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Abstract. We provide a comparison between Constraint Handling Rules
and Join-Calculus. Constraint Handling Rules is a concurrent constraint
programming language originally designed for writing constraint solvers.
Join-Calculus is a process calculus designed to provide the programmer
with expressive concurrency abstraction. The semantics of both calculi
is based on the Chemical Abstract Machine. Hence, we expect that both
calculi share some commonalities. Surprisingly, both calculi have thus far
been studied independently, yet we believe that a comparison of these
two independent fields of study is long overdue. This paper establishes a
first bridge between Constraint Handling Rules and Join-Calculus as a
basis for future explorations. Specifically, we provide examples showing
that Join-Calculus can benefit from guarded constraints and constraint
propagation as found in Constraint Handling Rules. We provide a com-
pilation scheme for such an enriched Join-Calculus by applying the con-
straint matching methods of the refined operational Constraint Handling
Rules semantics.

1 Introduction

Constraint Handling Rules (CHR) [8] is a concurrent committed-choice con-
straint logic programming language to describe rewritings among multi-sets of
constraints. Join-Calculus [7] is a process calculus designed to provide expressive
concurrency abstractions in the form of reaction rules, known as Join-Patterns.
Rule triggering depends on the availability and simultaneous consumption of
messages received from various shared channels.

The Chemical Abstract Machine (CHAM) [3] provides the semantic founda-
tions for both calculi. We therefore expect that both calculi share some common
features. Surprisingly, CHR and Join-Calculus have been studied so far in com-
plete isolation. We believe that a comparison between both calculi is long overdue
and should enable a fruitful exchange of ideas and results. To the best of our
knowledge, we are first to conduct such a comparison. In this paper, we make
the following contributions:



Primitives:

Process Name p Variable x
Constant Value v List of a’s a

Join-Calculus Essentials Expressions:

Term t ::= x | v
Process P ::= p (̄t)

Concurrent Processes M ::= P | M , M
Join-Pattern J ::= P | J|J

Join-Body B ::= P | B|B
Reaction Rule D ::= J ⊲ B

Fig. 1. Join-Calculus Essentials

– We illustrate programming in CHR and Join-Calculus by example. It is
known that both calculi are Turing-complete, hence, equally expressive. How-
ever, we show that Join-Calculus can benefit from having CHR style guarded
and propagated constraints (Section 2.3).

– We introduce a new compilation scheme for Join-Patterns, which is essen-
tially based on the CHR rule matching semantics (Section 3). This allows us
to straight-forwardly introduce CHR features like guards, propagation and
shared variables (non-linear patterns) into the Join-Pattern world.

– We investigate the commonalities and differences among the standard compi-
lation schemes for rule matching of CHR rewrite rules and Join-Calculus re-
action rules (Section 3.3).

Section 2 introduces Join-Calculus informally. We assume that the reader
has some basic knowledge of CHR. We conclude and discuss future works in
Section 4.

This paper is a revised and extended version of [14]. Our focus here is on a
more detailed comparison among Join-Calculus and CHR. The issue of how to
integrate CHR into a host language such as Haskell is left for future work.

2 Programming Examples

In this section, we informally introduce Join-Calculus via a simple example: a
printer spooler coordinating a network of printers and clients which submits
print jobs.

2.1 Join Calculus

Join-Calculus [7] is a process calculus that introduces an expressive high-level
concurrency model, aimed at providing a simple and intuitive way to coordinate
concurrent processes via reaction rules known as Join-Patterns.

Figure 1 shows the essential core Join-Calculus language. Processes are typi-
cally modeled as unique names p each with a fixed number of term arguments. A

2



collection of concurrently running processes (denoted M ) is represented by pro-
cesses composed together with a binary operator “,”. This collection is treated as
an unordered set of processes. For instance, the following illustrates a collection
of concurrent processes, representing the state of the printer spooler, denoted S:

S = ready(p1), ready(p2), job(j1), job(j2), job(j3)

A printer Pm which is available for printing will call the process ready(Pm),
while a print job Jn is submitted to the spooler via calling the process job(Jn).
We shall use standard CHR/Prolog notation to distinguish values and variables:
Lowercase references for function/constant names and uppercase references for
variables. Hence the above illustrates a state consisting of two available printers
and three outstanding print jobs. A print job Jn is to be matched with any
available printer Pm, during which printing can be initiated by sending Jn to
Pm (send(Pm,Jn)). This behavior is captured by the reaction rule D, defined as
follows:

D = ready(Pm) | job(Jn) ⊲ send(Pm,Jn)

A reaction rule (J ⊲ B) has two parts. We refer to the left-hand side J

as the Join-Pattern and to the right-hand side B as the Join-Body (in our
simplified setting rule processes). The Join-Pattern J specifies that processes
matching Join-Pattern J can be consumed and replaced by rule processes B .
Note that we will sometimes refer to the reaction rules as Join-Patterns as
well if there is no ambiguity doing so. A set of reaction rules can be applied
to a collection of concurrent processes. This is defined by two forms of transi-
tion steps, namely structural steps (R ⊢ M ) ⇋ (R ⊢ M ′) and reduction steps
(R ⊢ M ) −→ (R ⊢ M ′) where R is the set of reaction rules and M , M ′ are
collections of concurrent processes. This exploits the analogy that concurrent
processes are a “chemical soup” of atoms and molecules, while reaction rules de-
fine chemical reactions in this chemical soup. Structural steps heat/cool atoms
to and from molecules (switching to-and-fro ’,’ and ’|’), while reduction steps
apply reaction rules to the matching molecules. The following shows a possible
sequence of structural/reduction steps which results from applying the printer
spooler rule D on the spooler state S:

D = ready(Pm) | job(Jn) ⊲ send(Pm,Jn)

({D} ⊢ ready(p1) , ready(p2) , job(j1) , job(j2) , job(j3))
⇋ ({D} ⊢ ready(p2) , job(j2) , job(j3) , ready(p1) | job(j1))

−→ ({D} ⊢ ready(p2) , job(j2) , job(j3) , send(p1,j1))
⇋ ({D} ⊢ job(j3) , send(p1,j1) , ready(p2) | job(j2))

−→ ({D} ⊢ job(j3) , send(p1,j1) , send(p2,j2))

When concurrent processes J ′ matches a reaction rule J ⊲ B (ie. J ′ = θ(J )
for some substitution θ) causing the rule to be applied, we say that J ′ has
triggered the Join-Pattern J . Note the inherent non-determinism in matching
processes with Join-Patterns: any pair of ready(P) and job(J) can be arbitrarily
chosen by a structural step and matched with the Join-Pattern.

There are several implementations of Join-Calculus style concurrency ab-
stractions. The JoCaml system [4] is one such example, which introduces Join-
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Patterns into the programming language Caml. For instance, the printer spooler
can be implemented in JoCaml as follows (omitting details of the function send):

let ready(P) & job(J) = send(P,J)

in ready(p1) & ready(p2) & job(j1) & job(j2) & job(j3)

As shown above, Join-Patterns in JoCaml are declared by the ’let’ definition.
There are some minor syntax differences (’⊲’ reaction rule symbol is replaced
by the more common ’=’) but it’s intended meaning corresponds to it’s Join-
Calculus counterpart. Also, the symbol ’&’ replaces both ’|’ and ’,’ as a parallel
composition operator for specifying both Join-Patterns and concurrent processes.
The keyword ’or’ is used to concatenate multiple reaction rules in a ’let’ defini-
tion. Process calls are treated just like ordinary procedural calls without return
values, with the exception that they are matched with Join-Patterns.

On top of Join-Patterns, language extensions like JoCaml also introduces
synchronous process calls which returns values, thus provide a synchronization
mechanism among concurrent processes. We will omit this to focus our attention
on Join-Calculus and CHR.

2.2 Constraint Handling Rules

Independently, Constraint Handling Rules (CHR) [8] has been developed in the
field of constraint solving. CHR is a concurrent committed choice constraint
programming language. Originally designed for writing constraint solvers, CHRs
have through the years been exploited in a wide range of applications [11, 1]. A
CHR program essentially consist of a set of multi-headed guarded rules, describ-
ing rewritings among multisets of constraints. These rewritings share a strik-
ing similarity with Join-Calculus and the chemical abstract machine reductions:
CHR rules can be treated as the reaction rules and CHR constraint multiset as
the chemical soup.

