2006. A flow-based
approach for variant parametric types. SIGPLAN Not. 41, 10, 273–290.
Chin, W.-N., Sulzmann, M., and Wang, M. 2003. A type-safe embedding of
Constraint Handling Rules into Haskell. Honors thesis, School of Computing, National
University of Singapore.
CHR Website 2010. The Constraint Handling Rules (CHR) programming language.
http://dtai.cs.kuleuven.be/CHR.
Christiansen, H. 2005. CHR grammars. In Abdennadher, Frühwirth, and Holzbaur
(2005), 467–501.
Christiansen, H. and Dahl, V. 2003. Logic grammars for diagnosis and repair. Intl.
J. Artificial Intelligence Tools 12, 3, 227–248.
Christiansen, H. and Dahl, V. 2005a. HYPROLOG: A new logic programming
language with assumptions and abduction. In Gabbrielli and Gupta (2005), 159–173.
Christiansen, H. and Dahl, V. 2005b. Meaning in context. In CONTEXT ’05:
Proc. 4th Intl. and Interdisciplinary Conf. Modeling and Using Context (Paris, France),
A. Dey, B. Kokinov, and R. Turner, Eds. LNAI, vol. 3554. Springer, 97–111.

http://mvel.codehaus.org/
http://dtai.cs.kuleuven.be/CHR


230 Bibliography

Christiansen, H. and Have, C. T. 2007. From use cases to UML class diagrams
using logic grammars and constraints. In RANLP ’07: Proc. Intl. Conf. Recent Adv.
Nat. Lang. Processing (Borovets, Bulgaria). 128–132.
Christiansen, N. A., Westh, A. B., Basbous, J. E., and Christiansen, H. 2006.
Constraint handling rules — en undersøgelse af interne lagrings mekanismer. Tech.
rep., Roskilde Universitetscenter. In Danish.
Clark, K. 1978. Negation as failure. In Logic and Databases, H. Gallaire, J. Minker,
and J. Nicolas, Eds. Plenum Press.
Clements, J. and Felleisen, M. 2004. A tail-recursive machine with stack inspection.
ACM Trans. on Prog. Languages and Systems (TOPLAS) 26, 6, 1029–1052.
Clocksin, W. F. and Mellish, C. S. 2003. Programming in Prolog, Fifth ed.
Springer.
Cooper, T. A. and Wogrin, N. 1988. Rule-Based Programming With OPS5. Morgan
Kaufmann Pub.
Coquery, E. and Fages, F. 2003. TCLP: A type checker for CLP(X ). In WLPE ’03
(Mumbai, India), F. Mesnard and A. Serebrenik, Eds. K.U.Leuven, Dept. Comp. Sc.,
Technical report CW 371. 17–30.
Coquery, E. and Fages, F. 2005. A type system for CHR. In Schrijvers and
Frühwirth (2005b), 19–33.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2009. Introduction
to Algorithms, Third ed. MIT Press.
da Figueira Filho, C. S. and Ramalho, G. L. 2000. JEOPS - the Java Embedded
Object Production System. In Advances in Artificial Intelligence — IBERAMIA-SBIA
2000: Proc. Intl. Joint Conf. 7th Ibero-American Conference on AI – 15th Brazilian
Symposium on AI. LNCS, vol. 1952. Springer, Atibaia, SP, Brazil.
Dahl, V. 2004. An abductive treatment of long distance dependencies in CHR. In
CSLP ’04: Proc. First Intl. Workshop on Constraint Solving and Language Processing
(Roskilde, Denmark). LNCS, vol. 3438. Springer, 17–31. Invited Paper.
Dahl, V. and Blache, P. 2005. Extracting selected phrases through constraint satis-
faction. In Proc. 2nd Intl. Workshop on Constraint Solving and Language Processing.
Dahl, V. and Gu, B. 2006. Semantic property grammars for knowledge extraction
from biomedical text. In Etalle and Truszczynski (2006), 442–443. Poster Paper.
Dahl, V. and Gu, B. 2007. A CHRG analysis of ambiguity in biological texts. In
CSLP ’07: Proc. 4th Intl. Workshop on Constraints and Language Processing (Roskilde,
Denmark). Extended Abstract.
Dahl, V. and Niemelä, I., Eds. 2007. ICLP ’07: Proc. 23rd Intl. Conf. Logic
Programming (Porto, Portugal). LNCS, vol. 4670. Springer.
Dahl, V. and Voll, K. 2004. Concept formation rules: An executable cognitive
model of knowledge construction. In NLUCS ’04: Proc. First Intl. Workshop on
Natural Language Understanding and Cognitive Sciences (Porto, Portugal).
Daniel, B. and Boshernitsan, M. 2008. Predicting and explaining automatic testing
tool effectiveness. Tech. rep., University of Illinois at Urbana-Champaign.



Bibliography 231

De Koninck, L. 2008. Execution control for Constraint Handling Rules. Ph.D. thesis,
K.U.Leuven, Belgium.
De Koninck, L., Schrijvers, T., and Demoen, B. 2006a. INCLP(R) - Interval-
based nonlinear constraint logic programming over the reals. In Fink, Tompits, and
Woltran (2006), 91–100.
De Koninck, L., Schrijvers, T., and Demoen, B. 2006b. Search strategies in
CHR(Prolog). In Schrijvers and Frühwirth (2006), 109–124.
De Koninck, L., Schrijvers, T., and Demoen, B. 2007a. The correspondence
between the Logical Algorithms language and CHR. In Dahl and Niemelä (2007),
209–223.
De Koninck, L., Schrijvers, T., and Demoen, B. 2007b. User-definable rule
priorities for CHR. In Leuschel and Podelski (2007), 25–36.
De Koninck, L. and Sneyers, J. 2007. Join ordering for Constraint Handling Rules.
In Djelloul, Duck, and Sulzmann (2007), 107–121.
Debray, S. K. 1988. Unfold/fold transformations and loop optimization of logic
programs. In PLDI ’88: Proc. ACM SIGPLAN 1988 conf. on Progr. Language Design
and Implementation. ACM, New York, NY, USA, 297–307.
Demoen, B. 2002. Dynamic attributes, their hProlog implementation, and a first
evaluation. Tech. Rep. CW 350, K.U.Leuven, Dept. Comp. Sc., Leuven, Belgium. Oct.
Demoen, B. and Lifschitz, V., Eds. 2004. ICLP ’04: Proc. 20th Intl. Conf. Logic
Programming (Saint-Malo, France). LNCS, vol. 3132. Springer.
Djelloul, K., Dao, T.-B.-H., and Frühwirth, T. 2007. Toward a first-order
extension of Prolog’s unification using CHR: a CHR first-order constraint solver over
finite or infinite trees. In SAC ’07: Proc. 2007 ACM Symp. Applied computing (Seoul,
Korea). ACM Press, 58–64.
Djelloul, K., Duck, G. J., and Sulzmann, M., Eds. 2007. CHR ’07: Proc. 4th
Workshop on Constraint Handling Rules (Porto, Portugal).
Doorenbos, R. B. 1995. Production matching for large learning systems. Ph.D.
thesis, Carnegie Mellon University.
Ducassé, M. 1999. Opium: an extendable trace analyzer for Prolog. J. Logic
Programming 39, 1–3, 177–223.
Duck, G. J. 2004. HaskellCHR. http://www.cs.mu.oz.au/~gjd/haskellchr.
Duck, G. J. 2005. Compilation of Constraint Handling Rules. Ph.D. thesis, University
of Melbourne, Australia.
Duck, G. J. and Schrijvers, T. 2005. Accurate functional dependency analysis for
Constraint Handling Rules. In Schrijvers and Frühwirth (2005b), 109–124.
Duck, G. J., Stuckey, P. J., and Brand, S. 2006. ACD term rewriting. In Etalle
and Truszczynski (2006), 117–131.
Duck, G. J., Stuckey, P. J., García de la Banda, M., and Holzbaur, C. 2003.
Extending arbitrary solvers with Constraint Handling Rules. In PPDP ’03 (Uppsala,
Sweden). ACM Press, 79–90.

