
A Proposal for a Next Generation of CHR

Peter Van Weert, Leslie De Koninck, and Jon Sneyers

Department of Computer Science, K.U.Leuven, Belgium
FirstName.LastName @cs.kuleuven.be

Abstract. This is a proposal for a next generation of CHR called CHR2.
It combines the best features of language extensions proposed in earlier
work and offers a solution to their main drawbacks. We introduce several
novel language features, designed to allow the flexible, high-level spec-
ification of readable, efficient programs. Moreover, CHR2 is backwards
compatible, such that existing programs can make use of CHR2’s new
features, but do not need to be changed.

1 Introduction

Constraint Handling Rules (CHR) [1,2,3] is a high-level programming language
extension based on guarded, multi-headed, committed-choice multiset rewrite
rules. Originally designed for the declarative specification of constraint-based
systems, CHR is increasingly used in a wide range of general purpose appli-
cations [2]. Several very efficient implementations of CHR exist, embedded in
host-languages such as Prolog, Haskell, and Java.

In recent years, several extensions for CHR have been proposed that add
powerful language features. Notable examples are negation as absence in CHR¬
[4], and user-definable rule priorities in CHRrp [5,6]. In both cases, the added ex-
pressiveness eliminates the need for ad-hoc low-level programming idioms, com-
monly found in current programs. This leads to cleaner, more concise programs.
We are therefore convinced that these language extensions are an important step
towards a credible, practical CHR-based programming language.

Nevertheless, current state-of-the-art CHR implementations have not yet in-
corporated any of these features. This is partly because the experience gained
with prototype implementations has shown certain issues with both language
extensions [4,6]. In this exploratory paper, we provide a possible basis for CHR2,
a next generation of CHR. The goals for CHR2 are:

– to build further on recent advances towards flexible, useful CHR systems
– to combine the advantages of negation as absence and rule priorities, while

avoiding their main disadvantages
– to thereby bridge the gap between CHR and production rule systems
– to remain backwards compatible with existing CHR systems where possible

Aside from integrating and further improving earlier proposals, we also introduce
several novel language features, such as priority constraints and cardinality an-
notations. Together, they constitute a powerful, elegant programming language,
designed to be the basis for future, more practical CHR systems.

1.1 Constraint Handling Rules

A constraint c(t1, . . . , tn) is an atom with all ti’s host language values (e.g. Her-
brand terms in Prolog). There are two types of constraints: built-in constraints,
solved by the underlying host language, and user-defined CHR constraints.

There are three types of Constraint Handling Rules: simplification rules,
propagation rules and simpagation rules. They have the following form:

Simplification r @ Hr ⇐⇒ G | B
Propagation r @ Hk =⇒ G | B
Simpagation r @ Hk \ Hr ⇐⇒ G | B

where r is a unique name, the head consists of non-empty sequences of CHR
constraints Hk and Hr, the guard G is an optional conjunction of built-in con-
straints, and the body B is a conjunction of CHR and built-in constraints.

Operationally, a multiset of CHR constraints called the constraint store is
kept. A rule is applicable if the store contains constraints matching its head,
and its guard is satisfied. If a rule is fired (applied), constraints that matched
a sequence Hr are removed from the store, and the constraints in the body are
added. This high-level semantics is specified formally by the so-called theoretical

operational semantics (ωt) of CHR. The refined operational semantics (ωr) [7]
is a more low-level description of how most current CHR implementations work.
It is considerably more deterministic than ωt. It establishes that bodies are
executed left-to-right, and treats CHR constraints as procedure calls, where each
newly added active constraint exhaustively searches for possible matching rules
in a top-to-bottom order. A detailed description is found in [7].

For more complete, gentler introductions of CHR, its properties and its op-
erational semantics, we refer e.g. to [1,2,3].

1.2 CHR with Negation as Absence

In [4], an extension of CHR with negation as absence called CHR¬ is introduced.
In CHR¬, the left-hand side of a rule can contain so-called negated heads (pre-
ceded by ‘\\’), which test for the absence of constraints. CHR¬ rules also react to
constraint removal. Negation as absence adds a nice symmetry to the language.
Unfortunately, [4] showed that the combination of negation with the refined
semantics’ sequential, left-to-right processing of constraints, is problematic.

Example 1. The following rules could be part of a banking application. The first
rule creates an account for each client that has none; the second handles deposits.

client(X) \\ account(X,_) ==> account(X,0).
deposit(X,Amount), account(X,B) <=> account(X,B + Amount).

The deposit/2 operation should be atomic. However, in the semantics of [4], there
exists a state in which the old account/2 constraint (i.e. before the deposit) is
removed, but the new account/2 constraint (the one after the deposit) is not yet
added to the store. In CHR¬, the (temporary) removal of an account/2 constraint
thus causes the first rule to fire if the client has no other accounts.

In general, such inconsistent, intermediate states are unavoidable when ex-
tending the refined operational semantics. We refer to [4,8] for more examples.

1.3 CHR with Rule Priorities

CHRrp, CHR with rule priorities, is introduced in [5,6] to deal with the lack of
high-level execution control in CHR. Today, many CHR programs rely on the
ωr semantics for correctness or efficiency. This means that the desired execution
strategy of these programs is encoded in the program logic. CHRrp offers a clearer
separation of logic and control.

In CHRrp, every rule is annotated with a user-defined priority, a numeric
expression that may depend on arguments of the constraints matching the rule’s
heads. These then imply a (total) order on applicable rule instances that must be
respected when executing the program. Explicitly specifying numeric priorities
for each rule often is impractical. This is addressed in Section 2.3.