We illustrate this by reformulating the printer spooler reaction rule from the
previous section, with the following CHR program and CHR derivation:

P = {print @ ready(P),job(J) ⇐⇒ send(P,J)}

{ready(p1),ready(p2),job(j1),job(j2),job(j3)}
P {ready(p2),job(j2),job(j3),send(p1,j1)}
P {job(j3),send(p1,j1),send(p2,j2)}

Concurrent processes are represented by the multiset constraint store and
CHR derivation steps take the place of the chemical abstract machine reduc-
tion steps. Unlike the CHAM semantics which explicitly express matching via
structural steps , CHR constraint matching is implicit within derivation steps.

CHR also supports other features like constraint propagation and rule guards
which can be possible useful extensions to the Join-Pattern implementations.
There are also several well-developed CHR operational semantics [5] and highly
competitive state-of-the-art implementations [13, 16].

2.3 Extending Join-Patterns with Guards and Propagation

A particularly useful extension to the Join-Calculus language is Join-Patterns
with guard constraints (also known as guarded Join-Patterns), which allows
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the programmer to express boolean conditions on Join-Patterns. To illustrate
guarded Join-Patterns, we consider a more complex variant of the printer spooler:
Suppose that there are now conditions which must be met before a print job can
be sent to a printer, namely:

– Print jobs have color requirements, namely black-and-white (bw), 16 bit color
(color16) or 32 bit color (color32). Hence not all printers can execute a
given print job.

– Only print jobs with authorized identity will be entertained.

To handle these requirements, we represent print jobs as job(J,Cid,Cr),
where additional arguments Cid and Cr are the client identifier and color require-
ments respectively. Available printers also additionally report their capabilities
(ie. ready(P,Cr)). A new process auth(Cid) is also introduced to indicate that
Cid is an authorized client. Note that we assume that the color values are ordered
to reflect their increasing requirement levels (ie. bw < color16 < color32). This
new printer spooler can be implemented via the following guarded Join-Pattern,
expressed in a pseudo JoCaml extension:

let auth(Cid1) & ready(P,Pcr) & job(J,Cid2,Jcr)

when (Cid1 == Cid2) && (Pcr ≥ Jcr) = auth(Cid1) & send(P,J)

in ...

We assume that guard constraints are followed by the “when” keyword, and
&& represents logical conjunction. Note that auth(Cid1) is “propagated”, mean-
ing that it is reintroduced in the Join-Body. This is because Cid1 should remain
authorized even after a print job is submitted.

Existing Join-Pattern implementations (eg. JoCaml [4], Polyphonic C# [2])
use a Join-Pattern compilation scheme [6] that maintains the states of Join-
Patterns to determine when they can be triggered during runtime. (we briefly
discuss this scheme in Section 3.1). Unfortunately, as indicated in [2], such com-
pilations do not directly support Join-Patterns with guard constraints. It may
seem that guarded Join-Patterns can be easily encoded in basic Join-Patterns.
For instance, one attempt in JoCaml could be as follows:

let auth(Cid1) & ready(P,Pcr) & job(J,Cid2,Jcr) =

if (Cid1 == Cid2) && (Pcr ≥ Jcr)

then auth(Cid1) & send(P,J)

else auth(Cid1) & ready(P,Pcr) & job(J,Cid2,Jcr)

in ...

This encoding uses a standard if-then-else conditional statement to replicate
the semantics of a guarded Join-Pattern: if conditions are favourable then pro-
ceed as normal, otherwise abort by replenishing the involved processes for future
matching. While this encoding ensure correctness (authorized print jobs are only
sent to printers with sufficient capabilities), it cannot ensure completeness (all
authorized print jobs will be submitted to any available and capable printer).
This is because standard Join-Pattern compilation schemes do not test all com-
binations of concurrent processes, as it is unnecessary when matching is merely
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a test of presence/absence of processes (This is true for standard Join-Patterns).
To date, no existing implementations provide efficient and practical compilation
of Join-Patterns with guard constraints.