http://www.cs.mu.oz.au/~gjd/haskellchr


232 Bibliography

Duck, G. J., Stuckey, P. J., García de la Banda, M., and Holzbaur, C. 2004.
The refined operational semantics of Constraint Handling Rules. In Demoen and
Lifschitz (2004), 90–104.
Duck, G. J., Stuckey, P. J., and Sulzmann, M. 2007. Observable confluence for
Constraint Handling Rules. In Dahl and Niemelä (2007), 224–239.
Ehrig, H. and Rozenberg, G., Eds. 1999. Handbook of Graph Grammars and
Computing by Graph Transformations. Vol. 1–3. World Scientific.
Escrig, M. T. and Toledo, F. 1998a. A framework based on CLP extended with
CHRs for reasoning with qualitative orientation and positional information. J. Visual
Languages and Computing 9, 1, 81–101.
Escrig, M. T. and Toledo, F. 1998b. Qualitative Spatial Reasoning: Theory and
Practice — Application to Robot Navigation. IOS Press.
Etalle, S. and Truszczynski, M., Eds. 2006. ICLP ’06: Proc. 22nd Intl. Conf.
Logic Programming (Seattle, Washington). LNCS, vol. 4079. Springer.
Fabret, F., Régnier, M., and Simon, E. 1993. An adaptive algorithm for incremental
evaluation of production rules in databases. In VLDB ’93: Proceedings of the 19th
International Conference on Very Large Data Bases. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 455–466.
Fages, F. 1997. Constructive negation by pruning. The Journal of Logic Program-
ming 32, 2, 85–118.
Fages, F., Mário de Oliveira Rodrigues, C., and Martinez, T. 2008. Modular
CHR with ask and tell. In Schrijvers, Raiser, and Frühwirth (2008), 95–110.
Fink, M., Tompits, H., and Woltran, S., Eds. 2006. WLP ’06: Proc. 20th Workshop
on Logic Programming (Vienna, Austria). T.U.Wien, Austria, INFSYS Research report
1843-06-02.
Firat, A. 2003. Information integration using contextual knowledge and ontology
merging. Ph.D. thesis, MIT Sloan School of Management, Cambridge, USA.
Forgy, C. L. 1979. On the efficient implementation of production systems. Ph.D.
thesis, Carnegie Mellon University.
Forgy, C. L. 1981. OPS5 user’s manual. Tech. Rep. CS-81-135, Carnegie-Mellon
University.
Forgy, C. L. 1982. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19, 17–37.
Free Software Foundation. 2010. GCC, the GNU Compiler Collection.
Freuder, E. C. 1997. In pursuit of the Holy Grail. Constraints 2, 1 (Apr.), 57–61.
Friedman-Hill, E. 2003. Jess in Action. Manning Publications Co.
Friedman-Hill, E. 2010. JessR©, the rule engine for the JavaTM platform. http:
//www.jessrules.com/.
Frühwirth, T. 1992. Constraint simplification rules. Tech. Rep. ECRC-92-18,
European Computer-Industry Research Centre, Munchen, Germany. July.

http://www.jessrules.com/
http://www.jessrules.com/


Bibliography 233

Frühwirth, T. 1995. Constraint Handling Rules. In Constraint Programming: Basic
and Trends — Selected Papers of the 22nd Spring School in Theoretical Computer
Sciences, May 16–20, 1994 (Châtillon-sur-Seine, France), A. Podelski, Ed. LNCS, vol.
910. Springer, 90–107.
Frühwirth, T. 1998. Theory and practice of Constraint Handling Rules. J. Logic
Programming, Special Issue on Constraint Logic Programming 37, 1–3, 95–138.
Frühwirth, T. 2000. Proving termination of constraint solver programs. In Apt,
Kakas, Monfroy, and Rossi (2000), 298–317.
Frühwirth, T. 2001. On the number of rule applications in constraint programs.
In Declarative Programming - Selected Papers from AGP 2000 (La Habana, Cuba),
A. Dovier, M. C. Meo, and A. Omicini, Eds. ENTCS, vol. 48. Elsevier, 147–166.
Frühwirth, T. 2002a. As time goes by: Automatic complexity analysis of simplific-
ation rules. In KR ’02: Proc. 8th Intl. Conf. Princ. Knowledge Representation and
Reasoning (Toulouse, France), D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A.
Williams, Eds. Morgan Kaufmann, 547–557.
Frühwirth, T. 2002b. As time goes by II: More automatic complexity analysis of
concurrent rule programs. In QAPL ’01: Proc. First Intl. Workshop on Quantitative
Aspects of Programming Languages (Florence, Italy). ENTCS, vol. 59(3). Elsevier.
Frühwirth, T. 2005a. Logical rules for a lexicographic order constraint solver. In
Schrijvers and Frühwirth (2005b), 79–91.
Frühwirth, T. 2005b. Parallelizing union-find in Constraint Handling Rules using
confluence. In Gabbrielli and Gupta (2005), 113–127.
Frühwirth, T. 2005c. Programming with a Chinese horse. Invited Talk at 11th Intl.
Conf., CP 2005, Sitges, Spain. (slides).
Frühwirth, T. 2005d. Specialization of concurrent guarded multi-set transformation
rules. In LOPSTR ’04 (Verona, Italy). LNCS, vol. 3573. Springer, 133–148.
Frühwirth, T. 2006a. Complete propagation rules for lexicographic order constraints
over arbitrary domains. In Recent Advances in Constraints — CSCLP ’05: Joint
ERCIM/CoLogNET Intl. Workshop on Constraint Solving and CLP, Revised Selected
and Invited Papers (Uppsala, Sweden). LNAI, vol. 3978. Springer.
Frühwirth, T. 2006b. Deriving linear-time algorithms from union-find in CHR. In
Schrijvers and Frühwirth (2006), 49–60.
Frühwirth, T. 2009. Constraint Handling Rules. Cambridge University Press.
Frühwirth, T. et al., Eds. 2000. RCoRP ’00: Proc. 1st Workshop on Rule-Based
Constraint Reasoning and Programming (London, UK).
Frühwirth, T. and Abdennadher, S. 2001. The Munich rent advisor: A success
for logic programming on the internet. TPLP 1, 3, 303–319.
Frühwirth, T. and Abdennadher, S. 2003. Essentials of Constraint Programming.
Springer.
Frühwirth, T. and Brisset, P. 1995. High-level implementations of Constraint
Handling Rules. Tech. Rep. ECRC-95-20, European Computer-Industry Research
Centre, Munchen, Germany.



