
CHR for Imperative Host Languages

Peter Van Weert�, Pieter Wuille, Tom Schrijvers��, and Bart Demoen

Department of Computer Science, K.U.Leuven, Belgium
FirstName.LastName @cs.kuleuven.be

Abstract. In this paper, we address the different conceptual and tech-
nical difficulties encountered when embedding CHR into an imperative
host language. We argue that a tight, natural integration leads to a
powerful programming language extension, intuitive to both CHR and
imperative programmers. We show how to compile CHR to highly opti-
mized imperative code. To this end, we first review the well-established
CHR compilation scheme, and survey the large body of possible opti-
mizations. We then show that this scheme, when used for compilation
to imperative target languages, leads to stack overflows. We therefore
introduce new optimizations that considerably improve the performance
of recursive CHR programs. Rules written using tail calls are even guar-
anteed to run in constant space. We implemented systems for both Java
and C, following the language design principles and compilation scheme
presented in this paper, and show that our implementations outperform
other state-of-the-art CHR compilers by several orders of magnitude.

1 Introduction

Constraint Handling Rules (CHR) [1,26,27,63] is a high-level programming lan-
guage extension based on guarded, multi-headed, committed-choice multiset
rewrite rules. Originally designed for writing user-defined constraint solvers,
CHR has matured as a powerful and elegant general purpose language used
in a wide range of application domains.

CHR is usually embedded in a CLP host language, such as Prolog [34,51,53]
or HAL [17,36]. Real world, industrial software however is mainly written in im-
perative or object-oriented programming languages. For many problems, how-
ever, declarative approaches are more effective. Applications such as planning
and scheduling often lead to special-purpose constraint solvers. These are mostly
written in the mainstream language itself because a seamless cooperation with
existing components is indispensable. Such ad-hoc constraint solvers are notori-
ously difficult to maintain, modify and extend.

A multiparadigmatic integration of CHR and mainstream programming lan-
guages therefore offers powerful synergetic advantages to the software developer.
A user-friendly and efficient CHR system lightens the design and development
effort required for application-tailored constraint systems considerably. Adhering
� Research Assistant of the Research Foundation– Flanders (FWO-Vlaanderen).

�� Post-Doctoral Researcher of the Research Foundation– Flanders (FWO-Vlaanderen).

to common CHR semantics further facilitates the reuse of numerous constraint
handlers already written in CHR. A proper embedding of CHR in a mainstream
language conversely enables the use of innumerous existing software libraries and
components in CHR programs.

In the past decade there has been a renewed interest in the integration and
use of the rule-based paradigm, in particular business rules. Business rules are a
technology derived from production rules, and are used extensively in real world
applications. CHR, with its well-studied clean operational semantics and efficient
implementation techniques presents a valid alternative for these tools. Arguably,
for CHR to play a role here, embeddings in mainstream languages are required.

Existing CHR embeddings in imperative languages either lack performance
[4,76], or are designed to experiment with specific extensions of CHR [78]. Also,
in our opinion, these systems do not provide a sufficiently natural integration of
CHR with the imperative host language. Instead of incorporating the specifics
of the new host into a combined language, these systems port part of the (C)LP
host environment as well. This needlessly enlarges the paradigm shift for the
programmers of the imperative host language. We will show that a tighter inte-
gration of both worlds leads to a useful and powerful language extension, intuitive
to both CHR adepts and imperative programmers.

1.1 Overview and Contributions

Our contributions can be summarized as follows:
– We show how CHR can be integrated effectively with an imperative host

language. In Section 3, we first outline the different language design issues
faced when integrating these two different paradigms. Next, Section 4 out-
lines our solution, aimed at a tight and natural integration of both worlds.
The approaches taken by related systems are discussed in Section 7.

– In Section 5 we present a compilation scheme from CHR to efficient, op-
timized imperative host language code. We survey generic optimizations,
and show how they can be ported to the imperative setting. We also focus
on implementation aspects and optimizations specific to imperative target
languages.

– We developed mature and efficient implementations of the proposed lan-
guage design for both Java and C, available at respectively [71] and [81].
The design of both language extensions is presented in Section 4, and their
implementations are evaluated in Section 6.

The focus of this article is thus on the design and implementation of CHR
systems for imperative host languages. First, we briefly introduce a generic, host
language independent syntax and semantics of CHR. For a gentler introduction
to CHR, we refer the reader to [17,26,27,51].

2 Preliminaries: CHR Syntax and Semantics

CHR is embedded in a host language that provides a number of predefined
constraints, called built-in constraints, and a number of data types. The tradi-

tional host language of CHR is Prolog. Its only built-in constraint is equality
over its data types, logical variables and Herbrand terms. Asides from built-in
constraints, practical implementations mostly allow arbitrary host language pro-
cedures to be called as well. Whilst most CHR systems are embedded in Prolog,
efficient implementations also exist for Java, Haskell, and C (see Section 7). In
this section we only consider the generic, host language independent syntax and
semantics of CHR.

2.1 Syntax and Informal Semantics

A CHR program is called a CHR handler. It declares a number of user-defined
CHR constraints and a sequence of CHR rules. The rules determine how the
handler’s CHR constraints are simplified and propagated. A constraint, either
built-in or CHR, is written c(X1, . . . ,Xn). Here c is the constraint’s type, and the
Xi’s are the constraint’s arguments. The arguments are elements of a host lan-
guage data type. The number of arguments, n, is called the constraint’s arity,
and c is called an n-ary constraint, commonly denoted c/n. For nullary con-
straints the empty argument list is omitted. Trivial nullary built-in constraints
are true and false. Depending on the system, other symbolic notations can
be used to express constraints. Equality for instance is mostly written using an
infix notation, that is, ‘X = Y’ is used instead of e.g. ‘eq(X, Y)’.

There are three kinds of CHR rules (n, ng, nb ≥ 1 and n ≥ r > 1):

– Simplification rules: h1, . . . , hn ⇔ g1, . . . , gng | b1, . . . , bnb .
– Propagation rules: h1, . . . , hn ⇒ g1, . . . , gng | b1, . . . , bnb .
– Simpagation rules: h1, . . . , hr−1 \ hr, . . . , hn ⇔ g1, . . . , gng | b1, . . . , bnb .

The head of a CHR rule is a sequence, or conjunction, of CHR constraints
‘h1, . . . , hn’. A rule with n head constraints is called an n-headed rule; when n > 1
it is a multi-headed rule. The conjuncts hi of the head are called occurrences.
Both the occurrences in a simplification rule and the occurrences ‘hr, . . . , hn’ in a
simpagation rule are called removed occurrences. All other occurrences are kept
occurrences. The body of a CHR rule is a conjunction of CHR constraints and
built-in constraints ‘b1, . . . , bnb ’. The part of the rule between the arrow and the
body is called the guard. It is a conjunction of built-in constraints. The guard
‘g1, . . . , gng | ’ is optional; if omitted, it is considered to be ‘true | ’. A rule is
optionally preceded by a unique rule identifier, followed by the ‘@’ symbol.

Example 1. The program leq, see Fig. 1, is a classic example CHR handler.
It defines one CHR constraint, a less-than-or-equal constraint, using four CHR
rules. All three kinds of rules are present. The constraint arguments are logical
variables. The handler uses one built-in constraint, namely equality. If the an-
tisymmetry is applied, its body adds a new built-in constraint to the built-in
constraint solver provided by the host environment. The body of the transitivity
rule adds a CHR constraint, which will be handled by the CHR handler itself.
The informal operational semantics of the rules is explained below, in Example 2.

reflexivity @ leq(X, X) ⇔ true.

antisymmetry @ leq(X, Y), leq(Y, X) ⇔ X = Y.

idempotence @ leq(X, Y) \ leq(X, Y) ⇔ true.

transitivity @ leq(X, Y), leq(Y, Z) ⇒ leq(X, Z).

Fig. 1. The CHR program leq, a handler for the less-than-or-equal constraint.

Informal Semantics An execution starts from an initial query: a sequence of
constraints, given by the user. The multiset of all CHR constraints of a CHR
handler is called its constraint store. The execution proceeds by applying, or
firing, the handler’s rules. A rule is applicable if there are constraints matching
the rule’s occurrences present in the constraint store for which the guard con-
dition holds. When no more rules can be applied, the execution stops; the final
constraint store is called the solution.

Rules modify the constraint store as follows. A simplification rule removes the
constraints that matched its head, and replaces them with those in its body. The
double arrow indicates that the head is logically equivalent to the body, which
justifies the replacement. Often, the body is a simpler, or more canonical form
of the head. In propagation rules, the body is a consequence of the head: given
the head, the body may be added (if the guard holds). As the body is implied
by the head, it is redundant. However, adding redundant constraints may allow
more rewriting later on. Simpagation rules are a hybrid between simplification
and propagation rules: only the constraints matching its removed occurrences,
i.e. those after the backslash, are removed if the rule is applied.

Example 2. The first rule of the leq handler of Fig. 1, reflexivity, replaces a
leq(X,X) constraint by the trivial built-in constraint true. Operationally, this
entails removing this constraint from the constraint store. The antisymmetry
rule states that leq(X,Y) and leq(Y,X) are logically equivalent to X = Y. When
firing this rule, the two constraints matching the left-hand side are removed from
the store, after which the built-in equality constraint solver is told that X and Y

are equal. The third rule, idempotence, removes redundant copies of the same
leq constraint. It is necessary to do this explicitly since CHR has a multiset
semantics: multiple instances of the same constraint can reside in the constraint
store at the same time. The last rule, transitivity, is a propagation rule that
computes the transitive closure of the leq relation.

2.2 The Refined Operational Semantics

The operational semantics introduced informally in the previous section corre-
sponds to the so-called high-level or theoretical operational semantics of CHR
[20,26]. In this highly non-deterministic semantics, rules are applied in arbitrary
order. Most CHR systems though implement a particular, significantly more de-
terministic instance of this semantics, called the refined operational semantics
[20]. This semantics is commonly denoted by ωr. In ωr, queries and bodies are

executed left-to-right, treating the execution of each constraint as a procedure
call. When a CHR constraint is executed, this constraint becomes active, and
looks for matching rules in a top-to-bottom order. If a rule fires, the constraints
in its body become active first. Only when these are fully handled, the control
returns to the formerly active constraint.

The compilation scheme presented in Section 5 implements ωr, and its op-
timizations are often justified by properties of this semantics. A sufficiently de-
tailed introduction to this formalism is therefore warranted. For a more complete
discussion, we refer the reader to [20,17].

The ωr semantics is formulated as a state transition system. Transition rules
define the relation between subsequent execution states in a CHR execution.
Sets, multisets and sequences (ordered multisets) are defined as usual.

Execution state Formally, an execution state of ωr is a tuple �A, S, B, T�n.
The first element, the execution stack A, is explained below, in the subsection
on ωr’s transition rules. The CHR constraint store S is a set of identified CHR
constraints that can be matched with the rules. An identified CHR constraint
c#i is a CHR constraint c associated with a unique constraint identifier i. We
introduce the mapping operators chr(c#i) = c and id(c#i) = i, and extend them
to sequences and sets in the obvious manner. The constraint identifier is used to
distinguish otherwise identical constraints. This is why, even though chr(S) is a
multiset of constraints, S is indeed a set. The built-in constraint store B is the
logical conjunction of all built-in constraints passed to the underlying constraint
solvers. The propagation history T is a set of tuples, each recording a sequence
of constraint identifiers of the CHR constraints that fired a rule, together with
that rule’s identifier. Its primary function is to prevent trivial non-termination
for propagation rules. The integer counter n, finally, represents the next free
constraint identifier.

Notation In the following, we use++ for sequence concatenation and � for dis-
joint set union1. For logical expressions X and Y , vars(X) denotes the set of free
variables, and ∃̄Y (X) ↔ ∃v1, . . . , vn : X with {v1, . . . , vn} = vars(X)\vars(Y).
A variable substitution θ is defined as usual. The expression ‘Db |= B → ∃̄Bθ(G)’
formally states that modelling the built-in constraint domain Db (see e.g. [51]
for a rigorous definition of constraint domains), the built-in store B entails the
guard G after application of substitution θ. For CHR rules a generic simpaga-
tion notation is used: ‘H1 \H2 ⇔ G |B’. For propagation rules, H1 is the empty
sequence; for simplification rules H2 is empty.

Transition Rules The transition rules of ωr are listed in Fig. 3. Given an initial
query Q, the initial execution state σ0 is �Q, ∅, true, ∅�1. Execution proceeds by
exhaustively applying transitions to σ0, until the built-in store is unsatisfiable
or no more transitions are applicable.
1 Let X, Y , and Z be sets, then X = Y � Z ↔ X = Y ∪ Z ∧ Y ∩ Z = ∅.

reflexivity @ leq
[1]
(X, X) ⇔ true.

antisymmetry @ leq
[3]
(X, Y), leq

[2]
(Y, X) ⇔ X = Y.

idempotence @ leq
[5]
(X, Y) \ leq

[4]
(X, Y) ⇔ true.

transitivity @ leq
[7]
(X, Y), leq

[6]
(Y, Z) ⇒ leq(X, Z).

Fig. 2. The leq handler annotated with occurrence numbers.

A central concept in this semantics is the active constraint, the top-most ele-
ment on the execution stack A. Each newly added CHR constraint causes an Ac-
tivate transition, which initiates a sequence of searches for partner constraints
to match rule heads. Adding a built-in constraint initiates similar searches for
applicable rules: a built-in constraint is passed to the underlying solver in a
Solve transition, which causes Reactivate transitions for all constraints whose
arguments might be affected. We say these constaints are reactivated. CHR con-
straints whose arguments are fixed are not reactivated, the additional built-in
constraint cannot alter the entailment of guards on these arguments; formally:

Definition 1. A variable v is fixed by a conjunction of built-in constraints B,
denoted v ∈ fixed(B), iff Db |= ∀ρ(∃̄v(B) ∧ ∃̄ρ(v)ρ(B) → v = ρ(v)) for arbitrary
renaming ρ.

The order in which occurrences are traversed is fixed by ωr. Each active
constraint tries its occurrences in a CHR program in a top-down, right-to-left
order. The constraints on the execution stack can therefore become occurrenced
(in Activate and Reactivate transitions). An occurrenced identified CHR con-
straint c#i :j indicates that only matches with the j’th occurrence of constraint
c are considered when the constraint is active.

Example 3. Fig. 2 shows the leq program, with all occurrences annotated with
their occurrence number. Rules are tried from top-to-bottom. In this example, this
means simplification is tried prior to propagation. Furthermore, occurrences in
the same rule are matched with the active constraint from right-to-left, ensuring
that the active constraint is removed as soon as possible. Both properties can
be essential for an efficient execution.

Each active CHR constraint traverses its different occurrences through a
sequence of Default transitions, followed by a Drop transition. During this
traversal all applicable rules are fired in Propagate and Simplify transitions.
As with a procedure, when a rule fires, other constraints (its body) are executed,
and execution does not return to the original active constraint until after these
calls have finished. The different conjuncts of the body are solved (for built-in
constraints) or activated (for CHR constraints) in a left-to-right order.

The approach taken by ωr thus closely corresponds to the execution of the
stack-based programming languages to which CHR is commonly compiled. This
is why the semantics feels familiar, and why it allows a natural interleaving
with host language code (see Section 4). It is also an important reason why the
semantics can be implemented very efficiently (see Section 5).