Yet guard constraints are natively supported in the CHR framework. Fur-
thermore, CHR provides other features like propagation and non-linear patterns
(variables appearing in multiple unique locations), which would be obviously use-
ful if available in Join-Patterns. For instance, we can represent the new printer
spooler Join-Pattern as the following CHR rule:

print @ auth(Cid) \ ready(P,Pcr),job(J,Cid,Jcr) ⇐⇒ Pcr ≥ Jcr | send(P,J)

CHR rules natively support propagation: constraints like auth(Cid) are
known as propagated head (appearing before the ’\’ symbol), which are nec-
essary for triggering the rule but not deleted after its application. Variables are
also allowed to appear in multiple locations of the rule head (non-linear patterns).
This approach will also benefit from well-developed CHR operational semantics
[5] as well as existing CHR optimizations such as hash indexing and optimal
join-ordering. Hence we believe that the CHRs would be the ideal solution to
handle guarded Join-Patterns, offering a highly optimized and well-studied mul-
tiset rewriting operational semantics that shares a similar foundational semantics
(chemical abstract machine).

3 Compilation Schemes

In this section, we review the compilation scheme which is currently the de-facto
standard for Join-Pattern implementations. Following this, we introduce a new
compilation scheme which is based on CHR rule matching.

3.1 Standard Join-Pattern Compilation Scheme

Existing Join-Pattern implementations compile Join-Patterns into state ma-
chines that maintain the matching states of the Join-Patterns [6]. For instance,
in JoCaml, this compilation involves constructing n message channels (which are
typically queues) and a finite state machine (automaton) for each ’let’ defini-
tion, that keeps track of the matching status of the n queues. Note that ’let’
definitions can contain any finite number of Join-Patterns delimited by the ’and’
keyword. Each message channel is assigned to a unique process name, and rep-
resents the collection of calls to this process by concurrent computation threads.
Hence, a call to a process is analogous to the arrival of a new message in the
corresponding message channel.

States of this automaton are essentially tuples of n bits, one assigned to each
message queue stating whether it is empty (0) or non-empty (N). This automaton
is updated every time a new process is call (ie, a new message has arrived) or
when a Join-Pattern is successfully matched. Figure 2 shows an example of a let

definition, consisting of two Join-Patterns, as well as it’s corresponding matching
status automaton that is constructed. We label the first Join-Pattern as J1 and
the other as J2 (Note that this labeling is for our presentation only and not part
of the semantics).

Each edge labeled with a transition label, which is either of the form m-j stat-
ing that arrival of message m has triggered Join-Pattern j, or just m which states
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Implementation in JoCaml:
let p() & q() = a() (J1)

or p() & r() = b() (J2)

in ...

Chemical Abstract Machine Interpretation:
({J1, J2} ⊢ ...)
where J1 = p() | q() ⊲ a()

J2 = p() | r() ⊲ b()

Fig. 2. A Matching Status Automaton for two Join-Patterns

that arrival of message m has triggered nothing and therefore is just queued. If
there are more than one alternative transitions between two states of the au-
tomaton, we will represent them as a single edge with the set of alternative
transitions. Since the Join-Patterns considered do not have guard conditions,
messages channels are normally implemented with shared queue data structures,
and the task of triggering Join-Patterns is as simple as popping messages from
the relevant sets of queues. The choice of taking p-J1 to 000 or 0N0 depends on
whether there are any more q’s left after J1 is triggered.

A state automaton compilation like this implements a matching policy re-
ferred to as “match as soon as possible”, where join patterns are immediately
triggered upon the arrival of the final message that complete it’s match. For
example, suppose that all queues are currently empty (000), the arrival of q

transits the automaton to 0N0 and does not triggering any join patterns since no
complete matches are available. The arrival of p completes J1’s match and trig-
gers it, hence the automaton makes the p-J1 transition. Note that the “match
as soon as possible” matching policy is sound with respect to the chemical ab-
stract machine semantics, but does not allow all its possible non-deterministic
behaviors. We will discuss more of this issue in Section 3.3.