234 Bibliography

Frühwirth, T. and Brisset, P. 1998. Optimal placement of base stations in wireless
indoor telecommunication. In Maher and Puget (1998), 476–480.
Frühwirth, T. and Brisset, P. 2000. Placing base stations in wireless indoor
communication networks. IEEE Intell. Systems and Their Applications 15, 1, 49–53.
Frühwirth, T., Di Pierro, A., and Wiklicky, H. 2002. Probabilistic Constraint
Handling Rules. In WFLP ’02, Selected Papers (Grado, Italy), M. Comini and
M. Falaschi, Eds. ENTCS, vol. 76. Elsevier.
Frühwirth, T. and Holzbaur, C. 2003. Source-to-source transformation for a class
of expressive rules. In Buccafurri (2003), 386–397.
Frühwirth, T. and Meister, M., Eds. 2004. CHR ’04: 1st Workshop on Constraint
Handling Rules: Selected Contributions (Ulm, Germany).
Frühwirth, T. W., Herold, A., Küchenhoff, V., Provost, T. L., Lim, P.,
Monfroy, E., and Wallace, M. 1992. Contraint Logic Programming - an informal
introduction. In Logic Programming in Action, Proc. Second Intl. Logic Programming
Summer School. 3–35.
Gabbrielli, M. and Gupta, G., Eds. 2005. ICLP ’05: Proc. 21st Intl. Conf. Logic
Programming (Sitges, Spain). LNCS, vol. 3668. Springer.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.
Ganz, S. E., Friedman, D. P., and Wand, M. 1999. Trampolined style. SIGPLAN
Notices 34, 4, 18–27. Proc. Intl. Conf. on Functional Programming (ICFP’99).
Ganzinger, H. and McAllester, D. A. 2002. Logical algorithms. In Stuckey (2002),
209–223.
Garat, D. and Wonsever, D. 2002. A constraint parser for contextual rules. In
Proc. 22nd Intl. Conf. of the Chilean Computer Science Society (Copiapo, Chile). IEEE
Computer Society, 234–242.
García de la Banda, M. and Pontelli, E., Eds. 2008. ICLP ’08: Proc. 24rd Intl.
Conf. Logic Programming (Udine, Italy). LNCS, vol. 5366. Springer.
Gavanelli, M., Lamma, E., Mello, P., Milano, M., and Torroni, P. 2003.
Interpreting abduction in CLP. In Buccafurri (2003), 25–35.
Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In Proc. Fifth Intl. Conf. on Logic Programming. MIT Press, 1070–1080.
Geurts, J., van Ossenbruggen, J., and Hardman, L. 2001. Application-specific
constraints for multimedia presentation generation. In MMM ’01: Proc. 8th Intl. Conf.
on Multimedia Modeling (Amsterdam, The Netherlands). 247–266.
Giarratano, J. C. and Riley, G. 1989. Expert Systems: Principles and Programming.
Brooks/Cole Publishing Co., Pacific Grove, CA, USA.
Girard, J.-Y. 1987. Linear logic. Theoretical Computer Science 50, 1, 1–101.
Gosling, J., Joy, B., Steele, G., and Bracha, G. 2005. The Java Language
Specification, Third ed. The Java Series. Prentice Hall.



Bibliography 235

Gouraud, S.-D. and Gotlieb, A. 2006. Using CHRs to generate functional test
cases for the Java card virtual machine. In PADL ’06: Proc. 8th Intl. Symp. Practical
Aspects of Declarative Languages (Charleston, SC, USA), P. Van Hentenryck, Ed.
LNCS, vol. 3819. Springer, 1–15.
Haemmerlé, R. and Fages, F. 2007. Abstract critical pairs and confluence of
arbitrary binary relations. In RTA ’07: Proc. 18th Intl. Conf. Term Rewriting and
Applications (Paris, France). LNCS, vol. 4533. Springer.
Hamilton, G. et al. 1997. JavaBeansTM API specification, 1.01 ed. Sun Microsystems.
Hanson, E. and Widom, J. 1993. An overview of Production Rules in database
systems. The Knowledge Engineering Review 8, 2, 121–143.
Hanson, E. N. 1992. Rule condition testing and action execution in Ariel. In Proc.
1992 ACM SIGMOD Intl. Conf. on Management of data. ACM, New York, NY, USA,
49–58.
Hanson, E. N., Bodagala, S., Hasan, M., Kulkarni, G., and Rangarajan, J.
1995. Optimized rule condition testing in Ariel using Gator networks. Tech. Rep.
TR-95-027, CISE Department, University of Florida.
Hanus, M. 2006. Adding Constraint Handling Rules to Curry. In Fink, Tompits, and
Woltran (2006), 81–90.
Haralick, R. M. and Elliott, G. L. 1979. Increasing tree search efficiency for
constraint satisfaction problems. In IJCAI’79: Proc. of the 6th Intl. Joint Conf. on
Art. Intell. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 356–364.
Hart, P. E., Nilsson, N. J., and Raphael, B. 1972. Correction to “a formal basis
for the heuristic determination of minimum cost paths”. SIGART Bull. 37, 28–29.
Hecksher, T., Nielsen, S. T., and Pigeon, A. 2002. A CHRG model of the ancient
Egyptian grammar. Unpublished student project report, Roskilde University, Denmark.
Hill, P. M. and Warren, D. S., Eds. 2009. ICLP ’09: Proc. 25th Intl. Conf. Logic
Programming (Pasadena, USA). LNCS, vol. 5649. Springer.
Holzbaur, C. 1992. Metastructures versus attributed variables in the context of
extensible unification. In Proc. 4th Intl. Symposium on Programming Language Imple-
mentation and Logic Programming. Springer, 260–268.
Holzbaur, C. and Frühwirth, T. 1999. Compiling Constraint Handling Rules into
Prolog with attributed variables. In PPDP ’99 (Paris, France), G. Nadathur, Ed.
LNCS, vol. 1702. Springer, 117–133.
Holzbaur, C. and Frühwirth, T. 2000a. A Prolog Constraint Handling Rules
compiler and runtime system. In Holzbaur and Frühwirth (2000b), 369–388.
Holzbaur, C. and Frühwirth, T., Eds. 2000b. Special Issue on Constraint Handling
Rules. Journal of Applied Artificial Intelligence, vol. 14(4). Taylor & Francis.
Holzbaur, C., García de la Banda, M., Stuckey, P. J., and Duck, G. J.
2005. Optimizing compilation of Constraint Handling Rules in HAL. In Abdennadher,
Frühwirth, and Holzbaur (2005), 503–531.
Hopcroft, J. E. 1971. An n logn algorithm for minimizing states in a finite automaton.
Tech. Rep. STAN-CS-71-190, Stanford University, CA, USA.



236 Bibliography

Hu, Z. and Takeichi, M. 1997. A calculational framework for parallelization of
sequential programs. In Intl. Symp. Information Systems and Technologies for Network
Society. Fukuoka, Japan, 102–109.
Ibaraki, T. and Kameda, T. 1984. On the optimal nesting order for computing
n-relational joins. ACM Trans. Database Syst. 9, 3, 482–502.
IllationTM. 2007. Business rule engine benchmarks. http://illation.com.au/
benchmarks/.
ISO. 1995. ISO/IEC 13211:1995: Information technology – Programming languages –
Prolog.
ISO. 2003. ISO/IEC 9075:2008: Information technology – Database languages – SQL.
Jaffar, J. and Lassez, J.-L. 1987. Constraint Logic Programming. In POPL ’87:
Proc. 14th ACM SIGACT-SIGPLAN symp. on Princ. of Progr. Lang. ACM, New
York, NY, USA, 111–119.
JBoss. 2010. Drools 5 – the business logic integration platform. http://jboss.org/
drools/.
Kemp, D. B. and Stuckey, P. J. 1991. Semantics of logic programs with aggregates.
In Intl. Symp. Logic Programming. San Diego, USA, 387–404.
King, A., Ed. 2008. LOPSTR ’07: 17th Intl. Symp. Logic-Based Program Synthesis
and Transformation, Revised Selected Papers (Kongens Lyngby, Denmark). LNCS, vol.
4915.
Kosmatov, N. 2006a. A constraint solver for sequences and its applications. In Proc.
2006 ACM Symp. on Applied Computing (Dijon, France). ACM Press, 404–408.
Kosmatov, N. 2006b. Constraint solving for sequences in software validation and veri-
fication. In INAP ’05: Proc. 16th Intl. Conf. Applications of Declarative Programming
and Knowledge Management (Fukuoka, Japan). LNCS, vol. 4369. Springer, 25–37.
Kowalski, R. 1979. Algorithm = logic + control. Commun. ACM 22, 7, 424–436.
Kraft, A. 1984. XCON: An expert configuration system at Digital Equipment
Corporation. In The AI Business – Commercial Uses of Artificial Intelligence, P. H.
Winston and K. A. Prendergast, Eds. MIT Press, Cambridge, MA, 43–49.
Krämer, E. 2001. A generic search engine for a Java Constraint Kit. Diplomarbeit,
Institute of Computer Science, LMU, Munich, Germany.
Krishnamurthy, R., Boral, H., and Zaniolo, C. 1986. Optimization of nonrecurs-
ive queries. In VLDB ’86: Proceedings of the 12th International Conference on Very
Large Data Bases. Morgan Kaufmann Publishers Inc., 128–137.
Lam, E. S. and Sulzmann, M. 2006. Towards agent programming in CHR. In
Schrijvers and Frühwirth (2006), 17–31.
Lam, E. S. and Sulzmann, M. 2008. Finally, a comparison between Constraint
Handling Rules and join-calculus. In Schrijvers, Raiser, and Frühwirth (2008), 51–66.
Lavrac, N. and Dzeroski, S. 1994. Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, New York.