In order to get a sensible operational semantics, CHRrp rules are executed
atomically. That is: all constraints in the body are resolved before the next appli-
cable rule instance is searched for. However, while the atomic (batch) execution
mechanism of CHRrp is often desirable, there are cases where incremental execu-
tion as in the ωr semantics of CHR is more suitable. A first common case is when
CHR interacts with host language statements that are not pure constraints.

Example 2. Consider the following CHR(Prolog) rule:

fact(N,F) <=> N1 is N-1, fact(N1,F1), F is F1 * N.

If this rule’s body is evaluated atomically, the ‘F is F1 * N’ Prolog statement
will raise an error because F1 will still be unbound.

Other obvious examples of host language statements that have to be executed
in order are those that produce side effects. Moreover, for certain (non-confluent)
programs, the order in which CHR constraints are evaluated matters as well. A
good example is the union-find algorithm [9], where the order of union and
find operations clearly determines the results returned by the find operations.
The need for ordering constraints that represent operations or actions, which
commonly occurs in general-purpose programs, was also recognized e.g. in [10].

The operational semantics of CHRrp does not readily allow expressing left-
to-right execution. Instead, tedious auxiliary rules and constraints have to be
used. We refer to [6] for several worked-out examples.

2 Syntax

2.1 Left-hand Side

In CHR syntax, the different types of conditions that determine a rule’s ap-
plicability — kept occurrences, removed occurrences, and guard conjuncts —

are grouped in separate segments. Consequently, conditions that logically be-
long together must often be written separately. For larger, multi-headed rules,
this hampers both usability and readability, as these restrictions mostly prohibit
them from having an intuitive left-to-right reading.

Example 3. Consider the following rule from the RAM program of [11]:

prog(L,cjump,R,_), mem(R,X) \ pc(L) <=> X �= 0 | pc(L+1).

The mem/2 occurrence is written to the right of the prog/4 occurrence because
the latter logically determines the memory cell’s address R. The pc/1 occurrence
similarly determines the instruction label L required for finding matching prog/4
constraints. However, because the pc/1 occurrence is removed, it must be written
to the right of the backslash. Note moreover that the guard on X is separated
from the variable’s occurrence in the head.

The negated heads of CHR¬ only further deteriorate the situation: the guard
becomes further separated from the positive part of the head.

We therefore propose a more flexible syntax for CHR2. All applicability con-
ditions, including the conjuncts of the guard, are written on the left-hand side
of the rule. Conjuncts have one of the following forms:

1. +c or -c, with c a CHR constraint, indicating kept and removed heads. Kept
heads are preceded by ‘+’, removed heads by ‘-’;

2. b, with b a built-in constraint, indicating a guard ;
3. ∼(N), with N a conjunction of CHR and built-in constraints, indicating

negated heads and their guards. For single-conjunct N , the parentheses may
be omitted.

The arrow symbol ‘=>’ is used to separate a rule’s left- and right-hand side.

Example 4. The rule from Example 3 can now be written as follows:

-pc(L), +prog(L,cjump,R,_), +mem(R,X), X �= 0 => pc(L+1).

Example 5. The following excerpt illustrates the use of negation as absence:

-get_min(Min), ∼c(X) => Min = -1.
-get_min(Min), +c(X), ∼(c(Y), Y < X) => Min = X.

Rules without left-hand side are supported. Such rules are useful for spec-
ifying the constraints that constitute (part of) the initial constraint store. For
rules with trivial body true, the ‘=> true’ may be omitted.

Example 6. The following two rules illustrate idiomatic use of this syntax:

=> min(0).
+min(X), -min(Y), X ≤ Y.

The new CHR2 syntax can readily be used alongside traditional CHR syntax.
To ease the transition, ‘==>’ implies a default ‘+’ for all occurrences, and similar
defaults apply for simplification and simpagation rules.

Constraint identifiers In most operational semantics and implementations of
CHR, each constraint is assigned a unique identifier. We propose the programmer
can access these identifiers explicitly, be it as an abstract data type.

Example 7. In the following rule, we retrieve the identifiers of the two heads and
impose that the first one is smaller than the second:

idempotence @ +leq(X,Y) # K, -leq(X,Y) # R, K < R.

This rule guarantees that, if duplicate leq/2 constraints are found, the more
recent instance is always removed, resulting in better termination behavior.

Other supported operations include kill(id), which removes a constraint
from the constraint store, and alive(id), to test whether the constraint has
been removed or not. Having access to identifiers facilitates source-to-source
transformations for language extensions. Example transformations that would
have benefited greatly from explicit identifiers include [8] and [5].

2.2 Right-hand Side

In most current systems, constraints in the goal and rule bodies are evaluated
sequentially, left-to-right, as specified formally in the refined operational seman-
tics. In CHRrp, however, all constraint conjunctions are evaluated in batch [6].
In Sections 1.2–1.3, we clearly argued why neither approach is optimal. While
batch evaluation is often preferred after adding negation or priorities, CHR’s
conventional sequential execution is imperative for a seamless interaction with
the host language. Our solution is thus to support both types of conjunctions:
batch conjunction, separated by ‘&’, and sequential conjunction, separated by ‘,’.
Note that this supports backwards compatibility with existing CHR programs.