1. Solve �[b|A], S0 � S1, B, T�n � �S1 ++A, S0 � S1, b ∧ B, T�n where b is a built-in
constraint and vars(S0) ⊆ fixed(B), the variables fixed by B. This causes all CHR
constraints affected by the newly added built-in constraint b to be reconsidered.

2. Activate �[c|A], S, B, T�n � �[c#n : 1|A], {c#n} � S, B, T�n+1 where c is a CHR
constraint (which has not yet been active).

3. Reactivate �[c#i|A], S, B, T�n � �[c#i : 1|A], S, B, T�n where c is a CHR con-
straint (re-added to A by a Solve transition but not yet active).

4. Simplify �[c#i :j|A], {c#i} �H1 �H2 �H3 � S, B, T�n �
�B++A, H1 � S, θ ∧ B, T��n where the j-th occurrence of c is d, an occurrence in a
(renamed apart) rule ρ of the form:

ρ @ H
�
1 \ H

�
2, d, H

�
3 ⇔ G | B

and there exists a matching substitution θ such that c = θ(d), chr(Hk) = θ(H �
k) for

1 ≤ k ≤ 3, and Db |= B → ∃̄Bθ(G). Let t = (ρ, id(H1)++ id(H2)++[i]++ id(H3)),
then t /∈ T and T� = T ∪ {t}.

5. Propagate �[c#i :j|A], {c#i} �H1 �H2 �H3 � S, B, T�n �
�B++[c#i :j|A], {c#i} �H1 �H2 � S, θ ∧ B, T��n where the j-th occurrence of c is
d, an occurrence in a (renamed apart) rule ρ of the form:

ρ @ H
�
1, d, H

�
2 \ H

�
3 ⇔ G | B

and there exists a matching substitution θ such that c = θ(d), chr(Hk) = θ(H �
k) for

1 ≤ k ≤ 3, and Db |= B → ∃̄Bθ(G). Let t = (ρ, id(H1)++[i]++ id(H2)++ id(H3)),
then t /∈ T and T� = T ∪ {t}.

6. Drop �[c#i :j|A], S, B, T�n � �A, S, B, T�n if there is no j-th occurrence of c.

7. Default �[c#i : j|A], S, B, T�n � �[c#i : j + 1|A], S, B, T�n if the current state
cannot fire any other transition.

Fig. 3. The transition rules of the refined operational semantics ωr.

3 Impedance Mismatch

CHR was originally designed to use a (C)LP language as a host. Integrating
it with imperative languages gives rise to particular challenges. Imperative host
languages do not provide certain language features used by many CHR programs,
such as logical variables, search, and pattern matching (Section 3.1). Conversely,
the CHR system must be made compatible with the properties of the imperative
host. Unlike Prolog, many imperative languages are statically typed, and allow
destructive update (Section 3.2).

3.1 (C)LP Language Features

Logical variables Imperative languages do not provide logical variables. No
reasoning is possible over imperative variables, unless they have been assigned a
value. Many algorithms written in CHR however use constraints over unbound
variables, or require two, possibly unbound variables to be asserted equal. The
latter feature of (C)LP languages is called variable aliasing.

Example 4. The constraints of the leq handler in Fig. 1 range over logical vari-
ables. The body of the antisymmetry rule contains an example of aliasing.

The unavailability of a corresponding feature would limit the usefulness of a
CHR system in imperative languages. A logical data type, together with library
routines to maintain it, therefore has to be implemented in the host language.

Built-in Constraint Solvers More general than variable aliasing, (C)LP lan-
guages provide built-in constraint solvers for CHR. Prolog provides only one true
built-in constraint, namely equality over Herbrand terms. More powerful CLP
systems such as HAL offer multiple types of constraint solvers (see [19]). Imper-
ative languages on the other hand offer no built-in constraint support. To allow
high level programming with constraints in CHR guards and bodies, underlying
constraint solvers need to be implemented from scratch. We refer to Section 4.2
for more information.

Pattern matching CHR uses pattern matching to find applicable rules. In
logical languages, pattern matching is readily available through unification2, even
on elements of compound data structures (Herbrand terms). These matches are
referred to as structural matches. Imperative hosts typically do not provide a
suited language construct to perform pattern matching on its (compound) data
types. Of course, it is possible to implement a library for Herbrand terms and
their unification in the host language. A natural CHR embedding, however, also
allows constraints and pattern matching over native data types of the imperative
host. Section 3.2 discusses some complications that arise in this context.
2 Although CHR’s pattern matching (sometimes also referred to as one-way unifica-

tion) is different from unification, it is relatively easy to implement matching using
the built-in unification facilities of a typical logical language.

Search To solve non-trivial constraint problems constraint simplification and
propagation alone is not always enough. Many constraint solvers also require
search. As pure CHR does not provide search, many CHR systems therefore im-
plement CHR∨ (pronounced “CHR-or”), an extension of CHR with disjunctions
in rule bodies [2,6]. The built-in support for chronological backtracking typi-
cally offered by Prolog and other (C)LP languages makes the implementation of
these disjunctions trivial. Providing search for a CHR system embedded in an
imperative host, however, requires an explicit implementation of the choice and
backtracking facilities.

We do not address this issue in this article. Earlier work extensively studies
the combination of CHR with search [39,79] (see Section 7). There remain how-
ever some interesting challenges for future work, as undoing changes made after a
choice-point becomes particularly challenging if arbitrary imperative data types
and operations are allowed. The only practical solution seems to be a limitation
of the host language code used in CHR handlers that need to support search.

3.2 Imperative Language Features

Static Typing Unlike Prolog, many imperative languages are statically typed.
A natural implementation of CHR in a typed host language would also support
typed constraint arguments, and perform the necessary type checking. Calling
arbitrary external host language code is only possible if the CHR argument types
have a close correspondence with those of the host language.

Complex Data Types The data types provided by imperative languages are
typically much more diverse and complex than those used in logical languages.
An effective embedding of CHR should support host language data types as
constraint arguments as much as possible.

In Section 3.1 we saw that in (C)LP embeddings, CHR handlers use struc-
tural matches to specify the applicability of rules on compound data. Providing
structural pattern matching on arbitrary compound data structures provided by
imperative languages would require specific syntax, and has certain semantical
issues, as discussed in the next three subsections.

Modification Problem Contrary to logical languages, imperative languages
allow side effects and destructive update. When executing imperative code, arbi-
trary values may therefore change. If these values are referred to by CHR guards,
these modifications may require the reactivation of one or more constraints. Mod-
ifications to a constraint’s arguments could also render inconsistent the index
data structures used by an efficient CHR implementation (see Section 5). In
general it can be very hard or impossible for the CHR handler to know when the
content of values has changed. In the production rule literature this is referred
to as the Modified Problem [13,44,45] (we prefer the term modification problem,
as modified problem wrongfully suggests the problem is modified).

Non-monotonicity The traditional specification of CHR and its first order
logical reading (see e.g. [26]) assumes monotonicity of the built-in constraints,
that is: once a constraint is entailed, it remains entailed. If non-monotonic host-
language statements are used in a guard, the corresponding rule no longer has
a logical reading. This issue is not exclusive to an imperative host language,
but certainly more prominent due to the possibility of destructive updates. A
consequence of using imperative data structures as constraint arguments is in-
deed that, often, these values change non-monotonically. CHR rules that were
applicable before, or even rules that have been applied earlier, can thus become
inapplicable again by executing host language code. This problem is related to
the modification problem, but is more a semantical issue than a practical one.

Behavioral Matches As structural matches over imperative data types are
often impractical (see above), guards will test for properties of constraint argu-
ments using procedure calls. This is particularly the case for object-oriented host
languages: if constraints range over objects, structural matches are impossible
if encapsulation hides the objects’ internal structure. Guards are then forced to
use public inspector methods instead. Matching of objects using such guards
has been coined behavioral matches [9]. So, not only can it be difficult to deter-
mine when the structure of values changes (the modification problem), it can be
difficult to determine which changes affect which guards.

4 Language Design

A CHR system for an imperative host language should aim for an intuitive and
familiar look and feel for users of both CHR and the imperative language. This
entails a combination of the declarative aspects of CHR — high-level program-
ming in terms of rules and constraints, both built-in and user-defined — with
aspects of the host language. As outlined in Section 3, such a combination leads
to a number of language design challenges. In this section we outline our view on
these issues, and illustrate with two CHR system case studies: one for Java [75]
and one for C [82].

4.1 Embedding CHR in an Imperative Host Language

A natural integration of CHR with a host language should allow CHR rules
to contain arbitrary host language expressions. For the operational semantics,
the refined operational semantics is therefore a good choice (see Section 2.2).
The left-to-right execution of guards and bodies is familiar to imperative pro-
grammers, and eases the interleaving with imperative host language statements.
Moreover, to allow an easy porting of existing CHR solvers, support for the same
familiar semantics is at least as important as a similar syntax.

Because calling imperative code typically requires typed arguments, it fol-
lows that CHR constraints best range over regular host language data types.

In our opinion, this is also the most natural for imperative programmers. Log-
ical variables and other (C)LP data types, such as finite domain variables or
Herbrand terms, can always be encoded as host language data types. The CHR
compiler could however provide syntactic sugar for (C)LP data types and built-in
constraints to retain CHR’s high-level, declarative nature of programming.

Our philosophy is contrary to the one adopted by related systems, such as
HCHR, JaCK and DJCHR. As seen in Section 7, these systems limit the data
types used in CHR rules to typed logical variables (JaCK) or Herbrand terms
(HCHR and DJCHR). Host language data then has to be encoded as logical
variables or terms, whereas we propose the opposite: not only is using the host’s
types is more intuitive to an imperative programmer, it also avoids the per-
formance penalty incurred by constantly encoding and decoding of data when
switching between CHR and host language. Partly due to the data type mis-
match, some of the aforementioned systems simply do not allow CHR rules to
call host language code, or only in a very limited manner (see also Section 7).

The limitations imposed by systems such as JaCK and DJCHR, however,
could be motivated by the fact that they need to be able to undo changes made in
CHR bodies. This language design choice is reasonable for constraint solvers that
require either search or adaptation. Practice shows, however, that even Prolog
CHR systems are for general purpose programming (see e.g. [63] for a recent
survey of CHR applications). These CHR programs do not always use search or
adaptation, and can often be expressed naturally without term encodings.

We therefore focus on providing a tight, natural integration of imperative host
language features with CHR. The goal is to facilitate a seemless cooperation with
software components written in the host language (see also Section 1). We argue
that constraints should therefore range over host language data types, and that
arbitrary host language expressions must be allowed in rule guards and bodies.

As seen in Section 3, allowing arbitrary imperative data types and expres-
sions in rule guards leads to the modification problem. An important aspect of
the interaction between a CHR handler and its host is thus that the CHR handler
has to be notified of any relevant modifications to the constrained data values.
A first, simple solution is for a CHR handler to provide an operation to reacti-
vate all constraints in its store (see Section 5.2). In Section 5.3, we discuss the
performance issues with this solution, and propose several optimizations. Where
possible, these notifications should furthermore occur transparently, relieving
the programmer of the responsibility of notifying after each change.

4.2 Built-in Constraints and Solvers

In the previous section, we argued that arbitrary host language expressions
should be allowed. In this section, we show that it remains worthwhile to consider
constraints separately. An important motivation will be that the modification
problem can be solved effectively for built-in constraints.

The semantics of CHR assumes an arbitrary underlying constraint system
(see Section 2). Imperative languages however offer hardly any built-in constraint
support (Section 3). Typically, only asking whether two data values are equal is

supported natively, or asking disequality over certain ordered data types. Solvers
for more advanced constraints have to be implemented explicitly.

In any case — whether they either built in the host language itself, or realized
as a host language library, or even by another CHR constraint handler (see
below) — we call these solvers built-in constraint solvers, and their constraints
built-in constraints. The interaction between a CHR handler and the underlying
constraint solvers is well defined (after [19]):

– A built-in constraint solver may provide procedures for telling new con-
straints. Using these procedures, new constraints can be added to the solver’s
constraint store in bodies of CHR rules and the initial query.

– For constraints that occur in guards, the constraint solver must provide a
procedure for asking whether the constraint is entailed by its current con-
straint store or not.

– Thirdly, a built-in constraint solver must alert CHR handlers when changes
in their constraint store might cause entailment tests to succeed. The CHR
handler then checks whether more rules can be fired. Constraint solvers
should relieve the user from the responsibility of notifying the CHR han-
dlers, and notify the CHR solver to only reconsider affected constraints. For
efficiency reasons, this is typically solved by adding observers [29] to the
constrained variables. This is discussed in more detail in Section 5.3.

Example 5. Reconsider the leq handler of Example 1. The handler uses one
built-in constraint, namely equality over logical variables. For an imperative host
language, this constraint will not be natively supported, but implemented as a
library. The antisymmetry rule is the only rule that uses the tell version of this
constraint. All rules though use the ask version of this built-in constraint to check
whether the equality of certain logical variables is entailed (this is more clearly
seen when the rules are rewritten to their Head Normal Form, as introduced in
Section 5.2: see Fig. 8 of Example 9). Also, when new built-in constraints are
told, e.g. by the antisymmetry rule, the entailment of these guards may change,
and the necessary leq/2 constraints must be reactivated.

We do not require all built-in constraints to have both an ask and a tell
version. Constraints natively supported by an imperative host language for in-
stance, such as built-in equality and disequality checks, typically only have an ask
version. Also, traditionally, built-in constraints implemented by a CHR handler
only have a tell version. For a CHR constraint to be used in a guard, it requires
both an entailment check, and a mechanism to reactivate constraints when the
constraint becomes entailed (as explained above). In [54], an approach to au-
tomatic entailment checking is introduced, whilst [21] proposes a programming
discipline where the programmer is responsible for specifying the entailment
checks. Currently though, no system provides ask versions of CHR constraints.

A first reason to distinguish constraints from arbitrary host language code
is thus that the modification problem is solved efficiently, and transparently to
the user. Built-in constraints can therefore safely be used in guards. A second
reason is that a CHR compiler may support specific syntactic sugar to ask and
tell these constraints (as assumed in the leq handler of the previous example).

Cooperating Constraint Systems Multiple CHR handlers and built-in solvers
may need to cooperate to solve problems. CHR handlers can for instance share
variables constrained by the same built-in constraint solvers, or one CHR handler
can be used as a built-in solver for another CHR handler. When implementing
multiple solvers and handlers that have to work together, often the need for
global data structures arises. Examples include the data structures required for
the implementation of search, or an explicit call stack representation (see Sec-
tion 5). We therefore group such cooperative constraint components under a
single constraint system. Only solvers and handlers in the same constraint sys-
tem are allowed to work together.

4.3 CCHR

CCHR [82] is an integration of CHR with the programming language C [38].
CHR code is embedded into C code by means of a cchr block. This block can
not only contain CCHR constraint declarations and rule definitions, but also
additional data-type definitions and imports of host language symbols. Host
language integration is achieved by allowing arbitrary C expressions as guards,
and by allowing arbitrary C statements in bodies. Functions to add or reactivate
CHR constraints are made available to the host language environment, so they
can be called from within C.

Constraint arguments are typed, and can be of any C data type except arrays.
Support for logical data types is provided, both in the host language and within
CHR blocks. CCHR does not have a concept of built-in constraints as introduced
in Section 4.2. All ‘ask’ requests are simply host-language expressions, and ‘tell’
constraints are host-language statements, which have to be surrounded by curly
brackets. It is however possible to declare macro’s providing shorter notations
for certain operations, a workaround for C’s lack of polymorphism. When a data
type is declared as logical, such macro’s are generated automatically.