http://illation.com.au/benchmarks/
http://illation.com.au/benchmarks/
http://jboss.org/drools/
http://jboss.org/drools/


Bibliography 237

Leuschel, M. and Podelski, A., Eds. 2007. PPDP ’07: Proc. 9th Intl. Conf. Princ.
Pract. Declarative Programming (Wrocław, Poland). ACM Press.
Lifschitz, V. 1996. Foundations of logic programming. In Principles of knowledge
representation, G. Brewka, Ed. Studies In Logic, Language And Information. Center
for the Study of Language and Information, Stanford, CA, USA, 69–127.
Lindholm, T. and Yellin, F. 1999. The JavaTM Virtual Machine Specification, 2 ed.
Prentice Hall.
Lloyd, J. W. 1987. Foundations of logic programming, Second extended ed. Springer.
Lötzbeyer, H. and Pretschner, A. 2000. AutoFocus on constraint logic program-
ming. In LPSE ’00: Proc. Intl. Workshop on (Constraint) Logic Programming and
Software Engineering (London, United Kingdom).
Maher, M. J. and Puget, J.-F., Eds. 1998. CP ’98: Proc. 4th Intl. Conf. Princ.
Pract. Constraint Programming (Pisa, Italy). LNCS, vol. 1520. Springer.
Marriott, K. and Stuckey, P. J. 1998. Programming with constraints: an intro-
duction. MIT Press.
McCarthy, D. and Dayal, U. 1989. The architecture of an active database manage-
ment system. SIGMOD Record 18, 2, 215–224.
McCarthy, J. 1963. Situations, actions, and causal laws. Tech. rep., Stanford
University.
McDermott, J. 1980. R1: An expert in the computer systems domain. Artificial
Intelligence 19, 1, 39–88. Winner of the 1999 AAAI Classic Paper Award.
McDermott, J. 1994. R1 (“xcon”) at age 12: lessons from an elementary school
achiever. In Artificial intelligence in perspective. MIT Press, 241–247.
McDermott, J. and Forgy, C. L. 1978. Production system conflict resolution
strategies. In Pattern-Directed Inference Systems. Academic Press.
Meijer, E., Fokkinga, M., and Paterson, R. 1991. Functional programming with
bananas, lenses, envelopes and barbed wire. In Proc. 5th ACM Conf. Functional
Programming Languages and Computer Architecture. LNCS, vol. 523. Springer.
Meister, M. 2006. Fine-grained parallel implementation of the preflow-push algorithm
in CHR. In Fink, Tompits, and Woltran (2006), 172–181.
Meister, M., Djelloul, K., and Frühwirth, T. 2006. Complexity of a CHR solver
for existentially quantified conjunctions of equations over trees. In CSCLP ’06: Proc.
11th Annual ERCIM Workshop on Constraint Solving and Constraint Programming
(Caparica, Portugal), F. Azevedo et al., Eds. LNCS, vol. 4651. Springer, 139–153.
Meister, M., Djelloul, K., and Robin, J. 2007. A unified semantics for Constraint
Handling Rules in transaction logic. In LPNMR ’07: Proc. 9th Intl. Conf. Logic
Programming and Nonmonotonic Reasoning (Tempe, AZ, USA), C. Baral, G. Brewka,
and J. S. Schlipf, Eds. LNCS, vol. 4483. Springer, 201–213.
Menezes, L., Vitorino, J., and Aurelio, M. 2005. A high performance CHR∨
execution engine. In Schrijvers and Frühwirth (2005b), 35–45.



238 Bibliography

Meyer, B. 2000. A constraint-based framework for diagrammatic reasoning. In
Holzbaur and Frühwirth (2000b), 327–344.
Miranker, D. P. 1987. TREAT: a new and efficient match algorithm for AI production
systems. Ph.D. thesis, Columbia Univ.
Miranker, D. P. 1998. TREAT or RETE, neither, LEAPS is best. http://www.cs.
utexas.edu/~miranker/treator.htm. Online note.
Miranker, D. P. et al. 1991. Texas benchmark suite. http://www.cs.utexas.
edu/ftp/pub/ops5-benchmark-suite/. First described in (Brant, Grose, Lofaso, and
Miranker 1991).
Miranker, D. P. and Brant, D. A. 1990. An algorithmic basis for integrating
production systems and large databases. In Proc. Sixth Intl. Conf. Data Engineering.
IEEE, 353–360.
Miranker, D. P., Brant, D. A., Lofaso, B. J., and Gadbois, D. 1990. On the
performance of lazy matching in production systems. In Proc. 8th Nat. Conf. Artif.
Intell. (AAAI’90). AAAI Press, 685–692.
Miranker, D. P. and Lofaso, B. 1991. The organization and performance of a
TREAT-based production system compiler. IEEE Trans. Knowl. Data Eng. 3, 1, 3–10.
Morawietz, F. 2000. Chart parsing and constraint programming. In COLING ’00:
Proc. 18th Intl. Conf. on Computational Linguistics (Saarbrücken, Germany), M. Kay,
Ed. Morgan Kaufmann.
Morawietz, F. and Blache, P. 2002. Parsing natural languages with CHR. Unpub-
lished Draft.
Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. 2001.
Chaff: engineering an efficient sat solver. In DAC ’01: Proc. 38th Design Automation
Conf. 530–535.
Muggleton, S. and Raedt, L. D. 1994. Inductive Logic Programming: Theory and
methods. J. of Logic Programming 19/20.
Obermeyer, L. and Miranker, D. P. 1994. CLIPS++: Embedding CLIPS into
C++. In Proc. Third CLIPS Conference.
Obermeyer, L., Miranker, D. P., and Brant, D. 1995. Selective indexing speeds
production systems. In Proc. 7th Intl. Conf. Tools with AI. IEEE Comp. Society.
Pachet, F. 1995. On the embeddability of production rules in object-oriented
languages. Journal of Object-Oriented Programming 8, 4, 19–24.
Pachet, F., Ed. 2004. EOOPS’94: Proc. OOPSLA’94 Workshop on Embedded
Object-Oriented Production Systems. Portland, Oregon, USA.
Paton, N. W. and Díaz, O. 1999. Active database systems. ACM Computing
Surveys 31, 1, 63–103.
Pelov, N. 2004. Semantics of logic programs with aggregates. Ph.D. thesis,
K.U.Leuven, Belgium.
Penn, G. 2000. Applying Constraint Handling Rules to HPSG. In Frühwirth et al.
(2000).

http://www.cs.utexas.edu/~miranker/treator.htm
http://www.cs.utexas.edu/~miranker/treator.htm
http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/
http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/