2.3 Priority Constraints

In CHRrp, the priority assigned to each rule is an expression that evaluates
to an integer number, possibly derived from the arguments of the constraints
matched by the rule. Firstly, these priority numbers imply a total preorder over
applicable rule instances, whereas the programmer mostly wants to enforce only
a partial preorder. Secondly, determining a suited priority number for a rule
requires global knowledge of numbers already assigned to other rules. Adding
new priority numbers may require renumbering. For larger programs this rapidly
becomes problematic.

Therefore, we propose that rules are no longer assigned numbers explicitly.
Instead, each rule is assigned a rule descriptor, an arbitrary term that may
contain variables occurring in the remainder of the head. This is an extension
of the rule names traditionally used in CHR systems (note though that rule
descriptors no longer have to be unique). Next, priority constraints are specified
over these descriptors. Supported constraints are =, <, ≤, > and ≥, where
‘larger’ means ‘higher priority’. The operands of priority constraints are rule

patterns, or sets thereof, that are matched with rule descriptors either statically
or dynamically. A program’s priority constraints thus imply a partial preorder
on rule instances. We introduce priority constraints by example.

Example 8. The following declaration could be used for the leq program:

priority transitivity < {reflexivity, idempotence, antisymmetry}.

It declares that the transitivity rule has lower priority than the other rules.
For leq, this is required for optimal performance and termination behavior.

The set of rule descriptors matching the first operand is always implicitly
subtracted from the set matching the second operand. The above declaration is
thus equivalent to the more convenient shorthand: ‘priority transitivity < _.’
Obviously, specifying multiple ‘... < _’ or ‘... > _’ constraints in a single CHR2
program would be inconsistent. Two special priorities, lowest and highest, can
be used instead; for instance: ‘priority transitivity = lowest.’

Example 9. In [6], the following CHRrp program was introduced:

1 :: source(V) ==> dist(V,0).
1 :: dist(V,D1) \ dist(V,D2) <=> D1 ≤ D2 | true.

D+2 :: dist(V,D), edge(V,C,U) ==> dist(U,D+C).

It implements Dijkstra’s shortest path algorithm using only three rules (recall
that in CHRrp a lower number indicates a higher priority). The D+2 priority,
however, is somewhat artificial. In CHR2, this program becomes:

init @ +source(V) => dist(V,0).
keep_shortest @ +dist(V,D1), -dist(V,D2), D1 ≤ D2.
label(D) @ +dist(V,D), +edge(V,C,U) => dist(U,D+C).

priority keep_shortest > label(_), label(X) > label(Y) if X < Y.

From CHR2 ’s priority constraints the intended priorities are readily apparent.
This example further illustrates the declaration of dynamic priorities by includ-
ing head arguments in the rule descriptors, and the ‘if’ construct to declare
conditional priority constraints. Added advantage is that if, for instance, the
init rule would require a priority lower than all label(_) instances, this could
be declared in CHR2 as: ‘priority label(_) > init’. Expressing this in CHRrp

is impossible, as no upper bound on the distance D is known a priori.

Example 10. For backwards compatibility, or for instance for smaller programs,
integer numbers can still be used to specify priorities. It then suffices to add the
following declaration: ‘priority X > Y if integer(X), integer(Y), X > Y.’

3 Operational Semantics

In Section 3.2, we define a high-level, abstract operational semantics for CHR2,
denoted by ω2

t . It remains close to the conventional ωt semantics of regular CHR

[7], but incorporates batch processing, priorities, and negation as absence. Next,
in Section 3.3, we specify a more deterministic refined operational semantics ω2

r

for CHR2, designed to describe more closely the intended runtime behavior. In
both cases, we will discuss the relation with relevant existing operational seman-
tics [6,7]. First, we define a more convenient normal form for CHR2 programs.

3.1 Rule Normal Form

Each CHR2 rule can be reduced to the following normal form:

r :: p @ H,G, ∼(N1, G1), . . . , ∼(Nm, Gm) ⇒ B1, . . . , Bn (1)

with H and Ni conjunctions of CHR constraints, and G and Gi conjunctions of
built-in constraints. In the normal of rules with an empty positive head, H =
init, with init/0 a special CHR constraint. For ease of presentation, we assume
that the body is a (non-empty) sequential conjunction of batch conjunctions
Bj . A straightforward source-to-source transformation is used otherwise. All
constraint removals are made explicit as conjuncts of B1. We further assume
that the rule descriptor p, which determines the rule’s priority, depends on at
most one conjunct of H; see [6] for a transformation to deal with the general case.
Because rule descriptors are not unique, each rule in normal form is assigned a
unique rule identifier r implicitly (required for the propagation history).

3.2 Abstract Operational Semantics

As conventional in CHR, the ω2
t semantics is defined as a state transition system.

Definition 1 (Identified constraints). An identified CHR constraint c#i is

a CHR constraint c annotated with a unique identifier i. We further introduce

the function chr(c#i) = c, and extend it to sequences in the obvious manner.

Definition 2 (State). In ω2
t , a state is a tuple �G, S, B, T�n, with the CHR

constraint store S, the built-in constraint store B, the propagation history T,

and the next free identifier n defined as usual (see for instance [2,4,6,7]). The

goal G of an ω2
t state is defined as a sequence of elements of form G@p, with G

a sequence of batch conjunctions, and p a ground rule descriptor that determines

the priority at which that part of the goal has to evaluated.

Given an initial goal G, i.e. a sequence of batches of constraints, the initial
state is �[G� @ lowest], ∅, true, ∅�1. In G�, the first batch of G is extended with
init (see Section 3.1). Table 1 shows the transitions of the ω2

t semantics.

