
KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200 A — B-3001 Leuven

Analyses, Optimizations and Extensions of Constraint Handling Rules

Promotor :

Prof. Dr. B. DEMOEN

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Tom SCHRIJVERS

Juni 2005

KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200 A — B-3001 Leuven

Analyses, Optimizations and Extensions of Constraint Handling Rules

Jury :

Prof. Dr. ir. G. De Roeck, voorzitter

Prof. Dr. B. Demoen, promotor

Prof. Dr. ir. M. Bruynooghe

Prof. Dr. ir. F. Piessens

Prof. Dr. D. De Schreye

Prof. Dr. T. Frühwirth (Universität Ulm)

Prof. Dr. D. Warren (SUNY at Stony Brook)

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Tom SCHRIJVERS

U.D.C. 681.3∗I23

Juni 2005

c©Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2005/7515/57
ISBN 90–5682–623–9

Abstract

Constraint Handling Rules (CHR) is a rule-based language commonly embedded
in a host language. It combines elements of Constraint Logic Programming and
term rewriting. Several implementations of CHR exist: in Prolog, Haskell, Java
and HAL. Typical applications of CHR are in the area of constraint solving, but
currently CHR is also used in a wider range of applications, such as type checking,
natural language processing and multi-agent systems.

In this work we contribute program analyses, program optimizations and ex-
tensions of the CHR language.

For the optimized compilation of CHR we present several new optimizations:
code specialization for ground constraints, anti-monotonic delay avoidance, hasht-
able constraint stores and a new late storage optimization. These and other op-
timizations have been implemented in a new state-of-the-art CHR system: the
K.U.Leuven CHR system.

Abstract interpretation is a general technique for program analysis. We pro-
pose a framework of abstract interpretation for the CHR language, in particular
for the formulation of analyses that drive program optimization. This frame-
works allows for the uniform formulation of program analyses as well as easier
improvements and combinations of existing analyses. We also evaluate analyses
for theoretical properties, confluence and time complexity, on a practical case
study to investigate their relevance.

We contribute two extensions to the expressivity of CHR. The first extension
comprises the integration of CHR with tabled execution. Tabled execution avoids
many forms of non-termination and is useful for automatic program optimiza-
tion through the dynamic reuse of previous computations. The second extension
automatically provides implication checking functionality to constraint solvers
written in CHR. Implication checking is an essential building block for formulat-
ing complex constraints in terms of basic constraints and for composing constraint
solvers.

Acknowledgements

First and foremost, I would like to thank my supervisor Bart Demoen for taking
me on as his Ph.D. student on short notice and for immediately sending me away
again . . . to broaden my horizons. Bart has given me the opportunity to work with
and learn from many researchers in the field. He has supported all my work with
his wise counsel, his unmatched Prolog implementation prowess and his trust in
me. A Ph.D. student could not wish for a better supervisor.

I would like to express my gratitude towards the members of the jury for reading
and evaluating this text: the members of the reading committee Bart Demoen,
Maurice Bruynooghe and Frank Piessens for the valuable comments, Danny De
Schreye and the external members David S. Warren and Thom Frühwirth for
taking an interest in my work, and Guido De Roeck for chairing the jury.

I would like to thank my co-authors without whom many parts of this text
and other joint work would not have been possible: Alexander Serebrenik, Bart
Demoen, David S. Warren, Gregory J. Duck, Jan Wielemaker, Jon Sneyers, Maŕıa
Garćıa de la Banda, Peter J. Stuckey and Thom Frühwirth. In addition, I would
like to thank the other people I have talked and discussed with: Christian Holz-
baur, Marc Meister, Marc Wallace, Giridhar Pemmasani, Beata Sarna-Starosta,
C.R. Ramakrishnan and Lúıs Fernando Pias de Castro.

Gratefully I acknowledge the Fund for Scientific Research Flanders (F.W.O.-
Vlaanderen), which has provided me with financial support during the last three
years.

Many thanks go to my friends, office mates and colleagues in the DTAI research
group and the entire department for making the past four years such an enjoyable
experience.

Last but not least, I would like to thank Annemie Janssens for all the things
beyond code listings and semantic formulas.

Tom Schrijvers
June 2005

i

Voor Annemie.
Voor Laura Van Driel.

Inhoudsopgave

Table of Contents i

List of Figures v

List of Tables vii

List of Listings x

1 Introduction 1
1.1 Constraint Handling Rules . 1
1.2 Goal of this Thesis . 2
1.3 Organization of the Text . 4
1.4 Bibliographical Note . 5

2 Background: Constraint Logic Programming and CHR 9
2.1 Introduction . 9
2.2 Notation of Sequences and Multisets 9
2.3 Constraint Logic Programming . 10

2.3.1 Logic Programming and Prolog 10
2.3.2 Constraint Logic Programming 14

2.4 Constraint Handling Rules . 16
2.4.1 Syntax . 16
2.4.2 The ωt Operational Semantics 18
2.4.3 The ωr Operational Semantics 22

2.5 CHR versus Other Rule-based Languages 23
2.5.1 Production Rule Systems 26
2.5.2 Term Rewriting Systems . 27

3 Show Cases of Constraint Handling Rules 29
3.1 Introduction . 29
3.2 The Union-Find Algorithm . 29

3.2.1 Introduction . 29

i

ii INHOUDSOPGAVE

3.2.2 The Union-Find Algorithm 30
3.2.3 Implementing Union-Find in CHR 32
3.2.4 Optimized Union-Find . 33
3.2.5 Union-Find Conclusion . 34

3.3 JmmSolve: a generative Java Memory Model 34
3.3.1 Introduction . 34
3.3.2 The Java Memory Model 34
3.3.3 Concurrent Constraint-based Memory Machines 36
3.3.4 The JmmSolve Implementation 38
3.3.5 JmmSolve Conclusion . 40

3.4 A Well-Founded Semantics Algorithm 41
3.4.1 Well-Founded Semantics . 41
3.4.2 The Algorithm . 43
3.4.3 The CHR Implementation 46
3.4.4 Well-Founded Semantics Conclusion 49

3.5 Conclusion . 50

4 Theoretical Properties 51
4.1 Introduction . 51
4.2 Declarative Semantics . 52

4.2.1 Relation to the Operational Semantics 52
4.2.2 Scope of the Declarative Semantics 53

4.3 Declarative Semantics Example: Union-Find 54
4.4 Confluence . 55

4.4.1 Related Notions . 57
4.5 Confluence Case Study: Union-Find 59

4.5.1 Inherent Non-Confluence 59
4.5.2 Incompatible Tree Constraints Cannot Occur 60
4.5.3 Pending Links Cannot Occur 60
4.5.4 Conclusion . 61

4.6 Time Complexity . 62
4.7 Time Complexity Case Study: Union-Find 63

4.7.1 Worst-Case Time Complexity 63
4.7.2 Optimal Time Complexity 64

4.8 Conclusion . 66

5 The Implementation of CHR: A Reconstruction 69
5.1 Introduction . 69
5.2 Compilation Schema . 70

5.2.1 Basic Compilation Schema 70
5.2.2 Constraint Representation 74
5.2.3 Constraint Stores and Built-in Constraints 76

5.3 Simple Optimizations . 79

INHOUDSOPGAVE iii

5.3.1 Semantical Optimizations 79
5.3.2 Host Language Optimizations 82
5.3.3 Data Structure Optimizations 84
5.3.4 Optimized Compilation Example 85

5.4 Soundness Proofs of Optimizations 87
5.4.1 Soundness of the Generation Optimization 87
5.4.2 Prolog’s Solve Transition 92

5.5 Conclusion . 96

6 The K.U.Leuven CHR System 99
6.1 Introduction . 99
6.2 Implementation . 102
6.3 Optimizations . 102

6.3.1 Related Work on Optimizations 103
6.3.2 Ground Constraints . 104
6.3.3 Hash Table Constraint Stores 108
6.3.4 Anti-monotonic Delay Avoidance 109

6.4 Ports . 110
6.4.1 XSB . 111
6.4.2 SWI-Prolog . 112

6.5 Experimental Evaluation . 113
6.5.1 Benchmarks . 113
6.5.2 Systems Comparison . 114
6.5.3 Ground Optimizations . 115
6.5.4 Anti-monotonic Delay Avoidance 115

6.6 Conclusion . 117
6.6.1 Future Work . 118

7 Abstract Interpretation for CHR 119
7.1 Introduction . 119
7.2 The Refined Denotational Semantics ωd 120

7.2.1 Execution State of ωd . 121
7.2.2 Semantic Function of ωd 122
7.2.3 Example . 122

7.3 The Abstract Interpretation Framework 126
7.3.1 Abstract State . 126
7.3.2 Abstract Semantic Function 127
7.3.3 The Generic Abstract Semantics 128

7.4 Late Storage Analysis . 130
7.4.1 The Observation Property 131
7.4.2 Abstract Domain . 133
7.4.3 Abstract Semantic Function 135
7.4.4 Example Analysis . 137

iv INHOUDSOPGAVE

7.5 Groundness analysis . 138
7.5.1 Abstract Domain . 138
7.5.2 Abstract Semantic Function 140
7.5.3 Example Analysis . 142

7.6 Implementation and Evaluation . 144
7.6.1 Late Storage Analysis . 144
7.6.2 Groundness Analysis . 146

7.7 Conclusion . 147
7.7.1 Related and Future Work 147

8 Integration of CHR with Tabled Execution 149
8.1 Introduction . 149
8.2 Technical Background . 150

8.2.1 SLG Resolution . 150
8.2.2 SLG and Constraints: SLGD Resolution 154

8.3 CHR and Tabled Execution . 156
8.3.1 General Schema of the Implementation 157
8.3.2 Tabled Store Representation 158
8.3.3 Call Abstraction . 162
8.3.4 Answer Projection . 164
8.3.5 Entailment checking and other answer combinations 166
8.3.6 Evaluation of a shipment problem 169

8.4 Conclusion . 172
8.4.1 Related and Future Work 173

9 Automatic Implication Checking for CHR Solvers 175
9.1 Introduction . 175
9.2 CHR Solvers . 176

9.2.1 Required Notions . 177
9.3 Basic Implication Checking . 178

9.3.1 Theoretical Approach . 178
9.3.2 Practical Approaches . 179

9.4 Implication Checking for Modular Solver Hierarchies 182
9.4.1 Trailing Interface . 185
9.4.2 Implication Strata . 185
9.4.3 Inter-stratum Events . 187

9.5 Case Studies: Non-Canonical Solvers 187
9.5.1 Naive Union-Find Equality Solver 187
9.5.2 Optimal Union-Find Equality Solver 188
9.5.3 Finite Domain Solver . 188

9.6 Experimental Evaluation . 189
9.6.1 Time and Space Formulas 191

9.7 Conclusion . 193

INHOUDSOPGAVE v

9.7.1 Related Work . 194
9.7.2 Future Work . 194

10 Conclusions 195
10.1 Conclusion . 195
10.2 Contributions . 195
10.3 Future Work . 197

10.3.1 Usability Issues . 197
10.3.2 Efficiency Issues . 200

A Source Code: wfs 203

B Prolog Benchmarks 209

Bibliography I

List of Symbols XI

Index XV

List of Publications XIX

Biography XXIII

Nederlandstalige Samenvatting NL 1
1 Inleiding . NL 1
2 Inleidende begrippen en achtergrond NL 3
3 Drie toepassingen van CHR . NL 5
4 Theoretische eigenschappen van CHR NL 8
5 Implementatie van CHR . NL 10
6 Het K.U.Leuven CHR-systeem . NL 10
7 Abstract interpretatie voor CHR NL 11
8 Integratie van CHR met getabuleerde uitvoering NL 12
9 Automatische implicatietesten . NL 12
10 Besluit . NL 14

vi INHOUDSOPGAVE

Lijst van figuren

2.1 The transition rules of the theoretical operational semantics ωt . . 20
2.2 The transition rules of the refined operational semantics ωr 24

5.1 Solve’, the corrected version of Solve 94

6.1 A timeline of CHR implementations 100
6.2 Observation of behavior for contrived unions: SICStus and SWI-

Prolog array constraint stores . 110
6.3 Observation of behavior for contrived unions: Detail of Figure 6.2:

SWI-Prolog array constraint store 111
6.4 Observation of behavior for contrived unions: SWI-Prolog Hash

table constraint store . 112

8.1 SLD-tree example . 152
8.2 SLG-tree example . 153
8.3 Tabled call flowchart . 158

vii

viii LIJST VAN FIGUREN

Lijst van tabellen

2.1 Rewriting rules for SLD resolution with left-to-right selection . . . 12
2.2 Example derivation under the ωt semantics 21
2.3 Example derivation under the ωr semantics 25

3.1 The relation between the atleast() variables and CHR constraints . 47
3.2 The relation between the atmost() variables and CHR constraints . 47

5.1 Meaning of the constraint suspension fields 75

6.1 Runtime performance of 8 CHR benchmarks in 5 different Prolog
systems. 115

6.2 Runtime performance of 7 CHR benchmarks optimized with ground-
ness annotations relative to unoptimized programs, in both hProlog
and SWI-Prolog. 116

6.3 Runtime of optimized benchmarks relative to unoptimized ones, in
hProlog . 117

7.1 The refined denotational semantics of CHR 123
7.2 Late storage analysis: runtime results of optimized programs relat-

ive to unoptimized programs . 145
7.3 Late storage analysis: the number of store operations without and

with late storage . 146

8.1 Basic SLG resolution rules . 151
8.2 SLGD resolution rules . 155
8.3 Optimized Query Projection for SLGD resolution 155
8.4 Evaluation of the two tabled store representations. 161
8.5 Runtime results for the truckload program 171
8.6 Space usage for the truckload program 171
8.7 Number of tabled answers for the truckload program 172

9.1 Experimental Results . 190

ix

x LIJST VAN TABELLEN

B.1 Runtime performance of 15 Prolog benchmarks in 5 different Prolog
systems. 209

List of Listings

2.1 The gcd Program . 17

3.1 The Naive Union-Find Algorithm 31
3.2 Union-Find with Union-by-Rank and Path Compression 32
3.3 The Naive Union-Find Program . 32
3.4 The Optimal Union-Find Program 33
3.5 JmmSolve Example Source Program 37
3.6 JmmSolve Example Event Program 38
3.7 JmmSolve Example Constraints To Satifsy Sequential Consistency 38
3.8 The JmmSolve <</2 Order Constraint 39
3.9 The JmmSolve expression/2 Integer Constraint 40
3.10 The expand Function . 43
3.11 The Implementation of Atleast . 45
3.12 Auxiliary Procedures for atleast() 45
3.13 The Implementation of Atmost . 46
3.14 Auxiliary Procedure for atmost() 46
3.15 The CHR Implementation of atleast() 48
3.16 The CHR Implementation of atmost() 48

5.1 The Compilation Schema for Succession of Multiple Occurrences . 71
5.2 The Compilation Schema for a Kept Occurrence 72
5.3 The Compilation Schema for a Removed Occurrence 80
5.4 Continuation Schema for the Propagate Transition 83
5.5 The Shallow Backtracking Compilation Schema 84

8.1 The truckload Program . 169

xi

xii LIST OF LISTINGS

Chapter 1

Introduction

1.1 Constraint Handling Rules

Constraint Handling Rules (CHR) is a rule-based programming language com-
monly embedded in a host language. It is a powerful yet relatively simple pro-
gramming language that combines elements of Constraint (Logic) Programming
(CLP) and rule-based languages. Originally CHR was intended as a language
for implementing user-defined application-tailored constraint solvers, but it is cur-
rently used as a general programming language in a wide range of applications.

First generation CLP languages provided a fixed black box constraint solver
for each constraint domain, e.g. CLP(<) with its solver over real numbers (Jaf-
far, Michaylov, Stuckey, and Yap 1992). Second generation solvers have taken a
glass box approach towards offering more flexibility: the solver offers a number of
primitive constraints that can be combined into more complex application-specific
constraints. An example is the finite domain constraint solver clp(FD) (Diaz and
Codognet 1993) with its primitive in/2 range constraint that can be used to im-
plement more complex constraints through indexical ranges.

The third is the no box generation which allows the implementation of new user-
defined constraint solvers from scratch and the integration of different constraint
solvers into application-tailored ones. A primitive language feature to provide such
functionality in Prolog is attributed variables (Holzbaur 1992). A more recent lan-
guage in this generation is HAL (Demoen, Garćıa de la Banda, Harvey, Marriott,
and Stuckey 1999), a variant of Mercury (Somogyi, Henderson, and Conway 1996)
that inherited its focus on user declarations for verification and optimization.

CHR belongs to this third generation of constraint solver languages. It is a
committed-choice language that consist of multi-headed guarded rules that rewrite
constraints into simpler ones until a solved form is reached.

Several implementations of CHR exist and most are embedded in Prolog (IC-

1

2 Introduction

Parc ; Meier ; Holzbaur and Frühwirth 2000; Santos Costa, Damas, Reis, and
Azevedo 2004; Holzbaur, Garćıa de la Banda, Stuckey, and Duck 2005). CHR
implementations for Java (Abdennadher, Krämer, Saft, and Schmauss 2001; Wolf
2001) and Haskell (Stuckey and Sulzmann 2005) exist as well. The implement-
ation (Holzbaur and Frühwirth 2000) in SICStus Prolog is generally considered
the reference implementation because it is historically the first full-fledged CHR
system. It implements an efficient compilation schema in terms of attributed
variables. More recently, the formulation of the refined operational semantics of
CHR (Duck, Stuckey, Garćıa de la Banda, and Holzbaur 2004) has captured the
essentials of the reference implementation on a more formal level.

Typical applications of CHR in the domain of constraint solving, scheduling and
optimization, are university lecture time tabling (Abdennadher and Marte 2000)
and optimal placement of local telecommunication transmitter stations (Frühwirth
and Brisset 1998).

Currently, CHR is used in a wide range of application domains well beyond
scheduling and optimization problems of traditional constraint solving. Natural
language processing is one such domain, with for example logical grammars based
on CHR (Christiansen 2002). Type inference, type checking (Coquery 2003) and
type system design (Stuckey and Sulzmann 2005) is a another domain CHR is
used in. One more example of a CHR application domain is Multi-Agent Systems:
reasoning about hypotheses (Alberti, Chesani, Guerri, Gavanelli, Lamma, Mello,
Milano, and Torroni 2005), semantics of agent communication languages (Alberti,
Ciampolini, Gavanelli, Lamma, Mello, and Torroni 2003) and modeling the envir-
onment of an agent (Thielscher 2005) are just a few of the problems solved with
CHR.

1.2 Goal of this Thesis

The main goal of this thesis is to study program analysis, optimized compilation
and extensions for the Constraint Handling Rules language:

• In the past, little attention has been given to optimized compilation of
CHR. The reference implementation of CHR comprises an efficient, yet gen-
eral compilation schema of CHR and only a small number of program-specific
optimizations. Only recently (Holzbaur, Garćıa de la Banda, Stuckey, and
Duck 2005) was interest raised concerning the application of more substantial
optimizations during the compilation of CHR programs and a large number
of optimizations for CHR have been formulated.

In this thesis we present several new optimizations for CHR: code special-
ization for ground constraints, anti-monotonic delay avoidance, hash table
constraint stores and a new late storage optimization. In addition, we form-
ally establish the correctness of several program optimizations with respect

1.2 Goal of this Thesis 3

to the refined operational semantics. No such proof of correctness has been
published before. The correctness of analyses was addressed only informally.

However, the most important contribution with respect to optimized com-
pilation is our proposal for a more systematic approach of program analysis
for optimized compilation.

• Program analysis aims at deriving useful properties from a program. In
the past, several analyses have been formulated to derive theoretical prop-
erties, such as confluence, from CHR programs. These properties are useful
for studying the behavior and correctness of CHR programs.

We apply these analyses of theoretical properties to a case study to invest-
igate their relevance in practice.

An important class of program analyses are those that drive program optim-
izations. Little has been published about program analysis for this purpose.
Mostly, it is discussed informally and rather vaguely, e.g. in (Holzbaur,
Garćıa de la Banda, Stuckey, and Duck 2005). The reason is that program
analysis was considered in an ad hoc fashion and of lesser importance than
the optimization that benefits from it. The lack of proper documentation
and rigor makes it difficult to see whether the analyses are correct and how
they may be improved and composed to form more complex analyses.

This is remedied by our framework for abstract interpretation of CHR. Ab-
stract interpretation (Cousot and Cousot 1977) is a general technique for
program analysis, not specific to any particular programming language. It
is formal in nature and relates an analysis to the operational semantics of
the programming language. Because of its rigor, abstract interpretation is
an excellent systematic approach towards program analysis for CHR. The
framework allows the use of general techniques for establishing correctness
and for composing program analyses in CHR.

We formulate our abstract interpretation framework in terms of the refined
denotational semantics and illustrate it with two instances: late storage
analysis and groundness analysis. The former is an ad hoc analysis for CHR
that we now reformulate in terms of our framework. The latter is a classic
analysis for Prolog that we lift to CHR.

• Two of our goals concern extensions of the expressive power of CHR.

The first extension aims at the integration of CHR with a more expressive
and powerful variant of Prolog: tabling or SLG resolution (Chen and War-
ren 1996). Tabling automatically avoids many forms of non-termination of
Prolog programs and is also useful for automatic performance improvements
through dynamic reuse of previous computations. Because the programmer
is relieved from these termination and performance issues, programs may be

4 Introduction

more declarative, more concise and easier to understand. We show how the
integration of tabling and CHR can be implemented in a general way and
easily customized for particular applications.

The second extension adds functionality to constraint solvers written in
CHR. CHR constraint solvers answer questions about the satisfiability of
constraints, i.e. whether a particular constraint or conjunction of constraints
has a feasible solution. We show how to automatically extend CHR con-
straint solvers with the capability to answer questions about implication,
i.e. whether a constraint is implied by a conjunction of other constraints.
Implication checking is important for the extraction of information from a
constraint store with respect to a property of interest. It is also an import-
ant building block for constructing complex application-specific constraints
from simple constraints and for composing constraint solvers. We use our
implication checking for the modular composition of CHR solvers.

In addition to the main goals we also aim at the increased proliferation of the
CHR language and at showing its usefulness in practice. We realize the prolifera-
tion objective mainly with a new state-of-the-art CHR system that is available in
three Prolog systems, that also helps us to reach and to evaluate our main goals.
We show the usefulness of CHR in three applications and through establishing
that the union-find algorithm can be implemented in CHR with the best known
time complexity.

1.3 Organization of the Text

In this chapter we have briefly summarized the motivation behind the CHR lan-
guage, its application domains and current shortcomings.

Chapter 2 provides a more thorough technical background for this text. The
basic technical aspects of Logic and Constraint Logic Programming are introduced
because they form the context in which CHR is embedded. Also covered are the
syntax and two different operational semantics of the CHR language.

Three show cases of the CHR language are presented in Chapter 3. These
show cases illustrate the capabilities and expressive power of the language in
three distinct application domains: the union-find algorithm, a framework for
Java memory models and the computation of the well-founded semantics.

Chapter 4 provides an overview of three established theoretical properties of
CHR programs: the declarative semantics, confluence and time complexity. These
three properties are of importance to CHR programmers as they characterize the
behavior of CHR programs and may reveal potential undesirable aspects. We
illustrate the use of these properties on a case study and point out their limitations
and usability issues.

1.4 Bibliographical Note 5

A basic compilation schema to transform a CHR program into executable Pro-
log code is presented in Chapter 5. The schema is related to the refined opera-
tional semantics of CHR and extended with the optimizations of the CHR reference
implementation. Along with the schema we present two new proofs that establish
the correctness of an optimization.

Chapter 6 introduces our contribution to the domain of CHR implement-
ation: the K.U.Leuven CHR system. It covers an overview of the system, the
implemented optimizations — both established and novel ones — and the ports to
two Prolog systems. The K.U.Leuven CHR system serves as the foundation and
test bed for the work in the next chapters.

In Chapter 7 we formulate an abstract interpretation framework for CHR.
This framework provides a systematic approach towards the analysis of CHR pro-
grams. We illustrate the use of the framework by instantiating it with two analyses
that are useful for the optimized compilation of CHR: late storage analysis and
groundness analysis.

The expressive power of CHR is integrated with that of tabled resolution in
Chapter 8. Our integration is related to the semantics of tabled CLP resolution
and various ways to control the basic integration are presented.

Chapter 9 shows how to automatically extend CHR constraint solvers from
answering questions about satisfiability to questions about implication. Automatic
implication checking is an important building block for composing constraint solv-
ers. We apply our implication checking to CHR constraint solver hierarchies.

The conclusions of this text are listed in Chapter 10. It summarizes the
contributions contained in the preceding chapters and presents and overview of
proposed future work that may be built on top of the presented work.

1.4 Bibliographical Note

Some parts of this work have been published before. The following list contains
the key articles. A complete list of publication of the author can be found at the
end of this text (page XIX).

The work on a CHR implementation of the union-find algorithm with optimal
time complexity, covered in Chapter 4 and Chapter 6, has been accepted by the
Theory and Practice of Logic Programming journal:

• T. Schrijvers, and T. Frühwirth, Optimal Union-Find in Constraint Handling
Rules, Theory and Practice of Logic Programming, 2005.

Our K.U.Leuven CHR systemsystem, described in Chapter 6, has been presen-
ted at the First Workshop on Constraint Handling Rules:

• T. Schrijvers, and B. Demoen, The K.U.Leuven CHR System: Implementa-
tion and Application, First Workshop on Constraint Handling Rules: Selec-
ted Contributions (Frühwirth, T. and Meister, M., eds.), pp. 1-5, 2004.

6 Introduction

Our framework for abstract interpretation of CHR, discussed in Chapter 7, has
been accepted at the 7th International Symposium on Principles and Practice of
Declarative Programming:

• T. Schrijvers, G. Duck, and P. Stuckey, Abstract Interpretation for Con-
straint Handling Rules, Proceedings of the 7th International Symposium on
Principles and Practice of Declarative Programming, Lisbon, Portugal, 2005.

The integration of CHR and tabled execution, see Chapter 8, was presented
at the 20th International Conference on Logic Programming and given the Best
Paper Award:

• T. Schrijvers, and D. Warren, Constraint Handling Rules and Tabled Execu-
tion, Logic Programming, 20th International Conference, ICLP 2004, Pro-
ceedings (Demoen, B. and Lifschitz, V., eds.), vol 3132, LNCS, pp. 120-136,
2004.

The work on automatic implication checking for CHR constraint solvers, covered
in Chapter 9, was presented at the 6th International Workshop on Rule-Based Pro-
gramming:

• T. Schrijvers, B. Demoen, G. Duck, P. Stuckey, and T. Frühwirth, Automatic
Implication Checking for CHR Constraints, Proceedings of 6th International
Workshop on Rule-Based Programming, Nara, Japan (Cirstea, H. and Marti-
Oliet, N., eds.), 2005.

In addition to the work on Constraint Handling Rules, presented in this text,
we have worked on two unrelated topics during the course of the doctorate.

The first topic is the trailing of logical variables using the PARMA represent-
ation. Two contributions have been made. Firstly, we have developed a program
analysis to find redundant trailing operations and the corresponding optimization
to get rid of them; both were implemented in HAL. Secondly, more space-efficient
trailing operations have been proposed. On average, these two improvements to-
gether bring the time and space costs of the PARMA variable representation on
the same level as the classical WAM representation.

The main publication that covers this work is:

• T. Schrijvers, M. Garćıa de la Banda, B. Demoen and P. Stuckey. Improving
PARMA Trailing. Theory and Practice of Logic Programming.

The second topic concerns refactoring of Prolog programs. Refactoring is a
technique that originates in Object-Oriented Programming. It comprises tech-
niques to improve qualitative aspects of software, such as readability, maintain-
ability and extendibility, without changing functionality. In our work we have
adapted the ideas of refactoring to Prolog: object oriented refactoring techniques
have been modified to suit Prolog and new Prolog-specific techniques have been
proposed. The principal publication that addresses this work is:

1.4 Bibliographical Note 7

• T. Schrijvers and A. Serebrenik. Improving Prolog programs: refactoring
for Prolog, Logic Programming, 20th International Conference, ICLP 2004,
Proceedings (Demoen, B. and Lifschitz, V., eds.), vol 3132, LNCS, pp. 120-
136, 2004.

8 Introduction

Chapter 2

Background: Constraint

Logic Programming and

CHR

2.1 Introduction

This chapter contains the necessary background, both notation and semantics,
for understanding the core of this thesis. First, in Section 2.2, we present some
notational aspects regarding sequences and multisets. Next, in Section 2.3 we
cover several aspects of Constraint Logic Programming and in Section 2.4 the
syntax and semantics of CHR are covered. Finally, Section 2.5 situates CHR in
the context of other rule-based languages.

2.2 Notation of Sequences and Multisets

We use [H|T] to denote a sequence with first element H and remaining elements
T , ++ for sequence concatenation and � for the empty sequence. We use s̄ = t̄,
where s̄ and t̄ are sequences, to denote the conjunction s1 = t1 ∧ · · · ∧ sn = tn.

The symbol] is used for multiset union. We shall sometimes treat multisets as
sequences, in which case we non-deterministically choose an order for the objects
in the multiset.

9

10 Background: Constraint Logic Programming and CHR

2.3 Constraint Logic Programming

2.3.1 Logic Programming and Prolog

We give a brief overview of the basic elements of Logic Programming (LP). For a
more elaborate introduction to logic programming we refer to (Lloyd 1987).

Syntactic Elements

The basic alphabet of a logic program consists of a set of variables V, a set of
function symbols Σ and a set of predicate symbols Π. Function and predicate
symbols are associated with an arity, a natural number identifying the number of
arguments the function or predicate symbol has. Function symbols with arity zero
are called constants. Function and predicate symbols are also called functors.

The following syntax is used:

• Variables are denoted by upper case letters or capitalized words, e.g.

X, Y, A1, A2, Var, NewList

• Function and predicate symbols are denoted by lower case letters and un-
capitalized words, e.g.

x, y, a1, a2, var, newList

When the arity of the function or predicate symbol matters, we explicitly write
f/n to denote the function or predicate symbol f with arity n.

A term is a variable or a compound term f(τ1, . . . , τn) where f/n ∈ Σ and each
argument τi is a term. The set of all terms is T (V,Σ). An atom is a predicate
symbol p/n ∈ Π applied to a sequence of terms. The predicate symbol =/2 is a
special predicate symbol called (explicit) unification.

A ground term is a term that does not contain any variables. A ground atom
is an atom that does not contain any variables.

We use the notion of expression to refer to both terms and atoms. The rela-
tion symbol ≡ denotes that two expressions E and F are syntactically equal, to
avoid confusion with explicit unification. The function vars(E) returns the set of
variables occurring in an expression E.

The notation ∃̄AF is used to denote the projection of logic formula F onto the
variables of syntactic object A. Formally,

∃̄AF ≡ ∃X1 · · · ∃XnF with {X1, . . . Xn} = vars(F)− vars(A)

2.3 Constraint Logic Programming 11

Variable Substitutions

A substitution θ is a finite mapping from distinct variables to terms: V 7→ T (V,Σ).
A substitution is denoted as:

θ = {X1/τ1, . . . , Xn/τn}

where each Xi 6= τi. Each element Xi/τi is called a binding. If E is an expression
and θ a substitution, then Eθ is the expression obtained by simultaneously repla-
cing each occurrence of a variable Xi in E by the term τi, for each Xi/τi ∈ θ. Eθ
is called an instance of E.

If θ = {X1/u1, . . . , Xn/un} and η = {Y1/v1, . . . , Ym/vm} are two substitu-
tions, then the composition of η and θ (denoted η ∗ θ) is a substitution obtained
from {Y1/v1θ, . . . , Ym/vnθ,X1/u1, . . . , Xn/un} by removing all elements Yi/viθ
such that viθ = Yi and all elements Xi/ui such that Xi is one of Y1, . . . , Ym.

If E and F are expressions, then E and F are variants of each other if there
exist two substitutions θ and σ such that E ≡ Fσ and Eθ ≡ F . The notation
E ∼ F is used to denote that E and F are variants. A renamed apart expression
F of an expression E is a variant of E for which vars(F) ∩ vars(E) = ∅. We
usually abbreviate the phrase “a renamed apart expression F of expression E” to
“a renamed apart expression E”.

A unifier of two expressions E and F is a substitution θ for which Eθ ≡ Fθ.
The most general unifier (mgu) of two expressions E and F is a unifier η such that
for any other unifier θ of E and F there exists a substitution φ such that θ = η ∗φ.

Logic Programs

A logic program consists of a number of rules, called clauses, of the form:

H:-L1, . . . ,Ln.

where n ≥ 0 and H is an atom and L1, . . . , Ln are literals. A literal is either an
atom A or a negated atom ¬A.

H is called the head of the clause and L1, . . . , Ln is called the body. The comma
“,” is called conjunction as it corresponds with logical conjunction in the semantics
of logic programs. If n = 0, then the clause is also called a fact and denoted as:

H.

If all the literals in the body are positive, the clause is a definite clause. A
normal clause is a clause that may also contain negative literals. A definite logic
program consists of definite clauses only, while a normal logic program has normal
clauses.

Various semantics for logic programs exist. These assign a truth value to all
literals that can be constructed from predicate and function symbols in a program.
In Section 3.4 we will study one such semantics, the well-founded semantics, in
more detail.

12 Background: Constraint Logic Programming and CHR

Parent Children Conditions

Clause Resolution

(G; A1, . . . , An)

(G; B1
1 , . . . , B1

k, A2, . . . , An)θ1

...

(G; Bl
1, . . . , B

l
kl

, A2, . . . , An)θl

for all 0 < i ≤ l such that
Hi → Bi

1, . . . , B
i
ki

∈ P

and θi the mgu of A1 and
Hi

Explicit Unification

(G; X = Y, A2, . . . , An)
{

(G; A2, . . . , An)θ θ the mgu of X and Y

Table 2.1: Rewriting rules for SLD resolution with left-to-right selection

Operational Semantics of Logic Programs

A popular operational semantics of logic programs is SLD resolution. SLD res-
olution stands for Linear resolution with a Selection function applied to Definite
clauses. Given a conjunction of literals G, called a goal or query, SLD resolution
determines a number of unifiers θ such that Gθ holds. Gθ is called an answer to
the goal G.

SLD resolution is parametrized in a selection function, which selects a next lit-
eral in the resolvent. The most common selection function is left-to-right selection
that resolves literals in the resolvent from left to right.

Table 2.1 lists the rewriting rules for SLD resolution with left-to-right selection
and explicit unification. The rules manipulate (G;R) where G is the initial goal
and R is the resolvent and define a tree with root (G;G). Answers to the initial
goal are contained in leaves of the form (G′;�). In such a leaf G′ = Gθ is an
instance of G derived from G through successive application of unifiers. The path
from the root to a leaf is a single SLD resolution. If the SLD-tree for a goal has at
least one answer, we say the goal succeeds. If the tree has no answers, we say the
goal fails. A goal whose tree has at most one answer, is deterministic, otherwise
it is non-deterministic.

A concrete implementation of SLD resolution needs to supply a particular tree
search strategy to explore the SLD-tree.

SLDNF resolution (SLD with negation as failure) is an extension of SLD resol-
ution to normal logic programs. For the atom of a negative literal in a resolvent a
separate SLD resolution tree is derived. If this separate tree fails to produce any
answers, the negative literal is dropped from the resolvent.

2.3 Constraint Logic Programming 13

Prolog

Prolog implements SLDNF resolution for normal logic programs with left-to-right
selection and depth-first search. A node in the SLD-tree with multiple children is
called a choice-point in Prolog terminology and returning to a higher-up node after
exploring a subtree is called backtracking. During backtracking Prolog undoes the
effect of unifiers applied in the explored subtree.

Besides the terms manipulated in logic programs, Prolog also adds numeric
data: integers and floating point numbers. For most purposes, these behave in the
same way as constants.

In addition to user-defined predicates and explicit unification Prolog provides
a number of predefined predicates, called built-in predicates or simply built-ins.
These built-ins are described in the ISO specification of Prolog (ISO/IEC 1995).
The following are a few of the built-ins used in this text:

true/0 Always succeeds.

fail/0 Never succeeds.

var/1 Succeeds if its argument is a variable.

nonvar/1 Succeeds if its argument is not a variable.

ground/1 Succeeds if its argument is ground.

term variables/2 Succeeds and unifies its second argument with a list of vari-
ables occurring in the first argument. The second argument
should be a variable prior to resolution.

==/2 Succeeds if its two arguments are syntactically identical. Its
opposite is \== which succeeds if its two arguments are syn-
tactically different.

>=/2 Succeeds if both its arguments are arithmetic formulas and
the value that the first argument evaluates to is greater or
equal to the value that the second argument evaluates to.

is/2 Unifies the left-hand side (first argument) with the numeric
value of the arithmetic formula represented by the right-hand
side (second argument). The right-hand side should be a
well-formed ground arithmetic expression.

Prolog defines several operators besides conjunction that influence the shape
of the SLDNF-tree:

(G1 ; G2) Explicit disjunction creates an additional choice-point, with re-
solvents G1 and G2 along either branch.

14 Background: Constraint Logic Programming and CHR

(C -> T ; E) If-then-else first resolves the condition C. If it succeeds, T is
resolved next. Otherwise E is resolved.

! Cut prunes all alternative branches that are to the right in the
SLD-tree on the path between the resolution of the cut and the
resolution of the clause in which it appears (inclusive).

\+ G Negation as failure constructs a new SLD-tree with goal G and
succeeds if the new tree contains no answers.

findall(Pattern,Goal,List)

Findall unifies List with a list of elements Patternθ for each θ
that is an answer substitution of the goal Goal.

2.3.2 Constraint Logic Programming

Constraint Logic Programming (CLP) combines Logic Programming with con-
straint solving. A good survey is given in (Jaffar and Maher 1994) and a recom-
mended introductory work is (Marriott and Stuckey 1998).

Constraint Domains

A constraint domain D consists of a set Π′ ⊂ Π of constraint symbols, a logical the-
ory T and for every constraint symbol c/n ∈ Π′ a tuple of value sets 〈V1, . . . , Vn〉.
A primitive constraint is constructed from a constraint symbol c/n and for every
argument position i (1 ≤ i ≤ n) either a variable or a value from the corresponding
value set Vi, similar to the way an atom is constructed in a logic program.

A constraint is of the form c1∧ . . .∧cn where n ≥ 0 and c1, . . . , cn are primitive
constraints. Two distinct constraints are true and false. The former always holds
and the latter never holds. The empty conjunction of constraints is written as
true.

The logical theory T determines what constraints hold and what constraints
do not hold. Typically, we use D to also refer specifically to T . For example D |= c
means that under the logical theory T of constraint domain D the constraint c
holds.

A valuation θ for a constraint C is a variable substitution that maps the vari-
ables in vars(C) onto values of the constraint domain D. If θ is a valuation for C,
then it is a solution for C if Cθ holds in the constraint domain D, i.e. D |= Cθ.
A constraint C is satisfiable if it has a solution; otherwise it is unsatisfiable. Two
constraints C1 and C2 are equivalent, denoted D |= C1 ↔ C2, if and only if they
have the same solutions.

Two problems associated with a constraint C are the solution problem, i.e.
determining a particular solution, and the satisfaction problem, i.e. determining

2.3 Constraint Logic Programming 15

whether there exists at least one solution. An algorithm for determining the sat-
isfiability of a constraint is called a constraint solver. Often a solution is produced
as a by-product. A general technique used by many constraint solvers is to re-
peatedly rewrite a constraint into an equivalent constraint until a solved form is
obtained. A constraint in solved form has the property that it is clear whether it
is satisfiable or not.

Constraint Logic Programming

The bodies of clauses of a constraint logic program may contain constraints in
addition to the ordinary literals.

The operational semantics of logic programs is extended to interoperate with a
constraint solver. Throughout resolution a conjunction of constraints encountered
so far, the constraint store S, is maintained. Initially this constraint store is empty,
i.e. S = true. Each time a constraint literal c is selected this constraint is added
to the constraint store. Logically this addition replaces the old constraint store S0

with S1 = S0∧c. The constraint solver then rewrites the resulting constraint store
to its solved form. If this solved form is detected to be unsatisfiable, resolution
fails. Otherwise, ordinary resolution resumes.

Besides the ordinary constraints that are added to the constraint store, in
this context called tell constraints, also ask versions of tell constraints (or ask
constraints for short) may be used in CLP programs. When an ask constraint is
selected, it is not added to the constraint store. Instead it is verified whether the
constraint store entails the constraint. If it does, resolution resumes. Otherwise
resolution fails.

Unification as the Term Equality Constraint

Here we present a constraint theory that we will use throughout this thesis, namely
Prolog’s equality theory. Prolog’s unification (=) is a constraint extension of
term equality (≡): it constrains terms to be syntactically equal. The axioms of
unification, or the Herbrand constraint theory, H are the following:

(reflexivity) x = x
(symmetry) x = y → y = x

(transitivity) x = y ∧ y = z → x = z
(recursion) x = f(x1, . . . , xn) ∧ x = g(y1, . . . , ym)→

f ≡ g ∧ n = m ∧ x1 = y1 ∧ . . . ∧ xn = yn

The ==/2 predicate is the ask version of the =/2 constraint.

On top of unification some more predicates and a function may be defined:

16 Background: Constraint Logic Programming and CHR

(nonvar) C → nonvar(x)⇔ ∃f, n, x1, . . . , xn : C → x = f(x1, . . . , xn)
(var) C → var(x)⇔ C 6→ nonvar(x)

(ground) C → ground(x)⇔6 ∃v : C → v ∈ term vars(x)
(term vars) C → v ∈ term vars(t)⇔ ∃f, ti :

C → var(v) ∧ (t = v ∨ (t = f(. . . , ti, . . .) ∧ v ∈ term vars(ti))

where C is any conjunction of unifications. These predicates correspond with
Prolog built-ins of the same name and the term vars(t) function corresponds to
the term variables/2 built-in.

The following theorem establishes the relation between equality constraints and
substitutions, both of which are used to make terms equal:

Theorem 2.1

∀θ = {X1/τ1, . . . , Xn/τn} : A ≡ Bθ ↔ (X1 = τ1 ∧ · · · ∧Xn = τn → A = B)

where X1, . . . , Xn are variables and A,B, τ1, . . . , τn are terms.

In an abuse of syntax we will sometimes use θ as the conjunction of equality
constraints X1 = τ1 ∧ · · · ∧Xn = τn.

2.4 Constraint Handling Rules

2.4.1 Syntax

CHR Constraints

CHR constraint symbols are drawn from the set of predicate symbols, denoted by
a functor/arity pair. CHR constraints, also called constraint atoms or constraints
for short, are atoms constructed from these symbols.

Built-in Constraints

CHR is embedded in a host language that provides a number of predefined con-
straints. These constraints are called host language constraints or built-in con-
straints. The typical host language of CHR is Prolog and the built-in constraints
are unification, Prolog built-ins and user-defined predicates. We will assume that
the built-in solver supports at least term equality. The constraint domain of the
built-in constraints is denoted by Db.

Programs and Rules

A CHR program P consists of an ordered sequence of CHR rules. The ordering is
the one in which the rules are written.

2.4 Constraint Handling Rules 17

There are three different kinds of rules. A simplification rule is of the form:

c1, . . . , cn <=> g | d1, . . . , dm.

A propagation rule is of the form:

c1, . . . , cn ==> g | d1, . . . , dm.

A simpagation rule is of the form:

c1, . . . , cl \ cl+1, . . . , cn <=> g | d1, . . . , dm.

Here l,m, n > 0. The sequence, or conjunction, c1, . . . , cn are CHR constraint
atoms; together they are called the head or head constraints of the rule. A rule with
n head constraints is named an n-headed rule and when n > 1, it is a multi-headed
rule.

A rule is optionally preceded by name @ where name is a term. No two rules
may have the same name.

All the head constraints of a simplification rule and the head constraints
cl+1, . . . , cn of a simpagation rule are called removed head constraints. The other
head constraints, all those of a propagation rule and c1, . . . , cl of a simpagation
rule, are called kept head constraints.

With every head constraint a number is associated, called the occurrence. Head
constraints are numbered per functor/arity pair, starting from 1, from the first
rule to the last rule, from left to right. Removed heads in a simpagation rule are
numbered before kept heads.

The conjunction d1, . . . , dn are either CHR constraints or host language con-
straints; together they are called the body of the rule.

The part of the rule between the arrow and the body, g, is called the guard. It
is a conjunction of host language ask constraints. The guard “g |”is optional; if
omitted, it is considered to be true.

We denote the set of all possible CHR programs by Prog.

Example 2.1 The following is an example of a CHR program P.

Listing 2.1 - The gcd Program
gcd1 @ gcd(0) <=> true.

gcd2 @ gcd(I) \ gcd(J) <=> J >= I | K is J - I, gcd(K).

The rules in P are named respectively gcd1 and gcd2. They are respectively a
simplification rule and a simpagation rule.

18 Background: Constraint Logic Programming and CHR

Generalized Simpagation Form For simplicity, we sometimes consider both
simplification and propagation rules as special cases of a simpagation rules. The
general form of a simpagation rule is:

c1, . . . , cl \ cl+1, . . . , cn <=> g | d1, . . . , dm.

or
Hk \ Hr <=> g | B

where Hr is the sequence of the removed head constraints and Hk is the sequences
of the kept CHR constraints, g is a sequence of built-in constraints, and B is a
sequence of constraints. If Hk is empty, then the rule is a simplification rule. If
Hr is empty, then the rule is a propagation rule. At least one of Hr and Hk must
be non-empty.

Code Listings

All code listed in this text is valid in SWI-Prolog (Wielemaker 2004). Part of the
code is ordinary Prolog code and part of it is CHR code.

CHR code in SWI-Prolog always has to be preceded by the following declaration
in a source file:

:- use module(library(chr)).

to import the CHR library.
In addition all functor/arity pairs of the CHR constraints have to be declared

with a constraints/1 declaration. In this way it is possible to declare CHR
constraints that do not occur in the head of a rule.

Example 2.2 The following code listing combines the CHR rules of Example 2.1
in a single program with the required declarations:

:- use_module(library(chr)).

:- constraints gcd/1.

gcd1 @ gcd(0) <=> true.

gcd2 @ gcd(I) \ gcd(J) <=> J >= I | K is J - I, gcd(K).

2.4.2 The ωt Operational Semantics

In this section we present the operational semantics ωt of CHR, sometimes also
called theoretical or high-level operational semantics. The refined operational se-
mantics is discussed in Section 2.4.3.

2.4 Constraint Handling Rules 19

Several versions of the operational semantics have already appeared in the
literature, e.g. (Abdennadher 1997; Frühwirth 1998), essentially as a multiset re-
writing semantics. We adopt the version of (Duck, Stuckey, Garćıa de la Banda,
and Holzbaur 2004), which is equivalent to the previous ones, but closer in formu-
lation to the refined semantics that we will present and use later in this text.

The ωt semantics is formulated as a state transition system. Transition rules
define the relation between an execution state and its subsequent execution state.

Execution State Firstly, we define an execution state σ as the tuple
〈G,S,B, T 〉n. The first part of tuple, the goal G is the multiset of constraints to be
rewritten to solved form. The CHR constraint store S is the multiset of identified
CHR constraints that can be matched with rules in the program P . An identified
CHR constraint c#i is a CHR constraint c associated with some unique integer i,
the constraint identifier. This number serves to differentiate among copies of the
same constraint. We introduce the functions chr(c#i) = c and id(c#i) = i, and
extend them to sequences and sets of identified CHR constraints in the obvious
manner. We also define the functions on multisets of identified constraints in the
obvious manner, e.g. chr(S) = {c|c#i ∈ S}.

The built-in constraint store B is the conjunction of all built-in constraints
that have been passed to the underlying solver. Since we will usually have no
information about the internal representation of B, we will model it as an abstract
logical conjunction of constraints. The propagation history T is a set of sequences,
each recording the identities of the CHR constraints that fired a rule, and the
name of the rule itself. This is necessary to prevent trivial non-termination for
propagation rules: a propagation rule is allowed to fire on a set of constraints
only if the constraints have not been used to fire the same rule before. Finally,
the counter n represents the next free integer that can be used to number a CHR
constraint.

Given an initial goal G, the initial execution state is: 〈G, ∅, true, ∅〉1.

Transition Rules The theoretical operational semantics ωt is based on the three
transition rules listed in Figure 2.1 that map execution states to execution states.

The first rule tells the underlying solver to add a new built-in constraint to the
built-in constraint store. The second adds a new identified CHR constraint to the
CHR constraint store. The last one chooses a program rule for which matching
constraints exist in the CHR constraint store, and whose guard is entailed by
the underlying solver, and fires it. In examples, we usually apply the resulting
matching substitution θ to all relevant fields in the execution state, i.e. G, S and
B.

The transitions are non-deterministically applied, starting from the initial ex-
ecution state, until either no more transitions are applicable (a successful deriv-
ation), or the underlying solver can prove Db |= ¬∃̄∅B (a failed derivation). In

20 Background: Constraint Logic Programming and CHR

1. Solve 〈{c}]G,S,B, T 〉n �solve 〈G,S, c∧B, T 〉n where c is a built-in
constraint.

2. Introduce 〈{c}] G,S,B, T 〉n �introduce 〈G, {c#n}] S,B, T 〉(n+1)

where c is a CHR constraint.

3. Apply 〈G,H1] H2] S,B, T 〉n �apply 〈C] G,H1] S, θ ∧ B, T ′〉n
where there exists a (renamed apart) rule in P of the form

r @ H ′
1 \ H ′

2 ⇐⇒ g | C

and a matching substitution θ such that chr(H1) = θ(H ′
1), chr(H2) =

θ(H ′
2) and Db |= B → ∃̄B(θ ∧ g). In the result T ′ = T ∪ {id(H1) ++

id(H2) ++ [r]}. It should hold that T ′ 6= T .

Figure 2.1: The transition rules of the theoretical operational semantics ωt

both cases a final state has been reached, the former a success state and the latter
a failed state.

Example 2.3 Table 2.2 depicts a (terminating) derivation under ωt for the query
gcd(6), gcd(9) executed on the gcd program in Example 2.1.

Every row in the table indicates an execution state; for brevity, B and T have
been omitted. The column with label “Transition” indicates for each execution
state the transition used to derive it from the previous state. In case of an apply
transition, the column “Rule” indicates the CHR rule used. In every state the
constraints are underlined that are affected by the transition to the next state.

No more transition rules are possible after the last state, so this is the final
state.

The transition arrow � is denoted without a subscript when the actual trans-
ition rule used is unspecified. The transitive closure of � is denoted as �

∗.

Non-determinism In general for the same initial state many different final
states may be reached through many different derivations. We denote a particular
derivation d from initial state σ0 to final state σ as σ0 �

d σ. Similarly, we
denote the final state obtained through a derivation d from an initial state σ0 as
solved(σ0). When the particular derivation is irrelevant, it may be omitted, e.g.
as in solve(σ0).

2.4 Constraint Handling Rules 21

Transition Rule G S n
{gcd(6), gcd(9)} ∅ 1

introduce {gcd(9)} {gcd(6)#1} 2

introduce ∅ {gcd(6)#1, gcd(9)#2} 3

apply gcd2 {O is 9− 6, gcd(O)} {gcd(6)#1} 3
solve {gcd(3)} {gcd(6)#1} 3

introduce ∅ {gcd(6)#1, gcd(3)#3} 4

apply gcd2 {O is 6− 3, gcd(O)} {gcd(3)#3} 4
solve {gcd(3)} {gcd(3)#3} 4

introduce ∅ {gcd(3)#3, gcd(3)#4} 5

apply gcd2 {O is 3− 3, gcd(O)} {gcd(3)#3} 5
solve {gcd(0)} {gcd(3)#3} 5

introduce ∅ {gcd(3)#3, gcd(0)#5} 6

apply gcd1 ∅ {gcd(3)#3} 6

Table 2.2: Example derivation under the ωt semantics

Head Normal Form For reasons of simplicity, we will sometimes only consider
CHR programs in Head Normal Form. A CHR program P is in Head Normal
Form if every rule r in P is in Head Normal Form. We say that a CHR rule r
is in Head Normal Form if all arguments of constraints in the head are unique
variables.

A procedure to transform any CHR program into an equivalent program under
ωt in Head Normal Form is given in (Holzbaur, Garćıa de la Banda, Stuckey, and
Duck 2005).

Example 2.4 For example, the following program is not in Head Normal Form:

r1 @ fibonacci(N,M1) \ fibonacci(N,M2) <=> M1 = M2.

r2 @ fibonacci(0,M) ==> M = 1.

r3 @ fibonacci(1,M) ==> M = 1.

r4 @ fibonacci(N,M) ==> N > 1 |

N1 is N-1, fibonacci(N1,M1),

N2 is N-2, fibonacci(N2,M2),

M is M1 + M2.

because rules r1, r2 and r3 are not in Head Normal Form. In rule r1 the same
variable, N , appears twice in the head and in rules r2 and r3 two arguments are
not variables, but numbers.

22 Background: Constraint Logic Programming and CHR

Example 2.5 However, the following program is in Head Normal Form and equi-
valent to the first:

r1 @ fibonacci(N1,M1) \ fibonacci(N2,M2) <=> N1 == N2

| M1 = M2.

r2 @ fibonacci(N,M) ==> N == 0 | M = 1.

r3 @ fibonacci(N,M) ==> N == 1 | M = 1.

r4 @ fibonacci(N,M) ==> N > 1 |

N1 is N-1, fibonacci(N1,M1),

N2 is N-2, fibonacci(N2,M2),

M is M1 + M2.

2.4.3 The ωr Operational Semantics

In this section we introduce the refined operational semantics ωr of CHR, defined
in (Duck, Stuckey, Garćıa de la Banda, and Holzbaur 2004) and implemented in
all major CHR systems.

The refined operational semantics establishes an order for the constraints in G.
As a result, we are no longer free to pick any constraint from G to either Solve
or Introduce into the store. It also treats CHR constraints as procedure calls:
each newly added constraint searches for possible matching rules in order, until
all matching rules have been executed or the constraint is deleted from the store.
As with a procedure, when a matching rule fires other CHR constraints might
be executed and, when they finish, the execution returns to finding rules for the
current active constraint. Not surprisingly, this approach is used exactly because
it corresponds closely to that of the stack-based programming languages to which
CHR is compiled.

Formally, the execution state of the refined semantics is the tuple 〈A,S,B, T 〉n
where S, B, T and n, representing the CHR store, built-in store, propagation
history and next free identity number respectively, are exactly as before. The
execution stack A is a sequence of constraints, identified CHR constraints and
occurrenced identified CHR constraints, with a strict ordering in which the top-
most constraint is called the active constraint. An occurrenced identified CHR
constraint c#i : j indicates that only matches with occurrence j of constraint
c should be considered when the constraint is active. Unlike in the theoretical
operational semantics, the same identified constraint may simultaneously appear
in both the execution stack A and the store S.

Given initial goal G, the initial state is as before, except that G should be a
sequence instead of a multiset. Just as with the theoretical operational semantics,
execution proceeds by exhaustively applying transitions to the initial execution

2.5 CHR versus Other Rule-based Languages 23

state until the built-in solver state is unsatisfiable or no transitions are applicable.
The possible transitions are listed in Figure 2.2.

The ωr semantics is an instance of the ωt semantics. In (Duck, Stuckey, Garćıa
de la Banda, and Holzbaur 2004) a mapping is given which maps execution states
of ωr to execution states of ωt and ωr derivations to ωt derivations.

The refined operational semantics is still non-deterministic. The first source of
non-determinism is the Solve transition where the order in which constraints S1

are added to the activation stack is left unspecified. The definition of Solve (which
considers all non-fixed CHR constraints) is weak. In practice, only constraints that
may potentially cause a new rule to fire are re-added (see (Duck, Stuckey, Garćıa
de la Banda, and Holzbaur 2003; Holzbaur and Frühwirth 1999) for more details).
We say that the CHR constraints added during a Solve transition of a built-in
constraint are triggered by the built-in constraint.

The other sources of non-determinism are present within the Simplify and
Propagate transitions, where we do not know which partner constraints (H1, H2

and H3) may be chosen for the transition, if more than one possibility exists. If
a Simplify or Propagate transition occurs, we say that the corresponding CHR
rule is fired.

Both sources of non-determinism could be removed by further refining the op-
erational semantics. However, the non-determinism is used to model implementa-
tion specific behavior of CHRs. For example, different CHR implementations use
different data structures to represent the store, and this may affect the order in
which partner constraints are matched against a rule. By leaving matching or-
der unspecified, we capture the semantics of more implementations. It also leaves
more freedom for optimization of CHR execution (see e.g. (Holzbaur, Garćıa de la
Banda, Stuckey, and Duck 2005)).

Example 2.6 Table 2.3 shows the derivation under ωr semantics for the gcd

program in Example 2.1 and the goal gcd(6),gcd(9). For brevity B and T have
been eliminated and the matching substitutions θ applied throughout.

2.5 CHR versus Other Rule-based Languages

Although CHR was conceived in the context of Constraint Logic Programming,
it has many characteristics in common with other rule-based languages. In this
section we compare CHR with two important classes of rule-based languages: pro-
duction rule systems and term rewriting systems.

24 Background: Constraint Logic Programming and CHR

1. Solve 〈[c|A], S0] S1, B, T 〉n � 〈S1 ++ A,S0] S1, c ∧ B, T 〉n where c
is a built-in constraint, and vars(S0) ⊆ fixed(B), where fixed(B) is the
set of variables fixed by B.a This reconsiders constraints whose matches
might be affected by c.

2. Activate 〈[c|A], S,B, T 〉n � 〈[c#n : 1|A], {c#n}]S,B, T 〉(n+1) where
c is a CHR constraint (which has never been active).

3. Reactivate 〈[c#i|A], S,B, T 〉n � 〈[c#i : 1|A], S,B, T 〉n where c is a
CHR constraint (re-added to A by Solve but not yet active).

4. Drop 〈[c#i : j|A], S,B, T 〉n � 〈A,S,B, T 〉n where c#i : j is an
occurrenced active constraint and there is no such occurrence j in P (all
existing ones have already been tried thanks to transition 7).

5. Simplify 〈[c#i : j|A], {c#i}]H1]H2]H3] S,B, T 〉n �

〈C ++ A,H1]S, θ∧B, T ′〉n where the jth occurrence of the CHR predicate
of c in a (renamed apart) rule in P is

r @ H ′
1 \ H ′

2, d,H ′
3 ⇐⇒ g | C

and there exists a matching substitution θ such that c = θ(d), chr(H1) =
θ(H ′

1), chr(H2) = θ(H ′
2), chr(H3) = θ(H ′

3), and Db |= B → ∃̄B(θ ∧ g).
Let T ′ = T ∪ {id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r]} and T ′ 6= T .

6. Propagate 〈[c#i : j|A], {c#i}]H1]H2]H3] S,B, T 〉n �

〈C ++ [c#i : j|A], {c#i}]H1]H2]S, θ∧B, T ′〉n where the jth occurrence
of the CHR predicate of c in a (renamed apart) rule in P is

r @ H ′
1, d,H ′

2 \ H ′
3 ⇐⇒ g | C

and there exists a matching substitution θ such that c = θ(d), chr(H1) =
θ(H ′

1), chr(H2) = θ(H ′
2), chr(H3) = θ(H ′

3),and Db |= B → ∃̄B(θ ∧ g). Let
T ′ = T ∪ {id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r]} and T ′ 6= T .