Rules follow the normal Prolog-CHR syntax, yet are delimited by a semicolon
instead of a dot. This latter would cause ambiguities since the dot is a C operator.

Example 6. In Figure 4 an example is given how to implement the leq handler
in CCHR. The first line starts the cchr block. The next line declares log int t

as a logical version of the built-in C data type int. The third line declares a leq

constraint that takes two logical integers as argument. The four rules of the leq
handler look very similar to those of Fig. 1. Equality of logical variables is told
using the generated telleq() macro.

The test() function shows how to interact with the CHR handler from
within C. The first line of the function initializes the CHR runtime. The next
line creates three log int t variables (a, b and c), and is followed by a line that
adds the three leq constraints leq(a,b), leq(b,c) and leq(c,a). The next
line counts the number of leq constraints left in the store. The next four lines
assert that no CHR constraints are left, and that all logical variables are equal
(in C, if the argument of assert evaluates to 0, the program is aborted and a
diagnostic error message is printed). The function ends with the destruction of

cchr {
logical log_int_t int;

constraint leq(log_int_t,log_int_t);

reflexivity @ leq(X,X) <=> true;

antisymmetry @ leq(X,Y), leq(Y,X) <=> {telleq(X,Y);};
idempotence @ leq(X,Y) \ leq(X,Y) <=> true;

transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z);

}

void test(void) {
cchr_runtime_init();

log_int_t a=log_int_t_create(), b=log_int_t_create(),

c=log_int_t_create();

leq(a,b); leq(b,c); leq(c,a);

int nLeqs=0; cchr_consloop(j,leq_2,{ nLeqs++; });
assert(nLeqs==0);

assert(log_int_t_testeq(a,b));

assert(log_int_t_testeq(b,c));

assert(log_int_t_testeq(c,a));

log_int_t_destruct(a);

log_int_t_destruct(b);

log_int_t_destruct(c);

cchr_runtime_free();

}

Fig. 4. The CHR program leq implemented in CCHR.

the logical variables used, and the release of all memory structures created by
the CCHR runtime.

4.4 The K.U.Leuven JCHR System

This section outlines and illustrates the most important language design choices
made for the K.U.Leuven JCHR System [71,75]. For a more detailed description
of the language extension we refer to the system’s user’s manual [72].

A handler declaration in K.U.Leuven JCHR is designed to be very similar to
a class declaration in Java. Language features such as package and import dec-
larations, and the access modifiers public, private and protected, are defined
exactly as their Java counterparts [31]. To ease the transition from untyped Pro-
log to strongly typed Java, we further fully support Java’s generic types [10,31].
To the best of our knowledge the K.U.Leuven JCHR system is the first typed
CHR-system that adequately deals with polymorphic handlers this way.

A JCHR handler declares one or more constraints. As in CCHR, constraint
arguments are typed. In principle, any valid Java-type, including primitive types
and generic types, can be used. For each handler, and for each of its declared

package examples.leq;

import runtime.Logical;

import runtime.EqualitySolver;

public handler leq<T> {
public solver EqualitySolver<T> builtin;

public constraint leq(Logical<T>, Logical<T>) infix =<;

rules {
reflexivity @ X =< X <=> true;

antisymmetry @ X =< Y, Y =< X <=> X = Y;

idempotence @ X =< Y \ X =< Y <=> true;

transitivity @ X =< Y, Y =< Z ==> X =< Z;

}
}

Fig. 5. The leq handler using K.U.Leuven JCHR syntax.

constraints, a corresponding Java class is generated. A handler class contains
methods to add non-private constraints, and to inspect the constraint store.
The latter methods return standard Java Collection or Iterator objects [67].
The handler class itself also implements the Collection<Constraint> interface.

Example 7. Fig. 5 shows a polymorphic K.U.Leuven JCHR implementation of
the canonical leq example. Note that JCHR allows constraints, both built-in
and CHR constraints, to be written using infix notation. Fig. 6 shows how the
generated classes are used to solve leq constraints over Integer objects.

JCHR supports user-defined incremental, built-in constraint solvers. The de-
sign follows the principles outlined in Section 4.2. Using annotations, a regular
Java type is annotated with meta-data that allows the JCHR compiler to derive
which built-in constraints are solved by a solver, and which methods to use for
asking and telling these constraints. A JCHR handler has to declare all built-in
constraint solvers it uses.

Example 8. The K.U.Leuven JCHR System contains an efficient reference im-
plementation for equality over logical variables. Its interface declaration is shown
in Fig. 7. It declares a single eq constraint, that can also be written using infix
notation. This built-in solver is used in the leq example of Fig. 5. The solver

declaration tells the JCHR compiler to use the EqualitySolver<T> interface
as a built-in solver. Using the annotations, the JCHR compiler knows to use
the askEqual method to check the implicit equality guards, and to use the
tellEqual method in the body of the antisymmetry rule. Fig. 6 shows how a
built-in constraint solver is used to verify that all JCHR constraints are simpli-
fied to built-in equalities after adding three leq constraints to the handler.

...

EqualitySolver<Integer> builtin = new EqualitySolverImpl<Integer>();

LeqHandler<Integer> handler = new LeqHandler<Integer>(builtin);

Logical<Integer> A = new Logical<Integer>(),

B = new Logical<Integer>(), C = new Logical<Integer>();

handler.tellLeq(A, B); // A ≤ B

handler.tellLeq(B, C); // B ≤ C

handler.tellLeq(C, A); // C ≤ A

// all CHR constraints are simplified to built-in equalities:

assert handler.getLeqConstraints().size() == 0;

assert builtin.askEqual(A, B);

assert builtin.askEqual(B, C);

assert builtin.askEqual(A, C);

...

Fig. 6. A code snippet illustrating how the JCHR leq handler and equality
built-in solvers are called from Java code.

@JCHR Constraint (identifier = "eq", arity = 2, infix = "=")

public interface EqualitySolver<T> {
@JCHR Tells ("eq")

public void tellEqual(Logical<T> X, T val);

@JCHR Tells ("eq")

public void tellEqual(T val, Logical<T> X);

@JCHR Tells ("eq")

public void tellEqual(Logical<T> X, Logical<T> Y);

@JCHR Asks ("eq")

public void askEqual(Logical<T> X, T val);

@JCHR Asks ("eq")

public void askEqual(T val, Logical<T> X);

@JCHR Asks ("eq")

public void askEqual(Logical<T> X, Logical<T> Y);

}

Fig. 7. The declaration of a built-in equality constraint solver interface using
annotations.

Next to high-level constraint programming, the K.U.Leuven JCHR also al-
lows arbitrary Java objects and methods to be used. An adequate, efficient solu-
tion for the modification problem though, which would allow behavioral matches
over arbitrary Java Bean objects [69], is an important part of future work. In-
teraction with Java already possible though: the user simply needs to reactivate
all constraints in case of relevant changes explicitly.

5 Optimized Compilation

Considerable research has been devoted to the efficient compilation and execu-
tion of CHR programs, mostly with Prolog as the host language. An early, very
influential implementation was the SICStus implementation described in [34]. Its
operational semantics was the basis for the refined operational semantics ωr (see
Section 2.2), and its compilation scheme has been adopted by state-of-the-art
systems such as HALCHR [17,36] and K.U.Leuven CHR [51,53].

We show how this compilation scheme can be ported to the imperative set-
ting. The structure of this section is similar to that of [51, Chapter 5: The Imple-
mentation of CHR: A Reconstruction]. Section 5.2 presents a simple compilation
scheme for CHR. This naive scheme, whilst obviously correct with respect to ωr,
is fairly inefficient. In Sections 5.3 and 5.4, we gradually transform it into a very
efficient CHR compilation scheme. Equivalents of most optimizations discussed
in Section 5.3 are also implemented in the Prolog and HAL systems. Section 5.4
however addresses an important technical issue that only arises when adapting
the scheme to imperative host languages.

For the compilation scheme presented below, we use imperative pseudo-code.
It can easily be instantiated for any concrete imperative language. The instance
used by the K.U.Leuven JCHR system to compile CHR to Java is described in
detail in [70].

Before the compilation scheme is introduced, Section 5.1 abstractly describes
the data structures and the operations it uses. The efficient implementation of
these data structures is beyond the scope of this article.

5.1 Basic Data Structures and Operations

The constraint store The main data structure of a CHR handler is the con-
straint store. Each stored CHR constraint is represented as a constraint suspen-
sion in the constraint store. For each constraint, a constraint suspension data
type is generated containing the following fields:

type The type of the constraint.
args A list of fields containing the constraint’s arguments. The type of these

arguments is derived from the constraint’s declaration.
id Each constraint suspension is uniquely identified by a constraint identifier,

as in the refined operational semantics.
alive A boolean field indicating whether the constraint is alive or not.

activated A boolean indicating whether the constraint has been (re)activated.
This field is used for optimizations (see Sections 5.3 and 5.4).

stored A boolean field set to true if the constraint is stored in the constraint
store. Due to the Late Storage optimization (Section 5.3), suspensions may
represent constraints that are not stored in the constraint store.

hist A constraint suspension may contain fields related to the propagation his-
tory. More details can be found in Section 5.3.

The constraint suspension may contain further fields, used for instance for con-
stant time removal from the constraint store data structures. These implemen-
tation details are beyond the scope of this article though.

In the pseudo-code used throughout this article, a constraint suspension of
an n-ary constraint is denoted as c(X1, . . . ,Xa)#id. We assume the transition
from a constraint identifier id to its corresponding constraint suspension can be
made, and we often make this transition implicitly. In other words, a constraint
identifier is very similar to a pointer to a constraint suspension.

The basic constraint store operations are as follows:

create(c, [args]) Creates a constraint suspension for a constraint with given
type c and argument list args, and returns its constraint identifier. Because
arity and argument types are constraint specific, concrete implementations
most likely offer specific create c operations for each constraint type c .

store(id) Adds the referenced constraint suspension (created earlier with the
create operation) to the constraint store.

reactivateAll Reactivates all constraints in the store, using the reactivate(id)
operation. Optionally, only constraints whose arguments are modifiable are
reactivated (as in ωr’s Solve transition, see Fig. 3).

reactivate(id) Reactivates the constraint with the given identifier.
kill(id) Removes the identified constraint suspension from the constraint store

data structures, and sets its alive field to false.
alive(id) Tests whether the corresponding constraint is alive or not.
lookup(c) Returns an iterator (see below) over all stored constraint suspen-

sions of constraint type c.

To iterate over candidate partner constraints, we use iterators [29]. This common
abstraction can easily be implemented in any imperative language. Even though
probably all CHR implementations rely on some form of iterators, their necessary
requirements have never been fixed explicitly. We require the iterators returned
by lookup operations to have at least the following properties:

robustness The iterators are robust under constraint store modifications. If
constraints are added or removed whilst a constraint iteration is suspended,
iteration can be resumed from the point where it was suspended.

correctness The iterators only return constraint suspensions that are alive.
completeness All constraints that are stored at the moment of the iterator’s

creation are returned at least once in the iteration.

weak termination A contiguous iteration does not contain duplicate suspen-
sions. Only if constraint store modifications occur whilst an iteration is sus-
pended, constraints returned prior to this suspension are allowed to be re-
turned once more.

Iterators are preferred to satisfy a stronger termination property, namely strong
termination, which requires that an iterator returns a constraint suspension at
most once.

Iterators offered by predefined data structures typically do not have all re-
quired properties. Iterators returned by most standard Java data structures [67],
for instance, are not robust under modifications.

The propagation history A second important data structure for any CHR
implementation is the propagation history. Abstractly, the propagation history
contains tuples, each containing a rule identifier and a non-empty sequence of
constraint identifiers (denoted ‘[id+]’). We assume the following two operations:

addToHistory(rule,[id+]) Adds a tuple to the propagation history.
notInHistory(rule,[id+]) Tests whether a given tuple is in the propagation

history or not.

5.2 Basic Compilation Scheme

A CHR rule ρ with h occurrences in its head has the following generic form:

ρ @ c[j1]
1 (X1,1, . . . , X1,a1), . . . , c

[jr−1]
r−1 (Xr−1,1, . . . , Xr−1,ar−1) \

c[jr]
r (Xr,1, . . . , Xr,ar), . . . , c[jh]

h (Xh,1, . . . , Xh,ah) ⇔ g1, . . . , gng | b1, . . . , bnb .

The occurrences in a rule are numbered from left to right, with r the index
of the first removed occurrence. For a simplification rule there are no kept oc-
currences (i.e., r = 1), for a propagation rule there are no removed occurrences
(h = r−1). The occurrence number ji in c[ji]

i denotes that this occurrence is the
ji’th occurrence of constraint ci in the program, when numbered according to the
top-to-bottom, right-to-left order determined by ωr, as defined in Section 2.2.

In this generic form, also called the Head Normal Form (HNF), all arguments
Xα,β in a rule’s head are variables. Moreover, variables never occur more than
once in a rule’s head, that is: all equality guards implicitly present in the head
are written explicitly in the guard.

Example 9. Fig. 8 shows the normalized version of the leq handler, with occur-
rence numbers added for illustration purposes.

Listing 1 shows the compilation scheme for an occurrence c[ji]
i in such a

rule. Lines 2–7 constitute a nested iteration over all h − 1 candidate partner
constraints. A rule is applicable on some combination of constraints if all con-
straints are alive (line 8) and mutually distinct (lines 9–11), and if the guard

1 procedure occurrence_ci_ji(idi,Xi,1,...,Xi,ai)

2 foreach c1(X1,1, . . . , X1,a1)#id1 in lookup(c1)

3
. . .

4 foreach ci−1(Xi−1,1, . . . , Xi−1,ai−1)#idi−1 in lookup(ci−1)

5 foreach ci+1(Xi+1,1, . . . , Xi+1,ai+1)#idi+1 in lookup(ci+1)

6
. . .

7 foreach ch(Xh,1, . . . , Xh,ah)#idh in lookup(ch)

8 if alive(id1) and ... and alive(idh)

9 if id1 �= id2 and ... and id1 �= idh

10
. . .

11 if idh−1 �= idh

12 if g1 and . . . and gng

13 if notInHistory(ρ,id1,...,idh)

14 addToHistory(ρ,id1,...,idh)

15 kill(idr)

16
.
.
.

17 kill(idh)

18 b1

19
.
.
.

20 bnb

21 end
22 end
23 end
24 . .

.

25 end
26 end
27 end
28 . .

.

29 end
30 end
31 . .

.

32 end
33 end

Listing 1. The compilation scheme for a single occurrence. The active constraint
is ci(Xi,1, . . . ,Xi,ai), with constraint identifier idi.

reflexivity @ leq
[1]
(X, X1) ⇔ X = X1 | true.

antisymmetry @ leq
[3]
(X, Y), leq

[2]
(Y1, X1) ⇔ X = X1, Y = Y1 | X = Y.

idempotence @ leq
[5]
(X, Y) \ leq[4]

(X1, Y1) ⇔ X = X1, Y = Y1 | true.

transitivity @ leq
[7]
(X, Y), leq

[6]
(Y1, Z) ⇒ Y = Y1 | leq(X, Z).

Fig. 8. The leq handler in Head Normal Form. Occurrence numbers are added
for illustration purposes (as in Fig. 2).