Definition 3 (Applicability condition). Given constraint stores S and B, a

rule instance (r, I) is applicable, denoted applicable((r, I), S, B), iff a matching

substitution θ exists for which apply((r, I), S, B, θ) is defined. The latter partial

function is defined as apply((r, I), B, S, θ) = B @ p iff I ⊆ S and, renamed apart,

the rule with identifier r is of normal form (1), such that chr(I) = θH and

D |= B → ∃̄B
�
θ(G)∧

�m
i=1

�
∀X � (S \ I) : ¬∃η : chr(X) = (ηθ)(Ni)∧ (ηθ)(Gi)

��

where D is the built-in constraint domain and η are matching substitutions.

1. Batch �[[G|Gs]@p|G], S, B, T�n
ω2

t�P �[Gs@p|G], S�, B�
, T��n� where �S�, B�

, n
�� =

batch(G, S, B, n), and T� = {(r, I) ∈ T | applicable((r, I), S�, B�)}. This pro-
cesses the next batch of body conjuncts: CHR constraints are added or re-
moved, built-in constraints are solved. This transition applies only if no Apply
transition can fire a rule instance of priority p

� with p
� � p.

2. Pop �[� @ p|G], S, B, T�n
ω2

t�P �G, S, B, T�n.

3. Apply �G, S, B, T�n
ω2

t�P �[B @ p | G], S, θ ∧ B, T � {(r, I)}�n with θ a matching
substitution for which apply((r, I), S, B, θ) = B @ p with p maximal, that is
¬∃r�, I �, θ� : apply((r�, I �), S, B, θ

�) = B
� @ p

� with p
� � p. An Apply transition

must be followed by a Batch or a Pop transition (to ensure the timely pro-
cessing of the first batch of the body). In other words: an Apply transition
cannot follow another Apply transition.

Table 1. Transitions of ω2
t

The batch function, finally, is recursively defined as follows:

• batch(∅, S, B, n) = �S, B, n�
• batch(b & G, S, B, n) = batch(G, S, b ∧ B, n) if b is a built-in constraint
• batch(c&G, S, B, n) = batch(G, {c#n}∪S, B, n+1) if c is a CHR constraint
• batch(kill(i)&G, S, B, n) = batch(G, S�, B, n), with S� = S\{c#i} if ∃c#i ∈

S, and S� = S otherwise

Discussion The ω2
t semantics is completely compatible with existing semantics.

For regular CHR programs, ω2
t reduces to ωt, and for CHRrp programs (where all

conjunctions are batch conjunctions), ω2
t reduces to the ωp semantics of [6]. The

correspondence theorems of [6, Section 3.3.3] can easily be extended to programs
that combine batch and sequential conjunction.

3.3 Refined Operational Semantics

A central concept in any refined operational semantics for CHR is the active

constraint [7]. As in the ω¬r semantics of [4], both added and killed constraints
can be active. An active constraint traverses all its occurrences (either positive
or negative), searching for applicable rule instances. Of course, the program’s
priority constraints must be respected. For this purpose, as in the ωrp semantics
of [6], priority queues are used.

An ω2
r state is of form �A, Q, S, B, T�n. The goal G of ω2

t states is replaced by
an activation stack A, and a stack of priority queues Q. Each priority queue con-
tains newly added or killed constraints that still have to be activated. Each item
in a queue is annotated with a ground rule descriptor. The find min operation
returns the priority queue item with the highest priority rule descriptor.

The transitions of ω2
r are given in Table 2. Given a goal G, the initial state

is �[G� @ lowest], [∅], ∅, true, ∅�1, where G� is obtained by adding init to the
first batch conjunct of G.

1. Activate �A, [Q|Q], S, B, T�n
ω2

r�P �[c#i : 1 @ p|A], [Q \ {c#i @ p}|Q], S, B, T�n
if A = [G @ p0|] with G a (possibly empty) list, and find min(Q) = ±c#i @ p

with ¬(p ≺ p0).

2. Batch �[[G|Gs] @ p0|A], [Q|Q], S, B, T�n
ω2

r�P �[Gs @ p0|A], [Q�|Q], S�, B�
, T��n�

where �Q�
, S�, B, n

�� = batch(G, Q, S, B, n), and T� = {(r, I) ∈ T |
applicable((r, I), S�, B�)}. This processes the next batch of body conjuncts: CHR
constraints are added or removed, built-in constraints are solved, and the nec-
essary constraints are scheduled. This transition only applies if the Activate
transition does not apply.

3. Pop �[� @ p0|A], [Q0, Q1|Q], S, B, T�n
ω2

r�P �A, [Q0 ∪Q1|Q], S, B, T�n. This tran-
sition only applies if Q0 = ∅ or find min(Q0) = c#i @ p with ¬(p � p0).

4. Apply �A, Q, S, B, T�n
ω2

r�P �[B @ p | A], [∅|Q], S, θ ∧B, T� {I}�n if A = [±c#i :
j@p|], and the j

th positive/negative occurrence of c of priority p occurs in rule
r (in the positive case, c#i occurs in sequence S on the position corresponding
to this occurrence), with I = (r, S) and θ a matching substitution for which
apply(I, S, B, θ) = B @ p.

5. Default �[±c#i : j @ p|A], Q, S, B, T�n
ω2

r�P �[±c#i : j+1 @ p|A], Q, S, B, T�n if
for every rule instance I for which the Apply transition applies in the current
state (if any), the following holds: every derivation D starting in the current
state has an initial sub-derivation D

� in which every state has a priority of at
least p, and which ends in a state in which either I fires or I is not applicable.
We defined the priority of a state �[@p

�|A], Q, S, B, T�n as p
�.