3.2 CHR Rule Matching Compilation Scheme

We introduce a new Join-Pattern compilation scheme, based on CHR rule match-
ing semantics. The idea is to compile Join-Patterns into CHR rules, where known
CHR operational semantics can be applied to derive Join-Pattern triggering. Our
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CHR Primitives:

Constraint Names c Variables x
Constant Values v List of a’s a

CHR Terms and Constraints:

Substitutions θ ::= [v1 /x1 , .., vn/xn ]
Terms t ::= x | v

CHR Constraints C ::= c(̄t)
Numbered Constraints Cn ::= C#n

Occurrence Constraints Co ::= C : i
Active Constraints A ::= C#n : i

CHR Matching Sets:

Rule Head H ::= Co | H ∧ H
Matching Set P ::= {H } | P ⊎ P

CHR Stores and States:

Stores St ::= ∅ | {Cn} ⊎ St
Match States σ ::= 〈C ,St〉n (Initial)

| 〈A,St〉n (Intermediate)
| 〈θ,R,St〉n (Match Success)
| 〈ǫ,St〉n (Match Fail)

Fig. 3. CHR Rule Matching Essentials

presentation here is inspired by the refined CHR operational semantics [5]. Fig-
ure 3 reviews the essential components of the CHR language. The actual CHR
framework is much richer than presented here (eg. guards, propagation, etc..).
We will omit these features for simplicity, but note that extending this scheme
with guards and propagation is straight-forward.

Lists are denoted by [x | xs], where x is the first element and xs the tail. The
empty list is denoted by [ ] and x̄ is short for a list of x’s. Sets are denoted by
{x1, ..., xn} and multi-set union of two sets S1 and S2 is denoted by S1 ⊎ S2.

We are particularly interested in the multi-set matching part of CHR ex-
ecutions, hence we only consider CHR rule heads (rule bodies are omitted).
Constraints in rule heads are assigned unique occurrence numbers (eg. C : i)
with respect to there textural order in the program. Rule heads are matched
against constraints in the multi-set store. Stored constraints are numbered (eg.
C#n) to distinguish duplicate copies. Constraint matching is driven by an active
constraint, C#n : i, which matches numbered constraint C#n with occurrence
i. A matching set P is a set of CHR rule heads. We define two auxiliary functions
cons and maxOccurs, which returns constraints from numbered constraints and
returns the maximum occurrence number from a matching set respectively.
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Single-Step Matching Reduction: σ →P σ

(Activate) 〈C, St〉n →P 〈C#n : 1, {C#n} ⊎ St〉n+1

(Match)

H ′
1 ∧ C′ : j ∧ H ′

2 ∈ P

∃θ such that θ(C′) = C θ(H ′
1) = cons(H1) θ(H ′

2) = cons(H2)

〈C#m : j, {C#m} ⊎ H1 ⊎ H2 ⊎ St〉n →P 〈θ, H ′
1 ∧ C′ : j ∧ H ′

2, St〉n

(Continue)
j < maxOccur(P)

〈C#m : j, St〉n →P 〈C#m : (j + 1), St〉n

(Deactivate)
j ≥ maxOccur(P)

〈C#m : j, St〉n →P 〈ǫ, St〉n

Exhaustive Matching Reduction: σ →∗

P σ

(Transitive)

σ →P σ′ σ′ →∗

P σ′′

σ →∗

P σ′′

(Match-Success)

σ →P 〈θ, R,St〉n

σ →∗

P 〈θ, R,St〉n

(Match-Fail)

σ →P 〈ǫ, St〉n

σ →∗

P 〈ǫ, St〉n

Fig. 4. CHR Multi-set Rule Matching Semantics

Figure 4 formally specifies the CHR rule matching semantics. This seman-
tics is defined in terms of reduction steps (→P ) which maps matching states to
matching states. Matching starts from an initial matching state 〈C, St〉n. Tran-
sition rules are tried in sequence. Rule (Activate) begins the matching procedure
by activating constraint C. This involves adding C to the store and assigning
it occurrence number 1. The rule (Match) specifies the successful matching of
a CHR rule. Active constraint C#m : i matches with the ith occurrence of P
and matching partners H1 and H2 are present in the store. This leads to the
match state 〈θ, R, St〉n where θ is the matching substitution, R is the rule heads
that is matched and St is the remaining store after matching constraints are
removed. Rule (Continue) moves the search forward by incrementing the occur-
rence number of the active constraint, while (Deactivate) ends the search when
last occurrence is tried and no match is found. Exhaustive reductions →P de-
fines the reduction sequence from a initial match state to a final state (match
success/match fail).