1 procedure c(X1,...,Xn)

2 id = create(c, [X1, . . . , Xn])

3 store(id)
4 activate(id)
5 end
6

7 procedure reactivate(id)
8 activate(id)
9 end

10

11 procedure activate(c(X1, . . . , Xn)#id)
12 occurrence_c_1(id,X1,...,Xn)

13 ...

14 occurrence_c_m(id,X1,...,Xn)

15 end

Listing 2. Compilation scheme for an n-ary constraint c with m occurrences
throughout the program. For each occurrence, lines 4–6 call the corresponding
occurrence procedure (see Listing 1).

is satisfied (line 12). After verifying that the rule has not fired before with the
same combination of constraints (line 13), the rule is fired: the propagation his-
tory is updated (line 14), the constraints that matched removed occurrences
are removed from the constraint store (lines 15–17), and the body is executed
(lines 18–20).

For each n-ary constraint c a procedure c(X1, . . . , Xn) is then generated by
the compiler as depicted in Listing 2. These procedures are used for executing
CHR constraints in the body of rules, or for calling CHR from the host lan-
guage. Also for each constraint c an instance of the (polymorphic) procedure
activate(c(X1, . . . ,Xn)#id) is generated. Called by both c(X1, . . . , Xn) and
reactivate(id), it deals with trying all occurrence procedures in order.

With the basic compilation scheme, it is the responsibility of the built-in con-
straint solvers to call reactivateAll each time a built-in constraint is added.
This operation calls the reactivate(id), also shown in Listing 2, for all con-
straints in the store (see also Section 5.1). As a simple optimization, constraints
without modifyable arguments should not be reactivated, as indicated in the
corresponding Solve transition of ωr.

Correctness The basic compilation scheme of Listings 1–2 closely follows the
refined operational semantics (see Section 2.2). It is therefore not hard to see
it is correct. Lines 1–2 of Listing 2 correspond with an Activate transition:
the constraint is assigned a constraint identifier and stored in the constraint
store. The remaining lines constitute a sequence of Default transitions, chaining
together the different occurrence procedures.

Each occurrence procedure, as shown in Listing 1, has to perform all appli-
cable Propagate or Simplify transitions. The body is executed left-to-right as
a sequence of host language statements, thus mapping the activation stack onto
the host’s implicit call stack.

The only subtlety is showing that in a sequence of Propagate transitions,
all required partner constraint combinations are effectively found by the nested
iterations of lines 2–7. The order in which the partners have to be found is not
determined by ωr. The completeness and correctness properties of the itera-
tors guarantee that an iteration contains at least all constraints that existed at
the creation of the iterator, and that are still alive on the moment the iterator
is advanced. However, constraints that are added to the store after the creation
of an iterator, i.e. by an execution of the body, are not required to appear in the
iteration. These constraints, however, have been active themselves, so any com-
bination involving them has already been tried or applied. As the propagation
history prevents any re-application, not including these constraints in iterations
is correct.

Running example The following example will be used as a running example
for illustrating the different optimizations throughout the next section:

Example 10. Consider the following rule from the ram simulator example [59]:

add @ mem(B,Y), prog(L,add,B,A) \

mem(A,X), pc(L) <=> mem(A,X+Y), pc(L+1).

This rule simulates the add instruction of a Random Access Machine. The full
program can be found in Appendix A. The program of the simulated RAM
machine is represented as prog constraints. The current program counter L is
maintained in a pc constraint. If L refers to an add instruction, the above rule
is applicable. It looks up two cells of the RAM machine’s memory, and replaces
one of them with a cell containing the sum of their values, before advancing to
the next instruction by adding an incremented program counter.

After HNF transformation, the add rule becomes:

add @ mem(B,Y), prog(L1,$1,B1,A) \ mem(A1,X), pc(L)

<=> A = A1, B = B1, L = L1, $1 = add | mem(A,X+Y), pc(L+1).

The code for the pc occurrence in this rule, using the basic compilation scheme,
is shown in Listing 3.

5.3 Optimizations

This section describes a number of optimizations for the basic compilation scheme
presented in the previous section. Most of these optimizations are not new, and
have been applied for compiling CHR to (C)LP as well. Our contribution is a first
clear survey that places the many optimizations mentioned in recent literature
[14,17,18,36,51,57,62,61,73] in one coherent framework. Even though introduced

1 procedure occurrence_pc_1(id4,L)

2 foreach mem(B,Y)#id1 in lookup(mem)

3 foreach prog(L1,$1,B1,A)#id2 in lookup(prog)

4 foreach mem(A1,X)#id3 in lookup(mem)

5 if alive(id1) and alive(id2) and alive(id3) and alive(id4)

6 if id1 �= id2 and id1 �= id3 and id1 �= id4

7 if id2 �= id3 and id2 �= id4

8 if id3 �= id4

9 if A = A1 and B = B1 and L = L1 and $1 = add
10 if notInHistory(add,id1,id2,id3,id4)

11 addToHistory(add,id1,id2,id3,id4)

12 kill(id3)

13 kill(id4)

14 mem(A,X+Y)

15 pc(L+1)

16 end
17 end
18 . .

.

Listing 3. Naive compilation of the pc(L) occurrence of the ram simulator rule.

and illustrated for an imperative host language, the overview provided in this
section is useful for any reader interested in optimized compilation of CHR, or
any other forward chaining rule-based language. Implementation aspects more
specific to imperative target languages are discussed in Section 5.4.

Loop-Invariant Code Motion The tests on lines 9–12 of Listing 1 should be
performed as early as possible. Otherwise a phenomenon denoted trashing could
occur, where tests depending only on outer loops fail for all iterations of the inner
loops. So guards are scheduled as soon as all required variables are present3, and
the identifiers of new candidate partner constraints are immediately compared
to those of the candidates already found. Only identifiers of constraints of the
same type have to be compared.

The alive tests on line 8 are not yet moved, since the liveness of partner
constraints may change when the rule is committed. Failure to test the liveness of
all partners before the next body execution might result in a rule being applied
with dead constraints. The optimization of the alive tests is addressed later.

Example 11. The optimized compilation of the ram simulator example intro-
duced in the previous section is listed in Listing 4. Scheduling the ‘L = L1’ on
line 4 avoids enumerating all mem(A,X) memory cells before the right program
instruction is found. The search for partner constraints is not yet optimal though.
Further optimizations will address several remaining issues.
3 Note that we assume all guards to be monotonic (see Section 3.2). If a satisfied

guard might become unsatisfied by executing a body, scheduling this guard early is
not allowed for Propagate transitions.

1 procedure occurrence_pc_1(id4,L)

2 foreach mem(B,Y)#id1 in lookup(mem)

3 foreach prog(L1,$1,B1,A)#id2 in lookup(prog)

4 if B = B1 and L = L1 and $1 = add
5 foreach mem(A1,X)#id3 in lookup(mem)

6 if id1 �= id3

7 if A = A1

8 if alive(id1) and alive(id2) ... and alive(id4)

9 if notInHistory(add,id1,id2,id3,id4)

10
.
.
.

Listing 4. The compilation of the ram simulator example of Listing 3 after
Loop-Invariant Code Motion.

Indexing The efficient, selective lookup of candidate partner constraints is
indispensable. To achieve this, indexes on constraints are used.

Example 12. In Listing 4 of the ram simulator example, line 3 iterates over all
prog constraints, each time immediately testing the ‘L = L1’ guard. There will
however be only one prog constraint with the given instruction label L (see also
the Set Semantics optimization). Using an index to retrieve this single constraint,
reduces the linear time complexity of this part of the partner constraint search
to constant time. A similar reasoning applies to line 5 of Listing 4.

For lookups of partner constraints via known arguments, tree-, hash-, or
array-based indexes are used (see e.g. [17,36,51,60]). Tree-based indexes can be
used not only for equality-based lookups, but also for pruning the partner con-
straint search space in case of disequality guards (see [19]). The other two in-
dexing types are particularly interesting as they offer (amortized) constant time
constraint store operations. Care must be taken that indexes remain consistent
after modifications to the indexed arguments. These techniques are therefore
often only used for unmodifiable constraint arguments.

One indexing technique for unbound logical variables commonly used by CHR
implementations is attributed variables [33,34]. With this technique, variables
contain references to all constraints in which they occur. This allows constant
time lookups of partner constraints via shared variables.

Imperative host languages naturally allow for direct and efficient implemen-
tations of index data structures [75,82]. In fact, performance-critical parts of
the hash indexes of the K.U.Leuven CHR system for SWI-Prolog [51,53] have
recently been reimplemented in C for efficiency.

Indexes are incorporated into the general compilation scheme by extend-
ing the lookup operation. The extended operation accepts an additional set
of conditions, allowing the combination of a lookup with one or more subse-
quent guards. This operation may make use of existing indexes to obtain all
constraints satisfying the requested conditions, or any superset thereof. In the
latter case, the conditions not guaranteed by the index are checked within the

1 procedure occurrence_pc_1(id4,L)

2 foreach mem(B,Y)#id1 in lookup(mem)

3 foreach prog(L1,$1,B1,A)#id2 in lookup(prog,{B=B1,L=L1,$1=add})
4 foreach mem(A1,X)#id3 in lookup(mem,{A=A1})
5 if id1 �= id3

6
. . .

Listing 5. Compilation of the ram simulator’s pc(L) occurrence. This version
improves Listing 4 by incorporating the Indexing optimization.

iterator. This way, constraints returned by the iterator are always guaranteed to
satisfy the provided guard conditions. By using index lookups that only return
the requested constraints, suitable candidate partner constraints are looked up
far more efficiently.

Example 13. Listing 5 shows the optimized compilation of our running example.
If the specialized lookup operations on lines 3–4 use array- or hash-based in-
dexing, both partner constraints are found in O(1) time. Without indexing, the
time complexity is O(p ×m), with p the number of lines of the ram program,
and m the number memory cells used by the ram machine.

Join Ordering The time complexity of executing a CHR program is often
determined by the join ordering — the order in which partner constraints are
looked up in order to find matching rules. So far this order was determined by
the order they occur in the rule.

The join order determines the earliest position where guards, and thus in-
dexes, may be used. The general principle behind Join Ordering is to maximize
the usage of indexes, in order to minimize the number of partner constraints
tried. The optimal join order may depend on dynamic properties, such as the
number of constraints in the store for which certain guards are entailed. Some-
times functional dependency analysis [17,18,36] can determine statically that
certain indexed lookups return at most one constraint (see also the Set Seman-
tics optimization). Without functional dependencies though (or without proper
indexing), a compiler must rely on heuristics to determine the join order. The
most comprehensive treatment of the join ordering problem is [14].

Example 14. Line 2 of Listing 5 iterates over all mem constraints. Lacking any
information on B and L, there is no possibility to use an index using the standard
join order. The join order depicted in Listing 6, on the other hand, first looks
up the prog constraint using the known L. Next both mem partners are looked
up using the known A and B. In all three cases, if proper indexing is used, only
one partner constraint is retrieved (see also Example 15), as the first argument
of both the prog/4 and the mem/2 constraint are unique identifiers. The lat-
ter property may be derived statically from the full ram program as listed in
Appendix A using functional dependency analysis.

1 procedure occurrence_pc_1(id4,L)

2 foreach prog(L1,$1,B1,A)#id2 in lookup(prog,{L=L1,$1=add})
3 foreach mem(A1,X)#id3 in lookup(mem,{A=A1})
4 foreach mem(B,Y)#id1 in lookup(mem,{B=B1})
5 if id1 �= id3

6
. . .

Listing 6. Compilation of the pc(L) occurrence of Listing 5 with optimal Join
Ordering.

1 procedure occurrence_pc_1(id4,L)

2 prog(L1,$1,B1,A)#id2 = lookup_single(prog,{L=L1})
3 if id2 �= nil
4 if $1 = add
5 mem(A1,X)#id3 = lookup_single(mem,{A=A1})
6 if id3 �= nil
7 mem(B,Y)#id1 = lookup_single(mem,{B=B1})
8 if id1 �= nil and id1 �= id3

9
. . .

Listing 7. The compilation scheme for the ram simulator rule occurrence after
applying Set Semantics to Listing 6.

Set Semantics The functional dependency analysis may show at compile time
that a certain lookup will result in at most one constraint [18,36]. In this case,
more efficient data structures can be used for the constraint store and its indexes,
and specialized lookup routines can be used that return a single suspension
instead of an iterator. Such specialized routines are denoted lookup single.

Example 15. In our running example, all lookups have set semantics after ap-
plying Join Ordering (see Example 14). All loops can thus be turned into simple
conditionals, as shown in Listing 7. As an index on prog’s first argument alone
already yields at most one result, the test on $1 is placed outside the lookup.

Early Drop and Backjumping As seen in Section 5.1, iterators are guaran-
teed not to return dead constraints. Constraints may be removed though when
matching removed occurrences, or indirectly during the execution of the body. In
the naive compilation scheme of Listing 1, this leads to many useless iterations
where the active constraint, or certain partner constraints, are no longer alive.

Once the active constraint is killed, we should stop handling it. We call
this an Early Drop. For this optimization, the activate operation of Listing 2
is replaced with the version of Listing 8. Occurrence routines are modified to
return a boolean: true if trying further occurrences is no longer necessary; false
otherwise. The alive test for the active constraint is thus removed from line 8
of Listing 1, and replaced with a ‘if not alive(idi) return true’ statement

1 procedure activate(c(X1, . . . , Xn)#id)
2 if occurrence_c_1(id,X1,...,Xn) return

3 ...

4 if occurrence_c_m(id,X1,...,Xn) return

5 end

Listing 8. Compilation scheme for an n-ary constraint c with m occurrences
throughout the program. This is an updated version of the activate procedure
of Listing 2, performing an Early Drop for the active constraint if required.

right after the body. At the end of the occurrence code finally (i.e., after line 32
of Listing 1), a ‘return false’ is added. This is the default case, signifying that
any remaining occurrences must still be tested for the current active constraint.

A similar optimization is possible for the partner constraints. When using the
scheme of Listing 1, a form of trashing similar to the one seen in Loop-Invariant
Code Motion may occur. If, for instance, the first partner constraint dies by
executing the body, all nested loops are still fully iterated. Since the first partner
is already dead, all these lookups and iterations are useless. So, if a constraint
dies, we should instead immediately continue with the next constraint for the
corresponding loop. The alive tests for the partner constraints are therefore
moved after the alive test for the active constraint (i.e., after the body as well).
The constraint of the outermost iterator is tested first. If one of the partner
constraints tests dead after the execution of the body, a jump is used to resume
the corresponding iteration. This optimization, known as Backjumping, avoids
the form of trashing described above.

All alive tests are now placed after the body instead of before it. This is
allowed because at the start of a body execution, each partner was either just
returned by an iterator (which guarantees liveness), or tested for liveness after
the previous body execution.

In case of a Simplify transition, the active constraint is always killed. The
Early Drop therefore becomes unconditional (‘return true’), and all further
alive become unreachable, and should be omitted. Similarly, removed partner
constraints will always be dead after the body. The alive test of the outermost
removed partner constraint can therefore be omitted, and replaced with an un-
conditional backjump. All following alive tests thus becomes redundant. If static
analysis shows the active constraint or certain partner constraints cannot be
killed during the execution of the body, the corresponding alive tests can be
dropped. One trivial case is when the body is empty.

Example 16. In the ram simulator example, the active pc constraint is removed
by the rule, so all alive tests can be replaced by a single unconditional ‘return
true’ after the rule body. See Listing 9.