6. Drop �[±c#i : j @ p|A], Q, S, B, T�n
ω2

r�P �A, Q, S, B, T�n if there is no j
th posi-

tive/negative occurrence of c of priority p in P .

Table 2. Transitions of ω2
r

The batch function is extended as follows:

• batch(∅, Q, S, B, n) = �Q, S, B, n�
• batch(b & G, Q, S, B, n) = batch(G, Q� ∪Q, S, b ∧ B, n)

where b is a built-in constraint and Q� is defined as follows:

Q� =
�
c#i @ p | c#i ∈ S and c has an occurrence of priority p

�

where the set of reactivated constraints S ⊆ S satisfies the following bounds:
min: ∀r ∈ P,∀I ⊆ S : (¬applicable((r, I), S, B)∧applicable((r, I), S, b∧B)) →

(S ∩ I �= ∅)

max: ∀c ∈ S : vars(c) �⊂ fixed(B). Furthermore, if D |= B → b then S = ∅.
• batch(c & G, Q, S, B, n) = batch(G, Q� ∪Q, {c#n} ∪ S, B, n + 1)

where c is a CHR constraint and Q� defined as follows:

Q� =
�
+c#n @ p | c has a positive occurrence of priority p

�

• batch(kill(i) & G, Q, S, B, n) = batch(G, Q� ∪Q, S \ {c#i}, B, n)
with Q� =

�
−c#n @ p | c has a negative occurrence of priority p

�

Discussion The ω2
r semantics is formulated as shown to ensure backwards com-

patibility with both the (theoretical) priority semantics ωp of CHRrp for CHRrp

programs (i.e. no negation, only batch conjunction) and the refined operational
semantics of CHR for regular CHR programs (i.e. no negation, no priorities, only
sequential conjunction). It based on the refined priority semantics ωrp of CHRrp.
Its constraint activation policy is as follows. After processing a batch (i.e. part
of the initial goal or a rule body), every CHR constraint in the batch and every
CHR constraint affected by a (built-in) constraint in the batch, is activated at
each priority higher than or equal to that of the previously active constraint. If
no rule body consists of more than one batch, the activation policy is consistent
with the priority semantics of CHRrp. Indeed, if after firing a rule instance I,
the next instance to be fired is of a higher priority, then the latter can only
be applicable because of firing I. Furthermore, the semantics only requires the
active constraint to be interrupted by constraints at a (strictly) higher priority
in this case. For programs in which all conjunctions are of the sequential type
and all rule priorities are equal, the activation policy is the same as that of the
ωr semantics of regular CHR.

The Default transition allows any rule instance to be skipped that was
already applicable prior to the (re-)activation of the active constraint (if it has
not already fired, these rule instances are known to fire in some later state,
if they do not become inapplicable before that). While not supported by the
refined operational semantics of CHR, certain implementations do implement
such optimizations to some extent, as indicated in [12]. It further allows certain
optimizations when implementing negation as absence.

4 Annotations

Besides rules, a CHR2 program also contains constraint declarations, as well as
additional annotations stating program properties and invariants. While some
invariants can be derived by automatic program analysis, for instance using the
abstract interpretation framework of [13], this is not the case in general. An-
notations such as those introduced in this section are invaluable as part of a
program’s documentation, and constitute crucial hints for compiler optimiza-
tions. They could also be verified automatically if desired, either when running
the program in some debugging mode, or by static program verification.

4.1 Type and Mode Declarations

Most current CHR systems allow for type and mode declarations of constraint
arguments. However, practice shows that these declarations lack expressiveness.

Example 11. Consider the following declaration: ‘constraint fib(+int, ?int).’
(the syntax is based on that of the K.U.Leuven CHR system). It specifies the first
argument of fib/2 must always be a ground integer value. The second argument
has the default mode, that is: it may be either bound to an integer, or a free
variable. However, this does not reflect the following important property: in the
final constraint store, the second argument of fib/2 constraint will always be
bound (to a computed Fibonacci number in this case).

We therefore introduce temporal modifiers. For the above example, a more
precise declaration is ‘constraint fib(+int, {?int in goal, +int in result}).’
The following temporal modifiers are supported:
– ‘in goal’: in the initial state
– ‘in result’: in the final state
– ‘at R’: in states in which rules whose descriptor match pattern R may be

applicable; that is: all rules of strictly higher priority have been applied
– ‘after R’: after all rules with matching descriptor have fired exhaustively

The earlier introduced priorities highest and lowest can be used as well. The
default modifier is ‘at highest’.

4.2 Constraint Invariants

CHR constraints often obey certain invariants such as set semantics or functional
dependencies. In CHR, it is common practice to enforce these invariants by
adding appropriate rules.

Example 12. An example rule that enforces set semantics for leq/2 constraints
was seen in Example 7. The following rule declares that the fib/2 constraint of
Example 11 has set semantics, and that its first argument functionally determines
the second: +fib(N,M1), -fib(N,M2), ground(M1) => M1 = M2.

Because set semantics is very common, and because explicitly specifying a
rule is cumbersome, we provide syntactic sugar for it. The set declaration en-
sures that whenever two identical constraints are encountered, the most recent
one is automatically removed. For example, the following constraint declaration
enforces set semantics for the leq/2 constraint: ‘constraint leq/2 :: set.’ It is
functionally equivalent to the idempotence rule of Example 7. In general, such
rules would also have to be declared to have the highest priority.