7. Default 〈[c#i : j|A], S,B, T 〉n � 〈[c#i : j + 1|A], S,B, T 〉n if the
current state cannot fire any other transition.

av ∈ fixed(B) if Db |= ∃̄v(B) ∧ ∃̄ρ(v)ρ(B) → v = ρ(v) for arbitrary renaming ρ.

Figure 2.2: The transition rules of the refined operational semantics ωr

2.5 CHR versus Other Rule-based Languages 25

Transition Rule A S n
[gcd(6), gcd(9)] ∅ 1

activate [gcd(6)#1 : 1, gcd(9)] {gcd(6)#1} 2
default [gcd(6)#1 : 2, gcd(9)] {gcd(6)#1} 2
default [gcd(6)#1 : 3, gcd(9)] {gcd(6)#1} 2
default [gcd(6)#1 : 4, gcd(9)] {gcd(6)#1} 2
drop [gcd(9)] {gcd(6)#1} 2
activate [gcd(9)#2 : 1] {gcd(6)#1, gcd(9)#2} 3
default [gcd(9)#2 : 2] {gcd(6)#1, gcd(9)#2} 3
simplify gcd2 [K is 9− 6, gcd(K)] {gcd(6)#1} 3
solve [gcd(3)] {gcd(6)#1} 3
activate [gcd(3)#3 : 1] {gcd(6)#1, gcd(3)#3} 4
default [gcd(3)#3 : 2] {gcd(6)#1, gcd(3)#3} 4
default [gcd(3)#3 : 3] {gcd(6)#1, gcd(3)#3} 4
propagate gcd2 [K is 6− 3, gcd(K), gcd(3)#3 : 3] {gcd(3)#3} 4
solve [gcd(3), gcd(3)#3 : 3] {gcd(3)#3} 4
activate [gcd(3)#4 : 1, gcd(3)#3 : 3] {gcd(3)#3, gcd(3)#4} 5
default [gcd(3)#4 : 2, gcd(3)#3 : 3] {gcd(3)#3, gcd(3)#4} 5
simplify gcd2 [K is 3− 3, gcd(K), gcd(3)#3 : 3] {gcd(3)#3} 5
solve [gcd(0), gcd(3)#3 : 3] {gcd(3)#3} 5
activate [gcd(0)#0 : 1, gcd(3)#3 : 3] {gcd(3)#3, gcd(0)#5} 6
simplify gcd1 [gcd(3)#3 : 3] {gcd(3)#3} 6
default [gcd(3)#3 : 4] {gcd(3)#3} 6
drop � {gcd(3)#3} 6

Table 2.3: Example derivation under the ωr semantics

26 Background: Constraint Logic Programming and CHR

2.5.1 Production Rule Systems

The programming paradigm of production rule systems originates from Artificial
Intelligence research and are mainly used for expert systems (Davis, Buchanan,
and Shortliffe 1984). The idea behind it is to represent knowledge as a set of
rules of the kind ’if . . . then . . . ’. The if-clause consists of conditions and the then-
clause of a sequence of actions. The conditions of the if-clause contain expression
matchings. Variables that are established in the matchings may be used in the
actions of the then-clause.

The working memory contains a number of temporary expressions. During
the execution of the production rule system, all production rules are identified
whose if-clause can be satisfied by some subset of the working memory. Next,
the then-clauses of one or more (typically just one) of the identified rules are
executed. Typically, actions are either the addition and the removal (sometimes
also the updating) of temporary expressions in the working memory. This cycle of
identification and execution of actions is repeated until no more production rule
is identified.

A few examples of production rule systems are CLIPS (Savely et al. 2005) for
C and JRules (ILOG 2004) and Jess (Friendman-Hill 2003) for Java.

CHR as a Production Rule System CHR can be seen as a form of a pro-
duction rule system specialized for constraint-based host languages. The CHR
constraint store corresponds with the working memory and the CHR constraints
with the expressions. The if-clause of a CHR rule consists of the matching of the
head constraints and the guard. The actions of the then-clause are partially en-
coded in the head and type of the rule and partially in the body. The removed head
constraints correspond with removal actions and the constraints in the body cor-
respond with addition actions. Typically in production rule systems such actions
are explicitly stated in the bodies of rules.

In the French Manifico project the use of CHR for typical production rule ap-
plications, i.e. knowledge representation, is being researched. Its strong ties to
constraint logic programming though and more formal aspects such as the declar-
ative semantics introduced in Section 4.2 make CHR more suitable than other
production rule systems for the implementation of constraint solvers and general
purpose applications in the context of constraint logic programming languages.
The Solve transition in the refined operational semantics is rather specific for
CHR. This transition reconsiders CHR constraints for rule applications when a
built-in constraint is added. In implementations of production rule systems, e.g.
the RETE algorithm (Forgy 1982), expressions are usually considered only once
actively and there is no notion of triggering.

2.5 CHR versus Other Rule-based Languages 27

2.5.2 Term Rewriting Systems

Term Rewriting Systems (TRS) originate from mathematical logic and its theory
stems from the study of Church’s λ-calculus and Curry’s Combinatory Logic. The
first use of a TRS as a programming language is (Gorn 1965). See (Dershowitz
1993) for an introduction to rewriting systems. Rewriting rules are directed equa-
tions. An initial term is rewritten until a normal form is reached, i.e. a form
that cannot be rewritten further. Computation consists of repeatedly replacing a
(sub)term with a (sub)term that is equal under the directed equations. A note-
worthy extension of term rewriting systems are conditional term rewriting systems.
Conditional term rewriting systems (Brand, Darringer, and Joyner 1978) consist
of guarded rewriting rules. The guard of a rewriting rule consists of a conjunc-
tion of equality constraints. An equality constraint holds if the left-hand and the
right-hand side have the same normal form.

Other variants of term rewriting systems rewrite structured data instead of
syntactic terms. For example, graph rewriting systems (Ehrig 1979) transform
graphs.

The following are implementations of TRSs: OBJ3 (Goguen and Malcolm 1996;
Goguen, Winkler, Meseguer, Futatsugi, and Jouannaud 1993), Maude (Clavel,
Durán, Eker, Lincoln, Mart́ı-Oliet, Meseguer, and Talcott 2003) and Stratego
(Visser 2001). Typical applications are theorem proving and modelling but many
general purpose applications exist as well. The Stratego language for instance is
mainly meant for program transformations.

CHR versus Term Rewriting Systems Many parallels can be drawn between
CHR and (conditional) TRSs. Many aspects are similar, but different due to a
focus on constraint theory on the one hand and equalities on the other hand:

• Both systems repeatedly rewrite a state until a normal form is reached.
While TRSs perform rewritings based on equations, CHR performs rewrit-
ings based on a logical (constraint) theory (see Section 4.2).

• The term in the TRS more or less corresponds with the CHR constraint
store and subterms with CHR constraints. The TRS term has more explicit
structure than the CHR constraint store though: all subterms have a partic-
ular position in the term whereas the CHR constraint store is a set without
further structure. The same difference exists on the level of the rules. TRS
rules rewrite a single term to another one, while several CHR constraints
may be removed and added by a single CHR rule.

• Both systems have a means to make applicability of rules conditional. The
conditions of conditional TRSs are based on rewriting of equations, while
CHR guards are based on the logical constraint theory of the built-in con-
straints.

28 Background: Constraint Logic Programming and CHR

Several theoretical results have been ported from term rewriting systems to
CHR. For instance, termination conditions of TRSs have been ported from TRSs
to CHR (Frühwirth 2000) although they cannot cope with propagation rules.
Propagation rules do not exist in TRSs: it is impossible to add something to
a term without changing it. Also the notion of confluence and critical pairs (see
Section 4.4) is one that has been copied from TRSs to CHR.

While CHR is well integrated with its host language, TRSs are typically stand-
alone systems. Also the notion of triggering in the Solve rule of the refined
operational semantics of CHR is inexistent in TRSs. In TRSs a rewrite rule either
does or does not apply to a particular term; there is no notion of updates (the
addition of built-in constraints in CHR) that may alter applicability.

Chapter 3

Show Cases of Constraint

Handling Rules

3.1 Introduction

In this chapter we illustrate the use of Constraint Handling Rules. We show how
three particular applications are modeled and implemented using CHR. The first
application, covered in Section 3.2, is an implementation of the classic union-find
algorithm. The second application, in Section 3.3, is a framework for testing new
memory models for Java. The last application, in Section 3.4, computes the well-
founded semantics for general logic programs. Section 3.5 concludes this chapter.

3.2 The Union-Find Algorithm

3.2.1 Introduction

When a new programming language is introduced, sooner or later the question
arises whether classical algorithms can be implemented in an efficient and eleg-
ant way. For example, one often hears the argument that in Prolog some graph
algorithms cannot be implemented with best known complexity because Prolog
lacks destructive assignment that is needed for efficient update of the graph data
structures. In particular, it is not clear whether the union-find algorithm can be
implemented with optimal complexity in pure (i.e. side-effect-free) Prolog (Gan-
zinger and McAllester 2001).

In this text, we will give a positive answer for the Constraint Handling Rules
(CHR) programming language. In this section, we show how the algorithm can
be implemented elegantly. The actual study of our program’s time complexity is
done in Section 4.7 after we have covered the necessary time complexity aspects.

29

30 Show Cases of Constraint Handling Rules

Closest to our work is the presentation of a logical algorithm for the union-
find problem in (Ganzinger and McAllester 2001). In a hypothetical bottom-
up inference rule language with permanent deletions and rule priorities, a set of
rules for union-find is given that is proven to run in O(M + Nlog(N)) worst-
case time for a sequence of M operations on N elements. The direct efficient
implementation of this inference rule system seems not feasible. It is also not clear
whether the rules given in (Ganzinger and McAllester 2001) describe the standard
union-find algorithm as can be found in text books such as (Cormen, Leiserson, and
Rivest 1990). The authors remark that giving a rule set with optimal amortized
complexity is complicated.

This section is structured as follows. In the next subsection, we review the
classical union-find algorithms. Then, in Section 3.2.3 we present the implement-
ation of the classical union-find algorithm in CHR. An improved version of the
implementation, featuring path compression and union-by-rank, is presented next
in Section 3.2.4. Finally, Section 3.2.5 concludes.

3.2.2 The Union-Find Algorithm

The classical union-find, also called disjoint set union, algorithm was introduced
by Tarjan in the seventies (Tarjan and van Leeuwen 1984). A classic survey on the
topic is (Galil and Italiano 1991). The algorithm solves the problem of maintaining
a collection of disjoint sets under the operation of union. Each set is represented
by a rooted tree, whose nodes are the elements of the set. The root is called the
representative of the set. The representative may change when the tree is updated
by a union operation. With the algorithm come three operations on the sets:

• make(X): create a new set with the single element X.

• find(X): return the representative of the set in which X is contained.

• union(X,Y): join the two sets that contain X and Y, respectively (possibly
destroying the old sets and changing the representative).

A new element must be introduced exactly once with make before being subject
to union and find operations.

In the naive algorithm, these three operations are implemented as follows.

• make(X): generate a new tree with the only node X, i.e. X is the root.

• find(X): follow the path from the node X to the root of the tree. Return
the root as representative.

• union(X,Y): find the representatives of X and Y, respectively. To join the
two trees, it suffices to link them by making one root point to the other
root.

3.2 The Union-Find Algorithm 31

The following imperative pseudo-code implements this algorithm:

Listing 3.1 - The Naive Union-Find Algorithm

make(x)

p[x] ← x

union(x,y)

link(find(x),find(y))

link(x,y)

if x 6= y

then p[y] ← x

find(x)

if x 6= p[x]

then return find(p[x])

else return x

In this pseudo-code p[x] denotes the ancestor of x in the tree. If x is the root,
then p[x] equals x.

The naive algorithm requires O(N) time per find (and union) in the worst
case, where N is the number of elements (make operations). With two independent
optimizations that keep the tree shallow and balanced, one can achieve quasi-
constant (i.e. almost constant) amortized running time per operation.

The first optimization is path compression for find. It moves nodes closer to
the root. After find(X) returned the root of the tree, we make every node on
the path from X to the root point directly to the root. The second optimization is
union-by-rank. It keeps the tree shallow by pointing the root of the smaller tree
to the root of the larger tree. Rank refers to an upper bound of the tree depth.
If the two trees have the same rank, either direction of pointing is chosen but the
rank is increased by one.

For each optimization alone and for using both of them together, the worst case
time complexity for a single find or union operation is O(log(N)). For a sequence
of M operations on N elements, the worst complexity is O(M +Nlog(N)). When
both optimizations are used, the amortized complexity is quasi-linear, O(M +
Nα(N)), where α(N) is an inverse of the Ackermann function and is less than 5
for all practical N .

In the naive pseudo-code, the make, link and find operations have to be
redefined as follows, to add union-by-rank and path compression.

32 Show Cases of Constraint Handling Rules

Listing 3.2 - Union-Find with Union-by-Rank and Path Compression

make(x)

p[x] ← x

rank[x] ← 0

link(x,y)

if x 6= y

if rank[x] ≥ rank[y]

then p[y] ← x

rank[x] ← max(rank[x],rank[y] + 1)

else p[x] ← y

find(x)

if x 6= p[x]

then p[x] ← find(p[x])

return p[x]

The union-find algorithm has applications in graph theory (e.g. efficient com-
putation of spanning trees). By definition of set operations, a union operator
working on representatives of sets is an equivalence relation, i.e. we can view sets
as equivalence classes. When the union-find algorithm is extended to deal with
nested terms to perform congruence closure, the algorithm can be used for term
unification in theorem provers and in Prolog.1 The WAM (Warren 1983), Pro-
log’s traditional abstract machine, uses the basic version of union-find for variable
aliasing. While variable shunting, a limited form of path compression, is used
in some Prolog implementations (Sahlin and Carlsson 1991), we do not know of
any implementation of the optimized union-find that keeps track of ranks or other
weights.

3.2.3 Implementing Union-Find in CHR

The following CHR program implements the operations and data structures of the
naive union-find algorithm without optimizations.

Listing 3.3 - The Naive Union-Find Program

make @ make(X) <=> root(X).

union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).

1It is straightforward to combine the existing CHR solvers for term unification with our
union-find implementation

3.2 The Union-Find Algorithm 33

findNode @ X ~> PX \ find(X,R) <=> find(PX,R).

findRoot @ root(X) \ find(X,R) <=> R=X.

linkEq @ link(X,X) <=> true.

link @ link(X,Y), root(X), root(Y) <=> Y ~> X, root(X).

The constraints make/1, union/2, find/2 and link/2 define the operations,
so we call them operation constraints. The constraints root/1 and ~>/2 represent
the tree data structure and we call them data constraints.

The elements we apply union to are constants as usual for union-find al-
gorithms. Hence the arguments of all constraints are constants, with the exception
of the second argument of find/2 that must be a variable that is bound to a con-
stant in the rule findRoot.

Actually, the use of the built-in constraint = in this rule is restricted to returning
the element X in the parameter R. In particular no full unification is ever performed
(that could rely on union-find itself).

3.2.4 Optimized Union-Find

The following CHR program implements the optimized classical union-find al-
gorithm with path compression for find and union-by-rank (Tarjan and van Leeuwen
1984). The union/2 constraint is implemented exactly as for the naive algorithm.

Listing 3.4 - The Optimal Union-Find Program
make @ make(X) <=> root(X,0).

findNode @ X ~> PX , find(X,R) <=> find(PX,R), X ~> R.

findRoot @ root(X,_) \ find(X,R) <=> R=X.

linkEq @ link(X,X) <=> true.

linkLeft @ link(X,Y), root(X,RX) root(Y,RY) <=> RX >= RY |

Y ~> X, NRX is max(RX,RY+1), root(X,NRX).

linkRight @ link(X,Y), root(Y,RY), root(X,RX) <=> RY >= RX |

X ~> Y, NRY is max(RY,RX+1), root(Y,NRY).

When compared to the naive version, we see that root has been extended with
a second argument that holds the rank of the root node. The rule findNode has
been extended for path compression already during the first pass along the path
to the root of the tree. This is achieved by the help of the variable R that serves
as a place holder for the result of the find operation. The link rule has been split

34 Show Cases of Constraint Handling Rules

into two rules, linkLeft and linkRight, to reflect the optimization of union-by-
rank: The smaller ranked tree is added to the larger ranked tree without changing
its rank. When the ranks are the same, either tree is updated (both rules are
applicable) and the rank is incremented by one.

3.2.5 Union-Find Conclusion

We have shown in this section that it is possible to implement the classical union-
find algorithm concisely in CHR. The implementation is extended with two op-
timizations: path-compression and union-by-rank.

In future work we intend to investigate implementations for other variants
of the union-find algorithm. For a parallel version of the union-find algorithm
parallel operational semantics of CHR has to be investigated. A dynamic version
of the algorithm, e.g. where unions can be undone, would presumably benefit from
dynamic CHR constraints as defined in (Wolf 2001; Wolf 2005).

3.3 JmmSolve: a generative Java Memory Model

3.3.1 Introduction

This section covers our implementation in the context of the JSR-133 request
(Pugh) for a new memory model for Java. First, Section 3.3.2 briefly intro-
duces the Java memory model and the reason for the formulation of JSR-133
years ago. Next, Section 3.3.3 presents the Concurrent Constraint-Based Memory
Machines proposal that was developed by Vijay Saraswat (Saraswat 2004). Then
Section 3.3.4 covers the part where we come in: JmmSolve is our generative im-
plementation in Prolog and CHR of Saraswat’s proposal, which allows for easy
experimentation with the proposal. Finally, Section 3.3.5 concludes.

3.3.2 The Java Memory Model

Memory Models The memory model of a programming language specifies the
interaction of multiple threads with main memory. Main memory provides memory
locations containing values. A thread is able to interact with these memory loca-
tions in several different ways:

• A read operation reads the value in the memory location.

• A write operation replaces the value in the memory location with a new one.

• A lock operation delays other threads’ interaction with the memory location
until the lock is released.

• An unlock operation releases the lock.

3.3 JmmSolve: a generative Java Memory Model 35

By working on shared memory locations, threads are capable of communicating.
Basically, the memory model says for every value obtained by a read operation

in a program by what write operation it has been produced. In a multi-threaded
unsynchronized program there need not be a linking from reads to writes with the
properties we expect from a single-threaded program: uniqueness of the linking
and a logical total ordering of operations.

An order model is an important part of a memory model. It specifies in what
way memory operations from different threads can and cannot be ordered. For
example, the Sequential consistency model imposes a total order that only allows
interleaved sequentialization of instructions from different threads, while the Hap-
pens Before consistency model only imposes a total order on events within one
thread.

Java Java (Gosling, Joy, and Steele 1996) is currently one of the most popular
object-oriented programming languages. Part of its appeal stems from its port-
ability: Java is a multi-platform language in which one can write and compile a
program on one platform and run the generated bytecode on many platforms.

For single platform languages certain parts of the language, such as its memory
model, are often left unspecified; they are implicitly determined by the platform
and programmers familiar with the platform will expect its implicit behavior.
However, for a multi-platform language such as Java a full specification of the
language, and the memory model in particular, is essential to guarantee portability
of programs. If a Java programmer relies on the implicit memory model of the
platform she is currently working on, her program may show unexpected behavior
on a different platform.

For this reason, the Java language has always had an explicitly specified memory
model. However, several undesirable and unexpected properties of the first Java
Memory Model (JMM) have come up: it is an unintuitive model that is not easily
understood by programmers, it gives rise to some unwanted behavior and it is
hard to implement on current hardware architectures.

For example, consider the java.lang.String class, part of the Java Standard
Library, that implements immutable text strings. In fact, under the old JMM,
Strings (objects of this class) are not quite so immutable as intuitively expected
by programmers. It is possible, during the initialization of a String that is a
substring of another String, to observe a different value than the intended one.

Essentially, the String class has three final (i.e. immutable) fields: a character
array, an offset into the character array that represents the start of the string and
a length. This encoding allows for the character array to be shared among String
objects. In particular this sharing happens when a String object obtained as a
substring of another String object. Consider this code:

String s1 = "/usr/tmp";

String s2 = s1.substring(4);

36 Show Cases of Constraint Handling Rules

The String s2 will have an offset of 4 and a length of 4, but will share the character
array with String s1. Before the String constructor for s2 is executed in one thread,
all fields of s2 are initialized to their default values: the length and offset to 0 and
the character array to null. Because the constructor is not synchronized it is then
possible under the old JMM for another thread to first only see the setting of the
length and array fields in the constructor, i.e. a value of "/usr" and later also see
the setting of the offset field to 4. The value of the string appears to have changed
from "/usr" to "/tmp" in the other thread. Clearly, this is a highly undesirable
property.

Overview Because of these undesirable properties, Java Specification Request
133 (JSR-133) (Pugh) has called for a new JMM that fixes the current problems.
A proposal in the context of JSR-133 is the Concurrent Constraint-based Memory
Machines (Saraswat 2004) framework by Vijay Saraswat. In Section 3.3.3 we
briefly introduce this framework and in Section 3.3.4 we present JmmSolve, our
reference implementation of this framework. Section 3.3.5 concludes.

3.3.3 Concurrent Constraint-based Memory Machines

The Concurrent Constraint-based Memory Machines (CCMMs) proposal by Vijay
Saraswat (Saraswat 2004) is a framework to express and study different declarative
memory models. CCMMs are different from other proposals in that they do not
express a memory model in terms of imperative operational semantics, but in terms
of constraints. This should facilitate reasoning about the model and its properties,
e.g. the no thin-air reads2 property is structurally proved in (Saraswat 2004).

CCMMs associate an event program with a source program. The event pro-
gram is an abstraction that only keeps the relevant information for the memory
model. Every statement in a source program corresponds with several events, i.e.
read/write/lock/unlock/. . . operations on a source variable in a particular thread.
Together with the listing of these events equality constraints are imposed over
values read and written, e.g. for an assignment of an expression to a variable the
value written to the variable should be equal to the value of that expression.

CCMMs models main memory as a constraint store that processes the events
with their constraints. Events are processed in batches called action sets. Every
thread can contribute any number of events with corresponding constraints to an
action set. Such an action set is added as a whole to the store. The addition takes
care of the following:

• Events in the action set are ordered with respect to events already present
in the store.

2A thin-air read is a read operation on a variable that returns a value that has not been
written to that variable by any thread.

3.3 JmmSolve: a generative Java Memory Model 37

• Events in the action set are ordered with respect to other events in the action
set, but in a different thread.

• Read operations are linked to write operations.

The above three steps depend on the particular rules of the underlying ordering
model. For example, the Sequential Consistency model only allows interleaved
sequentialization of instructions, while the Happens Before model is more relaxed
and imposes less ordering.

Example 3.1 Let us consider the example source program of Listing 3.5. The
source program is written in a minimalist form of Java source code syntax. Global
variables, shared among different threads, are initialized with init statements.
The code to be executed by a thread is written in a thread compound statement
and different threads are separated by the | symbol. Statements executed by
threads are either assignments or synchronization statements such as lock and
unlock. The statements involve global variables, thread-local variables (also called
registers; denoted by r1, r2, . . .) and integer values.

init x = 0;

init y = 0;

thread { r1 = x;

y = 1;

} |

thread { r2 = y;

x = 1;

}

Listing 3.5: JmmSolve Example Source Program

The event program of this source program is given in Listing 3.6. It consists
of two action sets: one for the initialization t0, one for the first thread t1 and
the second thread t2. The events are named e1,. . . ,e8 and correspond with the
different read and write operations acting on particular memory locations. The
equality constraints specify the integer values written in write operations or the
relations between reads and writes in the same thread. The ordering constraint
<< specifies that a one event occurs before another.

A particular instantiation of CCMMs will specify how to add more interthread
ordering constraints, namely according to the used order model, and how to link
read and write operations, i.e. equality constraints between the values of read and
write events.

An example of an additional ordering and equality constraints respecting Se-
quential Consistency are given in Listing 3.7. The given constraints will cause the

38 Show Cases of Constraint Handling Rules

% action set for initialization

write(t0,x,e1), v(e1) = 0,

write(t0,y,e2), v(e2) = 0,

e1 << e2

% action set for threads

read(t1,x,e3), write(t1,r1,e4), v(e3) = v(e4),

write(t1,y,e5), v(e5) = 1,

e3 << e4 << e5

read(t2,y,e6), write(t2,r2,e7), v(e6) = v(e7),

write(t2,x,e8), v(e8) = 1,

e6 << e7 << e8

Listing 3.6: JmmSolve Example Event Program

final values of r1 and r2 to be 1 and 1 respectively. Other final values are possible
in weaker order models.

e2 << e3,

e5 << e6,

v(e3) = v(e1),

v(e6) = v(e5)

Listing 3.7: JmmSolve Example Constraints To Satifsy Sequential Consistency

In addition to the requirements of JSR-133, CCMMs has set itself the require-
ment to be generative. This means that given a program it should be possible to
generate all valid executions, in particular all valid linkings of reads to writes. It is
the goal of JmmSolve to prove this point by providing exactly such a generative
implementation of CCMMs.

3.3.4 The JmmSolve Implementation

Because of the declarative constraint-based nature of CCMMs we have chosen
constraint logic programming (see Section 2.3) as the technology for this generative
implementation. In particular, JmmSolve has been implemented in SWI-Prolog
(Wielemaker 2004), with its new support for CHR (see Section 6.4.2).

The current working of JmmSolve is as follows. A source program (in a
simplified syntax) is read in and converted to an event program with constraints.

3.3 JmmSolve: a generative Java Memory Model 39

The event program is partitioned into one action set for the initialization and one
for all the threads. Both action sets are added to an empty store together with the
necessary ordering constraints according to the memory model. Finally all valid
linkings from reads to writes are generated for each action set.

The compiler from source to event programs is rather straightforward, using
definite clause grammars (DCGs). On the other hand, the generative part of
JmmSolve is more complicated and uses a mix of ordinary Prolog and CHR
constraints. CHR constraints are used in particular:

• For the event ordering constraint (<<)/2 together with the ordering and
linking rules of the memory model. As the ordering constraint is subject to
order model-specific rules, this definitely calls for CHR. Indeed, it has proven
to be rather easy to translate the rules of order models into CHR rules.

Listing 3.8 presents the basic rules for the <</2 constraint.

antireflexive @ E << E <=> fail.

antisymmetric @ Ex << Ey, Ey << Ex <=> fail.

redundant @ Ex << Ey \ Ex << Ey <=> true.

transitive @ Ex << Ey, Ey << Ez ==> Ex << Ez

Listing 3.8: The JmmSolve <</2 Order Constraint

• For a minimalist integer constraint solver with constraint implication and
equality. This only serves as a proof of concept. We could have used just
as well another full blown integer solver. However, this observation was
not clear at the beginning and CHR has allowed us to go ahead without
worrying over possible interoperability problems. Moreover, no integer solver
was available for SWI-Prolog at that time. Now that the prototype has
been established, it is fairly easy to indeed improve efficiency and implement
a genuine integer solver. However, the performance of integer constraint
solving seems not critical in JmmSolve.

Sample code is given in Listing 3.9. The expression(V,E) constraint con-
straints the value V to be equal to the result of arithmetic expression E. The
constraint is simply delayed until the expression is ground and hence can
be evaluated in the usual way. Similarly, the constraint eq(X,Y,T) delays
until X and Y are definitely equal or different, and then binds T to 1 or 0

respectively. This boolean value is used by the ite(V,C,TV,EV) constraint
to conditionally assign either of two values to a variable V. Such a construct
is necessary to cope with conditional assignments in the source language.

We do exploit the actual operational semantics of CHR for tasks which may be
considered impure in traditional constraint logic programming, such as collecting

40 Show Cases of Constraint Handling Rules

equality @ expression(V,E) <=> ground(E) | V is E.

reified_eq_true @ eq(X,X,T) <=> T = 1.

reified_eq_false @ @ eq(X,Y,T) <=>

number(X), number(Y), X \== Y | T = 0.

ite_then @ ite(V,1,T,_) <=> V = T.

ite_else @ ite(V,0,_,E) <=> V = E.

ite_either @ ite(V,_,B,B) <=> V = B.

Listing 3.9: The JmmSolve expression/2 Integer Constraint

from the store all constraint of a particular kind and relying on the order in which
constraints are added to the program. However, some of these tasks are necessary
for interfacing with the Prolog code and they certainly facilitate the programming.

3.3.5 JmmSolve Conclusion

In this section we have shown with JmmSolve that the CCMMs proposal of Vijay
Saraswat can actually be implemented. While implementing JmmSolve in Prolog,
CHR has proven to be a valuable programmer’s tool next to traditional ones such
as DCGs. It has allowed the elegant expression of order model rules and the rapid
and simple implementation of the necessary integer constraint solver functional-
ity. If the performance of the latter’s efficiency is not adequate, it can easily be
replaced with a more involved and more efficient implementation. However, the
combinatorial explosion of possible orderings and linkings, rather than the integer
constraint solving, seems to be the bottleneck.

The current implementation of JmmSolve is available for download at
http://www.cs.kuleuven.ac.be/~toms/jmmsolve/ and contains rules for the
Happens Before model. This work was presented as a poster at the 2004 In-
ternational Conference of Logic Programming (Schrijvers 2004).

Unfortunately, Vijay Saraswat has formulated his CCMMs proposal only
months before the deadline of JSR133 regarding the decision on the new memory
model for Java 5. This limited time frame has proven to be insufficient to raise
much interest in the JMM community. The elected memory model, formulated in
(Pugh et al. 2004), is strictly imperative in nature and was proposed much earlier
by some of the leading people in the JMM community.

3.4 A Well-Founded Semantics Algorithm 41

3.4 A Well-Founded Semantics Algorithm

3.4.1 Well-Founded Semantics

As another illustration of the power of CHR for general purpose applications, we
have implemented an algorithm that computes the well-founded semantics of simple
general logic programs. It is based on the definition of the well-founded semantics
for general logic programs by Van Gelder, Ross and Schlipf (Van Gelder, Ross,
and Schlipf 1991). The well-founded semantics are a formal declarative semantics
of Horn rule logic programs extended with negative subgoals, called general logic
programs. The semantics are intended to be natural and intuitive.

In (Van Gelder, Ross, and Schlipf 1991) general logic programs are defined as
follows.

Definition 3.1 A general logic program P is a finite set of general rules, which
may have both positive and negative subgoals. A general rule is written with its
head, or conclusion on the left, and its subgoals (body), if any to the right of the
symbol “:-”, which may be read “if”. For example,

p(X) :- a(X),not b(X).

is a rule in which p(X) is the head, a(X) is a positive subgoal, and b(X) is a
negative subgoal. This rule may be read as “p(X) if a(X) and not b(X).” A Horn
rule is one with no negative subgoals, and a Horn logic program is one with only
Horn rules.

The well-founded semantics associates a truth value with all possible ground
positive and negative literals: heads or subgoals with arguments constructed from
any function symbols and constants in the program. The possible truth values are
true, false and undefined .

The number of possible ground literals that can be constructed from a function-
free program is finite and arguments consist of atoms only. This restriction allows
for a finite number of truth values associated with the program: one for each dis-
tinct ground literal. Hence the program can be grounded first before computing
the model: all rules are replaced by all possible ground rules obtained by replacing
non-ground literals with corresponding ground ones. As every distinct ground lit-
eral can be replaced by a unique new argument-free literal, it is even not necessary
to consider programs with arguments in them. Hence, for the purpose of this text,
we restrict ourselves to argument-free general logic programs: the literals have no
arguments, i.e. they are positive and negative atoms. For such a program P the
Herbrand Base Base(P) is simply the set of all atoms appearing in the program.

In order to properly define the well-founded semantics, we first have to intro-
duce a number of auxiliary definitions, taken from (Van Gelder, Ross, and Schlipf
1991).

42 Show Cases of Constraint Handling Rules

Definition 3.2 For a set of literals S we denote the set formed by taking the
complement of each literal in S by ¬ · S.

• We say literal q is inconsistent with S if q ∈ ¬ · S.

• Sets of literals R and S are inconsistent if some literal in R is inconsistent
with S, i.e. if

R ∩ ¬ · S 6= ∅

A set of literals is inconsistent if it is inconsistent with itself; otherwise it is con-
sistent.

We represent the subset of all positive literals in S by S+ and the set of all negative
literals in S by S−.

Of special interest are particular sets of literals: partial interpretations.

Definition 3.3 (Partial Interpretation) Given a program P, a partial inter-
pretation I is a consistent set of literals whose atoms are in the Herbrand base of
P. We say a literal is true in I when it is in I and say it is false in I when its
complement is in I.

Definition 3.4 (Unfounded Set) Let a program P and a partial interpretation
I be given. We say A is an unfounded set of P with respect to I if each atom
p ∈ A satisfies the following condition: For each instantiated rule R of P whose
head is p, at least one of the following holds:

1. Some positive or negative subgoal q of the body is false in I.

2. Some positive subgoal of the body occurs in A.

The well-founded semantics is defined in terms of transformations of partial inter-
pretations.

Definition 3.5 Transformations TP , UP and WP are defined as follows:

• p ∈ TP (I) if and only if there is some instantiated rule R of P such that R
has head p, and each subgoal literal in the body of R is true in I.

• UP (I) is the greatest unfounded set of P with respect to I.

• WP (I) = TP (I) ∪ ¬ ·UP (I).

The actual definition of the well-founded semantics is then as follows.

Definition 3.6 (Well-Founded Semantics) The well-founded semantics W∗
P

of a program P is the “meaning” represented by the least fixed point of WP starting
from ∅; every positive literal denotes that its atom is true, every negative literal
denotes that its atom is false, and missing atoms have no truth value assigned by
the semantics.

3.4 A Well-Founded Semantics Algorithm 43

3.4.2 The Algorithm

Many algorithms exist for the computation of the well-founded semantics and much
work has been done to improve the efficiency of these algorithms, e.g. (Berman,
Schlipf, and Franco 1995) and (Brass, Dix, Freitag, and Zukowski 1998).

We have implemented an algorithm that was developed by Simons (Simons
2000) as part of smodels, an algorithm to compute the stable semantics of logic
programs.

This algorithm corresponds with the expand function of smodels (Simons
2000):

W∗
P = expand(P, ∅)

function expand(P, I)
repeat

I ′ := I
I := Atleast(P, I)
I := I ∪ {¬p | p ∈ Base(P) ∧ p 6∈ Atmost(P, I)}

until I ′ = I .

Listing 3.10: The expand Function

The expand function is defined in Listing 3.10. Here the outer repeat loop
corresponds with a least fixedpoint computation, the Atleast function corresponds
with the least fixedpoint of ΦP (I) and the Atmost function with the greatest
fixedpoint of TP (I).

The Fitting operator ΦP is defined as follows.

Definition 3.7 (Fitting Operator) The Fitting operator ΦP is defined as fol-
lows:

• p ∈ ΦP (I) if and only if there is some rule R of P such that R has head p,
and each subgoal literal in the body of R is true in I.

• ¬p ∈ ΦP (I) if and only if for every rule R of P such that R has head p, at
least one subgoal in the body of R is false in I.

We now proceed with explaining the Atleast and Atmost functions in more
detail at the hand of their respective implementation in imperative pseudo-code.
The contrast with the corresponding CHR code, in Section 3.4.3, will be apparent.

At Least The function Atleast is computed by the atleast() procedure that
makes use of the following variables. The subscript l indicates that these are
related to Atleast , to avoid confusion with similarly named variables for Atmost .

p.headofl The number of active rules whose head contains p.

44 Show Cases of Constraint Handling Rules

p.inI +
l A flag that is true if p is in the current interpretation.

p.inI−
l A flag that is true if ¬p is in the current interpretation.

p.plistl The rules in whose bodies p appears.

p.nlistl The rules in whose bodies ¬p appears.

r.literall The number of literals in the body of r that are not in the current
interpretation.

r.inactivel The number of literals in the body of r that are in ¬ · I.

r.bodyl The body of the rule r.

r.headl The head of the rule r.

These variables are initialized properly at the start of the algorithm.

Two queue-like data structures are used in atleast(): posql and negql . We
assume that they are implemented such that pushing an atom onto the end of a
queue does nothing if the atom is already on the queue. In addition, we assume
that pushing an atom p whose p.inI +

l flag is true onto the queue posql or pushing
an atom p whose p.inI−

l flag is true onto the queue negql has no effect

The procedure atleast() is then defined as in Listing 3.11 with auxiliary pro-
cedures given in Listing 3.12.3 Before computing Atleast(P, I) the queues have to
be initialized: posql with I+ and the heads of the rules whose bodies are empty,
and negql with the atoms in I−. The procedure can also be used incrementally. If
Atleast(P, I) has been computed and we are going to compute Atleast(P, I ∪{p}),
then we just initialize posql with p and call atleast().

At Most The function Atmost is computed by the atmost() procedure that
makes use of the following variables. The subscript m indicates that these are
related to Atmost .

p.inI +
m A flag that is true if p is in the current interpretation.

p.plistm The rules in whose bodies p appears.

r.pliteralm The number of positive literals in the body of r that are not in the
current interpretation.

r.headm The head of the rule r.

3Only the code relevant for the well-founded semantics is given.

3.4 A Well-Founded Semantics Algorithm 45

procedure atleast()
while posql or negql are not empty do

if posql is not empty then
p := posql .pop()
p.inI +

l := true
for each rule r ∈ p.plistl do

r.firel ()
end for
for each rule r ∈ p.nlistl do

r.inactivatel ()
end for

end if
if negql is not empty then

p := negql .pop()
p.inI−

l := true
for each rule r ∈ p.nlistl do

r.firel ()
end for
for each rule r ∈ p.plistl do

r.inactivatel ()
end for

end if
end while.

Listing 3.11: The Implementation of Atleast

procedure r.firel ()
r.literall := r.literall − 1
if r.literall = 0 then

posql .push(r.headl)
end if .

procedure r.inactivatel ()
r.inactivel := r.inactivel + 1
if r.inactivel = 1 then

p := r.headl

p.headofl := p.headofl − 1
if p.headofl = 0 then

negql .push(p)
end if

end if .

Listing 3.12: Auxiliary Procedures for atleast()

46 Show Cases of Constraint Handling Rules

These variables are initialized properly at the start of the algorithm.
The procedure atmost() is defined in Listing 3.13 with an auxiliary procedure

given in Listing 3.14. For our purpose we have chosen a definition that more
closely resembles the definition of atleast(). A single queue is used in atmost():
posqm . We make similar assumptions about is as for posql . The procedure can also
be used incrementally. If Atmost(P, I) has been computed and we are going to
compute Atmost(P, I∪{p}), then we just initialize posqm with p and call atmost().

procedure atmost()
while posql not empty do

p := posqm .pop()
p.inI +

m := true
for each rule r ∈ p.plistm do

r.firem()
end for

end while.

Listing 3.13: The Implementation of Atmost

procedure r.firem()
r.pliteralm := r.pliteralm − 1
if r.pliteralm = 0 then

posqm .push(r.headm)
end if .

Listing 3.14: Auxiliary Procedure for atmost()

3.4.3 The CHR Implementation

The algorithm is quite a challenge for CHR. Not only do the atleast() and atmost()
steps have to be implemented, but also the alternation of the two steps has to be
encoded, information must flow between the two steps and a global fixedpoint has
to be reached.

The individual functionality of the two procedures atleast() and atmost() has
been implemented without any particular ordering of rules in mind, but to tackle
their interoperation, we heavily rely on the actual operational semantics of CHR:
the order of the rules is important for the correct execution of the program.

In the following we first explain how the functionality of atleast() and atmost()
is realized. Then we discuss how they are made to interoperate.

At Least The CHR rules that cover the functionality of atleast() is shown in
Listing 3.15. Some of the variables used by atleast() are related to CHR constraints

3.4 A Well-Founded Semantics Algorithm 47

CHR Constraint Meaning
headof1(P,I) p.headofl = i
inIplus1(P) p.inI +

l = true
inIminus1(P) p.inI−

l = true
literal1(R,I) r.literall = i
inBodyPlus1(P,R) r ∈ p.plistl

inBodyMinus1(P,R) p ∈ r.bodyl
−

head1(R,P) r.headl = p

Table 3.1: The relation between the atleast() variables and CHR constraints

CHR Constraint Meaning
inIplus2(P) p.inI +

m = true
pliteral2(R,I) r.pliteralm = i
inBodyPlus2(P,R) r ∈ p.plistm

head2(R,P) r.headm = p

Table 3.2: The relation between the atmost() variables and CHR constraints

in the code; the relation between them is given in Table 3.1.

The CHR code does not explicitly maintain the queues posql and negql : because
of the CHR semantics, remaining work is maintained implicitly. Since the firel()
and inactivatel() operations in atleast() are mutually confluent, it is even not
necessary to deal with them in a particular order.

The fire posq and fire negq cover the two cases where the firel() procedure
is called. Similarly, the inactivate posq and inactivate negq cover the two
cases where inactivatel() is called. The fire and inactivate rules implement the
unconditional parts of the corresponding procedures. The all literals true rule
implements the conditional part of the firel() procedure and the no active rules

rule implements the conditional part of the inactivatel() rule.

The rules of Listing 3.15 should be preceded by a number of rules (not listed) to
remove any redundant constraints listed in Table 3.1. Namely, if p.inI +

l or p.inI−
l

is known, any information on rules r with r.headl = p is no longer of interest. This
avoids redundant triggering of constraints.

At Most The CHR rules that covers the functionality of atmost() is shown in
Listing 3.16. The code is similar to that for atleast().

Some of the variables used by atmost() are related to CHR constraints in the
code; the relation between them is given in Table 3.2.

48 Show Cases of Constraint Handling Rules

fire_posq @ inIplus1(P) \ inBodyPlus1(P,R) <=>

fire1(R).

fire_negq @ inIminus1(P) \ inBodyMinus1(P,R) <=>

fire1(R).

fire @ fire1(R), literal1(R,I) <=>

J is I - 1, literal1(R,J).

all_literals_true @ literal1(R,0), head1(R,P) <=>

inIplus1(P).

inactivate_posq @ inIplus1(P) \ inBodyMinus1(P,R) <=>

inactivate1(R).

inactivate_negq @ inIminus1(P) \ inBodyPlus1(P,R) <=>

inactivate1(R).

inactivate @ inactivate1(R), head1(R,PP),

literal1(R,_), headof1(PP,I) <=>

J is I - 1, headof1(PP,I).

no_active_rules @ headof1(P,0) <=>

inIminus1(P).

Listing 3.15: The CHR Implementation of atleast()

fire_posq2 @ inIplus2(P) \ inBodyPlus2(P,R) <=>

fire2(R).

fire2 @ fire2(R), pliteral2(R,I) <=>

J is I - 1, pliteral2(R,J).

all_literals_true2 @ pliteral2(R,0), head2(R,P) <=>

inIplus2(P).

Listing 3.16: The CHR Implementation of atmost()

3.4 A Well-Founded Semantics Algorithm 49

Glue Code Besides the CHR code for Atleast and Atmost , some additional glue
code is needed to make them interoperate and to compute their fixedpoint. This
glue code relies on actual rule order and hence the refined operational semantics.

Firstly, from the partial interpretation I obtained from atmost() the set {¬p |
p ∈ Base(P) ∧ p 6∈ I} should be computed. For this purpose, an undefined2(P)

constraint is called for every atom P that is undefined in the initial partial in-
terpretation. When inPlus2(P) is added, the corresponding undefined2(P) is
removed. At the end of atmost() every remaining undefined2(P) constraint is
replaced with a inIminus(P) constraint.

Secondly, to alternate between the two procedures, the atmost and atleast

constraints are used. The former indicates a transition from computing atleast()
to atmost(), the latter the other way around. These two constraints ensure the
information in the two steps is carried over to each other. The pliteral1/2

constraint, not directly used in atleast(), is maintained for this purpose: to carry
it over to atmost() where it is used.

Finally, to compute the fixedpoint of the two steps, it is checked whether there
is a remaining undefined2(P) constraint after atmost(). If there is, some new
information has been derived by this step. Otherwise, no new information is
obtained and the algorithm has reached a fixedpoint.

3.4.4 Well-Founded Semantics Conclusion

In this section, we have shown how to implement in CHR an algorithm that com-
putes the well-founded semantics of argument-free general logic programs.

On the one hand, the high-level theoretical semantics of CHR have allowed
for a much more elegant and concise formulation of the confluent parts of the
algorithm. The CHR code does not contain explicit loop constructs and while the
core imperative pseudo-code is about 45 lines long, the CHR code needs only 11
rules.

On the other hand, the operational semantics of CHR have allowed for the
implementation of more imperative features such as the alternating steps in the
algorithm. The fact that CHR permits these operational kinds of techniques con-
siderably improves its usability and suitability for a wider range of problems.
However, more syntactical support for alternating between steps and reuse of rules
for similarly behaving constraints would make programming in CHR even more
convenient.

The full source code of the CHR program, called wfs, is given in Appendix A.
It is also available from (Schrijvers 2005).

50 Show Cases of Constraint Handling Rules

3.5 Conclusion

In this chapter we have illustrated the use of CHR in three different contexts:
the union-find algorithm, a framework for Java memory models and the well-
founded semantics. We have introduced the three problem domains, explained
their solutions and discussed our implementation in CHR.

We have shown how control constructs, such as choice and alternation, can be
implemented under the refined operational semantics. Our programs are elegant,
compact and fairly easy to understand.

Chapter 4

Theoretical Properties

4.1 Introduction

In this chapter we present notions and properties of CHR programs that are of
a more theoretical nature: the declarative semantics, confluence and time com-
plexity. Some of these properties, the declarative semantics and confluence, may
be used for program verification, i.e. to verify whether some of a CHR program’s
properties correspond with the intended properties. While some could also be
exploited for program optimization, most notably confluence, we are not aware of
any such application.

Overview Firstly, Section 4.2 discusses the declarative semantics of CHR pro-
grams. This semantics associates a logical meaning with the operational nature of
CHR programs and make CHR a proper declarative language.

Secondly, Section 4.4 covers the notion of confluence which establishes whether
the non-determinism in the operational semantics of CHR may yield multiple final
states from a given initial state, which is often an undesired behavior.

Finally, Section 4.6 briefly introduces the general time complexity bound for
CHR programs. Currently no general space complexity result exists for CHR.

These properties are each illustrated with an example or a case study on the
union-find programs of Section 3.2, which were conducted in cooperation with
Thom Frühwirth (Schrijvers and Frühwirth 2005; Schrijvers and Frühwirth 2005;
Schrijvers and Frühwirth 2004). Section 4.3 is an illustration of the declarative se-
mantics and Sections 4.5 and 4.7 are case studies of confluence and time complexity
respectively. Finally, Section 4.8 summarizes this chapter.

51

52 Theoretical Properties

4.2 Declarative Semantics

Besides an operational semantics associated with a CHR program P, also a de-
clarative semantics or logical meaning is assigned to it. A CHR program P is a
model of a logical theory [[P]]. This theory [[P]], or logical meaning of the program,
is represented by a set of first order logic formulas. The theory needs to be con-
sidered in conjunction with the logical theory Db of the host language (built-in)
constraints.

For each rule in the program a formula is derived. The following table lists the
formula for each type of rule (see also (Frühwirth 1998)).

Type Rule Formula
simplification H <=> C | B. ∀(C → (H ↔ ∃ȳ B))
propagation H ==> C | B. ∀(C → (H → ∃ȳ B))
simpagation H1 \ H2 <=> C | B. ∀(C → (H1 → (H2 ↔ ∃ȳ B)))

where ȳ are the variables that appear only in the body B. ∀F denotes the universal
closure of a formula F .

4.2.1 Relation to the Operational Semantics

Not surprisingly there is a close relation between the declarative and the theoretical
operational semantics of CHR. The theoretical operational semantics of CHR can
be seen as rewriting the execution state while preserving logical equivalence under
the logical theory of the program.

More formally, we can assign the following logical formula to an execution state
σ = 〈G,S,B, T 〉n with goal G, CHR constraint store S, built-in constraint store
B, propagation history T and next free identifier n:

meaning(σ)
def
= G ∧

∧

{c | c#i ∈ S} ∧B

One can verify that for any transition in the theoretical operational semantics,
it holds that:

Lemma 4.1 (Elementary Soundness)

∀σ1, σ2 : (σ1 �P σ2) =⇒ ([[P]],Db |= meaning(σ1)⇔ meaning(σ2))

From Lemma 4.1 the soundness and completeness theorems of (Frühwirth 1998)
follow. Paraphrased they boil down to this:

Theorem 4.1 (Soundness) Let P be a CHR program and G a goal with
〈G, true, true, ∅〉0 �

∗
P σ and C = meaning(σ), then:

[[P]],Db |= ∀(G⇔ C)

4.2 Declarative Semantics 53

Theorem 4.2 (Completeness) Let P be a CHR program and G a goal for which
〈G, true, true, ∅〉0 has at least one finite final state and C be a conjunction of
constraints. If [[P]],Db |= ∀(G ⇔ C), then 〈G, true, true, ∅〉0 has a final state
whose meaning is C ′ for which:

[[P]],Db |= ∀(C ⇔ C ′)

4.2.2 Scope of the Declarative Semantics

While it is possible to derive a logical theory [[P]] for any CHR program P, such a
logical theory may not be of any use. In particular when a program is written with
only the refined operational semantics ωr in mind, it may have a useful operational
meaning while the declarative meaning is not relevant.

Typically the declarative meaning only makes sense when the programmer
intends to implement (part of) a particular constraint theory D. The declarative
meaning [[P]] then is a means to verify the implementation P against the intended
logical theory D.

Definition 4.1 (Soundness) A CHR program P is sound with respect to logical
theory D, if:

∀F : [[P]] |= F ⇒ D |= F

where F is a syntactically valid formula for the constraint domain.

Soundness is a very important property, as it ascertains that any theorem that
can be proven with the program’s logical theory can also be proven with the inten-
ded logical theory. This establishes that any final state is not only equivalent to the
initial state under the program’s logical theory [[P]], but also under the intended
logical theory D. Typically soundness is an intended property and unsoundness is
an indication of a bug in the program. Hence soundness is an interesting property
for program verification. It can be established by showing that every formula F
that corresponds with a rule in the program P holds in the intended theory D.
These proofs can be done by hand or with an automated theorem prover, though
we are not aware of any automation used so far in this process.

Definition 4.2 (Completeness) A CHR program P is complete with respect to
logical theory D, if:

∀F : D |= F ⇒ [[P]] |= F

where F is a syntactically valid formula for the constraint domain.

Completeness establishes that the logical theory of a CHR program completely
covers the intended logical theory. It is less often required from a CHR program as
it is much more difficult to relate it to operational aspects. Indeed, the fact that
a particular equivalence of states holds under the program’s logical theory is by

54 Theoretical Properties

no means a promise that a transition or sequence of transitions from the one state
to the other is at all possible under the operational semantics of CHR. Moreover,
it may be so that particular equivalences of states are irrelevant for the intended
uses of the program.

The class of programs CHR was originally intended for, namely constraint
solvers, is one where the declarative semantics are relevant: a constraint solver
implements (part of) a logical constraint theory. In Chapter 9 we will look at a
particular extension of CHR programs that only makes sense for programs with a
meaningful declarative semantics and constraint solvers in particular.

4.3 Declarative Semantics Example: Union-Find

The following logical theory [[UF]] was derived from the naive union-find CHR
program of Section 3.2 using the rules of the previous section:

make make(A)⇔ root(A)

union union(A,B)⇔ ∃XY (find(A,X) ∧ find(B, Y) ∧ link(X,Y))

findNode find(A,X) ∧A→B ⇔ find(B,X) ∧A→B
findRoot root(A) ∧ find(A,X)⇔ root(A) ∧X=A

linkEq link(A,A)⇔ true
link link(A,B) ∧ root(A) ∧ root(B)⇔ B→A ∧ root(A)

From the logical reading of the rule link it follows that B→A ∧ root(A) ⇒
root(B), i.e. root(A) holds for every node A in the tree, not only for root nodes.
Indeed, we cannot adequately model the update from a root node to a non-root
node in first order logic, since first order logic is monotonic: formulas that hold
cannot cease to hold. In other words, the link rule is where the union-find al-
gorithm is non-logical since it requires an update that is destructive in order to
make the algorithm efficient.

In the union-find algorithm, by the definition of the set operations, a union
operator working on representatives of sets is an equivalence relation observing
the usual axioms of the equivalence theory D=:

reflexivity union(A,A)⇔ true
symmetry union(A,B)⇔ union(B,A)
transitivity union(A,B) ∧ union(B,C)⇒ union(A,C)

To show that these axioms hold for the logical reading of the program, we can
use the following observations: since the unary constraints make and root must

4.4 Confluence 55

hold for any node in the logical reading, we consider them to be equal to true.
By the rule findRoot, the constraint find must be an equivalence. Hence its
occurrences can be replaced by =. Now union is defined in terms of link, which is
reflexive by rule linkEq and logically equivalent to ~> by rule link. But ~> must
be equivalence like find because of rule findNode. Hence all binary constraints
define equivalence. After renaming the constraints accordingly, we obtain the
following theory:

union A=B ⇔ ∃XY (A=X ∧B=Y ∧X=Y)

findNode A=X ∧A=B ⇔ B=X ∧A=B
findRoot A=X ⇔ X=A

linkEq A=A⇔ true
link A=B ⇔ B=A

It is easy to see that these formulas are logically equivalent to the axioms for
equality. This proves that the union-find program is sound and complete with
respect to the intended equivalence theory D=.

4.4 Confluence

Typically, more than one CHR rule is applicable to an execution state. It is
obviously a highly desirable property that, no matter what rule is applied, the
final result of a derivation is always syntactically the same. This property is called
confluence.

In this section we summarize the existing work on confluence for CHR. The
main confluence result for CHR is (Abdennadher 1997), which covers the entire
CHR language. The earlier confluence result (Abdennadher, Frühwirth, and Meuss
1996) was restricted to CHR programs without propagation rules.

In (Abdennadher 1997) it is assumed that every program state can be con-
sidered to be in a normal form with respect to the built-in constraints: equivalent
built-in constraints are syntactically identical. Moreover, two execution states
originating from the same initial state are variants of each other when they are
syntactically identical modulo renaming of constraint identifiers, renaming of vari-
ables not present in the initial state and redundant tuples in the propagation
history.

Definition 4.3 Two execution states σ1 and σ2 are called joinable if there exist
states σ′

1 and σ′
2 such that σ1 �

∗ σ′
1 and σ2 �

∗ σ′
2 and σ′

1 and σ′
2 are variants.

56 Theoretical Properties

Definition 4.4 A CHR program P is called confluent if for all execution states
σ, σ1, σ2:

σ �
∗ σ1 ∧ σ �

∗ σ2 =⇒ σ1 and σ2 are joinable

Definition 4.5 A CHR program P is called locally confluent if for all execution
states σ, σ1, σ2:

σ � σ1 ∧ σ � σ2 =⇒ σ1 and σ2 are joinable

It is not possible to check joinability of all derived execution states from a
common direct ancestor state, as there is an unbounded number of such ancestor
states and hence derived states. However, it is possible to construct a finite number
of minimal states in which multiple CHR rules are applicable. These minimal
states can be extended to any possible context by adding more constraints.

We further restrict the discussion to non-trivial direct ancestor states where the
application of one rule inhibits the application of another rule. A rule may add con-
straints (its body) and remove constraints (the removed head constraints). If we
restrict ourselves to monotonic built-in constraints, the addition of new constraints
cannot inhibit the application of a rule.1 The application of a rule inhibits the
application of another rule if the one rule removes at least one constraint needed
by the other rule. So the two rules must have overlapping head constraints and at
least one of the overlapping constraints must be removed by one rule. The pair of
states resulting from this overlap is called a critical pair.

Definition 4.6 (Critical Pair) Let R and R′ be rules with respective heads H
and H ′, guards g and g′, and bodies B and B′. Either Hr 6= � or H ′

r 6= �. Let
{Hi|1 ≤ i ≤ n} and {H ′

i|1 ≤ i ≤ m} be the sets of head constraints of H and H ′

respectively, then the tuple

(

g ∧ g′ ∧Hi1 = H ′
j1
∧ . . . ∧Hik

= H ′
jk

(B,Hk ∧H ′
jk+1
∧ . . . ∧H ′

jm
) =↓= (B′, H ′

k ∧Hik+1
∧ . . . ∧Hin

)

)

is called a critical pair of the two rules R and R′. {i1, . . . , in} and {j1, . . . , jm} are
permutations of the sets {1, . . . , n} and {1, . . . ,m} respectively and k ≤ min(m,n).
In addition, either ∃Hip

: p ∈ {i1, . . . , ik} ∧Hip
∈ Hr or ∃H ′

jp
: p ∈ {j1, . . . , jk} ∧

H ′
jp
∈ H ′

r. (The symbol =↓= is merely used as a syntactical separator.)

We can now consider the issue of joinability at the level of critical pairs.

1Prolog also contains non-monotonous constraints, e.g. var(X) may hold initially, but no
longer when for example X = a is added.

4.4 Confluence 57

Definition 4.7 A critical pair (G, (B,H) =↓= (B ′, H ′)) is called joinable if the
execution states state(G,B,H) and state(G,B ′, H ′) are joinable, where

state(G,B,H) = 〈B,num(H), G, history(#H − 1)〉#H

num([H0, . . . , Hn]) = [H0#0, . . . , Hn#n]

history(i) =

{

I ++ [r]

∣

∣

∣

∣

(r@H <=> g|C) ∈ P∧
I ⊆ {0, . . . , i} ∧#I = #H

}

The following theorem is given in (Abdennadher 1997) regarding the joinability
of critical pairs.

Theorem 4.3 A CHR program P is locally confluent if and only if all its critical
pairs are joinable.

To extend this theorem from local confluence to full confluence, we need to
introduce the notion of terminating CHR programs.

Definition 4.8 (Terminating Program) A CHR program P is terminating, if
all derivations are finite.

The main confluence result for CHR is then:

Corollary 4.1 A terminating CHR program P is confluent if and only if all of
its critical pairs are joinable.

It is possible to build a confluence checker for terminating CHR programs from
the above theorems and definitions. The checker should compute all critical pairs
and verify whether they are joinable by computing final states from them. If
the final states are variants of each other, they are joinable. Otherwise they are
non-joinable and the CHR program is non-confluent.

4.4.1 Related Notions

Canonical Programs Canonicity is a stronger property for CHR programs
than confluence. Canonicity provides a link between the operational behavior of
the program and its underlying constraint theory. Initial states should not only
produce syntactically identical final states if they are syntactically identical, but
also if they are logically equivalent.

Definition 4.9 (Canonical Program) A confluent CHR program P is canon-
ical if:

∀σ1, σ2, σ
′
1, σ

′
2 : (σ1 �

∗ σ′
1) ∧ (σ2 �

∗ σ′
2)∧

([[P]],Db |= meaning(σ1)⇔ meaning(σ2))
⇓

σ′
1 and σ′

2 are joinable

58 Theoretical Properties

In (Stuckey and Sulzmann 2005) a sufficient, but not necessary, condition for
canonical programs is given: confluent range-restricted2 rules where all simpli-
fication rules are single-headed, form canonical programs. In general, however,
showing that a program is canonical is as undecidable as showing that it is con-
fluent: both require showing that all derivations are finite, which is undecidable
(cfr. the halting problem).