Bibliography 239

Pilozzi, P. 2009a. Automating termination proofs for CHR. In Hill and Warren
(2009), 504–508.
Pilozzi, P. 2009b. Proving termination by invariance relations. In Hill and Warren
(2009), 499–503.
Pilozzi, P. 2009c. Research summary: Termination of CHR. In Hill and Warren
(2009), 534–535.
Pilozzi, P. and De Schreye, D. 2008. Termination analysis of CHR revisited. In
García de la Banda and Pontelli (2008), 501–515.
Pilozzi, P. and De Schreye, D. 2009. Scaling termination proofs by a characteriza-
tion of cycles in CHR. Tech. Rep. CW 541, K.U.Leuven, Dept. Comp. Sc., Leuven,
Belgium. Apr.
Pretschner, A., Slotosch, O., Aiglstorfer, E., and Kriebel, S. 2004. Model-
based testing for real. J. Software Tools for Technology Transfer (STTT) 5, 2–3,
140–157.
Probst, M. 2001. Proper tail recursion in C. Diplomarbeit, Institute of Computer
Languages, Vienna University of Technology.
Raiser, F. and Sneyers, J., Eds. 2009. CHR ’09: Proc. 6th Workshop on Constraint
Handling Rules (Pasadena, California). K.U.Leuven, Dept. Comp. Sc., Technical report
CW 555.
Raiser, F. and Tacchella, P. 2007. On confluence of non-terminating CHR
programs. In Djelloul, Duck, and Sulzmann (2007), 63–76.
Ribeiro, C., Zúquete, A., Ferreira, P., and Guedes, P. 2000. Security policy
consistency. In Frühwirth et al. (2000).
Riley, G. et al. 2008. CLIPS Reference Manual – Version 6.30 Beta.
Riley, G. et al. 2010. CLIPS: A tool for building expert systems. http://clipsrules.
sourceforge.net/.
Robin, J. and Vitorino, J. 2006. ORCAS: Towards a CHR-based model-driven
framework of reusable reasoning components. In Fink, Tompits, and Woltran (2006),
192–199.
Robin, J., Vitorino, J., and Wolf, A. 2007. Constraint programming architectures:
Review and a new proposal. J. Universal Comp. Science 13, 6, 701–720.
Rossi, F., Van Beek, P., and Walsh, T., Eds. 2006. Handbook of Constraint
Programming. Foundations of Artificial Intelligence, vol. 1. Elsevier.
Sarna-Starosta, B. and Ramakrishnan, C. 2007. Compiling Constraint Handling
Rules for efficient tabled evaluation. In PADL ’07: Proc. 9th Intl. Symp. Practical
Aspects of Declarative Languages (Nice, France), M. Hanus, Ed. LNCS, vol. 4354.
Springer, 170–184.
Sarna-Starosta, B. and Schrijvers, T. 2008a. An efficient term representation
for CHR indexing. In CICLOPS ’08: Proc. 8th Colloquium on Implementation of
Constraint and LOgic Programming Systems, M. Carro and B. Demoen, Eds. 172–186.

http://clipsrules.sourceforge.net/
http://clipsrules.sourceforge.net/


240 Bibliography

Sarna-Starosta, B. and Schrijvers, T. 2008b. Transformation-based indexing
techniques for Constraint Handling Rules. In Schrijvers, Raiser, and Frühwirth (2008),
3–18.
Schiffel, S. and Thielscher, M. 2007. Fluxplayer: A successful general game player.
In AAAI ’07: Proc. 22nd AAAI Conf. Artificial Intelligence (Vancouver, Canada).
AAAI Press, 1191–1196.
Schinz, M. and Odersky, M. 2001. Tail call elimination on the Java Virtual
Machine. In BABEL’01: First Intl. Workshop on Multi-Language Infrastructure and
Interoperability. ENTCS 59(1), 158–171.
Schmauß, M. 1999. An implementation of CHR in Java. Diplomarbeit, Institute of
Computer Science, LMU, Munich, Germany.
Schrijvers, T. 2005. Analyses, optimizations and extensions of Constraint Handling
Rules. Ph.D. thesis, K.U.Leuven, Belgium.
Schrijvers, T. 2008. The K.U.Leuven CHR System. http://people.cs.kuleuven.
be/~tom.schrijvers/CHR/.
Schrijvers, T. and Bruynooghe, M. 2006. Polymorphic algebraic data type
reconstruction. In PPDP ’06, A. Bossi and M. Maher, Eds. ACM Press, 85–96.
Schrijvers, T. and Demoen, B. 2004a. Antimonotony-based delay avoidance for
CHR. Tech. Rep. CW 385, K.U.Leuven, Dept. Comp. Sc., Leuven, Belgium. July.
Schrijvers, T. and Demoen, B. 2004b. The K.U.Leuven CHR system: Implementa-
tion and application. In Frühwirth and Meister (2004), 8–12.
Schrijvers, T., Demoen, B., Duck, G. J., Stuckey, P. J., and Frühwirth, T.
2006. Automatic implication checking for CHR constraints. In RULE ’05: 6th Intl.
Workshop on Rule-Based Programming. ENTCS, vol. 147(1). Elsevier, 93–111.
Schrijvers, T. and Frühwirth, T. 2005a. Analysing the CHR implementation of
union-find. In Wolf, Frühwirth, and Meister (2005), 135–146.
Schrijvers, T. and Frühwirth, T., Eds. 2005b. CHR ’05: Proc. 2nd Workshop on
Constraint Handling Rules (Sitges, Spain). K.U.Leuven, Dept. Comp. Sc., Technical
report CW 421.
Schrijvers, T. and Frühwirth, T., Eds. 2006. CHR ’06: Proc. 3rd Workshop on
Constraint Handling Rules (Venice, Italy). K.U.Leuven, Dept. Comp. Sc., Technical
report CW 452.
Schrijvers, T. and Frühwirth, T. 2006. Optimal union-find in Constraint Handling
Rules. TPLP 6, 1–2, 213–224.
Schrijvers, T. and Frühwirth, T., Eds. 2008. Constraint Handling Rules — Current
Research Topics. LNAI, vol. 5388. Springer.
Schrijvers, T., Raiser, F., and Frühwirth, T., Eds. 2008. CHR ’08: Proc. 5th
Workshop on Constraint Handling Rules (Hagenberg, Austria). RISC Report Series
08-10, University of Linz, Austria.
Schrijvers, T., Stuckey, P. J., and Duck, G. J. 2005. Abstract interpretation
for Constraint Handling Rules. In PPDP ’05 (Lisbon, Portugal), P. Barahona and
A. Felty, Eds. ACM Press, 218–229.

http://people.cs.kuleuven.be/~tom.schrijvers/CHR/
http://people.cs.kuleuven.be/~tom.schrijvers/CHR/