Unavoidably, checking for duplicates involves a runtime overhead. Often,
however, the programmer knows in advance that duplicates will never be added
in the goal or by the program. To state this invariant, the �set is provided.
While not affecting the operational semantics, it serves as valuable program
documentation, and can be exploited by the compiler in a number of ways.

Similar shorthand declarations for functional dependencies are equally valu-
able, but can be expressed as well using the cardinality annotations of Section 4.3.

4.3 Cardinality Annotations

A crucial aspect of CHR compilation is efficiently finding applicable rules. Given
an active constraint, matching partner constraints have to be searched (cf. Sec-
tion 3.3). The order in which partner constraints are matched is called the join

order [14]. Asides from indexing, this order is the single most crucial factor de-
termining the program’s runtime complexity. Statically determining the optimal
join order is hard, as the compiler has only limited knowledge on constraint
cardinalities and guard selectivities (see [14]).

Unlike set semantics and functional dependencies, (asymptotic bounds on)
cardinalities of constraints not readily expressible by means of CHR rules. In
CHR2, we therefore support cardinality annotations. They help the compiler se-
lect proper index structures, and find better join orders. As part of the program’s
documentation, and even if the compiler cannot exploit them, they provide a
synopsis of the constraint store’s structure and its evolution over time.

Basic syntax. General cardinality annotations express properties of the size of
multisets of constraint tuples (partial joins). These properties are again expressed
using constraints. Supported constraints are =, <, ≤, > and ≥. The operands are
arithmetic expressions of numeric constants, cardinality expressions, cardinality
variables, and asymptotic bound expressions.

Cardinalities A cardinality expression is of the form #{LHS} T , where LHS is
an expression with the same syntax as left-hand sides of rules, with the ‘+’ and
‘-’ prefixes omitted, and T is a temporal modifier as defined in Section 4.1. A
cardinality expression denotes the size of the multiset matching LHS , i.e. the
number of applicable instances of a rule with head LHS , at time points given by
T . If no time expression is given, the default is ‘at highest’.

Cardinality variables Cardinality variables such as n, m, or num_cs can be used as
a symbolic placeholder for the cardinality of some set, or for relative comparisons
of asymptotic cardinality bounds.

Asymptotic bounds Supported asymptotic bound expressions include: ‘o(1)’
(constant), ‘o(n)’ (linear), ‘o(n^K)’ (polynomial; K is a real number), ‘o(2^n)’
(exponential). More complex expressions are also possible.

Example 13. Using this syntax, the following cardinality annotation can be for-
mulated: ‘cardinality #{node(_)} = o(n), #{edge(_,_)} = o(n^2).’; or, equiv-
alently: ‘cardinality #{edge(_,_)} = o(#{node(_)}^2).’

The meaning of cardinality constraints containing asymptotic bound expres-
sions is interpreted as follows:

– ‘A = o(X)’: A grows asymptotically as fast as X; A ∈ Θ(X)
– ‘A ≤ o(X)’: A is asymptotically bounded above by X; A ∈ O(X)
– ‘A ≥ o(X)’: A is asymptotically bounded below by X; A ∈ Ω(X)
– ‘A < o(X)’: A is asymptotically dominated by X; A ∈ o(X)
– ‘A > o(X)’: A asymptotically dominates X; A ∈ ω(X)

Average-case information. For many purposes (e.g. join ordering), we are
interested in the average size of a multiset. We express this by wrapping the
expression ‘#{LHS} T ’ in an e/1 term. This means that the expected size of the
multiset is considered, instead of the exact size.

Example 14. In an implementation of a heap data structure which maintains the
minimum of a set, it may be the case that usually there is one min/2 constraint,
but in some exceptional cases (i.e., when the heap is empty) there is no such
constraint. This can be expressed with the following annotation:

cardinality e(#{min(_,_)}) = 0.99

Star notation. The special symbol ‘*’ can be used in argument positions in the
LHS expression. It means that the property holds for every fixed value of that ar-
gument that actually occurs in that argument position. For example, the annota-
tion ‘cardinality #{fib(*,_)} in result = 1’ means that in the final state, the
first argument of c/2 functionally determines the other argument. Multiple stars
can be used; the statement must then hold for every combination of values that
occur in those argument positions. For example, ‘#{c(*,*)} in goal =< 1’
means that c/2 initially has set semantics, while ‘#{c(*,*)} in goal = 1’ is a
much stronger statement, saying that c/2 initially encodes a full cardinal prod-
uct, i.e. the goal ‘c(x,1),c(y,2),c(x,2)’ is invalid because c(y,1) is missing.

Syntactic sugar. The expression ‘LHS T ’ may be used as an abbreviation for
‘#{LHS} T ≥ 1’. As a consequence, if LHS is negation-free, the non-existence
property ‘#{LHS} T = 0’ can be written as ‘∼(LHS) T ’.

Example 15. Consider again the Dijkstra program of Example 9. For that pro-
gram, we can for instance give the following cardinality annotations:

% exactly one source node must be given by the user
cardinality #{source(_)} in goal = 1.
% there should be no dist/2 constraints in the goal
cardinality ∼dist(_,_) in goal.
% it is a simple graph (no parallel edges)
cardinality #{edge(*,*,_)} =< 1.
% we expect a dense graph: if there are n nodes, we have about n^2 edges
cardinality e(#{edge(_,_,_)}) = o(n^2).
% the number of dist/2 constraints corresponds to the number of nodes
cardinality #{dist(_,_)} in result = o(n).
% only one distance per node (rule "keep_shortest" eliminates doubles)
cardinality #{dist(*,_)} after keep_shortest =< 1.