Non-Robust Iterators Due to the highly dynamic nature of the CHR con-
straint store, the robustness property of iterators, as specified in Section 5.2, is

hard to implement and often has a considerable performance penalty. There are
however cases where this property is not required:

1. If after the execution of a rule body an iterator is never resumed due to
an unconditional early drop, or an unconditional backjump over the corre-
sponding loop, introduced by the previous optimization.

2. If static analysis shows the body of a rule is guaranteed not to modify the
CHR constraint store.

Robust and non-robust iterators are sometimes called universal and exis-
tential iterators [36,51]. We prefer the term non-robust iterator, because they
can also be used to iterate over more than one partner constraint (see case 2
above). Non-robust iterators are used where possible because they can typically
be implemented more efficiently.

Example 17. In case of the ram simulator example, all iterators are already
superseded by the single-constraint lookups since Set Semantics was applied;
otherwise, they could have been replaced by non-robust iterators because of the
unconditional Early Drop in the body.

Late Storage In the default compilation scheme, see Listing 2, constraints are
stored immediately after they are told, as in ωr. A constraint’s lifetime, however,
is often very short. This is most apparent when the active constraint is removed
shortly after activation. The goal of the late storage optimization is to postpone
adding the constraint to the constraint store as long as possible. In many cases
the constraint will then be killed before it is stored. This avoids the considerable
overhead of adding and removing the constraint to the constraint store. The
performance gain is particularly significant if indexes are used.

During the execution of a body in a Propagate transition the formerly ac-
tive constraint might be required as a partner constraint, or it might have to
be reactivated. A straightforward implementation of the optimization therefore
stores the active constraint prior to every non-empty body in Propagate transi-
tions. To further delay constraint storage the observation analysis [51,57] can be
used. This static program analysis determines whether a specific body requires a
constraint to be stored or not. Finally, if not stored earlier, the active constraint
is stored after all occurrence procedures are called (i.e. line 3 is moved after
line 4 in Listing 2).

Late Allocation As constraints are not always stored, constraint suspensions
do not always have to be created either. Late allocation and late storage are
considered separately, because a distributed propagation history maintenance
(cf. next optimization) might require allocation earlier than storage. In the op-
timized compilation schemes of Section 5.4, a constraint suspension may also be
allocated earlier if needed as a continuation.

1 procedure occurrence_pc_1(id4,L)

2 prog(L1,$1,B1,A)#id2 = lookup_single(prog,{L=L1})
3 if id2 �= nil
4 if $1 = add
5 mem(A1,X)#id3 = lookup_single(mem,{A=A1})
6 if id3 �= nil
7 mem(B,Y)#id1 = lookup_single(mem,{B=B1})
8 if id1 �= nil and id1 �= id3

9 kill(id3)

10 kill(id4)

11 mem(A,X+Y)

12 pc(L+1)

13 return true
14 end
15 end
16 end
17 end
18 return false
19 end

Listing 9. The compilation scheme for the pc(L) occurrence after applying
Early Drop to Listing 7. Also, no propagation history is kept since the occurrence
is part of a simpagation rule.

Propagation History Maintenance In the basic compilation scheme, tuples
are added to the propagation history, but never removed (line 14 of Listing 1).
However, it is obvious that tuples referring to removed constraints are redundant.
Tuples added for simplification and simpagation rules, immediately become re-
dundant in lines 15–17, so a propagation history is only kept for propagation
rules. The propagation history remains a memory problem nevertheless.

There exist several techniques to overcome this problem. Immediately re-
moving all propagation history tuples a constraint occurs in once it is removed
is a first possibility. Practice shows however that this is difficult to implement
efficiently. CHR implementations therefore commonly use ad-hoc garbage col-
lection techniques, which in theory could result in excessive memory use, but
perform adequately in practice. A first such technique is to remove tuples re-
ferring to dead constraints during notInHistory checks (see [17]). A second
is denoted distributed propagation history maintenance, for which suspensions
contain propagation history tuples they occur in (see [51]). When a constraint
suspension is removed, part of the propagation history is removed as well. These
techniques can easily be combined. Other, more advanced garbage collection
techniques could be applied as well.

Example 18. The add rule of the ram example is a simpagation rule, so main-
taining a propagation history for it is unnecessary. This is reflected in Listing 9.

Propagation History Elimination Despite the above techniques, the main-
tenance of a propagation history remains expensive, and has a considerable im-
pact on both the space and time performance of a CHR program [73]. For rules
that are never matched by reactivated constraints, however, [73] proves that
the history can either be eliminated, or replaced by very cheap constraint identi-
fier comparisons. The same paper moreover shows that reapplication is generally
more efficient than maintaining a propagation history, and presents a static anal-
ysis that determines when rule reapplication has no observable effect. Together,
these optimizations cover most propagation rules occurring in practice.

Guard Simplification For each occurrence, guard simplification looks at ear-
lier removed occurrences to infer superfluous conjuncts in the guard. This op-
timization is best described in [62]. The expected performance gain for guard
simplification in itself is limited. Simplifying guards, however, does improve re-
sults of other analyses, such as the detection of passive occurrences described in
the next optimization.

Passive Occurrences An important goal of several CHR analyses is to detect
passive occurrences. An occurrence is passive if it can be derived that the cor-
responding rule can never fire with the active constraint matching it. Detecting
passive occurrences is important, not only because superfluous searches for part-
ner constraints are avoided, but also because any index structures only required
for these searches do not have to be maintained.

Subsumption analysis Where guard simplification tries to replace guards with
true, subsumption analysis uses similar techniques to replace guards with false.
An occurrence is subsumed by another occurrence if each constraint that matches
the former constraint also matches the latter (taking into account guards and
partner constraints). An occurrence that is subsumed by an earlier removed
occurrence can be made passive. More information can be found in [62].

Example 19. In the leq handler of Fig. 1, the kept occurrence of the idempo-
tence rules is clearly subsumed by the removed one (recall from Section 2.2 that
ωr specifies that removed occurrences are tried first). By symmetry, one of the
occurrences of the antisymmetry rule can be made passive as well (as ωr con-
siders occurrences from right-to-left, the first occurrence will be made passive).

Never stored analysis If one of the partners of an occurrence is known never to
be stored in the constraint store, that occurrence can also be made passive. The
basic analysis [17,36] determines that a constraint is never stored if:

– The constraint occurs in a single-headed, guardless simplification rule. The
Guard Simplification optimization helps considerably by removing redundant
guards in these rules.

– The Late Storage analysis shows that the constraint is never stored prior to
the execution of a body.

Never stored constraints also do not require any constraint store data structures.

Example 20. Given the complete ram handler program (Appendix A), a CHR
compiler can derive that the pc constraint is never stored. All other occurrences
in the add rule of Example 10 are therefore passive. Because most occurrences
of mem constraints are thus found passive, a compiler can also derive that less
indexes have to be built for looking up prog constraints.

Selective Constraint Reactivation The naive approach reactivates all sus-
pended constraints (with modifiable arguments) for each modification to a con-
strained value. This corresponds to the unoptimized Solve transition in the
refined operational semantics. Reconsidering always all constraints though is
clearly very inefficient. An obvious optimization is to reactivate only those con-
straints whose arguments are affected. For an efficient interaction with CHR,
constrained data values should therefore maintain references to the CHR con-
straints they occur in. In terms of the well-known observer pattern [29]: CHR
constraints have to observe their arguments.

As explained in Section 4.2, built-in constraint solvers should perform se-
lective reactivation transparently to the user. Changes in a built-in constraint
store can typically be reduced to a limited set of variables. This allows the re-
activation of only those CHR constraints that are affected by a change in the
constraint store. This is analogous to a typical implementation of a constraint
solver: constrained variables contain references to all constraints they occur in
(see e.g. [48]). When extending logic programming languages with constraint
solvers, attributed variables are typically used for this [32].

Several further optimizations are possible to avoid more redundant work on
reactivation:

– If two unbound (logical) variables are told equal, only the constraints observ-
ing one of these variables have to be reactivated. This is correct because all
rules that become applicable by telling this equality constraint necessarily
contain constraints over both variables.

– So-called wake conditions can be used to reconsider only those occurrences
whose guard might be affected. This becomes particularly interesting for
more complex built-in constraints, such as finite domain constraints. For
more information we refer to [19]. Closely related are the events used in
efficient implementations of constraint propagators [58].

As argued in Sections 3–4, the modification problem should also be addressed
for arbitrary host language values. Asides from the reactivateAll operation,
more selective constraint reactivation needs to be possible. Possible solutions
include a well-defined use of the observer pattern, or reactivate operations with
user-definable filter functions.

Delay Avoidance By the previous optimization, a constraint is reactivated
each time one of its arguments is modified. If the compiler can prove though

that these modifications cannot affect the outcome of a rule’s guard, there is no
need to reactivate. This is the case if a particular argument does not occur in any
guard, or only in anti-monotonous guards (see [52]). A constraint does not have
to observe one of its arguments if none of its occurrences has to be reconsidered
when it is modified. More details can be found in [52] and [74, Appendix A].

Memory Reuse The memory reuse optimizations of [61] can also be ported to
the imperative setting. Two classes of optimizations are distinguished:

– Suspension reuse: Memory used by suspensions of removed constraints can
be reused for newly added constraints.

– In-place updates: In-place updates go one step further. If a constraint is
removed and immediately replaced in the rule’s body, it is possible to re-
use the suspension of the former. This is particularly interesting if the new
constraint is of the same constraint type, and only slightly different from the
removed constraint. It could then be that the suspension does not have to
be removed and re-added to certain indices.

There are subtle issues when implementing this optimization. For more de-
tails, we refer to [61].

Example 21. In the ram simulator example, both constraints added in the body
are replacing removed constraints. Using a replace(id, indexes, values)

that assigns new values to the arguments on the specified indices, lines 9–13 of
Listing 9 can safely be replaced by:

.

.

.

replace(id3, [2], [X+Y])

replace(id4, [1], [L+1])
.
.
.

We assume the replace operation also activates the updated constraint. In
this case, updating these arguments should not require any constraint store
operations. The only index on the mem constraint for instance is on its first
argument. Updating the X argument of the mem(A,X)#id3 suspension does not
require this index to be adjusted.

Drop after Reactivation If a rule fires, the refined operational semantics de-
termines that the active constraint is suspended — i.e., pushed on the activation
stack — until the body is completely executed. During the execution of the body
this constraint may be reactivated. In this case, when the execution continues
with the suspended constraint, all applicable rules matching it have already been
tried or fired by this reactivation. Searching for more partner constraints, and
continuing with further occurrences, is then superfluous.

Traditionally, this optimization is implemented using an integer field incre-
mented each time the constraint is reactivated (see e.g. [51], which also contains

a correctness proof). Here, we propose a slightly more efficient implementation,
which also generalizes better when considering the optimized compilation scheme
presented in Section 5.4. We use a boolean field, activated, in the constraint
suspension, which is set to true after each reactivation. Prior to a Propagate
transition, the active constraint’s activated field is set to false. If after the
execution of the body, it has become true, the constraint must have been reacti-
vated, and the handling of this active constraint can safely be terminated using
an early drop (i.e., by returning true, as in the Early Drop optimization).

This optimization is not applied if static analysis determines that the body
never reactivates the active constraint. Obvious instances include when the body
is empty, or, if all arguments of the active constraint are unmodifiable. In all other
cases, this optimization may save a lot of redundant work.

5.4 Recursion Optimizations

Any non-trivial CHR program contains recursion, i.e., directly or indirectly, there
are rules with an occurrence of c/n in the head that activate a body that add
a constraint of the same type c/n to the store. In such a case, the compilation
schema presented in the previous two sections generates a set of mutually re-
cursive host language procedures. We rely on the host language compiler for
generating the final executable, or on the host language interpreter for the even-
tual execution of our generated code. If the host language does not adequately
deal with recursion, the naive compilation scheme leads to stack overflow issues.

Prolog implementations perform tail call optimization since the early days of
Prolog. This optimization consists in reusing the execution frame of the caller for
the last call in of a clause’s body. Prolog thus executes tail calls in constant stack
space. For a host language like Prolog, recursion is therefore less of a problem:
to solve call stack overflows during the execution of a CHR program it mostly
suffices to rewrite the CHR program to use tail calls for the recursive constraints.
The notion of tail calls in the context of CHR is explained later.

Even though similar tail call optimizations are possible in imperative host
languages [46], in practice, most compilers for imperative languages do not per-
form them, or only in certain situations. The GCC C compiler [24], for instance,
only optimizes tail calls in specific cases [8]. Most implementations of the Java
Virtual Machine [41], including Sun’s reference implementation HotSpot [68],
do not perform (recursive) tail call optimizations at all4. Indeed, in practice we
have observed that our naive compilation schema to Java overflows the execution
stack very quickly. For C the situation is only slightly better.

Since improving the optimizations in the host language compilers is seldom
an option, we designed novel compilation schemes that avoids execution stack
overflows. Stack overflow can only occur when calling arbitrary host language
code. Our new schema keeps data structures for the control flow of a CHR pro-
gram on the heap. It might seem that the overflow is just shifted from the stack
4 Supporting tail call optimization would interfere with Java’s stack walking security

mechanism (though this security folklore has recently been challenged in [12]).

to the heap. However, in the new schema we guarantee that these data struc-
tures remain constant size for CHR programs that are tail recursive. Moreover,
in a language like Java, the heap is substantially larger than the call stack. So in
any case, even for non-tail recursive CHR programs, the memory limits will be
reached considerably later. This is also experimentally validated in Section 6.

Tail calls in CHR In CHR, a tail call occurs when the active constraint
matches a removed occurrence, and the body ends with the addition of a CHR
constraint. If the active constraint is not removed, the last body conjunct is not
considered a tail call, as the search for partner constraints has to be resumed
after the execution for the body, or more occurrences have to be tried for the
previously active constraint.

Example 22. Recall the add rule of Example 10. For an active pc(L) constraint,
the execution of this rule’s body results in a tail call. The leq(Y,Z) constraint
added by the body of the transitivity rule of Fig. 1, however, is not a tail call.

Using the optimized compilation schemes presented below, tail calls no longer
consume space.

Trampoline Tail calls in CHR can be optimized such that they no longer
consume stack space. A CHR constraint added by a tail call is no longer acti-
vated immediately by calling the corresponding occurrence procedures. Instead,
a constraint suspension is returned that represents this constraint. Control then
always returns to a loop that activates these suspensions as long tail calls occur.
This technique is called trampoline [7,30].

So tail calls are replaced by a return of the newly created constraint. The
‘return true’ statements introduced for the Early Drop and Drop after Reacti-
vation optimizations (cf. Section 5.3) are replaced by ‘return drop’, the default
‘return false’ statements by ‘return nil’. These are the only changes required
to the occurrence procedures. All optimizations of Section 5.3 remain applicable.

Example 23. The ram handler contains many tail calls. The compilation of the
pc(L) occurrence of its add rule (see Example 10) using the trampoline compi-
lation scheme is shown in Listing 10.

Next we modify the c(X1,...,Xn) and reactivate(id) procedures of List-
ing 2 to loop as long as the occurrence procedure returns a constraint suspension
to activate. The looping is done by a separate procedure trampoline, called from
both c and reactivate. The resulting compilation scheme is shown in Listing 11.
The listing also shows the modified activate procedure. In the default case,
nil, the next occurrence procedure is tried. Otherwise, the control returns to the
trampoline (lines 11–15). The returned value is either a constraint suspension in
case of a tail call, or the special drop value. The latter case corresponds with
a Drop transition of the current active constraint, so the trampoline exits. In
the former case though, the constraint from the tail call is activated. By always
returning to the trampoline this way, tail calls no longer consume stack space.