Canonical CHR programs will be of particular interest in Chapter 9 where we
study automatic implication checking for constraint solvers written in CHR.

Completion Completion is a technique to turn a non-confluent CHR program
P into a confluent CHR program P ′ by adding new rules. The procedure is
based on the well-known Knuth-Bendix completion (Knuth and Bendix 1970) for
term rewriting systems (see Section 2.5.2). The added rules orient the critical
pairs of the initial program: the CHR constraints in one of the final states of the
critical pair are simplified to the CHR and built-in constraints of the other final
state. Also, the built-in constraints of the one final state are added if the CHR
and built-in constraints of the other final state are present. The main work on
completion for CHR is (Abdennadher and Frühwirth 1998).

Refined Operational Semantics Confluence is defined in terms of the theor-
etical operational semantics ωt. However, in (Duck, Stuckey, Garćıa de la Banda,
and Holzbaur 2004) the following corollary is established.

Corollary 4.2 A CHR program that is confluent with respect to ωt, is also con-
fluent with respect to ωr.

As the refined operational semantics ωr is a particular instance of the theor-
etical operational semantics ωt, clearly confluence with respect to ωt also implies
confluence with respect to ωr. However, the other way around, confluence with
respect to ωr does not necessarily imply confluence with respect to ωt.

Hence the discussed notion of confluence may not be very convenient for detect-
ing problems in programs that were written with the refined operational semantics
in mind. For example, particular critical pairs may involve one or more execution
states that are unreachable under ωr semantics. If these critical pairs are not
joinable, non-confluence may be concluded unnecessarily for ωr semantics.

In (Duck, Stuckey, Garćıa de la Banda, and Holzbaur 2004) a stronger partial
confluence check is presented for ωr. The check is partial in that it does not cope
with built-in constraints.3

2A rule is range-restricted if any grounding of the head of the rule is also a grounding of the
body.

3More specifically, it only deals with CHR programs for which the Solve transition of ωr is
never applicable.

4.5 Confluence Case Study: Union-Find 59

4.5 Confluence Case Study: Union-Find

The confluence of the union-find implementations of Section 3.2 was analyzed with
a small confluence checker written in Prolog and CHR. For the implementation
of the naive union-find algorithm of Listing 3.3, eight non-joinable critical pairs
were found. Two non-joinable critical pairs stem from overlapping the rules for
find. Four non-joinable critical pairs stem from overlapping the rules for link.
The remaining two critical pairs are overlaps between find and link.

We found one non-joinable critical pair that is unavoidable (and inherent in
the union-find algorithm), three critical pairs that feature incompatible tree con-
straints (that cannot occur when executing allowed queries), and four critical pairs
that feature pending link constraints (that cannot occur for allowed queries in the
standard left-to-right execution order of ωr). The critical pairs are discussed in
more detail below. In the technical report (Schrijvers and Frühwirth 2004) associ-
ated with this work, we also add rules, both by hand and by automatic completion,
to make the critical pairs joinable.

4.5.1 Inherent Non-Confluence

The non-joinable critical pair between the rule findRoot and link exhibits that
the relative order of find and link operations matters. Recall that the two rules
are:

findRoot @ root(X) \ find(X,A) <=> A=X.

link @ link(C,B), root(C), root(B) <=> B ~> C, root(C).

The full critical pair is:

true ∧ true ∧ root(X) = root(B),
(A = X, root(X) ∧ link(C,B) ∧ root(C))

=↓=
(B ~> C ∧ root(C), find(A,X))

From now on we use the notation in the table below for briefness. It lists in the
first row the goal of the minimal execution state of the critical pair. To overlapping
rules apply to this goal. The first rule is the findRoot goal and the second is the
link rule. The constraints in the constraint stores of their respective final states
are listed in the second and the third row of the table.

Overlap find(B,A),root(B),root(C),link(C,B)

findRoot root(C),B~>C,A=B

link root(C),B~>C,A=C

It is not surprising that a find after a link operation has a different outcome if
linking updated the root. As noted in Section 4.3, this update is unavoidable and
inherent in the union-find algorithm.

60 Theoretical Properties

4.5.2 Incompatible Tree Constraints Cannot Occur

The two non-joinable critical pairs for find correspond to queries where a find

operation is confronted with two tree constraints it could apply to. Also the
non-joinable critical pair involving the rule linkEq features incompatible tree con-
straints.

Overlap A~>B,A~>D,find(A,C)

findNode A~>B,A~>D,find(B,C)

findNode A~>B,A~>D,find(D,C)

Overlap root(A),A~>B,find(A,C)

findNode root(A),A~>B,find(B,C)

findRoot root(A),A~>B,A=C

Overlap root(A),root(A),link(A,A)

linkEq root(A),root(A)

link root(A),A~>A

The conjunctions (A~>B, A~>D), (root(A), A~>B), (root(A), A~>A) and
(root(A), root(A)) that can be found in the overlaps (and non-joinable crit-
ical pairs) correspond to the cases that violate the definition of a tree: a node with
two parents, a root with a parent, a root node that is its own parent and a tree
with two identical roots respectively.

We show that the overlapping conjunctions of the three non-joinable pairs
cannot occur as the result of running the program for an allowed query. Observe
that the rule make is the only one that produces a root, and the rule link is
the only one that produces a ~>. The rule link needs root(A) and root(B) to
produce A ~> B, and it will absorb root(A).

In order to produce one of the first three conjunctions, the link operation(s)
need duplicate root constraints to start from. But only a query containing mul-
tiple copies of make (e.g. make(A),make(A)) can produce such duplicate root

constraints. Since duplicate make operations are not allowed in queries, we cannot
produce any of the non-joinable critical pairs.

4.5.3 Pending Links Cannot Occur

The remaining four non-joinable critical pairs stem from overlapping the rule for
link with itself. They correspond to queries where two link operations have at
least one node in common such that when one link is performed, at least one
node in the other link operation is not a root anymore. When we analyze these
non-joinable critical pairs we see that the two conjunctions (A~>C,link(A,B)) and
(A~>C,link(B,A)) are dangerous.

4.5 Confluence Case Study: Union-Find 61

Overlap root(A),root(B),link(B,A),link(A,B)

link root(B),A~>B,link(A,B)

link root(A),link(B,A),B~>A

Overlap root(A),root(B),root(C),link(B,A),link(C,B)

link root(C),A~>B,B~>C

link root(A),root(C),link(B,A),B~>C

Overlap root(A),root(B),root(C),link(B,A),link(A,C)

link root(B),root(C),A~>B,link(A,C)

link root(B),C~>A,A~>B

Overlap root(A),root(B),root(C),link(B,A),link(C,A)

link root(B),root(C),A~>B,link(C,A)

link root(B),root(C),link(B,A),A~>C

Once again, we argue that the critical pairs cannot arise in an allowed query.
link is an internal operation, it can only be the result of a union, which is an
external operation. In the union, the link constraint gets its arguments from find.
In the standard left-to-right execution order of most sequential CHR implement-
ations (Duck, Stuckey, Garćıa de la Banda, and Holzbaur 2004), first the two find
constraints will be executed and when they have finished, the link constraint will
be processed. In addition, no other operations will be performed in between these
operations. Then the results from the find constraints will still be roots when the
link constraint receives them. Note that such an execution order is always pos-
sible, provided make has been performed for the nodes that are subject to union
(as is required for allowed queries).

4.5.4 Conclusion

In this section we have studied the confluence of the naive union-find implement-
ation. The study has confirmed the expected inherent destructive update and
hence non-confluence of the union-find algorithm: a find before or after a union

operation may yield a different result.

Moreover the study has revealed some problems with the usability of the con-
fluence checker: it returns too many irrelevant non-joinable critical pairs. We have
found two main causes for these irrelevant non-joinable critical pairs:

• The confluence checker does not restrict itself to the allowed queries.

• The confluence checker not does restrict itself to the refined operational
semantics, for which the program was written.

In both these cases the confluence checker considers execution states that are not
reachable during intended uses of the program.

62 Theoretical Properties

A similar study for the optimal union-find implementation (Schrijvers and
Frühwirth 2004) yields similar results. In addition to the above two causes of
irrelevant non-joinable critical pairs, a third cause was also identified:

• The confluence checker does not consider a more semantical criterion to
compare final states.

For the optimal union-find algorithm, some non-joinable critical pairs may result
in different trees containing the same elements. On the level of the algorithm, these
different trees are semantically equivalent and hence their syntactical difference is
irrelevant.

The study of the optimal program also gives some insight in the scalability of
the method. While the optimal program is only slightly larger than the naive one,
the checker finds 73 different non-joinable critical pairs, an order of magnitude
difference. Clearly it may quickly become unmanageable to sort out the non-
joinable critical pairs in relevant and irrelevant ones. Hence, it is necessary to
come up with more refined techniques that remedy the above usability issues and
that are relevant for practical CHR programs.

4.6 Time Complexity

The main general complexity results of CHR are (Frühwirth 2002a; Frühwirth
2002b). The complexity measure is basically the derivation length times the sum
of the costs of rule trials and a rule application. The dominating cost factor is the
computation of the cross product of all constraints in a goal when trying to apply
a rule. Often, however, this cost can be made constant by relying on execution
orders (scheduling) of constraints and indexing techniques.

More precisely, in (Frühwirth 2002b) the following worst-case time complexity
bound is derived for the runtime T (Q) of executing a query Q with n atomic CHR
constraints. The result assumes that the CHR program consists of simplification
rules only and it is independent of any concrete CHR implementation, but rather
addresses the inherent complexity of CHR.

T (Q) = O(D
∑

i

((c + D)ni(OHi
+ OGi

) + (OCi
+ OBi

))),

where

c is the number of constraints in the query Q

D(= |Q|) is the worst case derivation length of the query Q

i ranges over the rules in the CHR program

ni is the number of heads in rule i

4.7 Time Complexity Case Study: Union-Find 63

OHi
is the complexity of the head matchings for rule i

OGi
is the complexity of the guard for rule i

OCi
is the complexity of adding the right-hand side built-in constraints for
rule i

OBi
is the complexity of removing the left-hand side CHR constraints and
of adding the right-hand side CHR constraints for rule i

No work has been published concerning the time complexity of CHR programs
containing propagation rules. It is an important open problem.

4.7 Time Complexity Case Study: Union-Find

Based on the above general complexity results we will now study the time com-
plexity of the optimal union-find implementation of Section 3.2.

These assumptions will underly our complexity analysis:

• The query consists of N make/1 constraints for different elements (nodes),
followed by M union/2 and find/2 constraints, arbitrarily ordered. Hence,
c = O(N + M).

• All of OHi
, OGi

, OCi
and OBi

are constants. This means that a single suc-
cessful rule application can be done in constant time, whereas the total cost
of multiple attempted rule applications may still be above constant time.

• Simpagation rules are rewritten into the corresponding simplification rules.

4.7.1 Worst-Case Time Complexity

We derive the derivation length from a termination norm that uses the following
mapping of constraints and constants onto natural numbers:

• |C ∧D| = |C|+ |D|.

• |A=B| = |root(A,N)| = |A~>B| = 0.

• |make(A)| = |link(A,B)| = 1.

• |find(A,B)| = |A|+ 1.

• |union(A,B)| = |A|+ |B|+ 4.

• |A| is the path length (distance) from the node A to the root of the tree.

64 Theoretical Properties

That is, the termination norm and the derivation length of a query depends only
on the depth of the recursion of find/2. The upper bounds for the depth of the
tree - and thus the path length - are given by the number N of elements and also
by the rank, the second argument of root/2. The order of the derivation length
of a single find, i.e. |A| of its first argument, can be bound by |A| ≤ log2(N). This
can be easily shown by induction on the rank.

Putting it all together, the derivation length of a query with N make/1 con-
straints and M union/2 and find/2 constraints is D = O(N + Mlog(N)) and
also c + D = O(N + Mlog(N)).

Taking into account that maxi(ni) = 3, we get the following complexity bound:

O((N + Mlog(N))4)

4.7.2 Optimal Time Complexity

The above complexity bound is not even close to the known complexity bound of
the optimal imperative algorithm. Hence, we will abandon the general complexity
results and instead we will establish the time complexity of our CHR programs by
first showing that they are operationally equivalent to the respective imperative
algorithms. By showing next that all the individual computation steps in the CHR
program have the same complexity as their imperative counterparts, we then have
effectively proven that the overall time complexity is identical to that of imperative
implementations.

Operational Equivalence We start by considering the naive algorithm. Be-
cause of the refined operational semantics of CHR, the query of make/1, union/2
and find/2 constraints (and any other conjunction of constraints) is evaluated
from left to right, just as is the case for equivalent calls for the imperative pro-
gram.

Because of this execution order, the operation constraints behave just as their
imperative counterparts. The imperative if-then and if-then-else constructs
are encoded as multiple rules. The appropriate rule will be chosen because of a
combination of different matchings, partner constraints and guards.

Moreover, the recursion depth for the find/2 constraint is equal to the path
from the initial node to the root just as in the imperative algorithm. The unific-
ation in the body of the findRoot rule does not wake up any constraints, since
the variable that is bound to a constant does not occur in any other constraint
processed so far.

It is clear from the CHR program and the refined operational semantics,
that there is only ever at most one operation constraint in the constraint store.
Moreover, whenever a data constraint is called, the operation constraint has already

4.7 Time Complexity Case Study: Union-Find 65

been removed. Thus a data constraint will never trigger any rule, because of lack
of the necessary partner constraint.

Time Complexity Equivalence Now that we have shown the operational equi-
valence of the CHR program with the imperative algorithm, we still need to show
that the time complexities of the different computation steps (corresponding to
rule applications) are also equal.

The following time complexity assumptions of a CHR implementation are reas-
onable. They are effectively implemented by the SICStus (Intelligent Systems
Laboratory 2003), HAL (Holzbaur, Garćıa de la Banda, Stuckey, and Duck 2005)
and the K.U.Leuven CHR system (see Chapter 6). All of the following operations
of the refined operational semantics take constant time:

• The Activate transition, excluding the cost of adding the constraint to the
constraint store.

• The Drop transition, i.e. ending the execution of a constraint.

• The Default transition, i.e. switching from trying one rule to trying the
next rule.

• Matching for Herbrand variables and constants, given a bounded reference
chain length. This occurs in the Simplify and Propagate transitions.

• Instantiating a variable that does not occur in any constraints, i.e. an obvious
optimization of the Solve transition.

• Checking simple arithmetic built-in constraints like >= and min.

In addition, we make the following complexity assumptions for the union-find
programs:

1. The cost of finding all constraints with a particular value in a particular
argument position is constant, even if there are no such constraints. The
cost of obtaining one by one all constraints from such a set is proportional
to the size of the set.

2. The CHR constraint store allows constant time addition and deletion of any
constraint.

3. If more than one partner constraint has to be found, an ordering of lookups
is preferred, if possible, such that the next constraint to look up shares a
variable with the previously found constraints and the active constraint.

The above complexity assumptions can be realized in practice by appropriate
indexing, i.e. constraint store lookup based on shared variables. The last item

66 Theoretical Properties

is a heuristic presented in (Holzbaur, Garćıa de la Banda, Stuckey, and Duck
2005) and implemented in the HAL and the K.U.Leuven CHR system. In Section
6.3.3 we will discuss appropriate constraint store data structures that satisfies the
remaining assumptions.

From these assumptions it is clear that processing a data constraint takes con-
stant time: the constraint is called, some rules are tried, some partner constraints
that share a variable with the active constraint are looked for, but none are present,
and finally the call ends with inserting the data constraint into the constraint store.

From these assumptions and the constant time calling of data constraints, it
follows that all rule tries and applications with an active constraint take constant
time. Hence our naive CHR implementation has the same time complexity prop-
erties as the naive imperative algorithm.

The proof of operational equivalence and equivalent complexity of the optim-
ized algorithm and CHR program is similar.

Because of this equivalence with the imperative algorithm, our CHR program
also has worst-case time complexity O(M + Nlog(N)) and amortized time com-
plexity O(M + Nα(N)).

4.8 Conclusion

In this chapter we have given an overview of the most important theoretical prop-
erties of CHR programs: declarative semantics, confluence and time complexity.

The first two properties are of interest to programmers because they are indic-
ators for the correctness of the program. The declarative semantics gives a logical
meaning to a CHR program. Soundness of this logical meaning with respect to the
intended logical theory may be verified by the programmer. Confluence guarantees
the uniqueness of the final state for any initial state. Almost always, only a single
final state is intended for any initial state and non-confluence is a clear indicator
that the program does not live up to this intention.

The worst-case time complexity of a CHR program gives an upper bound on
the computational cost in terms of the length of the query.

We have illustrated and studied these properties for the union-find programs
of Section 3.2. The case studies show several shortcomings in the current state of
verifying these properties. Namely, the current notion of confluence for all possible
queries is too crude. Often only a particular set of queries are actually used for
a particular CHR program. Moreover, the final state need not always be unique:
particular aspects of the final state are of no relevance and a variation in them is
hence permitted. Similarly, the formula for a time complexity bound considers all
possible queries and not just the ones of interest. In addition, the formula is not
geared towards the refined operational semantics and hence gives a much cruder
bound than necessary for existing CHR systems.

4.8 Conclusion 67

Finally, we have shown that our CHR implementation of the union-find al-
gorithm with path-compression and union-by-rank has the same optimal time com-
plexity as its imperative counterpart, given certain time complexity assumptions
for the CHR system.

The declarative semantics and the confluence properties of the union-find pro-
grams were published in the technical report (Schrijvers and Frühwirth 2004)
and presented at the Workshop on (Constraint) Logic Programming (WCLP’05)
(Schrijvers and Frühwirth 2005). The time complexity analysis of the programs
based on the complexity formula was also published in the technical report. The
optimal complexity bound was an important part of the programming pearl ac-
cepted for publication by the journal Theory and Practice of Logic Programming
(Schrijvers and Frühwirth 2005).

68 Theoretical Properties

Chapter 5

The Implementation of

CHR: A Reconstruction

5.1 Introduction

There are quite a number of different CHR systems, compilers and interpreters.
Each has its own approach towards execution and compilation of CHR. A short
historical overview of these systems is given in Chapter 6.

In this chapter we focus on the compilation schema of only one CHR system:
the CHR system developed by Christian Holzbaur in co-operation with Thom
Frühwirth (Holzbaur and Frühwirth 1999). This is the CHR system included in
SICStus Prolog (Intelligent Systems Laboratory 2003) and in Yap (Santos Costa,
Damas, Reis, and Azevedo 2004). It is generally considered as the reference imple-
mentation of CHR and the refined operational semantics (Duck, Stuckey, Garćıa
de la Banda, and Holzbaur 2004) were written to formalize its behavior.

We have studied the reference implementation using the limited available doc-
umentation of (Holzbaur and Frühwirth 1999; Holzbaur and Frühwirth 2000) and
dissecting its generated output. The rest of this chapter comprises a description
of the reference implementation’s compilation schema and its data structures. In
Section 5.2, we start from a simplified compilation schema that closely follows the
refined operational semantics and one by one add all the optimizations included
in the reference implementation. The optimizations are motivated in terms of the
refined operational semantics with the help of our reconstructed reasonings.

Moreover, Section 5.4 presents two soundness proofs concerning the Prolog
compilation schema with respect to the refined operational semantics. Finally, the
content of this chapter is summarized in Section 5.5.

69

70 The Implementation of CHR: A Reconstruction

5.2 Compilation Schema

In this section we introduce a Prolog compilation schema for CHR: the schema is
a generic blueprint for transforming a CHR program into executable Prolog code.
In our presentation we will relate the different implementation aspects with the
different components of the execution state 〈A,S,B, T 〉n and the transition rules
of the refined operational semantics.

First, in Section 5.2.1 we present a basic schema that was inspired by the
refined operational semantics and the reference implementation (Holzbaur and
Frühwirth 1999). It mainly covers the implementation of the transition rules and
the execution stack A.

Then, in Section 5.2.2, we elaborate on the actual constraint representation, i.e.
the implementation of numbered constraints and the (distributed) implementation
of the propagation history T . The implementation of the constraint stores S and
B is covered in Section 5.2.3

Optimizations to the basic schema and data structures as well as a compilation
example are covered in Section 5.3.

5.2.1 Basic Compilation Schema

The basic compilation schema we present is simpler than the initial compilation
schema of the SICStus reference implementation given in (Holzbaur and Frühwirth
1999). However, the relation of the basic schema to the refined operational is more
obvious. This makes it easier to justify optimizations of the schema by reasoning
about the refined operational semantics. Formal proofs of some optimizations will
be given in Section 5.4.

The compilation schema maps the execution stack A of the refined operational
semantics onto the implicit execution stack of the host language Prolog. A se-
quence of goals is pushed onto the front of the execution stack by simply calling
the conjunction of the goals.

Listing 5.1 gives the basic compilation schema for the high-level control flow of
an active constraint c/m. The first predicate, c/m, corresponds with the Activate
transition: the new constraint is inserted into the constraint store, assigned a
unique identifier (ID) and put on the execution stack.

The second predicate, c occurrences/(m+1), takes care of trying the o dif-
ferent occurrences of constraint c; it corresponds with the succession of Default
transitions and the final Drop transition. This predicate is also called directly for
the ReActivate transition.

In addition to the above control flow skeleton, there is of course also the code
for the individual occurrences. We will consider this code for CHR rules of the
following general form:

rj @ cr+1(Xr+1,1,...,Xr+1,mr+1
),..., cn(Xn,1,...,Xn,mn

) \

5.2 Compilation Schema 71

c(X1,...,Xm) :-

insert in store c(X1,...,Xm,ID),

c occurrences(X1,...,Xm,ID).

c occurrences(X1,...,Xm,ID) :-

c occurrence1(X1,...,Xm,ID),
...

c occurrenceo(X1,...,Xm,ID).

Listing 5.1: The Compilation Schema for Succession of Multiple Occurrences

c1(X1,1,...,X1,m1
),...,cr(Xr,1,...,Xr,mr

)

<=> Guard | Body.

Assume that cl/ml =c/m and that clml in rule rj is the ith occurrence of c/m.
Then the code given in Listing 5.2 corresponds with a Simplify or Propagate
transition for occurrence i in rule rj , depending on whether l ≤ r or l > r.

The code iterates over all possible partner constraints: the predicate
universal lookup ck produces an iterator1 Iterk over ck constraints and the
nested calls to c occurrencei k gather all the necessary candidate partner con-
straints. Finally in the most deeply nested call, to c occurrencei n, it is verified
whether all the involved constraints are still active (i.e. present in the constraint
store), whether they are all mutually different, whether the guard succeeds and
whether no tuple is already present in the propagation history for this combination
of partner constraints. If all the tests succeed, the transition can be applied: a new
tuple is added to the propagation history, the body is executed. Then execution
continues with another possible combination of partner constraints.

Example 5.1 The compiled code for the gcd program of Example 2.1 derived
from the basic schema is:

1 gcd(I) :-

2 insert_in_store_gcd(I,ID),

3 gcd_occurrences(I,ID).

4

5 gcd_occurrences(I,ID) :-

6 gcd_occurrence1(I,ID),

7 gcd_occurrence2(I,ID),

8 gcd_occurrence3(I,ID).

9

10 % gcd(0) <=> true.

1See Section 5.2.3 for details on the implementation of universal lookup c.

72 The Implementation of CHR: A Reconstruction

1 c occurrencei(X1,...,Xm,ID) :-

2 universal lookup c1(Iter c1),

3 c occurrencei 2(Iter c1,X1,...,Xm,ID).

4

5 c occurrencei 2(Iter c1,X1,...,Xm,ID) :-

6 empty(Iter c1), !.

7 c occurrencei 2(Iter c1,X1,...,Xm,ID) :-

8 next c1(Iter c1,X1,1,...,X1,m1
,ID1,Rest1),

9 universal lookup c2(Iter c2),

10 c occurrencei 3(Iter c2,X1,1,...,X1,m1
,ID1,Rest1,X1,...,Xm,ID).

11

...

12 c occurrencei n(Iter cn,Args) :-

13 empty(Iter cn), !,

14 c occurrencei n-1(Args).

15 c occurrencei n(Iter cn,Args) :-

16 next cn(Iter cn,Xn,1,...,Xn,mn
,IDn,Restn),

17 (alive(ID1),

18

...

19 alive(IDn),

20 ID1 \== ID2,

21

...,

22 IDn−1 \== IDn,

23 Guard,

24 T = [r,ID1,...,IDn],

25 not in history(T)

26 ->

27 add to history(T),

28 kill(ID1),

29

...

30 kill(IDr),

31 Body

32 ;

33 true

34),

35 c occurrencei n(Restn,Args).

Listing 5.2: The Compilation Schema for a Kept Occurrence

5.2 Compilation Schema 73

11 gcd_occurrence1(I,ID) :-

12 (alive(ID),

13 I == 0,

14 T = [1,ID],

15 not_in_history(T)

16 ->

17 add_to_history(T),

18 kill(ID),

19 true

20 ;

21 true

22).

23

24 % gcd(J) \ gcd(I) <=> J >= I | K is J - I, gcd(K).

25 gcd_occurrence2(I,ID) :-

26 universal_lookup_gcd(Iter),

27 gcd_occurrence2_2(Iter,I,ID).

28

29 gcd_occurrence2_2(Iter,I,ID) :-

30 empty(Iter), !.

31 gcd_occurrence2_2(Iter,I,ID) :-

32 next_gcd(Iter,J,ID2,Rest),

33 (alive(ID2),

34 alive(ID),

35 ID2 \== ID,

36 J >= I,

37 T = [2,ID2,ID],

38 not_in_history(T)

39 ->

40 add_to_history(T),

41 kill(ID),

42 K is J - I,

43 gcd(K)

44 ;

45 true

46),

47 gcd_occurrence2_2(Rest,I,ID).

48

49

50 % gcd(J) \ gcd(I) <=> J >= I | K is J - I, gcd(K).

51 gcd_occurrence3(J,ID) :-

52 universal_lookup_gcd(Iter),

74 The Implementation of CHR: A Reconstruction

53 gcd_occurrence3_2(Iter,J,ID).

54

55 gcd_occurrence3_2(Iter,J,ID) :-

56 empty(Iter), !.

57 gcd_occurrence3_2(Iter,J,ID) :-

58 next_gcd(Iter,I,ID2,Rest),

59 (alive(ID),

60 alive(ID2),

61 ID \== ID2,

62 J >= I,

63 T = [2,ID,ID2],

64 not_in_history(T)

65 ->

66 add_to_history(T),

67 kill(ID2),

68 K is J - I,

69 gcd(K)

70 ;

71 true

72),

73 gcd_occurrence3_2(Rest,I,ID).

5.2.2 Constraint Representation

Upto now we have used the generic ID as the identifier of a numbered constraint
c(X1,...,Xm)#i. In practice, a bit more information needs to be associated with
a numbered constraint than just a unique identifier. In the CHR reference imple-
mentation (Holzbaur and Frühwirth 1999) in SICStus the following representation
is used for a numbered constraint:

suspension(ID,MState,Continuation,MGeneration,MHistory,c,X1,...,Xn)

The representation is a term with functor suspension and a number of fields (or
arguments). This term representation is called constraint suspension or suspension
for short.

The meaning of the fields is listed in Table 5.1.

Some of the fields in the term are mutable; this is indicated with the initial
capital M in their name. They are implemented using the non-standard Prolog
built-in setarg/3 that destructively updates an argument of a term.

5.2 Compilation Schema 75

ID The unique constraint identifier. In practice it is an in-
teger.

MState The state of the suspension. It takes one of three values:

not stored The constraint has not been stored yet.
This is explained along with the late stor-
age optimizations in Section 5.3.

stored The constraint has been stored in the CHR
constraint store.

removed The constraint has been removed from the
CHR constraint store.

Continuation The continuation goal to be executed during a ReActiv-
ate transition. This calls the code for the first occurrence.

MGeneration The generation number discussed later in Section 5.3
along with the generation optimization.

MHistory Part of the propagation history.

c The constraint functor.

X1,...,Xn The arguments of the constraint.

Table 5.1: Meaning of the constraint suspension fields

76 The Implementation of CHR: A Reconstruction

5.2.3 Constraint Stores and Built-in Constraints

Built-in Constraint Store We call a constraint that can be imposed a tell
constraint. In plain Prolog the sole tell constraint is the unification constraint
with corresponding Herbrand constraint theory H (see Section 2.3.1). Hence, for
a CHR system with plain Prolog as a host language, unifications are the only
built-in constraints that cause Solve transitions. Other constraints are supported
by Prolog that can only be used for implication checking, i.e. whether they are
implied by the built-in constraint store. We call such a constraint that can be
checked for implication an ask constraint. An example is ground(T) which checks
whether term T is ground with respect to the current built-in constraint store. Ask
constraints can be used in the guard of a CHR rule.

The implementation of the built-in unification constraint store is of course left
to Prolog. Most Prolog systems implement unification as the naive union-find
algorithm (see Section 3.2) extended with support for terms; this is the way it is
conceived in the WAM, the widely implemented abstract instruction set for Prolog
(Warren 1983; Aı̈t-Kaci 1991).

As said before, the point where Prolog’s unification constraints need to interact
with CHR is in the Solve transition. The addition to the built-in constraint store
is of course already handled by Prolog, but the Solve transition also needs to
add constraints that are in the CHR constraint store to the execution stack. The
Solve transition leaves some choice in what constraints are actually to add to the
execution stack. For the reference implementation (Holzbaur and Frühwirth 1999)
it was chosen to only add constraints to the execution stack which are affected by
the unification.

Definition 5.1 (Affected) We say that a CHR constraint c is affected by a uni-
fication constraint x = y with respect to built-in constraint store B and CHR
constraint store S if:

∃a, b :
H 6|= B → a = b

∧ H |= B ∧ x = y → a = b
∧ H |= B → a ∈ term vars(c)
∧ H |= B → nonvar(b)
∨ ∃d ∈ S : b ∈ term vars(d)

Summarized we say that a CHR constraint is affected by a unification, if a
variable occurs in the CHR constraint that is unified with a nonvariable term or
with another variable in a CHR constraint.

The choice to only push affected CHR constraints onto the execution stack
is a sensible one, because the affected property provides a clear link with the

5.2 Compilation Schema 77

unification.
In Section 5.4.2 we will study the soundness of the pushing of affected CHR

constraints with respect to the refined operational semantics.
Attributed variables (Holzbaur 1992) is an extension to Prolog which is useful

in detecting when a variable is affected. This feature allows for marking variables,
turning them into attributed variables. The unification of an attributed variable
with another attributed variable or nonvariable is intercepted in order to run
custom code. In addition to simply marking variables for the interception of
unification, also additional updateable data can be associated with the variables.

We will use the interface described in (Demoen 2002) throughout this text.
While it is not exactly the same as that of SICStus Prolog used in (Holzbaur and
Frühwirth 1999), the differences are not relevant for our discussion. The following
predicates make up the attributed variables interface:

put attr(Var,Mod,Attr)

Associate data Attr with variable Var for module Mod. Replaces previously
associated data for that module. Turns the variable into an attributed vari-
able.

get attr(Var,Mod,Attr)

Retrieve the associated data Attr from attributed variable Var for module
Mod. Fails if there is no associated data for the module.

del attr(Var,Mod)

Dissociate any associated data of variable Var for module Mod.

attvar(Var)

Succeed if the variable Var is an attributed variable. Fail otherwise.

Mod:attr unify hook(Attr,Term)

The predicate defining the code to be executed after a unification of a variable
with associated data Attr for module Mod to a term Term. This predicate
is sometimes called the (interrupt) handler.

The Solve transition can now be realized as follows. Every variable that
appears in a CHR constraint is turned into an attributed variable and as data
all the suspensions of the CHR constraints it appears in are associated with it.
When the attributed variables is unified with a non-variable or other attributed
variables, the custom code that is run is code that puts all the associated constraint
suspensions on the execution stack. Such an associated suspension is put on the
execution stack by simply calling its continuation goal (see Section 5.2.2).

Guards The guard of a CHR rule consists of built-in constraints in the host lan-
guage. In Prolog these built-in constraints are primarily term equality constraints.

78 The Implementation of CHR: A Reconstruction

Besides the explicit guard, some implicit built-in constraints, called matching, are
also part of the guard.

Every rule is first turned into an equivalent rule in Head Normal From (see
Section 2.4.1) for the purpose of obtaining the guard code that is inserted into the
compilation schema.

CHR Constraint Store The CHR constraint store serves two purposes. The
first is to collect identified CHR constraints for the purpose of re-activation during
a Solve transition, has already been covered above. The second purpose is to be
able to look up identified CHR constraints that may serve as partner constraints
to the active constraint in the matching of a Simplify or Propagate transition.
This corresponds with the universal lookup c and the existential lookup c

(introduced in Section 5.3.1) functionality mentioned in the compilation schema.
In the reference implementation (Holzbaur and Frühwirth 1999), the CHR

constraint store is implemented with the help of a global backtrackable variable
that we refer to as chr store. In this text we will use the interface implemented
in hProlog and SWI-Prolog:

b getval(Name :,V alue)
Return the value V alue of the global variable with name Name :.

b setval(Name :,V alue)
Set the value of the global variable with name Name : to V alue.

The value of chr store is a term v(List1,...,Listn) where Listi is the list of
suspensions of the constraint ci currently in the store. Initially all the lists are
empty. Whenever a new constraint suspension is inserted into the constraint store,
it is added to the appropriate list and whenever a constraint is removed from the
constraint store, it is deleted from the appropriate list.

The iterator returned by the universal lookup is simply the appropriate list of
chr store. The predicates empty/1 and next ci/(mi + 3) are realized through
appropriate matching. Similarly, the existential lookup is realized by applying the
well-known member/2 predicate to the appropriate list, which generates all the
suspensions in the list through backtracking.

In addition to the above global term of lists, also (potentially) much faster
indexes are maintained in (Holzbaur and Frühwirth 1999). Every variable X that
appears in the argument of a constraint is made an attributed variable with as-
sociated attribute data a similar term v(List1,X,...,Listn,X). However, now
Listi,X contains only the suspensions of constraints in which X appears.

Whenever such a variable X is known at the time of a universal or existen-
tial lookup this variable’s attribute data is used instead of the data contained in
chr store. Potentially this list is much smaller and it may reduce the number of
partner constraints tried in vain tremendously.

5.3 Simple Optimizations 79

Example 5.2 illustrates the use of an index for the lookup of a partner con-
straint.

Example 5.2 Consider the partner lookup code for the head c1(X),c2(X) with
active occurrence c1 is:

c1 occurrence1(X1,ID1) :-

universal lookup c2 via(X1,Iter c2),

c1 occurrence1 2(Iter c2,X1,ID1).

where universal lookup c2 via/2 is roughly implemented as:

universal lookup c2 via(X,Iter) :-

(term variables(X,[V|]) ->

get attr(V,mod,v(,Iter))

;

universal lookup c2(Iter)

).

5.3 Simple Optimizations

In this section we list the simple optimizations that have been applied to the basic
compilation schema in (Holzbaur and Frühwirth 1999).

In (Holzbaur and Frühwirth 1999) many optimizations have been applied to the
basic compilation schema of the previous section. Here we list them and discuss
the most straightforward ones. The more elaborate ones are discussed in extenso
in other parts of this text.

We have grouped these optimizations into three categories: semantical optim-
izations, host language optimizations and data structure optimization. Semantical
optimizations, covered in Section 5.3.1, are based on reasoning about the opera-
tional semantics of CHR. Host language optimizations, covered in Section 5.3.2,
are based on reasoning about the efficiency of code in the host language. Data
structure optimizations, covered in Section 5.3.3, deploy more efficient data struc-
tures.

Finally, we illustrate the presented schemas and optimizations by showing the
compiled code for a CHR program in Section 5.3.4.

5.3.1 Semantical Optimizations

Propagation History Maintenance A rule application that removes a con-
straint can never be repeated with that constraint. So no propagation history needs

80 The Implementation of CHR: A Reconstruction

to be maintained for such a rule. In particular, simplification and simpagation
rules remove constraints, while propagation rules do not. Hence, the propagation
history needs to be maintained for propagation rules only.

Simplification Transition For a Simplify transition it is not necessary to it-
erate over all possible combinations of partner constraints. After the transition is
applied for the first time, the active constraint is no longer active and no more
applications are possible. Hence the universal lookup is replaced with an exist-
ential one in Listing 5.3. An existential lookup generates all candidate partner
constraints through backtracking instead of providing an explicit iterator. This
much simplifies the generated code.

1 c occurrencei(Xi,1,...,Xi,mi
,IDi) :-

2 (alive(IDi),

3 existential lookup c1(X1,1,...,X1,m1
,ID1),

4

...

5 existential lookup cn(Xn,1,...,Xn,mn
,IDn),

6 ID1 \== ID2,

7

...,

8 IDn−1 \== IDn,

9 Guard

10 ->

11 kill(ID1),

12

...

13 kill(IDr),

14 Body

15 ;

16 true.

17).

Listing 5.3: The Compilation Schema for a Removed Occurrence

Generations During the execution of the body in a Propagate transition, a
built-in constraint may reactivate the constraint that was active in the Propagate
transition. With respect to the refined operational semantics, it means that the
same numbered constraint occurs more than once in the execution stack of an
execution state. Section 5.4.1 contains a proof based on the refined operational
semantics which states that in the above case, all but the topmost occurrence may
be popped (i.e. removed) from the execution stack in CHR execution states.

5.3 Simple Optimizations 81

Clearly the removal of numbered occurrences from the execution stack may
considerably reduce the amount of transitions. For this reason, the situation is
exploited in (Holzbaur and Frühwirth 1999). With every constraint identifier IDi

a generation number Gi is associated. This generation number is initialized to zero
and incremented every time the constraint is reactivated. When the generation
number of the active constraint is different before and after the execution of a rule
body, the active constraint was reactivated during the execution of that body and
may stop executing.

The generation optimization is most easily expressed as an optimization of the
continuation-based formulation of the schema that is introduced in Section 5.3.2.
The lines 1–7 of Listing 5.4 are replaced by the following:

...,

generation number(IDi,Giold),

Body,

generation number(IDi,Ginew),

(alive(IDi),

Giold == Ginew ->

c occurrencei n(Restn,...)

;

true

)

The topmost constraint in the execution stack corresponds of course with the
constraint with IDi in the above code. Popping this constraint corresponds with
the true goal.

Late Storage The refined operational semantics state that a CHR constraint is
inserted into the constraint store immediately in the Activate transition. How-
ever, often the lifetime of a CHR constraint is limited, i.e. it is removed from the
constraint store not long after it has been activated, in particular by a Simplify
transition where it is the active constraint.

The object of the late storage optimization is to defer constraint store insertion2

as much as possible in order to avoid the actual insertion and removal operations,
and in particular their associated overhead.

It is only sound to defer storage if the reachable final states with late storage
are a subset of those with early storage. In (Holzbaur and Frühwirth 1999) a
rather conservative approach is taken towards late storage. The process of storage
is split into two parts: the creation of a constraint representation and the actual
storage in the constraint store after that. The former is done immediately before
the first Propagate occurrence whereas the latter is attempted just before the
execution of the body of all Propagate transitions and after the last occurrence.

2Insertion is also known as storage.

82 The Implementation of CHR: A Reconstruction

While the actual storage may be attempted multiple times, it only updates the
constraint store if the constraint is not present yet.

We will use the following predicates to refer to the separate operations:

make id ci(Xi,1,...,Xi,mi
,IDi)

Create a new constraint representation IDi.

actually insert in store ci(Xi,1,...,Xi,mi
,IDi)

Store the constraint if it has not already been stored.

As the code for the initial simplification occurrences is now used by both newly
activated constraints without a representation (i.e. ID is a variable) and by re-
activated constraints with a representation (i.e. ID is instantiated), the kill op-
erations removing the constraint from the store are called conditionally as follows:

(var(ID) ->

true

;

kill(ID)

)

The conservative late storage approach of (Holzbaur and Frühwirth 1999) is
extended and given a more formal treatment in Section 7.4.

5.3.2 Host Language Optimizations

Continuation-based Control Flow Listing 5.1 uses an explicitly sequential
control flow whereas in the reference implementation (Holzbaur and Frühwirth
1999) a continuation-based approach is used. The corresponding predicate of
Listing 5.1 becomes:

c occurrences(Xi,1,...,Xi,mi
,IDi) :-

c occurrence1(Xi,1,...,Xi,mi
,IDi).

This code simply tries the first occurrences. The first occurrence will take care
of trying the next, if necessary.

Continuations can be split in two categories: the live continuation where the
active constraint is alive and the dead continuation where the active constraint has
been removed from the CHR constraint store. These categories will ensure that
no Simplify or Propagate transition is attempted with a dead active constraint.
Hence, the alive(IDi) is no longer needed as part of the tests before applying a
transition. Instead these checks are moved to the points where the active constraint
may just have been removed.

A dead continuation is simply the goal true corresponding with a Drop trans-
ition; nothing is left to be done with the active constraint. A live continuation
tries the next possible rule application.

5.3 Simple Optimizations 83

A Simplify transition always removes the active constraint. Hence after the
execution of the body no other transitions with the active constriant needs to be
attemped. When one of the tests for the transition fails, the live continuation
proceeds by trying the next occurrence. This corresponds with replacing the true

goal on line 16 in Listing 5.3 with:

c occurrencei+1(Xi,1,...,Xi,mi
,IDi)

A Propagate transition does not remove the active constraint directly. How-
ever, it may do so indirectly through the execution of the body of the CHR rule.
Hence, the alive(IDi) test must be moved until after the execution of the body to
decide between a live or a dead continuation. If the guard or any of the remaining
alive/1 tests on the partner constraints fail, only a live continuation is needed.
Hence, the lines 31–35 of Listing 5.2 are replaced by those in Listing 5.4

1

...,

2 Body,

3 (alive(IDi) ->

4 c occurrencei n(Restn,...)

5 ;

6 true

7)

8 ;

9 c occurrencei n(Restn,...)

10).

Listing 5.4: Continuation Schema for the Propagate Transition

In addition to the above changes to the alive/1 test for the active constraint,
the ReActivate transition now also needs an alive(IDi) check. The reason
is that the active constraint may have been removed from the constraint store
since the execution of the Solve transition that has reactivated it. The following
predicate may be used for the ReActivate transition:

c reactivate(X1,...,Xm,ID) :-

(alive(ID) ->

c occurrences(X1,...,Xm,IDi)

;

true

).

Shallow Backtracking and Inlining In the reference implementation the
above presented control flow through forward execution is replaced with shal-
low backtracking at some points. In the specialized code for Simplify transitions

84 The Implementation of CHR: A Reconstruction

the failure continuation is handled through shallow backtracking, i.e. instead of
the if-then-else a cut is used to separate the if part from the then part and the
else part is contained in a next clause of the same predicate. Moreover, the call
to the predicate with the code for the next occurrence is inlined, i.e. the call is
replaced with the corresponding body. The inlining avoids some overhead for the
call and the shallow backtracking may reuse a choice-point for conditional parts
of successive occurrences.

Listing 5.5 shows the compilation schema of a Simplify occurrence i and the
next occurrence i + 1 are compiled.

c occurrencei,i+1(Xi,1,...,Xi,mi
,IDi) :-

alive(IDi),
...

Guard

!,
...

Body.

c occurrencei,i+1(Xi,1,...,Xi,mi
,IDi) :-

...

Listing 5.5: The Shallow Backtracking Compilation Schema

5.3.3 Data Structure Optimizations

Distributed Propagation History The implementation of the distributed
propagation history deserves some further explanation. The propagation history is
not maintained globally, but stored in a distributed fashion in the constraint sus-
pensions. For every propagation transition that updates the propagation history,
a tuple is added to the part of the propagation history maintained by the active
constraint. Whenever the propagation history is to be checked for the presence of
some tuple, it needs to be looked for only among the propagation histories of the
involved constraints.

In the reference implementation in SICStus the data structure used for the
distributed propagation history is an AVL tree in every constraint suspension.
Although the worst case-lookup time in an AVL tree is O(log n) whether the
propagation history is distributed or not, on average the distributed approach
should be cheaper.

Moreover, it is slightly more favorable for memory reuse: if all involved con-
straints become unreachable, their joint tuple becomes unreachable too and it can
be reclaimed by a Prolog garbage collector. A global propagation history on the

5.3 Simple Optimizations 85

other hand maintains the reachability of the tuple and custom memory manage-
ment would be required to actually release the memory.

5.3.4 Optimized Compilation Example

Here we illustrate the above compilation schemas with optimizations on the gcd

program presented in Example 2.1 on page 17 in Chapter 2.

Example 5.3

1 gcd(I) :-

2 gcd_occurrence_1_2_3(I,_).

3

4 % gcd(0) <=> true.

5 gcd_occurrence_1_2_3(I,ID) :-

6 I == 0,

7 !,

8 (var(ID) ->

9 true

10 ;

11 kill(ID)

12).

13 % gcd(J) \ gcd(I) <=> J >= I | K is J - I, gcd(K).

14 gcd_occurrence_1_2_3(I,ID) :-

15 existential_lookup_gcd(J,ID2),

16 ID \== ID2,

17 J >= I,

18 !,

19 (var(ID) ->

20 true

21 ;

22 kill(ID)

23),

24 kill(ID2),

25 K is J - I,

26 gcd(K).

27 % gcd(J) \ gcd(I) <=> J >= I | K is J - I, gcd(K).

28 gcd_occurrence_1_2_3(J,ID) :-

29 (var(ID) ->

30 make_id_gcd(J,ID)

31 ;

32 true

33),

86 The Implementation of CHR: A Reconstruction

34 universal_lookup_gcd(Iter),

35 gcd_occurrence_3_2(Iter,J,ID).

36

37 gcd_occurrence_3_2([],J,ID) :-

38 gcd_drop(J,ID).

39 gcd_occurrence_3_2([ID2|Iter],J,ID) :-

40 (ID2 = suspension(_,JState,_,_,_,_,I),

41 alive(JState),

42 ID2 \== ID,

43 J >= I ->

44 kill(ID2),

45 actually_insert_gcd(J,ID),

46 generation_number(ID,GenOld),

47 K is J - I,

48 gcd(K),

49 generation_number(ID,GenIew),

50 (alive(ID),

51 GenIew == GenOld ->

52 gcd_occurrence_3_2(Iter,J,ID)

53 ;

54 true

55)

56 ;

57 gcd_occurrence_3_2(Iter,J,ID)

58).

59

60 gcd_drop(J,ID) :-

61 actually_insert_gcd(J,ID).

Compare the above compiled code to the unoptimized code of Example 5.1.
Quite a number of optimizations have been applied:

• The continutation-based control flow has been introduced. The toplevel pre-
dicate gcd/1 directly calls the code for the first occurrence at line 3, instead
of calling an intermediate predicate that sequentially calls the code for all
occurrences. Also, the alive/1 tests for the active constraint at the lines
12, 34 and 59 in Example 5.1 have been dropped.

• The sequencing of the code for the different occurrences is realized through
shallow backtracking: the toplevel clauses for each occurrence belongs to the
same predicate gcd occurrence 1 2 3/2.

• The code to maintain the propagation history (i.e. the lines 14–15 and 16 for
the first occurrence, the lines 38–39 and 41 for the second occurrence and

5.4 Soundness Proofs of Optimizations 87

the lines 63–64 and 66 for the third occurrence in Example 5.1) has been
omitted altogether.

• The code for the second occurrence has been reduced to a single clause
thanks to the specialization for simplification transitions: the replacement
of the universal lookup with an existential one.

• Lines 49–55 implement the generation optimization for the third occurrence.

• The late storage optimization has been applied. This means that the early
storage at line 2 of Example 5.1 has been removed. Instead, the constraint
representation is created only at line 30 and the actual constraint store in-
sertation occurs at line 45 just before the execution of the body of the third
occurrence’s rule. As a consequence, the removals of the active constraint in
the first (lines 8–12) and the second (lines 19–23) occurrence are conditional.
Moreover, an additional clause gcd drop/2 has been added to take care of
inserting the active constraint after the last occurrence, if it has not yet been
inserted.

5.4 Soundness Proofs of Optimizations

In this section we present two proofs that each establish the soundness of an aspect
of the previously presented basic compilation schema with respect to the refined
operational semantics.

First in Section 5.4.1 we establish the soundness of the generation optimization
of Section 5.3.1. An earlier version of this proof was, to the best of our knowledge,
the first soundness proof ever written for a CHR optimization. Second, in Section
5.4.2 we first illustrate an inconsistency in the Solve transition of the refined
operational with respect to existing CHR implementations. Next we formulate an
improved version of the Solve transition and then prove soundness of the CHR
implementation with respect to it.

5.4.1 Soundness of the Generation Optimization

In this section we will prove the soundness of the generation optimisation explained
in Section 5.3.1.

Paraphrasing Theorem 5.1, when an identified CHR constraint is pushed onto
the execution stack while other occurrenced versions of the identified CHR con-
straint are already on the execution stack, it is allowed to remove the already
present copies.

88 The Implementation of CHR: A Reconstruction

With soundness we mean that any final state reached through the optimization
is also reachable without the optimization. Formally, the soundness theorem is the
following:

Theorem 5.1 (Generation Optimization Soundness) The generation optim-
ization is sound with respect to the refined operational semantics:

∀σ, σ′, σf , σ′
f , c, i,X,X ′, S,B, T, n,Af , A′

f , Sf , S′
f , Bf , B′

f , Tf , T ′
f , nf , n′

f :

σ = 〈{c#i} ++ X,S,B, T 〉n
∧ σ′ = 〈{c#i} ++ X ′, S,B, T 〉n
∧ σ′

f = 〈A′
f , S′

f , B′
f , T ′

f 〉n′

f

∧ σ′
f = solve(σ′)

=⇒ σf = 〈Af , Sf , Bf , Tf 〉nf
= solve(σ)

∧ Sf = S′
f

∧ Bf = B′
f

∧ Tf = T ′
f

∧ nf = n′
f

where X ′ is identical to X with all occurrenced versions of c#i removed.

Proof: We will prove the soundness of a more restrictive case in Lemma 5.1: it is
sound to remove the topmost occurrenced version of c#i. By repeatedly applying
this lemma to remove the first occurrenced c#i in X and by the transitivity of the
soundness property, the theorem holds. �

In the theorem the state σ′ corresponds with the one where the generation
optimization is applied. The theorem does not explicitly distinguish between final
success and failed states. Note though that σf and σ′

f have to be both either
success or both failed states.

Lemma 5.1 The more restrictive lemma states that it is allowed to remove the
topmost occurrenced copy of an identified constraint from the execution stack when
that identified CHR constraint is pushed onto the execution stack:

5.4 Soundness Proofs of Optimizations 89

∀σ, σ′, σf , σ′
f , c, i,X, Y, S,B, T, n,Af , A′

f , Sf , S′
f , Bf , B′

f , Tf , T ′
f , nf , n′

f :

σ = 〈{c#i} ++ X ++ [c#i : j|Y], S,B, T 〉n
∧ σ′ = 〈{c#i} ++ X ++ Y, S,B, T 〉n
∧ σ′

f = 〈A′
f , S′

f , B′
f , T ′

f 〉n′

f

∧ σ′
f = solve(σ′)

∧ ∀X1, X2, k : X 6= X1 ++ [c#i : k|X2]
=⇒ σf = 〈Af , Sf , Bf , Tf 〉nf

= solve(σ)
∧ Sf = S′

f

∧ Bf = B′
f

∧ Tf = T ′
f

∧ nf = n′
f

Proof:
By applying the semantical transition rules of CHR on σ, execution goes

through states
σ = σ0 � σ1 � ... � σl

with σk = 〈Xk ++ [c#i : j|Y], Sk, Bk, Tk〉nk
for k = 1..l such that σl is the first

state where Xk = ∅ or where D 6|= Bk, i.e. a failed state.
Alternatively, σ′ goes with the same transitions through states

σ′ = σ′
0 � σ′

1 � ... � σ′
l

such that σk = 〈Xk ++ Y, Sk, Bk, Tk〉nk
for k = 1..l. This holds because

transition rules depend on the topmost element of the execution stack only.

• Consider failure in σl, which is due to unsatisfiable constraints in Bl. Because
σ′

l contains the same built-in constraint store Bl it is also a failure state.
Hence, the lemma holds for this case with σl = σf and σ′

l = σ′
f .

• If execution does not fail before Xl = ∅ in σl, Lemma 5.2 below shows that
σl � · · ·� σl′ is the only possible transition sequence. From the common
state σl′ on obviously the same final states are reachable. Hence, the current
lemma also holds for this case.

�

Lemma 5.2 Let σl, σ′
l and Xl be defined as in the proof of Lemma 5.1. Then the

transition σl � . . .→ σ′
l is the only possible transition sequence, if Xl = ∅.

Proof: We make one more assumption about all Xk for 1 ≤ k < l, namely:

6 ∃Xk,t : Xk = [c#i|Xk,t]

90 The Implementation of CHR: A Reconstruction

• If this does not hold, then some σk with k < l:

σk = 〈[c#i|Xk,t] ++ [c#i : j|Y], Sk, Bk, Tk〉nk

For the maximum value of k now, assuming the current lemma holds with
the additional assumption, it must be that σ′

l is the only state reachable from
σl. Hence, if the current lemma holds under the additional assumption, it
also holds without the additional assumption.

• The rest of this proof carries on with the additional assumption.

We will now show that the only possible sequence of transitions is of the form

σl � σl+1 � ... � σl+o+1−j � σ′
l

such that σ(l+k) = 〈[c#i : j + k|Y], Sl, Bl, Tl〉nl
for k = 0..(o + 1 − j), where o is

the maximum occurrence number of c in program P .
Consider what transition rules apply in state σl+k:

• Solve.
Does not apply, as the topmost element in the execution stack is not a built-
in constraint.

• Activate.
Does not apply, as the topmost element in the execution stack is an occur-
renced CHR constraint.

• ReActivate.
Does not apply, as the topmost element in the execution stack is an occur-
renced CHR constraint.

• Drop.

– This is the only rule that applies to state σl+o+1−j as o + 1 is not a
valid occurrence for c. It realizes the transition σl+o−j+1 � σ′

l.

– It does not apply to states σl, ..., σl+o−j since the occurrences j..o do
appear in program P .

• Simplify.
Assume this transition rule applies. Then Sl = {c#i}]H1]H2]H3] R
for some H1, H2, H3 and R such that for some rule r in P :

r @ H ′
1\H

′
2, dj , H

′
3 ⇔ g|C

there exists a matching substitution θ ≡ (chr(H1) = H ′
1∧ c = d∧ chr(H2) =

H ′
2 ∧ chr(H3) = H ′

3) and D |= Bl → ∃̄Bl
(θ ∧ g).

5.4 Soundness Proofs of Optimizations 91

Now consider the initial subsequence of transitions

σ � σ1 � ... � σd

of the transition sequence σ � . . . � σl where

σd = 〈X ++ [c#i : j|Y], Sd, Bd, Td〉nd

is the first state of this form. Since the execution stack behaves as a stack,
this intermediate state must occur before σl is reached or it may coincide with
σl if X is empty. The sequence σ � . . . � σd−1 must contain intermediate
states where the execution stack is [c#i : m|X] ++ [c#i : j|Y] with m = 1..o.
For the state σm with m = k:

– Either the Simplify rule applies. But then c#i would be removed from
the store and never reoccur in it. This is contrary to the assumption
that c#i ∈ Sl.

– Or the Simplify rule does not apply, because:

∗ At least one of the partner constraints in H1, H2 or H3 is not present
in the constraint store in that state. Because all partner constraints
are present in the constraint store Sl, they must have been added
in between σm and σl.
Now consider the state where the last partner constraint has been
added to the constraint store. From that state on all partner con-
straints are present in the constraint store, since they still are
present in state σl.
Hence, the last partner constraint must have given rise to a state
before σl where the topmost element of the execution stack is an
occurrenced version of that constraint with the same occurrence in
rule r as it has in state σl+k.
For that state the rule would either apply, but this would remove
c#i and is contrary to our initial assumption. Otherwise it does not
apply because the guard is not entailed or a matching substitution
is missing. It is proven in the next case why this is impossible as
well. Hence, this situation cannot occur.

∗ All partner constraints are present in the constraint store, but the
guard or matching substitution are not entailed by the built-in
constraint store Bm.
Because in subsequent states only conjuncts are added to the built-
in constraint store, it must be that Bl = Bm ∧ Bnew with Bnew a
conjunction of built-in constraints.
Since Bl entails the guard and matching, while Bm does not, some
of the conjuncts in Bnew are required for the entailment. Now,

92 The Implementation of CHR: A Reconstruction

Bnew = Bnew,1 ∧ Bnew,2 where all built-in constraints in Bnew,1

have been added before those in Bnew,2 and Bm ∧ Bnew,1 does
entail both guard and matching substitution. It is obvious that
such a Bnew,1 and Bnew,2, with Bnew,1 6= true but potentially
Bnew,2 = true.
Now consider the built-in constraint cb that is a conjunct of Bnew,1

and has been added the last. This addition is only possible via
the Solve rule. The Solve rule adds all affected constraints in
the constraint store, to the execution stack. At least one of the
constraints in H1, H2, H3 or c#i is so added to the execution stack.
If c#i is so added, this violates the assumption that c#i appears
at the top of the stack in a state between σ and σl. If one of the
partner constraints is added, then, similar to the previous case,
it will consider the Simplify transition rule for program rule r.
All the necessary constraints are present in the constraint store
and both guard and matching constraint are present. Hence, the
Simplify will apply and remove c#i from the constraint store.
However, this is contrary to the assumption that c#i ∈ Sl. Hence,
this situation cannot occur.

Hence, it is not possible for the Simplify rule to apply in any state σl+k.

• Propagate.
Similar argument as for the Simplify transition.

• Default.
Since the other rules do not apply to σl+k for k = 0..(o − j), this rule does
apply. It brings state σl+k into state σl+k+1.

Hence, the transition σl � . . . � σ′
l is the only possible one and none of the

components in the intermediate states, except the execution stack, differ through-
out.

�

5.4.2 Prolog’s Solve Transition

It was noted only recently that the Solve transition (see Figure 2.2) of the refined
operational semantics is actually too strict for existing CHR implementations.
Indeed, consider the earlier Definition 5.1 of affected CHR constraints that are
put on the execution stack in Prolog. This behavior is not sound with respect to
the refined operational semantics. The following example illustrates this.

Example 5.4 Consider the following CHR program:

5.4 Soundness Proofs of Optimizations 93

r1 @ p(X) ==> Y = a, q.

r2 @ p(X) <=> fail.

r3 @ q \ p(X) <=> true.

r4 @ q <=> true.

Under the refined operational semantics, the initial query p(X) will lead to
a failed final state. First rule r1 is applied and the goal Y = a causes a Solve
transition. This transition puts the identified p(X) on the execution stack, which
proceeds with rule r2 and causes failure.

However, in Prolog the goal Y = a does not put the identified version of p(X)
on the execution stack as p(X) is not affected. Hence execution proceeds with q,
which first removes p(X) from the store through rule r3 and then itself through
rule r4. The final state is a success state with an empty CHR constraint store.

As in Prolog a final state is reached that is not reachable under the refined
operational semantics, clearly Prolog is not sound with respect to this refined
operational semantics.