5 Conclusion

In this paper, we laid the foundations of CHR2, a next generation CHR-based
programming language. CHR2 solves several practical issues with the current

state-of-the-art. We incorporated negation as failure and rule priorities, two very
expressive language features, and effectively resolved the disadvantages of earlier
proposals. Several novel features further contribute to the expressiveness and
practical usability of the language.

First, we proposed a more flexible syntax, eliminating syntactical restric-
tions of previous specifications. In particular, we introduced symbolic priority
constraints and showed they are more flexible, and provide a better separation
of logic and control than CHRrp’s numeric priority expressions.

Next, we formally specified an intuitive operational semantics for CHR2,
that effectively combines priorities, negation, and both batch and sequential
evaluation. The result truly combines the best of several worlds, and is moreover
backwards compatible with existing CHR programs.

Lastly, we specified several improved and novel annotations, necessary for the
high-level specification of non-functional program properties. These annotations
are invaluable both as program documentation, and for optimizing compilers to
efficiently execute programs.

The result is a very powerful, yet elegant programming language. We hope
that by combining recent advanced language features into a unifying language,
and by resolving their outstanding issues, these features will (finally) find their
way into existing and future systems.

5.1 Future work

It must be noted that this is essentially an exploratory paper, providing a possible
but promising direction for future CHR systems. While we resolved many issues
of previous proposals, there is still a considerable need for future work. The
design of many of the novel language features proposed in this paper is still in a
preliminary stage. Many of CHR2 ’s features have been implemented successfully
in JCHR 2, a successor of our K.U.Leuven JCHR System [15]. However, more
research and hands-on practical experience is required.

Also, other interesting extensions should certainly be considered as well, in-
cluding nested negation, aggregates [16], probabilities [17], and disjunctions [18]
combined with flexible search strategies [6]. We have restricted CHR2 to a core
language. Rule priorities and negation as absence are offered as well by for in-
stance most production rule systems. Furthermore, they form a good basis for
allowing the formulation of other language extensions by means of local source-
to-source transformations (see for instance [16]): the rule priorities support a
high-level form of execution control, and negation as absence adds the detection
of, and triggering on, the removal of CHR constraints.

Acknowledgements Jon Sneyers and Leslie De Koninck are funded by Ph.D.
grants of the Institute for the Promotion of Innovation through Science and Tech-
nology in Flanders (IWT-Vlaanderen). Peter Van Weert is a Research Assistant
of the fund for Scientific Research - Flanders (Belgium) (F.W.O. - Vlaanderen).

References

1. Frühwirth, T.: Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming 37(1–3) (1998) 95–138

2. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As time goes by: Con-
straint Handling Rules – A survey of CHR research between 1998 and 2007. Theory
and Practice of Logic Programming (2009) To appear.

3. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (August
2009) To appear.

4. Van Weert, P., Sneyers, J., Schrijvers, T., Demoen, B.: Extending CHR with
negation as absence. [19] 125–140

5. De Koninck, L., Schrijvers, T., Demoen, B.: User-definable rule priorities for CHR.
In: 9th ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming, ACM Press (2007) 25–36

6. De Koninck, L.: Execution control for Constraint Handling Rules. PhD thesis,
K.U.Leuven, Belgium (November 2008)

7. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined
operational semantics of Constraint Handling Rules. In: ICLP’04: 20th Intl. Conf.
on Logic Programming. Volume 3132 of LNCS., Springer (2004) 90–104

8. Van Weert, P., Sneyers, J., Schrijvers, T., Demoen, B.: To CHR¬ or not to CHR¬:
Extending CHR with negation as absence. Technical Report CW 446, K.U.Leuven,
Dept. Comp. Sc., Leuven, Belgium (May 2006)

9. Schrijvers, T., Frühwirth, T.: Optimal union-find in Constraint Handling Rules.
Theory and Practice of Logic Programming 6(1–2) (2006) 213–224

10. Lam, E.S., Sulzmann, M.: Towards agent programming in CHR. [19] 17–31
11. Sneyers, J., Schrijvers, T., Demoen, B.: The computational power and complexity

of Constraint Handling Rules. ACM Trans. Program. Lang. Syst. 31(2) (2009)
12. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: Extending arbi-

trary solvers with Constraint Handling Rules. In: PPDP ’03: Proc. 5th Intl. Conf.
Princ. Pract. Declarative Programming, ACM Press (2003) 79–90

13. Schrijvers, T., Stuckey, P.J., Duck, G.J.: Abstract interpretation for Constraint
Handling Rules. In: 7th ACM SIGPLAN Symp. on Principles and Practice of
Declarative Programming, ACM Press (2005) 218–229

14. De Koninck, L., Sneyers, J.: Join ordering for Constraint Handling Rules. In:
Fourth Workshop on Constraint Handling Rules, U.Porto (2007) 107–121

15. Van Weert, P., Schrijvers, T., Demoen, B.: K.U.Leuven JCHR: a user-friendly,
flexible and efficient CHR system for Java. In: CHR ’05: Proc. Second Workshop
on Constraint Handling Rules. (2005) 47–62

16. Van Weert, P., Sneyers, J., Demoen, B.: Aggregates for CHR through program
transformation. In: LOPSTR ’07: 17th Intl. Symp. Logic-Based Program Synthesis
and Transformation, Revised Selected Papers. (2008)