1
.
.
.

2 kill(id3)

3 kill(id4)

4 mem(A,X+Y)

5 return create(pc,[L+1])

6 end
7 . .

.

8 end
9 return nil

10 end

Listing 10. The compilation scheme for the RAM simulator rule occurrence,
modifying Listing 9 for use in the trampoline scheme of Listing 11.

1 procedure c(X1,...,Xn)

2 id = create(c, [X1, . . . , Xn])

3 trampoline(id)
4 end
5

6 procedure reactivate(id)
7 trampoline(id)
8 end
9

10 procedure trampoline(cont)

11 do
12 cont = activate(cont)

13 while cont �= drop
14 end
15

16 procedure activate(c(X1, . . . , Xn)#id)
17 ret = occurrence_c_1(id,X1, . . . , Xn)

18 if ret �= nil
19 return ret

20 end

21
.
.
.

22 ret = occurrence_c_m(id,X1, . . . , Xn)

23 if ret �= nil
24 return ret

25 end
26 store(id)
27 return drop
28 end

Listing 11. Compilation scheme for an n-ary constraint c with m occurrences
throughout the program, replacing Listing 2. A trampoline loop is added around
the call to activate. The latter procedure is further modified to return either a
constraint suspension, in case of a tail call, or the special drop value otherwise.

Explicit stack This subsection presents a more general solution. Whilst tram-
poline-style compilation deals with tail calls only, the new compilation scheme
deals with all instances of recursion. Instead of mapping the refined semantics’
activation stack onto the host’s implicit call stack, it maintains an explicit con-
tinuation stack on the heap. The elements on this stack are called continuations,
and represent “the rest of the computation for an active constraint”.

If a conjunction of multiple CHR constraints has to be executed, a continua-
tion is pushed onto this stack, containing all information required to execute all
but the first body conjunct. Next, the first conjunct is executed by returning to
an outer control loop, similar to the trampoline scheme. After this conjunct has
been handled completely, the continuation is popped from the stack, and the
remainder of the body is executed in a similar, conjunct-by-conjunct fashion. If
the remaining body is empty, and the active occurrence is alive, more partner
constraints are searched, or the next occurrence is tried. Similar techniques are
used to solve recursion involving built-in constraints or host language code.

We treat constraint suspensions as a special case of continuations. If called
(see below), the corresponding constraint is simply activated. The following op-
erations are introduced:

push(�id, occurrence number, body index, vars �) Pushes a new contin-
uation onto the continuation stack. This continuation contains the identifier
of the active constraint, the number of the occurrence that caused the rule
application, the index of the next body conjunct to be executed, and the
variables required to execute the remainder of the body.

push(id) Pushes a constraint suspension on the continuation stack.
pop() Removes the most recently pushed continuation from the continuation

stack and returns it.
call(continuation) An extension of the activate operation of Listing 11.

For constraint suspensions, call is equivalent to activate. Calling another
constraint suspension resumes the handling of a suspended active constraint.
This entails executing any remaining body conjuncts, resuming a search for
partner constraints, or advancing to the next occurrence. The implementa-
tion of this operation is discussed below.

The compilation scheme is listed in Listing 12. Similar to the trampoline
compilation scheme, recursion is solved by always returning to an outer control
loop. The main differences with Listing 11 are the generalization of constraint
suspensions to continuations, and the use of the continuation stack. As before, a
constraint suspension for the newly told constraint is created (line 3), followed by
a loop that repeatedly calls continuations (lines 4–9). Calling a continuation still
returns the next continuation to be executed, which is drop if the handling of
the previously active constraint is finished. In the latter case, a next continuation
is popped from the stack (lines 6–8).

To overcome recursion involving multiple constraint CHR handlers, or in-
terleaving with host language code (see later), all cooperating CHR handlers of
the same constraint system share the same continuation stack (cf. Section 4.2).
In order to know when to return from the procedure of Listing 12, a special

1 procedure c(X1,...,Xn)

2 push(sentinel)
3 cont = create(c, [X1, . . . , Xn])

4 do
5 cont = call(cont)

6 if cont = drop
7 cont = pop()

8 end
9 while cont �= sentinel

10 end
11

12 procedure reactivate(id)
13 push(id)
14 end

Listing 12. Compilation scheme for telling a CHR constraint using a continu-
ation stack.

sentinel continuation is pushed on line 2. Popping a sentinel continuation
means the Drop transition for the constraint initially told by the procedure was
reached (line 6), and the procedure must return.

In the remainder of this section, we focus on the compilation scheme for the
piecewise execution of the body. For a more complete discussion of the compila-
tion scheme and the call operation, we refer to [70].

Recall the generic form of a CHR rule ρ introduced in Section 5.2:

ρ @ c[j1]
1 (X1,1, . . . , X1,a1), . . . , c

[jr−1]
r−1 (Xr−1,1, . . . , Xr−1,ar−1) \

c[jr]
r (Xr,1, . . . , Xr,ar), . . . , c[jh]

h (Xh,1, . . . , Xh,ah) ⇔ g1, . . . , gng | b1, . . . , bnb .

Suppose an applicable rule was found with the active constraint matching the
c[ji]
i occurrence. Suppose the body conjuncts that still have to be executed are
bk, . . . , bnb , with k ≤ nb. At the Propagate or Simplify transition itself, k will
be equal to one, but when calling a continuation k can be larger than one. We
distinguish three different cases:

(1) bk is a CHR constraint
Let bk = c(Y1, . . . , Ya), then this case is simply implemented as:

.

.

.

push(idi, ji, k + 1, vars�bk+1, . . . , bnb�)

return create(c, [Y1,...,Ya])

. .
.

The constraint suspension of the first conjunct is returned, after pushing a con-
tinuation on the stack. The expression vars�bk+1, . . . , bnb� returns all variables
required in the remainder of the body. This way, after the returned constraint
is activated and fully handled, the execution continues handling the currently

active constraint. First, the remaining body will be piecewise executed, using
the compilation scheme presented in this section. If the body is completely exe-
cuted, and the active constraint is still alive, more applicable rules are searched,
starting at the occurrence that caused the previous rule application.

Example 24. In Listing 13 the full generated pseudocode for our running example
is given. Only the code for the occurrence of the pc constraint in the add rule is
given. The body of the occurrence first creates a continuation on the stack, and
then returns the mem constraint that needs to be activated next. Eventually, after
this constraint is completely handled, the continuation will be popped from the
stack and executed. The code for this continuation, given in lines 45–47, simply
returns the new pc constraint.

(2) bk is a built-in constraint
Calling a built-in constraint from a body may reactivate CHR constraints,

which could cause recursive applications of the same rule. To avoid this, the
reactivate(id) procedure of Listing 12 is simply implemented as push(id).
Reactivations are thus not performed immediately, but instead pushed onto the
continuation stack. A built-in constraint bk in a body is then compiled as:

.

.

.

push(idi, ji, k + 1, vars�bk+1, . . . , bnb�)

bk

return pop()

. .
.

The continuation is pushed, the built-in constraint is executed, and the top of
the stack is returned. If the built-in constraint triggered reactivations these are
executed first. If not, the continuation itself is popped and executed. Notice that
compared to the scheme that used the native call stack, this scheme reverses the
order in which constraints are reactivated. This is allowed because the refined
operational semantics does not determine this order.

If built-in constraints only rarely reactivate constraints, the above scheme is
overly expensive. The creation, pushing and popping of the continuation can be
avoided. One possible optimization uses the following two stack operations:

stackSize() Returns the number of continuations currently on the stack.
replace(index, id, occurrence number, body index, vars)

Similar to push, but adds the continuation on a given index rather than on
top of the stack. The operation returns the continuation that was previously
on the given index.

The stack indexes start from zero, so the index of the next continuation to be
pushed is equal to stackSize. In other words, ‘replace(stackSize(), ...)’
is equivalent to ‘push(...)’. The compilation scheme becomes:

.

.

.

SS = stackSize()

1 procedure pc(L)

2 push(sentinel)
3 cont = create(pc, [L])

4 do
5 cont = call(cont)

6 if cont = drop
7 cont = pop()

8 end
9 while cont �= sentinel

10 end
11

12 procedure call(pc(L)#id)
13 ret = occurrence_pc_1(id,L)
14 if ret �= nil
15 return ret

16 end

17
.
.
.

18 ret = occurrence_pc_m(id,L)
19 if ret �= nil
20 return ret

21 end
22 store(id)
23 return drop
24 end
25

26 procedure occurrence_pc_1(id4,L)

27 prog(L1,$1,B1,A)#id2 = lookup_single(prog,{L=L1})
28 if id2 �= nil
29 if $1 = add
30 mem(A1,X)#id3 = lookup_single(mem,{A=A1})
31 if id3 �= nil
32 mem(B,Y)#id1 = lookup_single(mem,{B=B1})
33 if id1 �= nil and id1 �= id3

34 kill(id3)

35 kill(id4)

36 push(�pc,1,2,[L]�)
37 return create(mem,[A,X+Y])

38 end
39 end
40 end
41 end
42 return false
43 end
44

45 procedure call(�pc,1,2,[L]�)
46 return create(pc,[L+1])

47 end

Listing 13. Full example of generated code for the pc(L) constraint in the RAM
simulator. Included are the pc(L) procedure for adding a constraint to the store
from host language, occurrence code for first occurrence, and a polymorphic call
dispatcher for both pc suspensions and continuations of the first occurrence body.

.

.

.

bk

if (stackSize() > SS)

return replace(SS, idi, ji, k + 1, vars�bk+1, . . . , bnb�)
.
.
. /* remainder of the body, starting with bk+1 */

This way, a continuation is only created and pushed, if a built-in constraint
causes reactivations. By remembering the old stack size, this continuation is
inserted exactly on the same location as before. The result of the call to replace

will be a reactivation continuation. If no reactivations are pushed though, the
control simply continues with the remainder of the body, or with the search for
partner constraints.

(3) bk is a host language statement
Recursion where CHR code is interleaved with host language code is more

difficult to eliminate. Firstly, host language code may not only reactivate CHR
constraints, it can also add new CHR constraints. The scheme used for built-in
constraints therefore cannot be used, as reversing the activation order of CHR
constraints told from host language code is not allowed by the refined oper-
ational semantics. Secondly, CHR handlers and built-in constraint solvers are
incremental : executing a built-in or CHR constraint has to immediately per-
form all required changes, before returning control. By default, CHR constraint
solvers should remain incremental, as host language code may rely on this prop-
erty. This is also why the sentinel continuation is pushed on line 2 of Listing 12:
this way multiple activations that have to return control after their activation
can be handled using the same stack.

The implicit call stack can still overflow if a CHR handler and host lan-
guage code recursively call each other. Arguably, this behavior is acceptable.
One possibility to safeguard against these stack overflows though is to abandon
incrementality. A queue can then be used to collect all constraints told whilst
executing a host language statement in a body. Once the control returns to the
CHR handler, the enqueued continuations are pushed, in reverse order, on the
continuation stack. We refer to [70] for more details.

Optimizations If the active constraint is still alive after the execution of a
body, remaining partner constraints have to be searched. The naive explicit stack
scheme outlined in the previous subsection simply restarts all iterations, relying
on the propagation history to avoid duplicate rule applications. This results in
many redundant lookups, iterations, and history checks. The optimized scheme
includes the constraint iterators into the continuations of the explicit stack, and
uses them to efficiently resume the search for partner constraints.

Explicitly maintaining a stack unavoidably entails constant time overheads
when compared to the traditional, call-based compilation scheme. The host en-
vironment’s call stack is able to use more specialized low level mechanisms. This
is particularly the case for high-level host languages such as Java. Possible opti-
mizations to reduce these overheads include:

– Pushing a continuation can sometimes be avoided,for instance in the case
of a tail call. Also, if there are no more partner constraints to be searched
due to set semantics, the pushing of a continuation at the end of the body
can be improved. These specializations can be done either statically, or by
simple runtime checks.

– If static analysis shows activating a constraint does not result in recursion,
the constraint can simply be activated using the compilation scheme of Sec-
tions 5.2–5.3.

– Continuations can sometimes be reused.
– The Drop after Reactivation optimization can be generalized to not only drop

if a constraint is reactivated during an activation, but also if it is reactivated
during an earlier reactivation. As constraint reactivations are not executed
immediately, but instead scheduled on the continuation stack. This can again
lead to the same constraint occurring multiple times on the continuation
stack. In the scheme outlined above, these redundant reactivations can easily
be avoided5.

For a more detailed description of these and other optimizations, we refer to [70].

Example 25. In Listing 13, creating the continuation on line 36 is not necessary.
As the remaining body is a tail call, simply pushing the constraint suspension
representing the pc(L+1) constraint suffices.

Furthermore, after application of the Passive Occurrences optimization (see
Section 5.3), most occurrences of the mem constraint are passive in the ram
handler (Appendix A). Static analysis therefore easily derives that adding a mem

never causes recursion. A mem constraint can therefore safely be activated using
the host’s call stack.

When combining these optimizations, Listing 13 essentially reduces to List-
ing 10. For the ram handler the explicit call stack is thus never used.

Conclusion The implicit call stack of the host environment is replaced by
an explicitly maintained stack on the host’s heap. If the explicit stack is not
used though, the compilation scheme of Listing 12 becomes equivalent to the
trampoline scheme of Listing 11. CHR tail calls therefore do not consume space.
Also, even if tail optimizations are not possible, the heap of imperative hosts
such as Java or C is considerably larger than their stack. We refer to Section 6
for an experimental evaluation.

6 Evaluation

Using the compilation scheme given in Section 5, we implemented a CHR embed-
ding for two imperative host languages, Java and C. These implementations are
briefly discussed in Section 6.1, and their performance is evaluated in Section 6.2.
5 This optimization is not specific to the compilation scheme with an explicit stack.

The implementation for the scheme presented in Sections 5.2–5.3 however is less
straightforward.

6.1 Implementations

In this section we briefly discuss the implementation of two imperative embed-
dings of CHR, namely the K.U.Leuven JCHR system [75] for Java and CCHR
[82] for C. These implementations are available at respectively [71] and [81].

The most important language design issues taken for both systems are dis-
cussed in Section 4. Our implementations do not provide search. We are con-
vinced though that search can be added effectively to our CHR systems as a
mostly orthogonal component, as shown by related systems [39,79].

Both systems implement the compilation scheme presented in Section 5. The
implemented optimizations are listed in Table 1. As a reference, the table also
lists the optimizations implemented by the K.U.Leuven CHR system [51,53] for
SWI-Prolog [77] (in the version of SWI used, the memory reuse optimizations of
[61] were not implemented).

Optimization Prolog JCHR CCHR
Loop-Invariant Code Motion � � �

Indexing � � �
Join Ordering � � �
Set Semantics �

Early Drop � � �
Backjumping � �

Non-Robust Iterators � � �
Late Storage � � ±

Late Allocation � ±
Distributed Propagation History � � �

History Elimination � �
Guard Simplification �
Passive Occurrences � � ±

Selective Constraint Reactivation � � �
Delay Avoidance � �

Memory Reuse ±
Generations � � �

Recursion optimization � �

Table 1. Summary of all listed optimizations and their implementations in
K.U.Leuven CHR for SWI- and YAP Prolog, K.U.Leuven JCHR and CCHR
(development versions of March 1, 2008). Optimizations that are implemented
only partially or in an ad-hoc fashion are indicated with ‘±’.