As the refined operational semantics are supposed to describe the behavior of
most current CHR implementations, a new formulation of the Solve rule, Solve’
given in Figure 5.1, was made to remedy the inconsistency. Note that the new
formulation is more non-deterministic than the old one: only a lower and an upper
bound for the set S1 are given.

We will now show that the set S1 of affected CHR constraints that is put on
the execution stack during Prolog’s Solve transition is correct with respect to the
Solve’ formulation. This actually shows that the Solve’ formulation is reasonable
with respect to current CHR implementations in Prolog and the reference imple-
mentation (Holzbaur and Frühwirth 1999) in particular. Recall that the built-in
constraint domain D of Prolog is the Herbrand constraint domain H.

Theorem 5.2 For the set S1 of all affected CHR constraints in an execution state
of the form 〈[c|A], S,B, T 〉n where c is a built-in constraint, it holds in Prolog that:

1. lower bound: For all M = H1 ++ H2 ⊆ S such that there exists a rule

r @ H ′
1 \ H ′

2 ⇐⇒ g′ | C ′

and a substitution θ such that

chr(H1) = θ(H ′
1)

chr(H2) = θ(H ′
2)

g = θ(g′)
H 6|= B → ∃̄Mg
H |= B ∧ c→ ∃̄Mg

then M ∩ S1 6= ∅

94 The Implementation of CHR: A Reconstruction

Solve’ 〈[c|A], S,B, T 〉n � 〈S1 ++ A,S, c ∧ B, T 〉n where c is a built-in
constraint, and S1 is some subset of S satisfying the following

1. lower bound : For all M = H1 ++ H2 ⊆ S such that there exists a
rule

r @ H ′
1 \ H ′

2 ⇐⇒ g′ | C ′

and a substitution θ such that

chr(H1) = θ(H ′
1)

chr(H2) = θ(H ′
2)

g = θ(g′)
D |= ¬(B → ∃̄Mg) ∧ (B ∧ c→ ∃̄Mg)

then M ∩ S1 6= ∅

2. upper bound : If m ∈ S1 then vars(m) 6⊆ fixed(B), where fixed(B)
is the set of variables fixed by B.

Figure 5.1: Solve’, the corrected version of Solve

2. upper bound: If m ∈ S1 then vars(m) 6⊆ fixed(B), where fixed(B) is the
set of variables fixed by B.

Proof: We consider only rules in Head Normal Form (see Section 2.4.1).
For the purpose of the proof we also restrict ourselves to guards of the form:

g ≡ ∃ȳ1(c1 ∧ ∃ȳ2 : (c2 ∧ . . .))

with ∃ȳi either is empty and ci ≡ a = b or ȳi = yi,1, . . . , yi,n and ci ≡ a =
f(yi,1, . . . , yi,n) with a, b ∈ vars(M) variables occurring in previous existential
quantifiers or in the head of the rule and f a functor and n ≥ 0. Note that the
existential quantifiers in the above are only used to indicate the introduction of
new variables; in practice they are omitted.

The above restricted form facilitates the proof and all guards may be rewritten
to this form.

We prove the two parts of the theorem separately.

1. Lower Bound
Assume that for some M ⊆ S, as defined in the lower bound part of the
theorem, it holds that M ∩ S1 = ∅. Because of the definition of M it must
be that:

{

H 6|= B → ∃̄Mg
H |= B ∧ c→ ∃̄Mg

5.4 Soundness Proofs of Optimizations 95

Because of the syntactical restriction on guards in Prolog, it holds that

∃̄Mg ≡ ∃ȳ1(c1 ∧ ∃ȳ2 : (c2 ∧ . . .))

Let us consider this guard in a left-to-right manner with respect to B.

Consider whether ∃ȳici is implied by B. Start with i = 1.

• Either it is implied. Now consider the form of ci and yi. Because of the
restriction on the form of constraints in the guard, either ȳi is empty
and ci ≡ a = b or ȳi = yi,1, . . . , yi,n and ci ≡ a = f(yi,1, . . . , yi,n)
with a, b ∈ vars(M) free variables and f a functor and n ≥ 0. In the
latter case, there must be some z1, . . . , zn appearing in B such that
B → a = f(z1, . . . , zn) because the constraint is entailed. Replace all
occurrences of yi,j with zj in the remainder of the guard. Continue with
the remainder of the guard, i.e. increase i by one and repeat.

• Stop.

Now, clearly the first part of the guard ∃ȳici not entailed by B must be
entailed by B ∧ c. For ci ≡ a = b, we assume at most one of both a and
b is non-variable with respect to B3. Say a is definitely variable and b is
either variable or non-variable. Because of the restriction on the form of
guards in Prolog and the above procedure for any x, either a or b, which is
variable with respect to B there must be a CHR constraint d ∈M such that
x ∈ term vars(d). Hence, clearly constraint d is affected and must be part
of S1. Ergo our initial assumption that M ∩ S1 = ∅ is wrong.

If both a and b are non-variable, then either their functors or arities are
different, the Solve transition causes inconsistency and the set S1 is of no
interest, or at least for one pair of arguments xi = yi is not satisfied in B.
The argument for ∃ȳici may now be repeated recursively for xi = yi (the
term vars property is recursively inherited).

In the case that ci ≡ a = f(x1, . . . , xn) the argument is similar.

Hence in all cases it must be that M ∩ S1 6= ∅.

2. Upper Bound
From the definition of S1 and the definition of affected it follows that:

∀c ∈ S1 : ∃a : H |= B → a ∈ term vars(c)

A variable a for which a ∈ term vars(c) holds in Prolog, is not fixed. For
example, two different renamings θ1 = {a/1} and θ2 = {a/2} map a onto
the integers 1 and 2 respectively without causing any inconsistency. Hence
the upper bound holds for S1.

3If both a and b are non-variable, the unification may be decomposed into a number of
unifications for which at most one of the arguments is non-variable

96 The Implementation of CHR: A Reconstruction

�

It is possible to extend the proof to allow other tests in the guard, such as
var/1 and nonvar/1 and calls to predicates.

Example 5.5 Consider again Example 5.4

r1 @ p(X) ==> Y = a, q.

r2 @ p(X) <=> fail.

r3 @ q \ p(X) <=> true.

r4 @ q <=> true.

With the new definition Solve’, the initial query p(X) does not necessarily
lead to a failed final state. First rule r1 is applied and the goal Y = a causes a
Solve’ transition. The identified constraint p(X) is not affected by the unification
and hence does not have to be put on the execution stack.

5.5 Conclusion

In this chapter we have introduced a basic Prolog compilation schema and ex-
plained the optimizations to it in the CHR reference implementation. To the best
of our knowledge this is the most comprehensive explanation of the compilation
schema and the first in terms of the refined operational semantics. The presented
compilation schema will serve as a basis for further discussion of implementation
aspects of CHR.

Moreover, we have established the soundness of two parts of the compilation
schema with respect to the refined operational semantics. Very little work has
been done regarding formal soundness proofs of CHR implementations. In Section
6.3.4 we will present another soundness proof, one of an optimization that we have
developed in the context of our CHR system. To the best of our knowledge ours
are the first correctness proofs of their kind.

To further increase the confidence in existing CHR implementations, more
formal proofs of the optimizations are needed. In particular, the interoperability
of different optimizations should be studied. Such a study might reveal prob-
lematic border-line cases that only show up when multiple optimizations apply
simultaneously.

We have recently started a joint project with Christian Holzbaur concerning
the formulation of a more generic host language-neutral compilation schema. The
generic schema will capture the control flow of the compiled CHR program in
an intermediate language that can be compiled to different host languages. In
this way, CHR systems for many different host languages may use the “CHR-to-
intermediate language” compiler and leverage from the optimizations that will be

5.5 Conclusion 97

developed for it. However, this project is still in a very preliminary stage and it is
an important part of our future work.

98 The Implementation of CHR: A Reconstruction

Chapter 6

The K.U.Leuven CHR

System

6.1 Introduction

CHR has been around for several years now, but the number of CHR implement-
ors, the variety of available implementations and the number of Prolog systems
containing such an implementation were surprisingly small at the start of our
involvement with CHR.

Figure 6.1 provides an historical overview of CHR implementations, from the
language’s conception in 1991 to the time of writing.

In the first few years, several prototype CHR systems have been developed to
experiment with and illustrate the feasibility of the language. These early systems,
in Sepia, its successor ECLiPSe (IC-Parc) and its derivative Sepia* (Meier), as
well as in Lisp (Steele 1984) and Oz (Smolka 1995), were rather limited. For
example, no more than two constrains were allowed in the head of a rule. Most of
these CHR systems are no longer in use.

The first full CHR system was developed by Christian Holzbaur in co-operation
with Thom Frühwirth (Holzbaur and Frühwirth 1999; Holzbaur and Frühwirth
2000). This system was first included in the SICStus 3 release (Intelligent Systems
Laboratory 2003) and later in the Yap Prolog system (Santos Costa, Damas, Reis,
and Azevedo 2004). It is considered as the reference implementation of CHR. It
was the first system to allow an unbounded number of constraints in the heads of
rules.

Interest in CHR implementations increased in the last five years. With the help
of Christian Holzbaur an evolved optimizing version of his reference implementa-
tion was ported to the HAL language. Later this implementation was rewritten
by Gregory Duck.

99

100
T

h
e

K
.U

.L
eu

ven
C

H
R

S
y
stem

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

CHR

Sepia

ECLiPSe

Sepia*

SICStus

Yap

JCHR (JaCK)

DJCHR

HAL (C. Holzbaur)

HAL (G. Duck)

Chameleon

HaskellCHR

ToyCHR

hProlog

XSB

SWI-Prolog
{K.U.Leuven CHR

F
igu

re
6.1:

A
tim

elin
e

of
C

H
R

im
p
lem

en
tation

s

6.1 Introduction 101

A dedicated CHR system was written by Martin Sulzmann et al. for the Haskell
variant Chameleon to support the work on a customizable type system(Stuckey
and Sulzmann 2005). This first Haskell implementation was later replaced by the
HaskellCHR implementation by Gregory Duck. Gregory Duck also built a small
new Prolog interpreter for CHR, ToyCHR, that runs in SICStus and SWI-Prolog.

JCHR is a Java implementation of CHR by Slim Abdennadher et al. that
is part of the Java Constraint Kit (Abdennadher, Krämer, Saft, and Schmauss
2001). JCHR compiles a CHR program to a high-level unoptimized intermediate
form that is interpreted. The interpreter does not follow the refined operational
semantics, but its own instance of the theoretical operational semantics. Another
CHR system for Java is the DJCHR system by Armin Wolf (Wolf 2001; Wolf
2005) which extends CHR with “justification”. Justification is useful for improved
non-chronological backtracking and adaptive constraint programming.

In this chapter we present our own contribution: a new CHR system for Prolog,
the K.U.Leuven CHR system, that we have developed and extended throughout
this thesis. The objective of the K.U.Leuven CHR system is threefold:

• Firstly, to provide a decent alternative to the reference implementation for
Prolog. Despite the fair number of CHR implementations listed above, most
have been abandoned altogether and none matches the reference implement-
ation in efficiency.

• Secondly, to bring the current state-of-the-art in optimized compilation of
CHR to Prolog. The reference implementation has changed very little over
the years. While several optimizations have been developed in the context
of HAL (Holzbaur, Garćıa de la Banda, Stuckey, and Duck 2005), no effort
had been done to port these optimizations to Prolog.

• Thirdly and most importantly for this thesis, to serve as a basis for new
research into optimized compilation, analysis and extensions of CHR.

This chapter mainly addresses the first two objectives. The implementation
of our system was inspired by the reference CHR implementation of Christian
Holzbaur (Holzbaur and Frühwirth 1999). Inspiration also came from several
optimizations published by others (Holzbaur, Garćıa de la Banda, Stuckey, and
Duck 2005). Section 6.2 outlines the general implementation of the K.U.Leuven
CHR system.

The optimizations implemented in the K.U.Leuven CHR system, both those
taken from related work and those we have contributed ourselves, are contained
in Section 6.3.

The host system of the K.U.Leuven CHR system was originally hProlog (De-
moen), but it is now also available in two major open-source Prolog systems:
SWI-Prolog (Wielemaker 2004) and XSB (Warren et al. 2005). The presence in

102 The K.U.Leuven CHR System

three different Prolog systems helps realize our first objective and CHR program-
mers are no longer forced to choose among a limited number of Prolog systems:
all major Prolog systems are covered. The two ports, to SWI-Prolog and XSB,
are discussed in Section 6.4.

We verify the realization of the first two objectives with an experimental evalu-
ation of our system. Section 6.5 compares our system to the reference implement-
ation. Finally, Section 6.6 concludes.

The main realization of the third objective, and our most important scientific
contributions, are covered in the next three chapters. As such, this chapter serves
as a proper background.

6.2 Implementation

In this section we describe the main implementational aspects of the K.U.Leuven
CHR system. Initially the system was written for the hProlog system (Demoen
). hProlog is based on dProlog (Demoen and Nguyen 2000) and intended as an
alternative backend to HAL (Demoen, Garćıa de la Banda, Harvey, Marriott,
and Stuckey 1999) next to the current Mercury (Somogyi, Henderson, and Con-
way 1996) backend. The initial intent of the implementation of a CHR system
in hProlog was to validate the underlying implementation of dynamic attributes
(Demoen 2002).

The K.U.Leuven CHR system consists of two parts:

• The runtime library is strongly based on the SICStus CHR runtime written
by Christian Holzbaur.

• The preprocessor compiles embedded CHR rules in Prolog program files into
Prolog code. The compiled form of CHR rules is similar to that described
in Section 5.2.

The advantage of the runtime code is that it is generic and can be reused for all
CHR programs. However, this genericity also has its price: runtime overhead.
In the evolution of the system, more and more tasks have moved away from the
runtime library to specialized code generated by the compiler. This specialization
process is discussed in more detail in Section 6.3.

6.3 Optimizations

This section lists the noteworthy optimizations implemented in the K.U.Leuven
CHR system. Section 6.3.1 contains the optimizations that were published in
related work. Our own contributions, code specialization for ground constraints,
hash table constraint stores and anti-monotonic delay avoidance, are discussed in
Section 6.3.2, Section 6.3.3 and 6.3.4 respectively.

6.3 Optimizations 103

6.3.1 Related Work on Optimizations

Join Ordering In the general compilation schema in Section 5.2 the ordering
of partner constraint lookups for a particular active occurrence is the left-to-right
ordering of these partner constraints in the rule head. However, the refined oper-
ational semantics does not specify any particular ordering, so we are free to chose
any ordering.

In fact, it may have an important impact on the overall efficiency of the program
what ordering is chosen. The lookup of partner constraints itself is a typical
enumeration problem from constraint programming. For every partner constraint
there may be many candidates and all the partner constraints together with the
active constraints have to satisfy the matching and the guard. The nested lookup
of partner constraints determines the search tree of this problem. Every partner
constraint corresponds with a level in the search tree: the active constraint is the
root of the tree, the first partner constraint corresponds with the first level, . . . ,
the last partner constraint corresponds with the deepest level. Every edge from
level i − 1 to level i selects a particular candidate for partner constraint i. In
every leaf a candidate has been selected for every partner constraint, so the guard
and head matching can be verified to see whether the rule is applicable to that
combination of constraints. The ordering of partner constraint lookups clearly
determines the shape of the search tree.

As already explained in Section 5.2.3 lookup of partner constraints is either
done by a linear search in a global list of all constraints or, given a variable that
occurs in the constraint, in a list of constraints containing that variable (this is
realized with attributed variables). The latter is potentially much more efficient
as the number of constraints with a particular variable in it may be much smaller
than the number of all constraints.

Now, the head matching and equality constraints in the guard of the rule imply
identical structures in some (parts of) arguments of constraints. If at runtime (part
of) one such argument contains a variable, that variable should also appear in other
constraints with the same structure. Consider a level in the search tree where the
first partner constraint that shares a particular structure has been selected. To
lookup other partner constraints with the same shared structure, a variable-based
lookup can be done if the candidate for the first partner constraints has a variable
in the shared structure. Clearly, this variable-based lookup consists of a pruning
of the search tree when compared with the global list-based lookup.

This suggests a heuristic for ordering the partner constraint lookups. One
should try to maximize those of constraints in an ordering that share a structure
with one of their predecessors in the ordering or with the active constraint. This
heuristic has first been formulated in (Holzbaur, Garćıa de la Banda, Stuckey, and
Duck 2005) and we have implemented it in K.U.Leuven CHR system.

104 The K.U.Leuven CHR System

Late Storage In Section 5.3 we have mentioned already an optimization to the
general compilation schema to postpone constraint storage. In (Holzbaur, Garćıa
de la Banda, Stuckey, and Duck 2005) a stronger pre-analysis is sketched for late
storage optimization that also postpones storage past some propagation rules. We
propose an even stronger late storage analysis based on abstract interpretation. It
is covered in Section 7.4.

Never Stored A rule of the form

c <=> . . .

always removes constraints of the form c from the constraint store. When all the
arguments of c are different variables, i.e. c = p(X1, . . . , Xn), and no constraint
p/n needs to be stored before this rule (thanks to late storage), then p/n is con-
sidered never stored. If a never stored constraint appears in the head of a rule,
no code needs to be generated for the occurrences of the other constraints in the
head of the rule. Such an occurrence of another constraint would not be able to
find a never stored constraint in the constraint store. Never stored constraints
together with the above optimization are described in (Holzbaur, Garćıa de la
Banda, Stuckey, and Duck 2005).

In K.U.Leuven CHR system we also detect never stored constraints and apply
the above optimization. In addition, for constraints for which never even a con-
straint suspension is created the ID argument in all predicates is omitted altogether
as it serves no function.

Continuation Optimization In (Holzbaur, Garćıa de la Banda, Stuckey, and
Duck 2005) Duck et al. sketch an optimization to the simple sequential succession
of occurrences. They propose to both optimize failure and success continuations
of occurrences. If a particular occurrence fails to apply, it may be possible to
prove that the next occurrences will fail too. Hence, the next occurrences may be
skipped over. A similar observation is possible if an occurrence succeeds to apply.
Duck et al. have also implemented a weak prover to enable these optimizations.

A much stronger implementation in the K.U.Leuven CHR system and a more
formal treatment with correctness proof are given in (Sneyers, Schrijvers, and
Demoen 2005b). This work also contains a prover and optimization to remove
redundant guards.

6.3.2 Ground Constraints

The CHR language contains one aspect that is intended exclusively for logical
variables that may be constrained: the re-activation of CHR constraints. This
aspect is captured by the Solve and ReActivate rules in the refined operational
semantics.

6.3 Optimizations 105

However, not all kinds of CHR programs deal with logical variables. Some deal
with ground constraints only and the variable support causes needless overhead for
them. For example, the gcd program of Example 2.1 deals with ground constraints
only.

The implementation of (Holzbaur, Garćıa de la Banda, Stuckey, and Duck
2005) does not have any support for logical variables and thereby no overhead
for ground constraints. Moreover, it does not specify in what way the general
compilation schema may be optimized for ground constraints.

In K.U.Leuven CHR system however, we do want to support the full range of
CHR applications, both with and without variables. In order to avoid the needless
overhead for ground constraints, the compiler specializes the general compilation
schema for them.

The K.U.Leuven CHR system requires static groundness information of the
form p(gi, . . . , gn) where gi may be either + or ?. gi = + means that the ith
argument of all constraints p/n is at all times ground and gi =? means that noth-
ing may be assumed. This static groundness information may either be derived
through analysis or through manual specification. In Section 7.5 we present a pre-
liminary groundness analysis that would serve the purpose. Manual specification
is already fully supported.

The following minor and major optimizations are applied for ground con-
straints. Most of these optimizations are based on the observation that a ground
constraint is never triggered.

• In combination with late storage, the suspension variable in the general
schema is only instantiated from the point where it is created.

This observation allows the specialization of conditional kill operations before
the point of allocation (see Late Storage on p.81):

(var(ID) ->

true

;

kill(ID)

)

to simply true, i.e. omitted altogether.

• Equality tests in guards may be turned into full unifications as these behave
the same for ground constraints. However, unifications are often imple-
mented more efficiently. In addition, the K.U.Leuven CHR system moves
unifications at the start of a clause’s body into the head of that clause when
possible. Many Prolog systems use indexing techniques to speed up such
unifications in the heads of clauses.

• No continuation goal is constructed for ground constraints (see Section 5.2.2).

106 The K.U.Leuven CHR System

• No variables have to be looked for in a ground constraint to associate the
constraint suspension with. See also Section 6.3.4 for a similar optimization
to particular non-ground constraints.

• No propagation history needs to be maintained for particular propagation
rules whose head constraints are all ground. Ground constraints consider an
occurrence in a propagation rule only once. Moreover, if none of the head
constraints of the propagation rule observes any of the other head constraints
at an earlier occurrence, then the propagation history may be omitted. The
latter restriction ensures that at most one of the head constraints may act-
ively try the propagation rule while all the other head constraints are present
in the constraint store. See Section 7.4.1 and further for a definition of the
observation property and an analysis to derive it.

In addition, in Section 6.3.3 we present hash table constraint stores, that are
only usable for ground constraints.

An Example of Compiled Code

Consider the following CHR program that computes the sum of a list of integers:

sum([I|Is],Sum) <=> sum(Is,PartialSum), Sum is I + PartialSum.

sum(_,Sum) <=> Sum = 0.

Under the general compilation schema of the previous chapter on the one hand,
the generated code for this simple CHR program would be:

sum(List,Sum) :-

sum_occurrence_1_2(List,Sum,ID).

sum_occurrence_1_2(List,Sum,ID) :-

nonvar(List),

List = [I|Is],

!,

(var(ID) ->

true

;

kill(ID)

),

sum(Is,PartialSum),

Sum is I + PartialSum.

sum_occurrence_1_2(_,Sum,ID) :-

!,

(var(ID) ->

true

6.3 Optimizations 107

;

kill(ID)

),

Sum = 0.

sum_occurrence_1_2(List,Sum,ID) :-

sum_drop(List,Sum,ID).

sum_drop(List,Sum,ID) :-

make_id_sum(List,Sum,ID),

actually_insert_sum(List,Sum,ID).

With the groundness declaration sum(+,?) the K.U.Leuven CHR system on the
other hand generates the following Prolog code:

sum([I|Is],Sum) :- !,

sum(Is,PartialSum),

Sum is I + PartialSum.

sum(_,0).

This extremely compact code is generated thanks to the various optimizations
driven by the groundness information and the never stored property of the sum/2

constraints.

In (Sneyers, Schrijvers, and Demoen 2005b; Sneyers, Schrijvers, and Demoen
2005a) the K.U.Leuven CHR system is extended with type declarations and an
analysis to get rid of head matchings using these type declarations. This extension
generates the same Prolog code as above, even if the second rule of the CHR
program is written as:

sum([I|Is],Sum) <=> sum(Is,PartialSum), Sum is I + PartialSum.

sum([],Sum) <=> Sum = 0.

where the type of the first argument of sum/2 is a list of integers.

Observe how close the generated Prolog is to the CHR code and to idiomatic
Prolog code with the same behavior:

sum([I|Is],Sum) :-

sum(Is,PartialSum),

Sum is I + PartialSum.

sum([],0).

It is reported in (Sneyers, Schrijvers, and Demoen 2005a) that the Prolog code
generated for this program using the groundness declaration is about 2.7 times as
fast as the code without such declaration.

108 The K.U.Leuven CHR System

6.3.3 Hash Table Constraint Stores

The CHR constraint store implementation of the general compilation schema,
explained in Section 5.2.3, provides very fast lookup of constraints in which a
known variable appears: the constraints are directly stored in an attribute on the
variable.

However, attributes cannot be used with non-variables, so they provide no
means to efficiently look up of ground constraints. The generic schema instead
uses a global unordered list of all constraints in which it is possible to lookup in
worst-case time linear in the number of constraints.

In (Holzbaur, Garćıa de la Banda, Stuckey, and Duck 2005) a more efficient
data structure is proposed for lookup of ground constraints, a 234-tree, that allows
for logarithmic worst-case time lookup.

Here we propose the use of an even better data structure: a hash table. A hash
table allows for amortized time constant in the number of elements not only for
lookup, but also for insertion and deletion. Our implementation of hash tables in
Prolog uses a term as an array: the ith argument of the term is the ith entry in
the array. The non-standard built-in setarg/3 is used to update the array in a
backtrackable manner.

Our hash table is dynamic in nature. It is initialized to a small size and
whenever the load exceeds the threshold, it is doubled in size. Doubling in size
means replacing the term that is stored in a global variable with a new term with
double the arity and rehashing all entries of the old term to the new term.

The hash function h(T) used to map terms T , constraints in our case, to entry
numbers in the array is:

h(T) = (ht(T) mod s) + 1

where s is the size of the array and ht(T) is a function that maps terms to integers.
The function ht(T) should be chosen such that it is hard to find two terms that
map onto the same integer value. We have used the ht(T) function of SWI-Prolog,
implemented by the term hash/2 predicate.

To resolve hash collision, i.e. two terms hashing to the same array entry, we
use buckets. This means that an array entry is not a single term, but a list of
terms.

Experimental Evaluation: Union-Find

To experimentally validate the derived complexity derived in Section 4.7.2, we
have run the CHR program in SWI-Prolog (Wielemaker 2004) using our system.

By adding the appropriate mode declarations to our program, the system es-
tablishes the groundness of shared variables and uses hash tables as constraint
stores.

6.3 Optimizations 109

By initializing the hash tables to the appropriate sizes and choosing the used
constants appropriately, it is possible to avoid hash table collisions. Then, the
hash tables essentially behave as arrays just as in the typical imperative code and
the assumptions about the constraint store made in Section 4.7.2 are effectively
realized.

In contrast, the first and de facto standard CHR system, available in SICStus
(Intelligent Systems Laboratory 2003), does not provide the necessary constant
time operations. While it does have constant lookup time for all constraint in-
stances of a particular constraint that contain a particular variable, it does not
distinguish between argument positions. Hence, the lookup of root(X,R) can be
done in constant time given X, but the lookup of X ~> Y is proportional to the
number of ~> constraints X appears in. If X is a node with K children, then it will
be O(K). Moreover, while the insertion of a constraint instance is O(1), deletion
is O(I), where I is the total number of instances of the constraint.

The queries we use in our experimental evaluation consist of N calls to make/1,
to create N different elements, followed by N calls to union/2 and N calls to
find/2. The input arguments of the latter two are chosen at random among
the elements. Even the SICStus CHR system exhibits near-linear behavior for a
random set of union operations. So we also consider a contrived set of union

operations: disjoint trees of elements are unioned pairwise until all elements are
part of the same tree. Figures 6.2 and 6.3 show the runtime results for SICStus and
SWI-Prolog. It is clear from the figure that SICStus does not show the optimal
quasi-linear behavior anymore which is still observed in SWI-Prolog.

We also compare the above two cases to the case where the hash tables are
not initialized to a large enough size, but instead double in size and rehash each
time their load equals their size. While individual hash table operations no longer
take constant time, on average they do (Cormen, Leiserson, and Rivest 1990),
which is sufficient for our complexity analysis. This is confirmed by experimental
evaluation (see Figure 6.4).

The above comparisons illustrate that it is vital for efficiency to use a CHR
system with the proper constraint store data structures. To the best of our know-
ledge, the K.U.Leuven CHR system is currently the only system that provides
hash table-based indexing constraint stores.

6.3.4 Anti-monotonic Delay Avoidance

In this section we summarize the anti-monotony-based delay avoidance optim-
ization technique for CHR programs that we published in a technical report
(Schrijvers and Demoen 2004a). It is based on static analysis and aims at avoiding
the rechecking of the program rules for constraints when it is unnecessary.

The static analysis determines what argument positions of constraint symbols
are anti-monotonic in all the guards in the program. Assume that a guard does
not succeed. Then an argument of a constraint involved in the rule of the guard is

110 The K.U.Leuven CHR System

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000 6000 7000

R
un

tim
e

(m
s)

N

SICStus
SWI-Prolog

Figure 6.2: Observation of behavior for contrived unions: SICStus and SWI-Prolog
array constraint stores

anti-monotonic in that guard, if further constraining that argument does not make
the guard succeed. Typical examples for Prolog are guards that do not mention
the argument or var/2 tests.

As already mentioned in Section 5.2.3, in the general compilation schema,
the constraint put on the execution stack are selected as follows. For every con-
straint all variables in it get the constraint’s suspension associated as an attributed
variable. When any of the variables is unified, the Solve transition selects that
variable’s associated constraints to be put on the execution stack.

Based on the analysis of anti-monotonic arguments, the generic association
operation between variables and constraints is replaced by specialized operations,
one for each constraint. Such a specialized operation for a constraint only considers
arguments that are not anti-monotonic. This avoids the triggering of the constraint
when any of the variables in anti-monotonic arguments is unified.

A more extensive and formal treatment, together with a correctness proof, is
given in (Schrijvers and Demoen 2004a).

6.4 Ports

An initial version of K.U.Leuven CHR system was written completely in hProlog
using standard Prolog code with a small number of non-standard built-ins. More

6.4 Ports 111

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000 7000

R
un

tim
e

(m
s)

N

Figure 6.3: Observation of behavior for contrived unions: Detail of Figure 6.2:
SWI-Prolog array constraint store

evolved versions of the system were partially written in CHR and currently the
core of the compiler, not counting several auxiliary libraries, consists of almost
6,000 lines of code including 160 CHR rules.

Due to the limited number of non-standard built-ins used, porting the
K.U.Leuven CHR system to other Prolog systems is relatively easy. In the course
of this thesis, two such ports have actually been done and they are described in
below.

6.4.1 XSB

XSB (Warren et al. 2005) is a Prolog system best known for its tabled execution
extension, that allows for more succinct programs in various application domains.
See Chapter 8 for our work on integrating the K.U.Leuven CHR system with XSB’s
tabled execution mechanism, which was the motivation for our port.

Little difficulty was experienced while porting the preprocessor and runtime
system from hProlog to XSB. The main problem turned out to be XSB’s overly
primitive pre-existing interface for attributed variables: it did not support attrib-
utes in different modules. Moreover, the actual binding of attributed variables was
not performed during the unification, but it was left up to the programmer of the
interrupt handler (see Section 5.2.3). This causes unintuitive and unwanted be-

112 The K.U.Leuven CHR System

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1000 2000 3000 4000 5000 6000 7000

R
un

tim
e

(m
s)

N

Figure 6.4: Observation of behavior for contrived unions: SWI-Prolog Hash table
constraint store

havior in several cases: while the binding is delayed from unification to interrupt
handling, other code can be executed in between that relies on variables being
bound, e.g. arithmetic. Due to these problems with the available XSB attributed
variables, it was decided to model the attributed variables interface and behavior
more closely to that of hProlog. This facilitated the porting of the CHR system
considerably.

The global variables interface, needed for the CHR constraint store (see Section
5.2.3), was implemented on top of a newly added single global variable that resides
at the bottom of XSB’s heap.

6.4.2 SWI-Prolog

SWI-Prolog (Wielemaker 2004) is a rather popular Prolog system with a large
user base, a rich set of libraries and tools and a focus towards practical applica-
tions. However, support for constraint logic programming is an important aspect
missing from SWI-Prolog’s portfolio of features. Our experience with porting the
K.U.Leuven CHR system system to XSB and CHR’s focus on constraint solvers
made a port to SWI-Prolog an attractive solution to remedy the lack of CLP
support.

Jan Wielemaker, SWI-Prolog’s lead developer, has adopted the attributed and
global variable interfaces described in Section 5.2.3 with the help of Bart Demoen.

6.5 Experimental Evaluation 113

With these built-ins in place, no noteworthy obstacles were encountered during
the port.

In the spirit of SWI-Prolog’s user friendly environment, the CHR compiler was
tightly integrated with the term expansion/2 based preprocessor, so as to exploit
SWI-Prolog’s source-code management and to retain source information. We also
added a CHR debugger which hides the underlying generated Prolog code from
the user.

6.5 Experimental Evaluation

6.5.1 Benchmarks

In this Section we evaluate the performance of our CHR system on ten benchmarks
which are available from (Schrijvers 2005). These ten benchmarks are:

bool Addition of two 60,000 bit numbers with full-adder implemented in
terms of boolean constraints.

fib Naive recursive computation of the 22 first fibonacci numbers.

fibonacci Efficient recursive computation of the 1,000 first fibonacci numbers
using memoing. The fibonacci numbers are represented as floats.

leq Constraint solving using less-than-or-equal-to constraints on a ring of
60 variables. The constraints are

∧

Xi ≤ Xj for 1 ≤ i ≤ 60 and j = (i
mod 60) + 1.

mergesort Sorting of 32 integers, repeated 10 times.

primes Computation of all prime numbers smaller than 2,500.

uf Application of the naive union-find program on the benchmark de-
scribed in Section 6.3.3 with 1,000 elements.

uf opt Application of the optimal union-find program on the benchmark de-
scribed in Section 6.3.3 with 1,000 elements.

wfs Computation of the well-founded semantics of a small logic program,
repeated 200 times.

zebra Computation of the solution to the well-known zebra puzzle using a
naive finite domain constraint solver, repeated 10 times.

114 The K.U.Leuven CHR System

6.5.2 Systems Comparison

We compare the performance of the K.U.Leuven CHR system with that of Chris-
tian Holzbaur’s reference implementation on their respective Prolog systems.

The following factors influence performance:

• Firstly, we expect the outcome to be mostly determined by the relative
performance difference on Prolog code as the CHR rules are compiled to
Prolog. For plain Prolog benchmarks, we have found average runtimes of
76.7 % for Yap, 80.0 % for hProlog, 143.1 % for XSB and 358.5 % for SWI-
Prolog. These times are relative to SICStus. See Appendix B for some
experimental measurements of relative performance.

• Secondly, the results may be influenced by the more powerful optimizations
of our CHR preprocessor.

• Thirdly, the low-level implementation and representation of attributed vari-
ables differs between the systems. The standard constraint store of CHR is
represented as an attributed variable and it may undergo updates each time
a new constraint is imposed or a constraint variable gets bound. Hence,
the complexity and efficiency of accessing and updating attributed variables
may easily dominate the overall performance of a CHR program if care is
not taken. Especially the length of reference chains has to be kept short and
nearly constant, as otherwise accessing the cost of dereferencing the global
store may easily grow out of bounds.

Table 6.1 shows the results for the benchmarks. All measurements have been
made on an Intel Pentium 4 2.00 GHz with 512 MB of RAM. Timings are relative to
SICStus and do not include garbage collection time. The Prolog systems used are
SICStus 3.12.0 and Yap 4.4.4 with the CHR reference implementation on the one
hand and hProlog 2.4.11-32, SWI-Prolog 5.5.8 and XSB 2.6.1 with the K.U.Leuven
CHR system on the other hand. Because we wish to measure performance effects
independent of memory management issues, we do not include garbage collection
times.

We see that the relative performance difference between SICStus and Yap is
more or less the same for both CHR and plain Prolog. On the other hand, the
performance difference between hProlog and SICStus is about 1.56 times larger
for CHR than for plain Prolog code, both times in favor of hProlog. Similarly, the
performance difference between XSB and SICStus is 1.30 times smaller, in favor
of XSB. Even for SWI-Prolog there is a small improvement: the factor is about
1.06.

The timing improvements are due to various minor code generation improve-
ments and due to the care taken in implementing the runtime predicates. The good
performance of the fibonacci benchmark in the K.U.Leuven CHR system is mainly
thanks to the anti-monotonic delay avoidance (see also Section 6.5.4). The early

6.5 Experimental Evaluation 115

Christian Holzbaur K.U.Leuven
Benchmark SICStus Yap hProlog XSB SWI-Prolog
bool 100.0% 106.0% 51.7% 114.0% 150.3%
fib 100.0% 63.3% 59.5% 160.7% 301.2%
fibonacci 100.0% 64.3% 22.0% 64.6% 166.7%
leq 100.0% 114.7% 75.0% 151.6% 373.2%
mergesort 100.0% 63.2% 47.8% 83.3% 419.7%
primes 100.0% 123.4% 61.4% 150.2% 463.2%
uf 100.0% 69.2% 65.0% 108.6% 499.2%
uf opt 100.0% 73.7% 69.5% 99.8% 499.2%
wfs 100.0% 78.8% 52.9% 118.1% 367.6%
zebra 100.0% 55.8% 21.0% 50.5% 133.8%
average 100.0% 81.2% 52.6% 110.1% 337.4%

Table 6.1: Runtime performance of 8 CHR benchmarks in 5 different Prolog sys-
tems.

scheduling of cheap guards in the zebra benchmark accounts for the benchmark’s
good behavior in the K.U.Leuven CHR system. All in all there is no one optimiz-
ation that improves all benchmarks. Rather a range of different optimizations is
needed, of which only a subset is applicable to any one benchmark.

6.5.3 Ground Optimizations

Now we evaluate the effect of the optimizations for ground constraints included in
the hProlog and SWI-Prolog versions of the K.U.Leuven CHR system. For that
purpose we have taken of the above benchmarks those that manipulate ground
constraints and have added groundness declarations to them.

Table 6.2 lists the performance of the benchmarks, relative to the performance
without declarations, in both hProlog and SWI-Prolog. The results for the two
union-find benchmarks show that drastic improvements can be realized. The result
mainly relies on the use of hash tables as constraint stores. A similar result is
obtained for the mergesort benchmark: the use of hash tables causes the time
complexity to change from O(n2) to O(n log n)

For the other benchmarks, the speed-ups are less dramatic, ranging between
20% and 40% in hProlog and 5% and 65% in SWI-Prolog. The improvements are
due to a combination of code specialization and hash tables.

6.5.4 Anti-monotonic Delay Avoidance

To experimentally evaluate the anti-monotony-based optimization described in
Section 6.3.4, we consider the effect on the runtime of our standard set of CHR

116 The K.U.Leuven CHR System

Benchmark hProlog SWI-Prolog
fib 57.4% 35.7%
fibonacci 57.8% 34.4%
mergesort 11.0% 4.9%
primes 81.0% 95.7%
wfs 73.3% 76.0%
uf 2.6% 1.7%
uf opt 3.7% 2.1%

Table 6.2: Runtime performance of 7 CHR benchmarks optimized with groundness
annotations relative to unoptimized programs, in both hProlog and SWI-Prolog.

benchmarks (Schrijvers 2005) together with two variants of the fibonacci bench-
mark which differ in their first rule.

The fibonacci program in the standard benchmark is the most optimized one.
Its first rule is:

r1 @ fibonacci(N,M1) # ID \ fibonacci(N,M2) <=> var(M2) |

M1 = M2 pragma passive(ID).

were the passive(ID) pragma indicates that no code should be generated for the
fibonacci(N,M1) occurrence.

The first rule of fibonacci1 is, similar to example 2.5, but denormalized:

r1 @ fibonacci(N,M1) \ fibonacci(N,M2) <=> M1 = M2.

Finally, fibonacci2 has the following first rule:

r1 @ fibonacci(N,M1) \ fibonacci(N,M2) <=> var(M2) |

M1 = M2.

The standard fib benchmark differs from fibonacci1 in that it uses a simpli-
fication rule. Because this is much more inefficient, this benchmark computes a
smaller Fibonacci number.

In addition to the above standard benchmarks, we have also looked at the effect
on the following CHR idiom:

entry(Key,Value) \ lookup(Key,Query) <=> Query = Value.

In the above rule, the both the entry/2 and lookup/2 constraints are anti-
monotonic with respect to their second argument. The benchmark based on this
idiom is called lookup: it consists of asserting and entry, immediately followed by
a lookup.

Table 6.3 lists the runtime results in milliseconds of running the benchmarks
in hProlog. The results clearly indicate that there is hardly any effect on the

6.6 Conclusion 117

Benchmark Optimized/Unoptimized
bool 98.7%
leq 101.2%
mergesort 100.9%
primes 100.0%
uf 102.7%
uf opt 102.5%
wfs 100.0%
zebra 99.3%
fib 98.4%
fibonacci 53.8%
fibonacci1 46.7%
fibonacci2 46.9%
lookup 78.0%

Table 6.3: Runtime of optimized benchmarks relative to unoptimized ones, in
hProlog

majority of the benchmarks. The reason is that either no static optimization is
possible or dynamically no variables occur in the constraints.

In the fib benchmark the optimization does have some effect, but it is not
manifest. The reason is that the inherent inefficiency of the simplification rule
is predominant. However, in all three variants of the fibonacci benchmark, the
runtime is about halved by the delay-avoidance optimization. Similarly, for the
lookup benchmark there is a noticeable speedup, about 20%.

6.6 Conclusion

In this chapter we have presented the K.U.Leuven CHR system. It is a competitive
CHR system in Prolog that implements state-of-the-art CHR program optimiza-
tions (Holzbaur and Frühwirth 1999; Holzbaur, Garćıa de la Banda, Stuckey, and
Duck 2005) as well as several novel optimizations: hash table constraint stores,
anti-monotonic delay avoidance and specialization for ground constraints.

The K.U.Leuven CHR system increases availability of CHR systems consid-
erably: it is available in the latest releases of hProlog (Demoen), SWI-Prolog
(Wielemaker 2004) and XSB (Warren et al. 2005). It uses only a small set of
non-standard built-in predicates and hence it is fairly easy to port the system to
other host languages as well.

The first overview of the K.U.Leuven CHR system was published at the First
Workshop on Constraint Handling Rules (Schrijvers and Demoen 2004b). The
work on anti-monotonic delay avoidance appeared in a technical report (Schrijvers

118 The K.U.Leuven CHR System

and Demoen 2004a). The evaluation of hash tables in the context of the union-
find programs was included in the programming pearl accepted by the Theory and
Practice of Logic Programming journal (Schrijvers and Frühwirth 2005). The port
to SWI-Prolog has been presented as a poster at the Workshop on (Constraint)
Logic Programming (Schrijvers, Wielemaker, and Demoen 2005) and the descrip-
tion of the port to XSB is part of the publications at the International Conference
of Logic Programming (Schrijvers and Warren 2004) and the Colloquium on Im-
plementation of Constraint and Logic Programming Systems (Schrijvers, Warren,
and Demoen 2003).

6.6.1 Future Work

More ports of the K.U.Leuven CHR system are expected, in particular to Ciao
Prolog and to SiLCC (a linear concurrent constraint programming language under
development).

Some steps have already been taken in consolidating the improvements in
the K.U.Leuven CHR system’s compiler with new improvements to Christian
Holzbaur’s CHR system (Holzbaur and Frühwirth 1999). This project aims at
a fully bootstrapping CHR compiler that generates optimized intermediate code.
The generated intermediate code may be compiled to any desired host language.
This approach will allow for easier maintenance of multiple host languages at once:
any optimization to the generated intermediate code is immediately available to
all.

Future work on generating optimized code will primarily focus on improving
the partner lookup and on more powerful program analyses in the abstract inter-
pretation framework that is presented in Chapter 7. However, other aspects that
seem worthwhile to investigate are:

• More aggressive specialization of generated host language code.

• New types of constraint stores. Hybrid forms of currently available constraint
stores should be able to perform better in a wider range of circumstances.
Another useful line of research seems the support for more specialized con-
straint stores that function well for a small class of programs and the spe-
cialization of constraint stores to specific programs.

• Ideas from other rule-based languages, such as the Rete algorithm (Forgy
1982) used in production rule systems (see also Section 2.5.1).

• Exploitation of ωt confluence. Programs that are confluent with respect to
the theoretical operational semantics need not necessarily be executed using
the refined operational semantics. Analyses or heuristics may be used to
automatically choose execution orders that are different from those in the
refined semantics.

Chapter 7

Abstract Interpretation for

CHR

7.1 Introduction

Although the CHR language exists for more than ten years and has a reason-
able reference implementation in SICStus Prolog (Intelligent Systems Laboratory
2003), the number of people involved in optimized compilation of and program ana-
lysis for CHR has been limited until the recent appearance of new CHR systems
(Holzbaur, Garćıa de la Banda, Stuckey, and Duck 2005; Schrijvers and Demoen
2004b). The need to communicate and compare between different CHR systems
has resulted in the formulation of the more deterministic refined operational se-
mantics (Duck, Stuckey, Garćıa de la Banda, and Holzbaur 2004) shared among
CHR compilers.

Apart from the common semantics to be implemented by CHR compilers, there
is also a need to formalize program analyses. As the complexity of CHR compilers
increases we need a better understanding of current analyses and ways to extend
and combine them. Most of the currently available analyses were formulated in
an ad hoc way and very few formal proofs of correctness were constructed.

Abstract interpretation (Cousot and Cousot 1977) is a general methodology
for program analysis by abstractly executing the program code. Abstract inter-
pretation provides a remedy for the current difficulties in correctly analyzing CHR
programs, and should enable optimizing CHR compilers to realize more complex
analyses.

In this chapter we bring the general methodology of abstract interpretation to
CHR: we formulate an abstract interpretation framework over the refined denota-
tional semantics of CHR. The formulation of an abstract interpretation framework
is non-obvious since the framework needs to handle the highly non-deterministic

119

120 Abstract Interpretation for CHR

execution of CHRs. The use of the framework is illustrated with two instantiations:
the CHR-specific late storage analysis and the more widely known groundness ana-
lysis. In addition, we discuss optimizations based on these analyses and present
experimental results.

The rest of this chapter is structured as follows. Section 7.2 presents the refined
denotational semantics of CHR that will be abstractly interpreted. The general
abstract interpretation framework is then defined in Section 7.3. Two instances of
the framework, late storage analysis and groundness analysis, illustrate the frame-
work in Sections 7.4 and 7.5 respectively. The implementation and experimental
evaluation of these analyses are reported on in Section 7.6. We conclude in Section
7.7.

7.2 The Refined Denotational Semantics ωd

In this section we present the refined denotational semantics ωd. It is a variant
of the refined operational semantics ωr (see Section 2.4.3) designed to make the
formulation of analyses simpler.

We introduce the refined denotational semantics for CHR to make the number
of abstract goals to be considered finite. For the same reason logic programs are
not directly analyzed in terms of their derivations-based operational semantics,
but instead a call-based denotational semantics was introduced (see e.g. (Marriott,
Søndergaard, and Jones 1994)).

It is shown in (Duck, Schrijvers, and Stuckey 2004) that an intermediate form
between ωr and ωd, a call-based refined operational semantics ωc, and ωr are
equivalent. It should be straightforward to establish that ωc and ωd are equivalent.

The main difference between the ωd and ωr semantics lies in their formulation.
The transition system of ωr linearizes the dynamic call-graph of CHR constraints
into the execution stack of its execution states. In ωd constraints are treated as
procedure calls: each newly added active constraint searches for possible matching
rules in order, until all matching rules have been executed or the constraint is
deleted from the store. As with a procedure, when a matching rule fires other
CHR constraints may be executed as subcomputations and, when they finish, the
execution returns to finding rules for the current active constraint. The latter
semantics is much closer to the procedure-based target languages, like Prolog and
HAL.

We believe this closeness to target languages makes the ωd semantics much
more suitable for reasoning about optimizations. After all, optimizations are typ-
ically formulated at the level of the generated code in the target language.

We will use a numbered notation for CHR programs so that it is easier to
refer to occurrences of constraints: to every head constraint we add its occurrence
number in brackets as a subscript.

7.2 The Refined Denotational Semantics ωd 121

Example 7.1 The numbered version of the gcd program of Example 2.1 is

gcd(0)[1] <=> true.

gcd(I)[3] \ gcd(J)[2] <=> J >= I | K is J - I, gcd(K).

The rest of this section is structured as follows. In Sections 7.2.1 and 7.2.2 we
present the execution state and semantic function of ωd. Section 7.2.3 illustrates
the semantics on an example.

7.2.1 Execution State of ωd

Formally, the execution state of the refined denotational semantics is represented
by the tuple 〈G,A, S,B, T 〉n . The different components of the execution state
are defined in a similar way as those of the ωr semantics: The execution stack
of ωr is more or less split into the goal and execution stack components of the
ωd semantics. The goal corresponds to the current “procedure call”, whereas the
execution stack corresponds to the “ancestor calls”. Due to the use of recursion in
the semantic function (defined in Section 7.2.2) it is not necessary to maintain all
the information of ωr’s execution stack in either ωd’s goal or ωd’s execution stack.

The goal G is either a sequence of (possibly occurrenced and identified) CHR
constraints and built-in constraints or just a single constraint. If it is a single
constraint, that constraint is called the active constraint and it corresponds to
the active constraint of the ωr semantics. The execution stack A is a sequence
of constraints c, identified CHR constraints c#i and occurrenced identified CHR
constraints c#i : j. The remaining components are the same as in ωr: The CHR
store S is a set of identified CHR constraints. The built-in constraint store B
contains any built-in constraint that has been passed to the underlying solver.
The propagation history T is a set of sequences, each recording the identities of
the CHR constraints which fired a rule, and the name of the rule itself. Finally,
the next free identity n represents the next integer which can be used to number
a CHR constraint.

We denote the domain of execution states by Σ and elements of Σ as
σ, σ0, σ1, . . . Given initial goal G, the initial state is 〈G,�, ∅, true, ∅〉1 .

The function pp returns the program point of an execution state:

pp(〈G,A, S,B, T 〉n) = pp(G)
pp(c) = builtin (c built-in)

pp(p(x1, . . . , xn)) = p/n
pp(p(x1, . . . , xn)#i) = p/n

pp(p(x1, . . . , xn)#i : j) = p/n : j
pp([c1, . . . , cn]) = [pp(c1), . . . , pp(cn)]

122 Abstract Interpretation for CHR

Traditionally a program point corresponds to a location in the program code.
Also, the current program point of an execution of the program is maintained at
all times in a part of the execution state called the program counter. However, in
the execution of CHR the coupling between the program code and the execution
states is less explicit. In many execution states it is not necessary to know the
program in order to proceed.

Hence, instead of defining locations in a CHR program P, the program points
of pp relate execution states to locations in the code of the compilation schema:
The program point p/n corresponds to the code for the Activate transition of
constraint p/n and the program point p/n : i corresponds to the code for occur-
rence i (see 5.2.1). If also programs points concerning built-in constraints are of
interest, e.g. for optimizing these, the special value builtin should probably be
replaced with a more informative value.

7.2.2 Semantic Function of ωd

The effect of executing a CHR program on an execution state σ is to change σ
into a final execution state. This effect is captured by the semantic function S, a
partial function on execution states. Given an execution state, it returns a final
execution state:

S : Prog→ (Σ ↪→ Σ)

The definition of the semantic function is given in Table 7.1. Apart from their
recursive nature, most of the cases of the semantic function correspond directly to
the transition rules of ωr. The Simplify and Propagate cases differ somewhat
from the transitions of the same name in ωr. They combine the behavior of the
transitions of the same name with that of the Default transition of ωr. In addition
the Simplify case applies at once the effect of successive Default transitions and a
final Drop transition when the current constraint is removed by the simplification.
The Propagate cases differs also from the Propagate transition in that it applies
all possible successive Propagate transitions at once (through a call to the SProp

function). The Goal case takes care of decomposing a goal sequence into individual
sequences. This case is specific to ωd, because ωr does not have a goal component
in its execution states.

7.2.3 Example

The refined denotational semantics is illustrated on a small example program:

p[1] ==> q.

p[2], t[1] <=> r.

p[3], r[1] ==> true.

p[4] ==> s.

p[5], s[1] <=> true.

7.2 The Refined Denotational Semantics ωd 123

1. Solve

S[[P]](〈c, A, S,B, T 〉n) =
if Db |= ¬∃̄∅B ∧ c

then 〈�, A, S,B ∧ c, T 〉n
else S[[P]](〈S1, A, S,B ∧ c, T 〉n)

where c is a built-in constraint and S1 = solve[[P]](S,B, c) is a subset of S
satisfying the following conditions:

1. lower bound : For all M = H1 ++ H2 ⊆ S such that there exists a
rule r ∈ P

r @ H ′
1 \ H ′

2 ⇐⇒ g | C

in P and a substitution θ such that

chr(H1) = θ(H ′
1)

chr(H2) = θ(H ′
2)

Db 6|= B → ∃r(θ ∧ g)
Db |= B ∧ c→ ∃r(θ ∧ g)

then M ∩ S1 6= ∅

2. upper bound : If m ∈ S1 then vars(m) 6⊆ fixed(B), where fixed(B) is
the set of variables fixed by B.

The actual definition of the solve function will depend on the underlying
solver.

2a. Activate

S[[P]](〈c, A, S,B, T 〉n) = S[[P]](〈c#n : 1, A, {c#n}] S,B, T 〉(n+1))

where c is a CHR constraint.

2b. Reactivate

S[[P]](〈c#i, A, S,B, T 〉n) = S[[P]](〈c#i : 1, A, S,B, T 〉n)

where c is a CHR constraint.

3. Drop
S[[P]](〈c#i : j, A, S,B, T 〉n) = 〈�, A, S,B, T 〉n

where c#i : j is an occurrenced CHR constraint and there is no such
occurrence j in P.

Table 7.1: The refined denotational semantics of CHR

124 Abstract Interpretation for CHR

4. Simplify
Let d be the jth occurrence of c in a (renamed apart) rule r ∈ P:

r @ H ′
1 \ H ′

2, d[j], H
′
3 ⇐⇒ g | C

then

S[[P]](〈c#i : j, A, S,B, T 〉n) =
if simplify-condition

then S[[P]](〈θ(C), A,H1] S′, θ ∧B, T ∪ {t}〉n)
else S[[P]](〈c#i : j + 1, A, S,B, T 〉n)

where simplify-condition is that there exists a matching substitution θ such
that

S = {c#i}]H1]H2]H3] S′

c = θ(d)
chr(H1) = θ(H ′

1) ∧ chr(H2) = θ(H ′
2) ∧ chr(H3) = θ(H ′

3)
Db |= B → ∃̄r(θ ∧ g)
t = id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T

5. Propagate
Let d be the jth occurrence of c in a (renamed apart) rule r ∈ P:

r @ H ′
1, d[j], H

′
2 \ H ′

3 ⇐⇒ g | C

then

S[[P]](〈c#i : j, A, S,B, T 〉n) =
if Db |= ¬∃̄∅Bk

then 〈�, A, Sk, Bk, Tk〉nk

else S[[P]](〈c#i : j + 1, A, Sk, Bk, Tk〉nk
)

where SProp[[P]](〈c#i : j, A, S,B, T 〉n) = 〈�, A, Sk, Bk, Tk〉nk
.

The auxiliary function SProp : Prog → (Σ ↪→ Σ) is defined as:

SProp[[P]](〈c#i : j, A, S,B, T 〉n) =
if Db |= ¬∃̄∅B

then 〈�, A, S,B, T 〉n
else if propagate-condition

then SProp[[P]](〈c#i : j, A, S′, B′, T ′〉n′)
else 〈�, A, S,B, T 〉n

where propagate-condition is that there exists a matching substitution θ such
that

S = {c#i}]H1]H2]H3]R
c = θ(d)
chr(H1) = θ(H ′

1) ∧ chr(H2) = θ(H ′
2) ∧ chr(H3) = θ(H ′

3)
Db |= B → ∃̄θl(r)θl(g)
t = id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 6∈T
S[[P]](〈θ(C), [c#i : j|A], S \H3, B, T ∪ {t}〉n) = 〈�, [c#i : j|A], S′, B′, T ′〉n′

where g and θ(g), respectively G and θ(G) are variants and vars(g) ∩
vars(θ(g)) = ∅ and vars(G) ∩ vars(θ(G)) = ∅.

7.2 The Refined Denotational Semantics ωd 125

6. Goal

S[[P]](〈�, A, S,B, T 〉n) =
〈�, A, S,B, T 〉n

S[[P]](〈[c|C], A, S,B, T 〉n) =
if Db |= ¬∃̄∅B

′

then 〈�, A, S′, B′, T ′〉n′

else S[[P]](〈C,A, S′, B′, T ′〉n′)

where [c|C] is a sequence of built-in and CHR constraints and

S[[P]](〈c, A, S,B, T 〉n) = 〈�, A, S′, B′, T ′〉n′

All the occurrences of constraints in the above program are annotated with
their respective occurrence numbers. Starting from an initial goal p the application
of the semantic function of the refined denotational semantics goes as follows (for
brevity we omit the propagation history, denoted by •).

Every step is annotated with the corresponding case of the semantic function.
For both the simplification and propagation steps we annotate the step name with
¬ if the rule did not find a match.

S[[P]](〈p, [], ∅, true, ∅〉1) (Activate)
= S[[P]](〈p#1 : 1, [], {p#1}, true, •〉2) (Propagate)
= S[[P]](〈p#1 : 2, [], {p#1, q#2}, true, •〉3) (¬Simplify)
= S[[P]](〈p#1 : 3, [], {p#1, q#2}, true, •〉3) (¬Propagate)
= S[[P]](〈p#1 : 4, [], {p#1, q#2}, true, •〉3) (Propagate)
= S[[P]](〈p#1 : 5, [], {q#2}, true, •〉4) (¬Simplify)
= S[[P]](〈p#1 : 6, [], {q#2}, true, •〉4) (Drop)
= 〈�, [], {q#2}, true, •〉4

For the first propagation step above, the result of the auxiliary function SProp is
used:

SProp[[P]](〈p#1 : 1, [], {p#1}, true, •〉2)
= SProp[[P]](〈p#1 : 1, [], {p#1, q#2}, true, •〉3)
= 〈�, [], {p#1, q#2}, true, •〉3

The second step in the evaluation of SProp is obtained through the evaluation of:

S[[P]](〈q, [p#1 : 1], ∅, {p#1}, ∅〉2) (Activate)
= S[[P]](〈q#2 : 1, [p#1 : 1], {p#1, q#2}, true, •〉3) (Drop)
= 〈�, [p#1 : 1], {p#1, q#2}, true, •〉3

The last propagation step in the main computation is obtained through a similar
evaluation of SProp:

126 Abstract Interpretation for CHR

SProp[[P]](〈p#1 : 4, [], {p#1, q#2}, true, •〉3)
= SProp[[P]](〈p#1 : 4, [], {q#2}, true, •〉4)
= 〈�, [], {q#2}, true, •〉4

The second step in the above evaluation of SProp is obtained through:

S[[P]](〈s, [p#1 : 4], ∅, {p#1, q#2}, ∅〉3) (Activate)
= S[[P]](〈s#3 : 1, [p#1 : 4], {p#1, q#2, s#3}, true, •〉4) (Simplify)
= S[[P]](〈�, [p#1 : 4], {q#2}, true, •〉4) (Goal)
= 〈�, [], {q#2}, true, •〉4

7.3 The Abstract Interpretation Framework

In this section we present our generic abstract interpretation framework for CHR.
An abstract interpretation framework consists of:

• an abstract domain of execution states, together with an abstraction function
α and a concretization function γ to translate from, respectively to concrete
execution states,

• an abstract operational semantics.

Our framework is generic: it does not fully specify the abstract semantics and
abstract domain, but rather imposes restrictions on actual instances that must
provide a full specification. In particular, our framework formulates the abstract
semantics in terms of an abstract semantic function that must be provided by
instances of the framework.

In Sections 7.3.1 and 7.3.2 we discuss how a particular instance of the frame-
work, i.e. an analysis domain, should specify its abstract state and abstract se-
mantic function. The generic, domain-independent aspects of the abstract se-
mantics, which are provided by the framework, are presented in Section 7.3.3. It
covers how the framework applies the abstract semantic function starting from an
initial state and how the framework deals with non-determinism.