17. Frühwirth, T., Di Pierro, A., Wiklicky, H.: Probabilistic Constraint Handling Rules.
In: WFLP ’02: Proc. 11th Intl. Workshop on Functional and (Constraint) Logic
Programming, Selected Papers. Volume 76 of ENTCS., Elsevier (2002)

18. Abdennadher, S., Schütz, H.: CHR∨, a flexible query language. In: FQAS ’98:
Proc. 3rd Intl. Conf. on Flexible Query Answering Systems. Volume 1495 of LNAI.,
Springer-Verlag (1998) 1–14

19. Schrijvers, T., Frühwirth, T., eds.: CHR’ 06: Proc. Third Workshop on Constraint
Handling Rules, K.U.Leuven, Dept. Comp. Sc., tech. report CW 452 (July 2006)

A Example Derivation

In this section, we give an example derivation under ω2
r. Let there be given the

following rules

1 :: -c.
2 :: -e.
2 :: +a => (c & d & e), e.
3 :: -b.
4 :: -d.

and priority declaration

priority X > Y if X < Y.

i.e. rule 1 has a higher priority than rules 2, 3 and 4 etc. Figure 1 shows how
an initial goal [a & b] is solved. Since there are no built-in constraints, we leave
out the built-in constraint store B from execution states. For compactness, we
also leave out identifiers and the propagation history T. Finally, we note that
the activation stack is always of the form [g1 @ p1, c1 : j1 @ p1, . . . , gn @ lowest]
with gi a goal (sequence) for 1 ≤ i ≤ n. We leave out the priorities of the goals,
because they can be derived from the active constraints that interleave them.

The a and b constraints are scheduled at their respective priorities. Next, the
a constraint is activated at priority 3. It fires a rule whose body is a sequence of
two batches: c&d&e and e. The first batch is processed, and the three constraints
in it are scheduled. Constraint c is activated at priority 1 and is subsequently
removed. Next, e is activated at priority 2, which is also the priority of the rule
instance that created e, i.e. the rule instance involving a. We require that e is
activated here to ensure compatibility with the refined operational semantics.
The same requirement is not imposed on constraints from the last batch of a
rule body to allow for more implementation freedom. No more constraints can be
activated as d can only be activated at priority 4, which is lower than the priority
of still-active constraint a. Therefore, the next batch is processed, scheduling the
second e constraint. Since this is the last batch, we do not need to activate e at
priority 2 (as said before). We continue by looking for a next instance involving
a at priority 2. Then we consecutively activate and simplify e, b and d.

�[[a & b]], [�], ∅�

Batch
ω2

r�P �[�], [{a @ 2, b @ 3}], {a, b}�

Activate
ω2

r�P �[a : 1 @ 2, �], [{b @ 3}], {a, b}�

Apply
ω2

r�P �[[c & d & e, e], a : 1 @ 2, �], [∅, {b @ 3}], {a, b}�

Batch
ω2

r�P �[[e], a : 1 @ 2, �], [{c @ 1, d @ 4, e @ 2}, {b @ 3}], {a, b, c, d, e}�

Activate
ω2

r�P �[c : 1 @ 1, [e], a : 1 @ 2, �], [{d @ 4, e @ 2}, {b @ 3}], {a, b, c, d, e}�

Apply
ω2

r�P �[[kill(c)], c : 1 @ 1, [e], a : 1 @ 2, �], [∅, {d @ 4, e @ 2}, {b @ 3}], {a, b, c, d, e}�

Batch
ω2

r�P �[�, c : 1 @ 1, [e], a : 1 @ 2, �], [∅, {d @ 4, e @ 2}, {b @ 3}], {a, b, d, e}�

Pop
ω2

r�P �[c : 1 @ 1, [e], a : 1 @ 2, �], [{d @ 4, e @ 2}, {b @ 3}], {a, b, d, e}�
Default

Drop

ff
ω2

r�P �[[e], a : 1 @ 2, �], [{d @ 4, e @ 2}, {b @ 3}], {a, b, d, e}�

Activate
ω2

r�P �[e : 1 @ 2, [e], a : 1 @ 2, �], [{d @ 4}, {b @ 3}], {a, b, d, e}�
Apply
Batch

Pop

9
=

;
ω2

r�P �[[e], a : 1 @ 2, �], [{d @ 4}, {b @ 3}], {a, b, d}�

Batch
ω2

r�P �[�, a : 1 @ 2, �], [{d @ 4, e @ 2}, {b @ 3}], {a, b, d, e}�

Pop
ω2

r�P �[a : 1 @ 2, �], [{d @ 4, e @ 2, b @ 3}], {a, b, d, e}�
Default

Drop

ff
ω2

r�P �[�], [{d @ 4, e @ 2, b @ 3}], {a, b, d, e}�

Activate
ω2

r�P �[e : 1 @ 2, �], [{d @ 4, b @ 3}], {a, b, d, e}�
Apply
Batch

Pop

9
=

;
ω2

r�P �[�], [{d @ 4, b @ 3}], {a, b, d}�

Activate
ω2

r�P �[b : 1 @ 3, �], [{d @ 4}], {a, b, d}�
Apply
Batch

Pop

9
=

;
ω2

r�P �[�], [{d @ 4}], {a, d}�

Activate
ω2

r�P �[d : 1 @ 4, �], [∅], {a, d}�
Apply
Batch

Pop

9
=

;
ω2

r�P �[�], [∅], {a}�

Fig. 1. Example derivation under ω2
r