Bibliography 241

Schrijvers, T. and Warren, D. S. 2004. Constraint Handling Rules and tabled
execution. In Demoen and Lifschitz (2004), 120–136.
Schrijvers, T., Warren, D. S., and Demoen, B. 2003. CHR for XSB. In CICLOPS
’03: Proc. 3rd Intl. Colloq. on Implementation of Constraint and Logic Programming
Systems (Mumbai, India), R. Lopes and M. Ferreira, Eds. University of Porto, Portugal,
Dept. Comp. Sc., Technical report DCC-2003-05. 7–20.
Schrijvers, T., Wielemaker, J., and Demoen, B. 2005. Poster: Constraint
Handling Rules for SWI-Prolog. In Wolf, Frühwirth, and Meister (2005).
Schrijvers, T., Zhou, N.-F., and Demoen, B. 2006. Translating Constraint
Handling Rules into Action Rules. In Schrijvers and Frühwirth (2006), 141–155.
Schumann, E. T. 2002. A literate programming system for logic programs with
constraints. In WFLP ’02 (Grado, Italy), M. Comini and M. Falaschi, Eds. University
of Udine, Research Report UDMI/18/2002/RR.
Seitz, C., Bauer, B., and Berger, M. 2002. Planning and scheduling in multi agent
systems using Constraint Handling Rules. In IC-AI ’02: Proc. Intl. Conf. Artificial
Intelligence (Las Vegas, Nevada, USA). CSREA Press.
Selman, D. et al. 2004. JSR-94 – JavaTM rule engine API. http://jcp.org/en/
jsr/summary?id=94.
Simons, P., Niemelá, I., and Soininen, T. 2002. Extending and implementing the
stable model semantics. Artificial Intelligence 138, 1–2, 181–234.
Sneyers, J. 2008. Optimizing compilation and computational complexity of Constraint
Handling Rules. Ph.D. thesis, K.U.Leuven, Belgium.
Sneyers, J., Meert, W., and Vennekens, J. 2009. CHRiSM: Chance Rules induce
Statistical Models. In Raiser and Sneyers (2009), 62–76.
Sneyers, J., Schrijvers, T., and Demoen, B. 2006a. Dijkstra’s algorithm with
Fibonacci heaps: An executable description in CHR. In Fink, Tompits, and Woltran
(2006), 182–191.
Sneyers, J., Schrijvers, T., and Demoen, B. 2006b. Memory reuse for CHR. In
Etalle and Truszczynski (2006), 72–86.
Sneyers, J., Schrijvers, T., and Demoen, B. 2008. Guard reasoning in the refined
operational semantics of CHR. In Schrijvers and Frühwirth (2008), 213–244.
Sneyers, J., Schrijvers, T., and Demoen, B. 2009. The computational power and
complexity of Constraint Handling Rules. ACM TOPLAS 31, 2 (Feb.).
Sneyers, J., Van Weert, P., and Schrijvers, T. 2007. Aggregates for Constraint
Handling Rules. In Djelloul, Duck, and Sulzmann (2007), 91–105.
Sneyers, J., Van Weert, P., Schrijvers, T., and De Koninck, L. 2010. As time
goes by: Constraint Handling Rules – A survey of CHR research between 1998 and
2007. TPLP 10, 1, 1–47.
Sneyers, J., Van Weert, P., Schrijvers, T., and Demoen, B. 2007. Aggregates
in CHR. Tech. Rep. CW 481, K.U.Leuven, Dept. Comp. Sc., Leuven, Belgium. Mar.
Stahl, M. and Melnikov, A. 2007. STMCHR. Available at the CHR Website (2010).

http://jcp.org/en/jsr/summary?id=94
http://jcp.org/en/jsr/summary?id=94


242 Bibliography

Steinbrunn, M., Moerkotte, G., and Kemper, A. 1997. Heuristic and randomized
optimization for the join ordering problem. The VLDB Journal 6, 3, 191–208.
Sterling, L. and Shapiro, E. 1994. The art of Prolog, Second ed. MIT Press.
Stuckey, P. J. 1995. Negation and Constraint Logic Programming. Information and
Computation 118, 1, 12–33.
Stuckey, P. J., Ed. 2002. ICLP ’02: Proc. 18th Intl. Conf. Logic Programming
(Copenhagen, Denmark). LNCS, vol. 2401. Springer.
Stuckey, P. J. and Sulzmann, M. 2005. A theory of overloading. ACM TO-
PLAS 27, 6, 1216–1269.
Stuckey, P. J., Sulzmann, M., and Wazny, J. 2004. The Chameleon system. In
Frühwirth and Meister (2004), 13–32.
Sulzmann, M., Duck, G. J., Peyton-Jones, S., and Stuckey, P. J. 2007. Un-
derstanding functional dependencies via Constraint Handling Rules. J. Functional
Prog. 17, 1, 83–129.
Sulzmann, M. and Lam, E. S. 2007a. Compiling Constraint Handling Rules with lazy
and concurrent search techniques. In Djelloul, Duck, and Sulzmann (2007), 139–149.
Sulzmann, M. and Lam, E. S. 2007b. Haskell - Join - Rules. In IFL ’07: 19th Intl.
Symp. Implementation and Application of Functional Languages (Freiburg, Germany),
O. Chitil, Ed. 195–210.
Sulzmann, M. and Lam, E. S. 2008. Parallel execution of multi-set constraint rewrite
rules. In PPDP ’08 (Valencia, Spain), S. Antoy, Ed. ACM Press, 20–31.
Sulzmann, M., Lam, E. S., and Van Weert, P. 2008. Actors with multi-headed
message receive patterns. In COORDINATION ’08: Proc. 10th Intl. Conf. Coordination
Models and Languages (Oslo, Norway), D. Lea and G. Zavattaro, Eds. Number 5052
in LNCS. Springer, 315–330.
Sulzmann, M., Schrijvers, T., and Stuckey, P. J. 2006. Principal type inference
for GHC-style multi-parameter type classes. In APLAS ’06: Proc. 4th Asian Symp. on
Programming Languages and Systems (Sydney, Australia), N. Kobayashi, Ed. LNCS,
vol. 4279. Springer, 26–43.
Sun Microsystems, Inc. 2010. Java SE HotSpot at a glance. http://java.sun.com/
javase/technologies/hotspot/.
Swami, A. and Gupta, A. 1988. Optimization of large join queries. SIGMOD
Rec. 17, 3, 8–17.
Tacchella, P., Gabbrielli, M., and Meo, M. C. 2007. Unfolding in CHR. In
Leuschel and Podelski (2007), 179–186.
Thielscher, M. 2002. Reasoning about actions with CHRs and finite domain con-
straints. In Stuckey (2002), 70–84.
Thielscher, M. 2005. FLUX: A logic programming method for reasoning agents. In
Abdennadher, Frühwirth, and Holzbaur (2005), 533–565.
Valduriez, P. 1987. Join indices. ACM Trans. Database Systems 12, 2, 218–246.

http://java.sun.com/javase/technologies/hotspot/
http://java.sun.com/javase/technologies/hotspot/


Bibliography 243

Van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics
for general logic programs. Journal of the ACM 38, 3, 619–649.
Van Hentenryck, P. and Saraswat, V. 1997. Constraint Programming: strategic
directions. Constraints 2, 1 (Apr.), 7–33.
Van Weert, P. 2005. Constraint programming in Java: een gebruiksvriendelijk,
flexibel en efficient CHR-systeem voor Java. M.S. thesis, Department of Computer
Science, K.U.Leuven, Leuven, Belgium. (In Dutch).
Van Weert, P. 2006. K.U.Leuven JCHR User’s Manual. Available at (Van Weert
2010c).
Van Weert, P. 2008a. Compiling Constraint Handling Rules to Java: A reconstruction.
Tech. Rep. CW 521, K.U.Leuven, Dept. Comp. Sc., Leuven, Belgium. Aug.
Van Weert, P. 2008b. Optimization of CHR propagation rules. In García de la
Banda and Pontelli (2008), 485–500.
Van Weert, P. 2008c. A tale of histories. In Schrijvers, Raiser, and Frühwirth (2008),
79–94.
Van Weert, P. 2010a. Efficient lazy evaluation of rule-based programs. IEEE
Transactions on Knowledge and Data Engineering. Accepted.
Van Weert, P. 2010b. Join ordering for constraint handling rules: Putting theory
into practice. In CHR’10: 7th International Workshop on Constraint Handling Rules,
P. Van Weert and L. De Koninck, Eds. To appear.
Van Weert, P. 2010c. The K.U.Leuven JCHR system. http://people.cs.kuleuven.
be/~peter.vanweert/JCHR/.
Van Weert, P., De Koninck, L., and Sneyers, J. 2009. A proposal for a next
generation of CHR. In Raiser and Sneyers (2009), 77–93.
Van Weert, P., Schrijvers, T., and Demoen, B. 2005. K.U.Leuven JCHR: a
user-friendly, flexible and efficient CHR system for Java. In Schrijvers and Frühwirth
(2005b), 47–62.
Van Weert, P., Sneyers, J., and Demoen, B. 2008. Aggregates for CHR through
program transformation. In King (2008), 59–73.
Van Weert, P., Sneyers, J., Schrijvers, T., and Demoen, B. 2006a. Extending
CHR with negation as absence. In Schrijvers and Frühwirth (2006), 125–140.
Van Weert, P., Sneyers, J., Schrijvers, T., and Demoen, B. 2006b. To CHR¬
or not to CHR¬: Extending CHR with negation as absence. Tech. Rep. CW 446,
K.U.Leuven, Dept. Comp. Sc., Leuven, Belgium. May.
Van Weert, P., Wuille, P., Schrijvers, T., and Demoen, B. 2008. CHR for
imperative host languages. In Schrijvers and Frühwirth (2008), 161–212.
Vitorino, J. and Aurelio, M. 2005. CHORD. http://chord.sourceforge.net/.
Voets, D., Pilozzi, P., and De Schreye, D. 2007. A new approach to termination
analysis of Constraint Handling Rules. In Djelloul, Duck, and Sulzmann (2007), 77–89.
Voll, K. 2006. A methodology of error detection: Improving speech recognition in
radiology. Ph.D. thesis, Simon Fraser University, Burnaby, Canada.