7.3.1 Abstract State

Every instance of the abstract interpretation framework should define an abstract
domain Σa of abstract states. The abstract domain Σa has to be a lattice with
partial ordering �, least upper bound t and greatest lower bound u operations.

Furthermore an abstraction function α : ℘(Σ)→ Σa has to be defined from a
set of concrete states σ, as defined in Section 7.2.1, to an abstract state s and a
concretization function γ : Σa → ℘(Σ) from an abstract state to a set of concrete
states.

7.3 The Abstract Interpretation Framework 127

Typically we only specify α and assume γ to be defined as γ(s) = {σ | α({σ}) =
s}. Moreover, in an abuse of syntax we denote α({σ}) as α(σ).

As is usual, we require that (α, γ) is a Galois connection of (℘(Σ),⊆) and
(Σa,�), i.e.

∀S ∈ ℘(Σ) : ∀s ∈ Σa : α(S) � s⇔ S ⊆ γ(s)

We impose an additional restriction on γ:

∀s ∈ Σa : ∀σ1, σ2 ∈ γ(s) : pp(σ1) = pp(σ2)

i.e. every abstract execution state should correspond with exactly one program
point. This allows us to extend the domain of the pp function to abstract states:

pp(s) = pp(σ) with σ ∈ γ(s)

The restriction is imposed for two reasons:

• to be able to associate analysis information contained in abstract states with
the program points, and

• to determine whether a particular abstract state s is a final state (i.e. pp(s) =
�).

The accurate program point information may complicate the abstract semantics
somewhat, but results in more accurate analyses.

The framework will only make use of the least upper bound operation s1 t s2

on states corresponding to the same program point (pp(s1) = pp(s2)). Similarly,
α is only applied to a set of concrete states corresponding to the same program
point. Moreover, we will only explicitly define α for a single concrete state σ. The
extension of α to a set S of concrete states is assumed to be:

α(S) =
⊔

σ∈S

α(σ)

7.3.2 Abstract Semantic Function

The abstract domain must provide an abstract semantic function AS : Prog →
(Σa ↪→ Σa) with abstract cases AbstractSolve, AbstractActivate, AbstractReact-
ivate, AbstractDrop, AbstractSimplify, AbstractPropagate and AbstractGoal corres-
ponding to the cases of the concrete semantic function S, as given in Section 7.2.2.

In order for the abstract semantic function to be a consistent abstraction of
the concrete semantic function, we impose the connection depicted below:

σ1

α

��

S[[P]] // σ2

s1
AS[[P]]

// s2

γ

OO

128 Abstract Interpretation for CHR

or formally:
∀S ⊆ Σ : {S[[P]](σ)|σ ∈ S} ⊆ γ ◦ AS[[P]] ◦ α(S)

7.3.3 The Generic Abstract Semantics

Here we explain the generic semantics of the framework, based on the analysis-
specific implementations of the abstract domain and the abstract semantic func-
tion.

The concrete operational semantics specifies that the semantic function is ap-
plied to an initial state to obtain a final state. In the following we describe what
initial state is used by the framework and how the abstract semantic function
should be defined. In particular the issue of non-determinism is discussed.

Generic Initial State

For any CHR program, an infinite number of concrete initial states are possible,
namely any 〈G, [], ∅, ∅, ∅〉1 with G any finite list of CHR constraints and built-in
constraints.

This infinite number of initial states may lead to an infinite number of abstract
states, depending on the definition of α. However, in the generic framework we
avoid this potential blow-up of initial states by requiring that the initial goal is a
single CHR constraint c.

The requirement of a single constraint is not a restriction. It is always possible
to encode a list of multiple goals c1, . . . , cn in this way. Namely one can introduce
a fresh constraint c and a new simplification rule c ⇔ c1, . . . , cn. This new c can
then serve as the single initial goal.

Similarly, it is possible to encode arbitrary sequences of constraints, using
random data generators that return values in a particular domain. For example
an arbitrary sequence of a and b constraints may be encoded as follows:

c <=> random(X), c(X).

c(1) <=> a, c.

c(2) <=> b, c.

c(_) <=> true.

Here the predicate random/1 returns in its argument a random integer. The
constraint c serves as the initial goal.

The key issue is that the single goal should be representative with respect to
the analysis domain for all intended uses of the CHR program. This may require
intimate knowledge of both the program and the analysis domain. Hence, the
developer of the analysis domain should provide guidelines regarding the choice of
the initial goal. It may be possible to automatically derive a default goal from a
program that captures all possible uses, although a program-specific goal would
yield stronger analysis results.

7.3 The Abstract Interpretation Framework 129

Non-determinism in the Simplify Case

In the Simplify case of the semantic function, either (1) a matching substitution
θ is found and the simplification takes place or (2) no matching substitution exists
and simplification does not take place.

An abstract semantic function may not be able to decided from an abstract
execution state s which of the above two alternatives applies. This is the case
when ∃σ1, σ2 ∈ γ(s) such that the first alternative applies to σ1 and the second to
σ2.

The recommended approach in this case is to compute a least upper bound of
the two alternatives in the following way:

AS[[P]](s) = AS[[P]](s1) t AS[[P]](s2)

where

α({〈θ(C), A,H1] S′, θ ∧B, T ∪ {t}〉n}|〈c#i : j, A, S,B, T 〉n ∈ γ(s)) � s1

and

α({〈c#i : j + 1, A, S,B, T 〉n|〈c#i : j, A, S,B, T 〉n ∈ γ(s)}) � s2

and θ,H1, S
′ and t are defined in the Simplify case of S.

Non-determinism in the Choice of Partner Constraints

While the above accounts for the non-determinism in simplification matching
caused by abstraction, it does not account for the inherent non-determinism of
these cases in the concrete semantics.

Namely, for a simplification case, if more than one combination of partner
constraints is possible, the concrete semantics do not specify what particular com-
bination is chosen. To account for this non-determinism the formulation of the
AbstractSimplify case should capture all possible concrete possibilities. In partic-
ular, if for concrete state σ there are n different possible resulting final states
σ1, . . . , σn, then

α({σ1, . . . , σn}) � AS[[P]](α(σ))

Similarly, for a propagation transition, multiple combination transitions are
possible. In addition, for a propagation transition, multiple applications are pos-
sible in a sequence. However, the order of the sequence is not specified by the
concrete semantics either. Hence, an abstract propagation transition has to cap-
ture all possible partner combinations and all possible sequences in which they are
dealt with.

130 Abstract Interpretation for CHR

Non-determinism in the Solve Rule

The non-determinism inherent in the concrete Solve case lies in the order of the
triggered constraints as they are put on the execution stack: all possible orderings
are allowed. Hence, an abstract domain has to provide an abstraction that takes
into account all possible orderings.

If the abstract domain allows it, one approach would be to compute the final
state so for each possible ordering o and to combine these final states to a single
final state s as follows: s =

⊔

o so.
However, this requires sufficiently concrete information about the number of

triggered constraints in the abstract domain. Typically the abstract domain cannot
provide any quantitative bound on the number of triggered constraints. Hence an
infinite number of orderings are possible: all possible permutations of constraint
sequences of any integer length.

A finite approximation of this infinite number of possibilities is to perform the
following fixedpoint computation. Say {ci|1 ≤ i ≤ n} are all the possible distinct
abstract CHR constraints to trigger. Then, starting from abstract state s0, the
final state sf after triggering all constraints in any quantity is sk, where:

sj =
⊔

{si
j | s

i
j = AS[[P]](new goal(sj−1, ci)) ∧ 1 ≤ i ≤ n}

for j > 0 and k is the smallest integer such that sk = sk+1. In the above formula
new goal is the function that replaces the empty goal in a final abstract state sj−1

with a new goal ci.
This generic approach is illustrated in the prototype groundness analysis, dis-

cussed in Section 7.5.
Due to its generality it may cause a huge loss of precision as well as an expo-

nential number of intermediate states. Hence, in practice, better domain specific
techniques should be studied.

For example, in the late storage analysis discussed in the next section, the worst
possible abstract state is immediately obtained in the AbstractSolve transition,
before triggered constraints are considered. Hence there is no need to actually
compute the triggering of constraints. The outcome is already determined. This
avoids substantial overhead.

7.4 Late Storage Analysis

In this section we illustrate the use of the abstract interpretation framework for
CHR with a CHR-specific analysis: late storage. This analysis is useful in CHR
compilers to enable several optimizations.

In Section 7.4.1 we define the property that the analysis derives. Next, the
abstract domain and abstract semantic function of the analysis are defined in

7.4 Late Storage Analysis 131

Sections 7.4.2 and 7.4.3 respectively. Section 7.4.4 illustrates the application of
the analysis on a small program.

7.4.1 The Observation Property

The aim of late storage analysis is to determine for an active CHR constraint
whether it can be stored later rather than stored before its rules are searched for
matching. This is done is by determining when the first possible interaction will
be with the active CHR constraint.

In general it is better to store a constraint in the constraint store as late as
possible. The reason is that if the constraint is deleted before it is actually stored,
the overhead of insertion in and removal from the constraint store are avoided.

The refined operational semantics however dictate that a constraint is inserted
in the constraint store immediately when it is at the top of the execution stack.
We want to avoid this when it does not make a difference to the final state.

At the latest, a constraint that is not deleted, has to be stored after all the
rules have been tried. There are however also reasons for storing a constraint early.
Namely, if a rule applies, the body may observe whether the active constraint is
in the constraint store or not. If the active constraint may be observed, the
constraint needs to be in the constraint store. Otherwise it does not have to be in
the constraint store, because its presence cannot impact the execution.

Definition 7.1 (Observed) A constraint in the constraint store is observed, if
it is triggered by a built-in constraint or if it serves as a partner constraint to an
active constraint.

To correctly define the analysis of “observation” as an abstract interpretation
we have to extend the refined denotational semantics to make this visible. We
will only be interested in finding the observed occurrences of constraints in the
execution stack.

Denote an observed occurrence c#i : j by starring e.g. c#i : j∗. Define

obs(c#i : j) = c#i : j∗

obs(c#i : j∗) = c#i : j∗

obs([], S) = []
obs([c#i : j|G], S) = [obs(c#i : j)|obs(G,S)] , if c#i ∈ S
obs([c#i : j|G], S) = [c#i : j|obs(G,S)] , if c#i 6∈ S

Only the Solve, Simplify and Propagate cases are affected. Basically we modify
the activation stack to record which constraints have been observed by any of these
transitions.

1. Solve

132 Abstract Interpretation for CHR

S[[P]](〈c, A, S,B, T 〉n) =
if Db |= ¬∃̄∅B ∧ c

then 〈�, A, S,B ∧ c, T 〉n
else S[[P]](〈S1, obs(A,S1), S,B ∧ c, T 〉n)

where c is a built-in constraint and S1 = solve[[P]](S,B, c) is a subset of S satisfying
the following conditions:

1. lower bound : For all M = H1 ++ H2 ⊆ S such that there exists a rule r ∈ P

r @ H ′
1 \ H ′

2 ⇐⇒ g | C

in P and a substitution θ such that

chr(H1) = θ(H ′
1)

chr(H2) = θ(H ′
2)

Db 6|= B → ∃r(θ ∧ g)
Db |= B ∧ c→ ∃r(θ ∧ g)

then M ∩ S1 6= ∅

2. upper bound : If m ∈ S1 then vars(m) 6⊆ fixed(B), where fixed(B) is the set
of variables fixed by B.

The actual definition of the solve function will depend on the underlying solver.

4. Simplify
Let d be the jth occurrence of c in a (renamed apart) rule r ∈ P:

r @ H ′
1 \ H ′

2, d[j], H
′
3 ⇐⇒ g | C

then

S[[P]](〈c#i : j, A, S,B, T 〉n) =
if simplify-condition

then S[[P]](〈θ(C), obs(A,H1 ∪H2 ∪H3), H1] S′, θ ∧B, T ∪ {t}〉n)
else S[[P]](〈c#i : j + 1, A, S,B, T 〉n)

where simplify-condition is that there exists a matching substitution θ such that

S = {c#i}]H1]H2]H3] S′

c = θ(d)
chr(H1) = θ(H ′

1) ∧ chr(H2) = θ(H ′
2) ∧ chr(H3) = θ(H ′

3)
Db |= B → ∃̄r(θ ∧ g)
t = id(H1) ++ id(H2) ++ [i] ++ id(H3) ++ [r] 6∈ T

5. Propagate
Let d be the jth occurrence of c in a (renamed apart) rule r ∈ P:

r @ H ′
1, d[j], H

′
2 \ H ′

3 ⇐⇒ g | C

then

7.4 Late Storage Analysis 133

S[[P]](〈c#i : j, A, S,B, T 〉n) =
if Db |= ¬∃̄∅Bk

then 〈�, A, Sk, Bk, Tk〉nk

else S[[P]](〈c#i : j + 1, A, Sk, Bk, Tk〉nk
)

where SProp[[P]](〈c#i : j, A, S,B, T 〉n) = 〈�, A, Sk, Bk, Tk〉nk
.

The auxiliary function SProp : Prog → (Σ ↪→ Σ) is defined as:

SProp[[P]](〈c#i : j, A, S,B, T 〉n) =
if Db |= ¬∃̄∅B

then 〈�, A, S,B, T 〉n
else if propagate-condition

then SProp[[P]](〈c#i : j, A′, S′, B′, T ′〉n′)
else 〈�, A, S,B, T 〉n

where propagate-condition is that there exists a matching substitution θ such that

S = {c#i}]H1]H2]H3]R
c = θ(d)
chr(H1) = θ(H ′

1) ∧ chr(H2) = θ(H ′
2) ∧ chr(H3) = θ(H ′

3)
Db |= B → ∃̄θl(r)θl(g)
t = id(H1) ++ [i] ++ id(H2) ++ id(H3) ++ [r] 6∈T
S[[P]](〈θ(C), [c#i : j|obs(A,H1 ∪H2 ∪H3)], S \H3, B, T ∪ {t}〉n) =

〈�, [E|A′], S′, B′, T ′〉n′

E ∈ {c#i : j, c#i : j∗}

where g and θ(g), respectively G and θ(G) are variants and vars(g)∩vars(θ(g)) = ∅
and vars(G) ∩ vars(θ(G)) = ∅.

Example 7.2 When examining the evaluation shown in Section 7.2.3 the altered
cases of the semantic function above change the evaluation in one step. After the
Simplify step in the evaluation for s, the p in the store is observed, so the new
step is

S[[P]](〈s#3 : 1, [p#1 : 4], {p#1, q#2, s#3}, true, •〉4) (Simplify)
= S[[P]](〈�, [p#1 : 4∗], {q#2}, true, •〉4)

During the other Simplify and Propagate steps, either no rule is fired or the
fired rule is single-headed and hence no constraints are observed.

7.4.2 Abstract Domain

The domain of abstract execution states used for this analysis is rather simple.
We abstract CHR constraints by their predicate names, and built-in constraints

134 Abstract Interpretation for CHR

as simply the special predicate name builtin. The abstract state simple holds
an abstraction of the goal or active occurrenced constraint, and an abstraction
of the call stack A. The abstracted call stack is a set. It denotes the predicate
occurrences which have not been observed.

Let c be a built-in constraint and p a CHR constraint, and S a set or multiset
of CHR constraints. We define the late storage abstraction αls as follows:

αls(c) = builtin (c built-in)
αls(p(t1, . . . , tn)) = p

αls(p(t1, . . . , tn)#i) = p
αls(p(t1, . . . , tn)#i : j) = p : j

αls([]) = []
αls([c|G]) = [αls(c)|αls(G)]

αls(S) = {αls(c)|c ∈ S} (S set)
αls(〈G,A, , , 〉) = 〈αls(G), αls(unobserved(A))〉

where unobserved is defined as

unobserved(A) =

{

p

∣

∣

∣

∣

p(t1, . . . , tn)#i : j ∈ list2set(A),
¬∃p(t′1, . . . , t

′
n)#i′ : j′∗ ∈ list2set(A)

}

list2set([]) = []
list2set([a|A]) = {a} ∪ list2set(A)

Note we abstract built-in constraints, and non-identified CHR constraints by
keeping the predicate. We abstract identified CHR constraints by removing the
identity number and occurrenced identified CHR constraints just keeping track
of the occurrence number. We eliminate observed constraints from the execution
stack using the auxiliary function unobserved.

The abstracted call stack is a set. It denotes the predicates which have not
been observed.

Note that program point information can easily be derived from the abstract
state:

pp(〈G,A〉) = G

Hence, the partial ordering and least upper bound operator are only defined
for abstract states with the same abstract goal: The partial ordering on states is
〈G,A〉 �ls 〈G

′, A′〉 iff G = G′ and A′ ⊆ A.
For the sake of completeness, we add a top element >ls to the abstract domain,

with γ(>ls) = Σ and ∀s ∈ Σa : s �ls >ls. The value pp(>ls) is not defined,
but rather >ls corresponds to all program points at once. Our analysis never
produces >ls. If it would, that would mean that the analysis gives up and yields
no information at all.

Clearly the abstract domain forms a lattice with the ordering relation �ls. The
least upper bound operator tls can be defined as follows:

7.4 Late Storage Analysis 135

s1 tls s2 =
if s1 = 〈G,A1〉 ∧ s2 = 〈G,A2〉

then 〈G, (A1 ∩A2)〉
else >ls

7.4.3 Abstract Semantic Function

The abstract semantic function AS for the late storage domain is defined below.

AbstractSolve
AS[[P]](〈builtin, A〉n) = 〈�, ∅〉

A built-in constraint may possibly trigger any constraint in the constraint store.
Hence all the constraints in the call stack are possibly observed.

For every constraint name c, the following subcomputation needs to be run
to cover all execution paths, despite the fact that no information is carried over:
AS[[P]](〈c, ∅〉) = 〈�, ∅〉.

Technically, the output state of one triggered constraint should become the
input state of the next according to ωc. Moreover, the constraints could be run in
any order. However, this computation is a safe approximation, since every initial
and final state has a known empty A.

Abstract(Re)Activate

AS[[P]](〈c, A〉) = AS[[P]](〈c : 1, A〉)

where c is a CHR constraint.

AbstractDrop
AS[[P]](〈c : j, A〉) = 〈�, A〉n

Applicable if no occurrence j exists for CHR constraint c in P.

AbstractGoal
AS[[P]](〈[ck1

, . . . , ckn
], A〉) = 〈�, A′〉n

where
AS[[P]](〈cki

, A〉) = 〈�, Ai〉

and A′ =
⋂n

i=1 Ai

Technically, the output state of one goal should become the input state of
the next according to the concrete refined denotational semantics. However, this
definition here captures the meaning of possibly observed too: If a constraint in the
call stack is possibly observed by any goal in a conjunction, it is possibly observed
by the entire conjunction.

136 Abstract Interpretation for CHR

AbstractSimplify
Let d be the jth occurrence of c in a (renamed apart) rule r ∈ P:

r @ H ′
1 \ H ′

2, d[j], H
′
3 ⇐⇒ g | C

then

AS[[P]](〈c : j, A0〉) =
if unconditional-simplify

then s1

else s1 tls s2

where

s1 = AS[[P]](〈αls(C), A1)
s2 = AS[[P]](〈c : j + 1, A0〉)
A1 = A0 \ αls(H

′
1 ∪H ′

2 ∪H ′
3)

The condition unconditional-simplify holds if r is an unconditional simplification
rule, i.e. of the form c(x̄)⇔ C with all x ∈ x̄ distinct variables. Namely, the rule
application only fails when the active constraint is not in the constraint store, this
leads to a state 〈�, A0〉 which when lubbed with s1 gives s1 because only more
constraint may become possibly observed and not less. The abstract execution
state A1 marks the partner constraints of c as possibly observed.

Otherwise (the rule is not an unconditional simplification rule) the rule ap-
plication either succeeds and observes constraints, or execution proceeds with the
next occurrence.

AbstractPropagate
Let d be the jth occurrence of c in a (renamed apart) rule r ∈ P:

r @ H ′
1, d[j], H

′
2 \ H ′

3 ⇐⇒ g | C

then
AS[[P]](〈c : j, A0〉n) = AS[[P]](〈c : j + 1, A4〉)

where

A1 = A0 \ αls(H1 ∪H2 ∪H3)
A2 = A1 ∪ {c}

〈�, A3〉 = AS[[P]](〈αls(C), A2〉)
A4 = A3 \ ({c} \A1)

The abstract execution stack A1 takes into account the lookup of the partner
constraints: they are observed now. In A2 the active constraint c has been pushed
onto the abstract execution stack for the execution of the body of the rule. A3 is
the resulting abstract execution stack after the execution of the body. In A4 the
constraint c is removed again from the execution stack (if some copy of c was not
already present prior to A2).

7.4 Late Storage Analysis 137

Note that the active constraint c may have been observed in the execution of
C iff c 6∈ A3. Also note that here we treat the rule as if it always could have fired.
This is clearly safe.

7.4.4 Example Analysis

Consider the execution of the goal p with respect to the following (numbered)
CHR program

p[1] ==> r.

p[2] ==> s.

p[3], s[1] <=> true.

The evaluation of the abstract semantic function is shown below.

AS[[P]](〈p, ∅〉) (AbstractActivate)
= AS[[P]](〈p : 1, ∅〉) (AbstractPropagate)
= AS[[P]](〈p : 2, ∅〉) (AbstractPropagate)
= AS[[P]](〈p : 3, ∅〉) (AbstractSimplify)
= AS[[P]](〈�, ∅〉) tls AS[[P]](〈p : 4, ∅〉) (AbstractGoal,AbstractDrop)
= 〈�, ∅〉 tls 〈�, ∅〉
= 〈�, ∅〉

For the first abstract propagation step above, the result of the abstract execution
of the first rule’s body is used:

AS[[P]](〈r, {p}}〉) (AbstractActivate)
= AS[[P]](〈r : 1, {p}〉) (AbstractDrop)
= 〈�, {p}〉

and A1 = A0 = ∅, A2 = A1∪{p} = {p} and A4 = A3\({p}\A1) = {p}\({p}\∅) =
∅. For the second abstract propagation step in the main computation, the result
of the abstract execution of the second rule’s body is used:

AS[[P]](〈s, {p}}〉) (AbstractActivate)
= AS[[P]](〈s : 1, {p}〉) (AbstractSimplify)
= AS[[P]](〈�, ∅〉) tls AS[[P]](〈s : 2, {p}〉) (AbstractGoal,AbstractDrop)
= 〈�, ∅〉 tls 〈�, {p}〉
= 〈�, ∅〉

and A1 = A0 = ∅, A2 = A1∪{p} = {p} and A4 = A3\({p}\A1) = ∅\({p}\∅) = ∅.
Note that p is only possibly observed in the this last evaluation of s. Hence we can
safely delay storage of p until just before the execution of the second rule’s body.

138 Abstract Interpretation for CHR

7.5 Groundness analysis

In this section we illustrate the use of the abstract interpretation framework by
lifting the classical groundness analysis for Prolog to CHR.

In the groundness analysis for CHR we capture the groundness of variables in
the scope of rules and arguments of constraints. Variables that only occur in the
constraint stores are not tracked.

Unlike typical analyses for Prolog we do not go as far as capturing groundness
relations between all variables.

Sections 7.5.1 and 7.5.2 present the abstract domain and the abstract semantic
function respectively. The analysis is illustrated by means of an example in Section
7.5.3.

7.5.1 Abstract Domain

While abstracting groundness properties of a CHR execution we will be interested
in three parts of the concrete state, the goal, the CHR constraint store, and the
built-in constraint store.

Groundness is not directly affected by CHR constraints, but only through built-
in constraints of the underlying constraint domain D. Hence, we assume that we
have an abstract domain G for tracking groundness of the underlying constraint
domain D, providing the following:

• the operations αG ,�G ,tG , . . .

• the abstract conjunction, denoted by ∧G joins two abstract descriptions

• the function AaddG joins an abstract description with a concrete constraint

• the function groundsG(D), which returns the set of variables grounded by
abstract description D

• the abstract projection function ∃̄GV F which abstracts the projection ∃̄V F
the projection of F onto the variables V .

We abstract the state to an abstract goal, an abstract CHR store and an
abstract built-in store. The abstract goal only removes occurrence numbers. The
abstract CHR store stores for each CHR constraint the least upper bound of the
underlying domain’s groundness descriptions of the CHR constraint instances in
the store. The abstract underlying store is an element of the domain G that is
restricted to the variables in the goal.

αg(c) = c (c is built-in)
αg(p(t1, . . . , tn)) = p(t1, . . . , tn)

αg(p(t1, . . . , tn)#i) = p(t1, . . . , tn)
αg(p(t1, . . . , tn)#i : j) = p(t1, . . . , tn) : j

7.5 Groundness analysis 139

αg([]) = []
αg([c|G]) = [αg(c)|αg(G)]

αg(S) = {αg(c)|c ∈ S} (S set or multiset)

αg(p(t1, . . . , tn)#i, B) = p(x1, . . . , xn)← D
where D = ∃̄Gx1,...,xn

αG(B ∧ x1 = t1 ∧ · · · ∧ xn = tn)

αg(S,B) = snf ({αg(c,B)|c ∈ S}) (S set or multiset)

αg(〈G, , S,B, 〉) = 〈αg(G), αg(S,B), ∃̄G
vars(G)αG(B)〉

where the function snf creates a normal form of the groundness description of
the CHR constraint store, by ensuring there is at most one entry for every CHR
predicate. It is defined as follows:

snf (∅) = ∅
snf ({p(x̄)← D1}] S) = snf ({p(x̄)← D1 tG D2}] S′)

where S = {p(x̄)← D2}] S′

snf ({p(x̄)← D1}] S) = {p(x̄)← D1}] snf (S),
where ¬∃p(x̄)← D2 ∈ S

We define pred as follows:

pred(p(x1, . . . , xn)) = p
pred(p(x1, . . . , xn)← D) = p

pred([]) = []
pred([c|G]) = [pred(c)|pred(G)]

The partial ordering �g on states is

〈G,S,B〉 �g 〈G
′, S′, B′〉

⇔
G ∼ G′ ∧ ∃θ : θ(G′) ≡ G ∧B �G θ(B′)∧

(∀p(x̄)← D ∈ S : ∃p(x̄)← D′ ∈ θ(S′) : D �G D′)

where θ is a substitution.
For the sake of completeness, we add a top element >g to the abstract domain,

with γ(>g) = Σ and ∀s ∈ Σa : s �g >g. The value pp(>g) is not defined, but
rather >g corresponds to all program points at once. Similarly as for the late
storage analysis, the groundness analysis never produces >g.

It is possible to verify that the abstract domain forms a lattice with the ordering
relation It follows form the definition of partial ordering that all variants of the
same abstract execution state are considered equal. �g.

The least upper bound operator tg can be defined as follows:

s1 tg s2 =
if s1 = 〈G,S,B〉 ∧ s2 = 〈G′, S′, B′〉 ∧G ∼ G′ ∧ ∃θ : G ≡ θ(G′)

then 〈G, snf (S ∪ θ(S′)), B tG θ(B′)〉
else >g

140 Abstract Interpretation for CHR

where θ is a substitution.

7.5.2 Abstract Semantic Function

The abstract semantic function AS for the groundness domain is defined below.

AbstractSolve

AS[[P]](〈c, Sa] Sb, B〉) = 〈�, Sk,AaddG(c,B)〉

Applicable when c is a built-in constraint. Define Sa = {p(x̄) ← D | x̄ ⊆
groundsG(D)} and Sb = {pi(x̄i)← Di | 1 ≤ i ≤ n}.

Let

S0 = Sa] Sb

sj = 〈c, Sa] Sb, B〉 , j = 0
sj = 〈�, Sj , 〉 =

⊔

g{s
i
j | s

i
j = AS[[P]](〈pi(x̄i), Sj−1, Di〉) ∧ 1 ≤ i ≤ n}, j ≥ 1

and be k the smallest positive integer such that sk = sk−1.

Abstract(Re)Activate

AS[[P]](〈c, S,B〉) = AS[[P]](〈c : 1, snf ({αg(c,B)} ∪ S), B〉)

where c is a CHR constraint.

AbstractDrop
AS[[P]](〈c : j, S,B〉) = 〈�, S,B〉n

where no occurrence j exists for CHR constraint c in P.

AbstractGoal

AS[[P]](〈[c|G], S0, B0〉) = AS[[P]](〈G,S,B0 ∧G B2〉)

where B1 = ∃̄vars(c)B0 and

AS[[P]](〈c, S0, B1〉) = 〈�, S,B2〉

AbstractSimplify
Let d be the jth occurrence of c in a (renamed apart) rule r ∈ P:

r @ H ′
1 \ H ′

2, d[j], H
′
3 ⇐⇒ g | C

then

7.5 Groundness analysis 141

AS[[P]](〈c : j, S,B〉) =
if unconditional-simplify

then s1 tg s2

else s1 tg s3

where there exists a θ such that c = θ(dj), H1 ∪ H2 ∪ H3 ⊆ S and pred(Hi) =
pred(H ′

i), 1 ≤ i ≤ 3.
Suppose

Hi = [pi1(x̄i1)← Di1, . . . , pini
(x̄ini

)← Dini
]

θ(H ′
i) = [pi1(t̄i1), . . . , pini

(t̄ini
)]

Let
Di = Aadd(∧G{Dij | 1 ≤ j ≤ ni},∧

ni

j=1(x̄j = t̄j))

D = ∃̄vars(θ(C))Aadd((D1 ∧G D2 ∧G D3 ∧G B), g)

Suppose that
AS[[P]](〈θ(C), S,D〉) = 〈�, S′, B′〉

Then

s1 = 〈�, S′, B ∧G (∃̄vars(c)B
′〉

s2 = 〈�, S,B〉
s3 = AS[[P]](〈c : j + 1, S,B〉)

The condition unconditional-simplify holds if r is an unconditional simplifica-
tion rule, i.e. of the form c(x̄)⇔ C with all x ∈ x̄ distinct variables. The abstract
state s1 is the least upper bound of the unconditional application of the simpli-
fication rule and s2 is the result if the active constraint has already been deleted.
Otherwise, either the simplification is applied (s1) or the next evaluation proceeds
with the next occurrence (s3).

We find a possible match for each CHR constraint in the rule, assume that
the guard holds, and determine the abstract underlying constraint store that must
exist for the body of the rule from the matching. We execute the body of the
rule with this store, without removing any constraints from the store (since we are
not sure how many copies there are). The resulting abstract underlying store is
projected back onto the active constraint and then added to the current store.

AbstractPropagate

Let d be the jth occurrence of c in a (renamed apart) rule r ∈ P:

r @ H ′
1, d[j], H

′
2 \ H ′

3 ⇐⇒ g | C

then
AS[[P]](〈c : j, S,B〉) = s1 tg s2

142 Abstract Interpretation for CHR

where there exists a θ such that c = θ(dj), H1 ∪ H2 ∪ H3 ⊆ S and pred(Hi) =
pred(H ′

i), 1 ≤ i ≤ 3.
Suppose

Hi = [pi1(x̄i1)← Di1, . . . , pini
(x̄ini

)← Dini
]

θ(H ′
i) = [pi1(t̄i1), . . . , pini

(t̄ini
)]

Let
Di = Aadd(∧G{Dij | 1 ≤ j ≤ ni},∧

ni

j=1(x̄j = t̄j))

D = ∃̄vars(θ(C))Aadd((D1 ∧G D2 ∧G D3 ∧G B), g)

Suppose that
AS[[P]](〈θ(C), S,D〉) = 〈�, S′, B′〉

Then
s1 = AS[[P]](〈c : j + 1, S′, B ∧G (∃̄cB

′)〉)

is the result assuming the rule fired and

s2 = AS[[P]](〈c : j + 1, S,B〉)

is the result if the rule did not fire.

7.5.3 Example Analysis

In this example analysis we will use the following simple abstract domain G:

• αG(c) = {x|x ∈ vars(c) ∧ c→ ground(x)}

• D1 �G D2 ⇔ D1 ⊇ D2

• D1 tG D2 = D1 ∩D2

• D1 ∧G D2 = D1 ∪D2

• AaddG(D, c) = D ∪ {x ∈ vars(c)|∃D′ ⊆ D : (∀y ∈ D′ : ground(y)) ∧ c →
ground(x)}

• groundsG(D) = D

• ∃̄GV D = D ∩ V

The example program we will analyze is primes, see (Schrijvers 2005), extended
with an appropriate main/0 constraint:

main[1] <=> N = 10, candidate(N).

candidate(N)[1] <=> N = 1 | true.

candidate(N)[2] <=> prime(N), M is N - 1, candidate(M).

prime(Y)[2] \ prime(X)[1] <=> 0 =:= X mod Y | true.

7.5 Groundness analysis 143

It computes the prime numbers between 1 and 10. The abstract derivation steps
for the groundness analysis of this program are the following.

For brevity the abstract stores are shown separately:

S1 = {main:-∅}

S2 = S1 ∪ {candidate(N):-{N}}

S3 = S2 ∪ {prime(N):-{N}}

AS[[P]](〈main, ∅, ∅〉) (AbstractActivate)
= AS[[P]](〈main : 1, S1, ∅〉) (AbstractSimplify)
= 〈�, S3, ∅〉 tg 〈�, S1, ∅〉
= 〈�, S3, ∅〉

In order to obtain the above abstract simplification result, the following evaluation
of the first rule’s body is needed:

AS[[P]](〈[X = 10, candidate(X)], S1, ∅〉) (AbstractGoal)
= AS[[P]](〈[candidate(X)], S1, {X}〉) (AbstractGoal)
= 〈�, S3, {X}〉

For the first abstract goal step, this auxiliary result is used:

AS[[P]](〈X = 10, ∅, S1〉) (AbstractSolve)
= 〈�, S1, {X}〉

For the second abstract goal step, this auxiliary result is used:

AS[[P]](〈candidate(X), S1, {X}〉) (AbstractActivate)
= AS[[P]](〈candidate(X) : 1, S2, {X}〉) (AbstractSimplify)
= AS[[P]](〈�, S2, {X}〉) tg AS[[P]](〈candidate(X) : 2, S2, {X}〉)
= 〈�, S2, {X}〉 tg 〈�, S3, {X}〉
= 〈�, S3, {X}〉

which uses the result:

AS[[P]](〈candidate(X) : 2, S2, {X}〉) (AbstractSimplify)
= AS[[P]](〈[prime(X), Y is X − 1, candidate(Y)], S2, {X}〉) tg 〈�, S2, {X}〉)
= 〈�, S3, {X}〉 tg 〈�, S2, {X}〉
= 〈�, S3, {X}〉

This in turn uses:

AS[[P]](〈[prime(X), Y is X − 1, candidate(Y)], S2, {X}〉)(AbstractGoal)
= AS[[P]](〈[Y is X − 1, candidate(Y)], S3, {X}〉) (AbstractGoal)
= AS[[P]](〈[candidate(Y)], S3, {X,Y }〉) (AbstractGoal)
= 〈�, S3, {X,Y }〉

144 Abstract Interpretation for CHR

The evaluation for the prime(X) goal is as follows:

AS[[P]](〈prime(N), S2, {N}〉) (AbstractActivate)
= AS[[P]](〈prime(N) : 1, S3, {N}〉) (AbstractSimplify)
= 〈�, S3, {N}〉 tg AS[[P]](〈prime(N) : 2, S3, {N}〉) (AbstractPropagate)
= 〈�, S3, {N}〉 tg AS[[P]](〈prime(N) : 3, S3, {N}〉) (AbstractDrop)
= 〈�, S3, {N}〉 tg 〈�, S3, {N}〉)
= 〈�, S3, {N}〉

We omit identical evaluations for [prime(N),M is N − 1, candidate(M)] and
prime(N) starting with CHR store S3 rather than S2. From this analysis we can
conclude that the CHR constraints are ground at all times in this program.

7.6 Implementation and Evaluation

We have implemented both the late storage analysis and the groundness analysis
in our K.U.Leuven CHR system (see Chapter 6).

We have implemented the late storage and groundness analyses to always start
from an initial goal 〈main, ∅〉 and 〈main, ∅, ∅〉 respectively. The rules for the con-
straint main/0 in a particular benchmark define all relevant call patterns for that
benchmark.

7.6.1 Late Storage Analysis

The results of this analysis are used for optimization in our CHR compiler in the
following way:

• The main philosophy in late storage is to delay constraint storage, so that
some constraints are removed before they have to be stored. For those con-
straints the overhead of both storage and removal is then avoided.

The reference CHR implementation in SICStus (Intelligent Systems Labor-
atory 2003) already has an approximate late storage optimization. Namely,
it does not store an activated constraint straight away, but only ensures it
is stored before a rule body of a propagation occurrence is executed. See
Section 5.3 for a more extensive treatment of late storage.

With our late storage analysis, the optimization of Section 5.3 is made
stronger: our compiler now also avoids the storage of an active constraint
before the execution of a body of a propagation occurrence, if the constraint
is not observed during the execution of that body.

• For a particular class of constraints, our compiler derives that they are never
stored. Never stored constraints are not stored before an unconditional sim-
plification occurrence. An unconditional simplification occurrence, is an oc-

7.6 Implementation and Evaluation 145

currence in a single-headed rule without any matching or guard. The follow-
ing optimizations are possible for never stored constraints:

– A constraint that is never stored, cannot be triggered. Hence no checks
are necessary to distinguish between activation and reactivation.

– A never stored constraint cannot be found in a constraint store. Hence
if it occurs in a multi-headed rule, its partner constraints in that rule
should not actively try to apply that rule, i.e. their occurrences are
considered passive.

– A never stored constraint will not reconsider the same propagation rule
twice with the same partner constraints. Hence no history needs to be
maintained for that rule.

Hence, the code generated by our compiler is much closer to the code one
would write for a deterministic procedure in the host language than for an
arbitrary constraint without the never stored property.

In Table 7.2 we show the speed-ups resulting from late storage analysis in hPro-
log. For eight benchmarks, see (Schrijvers 2005), we compare immediate storage
with the current implementation of the above optimizations that are enabled by
late storage analysis. The timings for the optimized programs are given relative
to those of the unoptimized programs.

Benchmark Optimized / Unoptimized
bool 17.6%
fib 72.3%
fibonacci 72.7%
leq 75.7%
mergesort 86.5%
primes 94.6%
uf 97.4%
uf opt 106.5%
wfs 95.7%
zebra 89.1%

Table 7.2: Late storage analysis: runtime results of optimized programs relative
to unoptimized programs

In Table 7.3 we show the number of dynamic constraint store insertions and
deletions for these benchmarks.1 The considerable reduction of the bool bench-
mark timing is clearly explained by the drastic decrease in the number of store

1Note that in the zebra benchmark the number of deletions is larger than the number of
additions. This is due to backtracking over deletions.

146 Abstract Interpretation for CHR

operations. While even more operations have been saved in the leq benchmark,
the impact on its runtime is more modest, though still considerable. Measurement
indicates that the impact of these operations on the total runtime is less dominant
and so less overall improvement can be realized.

Benchmark Without With
Insert Delete Insert Delete

bool 359,996 359,996 8.33% 8.33%
fib 114,603 114,580 50.01% 50.00%
fibonacci 81,000 39,000 51.85% 0.00%
leq 34,280 34,280 5.16% 5.16%
mergesort 37,170 34,610 30.97% 25.86%
primes 4,999 4,632 49.99% 46.03%
wfsnew 46,800 44,800 91.03% 90.62%
uf 7,994 6,994 37.50% 28.57%
uf opt 8,004 7,004 37.50% 28.57%
zebra 56,790 130,300 37.52% 28.60%

Table 7.3: Late storage analysis: the number of store operations without and with
late storage

The analysis time for the late storage analysis is reasonable, in the range of 0
tot 20 ms for the above benchmarks and mostly only a fraction of total compilation
time. For the K.U.Leuven CHR system compiler, including 76 constraints and 144
CHR rules, the analysis takes 500 ms or a fifth of total compilation time.

7.6.2 Groundness Analysis

Our implementation of groundness analysis uses the naive groundness domain for
built-in constraints as it is described in Section 7.5.3.

The K.U.Leuven CHR system currently only performs optimizations for con-
straints that are ground in all possible states. The optimizations are enabled by
groundness declarations that are supplied by the programmer (see Section 6.3).
In order to evaluate our analysis we have used the results of the analysis to auto-
matically infer the groundness declarations.

We have experimentally evaluated our groundness analysis in this way on the
seven benchmarks also used in Section 6.5.3: fib, fibonacci, mergesort, primes,
uf, uf opt and wfs. To each of these benchmarks we have added a main/0 con-
straint representative of the use of the particular benchmark.

It turns out that the annotations derived from the groundness analysis results
are optimal for all but the union-find benchmarks. Optimal means that the derived
annotations are as strong as the actual calling patterns of the constrains in those

7.7 Conclusion 147

benchmarks. The speed-ups realized by the annotations were listed in Table 6.2
in Section 6.5.3.

For the union-find benchmark, the results are not optimal. The analysis does
not figure out that the first argument of find/2 and both arguments of link/2

are always ground, because the analysis does not take into account that a find/2

is only called on an element that already appears in a root/2 or ~>/2 constraint
and never delays. Although the derived annotations are not optimal, the speed-
ups are about as good as for the optimal annotations: for the uf benchmark we
measured no difference and for the uf opt benchmark we measured a difference of
at most 10 ms.

The analysis time of the groundness analysis is more troublesome than that of
the late storage analysis. Times are in the range of 10 to 100 ms for the smaller
benchmarks (fib, fibonacci, mergesort, primes) with 2 to 4 CHR rules and in
the range of 10,000 ms for the larger ones (uf, uf opt and wfs with respectively
6, 7 and 44 CHR rules). In all cases the groundness analysis dominates the total
compilation time.

7.7 Conclusion

To the best of our knowledge, this is the first work on using abstract interpreta-
tion for CHR. Many ad-hoc analyses and optimizations were developed for CHR
before: delay avoidance (Holzbaur, Garćıa de la Banda, Stuckey, and Duck 2005;
Schrijvers and Demoen 2004a) (see Section 6.3.4), late storage, continuation optim-
ization, an index optimization (Holzbaur, Garćıa de la Banda, Stuckey, and Duck
2005), . . . Typically the analysis process used to obtain information that enables
a particular optimization is only discussed informally or left out altogether.

We have shown that it is possible to apply the general and structured ideas of
abstract interpretation to CHR. Based on our definition of the refined denotational
semantics of CHR, we have formulated a framework for abstract interpretation.
To illustrate the framework we have formulated two analyses in it: the CHR
specific late storage analysis and the groundness analysis which we have lifted
from Prolog to CHR. These two domains show that it is possible to precisely
and formally state program analyses for CHR which yield useful information for
program optimization.

Our work on abstract interpretation has been published as a technical report
(Duck, Schrijvers, and Stuckey 2004) and accepted at the Principles and Practice
of Declarative Programming Symposium (Schrijvers, Stuckey, and Duck 2005).

7.7.1 Related and Future Work

The most closely related work we are aware of is the one on the analysis of con-
current constraint logic (CCL) programs (Codognet, Codognet, and Corsini 1990;

148 Abstract Interpretation for CHR

Codish, Falaschi, Marriott, and Winsborough 1993). CCL programs roughly cor-
respond to CHR programs with only single-headed simplification rules. The CCL
semantics corresponds to the high-level operational semantics of CHR. Due to the
single-headedness of CCL programs, their analysis is not complicated by the non-
determinism of the partner constraint matchings of CHR. However, their semantics
is more non-deterministic regarding the order of rule-applications than the refined
operational semantics we use.

We have only presented two rather straightforward analysis domains as an
illustration of the framework. These analyses should of course be strengthened
with additional control flow information that is derived from other analyses. It is
for example possible to derive the never stored property for some constraints from
the late storage analysis. This information reduces the set of constraints that may
be reactivated.

Moreover the groundness analysis has only been exploited in the case that ar-
guments of constraints are ground throughout their full lifetime. As an extension,
one can exploit the groundness information in other cases, i.e. when arguments
are ground from a certain occurrence on or at certain occurrences.

Many more analyses for CHR can be considered within the framework as well
as the combination of these analyses.

Several efficiency issues have risen during the formulation of our framework,
namely due to the fixedpoint computations. It remains to be explored how much
the impact of these computations is on the overall efficiency of analyses in our
framework. Widening strategies can be applied to avoid overly long analysis times
for some domains. A comprehensive study of the time/accuracy trade-off is re-
quired.

For a specific CHR compiler the accuracy can be improved across analysis
domains by using the more specialized operational semantics of the compiler. The
semantics of the compiler will typically be a more deterministic instance of the
denotational semantics.

The common abstract interpretation analysis technique may facilitate the more
unified view of host language and CHR to perform multi-language analysis. For
example in the case of CHR in Prolog, a single groundness analysis for both the
Prolog code and its embedded CHR code would obtain the strongest results since
there is a reciprocal interaction between both languages. A more unified semantics
of both is necessary to accomplish this.

Chapter 8

Integration of CHR with

Tabled Execution

8.1 Introduction

XSB (Warren et al. 2005) is a standard Prolog system extended with tabled res-
olution. Tabled resolution is useful for recursive query computation, allowing
programs to terminate in many cases where Prolog does not.

Parsing, program analysis, model checking, data mining, diagnosis and many
more applications benefit from tabled resolution.

The use of constraint solvers in XSB has been a quite laborious and incon-
venient endeavor up to now. Initially XSB provided no built-in support at all for
dealing with constraints. Hence XSB programmers resorted to interfacing with for-
eign language libraries or implementation of constraint solvers in XSB itself with
close coupling of constraint solver and application as a consequence. For instance,
the initial feasibility study of a real time model checking system used a meta in-
terpreter written in XSB to deal with constraints (see (Mukund, Ramakrishnan,
Ramakrishnan, and Verma 2000)). The subsequent full system implements an in-
terface between XSB and the POLINE polyhedra-based constraint solver library
and passes around handles to the constraint store in the XSB program (see (Du,
Ramakrishnan, and Smolka 2000)). A later version of this real time model check-
ing application switched to using distance bound matrices implemented in XSB
itself (see (Pemmasani, Ramakrishnan, and Ramakrishnan 2002)). This shows
that there is certainly a demand for constraints in the XSB setting, but that a
satisfactory solution with sufficient ease of use and a reasonable implementation
had not been found so far.

In an attempt to facilitate the use of constraints in XSB, it has been exten-
ded with attributed variables (Cui and Warren 2000a). Attributed variables form

149

150 Integration of CHR with Tabled Execution

a Prolog language feature that is particularly suited for constraint solver imple-
mentation as it allows efficient association of data with variables and user hooks
on variable binding. Unfortunately this feature has not caught on in XSB as a
basis for constraint systems because it is a particularly low-level feature that still
requires considerable scheduling considerations by the constraint solver program-
mer. However, most of the work on attributed variables in XSB is still useful,
as attributed variables are indeed a powerful implementation tool for constraint
systems: efficient compilation of CHR to Prolog relies heavily on them (see Section
5.2.3). Because of the availability of attributed variables, CHR is a good high-level
alternative for the previous low-level approaches.

From the point of view of CHR, the integration of CHR with XSB’s tabled
resolution yields a more powerful system than the combination of plain Prolog
and CHR. The CHR-XSB integration combines both the bottom-up and top-down
fixedpoint computations, the favorable termination properties of XSB and the
constraint programming of CHR. This combined power enables programmers to
easily write highly declarative programs that are easier to maintain and extend.

This proposed integration implies quite a number of implementation challenges
that have to be dealt with. Firstly, a CHR system for non-tabled use in XSB is
needed, as it does not come with one already. This has already been discussed in
Section 6.4.1: we have ported the K.U.Leuven CHR system to XSB.

Secondly, the K.U.Leuven CHR system requires proper interaction with tabled
execution. Section 8.2 presents the necessary technical background: SLD resolu-
tion and its extension to constraints. In Section 8.3 we present our implementation
and the different interaction issues. We propose a solution to the conflict of the
global CHR store with the required referential transparency of tabled predicates.
Also two representations of tabled constraints are analyzed and a mechanism for
answer constraint projection is presented. In addition, we study issues regard-
ing answer entailment checking and advanced techniques for aggregate-like answer
combination. The performance impact of tabling and several of the mentioned
concepts are measured on a small constraint application. Throughout, we propose
a declaration-based approach for enabling particular mechanisms that, in the spirit
of both CHR and XSB, preserves the ease of use.

Finally, we conclude this chapter in Section 8.4 and discuss related and possible
future work.

8.2 Technical Background

8.2.1 SLG Resolution

The tabled execution of XSB is based on SLG resolution. SLG resolution is an
execution strategy that shares the improved termination behavior with bottom-up
execution and the goal-directedness with top-down execution. It implements the

8.2 Technical Background 151

Parent Children Conditions

Clause Resolution

root(G)

body(G; B1
1 , . . . , B1

k)θ1

...

body(G; Bl
1, . . . , B

l
kl

)θl

for all 0 < i ≤ l such that
Gi → Bi

1, . . . , B
i
ki

∈ P

and θi the mgu of G and
Gi

Answer Propagation

body(G; B1, B2 . . . , Bk)

body(G; B2, . . . , Bk)θ1

...

body(G; B2, . . . , Bk)θl

for all Ai ∈ ans(B1)
where θi is the mgu of B1

and Ai

Table 8.1: Basic SLG resolution rules

fixedpoint semantics of the immediate consequence operator TP (see Definition
3.5 on page 42).

This execution strategy is based on the rewriting rules given in Table 8.1 where
G and Bi are atoms and P is a definite logic program. An SLG-tree is a tree built
from a node root(G) by a finite application of the rewriting rules. When there is
no tree yet for a goal B1 to be resolved by the Answer Propagation rule, a new
SLG-tree in the SLG-forest is created with root root(B1).

The Answer Propagation rule implements the left-to-right selection rule imple-
mented by XSB and common to most LP systems.

The SLG rewriting rules are used for query evaluation according to the defini-
tion below.

Definition 8.1 Let SLG(G) be the SLG-forest created from the query (G,P) as
follows:

1. Create an SLG-forest containing a single tree {root(G)}.

2. Expand the leftmost node using the rules in Table 8.1 as long as they can be
applied.

3. Return the set ans(G) as the answer for the query.

Let slg(G) be the tree rooted by root(G).

Definition 8.2 Let ans(G) be the set of all A such that body(A;�) ∈ slg(G).

The set ans(G) is also called the (answer) table for G. XSB maintains this
answer table in a data structure and does the necessary bookkeeping to ensure
that all rewriting rules are applied when appropriate.

152 Integration of CHR with Tabled Execution

(reach(a,Y);reach(a,Y))

sshhhhhhhhhhhhhhhhhhh

��
(reach(a,Y);edge(a,Y))

��

(reach(a,Y);reach(a,T),reach(T,Y))

�� ((QQQQQQQQQQQQQQQQ

(reach(a,a);�) (reach(a,Y);edge(a,T),reach(T,Y))

�� ((QQQQQQQQQQQQQQQQ

. . .

(reach(a,Y);reach(a,Y))

�� ((QQQQQQQQQQQQQQQQ

. . .

(reach(a,Y);edge(a,Y))

�� ((QQQQQQQQQQQQQQQQ

. . .

(reach(a,a);�) . . .

Figure 8.1: SLD-tree example

Example 8.1 Consider the following logic program:

edge(a,a).

reach(X,Y) :- edge(X,Y).

reach(X,Y) :- reach(X,T), reach(T,Y).

The predicate edge/2 represents the edges in a graph and the predicate reach/2

implements graph reachability. With the given fact edge(a,a) the graph repres-
ented is a single node a with a loop.

Under the SLDNF strategy of Prolog (see Section 2.3.1) the query
?- reach(a,Y) produces an infinite number of answers of the form reach(a,a)

due to the loop in the graph. The SLDNF strategy implies a resolution tree that
starts from the query and in each step replaces an unresolved literal with the body
of a corresponding rule. The SLDNF tree for the query is depicted in Figure 8.1.
We also maintain the substituted initial query throughout the tree; the leaves of
the tree are the answers to the query.

Under SLG resolution only one answer is produced and execution terminates

8.2 Technical Background 153

root(reach(a,Y))

wwooooooooooo

))SSSSSSSSSSSSSS

body(reach(a,Y);edge(a,Y))

��

body(reach(a,Y);reach(a,T),reach(T,Y))

��
body(reach(a,a);�) body(reach(a,Y);reach(a,Y))

��
body(reach(a,Y);reach(a,Y))

��
body(reach(a,a);�)

ans(reach(a, Y)) = {reach(a,a)}

root(edge(a,Y))

��
body(edge(a,a);�)

ans(edge(a, Y)) = {edge(a,a)}

Figure 8.2: SLG-tree example

finitely, as is shown in Figure 8.2.

In (Rao, Sagonas, Swift, Warren, and Freire 1997) XSB’s SLG execution
strategy has been extended with support for negated literals in order to realize
the well-founded semantics. See Section 3.4.1 for a definition of the well-founded
semantics.

We refer the reader to (Chen and Warren 1996) for an extensive coverage of
XSB’s SLG execution strategy of tabled resolution.

154 Integration of CHR with Tabled Execution

8.2.2 SLG and Constraints: SLGD Resolution

In a survey of Constraint Logic Programming (CLP) (Jaffar and Maher 1994)
various forms of semantics are listed for constraint logic programs: declarative,
fixedpoint and operational semantics. The fixedpoint semantics are of particular
interest as we can relate them to XSB’s fixedpoint semantics.

The CLP fixedpoint semantics are defined, in the usual way, as the fixedpoint
of an extended immediate consequence operator.

Definition 8.3 (CLP Immediate Consequence Operator) The one-step
consequence function TD

P for a CLP program P with constraint domain D is defined
as:

TD
P (I) = {p(d̄)| p(x̄)← c, b1, . . . , bn is a rule in P

∀i : 1 ≤ i ≤ n⇒ ai ∈ I
v is a valuation on D such that
D |= v(c), v(x̄) = d̄,
∀i : 1 ≤ i ≤ n⇒ v(bi) = ai}

The valuation is a value assignment or grounding of the variables.
A goal-directed execution strategy, SLGD, using tabling for the above CLP

fixedpoint semantics has been developed by Toman in (Toman 1997).
As SLGD is an extension of SLG, we shall only point out the differences. SLGD

generalizes Herbrand constraints (i.e. unifications) to a constraint domain D. In
(Toman 1997) it is assumed that the constraint domain D comes with a projection
operation that returns a disjunction of constraints: ∃̄T C =

∨

i Ci. The notation
Cj ∈ ∃̄T C is used to state that Cj is one of the disjuncts in this disjunction. In
addition, it is assumed that some relation ≤D is provided. This relation should be
stronger than implication, i.e.

∀C1, C2 : C1 ≤D C2 ⇒ D |= C1 → C2

A query in the SLGD formalism is a tuple (G,C, P) where vars(C) ⊆ vars(G)
and all arguments of G are variables. With this new definition of a query the
rewriting rules become those in Table 8.2. There are two new rules: Query Projec-
tion and Answer Projection. The former is responsible for determining the goals
to be resolved by answer propagation. The latter is responsible for determining
the computed answers to be stored. The new definition of ans(G,C) is:

Definition 8.4 The answer set of the query (G,C, P), denoted ans(G,C), is the
set of all A such that ans(G;A) ∈ slg(G,C).

In (Toman 1997) several optimizations to the rewriting formulas have been
proposed, of which one to Query Projection will be of particular interest. The
optimization allows for more general goals than strictly necessary to be resolved.
Table 8.3 lists the modified Query Projection rule.

8.2 Technical Background 155

Parent Children Conditions

Clause Resolution

root(G; C)

body(G; B1
1 , . . . , B1

k1
; C ∧ θ ∧ D1)

...

body(G; Bl
1, . . . , B

l
kl

; C ∧ θ ∧ Dl)

for all 0 < i ≤ l such that
G′ → Di, Bi

1, . . . , B
i
ki

and θ ≡ (G = G′)
and C∧θ∧Di is satisfiable

Query Projection

body(G; B1, . . . , Bk; C)

goal(G; B1, C1; B2 . . . , Bk; C)

...

goal(G; B1, Cl; B2 . . . , Bk; C)

for all Ci ∈ ∃̄B1
C

Answer Propagation

goal(G; B1, C1; B2 . . . , Bk; C)

body(G; B2, . . . , Bk; C ∧ θ ∧ A1)

...

body(G; B2, . . . , Bk; C ∧ θ ∧ Al)

for all Ai ∈ ans(B′, C′)
where θ ≡ (B′ = B1)
and C1 ∧ θ ≤D C′

and C∧θ∧Ai is satisfiable

Answer Projection

body(G; �; C)

ans(G; A1)

...

ans(G; Al)

for all Ai ∈ ∃̄GC

Table 8.2: SLGD resolution rules

Parent Children Conditions

Query Projection

body(G; B1, . . . , Bk; C)

goal(G; B1, C1; B2 . . . , Bk; C)

...

goal(G; B1, Cl; B2 . . . , Bk; C)

D |= ∃̄B1
C → C1 ∨ . . .∨Cl

for some C1, . . . , Cl

Table 8.3: Optimized Query Projection for SLGD resolution

156 Integration of CHR with Tabled Execution

A second important optimization is a modified version of the answer set defin-
ition:

Definition 8.5 The answer set of the query (G,C, P), denoted ans(G,C), is the
set of all A such that ans(G;A) ∈ slg(G,C) and no A′ is already in ans(G,C) for
which A ≤D A′.

This alternative definition allows for answers to be omitted if they are already
entailed by earlier more general answers. While logically the same answers are
entailed, the set of answers is smaller with the new definition.

In essence our integration of CHR with tabled execution is an implementation
of the SLGD execution strategy and we will point out the correspondences in
Section 8.3.

In (Toman 1996) Toman has also extended his work to a goal-directed execution
strategy for CLP programs with negation. This extension realizes the well-founded
semantics. An implementation of this extension is not covered by our work. It
imposes additional requirements on the constraint solver: a finite representation
of the negation of any constraint should exist. Moreover, the detection of loops
through negation requires a more complicated tabling mechanism.

8.3 CHR and Tabled Execution

The main challenge of introducing CHR in XSB is the integration of CHR con-
straint solvers with the backward chaining fixedpoint computation of SLG resolu-
tion according to the SLGD semantics of the previous section.

A similar integration problem has been solved in (Cui and Warren 2000a),
which describes a framework for constraint solvers written with attributed vari-
ables for XSB. The name Tabled Constraint Logic Programming (TCLP) is coined
in that publication, though it is not formulated in terms of SLGD resolution. Port-
ing CHR to XSB was already recognized as important future work of (Cui and
Warren 2000a).

The main difference for the programmer between CHR and attributed variables
for developing constraint solvers, i.e. the fact that CHR is a much higher level
language, should be carried over to the tabled context. Hence tabled CHR should
be a more convenient paradigm for programming constraint solvers than TCLP
with attributed variables. Indeed, we will show how the internals presented in this
section can be hidden from the user.

In (Cui and Warren 2000a) the general TCLP framework specifies three opera-
tions to control the tabling of constraints: call abstraction, entailment checking of
answers and answer projection. These operations correspond with the optimiza-
tion to Query Projection, the projection in Answer Projection and the compaction

8.3 CHR and Tabled Execution 157

of the ans(G;C) set. It is left to the constraint solver programmer to implement
these operations for his particular solver.