Figure 5 illustrates the CHR-Based Join-Pattern matching semantics. We
assume a straight forward compilation scheme for Join-Patterns. Namely, pro-
cesses (messages) are treated as constraints and Join-Patterns are assigned oc-
currence numbers, depending on the textual order of their appearance. A CHR-
Based Join-Pattern matching state (R ⊢ M ,St ,n) consist of the reaction rules
R, the concurrent messages/processes M (ie. chemical soup), a CHR store St

and store identifier n. It essentially maintains the matching status of a set of
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Primitives:

Process Name p Variable x
Constant Value v List of a’s a

Compiled Join-Pattern Expressions:

Term t ::= x | v
Process/Constraint P ::= p (̄t)

Concurrent Processes M ::= P | M , M
Compiled Join-Pattern J ::= P : i | J ∧ J

Reaction Rules R ::= {J ⊲ M } | R ⊎ R

CHR-Based Join-Pattern Matching State:

Matching State E ::= (R ⊢ M , ∅, 1 ) (Initial)
| (R ⊢ ∅, St ,n) (Final)
| (R ⊢ M ,St , n) (Intermediate)

CHR-Based Reduction Step: (R ⊢ M ,St ,n) −→ (R ⊢ M ,St , n)

(Join-Pattern Triggered)

R = {H1 ⊲ B1 , ..., Hn ⊲ Bn} P = {H1 , ..., Hn}

〈p (̄t),St〉n →∗

P 〈θ,Hi ,St ′〉n′ for some i ∈ {1 , ..., n}

(R ⊢ {p (̄t)} ⊎ M ,St , n) −→ (R ⊢ θ(Bi) ⊎ M ,St ′,n ′)

(Message Stored)

R = {H1 ⊲ B1 , ..., Hn ⊲ Bn} P = {H1 , ..., Hn}

〈p (̄t),St〉n →∗

P 〈ǫ,St ′〉n′

(R ⊢ {p (̄t)} ⊎ M ,St ,n) −→ (R ⊢ M ,St ′,n ′)

Fig. 5. CHR-Based Join-Pattern Matching Semantics

Join-Pattern reaction rules. Hence, it is the runtime structure that replaces the
matching state automaton of standard Join-Pattern compilations. For instance,
the following shows Join-Patterns (in JoCaml syntax) and its CHR-Based inter-
pretation:

Implementation in JoCaml:
let p() & q() = a() (J1)

or p() & r() = b() (J2)

in ...

CHR-Based Matching State:
({J1,J2} ⊢ ...)
where J1 = p():1 ∧ q():2 ⊲ a()

J2 = p():3 ∧ r():4 ⊲ b()

Reduction steps −→ are defined by two transitions (Join-Pattern Triggered)
and (Message Stored), both of which specify arbitrary scheduling of a process
for CHR matching (Figure 4) and the respective outcomes of the matching.
Transition (Join-Pattern Triggered) is taken when scheduled process is success-
fully matched (according to CHR matching semantics), hence the corresponding
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Join-Pattern is triggered. Transition (Message Stored) is taken when scheduled
process fails to match, hence the process is stored as a “message” in the CHR
store, awaiting for future matching.

3.3 Discussion

Non-Determinism in CHR Matching Semantics: One important char-
acteristic of this compilation scheme is that multiple CHR matchings are not
intended to be done in parallel, but in an interleaving manner (transitions
(Join-Pattern Triggered) and (Message Stored) are performed as “atomic” steps,
hence cannot be intermediately interleaved). While this would likely limit perfor-
mance of an actual implementation, it simplifies our CHR matching semantics by
a great deal by not allowing execution of multiple active constraints in parallel,
thus not introducing more non-determinism than needed. Note that our CHR
matching semantics is no more non-deterministic than the refined CHR opera-
tional semantics ωr [5] (Given a fixed sequence of goal constraints to activate,
our matching semantics will derive similar results). The main additional source
of non-determinism is instead introduced by the top level Join-Pattern reduc-
tion steps, which allows processes (constraints) to be scheduled for activation in
arbitrary sequences.