http://people.cs.kuleuven.be/~peter.vanweert/JCHR/
http://people.cs.kuleuven.be/~peter.vanweert/JCHR/
http://chord.sourceforge.net/


244 Bibliography

Waltz, D. 1975. Understanding line drawing of scenes with shadows. In The Psychology
of Computer Vision. McGraw-Hill, Chapter 2, 19–91.
Wang, Y.-W. and Hanson, E. N. 1992. A performance comparison of the Rete and
TREAT algorithms for testing database rule conditions. In Proc. 8th Intl. Conf. Data
Engineering. IEEE Comp. Society, 88–97.
Widom, J. and Ceri, S. 1996. Active database systems: triggers and rules for advanced
database processing. Morgan Kaufmann.
Wielemaker, J. et al. 2010. SWI Prolog. http://www.swi-prolog.org/.
Wolf, A. 1999. Adaptive Constraintverarbeitung mit Constraint-Handling-Rules –
ein allgemeiner Ansatz zur Lösung dynamischer Constraint-probleme. Ph.D. thesis,
Technical University Berlin, Germany.
Wolf, A. 2000a. Projection in adaptive constraint handling. In Apt, Kakas, Monfroy,
and Rossi (2000), 318–338.
Wolf, A. 2000b. Toward a rule-based solution of dynamic constraint hierarchies over
finite domains. In Frühwirth et al. (2000).
Wolf, A. 2001a. Adaptive constraint handling with CHR in Java. In CP ’01 (Paphos,
Cyprus), T. Walsh, Ed. LNCS, vol. 2239. Springer, 256–270.
Wolf, A. 2001b. Attributed variables for dynamic constraint solving. In Proc. 14th
Intl. Conf. Applications of Prolog (Tokyo, Japan). Prolog Assoc. of Japan, 211–219.
Wolf, A. 2005. Intelligent search strategies based on adaptive Constraint Handling
Rules. In Abdennadher, Frühwirth, and Holzbaur (2005), 567–594.
Wolf, A., Frühwirth, T., and Meister, M., Eds. 2005. W(C)LP ’05: Proc. 19th
Workshop on (Constraint) Logic Programming (Universität Ulm, Germany). Ulmer
Informatik-Berichte, vol. 2005-01.
Wolf, A., Gruenhagen, T., and Geske, U. 2000. On incremental adaptation of
CHR derivations. In Holzbaur and Frühwirth (2000b), 389–416.
Wolf, A., Robin, J., and Vitorino, J. 2007. Adaptive CHR meets CHR∨: An
extended refined operational semantics for CHR∨ based on justifications. In Djelloul,
Duck, and Sulzmann (2007), 1–15.
Wright, I. and Marshall, J. 2003. The execution kernel of RC++: RETE∗, a
faster RETE with TREAT as a special case. Intl. J. Intell. Games & Simul. 2, 1,
36–48.
Wuille, P. 2007. CCHR: de snelste CHR implementatie. M.S. thesis, Department of
Computer Science, K.U.Leuven, Leuven, Belgium. In Dutch.
Wuille, P., Schrijvers, T., and Demoen, B. 2007. CCHR: the fastest CHR
implementation, in C. In Djelloul, Duck, and Sulzmann (2007), 123–137.

http://www.swi-prolog.org/


Biography

Peter Van Weert was born on the 17th of January 1983 in Leuven, Belgium, and
grew up in another Belgian city, Mechelen. After graduating from high school at
the Scheppersinstituut Mechelen, his university studies took him back to his birth
town. He studied computer science at the Faculty of Sciences of the K.U.Leuven
university, receiving his Bachelor’s degree of Science in Informatics (Kandidaat
Informatica) in 2003, and his Master’s degree of Science in Informatics (Licentiaat
Informatica) in 2005. Both times, Peter graduated summa cum laude with the
congratulations of the Board of Examiners. His Master’s thesis, titled “Constraint
Programming in Java: a user-friendly, flexible and efficinet CHR system for Java”,
was supervised by prof. Bart Demoen.

In September 2005, Peter started working as Ph.D. student in the Security task
force of the DistriNet research group at the department of Computer Science of the
K.U.Leuven, under the supervision of Professor Frank Piessens. Shortly thereafter,
he moved to the Analysis (Design, Analysis and Implementation of Declarative
Programming Languages) subgroup of the DTAI (Declarative Languages and
Artificial Intelligence) research group in January 2006. In October 2006, Peter
became a research assistant funded by the Research Foundation – Flanders (FWO
Vlaanderen). He was a visiting scholar at the National University of Singapore
in November/December 2007 under supervision of prof. Martin Sulzmann.

245



246 Biography



List of Publications

Articles in International Reviewed Journals1

Van Weert, P.. Efficient lazy evaluation of rule-based programs. IEEE
Transactions on Knowledge and Data Engineering (impact factor: 2.236). To
appear in Special issue on Rule Representation, Interchange and Reasoning in
Distributed, Heterogeneous Environments, 2010.

Sneyers, J., Van Weert, P., Schrijvers, T., and De Koninck, L..
As time goes by: Constraint Handling Rules — A survey of CHR research
between 1998 and 2007. Theory and Practice of Logic Programming 10, 1,
1–47, January 2010 (impact factor: 1.049).

Van Weert, P., Wuille, P., Schrijvers, T., and Demoen, B.. CHR for
imperative host languages. Lecture Notes on Artificial Intelligence, vol. 5388,
pp. 161–212. Springer, December 2008.

Contributions at International Conferences and Symposia
Van Weert, P. Optimization of CHR propagation rules. In ICLP ’08,
M. García de la Banda and E. Pontelli, Eds. LNCS, vol. 5366, pp. 485–500
(full paper acceptance rate: 31.6%). Springer, 2008.

Sulzmann, M., Lam, E. S., and Van Weert, P. Actors with multi-headed
message receive patterns. In COORDINATION ’08: Proc. 10th Intl. Conf.
Coordination Models and Languages, D. Lea and G. Zavattaro, Eds. LNCS,
vol. 5052, pp. 315–330 (acceptance rate: 34.4%). Springer, December 2008.

Van Weert, P., Sneyers, J., and Demoen, B. Aggregates for CHR through
program transformation. In LOPSTR ’07, Revised Selected Papers, A. King,
Ed. LNCS, vol. 4915, pp. 59–73 (acceptance rate: 43.3%). Springer, 2008.

1Journal impact factors are based on the 2008 edition of the Journal Citation ReportR©
published by the Institute for Scientific Information (ISI).