In the following we formulate these operations in terms of CHR. The operations
are covered in significant detail as the actual CHR implementation and the rep-
resentation of the global CHR constraint store are taken into account. Problems
that have to be solved time and again for attributed variable constraint solvers are
solved once and for all for CHR constraint solvers. Hence integrating a particular
CHR constraint solver requires much less knowledge of implementation intricacies
and decisions can be made on a higher level.

Overview The general implementation schema is presented in Section 8.3.1: it
introduces the refinements covered in the subsequent sections, Section 8.3.2 to
Section 8.3.5 Finally, Section 8.3.6 uses a small shipment problem to evaluate the
combination of CHR with tabling.

8.3.1 General Schema of the Implementation

We present a source-to-source transformation that maps a predicate p onto a
predicate p′ such that the answers to p under SLGD and p′ and under SLG are
the same.

An SLGD constraint goal (p(X̄);C;P) is mapped onto an SLG goal
(p(X̄, C ′);P ′). Here C ′ is a term representation for the constraint C. On the
level of the implementation C corresponds with the CHR constraint store and C ′

is a corresponding constraint store representation that is suitable for passing as
an argument and storing in a table. Section 8.3.2 studies two alternative repres-
entations of C ′. Note that Herbrand constraints, i.e. unifications, are still applied
as most general unifiers.

For the Query Projection rewriting rule, the improved version of Table 8.3 is
used. This fact is used:

∀C : ∃̄B → true

to project away all CHR constraints and replace them with true for all queries.
In (Cui and Warren 2000a) this query projection is called call abstraction. Section
8.3.3 the motivation for our call abstraction and its realization are discussed. The
conjunction of a goal’s answer constraint with the current constraint store in the
Answer Propagation rewriting rule is also covered in this section.

The projection applied in the Answer Projection rule is addressed in Section
8.3.4. This projection is realized as a call to a projection predicate that reduces
the constraint store to its projected form.

The optimization of the Definition 8.5 is called the entailment checking optim-
ization in (Cui and Warren 2000a). We use an entailment checking operation to
compare a new answer with previous answers. This is discussed in Section 8.3.5.

158 Integration of CHR with Tabled Execution

The different steps in handling a call to a tabled predicate are depicted in
Figure 8.3.

Figure 8.3: Tabled call flowchart

8.3.2 Tabled Store Representation

In this section we present two alternative constraint store representations. These
are the required properties of a representation:

• The representation has to be suitable for passing it as an argument in a
predicate and for storing it in an answer table.

• The representation should allow comparing the constraints in a call with
all call patterns in the call table to select either a variant (under variant
based tabling) or the most specific generalization (under subsumption based
tabling).

• It should be possible to convert from the ordinary representation of the
constraints and back, for insertion into the call table and retrieval from the
answer table.

8.3 CHR and Tabled Execution 159

Two tabled CHR Store Representations

First we recall briefly the ordinary constraint store representation, covered in Sec-
tion 5.2.2 and Section 5.2.3.

The global CHR constraint store is an updateable term, containing suspended
constraints grouped by their functor. Each suspended constraint is represented as
a suspension term, including the following information:

• The unique constraint identifier (ID), used for equality testing.

• The continuation goal, executed on reactivation. This goal contains the
suspension itself as an argument and it is in fact a cyclic term.

• The propagation history containing for each propagation rule the tuple of
identifiers of other constraints that this constraint has interacted with.

Variables involved in the suspended constraints behave as indexes into the global
store: they have the suspensions attached to them as attributes.

One implicit aspect of CHR execution under the refined operational semantics
is the order in which constraints are processed. Ordering information is not main-
tained explicitly. Without any additional support, it is not straightforward to
maintain this ordering information for tabled constraints. However, in the spirit
of tabling, the declarative meaning of a program rather than its operational beha-
vior is of importance. For that reason we shall not attempt to realize the ordering
of the refined operational semantics. From the user’s point of view, the CHR
constraints will behave according to the theoretical operational semantics and no
assumptions should be made about ordering.

Two different tabled CHR store representations have been explored: the sus-
pension representation and the naive representation. A discussion of their respect-
ive merits and weaknesses as well as an evaluation follow.

Suspension representation Here we aim to keep the tabled representation
as close as possible to the ordinary representation. The idea is to maintain the
propagation history of the constraints. In that way no unnecessary re-firing of
propagation rules will occur after the constraints have been retrieved from the
table.

However, it is not possible to just store the ordinary constraint suspensions in
the table as they are. Firstly, the tables do not deal with cyclic terms. This can be
dealt with by breaking the cycles before storage and resetting them after fetching.
Secondly, the unique identifiers have to be replaced after fetching by fresh ones
as multiple calls would otherwise create multiple copies of the same constraints
all with identical identifiers. Fortunately, attributed variables themselves can be
stored in tables (see (Cui and Warren 2000b)).

160 Integration of CHR with Tabled Execution

Naive Representation The naive representation aims at keeping the informa-
tion in the table in as simple a form as possible: for each suspended constraint only
the goal to impose this constraint is retained in the table. It is easy to create this
goal from a suspension and easy to merge this goal back into another constraint
store: it needs only to be called.

Whenever it is necessary the goal will create a suspension with a fresh unique
ID and insert it into the constraint store. However it may prove unnecessary to
do so. Recall the late storage optimization of Section 5.3.1. Part of this optimiz-
ation consists in delaying ID creation for as long as possible in the hope that the
constraint is removed before the ID is necessary. As the newly called constraint
has all the constraints in the calling context to interact with, it may well be that
some may serve as partner constraints to a simplification rule. If the occurrence
of the newly called constraint comes before the ID creation, the ID overhead is
saved out.

The only information that is lost in this representation is the propagation
history. This may lead to multiple propagations for the same combination of
head constraints. For this to be sound, a further restriction on the CHR rules
is required: they should behave according to set semantics, i.e. the presence of
multiple identical constraints should not lead to different answers modulo identical
constraints.

Evaluation of both representations To measure the relative performance of
the two presented representations, consider the following two programs:

prop
:- constraints a/1.

a(0) <=> true.

a(N) ==> N > 0

| M is N - 1, a(M).

p(N) :- a(N).

simp
:- constraints a/1, b/1.

b(0) <=> true.

b(N) <=> N > 0

| a(N), M is N - 1, b(M).

p(N) :- b(N).

For both programs the predicate p(N) puts the constraints a(1)...a(N) in the
constraint store. The prop program uses a propagation rule to achieve this while
the simp program uses an auxiliary constraint b/1. The non-tabled version of the
query p(N) has time complexity O(N) for both the simp and the prop program.

In order to shield the user from the implementation details we propose this user-
provided declaration through which the tabling of constraints can be controlled:

:- table_chr f(_,_) with Options.

Its meaning is that the predicate f/2 should be tabled (using SLGD resolution)
and that it involves CHR constraints. A list of additional options may be provided.
The declaration drives a source-to-source transformation that realizes the desired

8.3 CHR and Tabled Execution 161

Table 8.4: Evaluation of the two tabled store representations.

representation(suspension) representation(naive)

program runtime space runtime space
prop 150 2,153,100 1,739 270,700
simp 109 1,829,100 89 270,700

behavior. The specifics of this transformation, the possible options and the reason
for the explicit arguments in the declaration are explained later.

The two possible representations for the answer constraint store can be specified
in the tabling declaration as follows:

:- table_chr p(_) with [representation(suspension)].

and

:- table_chr p(_) with [representation(naive)].

Table 8.4 gives the results for the tabled query p(400): runtime in milliseconds
and space usage of the tables in bytes. For both programs the answer table contains
the constraint store with the 400 a/1 constraints.

Most of the space overhead is due to the difference in representation: a sus-
pension contains more information than a simple call. However, the difference is
more or less a constant factor. The only part of a suspension in general that can
have a size greater than O(1) is the propagation history, that for prop is limited
to remembering that the propagation rule has been used. For the simp program
the propagation history is always empty.

The runtime of the prop version with the suspension representation is con-
siderably better than that of the version with the naive representation. In fact,
there is a complexity difference. When the answer is retrieved from the table for
the suspension representation, the propagation history prevents re-propagation.
Hence answer retrieval is O(N). For the naive representation on the other hand,
every constraint a(I) from the answer will start propagating and the complexity
of answer retrieval becomes O(N 2).

On the other hand, for simp propagation history plays no role. The runtime
overhead is mostly due to the additional overhead of the pre- and post-processing
of the suspension representation as opposed to the simpler form of the naive rep-
resentation. As a basis of comparison, in untabled versions of both programs the
query takes only 10 milliseconds.

162 Integration of CHR with Tabled Execution

Variant Checking

The need to check whether two constraint stores are variants of each other may
arise at two occasions:

• With no or only partial call abstraction (see Section 8.3.3) a constraint store
is part of the call to the tabled predicate. The tabling system then needs to
check whether a previous call with a variant of that constraint store appears
in a table. If that is the case, the answer to the previous call can be reused.

• A limited form of entailment checking (see Section 8.3.5) consists in checking
whether a new answer constraint store is a variant of any previous answer
constraint store for the same call. In that case the new answer can be
discarded.

Consider this equality checking with the previously presented naive tabled repres-
entation of constraints. In that representation the tabled constraints are kept as
a list of goals that impose the constraints. Any permutation of this list represents
the same constraint store. If two constraint stores are identical modulo variable
renaming, then they are variants.

All general algorithms for variant checking of constraint stores that we are
aware of have exponential worst-case complexity. A naive algorithm would be to
consider all permutations of one constraint store. If any one of the permutations
equals the other constraint store, both are identical. With heuristics this algorithm
could be improved and for particular constraints or even applications algorithms
with a better complexity may exist. However further exploration of improvements
to variant checking falls outside of the scope of this text. The problem can be
ignored altogether, with possible duplication in tables as a consequence, or only
partially tackled, e.g. by simple sorting and pattern matching.

In Chapter 9 a technique for semantically founded implication checking is de-
veloped. If two constraint stores imply each other, they are equivalent. This
approach would be stronger than the strictly syntactical approaches above in the
sense that more constraint stores are decided to be variants, but it could also be
much more expensive.

8.3.3 Call Abstraction

Call abstraction replaces the called goal with a call to a more general goal followed
by an operation that ensures that only the answer substitutions applicable to
the original call are retained. At the level of plain Prolog, abstraction means
not passing certain bindings to the call. For example, p(q,A) can be abstracted
to p(Q,A). This goal has then to be followed by Q = q to ensure that only the
appropriate bindings for A are retained.

In XSB call abstraction is a means to control the number of tables. When a
predicate is called with many different instantiation patterns, a table is generated

8.3 CHR and Tabled Execution 163

for each such call instantiation pattern. Thus it is possible that the information
for one fully instantiated call is present many times in tables for different call
instantiation patterns. This duplication in the tables can be avoided by using call
abstraction to obtain a smaller set of call instantiation patterns.

For constraint logic programming, call abstraction can be generalized from
bindings to constraints: abstraction means removing some of the constraints on
the arguments. Consider for example the call p(Q,A) with constraint Q leq N on
Q. This call can be abstracted to p(Q’,A), followed by Q’=Q to reintroduce the
constraint.

Abstraction is particularly useful for those constraint solvers where the num-
ber of constraints on a variable can be much larger than the number of different
bindings for that variable. Consider for example a finite domain constraint solver
with constraint domain/2, where the first argument is a variable and the second
argument the set of its possible values. If the variable can be bound to at most n
values it can take as many as 2n different domain/2 constraints, one for each sub-
set of values. Thus many different tables would be needed to cover every possible
call pattern.

Varying degrees of abstraction are possible and may depend on the particular
constraint system or application. Full constraint abstraction, i.e. the removal of
all constraints from the call, is generally more suitable for CHR for the following
reasons:

• CHR rules do not require constraints to be on variables. They can be on
ground terms or atoms as well. It is not straightforward to define abstraction
for ground terms as these are not necessarily passed in as arguments but can
just as well be created inside the call. Hence there is no explicit link with the
call environment, while such a link is needed for call abstraction. As such,
only “no abstraction” or full constraint abstraction seem suitable for CHR.

• Full constraint abstraction is preferable when the previously mentioned table
blow-up is likely.

• As mentioned in the previous section, variant checking of constraint stores
can have exponential complexity.

Moreover, it may be costly to sort out what constraints should be passed in
to the call or abstracted away. Hence often full abstraction is cheaper than par-
tial abstraction. For instance, consider a typical propagation-based finite domain
constraint solver with binary constraints only. The constraint graph for a num-
ber of such finite domain constraints has a node for every variable involved in a
constraint and an edge between variables involved in the same constraint. Any
additional constraint imposed on a variable in a component of the graph may af-
fect the domain of all other variables in the same component. A call abstraction
that would restrict the constraint store to all constraints that involve variables that

164 Integration of CHR with Tabled Execution

may be affected by new constraints hence needs to perform a transitive reachability
computation in the constraint graph.

For CHR full abstraction requires the execution of the tabled predicate with
an empty constraint store. If the call environment constraint store were used,
interaction with new constraints would violate the assumption of full abstraction.

Full constraint abstraction can be with the source-to-source transformation
explained next. The source-to-source transformation is driven by the following
user declaration:

:- table_chr p(_,chr) with Options.

p(X,Y) :- ...

meaning that the predicate p/2 should be tabled, its first argument is an ordinary
Prolog term and its second argument is a CHR constraint variable of which all the
constraints are abstracted away.

The predicate is transformed into two separate predicates, where the first one
is called, takes care of the abstraction, calls the second predicate and afterwards
combines the answer with the previously abstracted away constraints.

p(X,Y) :-

current_chr_store(CallStore)

set_empty_chr_store,

tabled_p(X,Y1,AnswerStore),

set_chr_store(CallStore),

insert_answer_store(AnswerStore),

Y1 = Y.

:- table tabled_p/3.

tabled_p(X,Y,S_A) :- ...

The complete implementation of tabled p will be discussed in the next section.
The given answer constraints are merged into the current global CHR constraint
store by the predicate insert answer store/1. Given the naive representation
discussed in the previous section, this boils down to calling a list of goals to impose
the constraints.

8.3.4 Answer Projection

Often one wants to project the answer constraint store on the non-local variables
of the call. The usual motivation is that constraints on local variables are mean-
ingless outside of the call. The constraint system should be complete so that no
unsatisfiable constraints can be lost through projection.

For tabling there is an additional and perhaps even more pressing motivation
for projection: a predicate with an infinite number of different answers may be

8.3 CHR and Tabled Execution 165

turned into one with just a finite number of answers by throwing away the con-
straints on local and unreachable variables.

Example 8.2 Consider this program:

path(From,To,X) :-

edge(From,To,X).

path(From,To,X) :-

path(From,Between,X), path(Between,To,X).

edge(a,a,X) :-

leq(X,Y),

leq(Y,1).

leq(X,X) <=> true.

leq(X,Y) \ leq(Y,X) <=> X = Y.

leq(X,Y) \ leq(X,Y) <=> true.

leq(X,Y) , leq(Y,Z) ==> leq(X,Z).

It defines a path/3 predicate that expresses reachability in a graph represented by
edge/3 predicates. The first two arguments of both predicates are edges (origin
and destination) and the third is a constraint variable. Along every edge in the
graph some additional constraints may be imposed on this variable. In our ex-
ample, the graph consists of a single loop from edge a to itself. This loop imposed
two less-than-or-equal-to constraints: leq(X,Y), leq(Y,1). The variable Y is a
local variable and the fourth rule for leq/2 derives that leq(X,1) also holds.

There are an infinite number of paths in our simple graph, one for each non-zero
integer n. A path for n takes the loop n times. For every time the loop is taken a
new variable Yi is created and two more constraints leq(X,Yi and leq(Yi,1) are
added. Through the propagation rule also an leq(X,1) is added for each time the
loop is taken. The second simpagation rule however removes all but one copy of
this last constraint.

Even though there are an infinite number of answers, the constraints involving
the local variables Yi are of no interest and only the single leq(X,1) is relevant.

In general constraint projection onto a set of variables transforms a constraint
store into another constraint store in which only variables of the given set are
involved. The form of the resulting constraint store strongly depends on the par-
ticular constraint solver and its computation may involve arbitrary analysis of the
original constraint store.

We propose an elegant CHR-based approach to projection. It is a rather com-
pact and high level notation and as such it might be possible to infer conditions
on its usage under which the technique is provably correct.

166 Integration of CHR with Tabled Execution

The user declares the use of the CHR-based approach to projection with this
declaration:

:- table_chr p(_,chr) with [projection].

and implements the projection as a number of CHR rules that involve the special
project/1 constraint. The project/1 constraint has as its argument the set of
variables to project on.

The source-to-source transformation generates the predicate tabled p based
on the declaration:

tabled_p(X,Y,S_A) :-

orig_p(X,Y)

project([Y]),

extract_store_representation(S_A).

Here the predicate extract store representation/1 converts from the ordinary
global store representation to the naive tabled store representation, discussed in
Section 8.3.2. The project/1 constraint is called after the execution of the original
code orig p/2 of the predicate p/2. Its purpose is to rewrite the constraint store
into its projected form.

To implement the projection simpagation rules can be used to look at and
decide what constraints to remove. A final simplification rule at the end can be
used to remove the project/1 constraint from the store.

The following example shows how to project away all leq/2 constraints that
involve arguments not contained in a given set Vars:

project(Vars) \ leq(X,Y) <=>

\+ (member(X,Vars),member(Y,Vars)) | true.

project(Vars) <=> true.

Besides removal of constraints more sophisticated operations such as weakening
are possible. E.g. consider a set solver with two constraints: in/2 that requires
an element to be in a set and nonempty/1 that requires a set to be non-empty.
The rules for projection could include the following weakening rule:

project(Vars) \ in(Elem,Set) <=>

member(Set,Vars),

\+ member(Elem,Vars) | nonempty(Set).

8.3.5 Entailment checking and other answer combinations

Some of the answers computed for a tabled predicate may be redundant and so
need not be saved. The property is exploited by the optimized definition of answer
sets, Definition 8.5. Consider for example that the answer p(a,X) is already in the

8.3 CHR and Tabled Execution 167

table of predicate p/2. Now a new answer, p(a,b) is found. This new answer is
redundant as it is covered by the more general p(a,X) that is already in the table.
Hence it is logically valid to not record this answer in the table, but to simply
discard it. This does not affect the soundness or completeness of the procedure.

The idea of this answer subsumption technique is to reduce the number of
answers in the table by replacing two (or more) answers by a single answer. Logic-
ally, the single new answer has to be equivalent to the disjunction of the replaced
answers. For ordinary tabled Prolog, each answer Hi can be seen as a Herbrand
constraint Answer = Term, e.g. Answer = p(a,X). Now, for any two of these
Herbrand constraints H0 and H1 the following two properties hold:

1. If the disjunction is equivalent to another constraint, that constraint is equi-
valent to one of the two constraints.

H |= ∃H : H ↔ H0 ∨H1 ⇐⇒ ∃i ∈ {0, 1} : H ↔ Hi

2. If the conjunction is equivalent to one of the two constraints, the disjunction
is equivalent to the other.

H |= ∃i ∈ {0, 1} : H0 ∧H1 ↔ Hi ⇐⇒ H0 ∨H1 ↔ H1−i

These two properties suggest a possible strategy to compute the equivalent
single answer of two answers: check whether the conjunction of two answers is
equivalent to one of the two, then the other is the single equivalent answer. Oth-
erwise, there is no single equivalent answer.

We can extend the logically sound idea of answer subsumption to CHR con-
straints. This path length computation will serve as an illustration:

dist(A,B,D) :- edge(A,B,D1), leq(D1,D).

dist(A,B,D) :- dist(A,C,D1), edge(C,B,D2), leq(D1 + D2, D).

Suppose appropriate rules for the leq/2 constraint in the above program, where
leq means less-than-or-equal. The semantics are that dist(A,B,D) holds if there
is a path from A to B of length less than or equal to D. In other words, D is an
upper bound on the length of a path from A to B.

If the answer dist(n1,n2,D) :- leq(d1, D) is already in the table and a
new answer dist(n1,n2,D) :- leq(d2, D), where d1 =< d2, is found, then this
new answer is redundant. Hence it can be discarded. This does not affect the
soundness, since logically the same answers are covered.

Operationally, the same answer subsumption strategy as for tabled Prolog can
be used to reduce two answer constraint stores S0 and S1 to a single answer store
S. At the end of the tabled predicate we merge a previous answer store S0 with a
new answer store S1. After merging the store will be simplified and propagated to
S by the available rules of the CHR program P. This combines the two answers

168 Integration of CHR with Tabled Execution

into a new one. This mechanism can be used to check entailment of one of both
answers by the other: if the combined answer store S is equal to one of the two,
then that answer store entails the other:

[[P]] |= ∃i ∈ {0, 1} : S0 ∧ S1 ↔ Si =⇒ S1−i ↔ S0 ∨ S1

A sound approximation of the equivalence check for the first equivalence sign in
the above formula is syntactical equality. This is our default approach. Below we
specify an option that allows for computing a canonical form first, before checking
syntactical equality.

The predicate insert answer store/1, mentioned in Section 8.3.3, is used for
the conjunction of two constraint stores. We assume that one store is the current
global CHR constraint store.

When the above two answers of the dist/3 predicate are merged, the following
rule leq/2 rule will simplify the constraint store to retain the more general answer:

leq(X,D1) \ leq(X,D2) <=> D1 =< D2 | true.

Note that the dist/3 program would normally generate an infinite number of
answers for a cyclic graph, logically correct but not terminating. However, if it
is tabled with answer subsumption, it does terminate for non-negative weights.
Not only does it terminate, it only produces one answer, namely dist(n1,n2,D)

:- leq(d,D) with d the length of the shortest path. Indeed, the predicate only
returns the optimal answer.

The above strategy is a sound approach to finding a single constraint store that
is equivalent to two others. However, it is not complete: a single constraint store
may be equivalent to the disjunction of two others, while it is not equivalent to one
of the two. This is because the first property for the Herbrand constraints does
not hold for all constraint solvers, e.g. leq(X,Y)∨ leq(Y,X)↔ true. Nevertheless
it is a rather convenient strategy, since it does not require any knowledge on the
particularities of the used constraint solver. That makes it a good choice for the
default strategy for CHR answer subsumption. Better strategies may be supplied
for particular constraint solvers.

For some applications one can combine answers with answer generalization
which does not preserve the logical correctness. An example in regular Prolog
would be to have two answers p(a,b) and p(a,c) and to replace the two of them
with one answer p(a,X). This guarantees (for positive programs) that no answers
are lost, but it may introduce extraneous answers. A similar technique is possible
with constrained answers. While this approach is logically unsound, it may be
acceptable for some applications if the overall correctness of the program is not
affected. An example is the use of the least upper bound operator to combine
answers in the tabled abstract interpretation setting of (Codish, Demoen, and
Sagonas 1998).

8.3 CHR and Tabled Execution 169

Summary Two additional options can be supplied to extend the automatic
transformation:

• canonical form(PredName) specifies the name of the predicate that should
compute the (near) canonical form of the answer constraint store. This
canonical form is used to check equivalence of two constraint stores.

• answer combination(PredName) specifies the name of the predicate that
should compute the combination of two answers, if they can be combined.
The value default selects the above mentioned default strategy.

A stronger, semantically founded technique for implication checking is de-
veloped in Chapter 9.

A subsumption-based optimization technique The technique used in the
dist/3 program is to replace the computation of the exact distance of a path with
the computation of an upper bound on the distance via constraints. Then, by
tabling the predicate and performing answer subsumption, the defining predicate
has effectively been turned into an optimizing one, computing the length of the
shortest path. It is a straightforward yet powerful optimization technique that
can be applied to other defining predicates as well, turning them into optimizing
predicates with a minimum of changes. The usual approach consists in computing
the list of all answers, using the findall/3 meta-programming built-in, and in
processing this list of answers.

8.3.6 Evaluation of a shipment problem

Problem statement: There are N packages available for shipping using trucks.
Each package has a weight and some constraints on the time to be delivered. Each
truck has a maximum load and a destination. Determine whether there is a subset
of the packages that can fully load a truck destined for a certain place so that all
the packages in this subset are delivered on time.

The problem is solved by the truckload program:
Listing 8.1 - The truckload Program

:- constraints leq/2.

leq(X,X) <=> true.

leq(N1,N2) <=> number(N1), number(N2) | N1 =< N2.

leq(N1,X) \ leq(N2,X) <=> number(N1), number(N2), N1 > N2 | true.

leq(X,N1) \ leq(X,N2) <=> number(N1), number(N2), N1 < N2 | true.

leq(X,Y) \ leq(X,Y) <=> true.

leq(X,Y) , leq(Y,Z) ==> leq(X,Z).

truckload(0,0,_,_).

170 Integration of CHR with Tabled Execution

truckload(I,W,D,T) :- % do not include pack I

I > 0,

I1 is I - 1,

truckload(I1,W,D,T).

truckload(I,W,D,T) :- % include pack I

I > 0,

pack(I,Wi,D,T),

W1 is W - Wi,

W1 >= 0,

I1 is I - 1,

truckload(I1,W1,D,T).

pack(30,29,chicago,T) :- leq(19,T),leq(T,29).

pack(29,82,chicago,T) :- leq(20,T),leq(T,29).

pack(28,24,chicago,T) :- leq(8,T),leq(T,12).

%...

pack(3,60,chicago,T) :- leq(4,T),leq(T,29).

pack(2,82,chicago,T) :- leq(28,T),leq(T,29).

pack(1,41,chicago,T) :- leq(27,T),leq(T,28).

Packages are represented by clauses of pack/4, e.g.

pack(3,60,chicago,T) :- leq(4,T),leq(T,29).

means this is the third package, it weights 60 pounds, is destined for Chicago and
has to be delivered between the 4th and the 29th day. The truckload/4 predicate
computes the answer to the problem, e.g. truckload(30,100,chicago,T) com-
putes whether a subset of the packages numbered 1 to 30 exists to fill up a truck
with a maximum load of 100 pounds destined for Chicago. The time constraints
are captured in the bound on the constraint variable T. There may be multiple
answers to this query, if multiple subsets exist that satisfy it.

We have run the program in four different modes:

• Firstly, the program is run as is without tabling.

• Secondly, to avoid the recomputation of subproblems in recursive calls the
truckload/4 predicate is tabled with:

:- table_chr truckload(_,_,_,chr)

with [representation(naive)].

• In a third variant the answer store is canonicalized by simple sorting such
that permutations are detected to be identical answers:

8.3 CHR and Tabled Execution 171

no tabling tabling
load plain sorted combinator
100 ¡1 100 100 100
200 160 461 461 451
300 2,461 1,039 1,041 971
400 12,400 1,500 1.510 1,351
500 > 5 min. 1,541 1,541 1,451

Table 8.5: Runtime results for the truckload program

tabling
load plain sorted combinator
100 286 286 279
200 979 956 904
300 1,799 1,723 1,584
400 2,308 2,202 2,054
500 2,449 2,365 2,267

Table 8.6: Space usage for the truckload program

:- table_chr truckload(_,_,_,chr)

with [representation(naive),

canonical_form(sort)].

• Finally, in the fourth variant we apply a custom combinator to the answers:
two answers with overlapping time intervals are merged into one answer with
the union of the time intervals. For example the disjunction of the following
two intervals on the left is equivalent to the interval on the right:

(1 ≤ T ≤ 3) ∨ (2 ≤ T ≤ 4) ←→ (1 ≤ T ≤ 4)

This variant is declared as, with interval union/3 the custom answer com-
binator:

:- table_chr truckload(_,_,_,chr)

with [representation(naive),

answer_combination(interval_union)].

Table 8.5 contains the runtime results of running the program in the four
different modes for different maximum loads. Runtime is in milliseconds and
has been obtained on an Intel Pentium 4 2.00 GHz with 512 MB of RAM. For

172 Integration of CHR with Tabled Execution

tabling
load plain sorted combinator

100 324 324 283
200 2,082 2,069 1,686
300 4,721 4,665 3,543
400 5,801 5,751 4,449
500 4,972 4,935 4,017

Table 8.7: Number of tabled answers for the truckload program

the modes with tabling the space usage, in kilobytes, of the tables and number of
unique answers have been recorded as well, in Table 8.6 and Table 8.7 respectively.

It is clear from the results that tabling does have an overhead for small loads,
but that it scales much better. Both the modes with the canonical form and
the answer combination have a slight space advantage over plain tabling which
increases with the total number of answers. There is hardly any runtime effect for
the canonical form, whereas the answer combination mode is faster with increasing
load.

In summary, tabling can be useful for certain programs with CHR constraints
to considerably improve scalability. Canonicalization of the answer store and an-
swer combination can have a favorable impact on both runtime and table space
depending on the particular problem.

8.4 Conclusion

In this chapter we have shown how to integrate the committed choice bottom-up
execution of CHRs with the tabled top-down execution of XSB. Our implementa-
tion realizes SLGD resolution in terms of SLG. In particular the issues related to
the consistency of the global CHR store and tables have been established and solu-
tions have been formulated for call abstraction, tabling constraint stores, answer
projection, answer combination (e.g. for optimization), and answer entailment
checking.

Part of this work was published at the International Conference of Logic Pro-
gramming (Schrijvers and Warren 2004) and the Colloquium on Implementation
of Constraint and Logic Programming Systems (Schrijvers, Warren, and Demoen
2003). At the former occasion, this work received the Best Paper Award. Finally,
we would like to mention that an XSB release, number 2.7, with the presented
CHR system integrated with tabling is publicly available since December 30, 2004
(see http://xsb.sf.net).

8.4 Conclusion 173

8.4.1 Related and Future Work

Ad hoc approaches to using constraints in XSB were used in the past, such as
a meta-interpreter (Mukund, Ramakrishnan, Ramakrishnan, and Verma 2000),
interfacing with a solver written in C (Du, Ramakrishnan, and Smolka 2000) and
explicit constraint store management in Prolog (Pemmasani, Ramakrishnan, and
Ramakrishnan 2002). However, these approaches are quite cumbersome and lack
the ease of use and generality of CHR.

The theoretical background for this chapter, SLGD resolution, was realized by
Toman in (Toman 1997). Toman establishes soundness, completeness and ter-
mination properties for particular classes of constraint domains. While he has
implemented a prototype implementation of SLGD resolution for evaluation, no
practical and fully-fledged implementation in a Prolog system was done.

The most closely related implementation work that this chapter builds on is
(Cui and Warren 2000a), which presents a framework for constraint solvers written
with attributed variables. Attributed variables are a much cruder tool for writing
constraint solvers though. Implementation issues such as constraint store rep-
resentation and scheduling strategies that are hidden by CHR become the user’s
responsibility when she programs with attributed variables. Also in the tabled
setting, the user has to think through all the integration issues of the attributed
variables solver. For CHR we have provided generic solutions that work for all
CHR constraint solvers and more powerful features can be accessed through para-
metrized options.

Guo and Gupta propose a technique for dynamic programming with tabling
((Guo and Gupta 2003)) that is somewhat similar to the one proposed here. During
entailment checking a particular argument in a new answer is compared with the
value in the previous answer. Either one is kept depending on the optimization
criterion. Their technique is specified for particular numeric arguments whereas
ours is for constraint stores and as such more general. Further investigation of our
technique is certainly necessary to establish the extent of its applicability.

In (Schrijvers, Warren, and Demoen 2003) we briefly discuss two applications
of CHR with tabling in the field of model checking. The integration of CHR and
XSB has shown to make the implementation of model checking applications with
constraints a lot easier. The next step in the search for applications is to explore
more expressive models to be checked than are currently viable with traditional
approaches.

Further applications should also serve to improve the currently limited perform-
ance assessment of CHR with tabling. The shipment problem has given us some
indication of improved performance behavior in practice, but theoretical reasoning
indicates that slow-downs are a possibility as well.

Partial abstraction and subsumption are closely related. The former transforms
a call into a more general call while the latter looks for answers to more general
calls, but if none are available still executes the actual call. We still have to

174 Integration of CHR with Tabled Execution

look at how to implement partial abstraction and the implications of variant and
subsumption based tabling.

Finally, better automatic techniques for entailment testing, such as those of
Chapter 9, and for projection should be investigated in the context of SLGD.

Chapter 9

Automatic Implication

Checking for CHR Solvers

9.1 Introduction

In this chapter we investigate how to automatically extend a CHR constraint solver
not only to answer questions of satisfiability, but also to answer questions about
implication. Such questions of implication allow for the extraction of information
from the logical meaning of a final CHR state beyond the syntactical.

Example 9.1 Consider the following equality constraint solver that we will use
as an example throughout this chapter. The following four CHR rules define an
equality solver eq , with eq/2 the equality constraint:

reflexive @ eq(X,Y) <=> X == Y | true.

redundant @ eq(X1,Y1) \ eq(X2,Y2) <=> X1 == X2, Y1 == Y2 | true.

symmetric @ eq(X,Y) ==> eq(Y,X).

transitive @ eq(X1,Y1), eq(X2,Y2) ==> Y1 == X2 | eq(X1,Y2).

with the arguments of eq/2 variable identifiers and ==/2 syntactic identity.
Consider the query eq(a,b) for which the constraint store in the final state

contains the constraints eq(a,b),eq(b,a). Answering whether the constraint
eq(b,a) is implied may seem trivial: it is present in the constraint store. How-
ever, answering the constraint eq(a,a) may seem less so: it is not present in the
constraint store, but nonetheless it is implied by the logical theory of the program.

Note that, unlike in Prolog, an implication check is not performed by simply
calling the constraint. When a predicate is called in Prolog a proof tree is con-
structed that shows that the predicate is implied by the Prolog program. However,
when calling a (CHR) constraint, it is added to the constraint store and further

175

176 Automatic Implication Checking for CHR Solvers

restricts possible solutions. While failure in Prolog means that a predicate is not
implied (or implication is not provable), failure in a constraint solver means that
the constraint store is inconsistent and no solution exists.

The above example already illustrates the basic notion of implication checking.
For more complicated constraint solvers questions of implication may be more
complex and less obvious to answer.

Usually a question of implication of a constraint c is answered with the following
copying approach. A copy C ′ is made of the query C and final states for C and
C ′ ∧ c are compared. If the two final states are equivalent, then c is implied by C.
This approach is not complete for non-canonical solvers (see Section 4.4.1).

Our novel trailing approach does not copy the entire constraint store, but per-
forms the check in place using a trailing mechanism. In order to provide this im-
plication checking functionality, the original CHR program is transformed auto-
matically with a source-to-source transformation. This method is extended to
work for hierarchically organized modular CHR solvers, which is important for
the maintenance and evolution of multi-solver applications.

We show the soundness of our trailing method and its completeness for a re-
stricted class of canonical solvers as well as for specific existing non-canonical CHR
solvers. Also a comparison is made of the copying and trailing approaches.

Overview In the next section, the necessary CHR constraint solver notions are
introduced. Section 9.3 presents the basic method of implication checking and
soundness as well as completeness results. Section 9.4 extends this technique to
hierarchical solvers. The completeness of implication checking with our method is
studied for several concrete CHR solvers in Section 9.5. Section 9.6 presents some
experimental results. Finally, Section 9.7 concludes.

9.2 CHR Solvers

We will use the symbol CS to denote a CHR program P that is a constraint solver.
Typically, for these CHR solvers the logical meaning (see Section 4.2) is important:
it models the constraint theory that the program implements.

The logical theory of a CHR solver CS assigns a logical meaning meaning(σ) to
every possible execution state σ. As we are mostly interested in these logical mean-
ings throughout this chapter, we will lift all previously defined notions regarding
execution states to the level of these logical meanings for reasons of brevity. If
the reader is interested in formulations on the level of execution states, she need
only replace every occurrence of a logical meaning C with either σ or meaning(σ)
depending on the context, where σ is the corresponding execution state.

9.2 CHR Solvers 177

Given the logical theory of the solver [[CS]] it is possible to formally prove
various theorems. The object of this chapter is to prove implication theorems:
given a logical meaning C verify whether some simple constraint c is implied, i.e.
[[CS]] |= C → c. Implication checking is a very useful notion: it allows for the
interpretation of C with respect to some property of interest c. Many popular
constraint solvers provide implication checking in one form or another, e.g. the
conditional constraint combinator of Mozart (Schulte 2000), the reified constraints
of the clp(FD) library and the entailed/1 predicate of the clp(QR) library in
SICStus (Intelligent Systems Laboratory 2003).

9.2.1 Required Notions

It will be possible to derive completeness results of implication checking for the
class of range-restricted CHR-only solvers. The properties of this class are:

• The notion of canonicity (as well as confluence) is defined in Section 4.4.

• CHR-only solvers are solvers with a syntactical restriction: the rule bodies
of the solvers do not contain any built-in constraints.

• Range-restrictedness. A CHR solver CS is range-restricted, if for every CHR
rule in the solver any grounding of the head of the rule is also a grounding of
its body. In (Stuckey and Sulzmann 2005) range-restrictedness is a sufficient
condition for canonicity.

The following lemma combines the properties of CHR-only and range-restricted
solvers and will be used in Section 9.3.

Lemma 9.1 (Range-Restricted CHR-Only Solvers)
If a CHR-only solver CS is range-restricted, then:

∀C : C �CS C ′ ⇒ vars(C ′) ⊆ vars(C)

Proof: Obvious from the definitions of “range-restricted” and “CHR-only”. �

Example 9.2 The equality solver eq defined in Example 9.1 is a confluent solver.
For example, for the query eq(a,a) a single application of the reflexive rule or
one application of the symmetric and two of the reflexive rule both yield an empty
constraint store.

The equality solver eq is even a canonical range-restricted solver. It is obvious
that it is range-restricted. Showing that it is canonical relies on showing that it
returns a store {eq(x, y), eq(y, x) | x and y are distinct nodes connected in the
graph created by all the eq constraints in the goal}.

178 Automatic Implication Checking for CHR Solvers

9.3 Basic Implication Checking

In this section we present our basic technique for implication checking in a stand-
alone CHR solver. It is extended to CHR solver hierarchies in the next section.

First, in Section 9.3.1, we derive an approach on a theoretical level and establish
its soundness and completeness. Next, in Section 9.3.2, we present two concrete
approaches that realize the technical approach: a naive copy approach, that serves
as a reference for comparison, and our trailing approach.

9.3.1 Theoretical Approach

Based on the properties of logical implication and conjunction, we can use the
following technique to verify whether a constraint c is implied by a conjunction of
constraints C.

[[CS]] |= C → c ⇔ [[CS]] |= (C ∧ c)↔ C

Namely we can use the equivalence of the conjunctions C and C ∧ c to conclude
implication.

Solved Forms

As the solved forms solve(C) and solve(C ∧ c) are equivalent to C and C ∧ c
respectively, the equivalence test may be performed on them.

The following soundness result holds:

Theorem 9.1 (Soundness) For any CHR solver CS:

∀C, c : [[CS]] |= ∃̄vars(C∧c)solve(C)↔ ∃̄vars(C∧c)solve(C ∧ c) ⇒ [[CS]] |= C → c

Proof: We have that

[[CS]] |= C ↔ ∃̄vars(C∧c)solve(C)

and
[[CS]] |= C ∧ c↔ ∃̄vars(C∧c)solve(C)

from the soundness of CHR, Theorem 4.1. Hence if

[[CS]] |= ∃̄vars(C∧c)solve(C)↔ ∃̄vars(C∧c)solve(C ∧ c)

we have that [[CS]] |= C ↔ (C ∧ c) and hence [[CS]] |= C → c. �

Completeness only holds if the solved forms exist. This is the case for termin-
ating solvers:

Theorem 9.2 (Terminating Completeness) If the CHR solver CS is termin-
ating, then implication checking is complete. That is

∀C, c : [[CS]] |= C → c ⇒ [[CS]] |= ∃̄vars(C∧c)solve(C)↔ ∃̄vars(C∧c)solve(C ∧ c)

Proof: Direct from Definition 4.8 in Section 4.4 and the soundness of CHR. �

9.3 Basic Implication Checking 179

Syntactical Equivalence

In practical implementations, logical equivalence testing (∃̄vars(C∧c)solve(C) ↔
∃̄vars(C∧c)solve(C∧c)) of projected constraint is restricted to syntactic equivalence
of multisets (solve(C) ≡ solve(C ∧ c)). The latter is straightforward, while the
former may require general theorem proving. For range-restricted CHR solvers the
two tests are equivalent since vars(solve(C)) ⊆ vars(C∧c) and vars(solve(C∧c)) ⊆
vars(C ∧ c).

Theorem 9.3 (Specific Soundness) For a range-restricted CHR-only solver CS:

∀C, c : [[CS]] |= solve(C) ≡ solve(C ∧ c) ⇒ [[CS]] |= C → c

Proof: The theorem is derived from Theorem 9.1. The two projections in The-
orem 9.1 are omitted for range-restricted CHR-only solvers based on Lemma 9.1.
The logical equivalence (↔) is replaced with syntactical equivalence (≡) based on
the definition of canonical solvers 4.9 in Section 4.4.1. �

The syntactical equivalence approach of implication checking is complete for
canonical range-restricted CHR-only solvers.

Theorem 9.4 (Specific Completeness) If CS is a range-restricted CHR-only
solver, then implication checking is complete. That is

∀C, c : [[CS]] |= C → c ⇒ [[CS]] |= solve(C) ≡ solve(C ∧ c)

Proof: From Definition 4.9 in Section 4.4.1 we have that

∀C, c : [[CS]] |= C ↔ (C∧c)⇒ [[CS]] |= ∃̄vars(C∧c)solve(C)↔ ∃̄vars(C∧c)solve(C∧c)

Since CS is range-restricted vars(solve(C)) ⊆ vars(C∧c) and vars(solve(C∧c)) ⊆
vars(C ∧ c). Hence solve(C) ≡ solve(C ∧ c). �

Note that in the special case that C ∧ c fails, c is not implied by C as C ∧ c is
not satisfiable. This case is correctly covered by our approach.

A constraint solver does not have to be canonical for our implication checking
to be complete. In Section 9.5 we will show that our method is also complete for
several non-canonical, even non-confluent, CHR solvers.

9.3.2 Practical Approaches

Copy Approach

The straightforward implementation approach for implication checking is to make
a copy C ′ of C, compute C ′′ = solve(C ′∧c) and then check syntactical equivalence
of C with C ′′. We call this approach the copy approach.

180 Automatic Implication Checking for CHR Solvers

Trailing Approach

The above copying approach may be quite expensive. C may consist of two parts
C = C1∧C2 such that C1 is a minimal set of constraints that imply c. By copying
C in its entirety C2 is copied unnecessarily and causes undue overhead in the final
equivalence test.

We propose the trailing approach for CHR-only solvers. It only looks at a
minimal set of constraints: the conjunction C ∧ c is solved in place and a trail
of changes is maintained. Analysis of the trail afterwards tells us whether the
resulting store is equivalent to the original. If that is the case, the updates to the
store may remain. Otherwise, the trail is used to revert to the original situation.

Example 9.3 The following CHR rule conceptually represents the above strategy.
Keep in mind the refined semantics with sequential left-to-right execution of the
constraints and top to bottom trial of rules.

implication @ check_eq(X,Y) <=> eq(X,Y), analyse_trail.

The check eq/2 constraint represents the implication check. Calling this con-
straint will either succeed or fail, since analyse trail/0 succeeds if the resulting
store is equivalent and fails if it is not.

Our trail analysis has to inspect the addition and removal of constraints to
decide equivalence. Roughly, if any constraint is added or deleted during the
implication checking, the resulting store will not be equivalent to the original.
More precisely, stores are also equivalent if a constraint is only temporarily added
or deleted, since addition and deletion of the same constraint cancel each other
out.

The following set of CHR rules reflects this approach for analyse trail/0:

temporary @ analyse_trail \ added(C), removed(C) <=> true.

addition @ analyse_trail \ added(C) <=> fail.

removal @ analyse_trail \ removed(C) <=> fail.

success @ analyse_trail <=> true.

Here added/1 and removed/1 represent trail entries of added and deleted con-
straints.

The code above only works correctly under the refined operational semantics.
A call to analyse trail looks for matching added/1 and removed/1 constraints,
and removes them using the first rule. If any (unmatched) added/1 and removed/1

constraints remain, the second or third rule causes it to fail. Otherwise it reaches
the fourth rule which simply succeeds.

In general the original solver is transformed to maintain information about
changes with this source-to-source transformation scheme:

9.3 Basic Implication Checking 181

Entity New Rule
p p(x̄) ==> added(p(x̄))

add to front of program
Hk \ Hr <=> G | B Hk \ Hr <=> G |

removed(p1(x̄1)), . . . , removed(pn(x̄n)), B
replace old rule

with p a constraint predicate and Hr = [p1(x̄1), . . . , pn(x̄n)].
The transformed solver program obtained from the above rules has the dis-

advantage that it always trails. The following set of rules enable explicit trailing
during implication checking only. These rules require trail off to be in the
constraint store initially.

implication @ check_eq(X,Y) <=> enable_trail,

eq(X,Y), analyse_trail,

disable_trail.

enable @ trail_off, enable_trail <=> trail_on.

disable @ trail_on, disable_trail <=> trail_off.

filter_add @ trail_off \ added(C) <=> true.

filter_remove @ trail_off \ removed(C) <=> true.

Example 9.4 The eq/2 solver of Example 9.1 is transformed using the general
scheme to explicitly generate the necessary added/1 and removed/1 constraints:

new @ eq(X,Y) ==> added(eq(X,Y)).

reflexive @ eq(X,Y) <=> X == Y | removed(eq(X,Y)).

redundant @ eq(X1,Y1) \ eq(X2,Y2) <=>

X1 == X2, Y1 == Y2 | removed(eq(X2,Y2)).

symmetric @ eq(X,Y) ==> eq(Y,X).

transitive @ eq(X1,Y1), eq(X2,Y2) ==> Y1 == X2 | eq(X1,Y2).

Suppose we want to check whether c ≡ eq(a, c) is implied by C ≡ eq(a, b)∧eq(b, c),
i.e. we want to check whether

[[eq]] |= eq(a, b) ∧ eq(b, c)→ eq(a, c)

holds. We call the goal trail off, eq(a,b), eq(b,c), check eq(a,c). The
first constraint disables the trailing mechanism, and, with the next two constraints,
leads to a store trail off , eq(a, b), eq(b, c), eq(a, c), eq(b, a), eq(c, b), eq(c, a). The
constraint check eq(a, c) enables the trailing mechanism and adds added(eq(a, c))
using the new rule, then the redundant rule succeeds adding removed(eq(a,c)).

182 Automatic Implication Checking for CHR Solvers

The call to analyse trail removes both of these using the temporary rule, then
succeeds using the success rule. Finally the trailing mechanism is disabled again.

9.4 Implication Checking for Modular Solver Hier-

archies

In this section we extend the implication checking technique of the previous section
to modular CHR solver hierarchies, with a stress on the modularity.

Typically a host language provides some notion of a module, which often coin-
cides with a program source file. A module has an interface consisting of exported
procedures. This interface is the only part that another module is allowed to rely
on, i.e. the other module can only call exported procedures. It is a good prac-
tice in software engineering to put a logically coherent functionality in a module.
Such a module can possibly be reused in different contexts, it can be updated
without affecting other modules as long as the interface remains unchanged or it
can be replaced by an entirely different module with the same interface. On the
level of compilation, a module can typically be compiled independently from other
modules.

Modularity and modules are also an important notion for constraint solvers. A
constraint solver is a logically coherent unit of code that should be implemented in
its own module. There are several ways in which a constraint solver could interact
with other constraint solvers: by calling constraints of the other solver or checking
implication of constraints of the other solver. By only relying on module interfaces
of solvers (solver interfaces) it becomes possible to easily reuse a solver for many
different applications, e.g. used by several different other solvers. Moreover, a
solver that is used in some application may be replaced with little effort by another
solver with the same interface. This easy replacement is an important advantage
for constraint logic programming: as the programmer becomes more familiar with
the problem to be solved or the nature of the problem shifts the need for a stronger
constraint propagation or a more efficient implementation may become apparent.

There is already good support for the interaction between modular CHR solvers
and modular built-in (non-CHR) solvers: built-in constraints may appear in bodies
of CHR rules and in guards (see (Duck, Stuckey, Garćıa de la Banda, and Holzbaur
2003) for the latter). However, the support for the interaction between two CHR
solvers is limited: CHR constraints of another solver may only appear in the bodies
of rules.

An obvious way to check for the presence of a constraint of another CHR
solver as a requirement for a rule application, the obvious way would be to include
that constraint in the non-removed part of the head of that rule. However, this

9.4 Implication Checking for Modular Solver Hierarchies 183

approach breaks modularity: current CHR compilers require that all the rules
in whose head a particular CHR constraint appears are contained in the same
module.

In this section we address the above problem and even extend it: we allow for
a full implication check of another CHR solver’s constraints in the same way as for
built-in constraints, by writing those constraints in the guards of a CHR solver’s
rules without compromising modularity. We will restrict ourselves to acyclic CHR
constraint solver hierarchies for reasons of implementation and completeness. It
is an important part of future work to lift this restriction.

In a constraint solver hierarchy one solver depends on some solvers that in
turn depend on other solvers. We say a solver depends on another solver if it uses
constraints (in guards and bodies) that are defined in the other solver; the former
is called the parent solver and the latter the child solver.

A modular CHR solver is a CHR solver that can be compiled using the interface
of its child solvers. In particular, no knowledge of their child solvers is required.
With respect to modularity, we add that a parent solver should not know about a
child solver’s dependencies.

Example 9.5 The following less-than-or-equal-to solver leq depends on the eq
solver:

leq_new @ leq(X,Y) <=> check_eq(X,Y) | true.

leq_antisymmetric @ leq(X1,Y1), leq(X2,Y2) <=>

check_eq(X1,Y2), check_eq(X2,Y1) | eq(X1,Y1).

leq_redundant @ leq(X1,Y1) \ leq(X2,Y2) <=>

check_eq(X1,X2), check_eq(Y1,Y2) | true.

leq_transitive @ leq(X1,Y1), leq(X2,Y2) ==>

check_eq(Y1,X2) | leq(X1,Y1).

This leq solver depends on the eq solver in two ways. Firstly, it calls eq/2

constraints in the body of the leq antisymmetric rule. Secondly, it also uses the
check eq/2 implication check in the guard of all its rules. As both the constraint
and the implication check can be exported from the eq solver this does not violate
modularity.

The operational semantics of the guard of a CHR rule are not entirely cap-
tured yet by our automatic implication check. We call an event the addition of
a constraint of the child solver or one of the solvers it depends on. A CHR rule
application in the parent solver may not succeed immediately because a guard is
not satisfied, but an event may cause it to be satisfied at a later point.

The semantics of CHR require that CHR constraints of the parent solver are
reactivated in case of an event that now satisfies a previously unsatisfied guard.
Typically for built-in solvers, relevant events are provided in the solver interface by
the solver programmer together with a mechanism to notify interested parties. See

184 Automatic Implication Checking for CHR Solvers

Section 5.2.3 for a discussion of the implication of this event notification mechanism
in Prolog.

The following rules describe the necessary operations for such a mechanism of
events and notifications for the eq solver:

new_event @ eq(X,Y) ==> touched(X), touched(Y).

trigger @ touched(X), delayed(X,Goal,ID) ==> call(Goal).

end_event @ touched(X) <=> true.

kill_goal @ kill(ID) \ delayed(X,Goal,ID) <=> true.

kill_end @ kill(ID) <=> true.

The eq solver provides a touched(X) event in its interface, without know-
ing anything about particular uses. The new event rule generates the touched

event for every variable involved in a new eq/2 constraint. Users of the interface,
such as the leq solver will be notified of these events by calling the delayed/3

constraint. This constraint supplies a callback goal, that is called when the appro-
priate touched/1 event fires and allows the notified party to take due action. The
kill/1 constraint allows for the removal of one or more delayed callbacks, based
on an identifier and allows the notified party to no longer receive any events.

The following pseudo-code shows how the leq solver subscribes itself to touched

events. It is pseudo-code because it accesses some internals of the CHR implement-
ation.

listen @ leq(X,Y) # CID ==> new_delay_id(ID),

delayed(X,reactivate(CID),ID),

delayed(Y,reactivate(CID),ID),

listening(CID,ID).

Here CID is the internal identifier of the CHR constraint, part of the suspension
representation discussed in Section 5.2.2. This pseudo-rule is executed when the
leq(X,Y) constraint is first activated. The call to new delay id/1 generates a new
notification identifier. With the two calls to delayed the leq solver will be noti-
fied of the relevant events. Upon notification the internal goal reactivate(CID)
is called which reactivates the corresponding constraint. The call to listening

internally associates the notification identifier with the corresponding leq/2 con-
straint. When the leq/2 constraint with identifier CID is removed, internally the
kill/1 constraint is called on all associated notification identifiers. This avoids
reactivation of removed constraints.

Several modifications to the implication checking are now necessary to the
original scheme, to accommodate both the hierarchy and the modularity. Below
we explain how to do trailing for multiple CHR solvers, how to distinguish between
trails of recursively called implication checks and how implication checking should
interact with the event mechanism.

9.4 Implication Checking for Modular Solver Hierarchies 185

9.4.1 Trailing Interface

Because of the hierarchy, during an implication check on a parent solver, con-
straints in the child solver may be added and deleted. Hence, the parent solver
trail mechanism should recursively rely on the child solver trail mechanism. The
child solver needs to export the necessary trail operations for this.

Example 9.6 The following set of rules encode the trailing dependency of the
leq/2 solver on the eq/2 solver:

rec_analysis @ leq_analyse_trail ==> eq_analyse_trail.

rec_enable @ leq_enable_trail ==> eq_enable_trail.

rec_disable @ leq_disable_trail ==> eq_disable_trail.

9.4.2 Implication Strata

Because of the hierarchy, an implication checking may recursively perform other
implication checks. For example, an implication check of a leq/2 constraint may
require the implication check of a eq/2 constraint. Our trailing approach does not
cover this any more. Indeed, it does not distinguish between those eq/2 constraints
added and deleted during the recursive eq/2 implication check and those during
the top level leq/2 implication check. A more involved trailing mechanism is
needed.

Our solution is to associate with each implication stratum (i.e. level of implic-
ation check nesting) a stratum identifier. The top level which is not inside any
implication check has stratum identifier 0, an implication check called from top
level has identifier −1, etc.

Every constraint is labeled with the stratum it is called in. For example,
eq(X,Y) becomes eq(X,Y,S) if it is called in stratum S.

Constraints called in the top-level query are assigned stratum 0. Constraints
called in the body of a rule inherit the lowest stratum of any constraints in the
head and the implication checking lowers the stratum by one.

Example 9.7 For example, the leq/2 solver is transformed as follows:

leq_new @ leq(X,Y,S) <=> check_eq(X,Y,S-1) | true.

leq_antisymmetric @ leq(X1,Y1,S1), leq(X2,Y2,S2) <=>

check_eq(X1,Y2,min(S1,S2)-1), check_eq(X2,Y1,min(S1,S2)-1)

| eq(X1,Y1,min(S1,S2)).

leq_redundant @ leq(X1,Y1,S1) \ leq(X2,Y2,S2) <=>

check_eq(X1,X2,min(S1,S2)-1), check_eq(Y1,Y2,min(S1,S2)-1)

186 Automatic Implication Checking for CHR Solvers

| true.

leq_transitive @ leq(X1,Y1,S1), leq(X2,Y2,S2) ==>

check_eq(Y1,X2,min(S1,S2)-1) | leq(X1,Y1,min(S1,S2)).

Now it is possible for the implication trailing operations to work on a single
stratum by looking at the stratum identifiers: all the related constraints are ex-
tended with their stratum’s identifier.

However, the implication checking is no longer complete, if the trailing opera-
tions are confined to a stratum. The reason is the temporary rule:

temporary @ analyse_trail(S) \ added(C,S), removed(C,S) <=> true.

This rule only cancels out additions and deletions in the same stratum. What
is no longer canceled out, is a constraint added in a higher stratum that is removed
in a lower stratum and re-added in that lower stratum.

It is possible to re-establish completeness as follows. With every deletion both
the stratum of the deleted constraint and the lowest stratum of any of the head
constraints is recorded. The latter is the cause of the removal. For example, the
leq antisymmetric rule then looks like:

leq_antisymmetric @ leq(X1,Y1,S1), leq(X2,Y2,S2) <=>

check_eq(X1,Y2,min(S1,S2)-1),

check_eq(X2,Y1,min(S1,S2)-1)

| removed(leq(X1,Y1),S1,min(S1,S2)),

removed(leq(X2,Y2),S2,min(S1,S2)),

eq(X1,Y1,min(S1,S2)).

These rules deal with this new removed/3 constraint:

temporary @ analyse_trail(S) \ added(leq(X,Y),S),

removed(leq(X,Y),S,S)

<=> true.

promotion @ analyse_trail(S) \ added(leq(X,Y),S), leq(X,Y,S),

removed(leq(X,Y),Sr,S)

<=> S < Sr | leq(X,Y,Sr).

The temporary rule still cancels out addition and deletion within the same
stratum, but the promotion rule promotes a new constraint to the stratum of the
previously deleted constraint. In this way the full power of the basic implication
checking is retained for solver hierarchies.

The definition of check eq/3 is adjusted accordingly. We can get rid of explicit
trail enabling and disabling now that we have the implication strata: stratum 0
never requires trailing and the other strata always do.

9.5 Case Studies: Non-Canonical Solvers 187

toplevel_add @ added(_,0) <=> true.

toplevel_rem @ removed(_,_,0) <=> true.

implication @ check_eq(X,Y,S) <=> eq(X,Y,S), eq_analyse_trail(S).

9.4.3 Inter-stratum Events

During an implication check that takes place in the child solver an event may be
fired waking some parent solver constraints that cause some parent solver con-
straints to be added or deleted in a higher stratum.

However, it is not necessary for these events to travel across strata. An im-
plication check can safely be resolved without propagating any information to the
parent solver in the higher stratum: as a child solver does not depend on the
parent solver the outcome of an implication check on the child solver should not
require interaction with the parent solver.

The other way around, a higher stratum will never generate any event in the
presence of a lower stratum, since it is temporarily suspended while execution
goes on in the lower stratum and only disappears after the implication check in
the lower stratum has finished and thus the lower stratum is gone altogether.

Hence, it is safe and cheaper for events to only trigger callbacks within the
same stratum. The modified event code reflects this:

new_event @ eq(X,Y,S) ==> touched(X,S), touched(Y,S).

trigger @ touched(X,S), delayed(X,Goal,S,ID) ==> call(Goal).

end_event @ touched(X,S) <=> true.

listen @ leq(X,Y,S) # CID ==> new_delay_id(ID),

delayed(X,reactivate(CID),S,ID),

delayed(Y,reactivate(CID),S,ID),

listening(CID,ID).

9.5 Case Studies: Non-Canonical Solvers

We have shown in Section 9.3 that our CHR implication checking is complete for
canonical solvers. In this section we investigate the completeness for some classical,
non-canonical solvers.

It will turn out that the implication checking is still complete in many cases,
or can be made complete with a little customization in particular cases.

9.5.1 Naive Union-Find Equality Solver

In Section 3.2.3 a CHR implementation of the naive union-find algorithm is presen-
ted. The union/2 constraint in that implementation may serve as an equality

188 Automatic Implication Checking for CHR Solvers

constraint.
The naive union-find represents equal variables as nodes in the same tree. Any

tree with the same variables in it represents the equality of its elements. There
is not one preferred, canonical form. For this reason it is even non-confluent: the
order of the union/2 constraints, decides the shape of the tree.