As discussed in Section 5.3, the recursion optimizations are less relevant for
a Prolog implementation, as the Prolog runtime performs tail call optimizations.
Both JCHR and CCHR explicitly maintain an explicit continuation stack when
necessary (see Section 5.3). In CCHR continuations are efficiently implemented
using goto statements. In Java this is not possible. For a detailed discussion of
the compilation scheme used by JCHR, we refer to [70].

6.2 Performance

To verify our implementation’s competitiveness, we benchmarked the perfor-
mance of some typical CHR programs. The following benchmarks were used6:

– Calculating tak(500, 450, 405) with a tabling Takeuchi function evaluator.
– Using Dijkstra’s algorithm to find the shortest path in a sparse graph with

16,384 nodes and 65,536 edges. A Fibonacci heap, also implemented in CHR,
is used to obtain the optimal complexity (see [60] for a description of the
Dijkstra and Fibonacci heap handlers).

– Solving a circular set of 100 less-or-equal-than constraints (see Fig. 1).
– Calculating 25,000 resp. 200,000 Fibonacci numbers using the RAM simu-

lator (see Appendix A), with the addition replaced by a multiplication to
avoid arithmetic operations on large numbers (when using multiplication all
Fibonacci numbers are equal to one).

The results7 can be found in Table 2. We compared our two systems with the
K.U.Leuven CHR system implementation for SWI-Prolog, and its port to YAP
Prolog [49], a more efficient Prolog system. The YAP implementation used an
older version of K.U.Leuven CHR. Execution times for native implementations
in C and Java were added for reference.

Takeuchi Dijkstra leq
RAM

25k 200k
YAP 2,310 (100%)

3,930 (170%)
48 (2.1%)

183 (7.9%)
10 (0.4%)
11 (0.5%)

44,000 (100%)
6,620 (15%)
1,170 (2.7%)

704 (1.6%)
-
-

4,110 (100%)
17,800 (433%)

189 (4.5%)
68 (1.7%)
2 (.05%)
2 (.05%)

1,760 (100%)
1,000 (57%)

416 (24%)
157 (8.9%)
1.3 (.07%)

2 (.11%)

15,700 (100%)
stack overflow
3,540 (23%)
1,714 (11%)
12.7 (.08%)

16 (.10%)

SWI
CCHR
JCHR

C
Java

Table 2. Benchmark comparing performance in some typical CHR programs in
several systems. The average CPU runtime in milliseconds is given and, between
parentheses, the relative performance with YAP Prolog as the reference system.

The imperative systems are significantly faster than both Prolog systems, up
to one or two orders of magnitude, depending on the benchmark. This is partly
due to the fact that the generated Java and C code is (just-in-time) compiled,
whereas the Prolog code is interpreted. In SWI the RAM benchmark consumes
linear stack space as the SWI runtime does not perform the necessary tail call op-
timizations. The RAM benchmark for 200k Fibonacci numbers therefore results
in a stack overflow.
6 Benchmarks available at http://www.cs.kuleuven.be/~petervw/bench/lnai2008/
7 The benchmarks were performed on a IntelR� CoreTM2 Duo 6400 system with 2 GiB

of RAM. SWI-Prolog 5.6.50 and YAP 5.1.2 were used. All C programs were compiled
with GCC 4.1.3 [24]. K.U.Leuven JCHR 1.6.0 was used; the generated Java code was
compiled with Sun’s JDK 1.6.0 and executed with HotSpot JRE 1.6.0.

The native C and Java implementations remain two orders of magnitude
faster than their CHR counterparts. The main reason is that these programs
use specialized, low-level data structures, or exploit domain knowledge difficult
to derive from the CHR program. The Dijkstra algorithm was not implemented
natively.

To show the necessity for the recursion optimizations of Section 5.4 in Java
and C, we also benchmarked the limits on recursion. A simple program was tested
that recursively adds a single constraint. If this happened using a tail call, JCHR
runs out of stack space after 3,200 steps when using the unoptimized compilation
scheme (i.e., without recursions optimizations). For CCHR, the GCC compiler
was able to perform tail call optimization. Both YAP and SWI performed tail call
optimization as well. For these systems, the test therefore ran in constant stack
space, without limits. Using the optimized compilation scheme of Section 5.4,
the same applies of course for JCHR (and CCHR).

If the recursive call was not a tail call, the different systems showed the
following limits. Both SWI’s and Java’s native call stack have static size. In SWI,
the test resulted in a stack overflow after 3.3 million recursive calls, in JCHR,
without recurions optimization, already after 3,200 calls (the same as when a
tail call was used). These numbers clearly show the necessity for the recursion
optimizations when compiling to Java. If using an explicit call stack, JCHR is
only limited by available heap memory, which is substantially larger than the
stack. Using standard heap size, more than 1.8 million calls were possible. As
the Java system used can be configured to use larger heap sizes, JCHR became
essentially only limited by available (virtual) memory. The size of Java’s call
stack could not be configured.

The results for C were similar to those for Java: when using the unoptimized
scheme the C call stack overflowed after around half a million recursive calls,
whereas with the explicit stack optimization, CCHR permits over 40 million
recursive calls. YAP Prolog’s call stack grows dynamically, so YAP is also only
limited by available (virtual) memory.

7 Related work

Even though (C)LP remains the most common CHR host language paradigm
(see e.g. [17,36,34,53,51]), an increasing number of other CHR implementations
have appeared. In this section we discuss several CHR embeddings in functional
and imperative host languages (Sections 7.1 and 7.2 respectively), focussing on
how they deal with the issues raised in Section 3.

Of course, countless other declarative paradigms have been integrated and
compiled to imperative host languages. We only consider production rules (Sec-
tion 7.3), as this formalism is most closely related to CHR.

7.1 CHR in Functional Languages

When embedding CHR in functional languages, many of the same challenges
are met. Typically, functional languages are statically typed, and do not provide

search or built-in constraints. Structural matching on compound data on the
other hand is mostly readily available.

HCHR provides a type-safe embedding of CHR in Haskell, leveraging the
the built-in Haskell type checker to type check HCHR programs [11]. HCHR
constraints only range over typed logical variables and terms, encoded as a poly-
morphic Haskell data type. Unification and matching functions are generated
automatically for each type (this is similar to the approach taken by CCHR, cf.
Section 4.3). Haskell data structures therefore have to be encoded as terms when
used in a HCHR constraint, and reconstructed again when retrieving answers.
No Haskell functions can be called from HCHR rule bodies, probably due to this
data type mismatch.

The Chameleon system [66] is a Haskell-style language that incorporates
CHR. It has been applied successfully to experiment with advanced type system
extensions [65]. Chameleon’s back-end CHR solver is HaskellCHR [16]. To allow
Prolog-style terms with variables, this system includes a WAM implementation
for Haskell, written in C. It is the only Haskell CHR system to provide chrono-
logical backtracking. HaskellCHR is not intended to be used stand-alone, but
simply as a back-end to Chameleon.

With the advent of software transactional memories (STM) in Haskell, two
systems with parallel execution strategies have recently been developed: Concur-
rent CHR [40] and STMCHR[64]. These systems are currently the only known
CHR implementations that exploit the inherent parallelism in CHR programs.

Even though both HCHR and Chameleon provide syntactic preprocessing,
both Haskell implementations are fairly naive interpreters. Their performance
cannot compete with the optimizing CHR compilers for logic and imperative
programming host languages. Similarly, the STM implementations are still early
prototypes, whose performance is not yet competitive with sequential state-of-
the-art implementations (unless of course when multiple processors are used for
highly parallelizable CHR programs).

7.2 CHR in Imperative Languages

Aside from the systems discussed in this article, there exist at least three other
CHR systems in Java. The oldest is the Java Constraint (JaCK) [2,4]. The main
issue with JaCK is probably its lacking performance (see e.g. [75]). The JaCK
framework consists of three major components:

JCHR A CHR dialect intended to be very similar to Java, in order to provide
an intuitive programming language [50]. The semantics of the language are
unspecified, and are known to deviate from other CHR implementations.
CHR constraints only range over typed logical variables. All Java objects
thus have to be wrapped in logical variables. Only static Java methods can
be called from a rule’s body.

VisualCHR An interactive tool visualizing the execution of JCHR [5]. It can
be used to debug and to improve the performance of constraint solvers.

JASE , the Java Abstract Search Engine, allows for a flexible specification of
tree-based search strategies [39]. JCHR bodies do not contain disjunctions,
as in (C)LP implementations of CHR∨. Instead, JASE is added to JaCK as
an orthogonal component. The JASE library provides a number of utility
classes that help the user to implement a search algorithm in Java. A typical
algorithm consists of the following two operations, executed in a loop: first,
a JCHR handler is run until it reaches a fix-point, after which a new choice
is made. If an inconsistency is found, chronological backtracking is used to
return to the previous choice point. JASE aids in maintaining the search
tree, and can be configured to use either trailing or copying.

The CHORD system (Constraint Handling Object-oriented Rules with Dis-
junctive bodies) [76], developed as part of the ORCAS project [47], is a Java
implementation of CHR∨ [42]. Its implementation seems to build on that of
JaCK, but adds the possibility to include disjunction in rule bodies.

A last CHR system for Java is DJCHR (Dynamic JCHR) [78], which imple-
ments an extension of CHR known as adaptive CHR [80]. Constraint solving in
a dynamic environment often requires immediate adaptation of solutions when
constraints are added or removed. By nature, CHR solvers already support effi-
cient adaptation on constraint addition. Adaptive CHR is an extension of CHR
capable of adapting CHR derivations after constraint deletions as well [80].

Constraints in DJCHR range only over Herbrand terms. Integration of the
host language in the CHR rules is not supported. The system seems mainly
created to experiment with the incremental adaptation algorithm of [80]. Like
JaCK, DJCHR was later extended to support a wide range of search strate-
gies [79]. Search is again implemented orthogonally to the actual CHR handlers.
Interestingly, [79] clearly shows that the use of advanced search strategies can be
more efficient than a low-level, host language implementation of chronological
backtracking (as in Prolog).

7.3 Production Rules

Production rules, or business rules as they are often called, are a forward chain-
ing rule-based programming language extension, very similar to CHR. Most of
the many commercial and open-source implementations of this paradigm are
based on the classical RETE algorithm [23]. This algorithm eagerly computes
and maintains all possible joins and applicable rules. As the first rule fired with
a fact (the equivalent of a CHR constraint) often already removes this fact (see
also Section 5.3), RETE can be very costly. A lazy algorithm that fires appli-
cable rules as it finds them, is usually more efficient in both time and memory.
Even though this fact has been recognized in the production rule literature [43],
the RETE algorithm remains the most widely used implementation technique.
We believe that the compilation scheme developed for CHR, as presented in
this article, is the first rigorously studied lazy execution mechanism for forward
chaining rules. It would be interesting to compare the performance of CHR with
that of state-of-the-art, RETE based production rule engines.

Modern production rule systems such as Jess [25] and Drools [37] allow ar-
bitrary host language code to be called. To solve the modification problem, a
technique called shadow facts is commonly used. Consistency of the RETE net-
work is maintained by keeping a clone of any modifiable object referred to by
facts in an internal data structure. The user is responsible for notifying the rule
engine of any changes to these objects. This solution however does not work for
arbitrary objects (e.g. only for Java Bean objects [69]), and is fairly inefficient.

8 Conclusions and Future Work

In this work we presented our approach to solve the impedance mismatch be-
tween CHR and imperative languages. We outlined the different language de-
sign issues faced when embedding CHR into an imperative host language. In our
approach, we advocated a tight and natural integration of both paradigms. We
illustrated with two case studies, the K.U.Leuven JCHR system and CCHR, and
showed that our approach leads to a programming language extension intuitive
and useful to adepts of both CHR and the intuitive host language.

We ported the standard CHR compilation scheme to an imperative setting,
and showed how the many existing optimizations can be incorporated. The result
is a first comprehensive survey of the vast, recent literature on optimized CHR
compilation. Many of the presented compilation and optimization techniques are
applicable for any implementation of CHR, or any similar rule-based language.

More specific to imperative target languages, we showed that the standard
call-based compilation scheme of CHR results in call stack overflows when used
to compile to imperative host languages. We proposed a novel, optimized compi-
lation scheme using which CHR programs written using tail calls are guaranteed
to execute in constant space. Where tail call optimization is not possible, an
explicitly maintained stack is used instead of the host’s call stack. By maintain-
ing the stack on the heap, memory limits are reached considerably later for all
recursive CHR programs.

We created efficient, state-of-the-art implementations for Java and C, and
showed that they outperform other CHR systems up to several orders of mag-
nitude. We also showed the effectiveness of our recursion optimizations.

8.1 Future Work

Certain issues raised in Section 3 are not yet adequately solved by current,
imperative CHR systems. The modification problem is only solved effectively
for built-in constraints. Similarly, the combination of arbitrary host language
code with search requires more investigation. The integration of search in an
efficient compilation scheme is also an interesting topic for future research.

The current compilation scheme considers each occurrence separately. How-
ever, we believe that more efficient code can be generated with a more global
compilation scheme. For instance, the entire ram handler of Appendix A could
be compiled to a single switch statement in a loop. Rather than linearly going

through all possible operations for each program counter, the applicable rule
would be found in constant time using a switch. Sharing partial joins for over-
lapping rules among different occurrences is another example.

Over the past decade there has been an increase in the number of CHR sys-
tems. The support for advanced software development tools, such as debuggers,
refactoring tools, and automated analysis tools, lags behind, and remains an im-
portant challenge, not only for the systems embedding CHR in imperative hosts,
but for the entire CHR community.

References

1. The Constraint Handling Rules (CHR) programming language homepage, 2008.
http://www.cs.kuleuven.be/∼dtai/projects/CHR/.

2. S. Abdennadher. Rule-based Constraint Programming: Theory and Practice. Ha-
bilitationsschrift, Institute of Computer Science, LMU, Munich, Germany, July
2001.

3. S. Abdennadher, T. Frühwirth, and C. Holzbaur, editors. Special Issue on Con-
straint Handling Rules, volume 5(4–5) of Theory and Practice of Logic Program-
ming. Cambridge University Press, July 2005.

4. S. Abdennadher, E. Krämer, M. Saft, and M. Schmauß. JACK: A Java
Constraint Kit. In M. Hanus, editor, WFLP ’01: Proc. 10th Intl. Work-
shop on Functional and (Constraint) Logic Programming, Selected Papers, vol-
ume 64 of ENTCS, pages 1–17, Kiel, Germany, Nov. 2002. Elsevier. See also
http://pms.ifi.lmu.de/software/jack/.

5. S. Abdennadher and M. Saft. A visualization tool for Constraint Handling Rules.
In A. Kusalik, editor, WLPE ’01, Paphos, Cyprus, Dec. 2001.

6. S. Abdennadher and H. Schütz. CHR∨, a flexible query language. In T. Andreasen,
H. Christiansen, and H. Larsen, editors, FQAS ’98: Proc. 3rd Intl. Conf. on Flexible
Query Answering Systems, volume 1495 of LNAI, pages 1–14, Roskilde, Denmark,
May 1998. Springer.