“Match as soon as Possible” versus CHR Matching Semantics:

The CHR matching semantics shares remarkable similarities with the Join-
Pattern state automata “match as soon as possible” matching policy. The Join-
Pattern state automata trigger Join-Patterns immediately once a complete match
has “arrived”, by keeping track on which message channels are empty/non-
empty. Similarly, CHR matching semantics executes constraints in sequence of
activation and triggers a rule immediately when the CHR store consists of a
complete rule head match. Let’s consider an example by examining the state
transitions taken by the state automaton of Figure 2 in response to the message
sequence, p(), q() then r():

Message Sequence: [p(),q(),r()]

Join-Pattern Trigger via State Automata (Figure 2):

This results in the triggering of the join pattern J1 as it is triggered immedi-
ately from the state N00 once q() arrives. This finally leads to a state where only
r() is left (00N). We consider the CHR matching of this example. For brevity, we
omit the top-level Join-Pattern reduction steps, but we illustrate the underlying
CHR derivations in the sequence of activation: [p(),q(),r()]

Join-Pattern Trigger via CHR Matching (Figure 4 and 5):

CHR rule head patterns:
P = {J1,J2} where J1 = p():1 ∧ q():2 , J2 = p():3 ∧ r():4
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Activation Sequence: [p(),q(),r()]

〈p(), ∅〉1
(Activate) →P 〈p()#1 : 1, {p()#1}〉2
(Continue) × 4 →P 〈p()#1 : 5, {p()#1}〉2
(Deactivate) →P 〈ǫ, {p()#1}〉2

〈q(), {p()#1}〉2
(Activate) →P 〈q()#2 : 1, {p()#1, q()#2}〉3
(Continue) →P 〈q()#2 : 2, {p()#1, q()#2}〉3
(Match) →P 〈[ ], J1, ∅〉3

〈r(), ∅〉3
(Activate) →P 〈r()#1 : 1, {r()#1}〉4
(Continue) × 4 →P 〈r()#1 : 5, {r()#1}〉4
(Deactivate) →P 〈ǫ, {r()#1}〉4

Similarly, the CHR derivation shows the triggering of rule J1 and the final
CHR store corresponding to 00N in the state automaton. In both case, Join-
Pattern (CHR rule) J1 is triggered as the match {p(),q()} is completed first.

Deleting Matching Transition versus Rule Ordering: CHR rule heads
and Join-Patterns may contain overlapping partial matches. Such overlaps are
sources of non-deterministic behaviors in the theoretical CHR semantics and
Join-Calculus semantics based on the chemical abstract machine. Overlapping
partial matches allow multiple rules (CHR rule / reaction rule) to be applicable
from certain states, and applying different rules in such states may lead to dif-
ferent outcomes. For example, given Join-Patterns in Figure 2, suppose we are
in a state with messages q() and r(), according to chemical abstract machine,
we can trigger either J1 or J2 is a p() arrives next. This situation is captured
by the state 0NN of the automaton in Figure 2 where we have two edges (p-J1
and p-J2), both triggered by the message p(). This indicates that we can trig-
ger either of the two Join-Patterns. In standard Join-Pattern implementations
(eg. JoCaml), this is dealt with by allowing the compiler to choose an arbitrary
transition edge and remove the other (compiler deletes either p-J1 or p-J2).
Hence the final matching status automaton generated would not exhibit such
non-determinism.

For the CHR matching semantics, overlapping rules are dealt with in a less
ad-hoc way. Consider the CHR matching reductions of this scenario (we assume
that CHR store already contains constraints q() and r() when p() is activated:

〈p(), {q()#1, r()#2}〉3
(Activate) →P 〈p()#3 : 1, {q()#1, r()#2, p(X)#3}〉4
(Match) →P 〈[ ], J1, {r()#2}〉4

Note that the active constraint p()#3 : j can only match with occurrence
j of the CHR program, hence p()#3 : 1 will always try matching with J1 first
before taking transitions (Continue) twice to reach p()#3 : 3 which will try
matching with J2 (Note this never happen since matching with J1 succeeds).
Thus rule textual ordering would prevent such non-deterministic behaviors.
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In essence, the CHR refined operational semantics is comparable to a Join-
Pattern matching status automaton with a “match as soon as possible” policy
and overlapping transitions are deleted depending on textual ordering (ie. tran-
sitions involving lower textual ordering join-patterns are deleted). Interestingly,
researchers of the two communities proposed very different motivations for en-
forcing determinism:

– Join-Pattern matching status automata: Non-determinism is removed
purely for efficiency (we don’t need to decide which overlapping rules to
trigger at runtime, because there is at most one), doing so have a price in
terms of semantics [6] as some behaviors stated by the theoretical calculus
(ie. the chemical abstract machine) can no longer be observable. This sug-
gests that deletion of non-deterministic transitions is viewed as a trade off
favouring efficiency over modeling non-deterministic behaviors of concurrent
programs.