If two variables are unioned that are already equal, their common tree is not
modified, nor are any other constraints deleted or added. However, if two variables
are not yet equal, a union will merge their trees into one.

Hence, our implication check is complete for this union-find equality solver.

9.5.2 Optimal Union-Find Equality Solver

Next to the naive algorithm also a CHR implementation of an optimal union-find
algorithm is given in Section 3.2.4. This algorithm combines path compression
with union-by-rank.

Again, when two variables are not equal, their respective trees are merged (by-
rank) and this is detected by our implication method. Also, in case the variables
are already equal, path compression may still modify the tree by shortening paths
from nodes to the root. Because the compressed tree is not syntactically identical
to the initial tree, our implication method will reject it.

Nevertheless it is possible to customize the trail analysis/0 rules to over-
come this problem and safely allow path compression, while rejecting truly new
equalities. Namely, instead of these general rules:

addition @ analyse_trail(S) \ added(C,S) <=> fail.

removal @ analyse_trail(S) \ removed(C,_,S) <=> fail.

only the detection of the removal of a root constraint is required to detect the
linking of two trees:

removal @ analyse_trail(S) \ removed(root(_,_),_,S) <=> fail.

cleanup1 @ analyse_trail(S) \ added(_,S) <=> true.

cleanup2 @ analyse_trail(S) \ removed(_,_,S) <=> true.

cleanup3 @ analyse_trail(S) \ ’~>’(X,Y,S) <=> ’~>’(X,Y,S+1).

These rules do not consider path compression as a non-equivalence of trees. In-
deed, they even will not undo the path compression after the implication check,
but promote newly created edges to the higher stratum. Hence the compacter
tree representation is retained after a succeeding implication check, making future
operations cheaper.

9.5.3 Finite Domain Solver

The following CHR solver is a typical bounds propagation based finite domain
solver (see (Frühwirth and Abdennadher 2003)). It maintains bounds consistency

9.6 Experimental Evaluation 189

for variables. With every variable X a domain(X,L,U) constraint is associated that
maintains the lower and upper bounds, L and U respectively, of X’s domain. Rule
consistency ensures that the domain is non-empty and rule intersect retains
the intersection, if two domains exist for X.

Constraint propagators, like dom eq/2 and dom leq/2, propagate new domains
for the involved variables, each time the domain of any of these variables changes.
Propagators for other finite domain constraints can be defined analogously.

consistent @ domain(X,L,U) ==> L =< U.

redundant @ domain(X,L1,U1) \ domain(X,L2,U2) <=>

L1 >= L2, U1 =< U2 | true.

intersect @ domain(X,L1,U1), domain(X,L2,U2) <=>

domain(X,max(L1,L2),min(U1,U2)).

eq @ dom_eq(X,Y), domain(X,LX,UX), domain(Y,LY,UY) ==>

domain(X,LY,UY), domain(Y,LX,UX).

leq @ dom_leq(X,Y), domain(X,LX,UX), domain(Y,LY,UY) ==>

domain(X,LX,UY), domain(Y,LX,UY).

With these rules and our implication checking it is possible to ask whether
domain(X,L,U) is implied. Either the checked domain is empty and the check
fails correctly or the redundant rule holds and the check succeeds, or intersect
rule will combine the check with the domain already present in the store creating
a new, smaller domain. Then the trail analysis discovers the change and fails the
check. Otherwise the check correctly succeeds. Hence the implication check is
optimal for domain/3 checks.

As the dom eq/2 and dom leq/3 propagators are never removed, checking for
their implication always fails.

9.6 Experimental Evaluation

In this section the trailing approach is compared with the naive copy approach.
For this purpose we consider a particular benchmark for the eq solver. n − 1
constraints eq(Vi,Vi+1) are imposed for 1 ≤ i < n. This conjunction of equality
constraints we call C. The constraint we test for, c, is eq(V1,Vn) in one case and
eq(V1,Vn+1) in the other. The former test succeeds and the latter fails.

Table 9.1 lists the experimental results in seconds obtained for this benchmark
with n = 20 using the K.U.Leuven CHR system in SWI-Prolog 5.5.8 on an Intel
Pentium 4 2.0GHz with 512MB of RAM. Four different approaches, the copy and
trailing approach and an optimized version of each, are compared. The copy+
approach is a small improvement on the copy approach: instead of entirely re-
computing solve(C ∧ c) it copies the constraint store solve(C) and simply adds
c to it. The trailing+ approach is an improvement of the generated code of the

190 Automatic Implication Checking for CHR Solvers

Approach solve(C) solve(C ∧ c) C → c

c = eq(V1,Vn)

copy 3.86 3.88 7.74 100.0%
copy+ - - 3.87 50.0%
trailing 4.19 4.19 4.19 54.1%
trailing+ 3.87 3.87 3.87 50.0%

c = eq(V1,Vn+1)

copy 3.86 4.84 8.70 100.0%
copy+ - - 5.05 58.0%
trailing 4.19 5.35 5.35 61.5%
trailing+ 3.87 4.95 4.95 56.9%

c = union(V1,Vn)

copy 1.32 1.33 2.65 100.0%
copy+ - - 1.38 52.1%
trailing 1.62 1.62 1.62 61.1%
trailing+ 1.32 1.32 1.32 49.8%

c = union(V1,Vn+1)

copy 1.32 1.33 2.65 100.0%
copy+ - - 1.38 52.1%
trailing 1.62 1.64 1.64 61.9%
trailing+ 1.32 1.32 1.32 49.8%

Table 9.1: Experimental Results

trailing approach: a global boolean variable is used to represent whether trailing
is enabled or disabled.

The total time to perform implication checking for the copy approach is equal
to the sum of the times for solve(C) and solve(C ∧ c)1. The copy+ approach is
40–50% faster: the cost of copying a constraint store is negligible compared to
recomputing it.

With our trailing approach, the time to compute C → c corresponds with
the time for solve(C ∧ c). While there is about 10% overhead for ordinary use
(solve(C)), the trailing approach is clearly superior to the copy approach for im-
plication testing: the trailing approach is only slightly worse than the copy+
approach. The trailing+ approach reduces the trailing overhead almost entirely
and it behaves as good as or even better than the copy+ approach.

The succeeding test performs a little better than the failing one because the
latter propagates many constraints through the transitivity rule.

The table also lists the results for a similar benchmark using the naive union-
find program, now with n = 5000. The trailing versions have been specialized to
not trail additions and removals of constraints that are never stored. The results
are similar as for the eq solver.

1The time to compare the constraint stores is negligible for this benchmark.

9.6 Experimental Evaluation 191

9.6.1 Time and Space Formulas

Time Formulas

The following formulas, based on the implementation of the two improved ap-
proaches, approximate well the time to check implication. Let Tsolve(C) denote
the time needed to compute the solved form of C and let |C|, called the size of C,
denote the number of CHR constraints in C.

Tcopy+(C → c) = Tsolve(C)
+ k1 ∗ |solve(C)|
+ Tsolve(solve(C) ∧ c)
+ f(|solve(C)|, |solve(solve(C) ∧ c)|))

Ttrailing+(C → c) = (1 + k4) ∗ Tsolve(C)
+ (1 + k5) ∗ Tsolve(solve(C) ∧ c)
+ k6

For the copy+ approach, the time to check implication is the sum of the time
to compute the solved form of C, the time to copy the solved form, the time to
compute the solved form when c is added and the time to compare the two solved
forms.

Copying a solved form is done in time proportional, k1, to the size of the internal
representation of the solved form. The size of an internal constraint store repres-
entation in the K.U.Leuven CHR system is linear in the number of constraints.
In our implementation, comparing two solved forms consists of first computing
canonical forms and then comparing these. A canonical form is computed by sort-
ing. Comparing is done in time linear in the number of constraints in the smallest
solved form. Hence, f(n,m) = O(k2 ∗ (n ∗ log(n) + m ∗ log(m)) + k3 ∗min(n,m))
where k2 and k3 depend on the size of the constraint representations.

For the trailing+ approach, the time to check implication is the sum of the
time to compute the solved form of C, the time to compute the solved form when
c is added and the time to check whether the trail is empty.

While computing the solved forms, there is a little overhead due to the program
transformation. This overhead is taken into account with the factors k4, when
trailing is disabled, and k5, when trailing is enabled. The cost of checking whether
the trail is empty is a constant, k6.

In our implementation of the trailing+ approach the factors k4, k5 and k6

appear to be very small. In particular, k4 can be made almost zero. For the
copy+ approach the factors k1, k2 and k3 are small too. However, if solved forms
are sufficiently large and the time to compute them is linear in their size, then the
O(n ∗ log(n)) time of computing canonical forms may dominate the overall time.

192 Automatic Implication Checking for CHR Solvers

Space Formulas

Similarly, we derive formulas for the minimal space usage, assuming perfect reuse.
Let d be the derivation length from solve(C) to solve(C ∧ c) and let ||solve(C)||
defined as:

||solve(C)|| =
n

max
i=0
|Ci|

where C is any constraint store and C = C0 � C1 . . . � Cn = solve(C0).

Scopy+(C → c) = max

l1 ∗ ||solve(C)||
(l1 + l2) ∗ |solve(C)|
l2 ∗ |solve(C)|+

max

{

l1 ∗ ||solve(solve(C) ∧ c)||
(l1 + l2) ∗ |solve(C ∧ c)|

}

Strailing+(C → c) = l1 ∗ ||solve(C ∧ c)||+ l3 ∗ O(d)

The space used by the copy+ approach is the maximum of the space used in
three different computation steps:

1. The first is the maximum space used in the computation of solve(C). This
space is proportional, factor l1, to the maximum number of constraints in
any of the intermediate states.

2. The second is the space needed for computing the canonical form of solve(C).
The needed space is the sum of the space used by the solved form, i.e.
l1 ∗ |solve(C)|, and the spaced used by its canonical form, i.e. l2 ∗ |solve(C)|.
The factor l2 may be of the same magnitude as l1 if the propagation history
is small or it may be much smaller for a large propagation history. In the
worst case, the ratio l1/l2 is proportional to the derivation length.

3. The third is the spaced used by the canonical form of solve(C), i.e. l2 ∗
|solve(C)|, plus the space used by the further computation with a copy of
solve(C). The latter is the maximum of the space needed in two more steps:

(a) The first is the maximum space used in the computation of
solve(solve(C) ∧ c).

(b) The second is the space needed for computing the canonical form of
solve(C ∧ c).

Example 9.8 For example, in the two equality solvers used above, ||solve(C)|| =
solve(C) for any C and |solve(C ∧ c)| ≥ |solve(C)|. The space formula can then
be simplified to:

Scopy+(C → c) = l2 ∗ |solve(C)|+ (l1 + l2) ∗ |solve(C ∧ c)|

9.7 Conclusion 193

and l1/l2 = O(n) for the eq/2 solver and l1/l2 = O(1) for the union-find solver.

The space used by the trailing+ approach is much more easily determined. It
is the maximum space used during the computation of solve(C ∧ c) plus the space
used by the trail. In the worst case, the space used by the trail is proportional to
the derivation length d.

Example 9.9 For the two equality solvers the space formula is:

Strailing+(C → c) = l1 ∗ |solve(C ∧ c)|+ l3 ∗ O(d)

In case of the succeeding implication check, the trail contains at most two elements:

Strailing+(C → c) = l1 ∗ |solve(C ∧ c)|+ l3 ∗ 2

In case of the failing implication check, the trail is indeed proportional to the
derivation length d for the eq/2 solver:

Strailing+(C → c) = l1 ∗ |solve(C ∧ c)|+ l3 ∗ d

For the union-find solver, even under the failing query the trail contains at most
four elements.

The two dominant aspects in the approaches are the sizes of the solved forms
and the size of the trail. If the solved forms are large, the copying approach
behaves badly. If the trail is large, the trailing approach is not recommended.

9.7 Conclusion

In this chapter we have presented a new approach for automatic implication check-
ing in CHR solvers, which is based on a source-to-source transformation. We have
established the soundness of our trailing approach as well as its completeness for
the class of range-restricted CHR-only solvers. In addition we have studied the
completeness for several existing CHR solvers.

Experimental evaluation shows that a naive implementation of the trailing ap-
proach is more efficient than a naive implementation of the copying approach.
More involved implementations of both approaches are more or less equally effi-
cient. The trailing approach has the advantage that it is easily portable across
CHR platforms and no knowledge of canonical forms of constraint stores is needed.

Our trailing approach has also been extended to CHR solver hierarchies. This
extension allows for CHR constraints of one solver to be used in the guards of
rules of another solver.

194 Automatic Implication Checking for CHR Solvers

This work is available as a technical report (Schrijvers, Demoen, Duck, Stuckey,
and Frühwirth 2005a) and has been presented at the 6th International Workshop
on Rule-Based Programming (Schrijvers, Demoen, Duck, Stuckey, and Frühwirth
2005b).

9.7.1 Related Work

Previously, it was already shown how to extend built-in solvers with CHR solvers
in (Duck, Stuckey, Garćıa de la Banda, and Holzbaur 2003). In this chapter we
have added a means to extend CHR solvers with other CHR solvers.

In (Duck, Garćıa de la Banda, and Stuckey 2004) a general technique is presen-
ted for extending basic ask constraints to implication checks of arbitrary logic for-
mulas. The CHR implication checks presented in this chapter can be extended to
arbitrary formulas in that way.

The first related technique for CHR was already sketched in (Frühwirth 1993).
However, that technique does not represent an ask constraint, but rather a reified
constraint. It also performs its operations in place, but spuriously added con-
straints are never removed explicitly. Instead, they are kept around until they are
removed by the CHR solver. The technique is not safe in the general case: it either
allows the removal of constraints present in the initial constraint store or can lead
to non-termination if removal is suppressed.

9.7.2 Future Work

In future work we intend to extend implication checking techniques for larger
classes of CHR solvers. In particular, we would like to be able to project away
local variables in built-in and CHR constraints. An important challenge there is
automatic inference of constraint projection for CHR constraint solvers, as opposed
to simply have the user supply appropriate projection operations.

In addition, we would like to explore the possibility of automatically inferring
specific conditions or events that cause constraints to be implied. This would
replace user-supplied events. The combination of automatic implication checks
with automatic events allows for automatic reified constraints.

The efficiency of our trailing approach may still be improved by generating
more specialized code. For example, it may be derived from analysis that some
constraints are never removed. If such a constraint is added during an implication
check, the check may fail right away. This could be realized through a rule:

added(C) <=> fail.

where C is replaced with the general form of the never removed constraint. For
example, in case of the naive union-find program node/2 constraints are never
removed. Depending on the program an arbitrary amount of work may be avoided
in this way.

Chapter 10

Conclusions

10.1 Conclusion

The goal of this thesis was to study various aspect of the CHR language related
to program analysis, optimized compilation and extensions of the language’s ex-
pressive power.

We have conducted our study through the implementation of the K.U.Leuven
CHR system, a new CHR system for Prolog. Several novel optimizations as well
as a general framework for program analysis in terms of abstract interpretation
were formulated and validated in our system. The expressive power of the CHR
language was improved by integrating the language with tabled resolution and
automatically extending CHR constraint solvers with implication checking capab-
ilities.

In addition, we have illustrated the use of CHR in three different application
areas. We have established with our programming pearl that it is possible to
implement the union-find algorithm in CHR in a concise and elegant manner and
with the best known time complexity.

In Section 10.2 we summarize our specific contributions on different aspects
of the CHR language. Section 10.3 lists various possibilities for future work that
build upon the work presented in this thesis.

10.2 Contributions

We discuss our specific contributions:

CHR Show Cases In Chapter 3 we presented three distinct applications of
CHR: two variants of the union-find algorithm, the JmmSolve framework for
Java memory models and an algorithm to compute the well-founded semantics.

195

196 Conclusions

These applications illustrate the expressive power of CHR. Our programs are
compact, elegant and fairly easy to understand. Our study of the time complexity
of the optimal union-find program in Chapter 4 and our implementation of con-
straint stores in Chapter 6 also showed that the expressive power of CHR need not
be a compromise for efficiency: similar time complexity as in imperative languages
can be obtained.

Assessment of Theoretical Properties A case study of the union-find pro-
grams in Chapter 4 has revealed several issues in the current definition of theoret-
ical properties of CHR programs. The current definition and analysis of confluence
is not suitable for practical programs as it does take into account neither the ad-
ditional assumptions and restrictions imposed by the programmer nor the refined
operational semantics. The published time complexity formulas are also of limited
use for practical programs as they represent a very crude upper bound for time
complexity. We have shown how a much more accurate time complexity bound
can be derived for the union-find programs.

Implementation Schema Overview In Chapter 5 we have presented a basic
compilation schema for CHR in terms of the refined operational semantics. In
addition we have explained the optimizations in the reference implementation by
Christian Holzbaur in terms of our schema. We were the first to establish the
correctness of two of these optimizations with respect to the refined operational
semantics.

The K.U.Leuven CHR system One of the most important realizations is
the K.U.Leuven CHR system, a new CHR system for Prolog. It has enabled
us to extend the current state-of-the-art of optimized CHR compilation: we have
developed new constraint stores based on hash tables, groundness declarations and
code specialization for ground constraints and anti-monotonic delay avoidance.

The K.U.Leuven CHR system has considerably increased the number of freely
available CHR systems. It is currently included in hProlog, XSB and SWI-Prolog
and more systems will be supported in the future. A small number of users have
already reported their use of the system for commercial, academic, educational
and personal projects.

An Abstract Interpretation Framework for CHR In Chapter 7 we pro-
posed an abstract interpretation framework for CHR. This frameworks allows the
formulation of program analyses in a more formal and systematic way than was
previously the case. We illustrated the framework by applying it to two different
analyses: the CHR-specific late storage analysis and the Prolog-based groundness
analysis that was lifted to the level of CHR.

10.3 Future Work 197

The framework facilitates the construction of more complicated analysis do-
mains and the composition of analyses into more powerful synergistic ones. It also
facilitates establishing the correctness of the formulated analyses, an aspect that
was previously mostly ignored.

Integration of CHR with Tabling We have realized the integration of CHR
with tabled resolution in Chapter 8. In earlier work the semantics of constraint
logic programming with tabling had already been proposed and several prototype
implementations had already been realized. Our work realized the first high-level
and user-friendly integration, which is in the spirit of both tabled resolution and
CHR.

We showed the basic compilation scheme, based on a source-to-source trans-
formation, together with various customizations, call abstraction, answer projec-
tion, entailment checking and generalized answer combination. This compilation
can easily be hidden from the user with a simple declaration-based interface.

Automatic Implication Checking for CHR Solvers In Chapter 9 CHR
constraint solvers were extended automatically from answering questions about
satisfiability to answering questions about implication. The general soundness and
the completeness for a particular class of constraint solvers and several individual
solvers were established.

Implication checking is needed for extracting information of interest from a
constraint store. It is also an essential building block for composing constraint
solvers and realizing complex user-defined constraints in terms of more primit-
ive constraints. We have shown how it can be used to construct modular CHR
constraint solver hierarchies, which is an important first step in providing encap-
sulation and reuse capabilities for the CHR language.

10.3 Future Work

In our work we have touched upon various aspects of the CHR language and made
our contributions. At the same time, it was apparent that many challenges in the
development of the language still lie ahead.

This section briefly discusses what we believe to be relevant open issues on the
level of usability (Section 10.3.1) and efficiency (Section 10.3.2). Improvements on
these accounts will make CHR a more suitable language for real-world applications
in a wide range of application domains.

10.3.1 Usability Issues

Verification In Chapter 4 we have touched upon several properties that are
useful indicators of the correctness of a CHR program with respect to its inten-

198 Conclusions

ded behavior and meaning. Several analyses exist for verifying these properties.
However, our case studies have shown that these analyses often do not yield an
accurate result, but rather a gross overestimation on the safe side. This leaves the
more fine-grained analysis up to the programmer.

The inaccuracy of the analyses is for a large part due to the fact that they do
not take into account the particular intended use of a CHR program. A typical
example is that only certain queries are intended to be used. To improve the
accuracy of such analyses and make them more useful to programmers, it should be
possible for a programmer to specify the intended use together with the program.
This specification should then be taken into account by the various analyses in
order to improve the accuracy of their results.

The proposed specification of intended use may not only improve the usability
of verification analyses, but may also serve as program documentation, i.e. a
contract for the users of the program. Type and mode declarations are important
parts of such a specification.

Patterns of Reuse Throughout this text we have shown various CHR pro-
grams, in particular in Chapter 3. Some of these programs exhibit a similar
structure or contain similar programming idioms. However, hardly any work has
been done on reusing general programming idioms and code fragments. Currently,
reuse of CHR programs or program fragments is mostly limited to copying from
one program to another. It is well-known from software engineering that such
a code copying approach is the cause of bugs and that it encumbers program
maintenance.

The first step towards reuse are the source-to-source transformations proposed
in (Frühwirth and Holzbaur 2003). The proposed transformations take an exist-
ing CHR program and transform it into a new one with a different operational
behavior: probabilistic CHR, fair CHR, . . .

However, reuse should be possible for other purposes than just modifying be-
havior. Useful ideas for reuse tools may come from object-oriented programming:
(implementation) inheritance and mixin classes allow for the reuse of method code
within different contexts. For CHR a similar idea would be useful for the reuse
of generic rules, such as the typical propagation rule that implements transitivity
or a set of rules that implements an aggregate function over the constraint store.
Such code reuse may conceptually take place at the level of CHR source code
while the CHR system may internally be able to generate aggressively optimized
code for frequently used patterns it knows about. For example aggregate functions
are expressible in terms of CHR rules, but straightforward implementation on top
of the CHR constraint store should yield much better performance than naively
generated code for the CHR rules.

Another frequent pattern is the use of constraints as boolean flags to switch
on or off particular CHR rules.

10.3 Future Work 199

Constraint Solvers Constraint solvers were the primary intended applications
of CHR. Hence, the language has several features that are essential for easily
implementing constraint solvers, e.g. its concurrency and re-checking of rules.
However, CHR does not provide much more than these primitive facilities, while
many constraint solvers share more advanced functionality as well.

In Chapter 9 we have already presented how CHR constraint solvers can auto-
matically be extended with implication checking functionality. Another typical
constraint solver functionality is projection. We have already started work on
automatic constraint projection with Peter Stuckey and Gregory Duck, though
much more work needs to be done to reach a useful result.

While we have provided the first basic support for combining CHR solvers in
Chapter 9, much more work remains. For example, on the level of communication
between constraint solvers the automatic inference of mutually useful events would
take away the burden from the programmer. Another aspect of constraint solver
interoperability as well as within a single CHR constraint solver is the matter of
priorities. Constraint Logic Programming languages such as ECLiPSe (IC-Parc
) and SICStus (Intelligent Systems Laboratory 2003) allow for different priorities
to be associated with different constraint propagators. Propagators with a higher
priority are woken first. A similar feature makes sense for CHR too: priorities could
be assigned to CHR constraints within one solver or to CHR solvers. Constraints
with the highest priority or constraints of the solver with the highest priority would
be put first on the execution stack in the Solve transition. This takes away some
of the current non-determinism in this Solve transition and gives the programmer
a way to control it.

Host Languages Currently only a limited number of host languages support
CHR. Most notably is Prolog, with CHR support in SICStus Prolog, ECLiPSe,
Yap, SWI-Prolog and XSB. Some preparatory work is also in progress to port the
K.U.Leuven CHR system to Ciao Prolog. With this coverage of Prolog systems,
CHR is available to almost every Prolog programmer.

However, Prolog is not a very popular language in terms of the number of pro-
grammers and industrial applications. Currently imperative and object-oriented
programming language are much more prevalent. Although a few CHR systems
already exist for the fairly popular object-oriented language Java, these systems
are currently not state-of-the-art with respect to CHR compiler technology and
they are mainly focused on the constraint logic instead of smooth integration into
the host language.

It also makes sense to provide systems for popular scripting languages such as
Python and Ruby with which CHR shares its rapid prototyping capabilities.

To this end we have already started a joint project with Christian Holzbaur to
develop a CHR compiler front-end that compiles CHR programs to intermediate
code. It should be possible to compile this intermediate code to any desired host

200 Conclusions

language. When this front-end is shared among CHR systems for many different
languages, any optimizations in the front-end become immediately available for
all those systems.

10.3.2 Efficiency Issues

Better Scalability Improved scalability is a critical issue for CHR’s suitability
in real-world applications. It should be able to cope with vast amounts of data,
instead of only moderately sized problems.

Our work and that of (Holzbaur, Garćıa de la Banda, Stuckey, and Duck 2005)
have initiated scalability improvements through optimized compilation of CHR
with various program analyses and transformations. We believe that the further
development of the abstract interpretation framework will make it possible to
create new and integrated analyses that drive more powerful optimizations.

Mercury and HAL show that user supplied declarations for types, modes and
determinism allow for much stronger program analysis results and hence more
strongly optimized compilation. In our work we have borrowed from this experi-
ence by supporting a limited form of mode declarations for CHR and shown that
such mode declarations allow for considerable optimizations in the case of ground
constraints. In (Sneyers, Schrijvers, and Demoen 2005b) also type declarations
have been added to CHR. We would like to further extend the support for these
declarations and take their information into account in more analyses and optim-
izations.

The study of the union-find program has shown the importance of the con-
straint stores in the efficiency and time complexity of CHR programs. Our con-
tribution is the use of hash tables for ground constraints. Earlier proposals for
constraint store data structures by (Holzbaur, Garćıa de la Banda, Stuckey, and
Duck 2005) were global variables and search trees. Both these data structures are
used to speed up lookups based on equality constraints in the guard. It should be
investigated whether good data structures exist to improve lookups based on other
guard constraints, e.g. search trees for inequality constraints. In addition, the data
structures should be composed in different ways. For example, an equality based
lookup based on a variable and a ground term may best be served by a hash tabled
stored in an attribute attached to the variable. A constraint should also move from
one data structure to another as it becomes more and more instantiated.

Different Execution Strategies The theoretical operational semantics ωt of
CHR is a very high-level semantics with a considerable amount of non-determinism.
The refined operational semantics ωr is a particular instance of ωt with less non-
determinism. Both semantics are formulated in terms of sequential derivations.

While these two semantics impose certain restrictions on execution, there is
still quite some freedom left. For example, two successive derivation steps that do

10.3 Future Work 201

not involve the same constraints may be applied simultaneously. This can be the
basis for a parallel execution strategy. Mozart seems a suitable implementation
language as it allows for cheap and easy parallelism and distributed execution.
Another variation on the ωr semantics is the reordering of rules in case this does not
affect final states of derivations. A confluence analysis could be used to establish
the latter property and heuristics or profiling techniques could be used to select a
good ordering of rules. Of course, the introduction of non-termination should be
avoided.

In addition to automatic and preset execution strategies the non-determinism
in the theoretical operational semantics may be left to the programmer to resolve.
For example, the Solve transition leaves unspecified in what order constraints are
pushed onto the execution stack. This may be fixed by a programmer-provided
priority function. The effect of different priority functions would be similar to
the effect of different propagator buffers in a propagator-based constraint solver
(Schulte and Stuckey 2004). Another approach, from term rewriting systems (see
Section 2.5.2), is to have the programmer express the execution strategy in terms
of a number of strategy primitives.

202 Conclusions

Appendix A

Source Code: wfs

/*

File: wfs.chr

Author: Tom Schrijvers

E-mail: Tom.Schrijvers@cs.kuleuven.ac.be

Copyright: 2003 - 2004, K.U.Leuven

Computes well-founded semantics of logic program

*/

:- module(wfs,[prog/0]).

:- use_module(library(chr)).

:- use_module(library(lists)).

%%

constraints

inactivate1/1,

fire1/1,

inIplus1/1,

inIminus1/1,

head1/2,

inBodyPlus1/2,

inBodyMinus1/2,

literal1/2,

pliteral1/2,

headof1/2,

203

204 Source Code: wfs

fire2/1,

inIplus2/1,

head2/2,

inBodyPlus2/2,

pliteral2/2,

undefined2/1,

atmost/0,

atmost_end/0,

atleast/0,

atleast_end/0,

undefined/1.

%%

% atleast()

clean1_1 @

inIplus1(P), head1(R,P) \ inBodyPlus1(_,R) <=>

true.

clean1_2 @

inIplus1(P), head1(R,P) \ inBodyMinus1(_,R) <=>

true.

clean1_3 @

inIplus1(P) \ headof1(P,_) <=>

true.

clean1_4 @

inIplus1(P) \ head1(R,P), literal1(R,_), pliteral1(R,_) <=>

true.

clean1_5 @

inIminus1(P), head1(R,P) \ inBodyPlus1(_,R) <=>

true.

clean1_6 @

inIminus1(P), head1(R,P) \ inBodyMinus1(_,R) <=>

true.

clean1_7 @

inIminus1(P) \ headof1(P,_) <=>

true.

clean1_8 @

205

inIminus1(P) \ head1(R,P), literal1(R,_), pliteral1(R,_) <=>

true.

% fire1()

fire_posq @

inIplus1(P) \ inBodyPlus1(P,R), pliteral1(R,NP) <=>

fire1(R),

NP1 is NP - 1, pliteral1(R,NP1).

fire_negq @

inIminus1(P) \ inBodyMinus1(P,R) <=>

fire1(R).

fire @

fire1(R), literal1(R,NU) <=>

NU1 is NU - 1, literal1(R,NU1).

all_literals_true @

literal1(R,0), head1(R,P), pliteral1(R,0) <=>

inIplus1(P).

% inactivate1()

inactivate1_posq @

inIplus1(P) \ inBodyMinus1(P,R) <=>

inactivate1(R).

inactivate1_negq @

inIminus1(P) \ inBodyPlus1(P,R) <=>

inactivate1(R).

inactivate1_clean1 @

inactivate1(R) \ inBodyMinus1(_,R) <=>

true.

inactivate1_clean2 @

inactivate1(R) \ inBodyPlus1(_,R) <=>

true.

inactivate1 @

inactivate1(R), head1(R,PP), literal1(R,_),

pliteral1(R,_), headof1(PP,N) <=>

N1 is N - 1, headof1(PP,N1).

no_active_rules @

headof1(P,0) <=>

inIminus1(P).

%%

206 Source Code: wfs

% atmost()

atmost, headof1(P,_) ==> undefined2(P).

atmost, inBodyPlus1(P,R) ==> inBodyPlus2(P,R).

atmost, head1(R,P) ==> head2(R,P).

atmost, pliteral1(R,I) ==> pliteral2(R,I).

atmost <=> atmost_end.

% cleaning

clean2_1 @

inIplus2(At), head2(Cl,At) \ inBodyPlus2(_,Cl) <=>

true.

clean2_2 @

inIplus2(At) \ undefined2(At) <=>

true.

% fire2()

fire_posq2 @

inIplus2(P) \ inBodyPlus2(P,R) <=>

fire2(R).

fire2 @

fire2(R), pliteral2(R,I) <=>

J is I - 1, pliteral2(R,J).

all_pos_literals_true @

head2(R,P), pliteral2(R,0) <=>

inIplus2(P).

% atmost_end

clean2_end_1 @

atmost_end \ inBodyPlus2(_,_) <=>

true.

clean2_end_2 @

atmost_end \ head2(_,_) <=>

true.

clean2_end_3 @

atmost_end \ pliteral2(_,_) <=>

true.

clean2_end_3 @

atmost_end \ inIplus2(_) <=>

207

true.

if_change @

undefined2(_) \ atmost_end <=>

atleast.

if_no_change @

atmost_end <=>

atleast_end.

to_atleast @

atleast \ undefined2(P) <=>

inIminus1(P).

to_atmost @

atleast <=>

atmost.

% atleast_end

atleast_end \ headof1(P,_) <=> undefined(P).

atleast_end \ head1(_,_) <=>

true.

atleast_end \ inBodyPlus1(_,_) <=>

true.

atleast_end \ inBodyMinus1(_,_) <=>

true.

atleast_end \ literal1(_,_) <=>

true.

atleast_end \ pliteral1(_,_) <=>

true.

atleast_end <=>

true.

%%

% Example Program

% a :- a.

% b :- b.

% b :- \+ a.

% c :- \+ b.

% c :- c.

208 Source Code: wfs

prog :-

headof1(a,1), inBodyPlus1(a,r1), inBodyMinus1(a,r3),

head1(r1,a), literal1(r1,1), pliteral1(r1,1),

headof1(b,2), inBodyPlus1(b,r2), inBodyMinus1(b, r4),

head1(r2,b), literal1(r2,1), pliteral1(r2,1),

head1(r3,b), literal1(r3,1), pliteral1(r3,0),

headof1(c,2), inBodyPlus1(c,r5),

head1(r4,c), literal1(r4,1), pliteral1(r4,0),

head1(r5,c), literal1(r5,1), pliteral1(r5,1),

atmost.

Appendix B

Prolog Benchmarks

Table B.1 lists the results for the traditional Prolog benchmarks on 5 different
Prolog systems as a reference for the CHR benchmark results. All measurements
have been made on an Intel Pentium 4 2.00 GHz with 512 MB of RAM. Timings
are relative to SICStus. The Prolog systems used are SICStus 3.12.0 and Yap 4.4.4
on the one hand and hProlog 2.4.11-32, SWI-Prolog 5.5.8 and XSB 2.6.1 on the
other hand.

Benchmark SICStus Yap hProlog SWI-Prolog XSB
boyer 1,110 100.0% 85.6% 106.3% 382.9% 218.0%
browse 1,670 100.0% 76.0% 71.3% 419.8% 129.8%
cal 1,500 100.0% 97.3% 69.3% 267.9% 138.7%
chat 930 100.0% 80.6% 79.6% 213.9% 108.5%
crypt 1,850 100.0% 96.8% 52.4% 293.0% 138.3%
ham 1,160 100.0% 81.0% 94.8% 344.8% 127.6%
meta qsort 1,090 100.0% 87.2% 106.4% 406.3% 193.6%
nrev 1,170 100.0% 44.4% 60.7% 767.5% 94.9%
poly 10 1,290 100.0% 97.7% 84.5% 277.4% 195.2%
queens10 2,130 100.0% 67.1% 74.6% 405.1% 136.2%
queens 16 2,410 100.0% 52.7% 58.5% 408.3% 149.4%
reducer 990 100.0% 74.7% 92.9% 338.3% 173.5%
send 1,560 100.0% 59.0% 64.7% 241.0% 90.4%
tak 1,170 100.0% 86.3% 82.9% 393.9% 147.8%
zebra 960 100.0% 63.5% 101.0% 217.6% 105.1%
average - 100.0% 76.7% 80.0% 358.5% 143.1%

Table B.1: Runtime performance of 15 Prolog benchmarks in 5 different Prolog
systems.

209

210 Prolog Benchmarks

Bibliography

Abdennadher, S. 1997. Operational Semantics and Confluence of Constraint
Propagation Rules. In CP’97: Proceedings of the 3rd International Confer-
ence on Principles and Practice of Constraint Programming, G. Smolka, Ed.
Springer Verlag, Schloss Hagenberg, Austria, 252–266.

Abdennadher, S. and Frühwirth, T. 1998. On Completion of Constraint
Handling Rules. In CP’98: Proceedings of the Fourth International Confer-
ence on Principles and Practice of Constraint Programming. Springer Verlag,
Pisa, Italy.

Abdennadher, S., Frühwirth, T., and Meuss, H. 1996. On confluence of
constraint handling rules. In Proceedings of the Second International Confer-
ence on Principles and Practice of Constraint Programming. Lecture Notes
in Computer Science. Springer Verlag, Cambridge, USA.

Abdennadher, S., Krämer, E., Saft, M., and Schmauss, M. 2001. JACK:
A Java Constraint Kit. In Proceedings of the International Workshop on
Functional and (Constraint) Logic Programming, Kiel. Kiel, Germany.

Abdennadher, S. and Marte, M. 2000. University course timetabling using
constraint handling rules. Applied Artificial Intelligence 14, 4, 311–325.

Äıt-Kaci, H. 1991. Warren’s Abstract Machine: A Tutorial Reconstruction.
MIT Press.

Alberti, M., Chesani, F., Guerri, A., Gavanelli, M., Lamma, E.,
Mello, P., Milano, M., and Torroni, P. 2005. Expressing interaction
in combinatorial auction through social integrity constraints. In W(C)LP’05:
Proceedings of 19th Workshop on (Constraint) Logic Programming, A. Wolf,
T. Frühwirth, and M. Meister, Eds. Ulm, Germany, 53–64.

Alberti, M., Ciampolini, A., Gavanelli, M., Lamma, E., Mello, P., and
Torroni, P. 2003. Logic Based Semantics for an Agent Communication
Language. In FAMAS 2003: In Proceedings of the International Workshop
on Formal Approaches to Multi-Agent Systems. Warsaw, Poland, 21–36.

I

II BIBLIOGRAPHY

Berman, K. A., Schlipf, J. S., and Franco, J. V. 1995. Computing well-
founded semantics faster. In Logic Programming and Non-monotonic Reas-
oning. 113–126.

Brand, D., Darringer, J., and Joyner, W. 1978. Completeness of Con-
ditional Reductions. Tech. Rep. RC7404, IBM Research Center, Yorktown
Heigghts, New York, USA. December.

Brass, S., Dix, J., Freitag, B., and Zukowski, U. 1998. Transformation-
Based Bottom-Up Computation of the Well-Founded Model. Tech. Rep. 15–
98, Universität Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075
Koblenz.

Chen, W. and Warren, D. S. 1996. Tabled Evaluation with Delaying for
General Logic Programs. Journal of the ACM 43, 1, 20–74.

Christiansen, H. 2002. Logical Grammars Based on Constraint Handling
Rules. In ICLP ’02: Proceedings of the 18th International Conference on
Logic Programming, P. J. Stuckey, Ed. Springer Verlag, Copenhagen, Den-
mark, 481.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Me-
seguer, J., and Talcott, C. 2003. The Maude 2.0 System. In RTA 2003:
Rewriting Techniques and Applications, R. Nieuwenhuis, Ed. Number 2706
in Lecture Notes in Computer Science. Springer Verlag, 76–87.

Codish, M., Demoen, B., and Sagonas, K. 1998. Semantic-based Program
Analysis for Logic-based Languages Using XSB. International Journal of
Software Tools for Technology Transfer 2, 1 (January), 29–45.

Codish, M., Falaschi, M., Marriott, K., and Winsborough, W. H.
1993. Efficient Analysis of Concurrent Constraint Logic Programs. In IC-
ALP’93: Proceedings of the 20th International Colloquium on Automata,
Languages and Programming. Springer Verlag, London, UK, 633–644.

Codognet, C., Codognet, P., and Corsini, M. 1990. Abstract Interpret-
ation for Concurrent Logic Languages. In NACLP’90: Proceedings of the
North American Conference on Logic Programming, S. Debray and M. Her-
menegildo, Eds. MIT Press, Cambridge, MA, USA, 215–232.

Coquery, E. 2003. TCLP: A type checker for CLP(X). In Proceedings of
the 13th Workshop on Logic Programming Environments, F. Mesnard and
A. Serebrenik, Eds. Katholieke Universiteit Leuven, 17–30.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to
Algorithms. MIT Press.

Cousot, P. and Cousot, R. 1977. Abstract Interpretation: A Unifed Lat-
tice Model for Static Analysis of Programs by Construction or Approxim-
ation of Fixpoints. In POPL ’77: Proceedings of the 4th ACM SIGACT-

BIBLIOGRAPHY III

SIGPLAN symposium on Principles of programming languages. ACM Press,
Los Angeles, California, 238–252.

Cui, B. and Warren, D. S. 2000a. A System for Tabled Constraint Logic
Programming. In CL 2000: Proceedings of the 1st International Conference
on Computational Logic, J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber,
K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey, Eds.
Lecture Notes in Computer Science, vol. 1861. Springer Verlag, London, UK,
478–492.

Cui, B. and Warren, D. S. 2000b. Attributed Variables in XSB. In Electronic
Notes in Theoretical Computer Science, I. Dutra et al., Eds. Vol. 30. Elsevier.

Davis, R., Buchanan, B. G., and Shortliffe, E. H. 1984. Production
Rules as a Representation for a Knowledge-Based Consultation Program. In
Readings in Medical Artificial Intelligence: The First Decade, W. J. Clancey
and E. H. Shortliffe, Eds. Addison-Wesley, Reading, MA, USA, 98–130.

Demoen, B. hProlog. http://www.cs.kuleuven.ac.be/ bmd/hProlog/.

Demoen, B. 2002. Dynamic attributes, their hProlog implementation, and
a first evaluation. Report CW 350, Department of Computer Science,
K.U.Leuven, Leuven, Belgium. October.

Demoen, B., Garćıa de la Banda, M., Harvey, W., Marriott, K., and
Stuckey, P. J. 1999. An Overview of HAL. J. Jaffar, Ed. Lecture Notes
in Computer Science, vol. 1713. Springer Verlag, Alexandria, Virginia, USA,
174–188.

Demoen, B. and Nguyen, P.-L. 2000. So many WAM variations, so little
time. In CL2000: Proceedings of the 1st International Conference on Com-
putational Logic, J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau,
C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey, Eds. LNAI, vol.
1861. ALP, Springer Verlag, Londong, UK, 1240–1254.

Dershowitz, N. 1993. A Taste of Rewriting. In Functional Programming, Con-
currency, Simulation and Automated Reasoning, P. Lauer, Ed. International
Lecture Series 1991–92. Springer Verlag, 199–228.

Diaz, D. and Codognet, P. 1993. A minimal extension of the wam for clp(fd).
In ICLP’93: Proceedings of the 10th International Conference on Logic Pro-
gramming. MIT Press, Budapest, Hungary, 774–790.

Du, X., Ramakrishnan, C. R., and Smolka, S. A. 2000. Tabled Resolution
+ Constraints: A Recipe for Model Checking Real-Time Systems. In IEEE
Real Time Systems Symposium. Orlando, Florida.

Duck, G., Schrijvers, T., and Stuckey, P. 2004. Abstract Interpretation
for Constraint Handling Rules. Report CW 391, K.U.Leuven, Department
of Computer Science, Leuven, Belgium. September.

IV BIBLIOGRAPHY

Duck, G. J., Garćıa de la Banda, M., and Stuckey, P. J. 2004. Com-
piling Ask Constraints. In ICLP’04: Proceedings of the 20th International
Conference on Logic Programming. Lecture Notes in Computer Science, vol.
3132. Springer Verlag, St-Malo, France, 105–119.

Duck, G. J., Stuckey, P. J., Garćıa de la Banda, M., and Holzbaur,
C. 2003. Extending arbitrary solvers with constraint handling rules. In
PPDP’03: Proceedings of the 5th ACM SIGPLAN international conference
on Principles and practice of declaritive programming. ACM Press, Uppsala,
Sweden, 79–90.

Duck, G. J., Stuckey, P. J., Garćıa de la Banda, M., and Holzbaur,
C. 2004. The Refined Operational Semantics of Constraint Handling Rules.
In ICLP’04: Proceedings of the 20th International Conference on Logic Pro-
gramming. Lecture Notes in Computer Science, vol. 3132. Springer Verlag,
St-Malo, France, 90–104.

Ehrig, H. 1979. Introduction to the Algebraic Theory of Graph Grammars (A
Survey). In Proceedings of the International Workshop on Graph-Grammars
and Their Application to Computer Science and Biology. Springer Verlag,
London, UK, 1–69.

Forgy, C. L. 1982. Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. In Artificial Intelligence. Vol. 19. North Holland
Conference, 17–37.

Friendman-Hill, E. 2003. Jess in Action. Manning Publications.

Frühwirth, T. 1993. Entailment Simplification and Constraint Constructors
for User-Defined Constraints. In WCLP’93: Proceedings of the 3rd Workshop
on Constraint Logic Programming. Marseille, France.

Frühwirth, T. 1998. Theory and practice of constraint handling rules. Journal
of Logic Programming 37, 1–3 (October), 95–138.

Frühwirth, T. 2002a. As Time Goes By: Automatic Complexity Analysis
of Concurrent Rule Programs. In KR2002: Proceedings of the 8th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning.
Toulouse, France.

Frühwirth, T. 2002b. As Time Goes By II: More Automatic Complexity
Analysis of Concurrent Rule Programs. In Electronic Notes in Theoretical
Computer Science, A. D. Pierro and H. Wiklicky, Eds. Vol. 59. Elsevier.

Frühwirth, T. and Abdennadher, S. 2003. Essentials of Constraint Pro-
gramming. Cognitive Technologies. Springer Verlag.

Frühwirth, T. and Brisset, P. 1998. Optimal Placement of Base Stations in
Wireless Indoor Telecommunication. In CP’98: Proceedings of the 4th Inter-
national Conference on Principles and Practice of Constraint Programming,

BIBLIOGRAPHY V

M. J. Maher and J.-F. Puget, Eds. Lecture Notes in Computer Science, vol.
1520. Springer Verlag, Pisa, Italy, 476–480.

Frühwirth, T. and Holzbaur, C. 2003. Source-to-Source Transformation for
a Class of Expressive Rules. In AGP 2003: Joint Conference on Declarative
Programming, F. Buccafurri, Ed. Reggio Calabria, Italy, 386–397.

Frühwirth, T. W. 2000. Proving Termination of Constraint Solver Programs.
In New Trends in Constraints, K. R. Apt, A. C. Kakas, E. Monfroy, and
F. Rossi, Eds. Lecture Notes in Computer Science, vol. 1865. Springer Verlag,
Paphos, Cyprus, 298–317.

Galil, Z. and Italiano, G. F. 1991. Data structures and algorithms for
disjoint set union problems. ACM Computing Surveys 23, 3, 319–344.

Ganzinger, H. and McAllester, D. 2001. A new meta-complexity theorem
for bottom-up logic programs. In International Joint Conference on Auto-
mated Reasoning. Lecture Notes in Computer Science 2083. Springer Verlag,
514–528.

Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., and Jouan-
naud, J.-P. 1993. Introducing OBJ. In Applications of Algebraic Specifica-
tion using OBJ, J. Goguen, Ed. Cambridge.

Goguen, J. A. and Malcolm, G. 1996. Algebraic Semantics of Imperative
Programs. MIT Press, Cambridge, MA, USA.

Gorn, S. 1965. Explicit Definitions and Linguistic Dominoes. In Systems and
Compter Science. London, Ontario, USA, 77–115.

Gosling, J., Joy, B., and Steele, G. L. 1996. The Java Language Specific-
ation. Addison-Wesley Longman Publishing Co., Inc.

Guo, H.-F. and Gupta, G. 2003. Simplifying Dynamic Programming via
Tabling. In Proceedings of CICLOPS 2003. Technical Report DCC-2003-05,
DCC - FC & LIACC, University of Porto, R. Lopes and M. Ferreira, Eds.
21–32.

Holzbaur, C. 1992. Metastructures vs. Attributed Variables in the Context
of Extensible Unification. Tech. Rep. TR-92-23, Austrian Research Institute
for Artificial Intelligence, Vienna, Austria.

Holzbaur, C. and Frühwirth, T. 1999. Compiling constraint handling
rules into Prolog with attributed variables. In Proceedings of the Interna-
tional Conference on Principles and Practice of Declarative Programming,
G. Nadathur, Ed. Number 1702 in Lecture Notes in Computer Science.
Springer Verlag, 117–133.

Holzbaur, C. and Frühwirth, T. 2000. A Prolog Constraint Handling Rules
Compiler and Runtime System. Special Issue Journal of Applied Artificial
Intelligence on Constraint Handling Rules 14, 4 (April).

VI BIBLIOGRAPHY

Holzbaur, C., Garćıa de la Banda, M., Stuckey, P. J., and Duck,
G. J. 2005. Optimizing Compilation of Constraint Handling Rules in HAL.
Special Issue of Theory and Practice of Logic Programming on Constraint
Handling Rules 5. To appear.

IC-Parc. ECLiPSe. http://www.icparc.ic.ac.uk/eclipse/.

ILOG. 2004. JRules 4.6 Technical White Paper.

Intelligent Systems Laboratory. 2003. SICStus Prolog User’s Manual.
PO Box 1263, SE-164 29 Kista, Sweden.

ISO/IEC. 1995. Information technology—Programming languages—Prolog—
Part 1: General core. ISO/IEC 13211-1:1995.

Jaffar, J. and Maher, M. J. 1994. Constraint Logic Programming: A Sur-
vey. Journal of Logic Programming 19/20, 503–581.

Jaffar, J., Michaylov, S., Stuckey, P. J., and Yap, R. H. C. 1992. The
CLP(<) Language and System. ACM Trans. Program. Lang. Syst. 14, 3,
339–395.

Knuth, D. E. and Bendix, P. B. 1970. Simple Word Problems in Universal
Algebra. In Computational Problems in Abstract Algebra. Pergamon Press,
263–297.

Lloyd, J. W. 1987. Foundations of logic programming; (2nd extended ed.).
Springer Verlag.

Marriott, K., Søndergaard, H., and Jones, N. D. 1994. Denotational
Abstract Interpretation of Logic Programs. ACM Transactions on Program-
ming Languages and Systems 16, 3, 607–648.

Marriott, K. and Stuckey, P. J. 1998. Programming with Constraints: an
Introduction. MIT Press.

Meier, M. Sepia*: The constraint logic programming system.
http://www.clps.de/.

Mukund, M., Ramakrishnan, C. R., Ramakrishnan, I. V., and Verma,
R. 2000. Symbolic Bisimulation using Tabled Constraint Logic Program-
ming. In International Workshop on Tabulation in Parsing and Deduction.
Vigo, Spain.

Pemmasani, G., Ramakrishnan, C. R., and Ramakrishnan, I. V. 2002.
Efficient Model Checking of Real Time Systems Using Tabled Logic Pro-
gramming and Constraints. In International Conference on Logic Program-
ming. Lecture Notes in Computer Science. Springer, Copenhagen, Denmark.

Pugh, W. Proposal for java memory model and thread specification revision.
JSR-133, http://www.jcp.org/en/jsr/detail?id=133.

BIBLIOGRAPHY VII

Pugh, W. et al. 2004. JSR-133: JavaTM Memory Model
and Thread Specification. Sent to Final Approval Ballot,
http://www.cs.umd.edu/˜pugh/java/memoryModel/jsr133.pdf.

Rao, P., Sagonas, K. F., Swift, T., Warren, D. S., and Freire, J. 1997.
XSB: A system for effciently computing WFS. In Logic Programming and
Non-monotonic Reasoning. 431–441.

Sahlin, D. and Carlsson, M. 1991. Variable Shunting for the WAM. Tech.
Rep. SICS/R-91/9107, SICS.

Santos Costa, V., Damas, L., Reis, R., and Azevedo, R. 2004. YAP
User’s Manual. http://www.ncc.up.pt/˜vsc/Yap/.

Saraswat, V. 2004. Concurrent Constraint-based Memory Machines: A frame-
work for Java Memory Models (Preliminary Report). Tech. rep., IBM.
March.

Savely, R. et al. 2005. CLIPS Reference Manual.

Schrijvers, T. 2004. JmmSolve: a generative Java memory model implemen-
ted in Prolog and CHR. In ICLP’04: Proceedings of the 20th International
Conference on Logic Programming, B. Demoen and V. Lifschitz, Eds. Lec-
ture Notes in Computer Science, vol. 3132. Springer Verlag, St-Malo, France.
Poster presentation.

Schrijvers, T. 2005. A Collection of Assorted CHR Benchmarks.
http://www.cs.kuleuven.ac.be/˜toms/Research/CHR/.

Schrijvers, T. and Demoen, B. 2004a. Antimonotony-based delay avoidance
for CHR. Report CW 385, K.U.Leuven, Department of Computer Science.
July.

Schrijvers, T. and Demoen, B. 2004b. The K.U.Leuven CHR system: Im-
plementation and application. In First Workshop on Constraint Handling
Rules: Selected Contributions, T. Frühwirth and M. Meister, Eds. Ulm, Ger-
many, 1–5.

Schrijvers, T., Demoen, B., Duck, G., Stuckey, P., and Frühwirth, T.
2005a. Automatic Implication Checking for CHR Constraint Solvers. Report
CW 402, K.U.Leuven, Department of Computer Science, Leuven, Belgium.
January.

Schrijvers, T., Demoen, B., Duck, G., Stuckey, P., and Frühwirth, T.
2005b. Automatic Implication Checking for CHR Constraints. In RULE’05:
Proceedings of the 6th International Workshop on Rule-Based Programming,
H. Cirstea and N. Mart́ı-Oliet, Eds. Nara, Japan.

Schrijvers, T. and Frühwirth, T. 2004. Implementing and Analysing
Union-Find in CHR. Report CW 389, K.U.Leuven, Department of Com-
puter Science. July.

VIII BIBLIOGRAPHY

Schrijvers, T. and Frühwirth, T. 2005. Analysing the CHR implementa-
tion of union-find. In W(C)LP’05: Proceedings of 19th Workshop on (Con-
straint) Logic Programming, A. Wolf, T. Frühwirth, and M. Meister, Eds.
Ulm, Germany, 135–146.

Schrijvers, T. and Frühwirth, T. 2005. Optimal Union-Find in Constraint
Handling Rules. Theory and Practice of Logic Programming . Accepted.

Schrijvers, T., Stuckey, P., and Duck, G. 2005. Abstract Interpretation
for Constraint Handling Rules. In PPDP’05: Proceedings of the 7th Interna-
tional Symposium on Principles and Practice of Declarative Programming.
ACM Press, Lisbon, Portugal.

Schrijvers, T. and Warren, D. S. 2004. Constraint handling rules and
tabled execution. In ICLP’04: Proceedings of the 20th International Confer-
ence on Logic Programming, B. Demoen and V. Lifschitz, Eds. Lecture Notes
in Computer Science, vol. 3132. Springer Verlag, St-Malo, France, 120–136.

Schrijvers, T., Warren, D. S., and Demoen, B. 2003. CHR for XSB.
In CICLOPS 2003: Proceedings of the Colloquium on Implementation of
Constraint and LOgic Programming Systems, R. Lopes and M. Ferreira,
Eds. University of Porto, Mumbai, India, 7–20.

Schrijvers, T., Wielemaker, J., and Demoen, B. 2005. Poster: Constraint
Handling Rules for SWI-Prolog. In W(C)LP’05: Proceedings of 19th Work-
shop on (Constraint) Logic Programming, A. Wolf, Ed. Ulm, Germany.

Schulte, C. 2000. Programming Deep Concurrent Constraint Combinators.
In PADL’00: 2nd International Workhop of Practical Aspects of Declarative
Languages, E. Pontelli and V. Santos Costa, Eds. Lecture Notes in Computer
Science, vol. 1753. Springer Verlag, Boston, MA, USA, 215–229.

Schulte, C. and Stuckey, P. J. 2004. Speeding up constraint propagation. In
PPCP 2004: Proceedings of the 9th International Conference on Principles
and Practices of Constraint Programming, M. Wallace, Ed. Lecture Notes in
Computer Science, vol. 3258. Springer Verlag, 619–633.

Simons, P. 2000. Extending and implementing the stable model semantics.
Ph.D. thesis, Helsinki University of Technology, Helsinki, Finland. Research
Report 58.

Smolka, G. 1995. The Oz Programming Model. In Computer Science Today:
Recent Trends and Developments, J. van Leeuwen, Ed. Lecture Notes in
Computer Science, vol. 1000. Springer Verlag, Berlin, Germany, 324–343.

Sneyers, J., Schrijvers, T., and Demoen, B. 2005a. Guard Reasoning for
CHR Optimization. Report CW 411, K.U.Leuven, Department of Computer
Science, Leuven, Belgium.

BIBLIOGRAPHY IX

Sneyers, J., Schrijvers, T., and Demoen, B. 2005b. Guard simplification
in CHR programs. In W(C)LP’05: Proceedings of 19th Workshop on (Con-
straint) Logic Programming, A. Wolf, Ed. Ulm, Germany, 123–134.

Somogyi, Z., Henderson, F., and Conway, T. 1996. The execution al-
gorithm of mercury, an efficient purely declarative logic programming lan-
guage. Journal of Logic Programming 29, 1-3, 17–64.

Steele, G. 1984. Common LISP: The Language. Digital Press.

Stuckey, P. J. and Sulzmann, M. 2005. A Theory of Overloading. ACM
Transations on Programming Languages and Systems. To appear.

Tarjan, R. E. and van Leeuwen, J. 1984. Worst-case Analysis of Set Union
Algorithms. Journal of the ACM 31, 2, 245–281.

Thielscher, M. 2005. FLUX: A Logic Programming Method for Reasoning
Agents. Theory and Practice of Logic Programming .

Toman, D. 1996. Computing the Well-founded Semantics for Constraint Ex-
tensions of Datalog. In Proceedings of CP’96 Workshop on Constraint Data-
bases. Number 1191 in Lecture Notes in Computer Science. Cambridge, MA,
USA, 64–79.

Toman, D. 1997. Memoing Evaluation for Constraint Extensions of Datalog.
Constraints: An International Journal, Special Issue on Constraints and
Databases 2, 3/4 (December), 337–359.

Van Gelder, A., Ross, K., and Schlipf, J. S. 1991. The Well-Founded
Semantics for General Logic Programs. Journal of the ACM 38, 3, 619–649.

Visser, E. 2001. Stratego: A Language for Program Transformation based
on Rewriting Strategies. System Description of Stratego 0.5. In Rewriting
Techniques and Applications (RTA’01), A. Middeldorp, Ed. Lecture Notes
in Computer Science, vol. 2051. Springer Verlag, 357–361.

Warren, D. H. 1983. An Abstract Prolog Instruction Set. Technical note,
Artificial Intelligence Center, SRI International.

Warren, D. S. et al. 2005. The XSB Programmer’s Manual: version 2.7,
vols. 1 and 2. http://xsb.sf.net.

Wielemaker, J. 2004. SWI-Prolog release 5.4.0. http://www.swi-prolog.org/.

Wolf, A. 2001. Adaptive Constraint Handling with CHR in Java. In CP’01:
Proceedings of the 7th International Conference on Principles and Practice of
Constraint Programming. Lecture Notes in Computer Science 2239. Springer
Verlag, 256.

Wolf, A. 2005. Intellingent Search Strategies Based on Apdative Constraint
Handling Rules. Special Issue of Theory and Practice of Logic Programming
on Constraint Handling Rules 5. To appear.