7. H. G. Baker. CONS should not CONS its arguments, part II: Cheney on the
M.T.A. SIGPLAN Notices, 30(9):17–20, 1995.

8. A. Bauer. Compilation of functional programming languages using GCC—Tail
calls. Master’s thesis, Institut für Informatik, Technische Univ. München, 2003.

9. J. Bouaud and R. Voyer. Behavioral match: Embedding production systems and
objects. In Pachet [45].

10. G. Bracha. Generics in the Java Programming Language, July 2004. Tutorial.
11. W.-N. Chin, M. Sulzmann, and M. Wang. A type-safe embedding of Constraint

Handling Rules into Haskell. Honors thesis, School of Computing, National Uni-
versity of Singapore, 2003.

12. J. Clements and M. Felleisen. A tail-recursive machine with stack inspection. ACM
Trans. on Prog. Languages and Systems (TOPLAS), 26(6):1029–1052, 2004.

13. C. S. da Figueira Filho and G. L. Ramalho. JEOPS - the Java Embedded Object
Production System. In Advances in Artificial Intelligence — IBERAMIA-SBIA
2000: Proc. Intl. Joint Conf. 7th Ibero-American Conference on AI – 15th Brazilian
Symposium on AI, volume 1952 of LNCS, Atibaia, SP, Brazil, 2000. Springer.

14. L. De Koninck and J. Sneyers. Join ordering for Constraint Handling Rules. In
Djelloul et al. [15], pages 107–121.

15. K. Djelloul, G. J. Duck, and M. Sulzmann, editors. CHR ’07: Proc. 4th Workshop
on Constraint Handling Rules, Porto, Portugal, Sept. 2007.

16. G. J. Duck. HaskellCHR. http://www.cs.mu.oz.au/~gjd/haskellchr/, 2004.
17. G. J. Duck. Compilation of Constraint Handling Rules. PhD thesis, University of

Melbourne, Australia, Dec. 2005.
18. G. J. Duck and T. Schrijvers. Accurate functional dependency analysis for Con-

straint Handling Rules. In Schrijvers and Frühwirth [55], pages 109–124.
19. G. J. Duck, P. J. Stuckey, M. Garćıa de la Banda, and C. Holzbaur. Extending

arbitrary solvers with Constraint Handling Rules. In PPDP ’03, pages 79–90,
Uppsala, Sweden, 2003. ACM Press.

20. G. J. Duck, P. J. Stuckey, M. Garćıa de la Banda, and C. Holzbaur. The refined
operational semantics of Constraint Handling Rules. In B. Demoen and V. Lifs-
chitz, editors, ICLP ’04, volume 3132 of LNCS, pages 90–104, Saint-Malo, France,
Sept. 2004. Springer.

21. F. Fages, C. M. de Oliveira Rodrigues, and T. Martinez. Modular CHR with ask
and tell. In Schrijvers et al. [56], pages 95–110.

22. M. Fink, H. Tompits, and S. Woltran, editors. WLP ’06: Proc. 20th Workshop
on Logic Programming, T.U.Wien, Austria, INFSYS Research report 1843-06-02,
Vienna, Austria, Feb. 2006.

23. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17–37, 1982.

24. Free Software Foundation. GCC, the GNU Compiler Collection. http://gcc.gnu.
org/, 2008.

25. E. Friedman-Hill et al. Jess, the rule engine for the Java platform. http://www.

jessrules.com/, 2008.
26. T. Frühwirth. Theory and practice of Constraint Handling Rules. J. Logic Pro-

gramming, Special Issue on Constraint Logic Programming, 37(1–3):95–138, 1998.
27. T. Frühwirth. Constraint Handling Rules. Cambridge University Press, June 2009.

To appear.
28. T. Frühwirth and M. Meister, editors. CHR ’04: 1st Workshop on Constraint

Handling Rules: Selected Contributions, Ulm, Germany, May 2004.
29. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.
30. S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined style. In Intl. Conf. on

Functional Programming, pages 18–27, 1999.
31. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.

The Java Series. Prentice Hall, third edition, 2005.
32. C. Holzbaur. Metastructures versus attributed variables in the context of extensible

unification. In Proc. 4th Intl. Symposium on Programming Language Implementa-
tion and Logic Programming, pages 260–268. Springer, 1992.

33. C. Holzbaur and T. Frühwirth. Compiling Constraint Handling Rules into Prolog
with attributed variables. In G. Nadathur, editor, PPDP ’99, volume 1702 of
LNCS, pages 117–133, Paris, France, 1999. Springer.

34. C. Holzbaur and T. Frühwirth. A Prolog Constraint Handling Rules compiler and
runtime system. In Holzbaur and Frühwirth [35], pages 369–388.

35. C. Holzbaur and T. Frühwirth, editors. Special Issue on Constraint Handling Rules,
volume 14(4) of Journal of Applied Artificial Intelligence. Taylor & Francis, Apr.
2000.

36. C. Holzbaur, M. Garćıa de la Banda, P. J. Stuckey, and G. J. Duck. Optimizing
compilation of Constraint Handling Rules in HAL. In Abdennadher et al. [3], pages
503–531.

37. JBoss. Drools. http://labs.jboss.com/drools/, 2008.
38. B. W. Kernighan, D. Ritchie, and D. M. Ritchie. C Programming Language (2nd

Edition). Prentice Hall PTR, March 1988.
39. E. Krämer. A generic search engine for a Java Constraint Kit. Diplomarbeit,

Institute of Computer Science, LMU, Munich, Germany, Jan. 2001.
40. E. S. Lam and M. Sulzmann. A concurrent Constraint Handling Rules seman-

tics and its implementation with software transactional memory. In DAMP ’07:
Proc. ACM SIGPLAN Workshop on Declarative Aspects of Multicore Program-
ming, Nice, France, Jan. 2007. ACM Press.

41. T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Prentice
Hall, 2 edition, 1999.

42. L. Menezes, J. Vitorino, and M. Aurelio. A high performance CHR∨ execution
engine. In Schrijvers and Frühwirth [55], pages 35–45.

43. D. P. Miranker, D. A. Brant, B. Lofaso, and D. Gadbois. On the performance
of lazy matching in production systems. In Proc. 8th Intl. Conf. on Artificial
Intelligence, pages 685–692, 1990.

44. F. Pachet. On the embeddability of production rules in object-oriented languages.
Journal of Object-Oriented Programming, 8(4):19–24, 1995.

45. F. Pachet, editor. EOOPS’94: Proc. OOPSLA’94 Workshop on Embedded Object-
Oriented Production Systems, Portland, Oregon, USA, Oct. 2004.

46. M. Probst. Proper tail recursion in C. Diplomarbeit, Institute of Computer Lan-
guages, Vienna University of Technology, 2001.

47. J. Robin and J. Vitorino. ORCAS: Towards a CHR-based model-driven framework
of reusable reasoning components. In Fink et al. [22], pages 192–199.

48. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Foundations of Artificial Intelligence. Elsevier, 2006.

49. V. Santos Costa et al. YAP Prolog. http://www.ncc.up.pt/yap/.
50. M. Schmauß. An implementation of CHR in Java. Diplomarbeit, Institute of

Computer Science, LMU, Munich, Germany, Nov. 1999.
51. T. Schrijvers. Analyses, optimizations and extensions of Constraint Handling

Rules. PhD thesis, K.U.Leuven, Belgium, June 2005.
52. T. Schrijvers and B. Demoen. Antimonotony-based delay avoidance for CHR.

Technical Report CW 385, K.U.Leuven, Dept. Comp. Sc., Leuven, Belgium, July
2004.

53. T. Schrijvers and B. Demoen. The K.U.Leuven CHR system: Implementation and
application. In Frühwirth and Meister [28], pages 8–12.

54. T. Schrijvers, B. Demoen, G. J. Duck, P. J. Stuckey, and T. Frühwirth. Automatic
implication checking for CHR constraints. In RULE ’05: 6th Intl. Workshop on
Rule-Based Programming, volume 147(1) of ENTCS, pages 93–111, Nara, Japan,
Jan. 2006. Elsevier.

55. T. Schrijvers and T. Frühwirth, editors. CHR ’05: Proc. 2nd Workshop on Con-
straint Handling Rules, Sitges, Spain, 2005. K.U.Leuven, Dept. Comp. Sc., Tech-
nical report CW 421.

56. T. Schrijvers, F. Raiser, and T. Frühwirth, editors. CHR ’08: Proc. 5th Workshop
on Constraint Handling Rules, Hagenberg, Austria, July 2008. RISC Report Series
08-10, University of Linz, Austria.

57. T. Schrijvers, P. J. Stuckey, and G. J. Duck. Abstract interpretation for Constraint
Handling Rules. In P. Barahona and A. Felty, editors, PPDP ’05, pages 218–229,
Lisbon, Portugal, July 2005. ACM Press.

58. C. Schulte and P. J. Stuckey. Efficient constraint propagation engines. Under con-
sideration for ACM Transactions on Programming Languages and Systems, 2008.

59. J. Sneyers, T. Schrijvers, and B. Demoen. The computational power and complex-
ity of Constraint Handling Rules. In Schrijvers and Frühwirth [55], pages 3–17.

60. J. Sneyers, T. Schrijvers, and B. Demoen. Dijkstra’s algorithm with Fibonacci
heaps: An executable description in CHR. In Fink et al. [22], pages 182–191.

61. J. Sneyers, T. Schrijvers, and B. Demoen. Memory reuse for CHR. In S. Etalle and
M. Truszczynski, editors, ICLP ’06, volume 4079 of LNCS, pages 72–86, Seattle,
Washington, Aug. 2006. Springer.

62. J. Sneyers, T. Schrijvers, and B. Demoen. Guard reasoning in the refined oper-
ational semantics of CHR. volume 5388 of LNAI, pages 213–244. Springer, Dec.
2008.

63. J. Sneyers, P. Van Weert, T. Schrijvers, and L. De Koninck. As time goes by:
Constraint Handling Rules – A survey of CHR research between 1998 and 2007.
Submitted to Journal of Theory and Practice of Logic Programming, 2009.

64. M. Stahl. STMCHR. Available at the CHR Homepage [1], 2007.
65. P. J. Stuckey and M. Sulzmann. A theory of overloading. ACM TOPLAS,

27(6):1216–1269, 2005.
66. P. J. Stuckey, M. Sulzmann, and J. Wazny. The Chameleon system. In Frühwirth

and Meister [28], pages 13–32.
67. Sun Microsystems, Inc. The Collections framework: API’s and developer guides.

http://java.sun.com/javase/6/docs/technotes/guides/collections/, 2008.
68. Sun Microsystems, Inc. Java SE HotSpot at a glance. http://java.sun.com/

javase/technologies/hotspot/, 2008.
69. Sun Microsystems, Inc. JavaBeans. http://java.sun.com/products/javabeans/,

2008.
70. P. Van Weert. Compiling Constraint Handling Rules to Java: A reconstruction.

Technical Report CW 521, K.U.Leuven, Dept. Comp. Sc., Leuven, Belgium, Aug.
2008.

71. P. Van Weert. The K.U.Leuven JCHR system. http://www.cs.kuleuven.be/

~petervw/JCHR/, 2008.
72. P. Van Weert. K.U.Leuven JCHR User’s Manual, 2008. Available at [71].
73. P. Van Weert. Optimization of CHR propagation rules. In M. Garćıa de la Banda

and E. Pontelli, editors, ICLP ’08, volume 5366 of LNCS, pages 485–500, Udine,
Italy, Dec. 2008. Springer.

74. P. Van Weert. A tale of histories. In Schrijvers et al. [56], pages 79–94.
75. P. Van Weert, T. Schrijvers, and B. Demoen. K.U.Leuven JCHR: a user-friendly,

flexible and efficient CHR system for Java. In Schrijvers and Frühwirth [55], pages
47–62.

76. J. Vitorino and M. Aurelio. Chord. http://chord.sourceforge.net/, 2005.
77. J. Wielemaker. An overview of the swi-prolog programming environment. In Proc.

13th Intl. Workshop on Logic Programming Environments, Mumbai, India, 2003.
System’s home page at http://www.swi-prolog.org/.

78. A. Wolf. Adaptive constraint handling with CHR in Java. In T. Walsh, editor, CP
’01, volume 2239 of LNCS, pages 256–270, Paphos, Cyprus, 2001. Springer.

79. A. Wolf. Intelligent search strategies based on adaptive Constraint Handling Rules.
In Abdennadher et al. [3], pages 567–594.

80. A. Wolf, T. Gruenhagen, and U. Geske. On incremental adaptation of CHR deriva-
tions. In Holzbaur and Frühwirth [35], pages 389–416.

81. P. Wuille. CCHR: The fastest CHR implementation, in C. http://www.cs.

kuleuven.be/~pieterw/CCHR/, 2008.
82. P. Wuille, T. Schrijvers, and B. Demoen. CCHR: the fastest CHR implementation,

in C. In Djelloul et al. [15], pages 123–137.

A A ram Simulator Written in CHR

Fig. 9 contains a CHR handler that implements a simulator for a standard RAM
machine. The memory of the simulated RAM machine is represented as mem

constraints, the instructions of the program it is executing as prog constraints.
The current program counter is maintained as a pc constraint. Different CHR
rule declares what has to be done for each instruction type. Example 10 in
Section 5.2 discusses the rule for an add instruction in more detail.

Four extra rules are added to the original program, as it first appeared in [59].
The first three rules ensure that illegal combinations of constraints cannot occur;
the last rule safeguards against invalid program counters. These four extra rules
allow static program analysis to defer certain program properties essential for
an efficient compilation of the program, as shown in Section 5.3.

// enforce functional dependencies:

mem(A,_), mem(A,_) <=> fail.

prog(L,_,_,_), prog(L,_,_,_) <=> fail.

pc(_), pc(_) <=> fail.

prog(L,add,B,A), mem(B,Y) \ mem(A,X), pc(L) <=> mem(A,X+Y), pc(L+1).

prog(L,sub,B,A), mem(B,Y) \ mem(A,X), pc(L) <=> mem(A,X-Y), pc(L+1).

prog(L,mult,B,A), mem(B,Y) \ mem(A,X), pc(L) <=> mem(A,X*Y), pc(L+1).

prog(L,div,B,A), mem(B,Y) \ mem(A,X), pc(L) <=> mem(A,X/Y), pc(L+1).

prog(L,move,B,A), mem(B,X) \ mem(A,_), pc(L) <=> mem(A,X), pc(L+1).

prog(L,i_mov,B,A), mem(B,C), mem(C,X) \ mem(A,_), pc(L) <=> mem(A,X), pc(L+1).
prog(L,mov_i,B,A), mem(B,X), mem(A,C) \ mem(C,_), pc(L) <=> mem(C,X), pc(L+1).

prog(L,const,B,A) \ mem(A,_), pc(L) <=> mem(A,B), pc(L+1).

prog(L,init,A,_), mem(A,B) \ pc(L) <=> mem(B,0), pc(L+1).

prog(L,jump,_,A) \ pc(L) <=> pc(A).

prog(L,cjmp,R,A), mem(R,X) \ pc(L) <=> X == 0 | pc(A).

prog(L,cjmp,R,_), mem(R,X) \ pc(L) <=> X != 0 | pc(L+1).

prog(L,halt,_,_) \ pc(L) <=> true.

// Safeguard against invalid program counter:

pc(_) <=> fail.

Fig. 9. A ram machine simulator written in CHR.