– CHR refined operational semantics: Determinism is motivated not only
because of efficiency, but also to make rule-based constraint programming
easier (determinism enhances properties like termination and confluence [5])
Rule ordered executions also allow us to write more deterministic programs,
which would not work as intended in a unordered setting.

Rule ordered matching semantics introduced by CHR would allow us to write
more expressive Join-Patterns. This is illustrated by the following:

let get(X) & put(Y) = got(X,Y) (gsucc)

or get(X) = got(X,ǫ) (gfail)

in ...

The intend is to model a shared buffer, where get retrieves an object if
one exists, retrieves nothing otherwise, while put places an object in the buffer.
We assume that ǫ denotes the null object. According to the CHR matching
semantics, an active get(X) will always try to match in rule order (ie. try gsucc

before gfail). Hence this effectively models the firing of gfail in the absence
of put(y) (ie. get nothing if there are no put(Y) found).

The matching status automaton generated by the standard Join-Pattern com-
pilation scheme is illustrated by the following:

Note that arrival of a get message at state 0N will cause two possible tran-
sitions (get-gsucc or get-gfail). Hence, according to standard compilation
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practice, the compiler will choose either of the two transitions of state 0N to
be deleted from the final automaton. If the get-gsucc transitions are removed,
only gfail will ever be triggered at runtime. If get-gfail is removed instead
we get the desired behavior for this example. Unfortunately, this choice is not
observable to the programmer, hence we cannot make any assumptions on order-
ing of Join-Patterns in standard Join-Pattern compilations, unlike in our CHR
compilation.

Performance versus Expressiveness: Competitive implementations of
Join-Patterns (eg. Polyphonic C# [2]) do not explicitly construct state automata
but represent Join-Pattern matching states as bitmaps. Hence triggering of Join-
Patterns can be executed in constant time, with known bit-masking techniques.
The main disadvantage of using such compilation scheme is its incompatibility
with the introduction of guard conditions. Our CHR compilation scheme ben-
efits from the straight-forward extensions of features like propagation, guards
and non-linear patterns. We also benefit from existing CHR optimizations (eg.
constraint indexing, optimal join ordering, passive occurrences, etc.. [5, 9, 12] ).
Most of such optimizations however, benefit only programs which uses guard
conditions and non-linear patterns. Thus, for the class of programs which use
only basic Join-Patterns, it is likely that our CHR matching compilation scheme
will perform less efficiently compared to the standard schemes.

4 Conclusion and Future Work

We introduced a new Join-Pattern compilation scheme, based on the CHR
matching semantics. This matching semantics is inspired by the CHR refined op-
erational semantics. We have shown the basic difference and similarity between
the standard Join-Pattern compilation scheme and CHR matching compilation
scheme. The main benefits of our CHR matching compilation scheme is the pos-
sibility of extension with CHR features like guards and propagation, which will
prove to be extremely useful.

An extension of Join-Patterns which introduces algebraic pattern matching
in the matching of Join-Patterns is studied in [10]. Our approach generalizes this,
as CHR matching semantics handles pattern matching over constraint (message)
variables.

In the future, we intend to explore this relation further by implementing a
prototype Join-Pattern system based on the CHR matching compilation scheme.
Our CHR matching compilation scheme here is inherently single threaded, yet
practical implementations would demand a system which is capable of executing
matchings in parallel. Our works in a parallel implementation of CHR [15] would
provide the framework for a prototype system based on parallel CHR matching.
We also intend to investigate the implications of such implementations on per-
formance, as well as on theoretical CHR properties (confluence, determinism).
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8. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming, 37(1-3):95–138,
1998.
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