247



248 List of Publications

Sneyers, J., Van Weert, P., Schrijvers, T., and Demoen, B. Aggregates
in Constraint Handling Rules: Extended abstract. In ICLP ’07, V. Dahl and
I. Niemelä, Eds. LNCS, vol. 4670. pp. 446–448. Springer, September 2007.

Van Weert, P.. Extension and implementation of CHR — Research summary.
In ICLP ’07, V. Dahl and I. Niemelä, Eds. LNCS, vol. 4670. pp. 466–468.
Springer, September 2007.

Contributions at International Workshops
Van Weert, P., De Koninck, L., and Sneyers, J. A proposal for a next
generation of CHR. In CHR ’09, F. Raiser and J. Sneyers, Eds. K.U.Leuven,
Dept. Comp. Sc., Technical report CW 555, pp. 77–93, July 2009.

Van Weert, P. A tale of histories. In CHR ’08, T. Schrijvers, F. Raiser,
and T. Frühwirth, Eds. RISC Report Series 08-10, University of Linz, Austria,
Hagenberg, Austria, pp. 79–94, 2008.

Sneyers, J., Van Weert, P., and Schrijvers, T. Aggregates for Constraint
Handling Rules. In CHR ’07, K. Djelloul, G. J. Duck, and M. Sulzmann, Eds.
Porto, Portugal, pp. 91–105, September 2007.

Van Weert, P., Sneyers, J., Schrijvers, T., and Demoen, B. Extending
CHR with negation as absence. In CHR ’06, T. Schrijvers and T. Frühwirth,
Eds. K.U.Leuven, Dept. Comp. Sc., Technical report CW 452, Venice, Italy,
125–140, July 2006.

Van Weert, P., Schrijvers, T., and Demoen, B. K.U.Leuven JCHR:
a user-friendly, flexible and efficient CHR system for Java. In CHR ’05,
T. Schrijvers and T. Frühwirth, Eds. K.U.Leuven, Dept. Comp. Sc., Technical
report CW 421, Sitges, Spain, 47–62, October 2005.

Technical Reports
Van Weert, P. Compiling Constraint Handling Rules to Java: A reconstruc-
tion. CW 521, K.U.Leuven, Dept. Computer Science. August 2008.

Van Weert, P. Optimization of CHR propagation rules: Extended report.
CW 519, K.U.Leuven, Dept. Computer Science. August 2008.

Sneyers, J., Van Weert, P., Schrijvers, T., and Demoen, B. Aggregates
in CHR. CW 481, K.U.Leuven, Dept. Computer Science. March 2007.

Van Weert, P., Sneyers, J., Schrijvers, T., and Demoen, B. To
CHR¬ or not to CHR¬: Extending CHR with negation as absence. CW 446,
K.U.Leuven, Dept. Computer Science. May 2006.





Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering

Department of Computer Science
DTAI (Declarative Languages and Artificial Intelligence)

Celestijnenlaan 200A box 2402
B-3001 Leuven


	Abstract
	Beknopte Samenvatting
	Contents
	List of Figures
	List of Tables
	List of Listings

	List of Symbols
	Acknowledgements
	Introduction
	Declarative Programming
	Constraint Handling Rules
	Goals and Overview
	Part I — Background
	Part II — CHR Language Design
	Part III — Optimising Implementation of CHR

	Bibliographic Notes

	I Background
	Rule-based Programming
	Rules in Programming
	Production Rules
	Introduction
	Historical overview
	Matching algorithms


	Logic and Constraint Programming
	Logic Programming
	Basics of logic programming
	Operational semantics
	Prolog: programming in logic
	Conclusion

	Constraint Programming

	Constraint Handling Rules
	Introduction
	CHR(H)
	Syntax
	CHR by example
	Relation to other formalisms

	Formal Semantics
	Logical semantics
	The theoretical operational semantics
	The refined operational semantics

	Program Properties and Analysis
	Termination
	Confluence
	Complexity

	Language Extensions
	Probabilities
	Priorities
	Adaptive CHR
	Disjunction and search

	Systems and Implementation
	CHR(LP)
	CHR(FP)
	CHR(Java) and CHR(C)
	Programming Environments

	Applications
	Constraint solvers
	Algorithms
	Programming language development
	Industrial CHR use



	II CHR Language Design
	A Next Generation CHR Language
	Basic Building Blocks
	Rule conditions
	Constraint identifiers
	Constraint arguments
	Priority constraints
	Batch and sequential conjunctions
	Set semantics
	Functional dependencies

	Operational Semantics
	Program normalisation
	The operational semantics
	Compatibility with other semantics
	Discussion

	Conclusions

	Aggregates
	Motivation
	Negation as absence
	Aggregates

	Extensible Aggregate Framework
	Universal aggregate construct
	Common aggregates

	Language Design
	Aggregates for rule-based programs
	Complex aggregate goals
	Nested aggregates
	Empty heads and goals
	Multiple aggregates
	Matching semantics
	Nondeterministic aggregates
	Constructive aggregates
	Distinct matches
	Fire-once versus fire-many semantics
	Aggregates outside rule heads

	Aggregates in CHR and CHR2

	Formal Semantics and Properties
	Operational semantics
	Logical semantics and formal properties

	Expressiveness case studies
	Related Work
	Conclusions
	Future work


	CHR for Imperative Host Languages
	Impedance Mismatch
	(C)LP language features
	Imperative language features

	Integrated CHR(imperative) Systems
	Design philosophy
	Arbitrary built-in constraints and solvers

	The K.U.Leuven JCHR Systems
	Historical overview
	JCHR handlers
	JCHR constraints
	An integrated CHR(Java) system
	Built-in constraints and solvers
	Using a JCHR handler
	Applications

	Related work
	CHR in C
	CHR in Java
	CHR in functional languages
	Production Rule Systems



	III Optimising Implementation of CHR
	Optimising Compilation and Lazy Evaluation
	Core language and normal form
	Basic Compilation Methodology
	Principal data structures and operations
	The constraint store
	Constraint iterators
	The propagation history

	Basic compilation scheme
	Extension with negation
	Extension with priorities

	Program Analysis and Optimisation
	Constraint invariants
	Deriving constraint invariants
	Unenforced constraint invariants

	Optimising join computation
	Loop-invariant code motion
	Constraint indexing
	Exploiting constraint invariants
	Pre-commit backjumping
	Post-commit backjumping
	Fragile iterators
	Join ordering

	Reducing constraint store overhead
	Late indexing
	Late allocation
	In-place and delayed modifications
	Lazy indexing

	Optimising constraint activation
	Removal preference
	Reducing schedule overhead
	Passive removals
	Passive occurrences
	Dynamic passive occurrences

	Optimising constraint reactivation
	Selective reactivation
	Delay avoidance
	Generation optimisation

	Program specialisation
	Constraint specialisation
	Guard simplification


	Evaluation
	CHR systems
	Production rule systems

	Discussion and Related Work
	CHR systems
	Production rule systems

	Ongoing and Future Work
	Dynamic optimisations
	Global optimisations


	Recursion Optimisations
	Sequential Conjunctions and Recursion
	Basic compilation scheme
	Problem analysis: recursion and stack overflows
	Problem demonstration: empirical results

	Recursion Optimisations
	Trampoline-based execution
	Explicit stack

	Evaluation
	Conclusions
	Related work
	Future work


	Optimising Propagation Rules
	Propagation History Implementation
	Optimising history maintenance

	Non-reactive Propagation Rules
	Introduction: from fixed to non-reactive CHR
	Propagation history elimination
	Optimised reapplication avoidance

	Idempotence
	Deriving idempotence

	Evaluation
	Conclusions
	Related work
	Future work



	Conclusions
	Contributions
	CHR language design
	Optimising implementation of CHR

	Future Work

	Appendices
	Heuristics for an A* Join Ordering Algorithm
	Anti-Monotony-based Delay Avoidance
	Benchmarks

	Bibliography
	Biography
	List of Publications