X BIBLIOGRAPHY

List of Symbols

The following list describes the meaning of symbols that are frequently used
throughout the text. Some symbols may in specific cases be used in a different
context; in those cases their meaning is always explicitly mentioned.

s̄ = t̄ p. 9 pairwise equality of sequences

Base(P) p. 41 the Herbrand base of the program P

� p. 9 the empty sequence

[[P]] p. 52 the logical theory represented by program P

≡ p. 10 syntactic equality

∀F p. 52 the universal closure of formula F

T p. 14 the logical theory of a constraint domain

V p. 10 the set of variables

meaning(σ) p. 52 the logical meaning of execution state σ

¬ · S p. 42 the set formed by taking the complement of each literal in S

c#i p. 19 a constraint c with identifier i

ωr p. 22 the refined operational semantics of CHR

ωt p. 18 the operational semantics of CHR

++ p. 9 sequence concatenation

P p. 16 a CHR program

Prog p. 17 the set of all possible CHR programs

∃̄AF p. 10 projection of F onto vars(A)

XI

XII LIST OF SYMBOLS

H p. 15 the Herbrand constraint theory

� p. 20 a mapping from an execution state to an execution state

�
∗ p. 20 the transitive closure of �

σ p. 19 an execution state

θ p. 11 a substitution

UP (I) p. 42 the greatest unfounded set of P with respect to I

] p. 9 multiset union

vars(E) p. 10 the set of variables occurring in E

E ∼ F p. 11 E and F are variants

f/n p. 10 the function or predicate symbol with functor f and arity n

Hk p. 18 the sequence of kept head constraints of a rule

Hr p. 18 the sequence of removed head constraints of a rule

I p. 42 a partial interpretation

Db p. 16 the logical theory of built-in constraints

D p. 14 a constraint domain

ΦP p. 43 the Fitting operator

P p. 41 a general logic program

WP p. 42 the transformation whose fixed point is the well-founded se-
mantics

W∗
P p. 42 the well-founded semantics of program P

Σa p.126 the domain of abstract execution states

α p.126 an abstraction function

AS p.127 the abstract semantic function

Σ p.121 the domain of concrete execution states

γ p.126 a concretization function

ωd p.120 the refined denotational semantics of CHR

BIBLIOGRAPHY XIII

S p.122 the semantic function of ωd

A ↪→ B p.122 (signature of) a partial function from A to B

pp(σ) p.121 the program point of σ

XIV LIST OF SYMBOLS

Index

!, 14
(->;), 14
(;), 13
=/2, 10
==/2, 13, 15
\+, 14
234-tree, 108

abstract domain, 126
abstract interpretation, 119

framework, 126
abstraction function, 126
Ackermann function

inverse, 31
action set, 36
answer, 12
answer projection, 164
argument, 10
arity, 10
Atleast , 43
Atmost , 44
atom, 10
attributed variable, 77

backtracking, 13
binding, 11
body, 11
built-in, 13
built-in predicate, see built-in

call abstraction, 162
canonical program, 57
canonicity, 57
CCMMs, 36

choice-point, 13
CHR constraint, 16

active, 22, 70, 121
affected, 76
atom, 16
identified, 19
identifier, 75
occurrence, 17

CHR program, 16
terminating, 57

CHR rule, 16
body, 17
guard, 17
head, 17
head constraint, see head

kept, 17
removed, 17

name, 17
propagation, 17
simpagation, 17
simplification, 17, 80

CHR semantics
declarative, 52
denotational, 120
operational

high-level, see theoretical
refined, 22
theoretical, 18

clause, 11
definite, 11
normal, 11

CLP, see Constraint Logic Program-
ming

XV

XVI INDEX

compilation schema, 70
basic, 70
optimizations, 79

completeness, 53
completion, 58
concretization function, 126
confluence, 55
conjunction, 11
consistency

Happens Before, 35
Sequential, 35

constant, 10
constraint, 14

ask, 15, 17
built-in, 16, 76
constraint, 76
domain, 14
primitive, 14
solver, 15
symbol, 14
tell, 15, 76

Constraint Logic Programming, 14
constraint logic programming, 10
constraint store, 15, 76

built-in, 19, 76
CHR, 19

constraint suspension, see suspension
continuation, 82

dead, 82
live, 82

continuation goal, 75
continuation optimization, 104
cut, see !

cyclic, see recursive

DCG, see definite clause grammar
definite clause grammar, 39
delay avoidance

anti-monotonic, 109
derivation

failed, 19
successful, 19

derivation length, 62

determinism, 12
disjoint set union, see union-find
disjunction, see (;)

entailment checking, 166
execution stack, 70
execution state, 19, 121

abstract, 126
final, 20
initial, 19

expand , 43
explicit unification, see =/2

expression, 10

fact, 11
fail/0, 13
failed state, 20
find/1, 30
findall/3, 14
finite domain solver, 188
fire, 23
Fitting operator, 43
function symbol, 10
functor, 10

Galois connection, 127
generation, 80
generation number, see generation
goal, 12, 19
ground

atom, 10
term, 10

ground constraint, 104
ground/1, 13
groundness analysis, 138
guard, 77

halting problem, 58
hash bucket, 108
hash collision, 108
hash function, 108
hash table, 108
head, 11

INDEX XVII

Head Normal Form, 20
Herbrand base, 41
Herbrand theory, 15
host language, 16
hProlog, 102

if-then-else, see (->;)

immediate consequence operator
CLP, 154

implication checking, 175
implication stratum, 185
index, 78
initial state

generic, 128
inlining, 84
instance, 11
interpretation

partial, 42
is/2, 13

Java, 35, 199
memory model, 34

JMM, see Java memory model
JmmSolve, 38
join ordering, 103
JSR-133, 34

K.U.Leuven CHR system, 99

late storage, 81, 103, 130
literal, 11, 41
logic program, 11

definite, 11
general, 41

argument-free, 41
normal, 11

Logic Programming, 10
logical meaning, 52
logical theory, 52
LP, see Logic Programming

make/1, 30
mgu, see most general unifier

modular solver, 183
multiset, 9

never stored, 104
nonvar/1, 13

observation, 131
order model, 35

parent solver, 183
path compression, 31
predicate symbol, 10
production rule system, 26
program point, 121
programming pearl, 67
projection, 10, 154, 194
Prolog, 13, 15, 175
propagation history, 19, 75, 79, 84

query, 12

recursive, see cyclic
resolvent, 12
runtime library, 102

satisfiability, 14
semantic function, 122

abstract, 127
semantics

declarative
scope, 53

well-founded, 41
sequence, 9
shallow backtracking, 83
SLD resolution, 12
SLDNF, 152
SLDNF resolution, 12
SLG resolution, 150
SLGD resolution, 154
smodels, 43
solution, 14
solved form, 15
solver hierarchy, 183
soundness, 52

XVIII INDEX

space formula, 192
store representation, 158
substitution, 11
success state, 20
suspension, 74
SWI-Prolog, 18, 38, 112

TCLP, 156
term, 10
term variables/2, 13
time complexity, 62
time formula, 191
transition rule, 19, 23, 122
trigger, 23
true/0, 13

unfounded set, 42
unification, 15, 76
unifier, 11

most general, 11
union-by-rank, 31
union-find, 29, 108

confluence, 59
declarative semantics, 54
implication checking, 187–188
naive, 30
optimized, 31
time complexity, 63

union/2, 30
universal closure, 52

valuation, 14, 154
var/1, 13
variable shunting, 32
variant, 11, 55
variant checking, 162

well-founded semantics, 42

XSB, 111, 149

List of Publications

Articles in international reviewed journals

1. T. Schrijvers, and T. Frühwirth, Optimal Union-Find in Constraint Handling
Rules, Theory and Practice of Logic Programming, 2005, accepted.

2. T. Schrijvers, M. Gaŕıa de la Banda, B. Demoen and P. Stuckey, Improv-
ing PARMA Trailing, Theory and Practice of Logic Programming, 2005,
accepted.

Contributions at international conferences,

published in proceedings

1. T. Schrijvers, G. Duck, and P. Stuckey, Abstract Interpretation for Con-
straint Handling Rules, Proceedings of the 7th International Symposium on
Principles and Practice of Declarative Programming, Lisbon, Portugal, 2005,
accepted.

2. T. Schrijvers, and D. Warren, Constraint Handling Rules and Tabled Execu-
tion, Logic Programming, 20th International Conference, ICLP 2004, Pro-
ceedings (Demoen, B. and Lifschitz, V., eds.), vol 3132, LNCS, pp. 120-136,
2004.

3. T. Schrijvers, and A. Serebrenik, Improving Prolog Programs: Refactoring
for Prolog, Logic Programming, 20th International Conference, ICLP 2004,
Proceedings (Demoen, B. and Lifschitz, V., eds.), vol 3132, LNCS, pp. 58-72,
2004.

4. T. Schrijvers, and B. Demoen, Combining an Improvement to PARMA Trail-
ing with Trailing Analysis, Proceedings of the Fourth ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming (Kirchner,
C., ed.), pp. 88-98, 2002.

XIX

XX LIST OF PUBLICATIONS

5. T. Schrijvers, M. Garca de la Banda, and B. Demoen, Trailing Analysis
for HAL, Logic programming , 18th International Conference, Proceedings
(Stuckey, P., ed.), vol 2401, LNCS, pp. 38-53, 2002.

Contributions at international workshops,

published in proceedings

1. T. Schrijvers, B. Demoen, G. Duck, P. Stuckey, and T. Frühwirth, Automatic
Implication Checking for CHR Constraints, Proceedings of 6th International
Workshop on Rule-Based Programming, Nara, Japan (Cirstea, H. and Marti-
Oliet, N., eds.), 2005.

2. J. Sneyers, T. Schrijvers, and B. Demoen, Guard Simplification in CHR pro-
grams, Proceedings of 19th Workshop on (Constraint) Logic Programming,
Ulm, Germany (Wolf, A., ed.), 2005.

3. T. Schrijvers, and T. Frühwirth, Analysing the CHR Implementation of
Union-Find, Proceedings of 19th Workshop on (Constraint) Logic Program-
ming, Ulm, Germany (Wolf, A., ed.), 2005.

4. T. Schrijvers, and B. Demoen, The K.U.Leuven CHR System: Implementa-
tion and Application, First workshop on constraint handling rules: selected
contributions (Frühwirth, T. and Meister, M., eds.), pp. 1-5, 2004.

5. T. Schrijvers, A. Serebrenik, and B. Demoen, Refactoring Prolog Code,
INAP / WLP 2004. 13th International conference on applications of de-
clarative programming and knowledge management and 18th workshop on
logic programming. Proceedings. (Seipel, D. and Hanus, M. and Geske, U.
and Bartenstein, O., eds.), pp. 115-126, 2004.

6. T. Schrijvers, D. Warren, and B. Demoen, CHR for XSB, Proceedings of
CICLOPS 2003: Colloquium on Implementation of Constraint and LOgic
Programming Systems (Lopes, R. and Ferreira, M., eds.), pp. 7-20, 2003.

7. T. Schrijvers, Combining an Improvement to PARMA Trailing with Analysis
in HAL, Proceedings of CICLOPS’2002, the Colloquium of Constraint and
LOgic Programming Systems (Demoen, B., ed.), pp. 1-12, 2002.

Contributions at international conferences,

not published or only as abstract

1. T. Schrijvers, J. Wielemaker, and B. Demoen, Constraint Handling Rules for
SWI-Prolog, 19th Workshop on (Constraint) Logic Programming, W(C)LP

LIST OF PUBLICATIONS XXI

2005, Ulm, Germany, February 21-23, 2005.

2. T. Schrijvers, JmmSolve: a Generative Java Memory Model Implemented
in Prolog and CHR, 20th International Conference on Logic Programming,
ICLP 2004, Saint-Malo, France, September 6-10, 2004.

Technical reports

1. J. Sneyers, T. Schrijvers, and B. Demoen, Guard Reasoning for CHR Op-
timization, Department of Computer Science, K.U.Leuven, Report CW 411,
Leuven, Belgium, May, 2005.

2. T. Schrijvers, B. Demoen, G. Duck, P. Stuckey, and T. Frühwirth, Automatic
Implication Checking for CHR Constraint Solvers, K.U.Leuven, Department
of Computer Science, Report CW 402, January, 2005.

3. J. Sneyers, T. Schrijvers, and B. Demoen, Guard Simplification in CHR
programs, K.U.Leuven, Department of Computer Science, Report CW 396,
November, 2004.

4. G. Duck, T. Schrijvers, and P. Stuckey, An Abstract Interpretation Frame-
work for Constraint Handling Rules, Department of Computer Science, K.U.Leuven,
Report CW 391, Leuven, Belgium, September, 2004.

5. T. Schrijvers, and T. Frühwirth, Implementing and Analysing Union-Find
in CHR, K.U.Leuven, Department of Computer Science, Report CW 389,
July, 2004.

6. T. Schrijvers, and B. Demoen, Antimonotony-based Delay Avoidance for
CHR, K.U.Leuven, Department of Computer Science, Report CW 385, July,
2004.

7. T. Schrijvers, and B. Demoen, JmmSolve: a Generative Reference Imple-
mentation of CCM machines, Department of Computer Science, K.U.Leuven,
Report CW 379, Leuven, Belgium, January, 2004.

8. T. Schrijvers, A. Serebrenik, and B. Demoen, Refactoring Prolog Programs,
Department of Computer Science, K.U.Leuven, Report CW 373, Leuven,
Belgium, November, 2003.

9. T. Schrijvers, and B. Demoen, Combining an Improvement to PARMA Trail-
ing with Analysis in HAL, Department of Computer Science, K.U.Leuven,
Report CW 338, Leuven, Belgium, April, 2002.

XXII LIST OF PUBLICATIONS

10. T. Schrijvers, and B. Demoen, An Improvement to PARMA Variable Trail-
ing, Department of Computer Science, K.U.Leuven, Report CW 326, Leuven,
Belgium, December, 2001.

Biography

Tom Schrijvers was born on the 10th of June 1978 in Leuven. He finished High
School at the St-Romboutscollege in Mechelen in 1996. In 1999 he received a
Bachelor’s degree of Science in Engineering (Kandidaat Burgerlijk Ingenieur) and
in 2001 a Master’s degree of Science in Engineering in Computer Science (Burgerlijk
Ingenieur in de Computerwetenschappen) from the Katholieke Universiteit Leuven.
His master thesis with the title “A Critical Study of Additional OOP Concepts
for Java” was supervised by Professor Eric Steegmans and co-authored by Roel
Hertoghs.

In August 2001 he joined the DTAI research group and started working as a
Ph.D. student under the supervision of Professor Bart Demoen, funded by a teach-
ing assistant position of the K.U.Leuven. In 2002 he became a research assistant
funded by the Fund for Scientific Research Flanders (F.W.O. Vlaanderen). He
was a visiting scholar at the Monash University in 2001 and 2003, at the State
University of Melbourne in 2003, at the University of Melbourne in 2004 and at
the University of Ulm in 2004.

He is the co-author of 2 articles in an international journal and of 12 papers
published at international conferences and workshops and he has received the
“Best Technical Paper Award” twice at the International Conference on Logic
Programming.

XXIII

XXIV BIOGRAPHY

Analyses, Optimalisaties en

Uitbreidingen van

Constraint Handling Rules

Samenvatting

1 Inleiding

Constraint Handling Rules (CHR) is een programmeertaal die gebaseerd is op
regels en meestal ingebed wordt in een andere programmeertaal. Het is eenvoudige
en tegelijk toch erg krachtige taal die elementen combineert van Constraint (Logic)
Programming (CLP) en termherschrijfsystemen. Aanvankelijk was CHR bedoeld
voor de implementatie van constraint solvers voor planning en optimalisatie, maar
momenteel wordt ze gebruikt voor een brede waaier aan toepassingen: verwerking
van natuurlijke taal, type-inferentie, multi-agent-systemen,. . .

Er bestaan verschillende implementaties van CHR in Prolog, maar ook in Java
en Haskell. Algemeen wordt de implementatie van Christian Holzbaur in Prolog
beschouwd als de referentie-implementatie. Recentelijk werd de verfijnde opera-
tionele semantiek van CHR geformuleerd die de belangrijkste kenmerken van deze
implementatie vat.

Doelstellingen In deze thesis leveren we bijdragen op het gebied van
programma-analyses, programma-optimalisaties en uitbreidingen van CHR:

• In het verleden is er weinig aandacht besteed aan geoptimaliseerde compi-
latie van CHR. De referentie-implementatie past slechts een gering aantal
programma-specifieke optimalisaties toe. Slechts recentelijk hebben Duck et
al. (Holzbaur, Garćıa de la Banda, Stuckey, and Duck 2005) een aantal meer
substantiële bijdragen geleverd aan geoptimaliseerde compilatie.

NL 1

NL 2 Nederlandse Samenvatting

In deze thesis presenteren wij meerdere nieuwe optimalisaties: codespeciali-
satie voor ground constraints, anti-monotonische delay avoidance, constraint
stores gebaseerd op hashtabellen en een nieuwe late storage-optimalisatie.
Daarnaast tonen we formeel de correctheid van enkele optimalisaties aan,
iets dat voordien nog niet gebeurd was. Onze belangrijkste bijdrage op het
gebied van geoptimaliseerde compilatie is echter ons voorstel tot een meer
systematische aanpak van programma-analyse.

• Het doel van programma-analyse is de afleiding van nuttige eigenschappen
van een programma. In het verleden zijn verscheidene analyses geformuleerd
om theoretische eigenschappen af te leiden. Deze eigenschappen zijn nuttig
om het gedrag en de correctheid van CHR-programma’s na te gaan. We
passen deze analyses toe in een gevalstudie om hun relevantie na te gaan in
de praktijk.

Een belangrijke klasse van programma-analyses is deze die programma-
optimalisaties mogelijk maakt. Tot dusver is hierover erg weinig gepubliceerd
voor CHR. Meestal wordt er informeel en vrij vaag over gesproken. De re-
den hiervoor is dat er geen systematische aanpak bestond en de analyses van
minder belang werden geacht dan de eigenlijke optimalisaties. Het gebrek
aan nauwgezette documentatie maakt het echter moeilijk om na te gaan of ze
correct zijn, hoe ze verbeterd kunnen worden en hoe ze samengesteld kunnen
worden tot meer complexe analyses.

Ons raamwerk voor abstracte interpretatie van CHR biedt hiervoor een
oplossing. Abstracte interpretatie (Cousot and Cousot 1977) is een alge-
mene techniek voor programma-analyse die niet gebonden is aan een be-
paalde programmeertaal. Ze is formeel van aard en legt het verband tussen
de analyse en de operationele semantiek van de taal. Vanwege haar formele
aard biedt abstracte interpretatie een geschikte systematische aanpak van
programma-analyse voor CHR. Het raamwerk laat toe om algemene tech-
nieken te gebruiken om de correctheid van analyses aan te tonen en om
analyses samen te stellen. We formuleren ons raamwerk in functie van de
verfijnde denotationele semantiek en illustreren het gebruik met twee in-
stanties: een late storage-analyse en een groundness-analyse.

• De eerste uitbreiding van de expressiviteit van CHR betreft de integratie van
CHR met een meer expressieve variant van Prolog: getabuleerde uitvoering
(Chen and Warren 1996). Getabuleerde uitvoering vermijdt automatisch
vele vormen van non-terminatie van Prolog en is ook nuttig voor automa-
tische performantieverbeteringen door haar dynamisch hergebruik van vorige
berekeningen. Doordat de programmeur ontlast is van deze aspecten, kunnen
programma’s meer declaratief, compact en eenvoudig geformuleerd worden.

De tweede uitbreiding voegt automatisch de functionaliteit toe aan CHR
constraint solvers om de implicatie van constraints na te gaan. Deze functio-

2 Inleidende begrippen en achtergrond NL 3

naliteit is belangrijk om relevante informatie te verkrijgen uit een constraint
store en om complexe constraints op te bouwen uit primitieve constraints.
We gebruiken onze techniek om CHR solvers modulair samen te stellen.

Naast deze belangrijke doelstellingen streven we ook naar een betere verspreiding
van de CHR-taal en willen we het praktisch nut van de taal aantonen. Het eerste
aspect realiseren we met een nieuw state-of-the-art CHR-systeem dat beschikbaar
is in drie Prolog-systemen. Voor het tweede aspect illustreren we het gebruik van
CHR in drie toepassingen en tonen we aan dat het union-find-algoritme in CHR
gëımplementeerd kan worden met de beste gekende tijdscomplexiteit.

Overzicht In Sectie 2 behandelen we eerst kort de belangrijkste begrippen om-
trent CHR en gerelateerde onderwerpen. Sectie 3 illustreert vervolgens het gebruik
van CHR bij drie toepassingen. Daarna bespreken we in Sectie 4 drie belangrijke
theoretische eigenschappen van CHR-programma’s en bestuderen we het nut hier-
van bij een praktisch programma.

Een korte samenvatting van de referentie-implementatie van CHR wordt ge-
geven in Sectie 5. Onze eigen CHR-implementatie, het K.U.Leuven CHR-systeem
bespreken we vervolgens in Sectie 6. In Sectie 7 formuleren we dan een raamwerk
voor de abstracte interpretatie van CHR-programma’s. De integratie van CHR
met getabuleerde uitvoering komt daarna aan bod in Sectie 8. Als laatste bijdrage
presenteren we in Sectie 9 het automatisch toevoegen van implicatiefunctionaliteit
aan CHR constraint solvers. In Sectie 10 formuleren we tenslotte de conclusie van
deze thesis en noemen we nog enkele mogelijkheden voor toekomstig werk op.

2 Inleidende begrippen en achtergrond

Constraint Handling Rules is ontworpen in de context van Constraint Logic Pro-
gramming met als bedoeling om de gemakkelijke ontwikkeling van nieuwe con-
straint solvers mogelijk te maken.

Logic Programming De data van logic programming zijn termen, opgebouwd
uit functiesymbolen en variabelen. Atomen zijn opgebouwd uit predikaatsymbolen
en termen. Een logisch programma bestaat uit een aantal regels, clauses, met als
hoofd een atoom en als lichaam een conjunctie van atomen. Intüıtief is de betekenis
van een clause dat het atoom in het hoofd waar is als de atomen in het lichaam
waar zijn.

Twee atomen of twee termen kunnen gelijk gemaakt worden met behulp van
variabelensubstituties, variabelen die vervangen worden door termen. Opera-
tioneel berekent een logisch programma voor een gegeven atoom, de query, de
variabelensubstituatie waaronder dit atoom waar is.

NL 4 Nederlandse Samenvatting

Constraint Solving en Constraint Logic Programming Analoog aan ato-
men worden constraints opgebouwd uit constraintsymbolen en variabelen en waar-
den. Een constrainttheorie is een logische theorie waaruit afgeleid kan worden
welke constraints waar zijn en welke niet. Een conjunctie van constraints is satis-
fieerbaar als er een waardetoekenning bestaat voor de variabelen in de constraints
zodat de constraints waar zijn onder de constrainttheorie. Het is de bedoeling
van een constraint solver om na te gaan of een conjunctie van constraints satis-
fieerbaar is. Een typische strategie van een constraint solver is het herschrijven
van de constraints met behulp van de constrainttheorie.

In Constraint Logic Programming wordt Logic Programming aangevuld met
constraints: constraints mogen opgenomen worden als atomen in de lichamen van
clauses. Tijdens de uitvoering van een programma worden alle constraints behan-
deld door de constraint solver.

Constraint Handling Rules CHR is een taal ingebed in een gasttaal die een
aantal ingebouwde constraints aanbiedt. CHR-constraints zijn, analoog aan ato-
men, opgebouwd uit constraintsymbolen en termen. CHR-programma’s bestaan
uit een aantal CHR-regels. Elke regel heeft een hoofd, een guard en een lichaam.
Het hoofd (Hk, Hk) bestaat uit een sequentie van CHR-constraints, de guard (G)
uit een sequentie van ingebouwde constraints en het lichaam (B) uit een sequentie
van beide soorten constraints. Er zijn drie soorten CHR-regels, schematisch:

• de simplificatieregel: Hr <=> G | B.

• de simpagatieregel: Hk\Hr <=> G | B.

• de propagatieregel: Hk ==> G | B.

Operationeel wordt er een verzameling van CHR-constraints, de constraint
store, gemanipuleerd. Een regel wordt uitgevoerd op voorwaarde dat er constraints
in de constraint store zitten die overeenkomen met de constraints in het hoofd
van de regel. Voor deze constraints moet aan de guard voldaan zijn. Bij de
uitvoering van de regel worden de constraints Hr uit de constraint store verwijderd.
De constraints in het lichaam van de regel worden toegevoegd aan de constraint
store. De propagatieregel wordt slechts één maal uitgevoerd met dezelfde CHR-
constraints.

Er zijn twee verschillende operationele semantieken geformuleerd op de boven-
staande regelsemantiek. De eerste en oorspronkelijke operationele semantiek van
CHR laat toe dat regels in een willekeurige volgorde uitgevoerd worden. Deze
semantiek wordt daarom de theoretische operationele semantiek genoemd. De
tweede, verfijnde operationele semantiek legt de volgorde van regeltoepassingen
wel vast. De constraint store van links naar rechts geordend worden. De regels
moeten met de constraints van links naar rechts in de constraint store in tekstuele
volgorde geprobeerd worden. Deze verfijnde semantiek dient als basis voor alle
grote CHR-systemen.

3 Drie toepassingen van CHR NL 5

Verband met andere regelgebaseerde talen Hoewel CHR ontstaan is in de
context van Constraint Logic Programming, vertoont het ook overeenkomsten met
andere programmeertalen die gebaseerd zijn op regels. Zo komen de operationele
aspecten van CHR sterk overeen met die van Production Rule Systems. Beide
bestaan uit conditionele regels die termen (of constraints) toevoegen aan en ver-
wijderen uit een werkgeheugen (constraint store). CHR kan echter overweg met de
ingebouwde constraints van de gasttaal en het herbekijken van CHR constraints
bij het verwerken van ingebouwde constraints is dan ook specifiek voor CHR. Pro-
duction Rule Systems zijn in de eerste plaats bedoeld voor expertsystemen, terwijl
CHR constraint solvers en meer algemene problemen als toepassingen heeft.

Termherschrijfsystemen (TRSs) vertonen sterke gelijkenissen met CHR op het
theoretische vlak. Beide zijn onderbouwd met een logische theorie. Bij CHR
is dit een constrainttheorie, terwijl dit bij TRSs een theorie van algebräısche
gelijkheden is. TRSs herschrijven termen op basis van de gelijkheden, terwijl
CHR constraint stores herschrijft op basis van equivalenties. Een aantal theoreti-
sche eigenschappen van TRSs, zoals confluentie, zijn overgenomen in CHR. Daarbij
moeten wel een aantal CHR-specifieke aspecten in rekening gebracht worden, zoals
de propagatieregels die geen zin hebben bij TRSs.

3 Drie toepassingen van CHR

We illustreren het gebruik van CHR bij drie toepassingen: een implementatie
van het klassieke union-find-algoritme, een raamwerk voor het testen van nieuwe
geheugenmodellen voor Java een een implementatie van de well-founded semantiek
voor algemene logische programma’s.

Union-Find Het union-find-algoritme is een klassiek algoritme uit de jaren ’70.
Het betreft een gegevensstructuur die een aantal disjuncte verzamelingen voorstelt.
Elke verzameling heeft een bepaald element dat de vertegenwoordiger van die
verzameling is. Er zijn drie operaties gedefinieerd op deze datastructuur:

• Het aanmaken van een nieuwe singletonverzameling met een nieuw element
dat niet voorkomt in één van de reeds aanwezige verzamelingen.

• De unie van twee verzamelingen waarvan elk een element gegeven is.

• Het opzoeken van de vertegenwoordiger van een verzameling waarvan een
element gegeven is.

Een näıeve implementatie bestaat erin om de verzamelingen voor te stellen als
bomen. De elementen van de verzameling zijn knopen in de overeenkomstige
boom en de vertegenwoordiger is de wortel van de boom. Het aanmaken van een
singletonverzameling komt overeen met het maken van nieuwe boom met als wortel

NL 6 Nederlandse Samenvatting

het gegeven element. De unie van twee verzamelingen wordt gerealiseerd door de
wortel van de ene boom een kind te maken van de wortel van de andere boom. Het
opzoeken van de vertegenwoordiger voor een element gebeurt door van de knoop
die overeenkomt met het element te vertrekken. Als die knoop de wortel is, dan
komt het element overeen met de vertegenwoordiger. Anders herhaalt de procedure
zich voor de ouder van de knoop. De unie-operatie is gedefinieerd in termen van de
zoek-operatie; men moet namelijk eerst de wortels van de twee bomen zoeken. De
zoek-operatie domineert dan ook de complexiteit. Ze is afhankelijk van de lengte
d van het pad van het gegeven element tot de wortel van de boom. In het slechtste
geval is dit n voor n elementen en de tijdscomplexiteit van een operatie is dan ook
O(n).

Twee verbeteringen kunnen aan dit näıeve algoritme aangebracht worden. De
eerste betreft een heuristiek om de unie-operatie te verbeteren. Als voor elke boom
de diepte wordt bijgehouden, dan moet men ervoor zorgen de wortel van de diepste
boom als wortel van de nieuwe boom te behouden. Op deze wijze probeert men
de diepte van de bomen laag te houden. De tweede verbetering past de structuur
van de boom aan tijdens de zoekoperatie. Elke knoop die men tegenkomt tijdens
het zoeken naar de wortel maakt men een kindknoop van de wortel. Op deze wijze
wordt de boom minder diep en zullen volgende zoekoperaties sneller de wortel
vinden. Afzonderlijk verbeteren beide operaties niets aan de complexiteit, maar
gezamenlijk zorgen ze ervoor dat in het slechtste geval de tijdscomplexiteit quasi-
lineair is.

Onze CHR-implementaties van beide varianten van het algoritme zijn even
compact als de oorspronkelijke imperatieve formuleringen en eenvoudig te begrij-
pen. De verbeterde versie vereist slechts lichte aanpassingen aan de näıeve versie.

Java Memory Model Een geheugenmodel van een programmeertaal specificeert
de interactie tussen verschillende uitvoeringsthreads en het centrale geheugen. Het
centrale geheugen bestaat uit geheugenlocaties die waarden bevatten. Een uitvoe-
ringsthread kan op verschillende manieren met deze geheugenlocaties interageren:
een leesoperatie leest de waarde in een locatie, een schrijfoperatie overschrijft de
aanwezige waarde met een nieuwe waarde en een lockoperatie verhindert de inter-
actie van andere uitvoeringsthreads met de locatie en een unlockoperatie heft het
effect van een lockoperatie op. Het komt erop neer dat het geheugenmodel voor
elke leesoperatie aangeeft door welke schrijfoperatie de gelezen waarde geschreven
is.

Het oude geheugenmodel van Java bezat een aantal ongewenste eigenschappen
en vertoonde onverwacht gedrag. Daarom werd er een oproep gedaan om een
nieuw geheugenmodel met betere karakteristieken voor Java op te stellen.

Vijay Saraswat stelt een raamwerk voor, genaamd Concurrent Constraint-
based Memory Machines (CCMMs), waarbinnen verschillende geheugenmodellen
geformuleerd en bestudeerd kunnen worden. CCMMs reduceert een programma

3 Drie toepassingen van CHR NL 7

tot een aantal operaties die inwerken op bepaalde variabelen in bepaalde threads.
Een concreet geheugenmodel wordt dan declaratief geformuleerd in termen van een
aantal regels die beschrijven hoe de operaties onderling geordend moeten worden
en hoe lees- en schrijfoperaties aan elkaar gekoppeld moeten worden.

Om wille van de declaratieve aard van CCMMs hebben we ervoor gekozen
om het raamwerk in een Constraint Logic Programming-taal te implementeren.
Concreet hebben we SWI-Prolog met het K.U.Leuven CHR-systeem gebruikt. De
ordeningsrelatie en de koppeling van waarden die berekend worden met behulp van
rekenkundige operaties in het programma gebeurt met behulp van CHR constraint
solvers. SWI-Prolog zelf is handig om de bronprogramma’s te verwerken en de
essentiële operaties te extraheren.

Het is erg makkelijk om regels aan te passen in onze implementatie en na
te gaan wat de impact daarvan is op concrete testprogramma’s. Helaas werd het
CCMMs raamwerk slechts enkele maanden voor het verstrijken van de uiteindelijke
beslissingsdatum voor het nieuwe geheugenmodel geformuleerd en kon daardoor
niet voldoende interesse meer opwekken. Het door Java gekozen geheugenmodel is
strikt imperatief van aard en werd veel eerder geformuleerd door vooraanstaande
onderzoekers in de Java-gemeenschap.

Well-Founded Semantiek De well-founded semantiek is een semantiek voor
algemene logische programma’s die werd voorgesteld door Van Gelder, Ross en
Schlipf (Van Gelder, Ross, and Schlipf 1991). Het is de bedoeling dat deze se-
mantiek natuurlijk en intüıtief is. Een algemeen logisch programma bestaat uit
Horn-clauses waarin negatieve doelen kunnen voorkomen.

Een interpretatie is een verzameling van positieve en negatieve doelen. De
well-founded semantiek is geformuleerd als een transformatie van een interpreta-
tie. Men vertrekt van de lege interpretatie en past herhaaldelijk twee verschillende
transformaties toe tot de interpretatie niet meer verandert. De bekomen interpre-
tatie bevat de doelen die waar en niet waar zijn in de well-founded semantiek.

Wij baseren ons op een van de vele algoritmes voor de berekening van de se-
mantiek, een vereenvoudigde versie van een algoritme dat de stabiele semantiek
van een logisch programma berekent. Het algoritme is zoals de semantiek zelf
geformuleerd als een vastepuntsberekening van twee alternerende stappen. Elk
van beide stappen bestaat uit een aantal operaties waarvan de onderlinge volg-
orde geen rol speelt. CHR is een geschikte taal om deze onderlinge vrijheid uit
te drukken. De standaard operationele semantiek van CHR doet namelijk geen
uitspraak over de volgorde. De operaties kunnen daarom dan ook erg compact
geformuleerd worden. Voor de afwisseling van de twee uitvoeringsstappen en de
vastepuntsberekening maken we gebruik van bindcode in CHR die wel rekening
houdt met uitvoeringsvolgorde en de verfijnde operationele semantiek van CHR.
Dit levert ons een programma op dat enkel aandacht besteedt aan uitvoeringsvolg-
orde waar het echt nodig is en op de andere plaatsen sterk vereenvoudigd is ten

NL 8 Nederlandse Samenvatting

opzichte van een imperatieve formulering.

4 Theoretische eigenschappen van CHR

We bestuderen de relevantie van drie theoretische eigenschappen van CHR-
programma’s. Deze eigenschappen zijn: de declaratieve semantiek van CHR, con-
fluentie en tijdscomplexiteit. In de eerste plaats zijn deze eigenschappen nuttig
om na te gaan of een CHR-programma de gewenste karakteristieken heeft.

We gaan na wat elk van deze eigenschappen ons leert over onze implementatie
van het union-find-algoritme.

Declaratieve semantiek De declaratieve semantiek van een CHR-programma
associeert een programma met een logische theorie. Deze theorie is opgebouwd uit
een aantal logische formules, axioma’s, één voor elke regel in het programma.

Onder deze declaratieve semantiek is het mogelijk om een logische betekenis
toe te kennen aan de uitvoeringstoestand van de operationele semantiek van CHR.
Deze logische betekenis is de conjunctie van alle ingebouwde en CHR-constraints
die voorkomen in de uitvoeringstoestand.

Onder de logische semantiek herschrijft de operationele semantiek de initiële
uitvoeringstoestand tot een finale uitvoeringstoestand. Daarbij hebben alle tussen-
liggende toestanden, inclusief de eerste en de laatste, dezelfde logische betekenis.

De declaratieve semantiek van een programma houdt niet altijd steek, maar
is voornamelijk nuttig als de programmeur de intentie heeft om een bepaalde lo-
gische theorie (deels) te implementeren. Typisch zal de logische theorie van een
programma niet equivalent zijn met de bedoelde logische theorie. Als de program-
matheorie een deel is van de bedoelde theorie, dan zijn de resultaten bekomen met
het programma voldoende. Dat wil zeggen dat elke eindtoestand dezelfde logische
betekenis heeft als de initiële toestand, zowel onder de programmatheorie als onder
de bedoelde theorie. Een noodzakelijk verband tussen beide theorieën heeft geen
operationele relevantie.

Het union-find-algoritme is een implementatie van een gelijkheidsrelatie. Studie
van de logische theorie van onze union-find-implementatie toont aan dat ze equi-
valent is met de logische theorie van gelijkheid. Dit komt duidelijk overeen met
onze intentie. Elke bekomen eindtoestand drukt dus logisch dezelfde gelijkheden
uit als de begintoestand.

Confluentie Een eindig CHR-programma is confluent als voor elke begintoe-
stand alle mogelijke verschillende derivaties dezelfde eindtoestand opleveren.

Ondanks het grote indeterminisme in de operationele semantiek van CHR,
garandeert confluentie toch een unieke eindtoestand. Dit is meestal een gewenste
eigenschap die de programmeur toelaat zich niets aan te trekken van de concrete
uitvoeringsstrategie van een bepaalde implementatie van CHR.

4 Theoretische eigenschappen van CHR NL 9

Het is mogelijk om confluentie na te gaan met behulp van een techniek ontleend
aan termherschrijfsystemen. Men stelt alle kritische paren op, minimale toestan-
den waarop twee verschillende CHR-regels van toepassing zijn. Als deze kritische
paren allen voor de twee verschillende derivaties dezelfde eindtoestand opleveren,
dan is het programma confluent. Anders is het niet confluent.

Gerelateerde eigenschappen zijn canoniciteit en aanvulling. Een canonisch pro-
gramma is een programma dat voor elke begintoestand die logisch equivalent is
onder de programmatheorie dezelfde eindtoestand oplevert. Dit is duidelijk een
nog sterkere eigenschap. Aanvulling is een techniek om een niet-confluent pro-
gramma om te vormen tot een confluent programma door het aan te vullen met
nieuwe regels.

Een studie van confluentie bij onze näıeve union-find-implementatie levert ver-
schillende problematische kritische paren op. We kunnen deze paren naar oorzaak
indelen in drie groepen. Een eerste groep is te wijten aan de inherente non-
confluentie van het algoritme. De unie-operatie veroorzaakt een destructieve aan-
passing van de toestand. Een zoek-operatie voor of na een unie-operatie levert dus
een ander resultaat op. Een tweede groep van problematische paren veronderstelt
toestanden die niet bereikbaar zijn bij een correct gebruik van het programma. Zo
is het niet toegelaten om een element meer dan eens aan te maken. Als dit toch
gebeurt, is het niet verwonderlijk dat het programma eigenaardig gedrag vertoont.
De derde groep van paren geeft aan dat ons programma zich enkel goed gedraagt
onder een strikt sequentiële uitvoering. Het afhandelen van een nieuwe constraint
uitstellen levert een ongewenst resultaat op. Een studie van het optimale pro-
gramma levert gelijkaardige resultaten op, behalve dan dat het aantal kritische
paren een grote-orde talrijker is.

Tijdscomplexiteit De belangrijkst algemene resultaten op het gebied van tijds-
complexiteit in CHR zijn (Frühwirth 2002a; Frühwirth 2002b). Deze resultaten
stellen een algemene formule voor met parameters die afhangen van het programma
en het doel. Deze formule levert in de praktijk een vrij ruwe bovengrens op voor de
tijdscomplexiteit van het programma. Daarom passen we een alternatieve techniek
toe om de tijdscomplexiteit van onze union-find-implementaties te bepalen.

We tonen namelijk eerst met behulp van de verfijnde operationele semantiek de
operationele equivalentie aan van onze CHR-implementaties met de overeenkom-
stige imperatieve implementaties met een gekende tijdscomplexiteit. Vervolgens
tonen we aan dat de individuele uitvoeringsstappen in CHR en imperatieve talen
dezelfde tijdscomplexiteit hebben. Hiervoor redeneren we over de implementatie-
technieken van CHR en de hashtabellen die we zelf gëıntroduceerd hebben voor
de efficiënte implementatie van constraint stores. Hieruit kunnen we besluiten
dat onze CHR-implementaties dezelfde tijdscomplexiteit hebben als hun impera-
tieve tegenhangers. Daarmee hebben we aangetoond dat het mogelijk is om het
union-find-algoritme met de beste gekende tijdscomplexiteit te implementeren.

NL 10 Nederlandse Samenvatting

5 Implementatie van CHR

De CHR-implementatie in Prolog van Christian Holzbaur wordt algemeen be-
schouwd als de referentie-implementatie van CHR.

We beschrijven deze referentie-implementatie in termen van een vereenvoudigd
compilatieschema. Dit vereenvoudigde compilatieschema sluit nauw aan bij de
verfijnde operationele semantiek van Prolog. We komen dan tot de referentie-
implementatie door een aantal optimalisaties en specialisaties toe te passen op het
vereenvoudigde schema.

Naast de uitleg over het implementatieschema, geven we ook als eerste een
formeel correctheidsbewijs voor optimalisaties. We baseren onze bewijzen op de
verfijnde operationele semantiek.

6 Het K.U.Leuven CHR-systeem

Sinds de creatie van CHR zijn er een aantal verschillende implementaties van de
taal gemaakt. Veel van deze implementaties zijn echter in onbruik geraakt. Bij de
aanvang van deze thesis werd de implementatie in Prolog van Christian Holzbaur
(Holzbaur and Frühwirth 1999) als de referentie-implementatie beschouwd. Daar-
naast waren er enkele implementaties in Java en Haskell. Een belangrijk probleem
bij al deze systemen is dat ze reeds geruime tijd niet meer aangepast zijn aan de
nieuwste ontwikkelingen.

Bij de aanvang van deze thesis kwam er echter nieuwe interesse voor de imple-
mentatie van CHR en voor geoptimaliseerde compilatie in het bijzonder. In HAL
werd een nieuw CHR-systeem gëımplementeerd (Holzbaur, Garćıa de la Banda,
Stuckey, and Duck 2005). Ook wij hebben een nieuw CHR-systeem ontwikkeld,
het K.U.Leuven CHR-systeem.

Met het K.U.Leuven CHR-systeem bieden we een degelijk alternatief in Prolog
voor de referentie-implementatie. Het systeem implementeert de huidige stand van
zaken op het gebied van geoptimaliseerde implementatie in een Prolog-
implementatie. Het K.U.Leuven CHR-systeem implementeert met name vele van
de optimalisaties uit (Holzbaur, Garćıa de la Banda, Stuckey, and Duck 2005): ver-
beterde join ordering, late storage, never stored constraints, continuatie-
optimalisaties, . . . Naast de optimalisaties uit ander werk, implementeert het sys-
teem ook onze eigen bijdragen op het gebied van geoptimaliseerde compilatie:
codespecialisatie voor ground constraints, hashtabellen als constraint stores en de
anti-monotonische delay avoidance.

Oorspronkelijk was het K.U.Leuven CHR-systeem geschreven in hProlog. We
hebben het systeem echter ook overgezet naar XSB en SWI-Prolog. Omdat het
systeem voor een groot stuk gebaseerd is op de ISO Prolog-standaard en gebruik
maakt van slechts een klein aantal systeem-specifieke functies, verloopt dit over-
zetten relatief eenvoudig.

7 Abstract interpretatie voor CHR NL 11

Experimentele evaluatie toont aan dat onze individuele bijdragen op het ge-
bied van geoptimaliseerde compilatie goede performantieverbeteringen opleveren.
Bovendien is het systeem op zich een competitief systeem dat vergelijkbare of
betere resultaten oplevert dan de referentie-implementatie.

7 Abstract interpretatie voor CHR

Hoewel CHR reeds geruime tijd bestaat en een degelijke referentie-implementatie
heeft, was het aantal mensen betrokken bij de geoptimaliseerde compilatie van
CHR tot de komst van nieuwe CHR-systemen (Holzbaur, Garćıa de la Banda,
Stuckey, and Duck 2005; Schrijvers and Demoen 2004b) erg beperkt. De nood
aan communicatie en vergelijking tussen CHR-systemen heeft intussen geleid tot
de formulering van de verfijnde operationele semantiek van CHR (Duck, Stuckey,
Garćıa de la Banda, and Holzbaur 2004).

Naast een formulering van de gëımplementeerde operationele semantiek, is er
echter ook nood aan een formalisatie van programma-analyses voor CHR. De
meeste beschikbare analyses zijn niet of eerder vaag omschreven en formele cor-
rectheidsbewijzen zijn niet beschikbaar.

Abstracte interpretatie is een algemene methodologie voor programma-analyse:
een analyse wordt geformuleerd als een abstractie van het gewone uitvoeringspro-
ces. Abstracte interpretatie biedt een oplossing voor de huidige moeilijkheden bij
de correcte analyse van CHR-programma’s en maakt het CHR-compilers mogelijk
om complexere analyses te realiseren.

Wij stellen voor de algemene methodologie van abstracte interpretatie toe te
passen op CHR. We formuleren daarom een raamwerk voor de abstracte inter-
pretatie in termen van een verfijnde denotationele semantiek. Deze semantiek is
een alternatieve formulering van de verfijnde operationele semantiek die nauwer
aansluit bij de doeltalen van de CHR-compilatie: ze is gebaseerd op de notie van
code-oproepen. De formulering van dit raamwerk in termen van de semantiek van
CHR is niet triviaal door het grote niet-deterministische gehalte van CHR.

We illustreren het gebruik van ons raamwerk met twee analyses. De eerste
analyse is een late storage analyse. Dit is een bestaande analyse voor CHR die we
geformaliseerd hebben binnen ons raamwerk. Het doel van de analyse is na te gaan
waar de overhead van het opslaan en verwijderen van een constraint in de con-
straint store vermeden kan worden. De tweede analyse is een groundness-analyse.
Een groundness-analyse is een welbekende analyse in Prolog die uitzoekt welke
variabelen tijdens de uitvoering volledig gëınstantieerd zijn. Onze groundness-
analyse voor CHR is geparametriseerd in een groundness-analyse voor Prolog en
het is makkelijk om één Prolog-analyse te vervangen door een andere. De in-
formatie die afgeleid wordt door de groundness-analyse kan gebruikt worden om
algemene code achterwege te laten die niet van toepassing is op ground constraints.

Deze twee analyses werden gëımplementeerd in het K.U.Leuven CHR-systeem

NL 12 Nederlandse Samenvatting

en geëvalueerd op een aantal benchmarks. Het blijkt dat reeds goede resultaten
behaald worden, ondanks de eenvoud van de formulering van de analyses.

8 Integratie van CHR met getabuleerde

uitvoering

XSB is een Prolog-systeem dat uitgebreid is met getabuleerde uitvoering. Getabu-
leerde uitvoering hergebruikt reeds uitgevoerde berekeningen en voorkomt hierdoor
vele gevallen van non-terminatie. Vele toepassingen hebben baat bij tabulatie:
parsers, programma-analyses, datamining, . . .

In het verleden is er reeds herhaaldelijk behoefte geweest aan de combinatie van
constraints en tabulatie. Dit was steeds een ingewikkelde onderneming. Initieel
bood XSB helemaal geen ondersteuning voor constraints en moesten constraints
gerealiseerd worden door koppelingen met externe bibliotheken van andere pro-
grammeertalen of door meta-vertolkers. Later kwam er primitieve ondersteuning
voor constraints onder de vorm van geattribueerde variabelen (Cui and Warren
2000a).

We stellen voor om CHR te gebruiken om in XSB op een eenvoudige en ex-
pressieve wijze constraint solvers te realiseren. Dat maakt het mogelijk om in
constrainttoepassingen te genieten van de gecombineerde expressiviteit van tabu-
latie en CHR.

Ons voorstel houdt heel wat implementatie-uitdagingen in. We hebben het
K.U.Leuven CHR-systeem overgezet naar XSB. Hieraan hebben we dan de nodige
ondersteuning toegevoegd voor tabulatie. Onze aanpak loopt gelijk aan die van
(Cui and Warren 2000a): we formuleren een aantal nodige operaties voor de inter-
actie tussen de CHR constraint store en de getabuleerde oproepen en antwoordta-
bellen. Met behulp van programmatransformatie worden deze operaties verwerkt
in de getabuleerde predikaten. De programmeur wordt echter niet betrokken in
de concrete implementatie van deze operaties; hij moet slechts via een aantal de-
claraties enkele keuzes aangeven.

We illustreren de combinatie van constraints en tabulatie op een klein trans-
portprobleem. Het blijkt dat de combinatie nuttig is om de performantie van
deze toepassing te verbeteren en dat de opties die we aanbieden uitgebuit kunnen
worden om de performantie nog verder te verbeteren.

9 Automatische implicatietesten

Constraint solvers geschreven in CHR gaan de satisfieerbaarheid van een con-
junctie van constraints na. De conjunctie wordt als doel opgegeven in de initiële
uitvoeringstoestand. Als de uitvoering dan eindigt in een succestoestand, is de
conjunctie (mogelijk) satisfieerbaar. Anders is ze zeker niet satisfieerbaar.

9 Automatische implicatietesten NL 13

Buiten conjunctie zijn er echter ook andere interessante logische operatoren die
nuttig zijn in de context van constraints. Met name implicatie kan gebruikt worden
om uit een constraint store de gewenste informatie te halen. Als men gëınteress-
eerd is in een bepaalde eigenschap, gaat men na of deze gëımpliceerd wordt door
de constraint store. Implicatie is ook een belangrijke bouwsteen voor de com-
positie van primitieve constraints tot complexe constraints. Vele CLP-systemen
ondersteunen implicatie dan ook in één of andere vorm: constraintcombinatoren
in Mozart (Schulte 2000), gerëıfieerde constraints in de clp(FD)-bibliotheek en het
predikaat entailed/2 in de clp(QR) bibliotheek van SICStus Prolog (Intelligent
Systems Laboratory 2003).

Wij breiden CHR tevens uit om automatisch implicaties na te gaan. In te-
genstelling tot Prolog is dit niet triviaal. In Prolog moet men slechts een pre-
dikaat oproepen en als deze oproep slaagt, wordt het predikaat gëımpliceerd door
het Prolog-programma. In CHR daarentegen wordt een opgeroepen constraint
toegevoegd aan de conjunctie van constraints en krijgen we enkel een antwoord
betreffende de satisfieerbaarheid hiervan.

We vergelijken twee verschillende technieken om implicatie na te gaan. De eer-
ste techniek is de kopieertechniek en de tweede is de trailingtechniek. De kopieer-
techniek is gebaseerd op een vergelijking van de eindtoestanden van twee derivaties.
De ene eindtoestand is voor het oorspronkelijke doel en de andere eindtoestand is
voor de conjunctie van het oorspronkelijke doel met de constraint waarvan men
de implicatie wil nagaan. Indien beide eindtoestanden gelijk zijn, dan is aan de
implicatie voldaan. Bij de trailingtechniek wordt de constraint toegevoegd aan de
eindtoestand van het oorspronkelijke doel. Tijdens de derivatie naar een nieuwe
eindtoestand wordt een log bijgehouden van alle wijzigingen. Wijzigingen die
elkaar opheffen worden automatisch geschrapt. Als het log op het einde leeg is,
dan is aan de implicatie voldaan. We realiseren deze trailingtechniek door een
automatische programmatransformatie die het oorspronkelijke CHR-programma
omzet in een ander CHR-programma.

Beide technieken zijn voldoende, maar niet noodzakelijke testen voor implic-
atie. Als ze aangeven dat aan de implicatie voldaan is, dan is er zeker aan voldaan.
Als ze echter niet aangeven dat aan de implicatie voldaan is, dan zou hier toch aan
voldaan kunnen zijn. We bewijzen dat het zowel nodige als voldoende technieken
zijn voor een bepaalde klasse van constraint solvers, namelijk canonieke solvers.
Bovendien stellen we vast dat de technieken ook voldoende zijn voor enkele indi-
viduele constraint solvers die buiten deze klasse vallen.

We illustreren het nut van implicatie door het te gebruiken bij de constructie
van modulaire hierarchieën van CHR solvers. De solvers zijn modulair doordat ze
enkel met elkaar communiceren via een vaste interface en niets moeten afweten
van de concrete implementaties van deze interfaces. Communicatie tussen solvers
gebeurt in het bijzonder via guards. We laten toe dat de ene solver in zijn guards
de implicatie nagaat van constraints in de andere solver. De andere solver laat op

NL 14 Nederlandse Samenvatting

zijn beurt weten aan de eerste solver wanneer het nuttig is om bepaalde implicaties
opnieuw na te gaan via een zogenaamd event-mechanisme.

Een evaluatie van beide technieken geeft aan dat in een eenvoudige implemen-
tatie de trailingtechniek beter is dan de kopieertechniek. Bij een geoptimaliseerde
implementatie zijn beide technieken echter aan elkaar gewaagd. Beide hebben
weliswaar verschillende zwakke punten. De kopieertechniek gedraagt zich slechter
als de te vergelijken constraint stores groot zijn, terwijl de trailingtechniek zich
slechter gedraagt als de derivaties lang zijn.

De trailingtechniek heeft het voordeel dat ze makkelijk te realiseren is in een
CHR-systeem. Ze is gebaseerd op een transformatie van het CHR-programma. De
kopieertechniek daarentegen vereist een gedetailleerde kennis van de datastructu-
ren die gebruikt zijn voor de constraint stores.

10 Besluit

Het doel van deze thesis was de studie van verscheidene aspecten van CHR die gere-
lateerd zijn aan programma-analyse, geoptimaliseerde compilatie en uitbreidingen
van de expressiviteit.

We hebben onze studie uitgevoerd op basis van de implementatie van een nieuw
CHR-systeem, het K.U.Leuven CHR-systeem. Verscheidene nieuwe optimalisa-
ties en een algemeen raamwerk voor programma-analyse op basis van abstracte
interpretatie werden geformuleerd en gevalideerd binnen dit CHR-systeem. De
expressiviteit van CHR werd verbeterd door de integratie met getabuleerde uit-
voering en door de automatische toevoeging van functionaliteit om implicaties na
te gaan bij CHR constraint solvers.

Open problemen In de loop van deze thesis is het duidelijk geworden dat er vele
uitdagingen blijven om CHR verder te ontwikkelen. De uitdagingen gerelateerd
aan deze thesis liggen op twee gebieden: de bruikbaarheid van de taal en de
efficiëntie van CHR-implementaties.

Op het gebied van bruikbaarheid vermelden we een viertal open problemen:

• In deze thesis hebben we aangetoond dat verschillende analyses van theoreti-
sche eigenschappen een beperkte bruikbaarheid hebben in de praktijk. Het is
daarom een belangrijk open probleem om nieuwe eigenschappen en analyses
uit te denken die nuttig zijn om de correctheid van praktische implementaties
na te gaan.

• CHR biedt momenteel geen ondersteuning voor hergebruik van code-
fragmenten en veel gebruikte programmeeridiomen. Degelijke functionaliteit
voor hergebruik zal het mogelijk maken om kwalitatief hoogstaande code te
hergebruiken en veel sneller nieuwe CHR-programma’s te schrijven.

10 Besluit NL 15

• CHR is in de eerste plaats ontworpen om constraint solvers in te schrijven.
Toch bevat de taal hiervoor slechts basisondersteuning. In deze thesis hebben
we reeds bijkomende ondersteuning toegevoegd, namelijk voor het automat-
isch nagaan van implicaties. In samenwerking met Peter Stuckey hebben we
reeds onderzoek gestart naar automatische ondersteuning voor constraint-
projectie.

Onze ondersteuning voor implicaties in CHR constraint solvers is een eerste
stap in de richting van communicatie tussen constraint solvers. De toevoe-
ging van prioriteiten voor constraints en constraint solvers, zoals dit bijvoor-
beeld mogelijk is in ECLiPSe (IC-Parc), zou het mogelijk moeten maken
om de programmeur meer inspraak te geven in de wisselwerking tussen con-
straint solvers.

• Momenteel is CHR enkel beschikbaar in een beperkt aantal talen. Het meest
aanwezig is CHR in Prolog, met name in SICStus, ECLiPSe, Yap, SWI-
Prolog en XSB. Momenteel worden de nodige voorbereidingen getroffen om
het K.U.Leuven CHR-systeem ook in Ciao Prolog op te nemen. Met deze
dekking van Prolog-systemen is CHR beschikbaar voor bijna alle Prolog-
programmeurs.

Prolog is echter geen erg populaire taal als het op het aantal programmeurs en
industriële toepassingen aankomt. Hoewel een paar CHR-systemen bestaan
voor de meer populaire object-georiënteerde taal Java, zijn deze niet voorzien
van de laatste nieuwe verbeteringen en richten zij zich niet op een vlotte
integratie met Java.

Om CHR makkelijker beschikbaar te kunnen maken in een groot aantal pro-
grammeertalen met de laatste nieuwe verbeteringen op implementatiegebied,
hebben we met Christian Holzbaur het project opgevat om een CHR com-
piler te ontwikkelen die code genereert in een intermediair formaat. Deze
intermediaire code kan dan omgezet worden naar alle gewenste doeltalen.
Alle verbeteringen in de CHR compiler op het gebied van de intermediaire
code kunnen zo onmiddellijk hun weg vinden naar de doeltalen.

Op het gebied van efficiëntie zien we de volgende twee grote uitdagingen:

• Een verbetering van de schaalbaarheid is van essentieel belang om CHR
geschikt te maken voor praktische toepassingen waarin grote hoeveelheden
gegevens verwerkt moeten worden.

In deze thesis hebben we reeds een aantal optimalisaties geformuleerd en we
zijn van mening dat de verdere ontwikkeling van het raamwerk voor abstracte
interpretatie het mogelijk zal maken om nieuwe en samengestelde analyses
te formuleren die meer krachtige optimalisaties mogelijk maken.

NL 16 Nederlandse Samenvatting

Van de programmeertalen Mercury en HAL leren we dat declaraties voor
modes en determinisme veel sterkere resultaten opleveren voor programma-
analyse en bijgevolg ook voor geoptimaliseerde compilatie. In ons werk
hebben we deze ervaring toegepast door een beperkte vorm van zulke de-
claraties voor CHR mogelijk te maken. In het bijzonder hebben we aan-
getoond dat geoptimaliseerde compilatie zeer goede resultaten oplevert voor
constraints die als ground gedeclareerd zijn. We zouden de ondersteuning
van deze declaraties willen uitbreiden en ze gebruiken in meer analyses en
optimalisaties.

De studie van het union-find-programma heeft het belang van efficiënte con-
straint stores aangetoond voor de efficiëntie en tijdscomplexiteit van CHR-
programma’s. Onze bijdrage is het gebruik van hashtabellen als constraint
stores. In het verleden zijn er reeds andere datastructuren voorgesteld, zoals
globale variabelen en zoekbomen. Verder onderzoek naar geschikte data-
structuren is aangewezen.

• De theoretische operationele semantiek van CHR is erg vaag; ze biedt erg
veel keuzevrijheid. De verfijnde operationele semantiek beperkt deze keuze-
vrijheid in zekere mate. Beide semantieken zijn geformuleerd in termen van
sequentiële afleidingen.

Hoewel beide semantieken bepaalde beperkingen opleggen aan de uitvoering,
is er nog een grote mate aan keuzevrijheid. Bijvoorbeeld, twee opeenvolgende
afleidingsstappen die geen gemeenschappelijke constraints beschouwen, kun-
nen ook gelijktijdig toegepast worden. Dit kan als basis dienen voor een pa-
rallelle uitvoeringsstrategie. De programmeertaal Mozart lijkt een geschikte
kandidaat om deze parallelle strategie in te implementeren, want ze biedt
goede ondersteuning voor zowel parallellisme als gedistribueerde uitvoering.

Een andere variatie op de verfijnde operationele semantiek zou de herorde-
ning van CHR regels zijn, als deze geen impact hebben op de eindtoestand
van de afleiding. Een confluentie-analyse kan gebruikt worden om deze ei-
genschap vast te stellen, terwijl heuristieken en metingen tijdens de uitvoe-
ring kunnen aangeven welke een goede ordening van regels is. Natuurlijk
moet er hierbij op gelet worden dat er geen non-terminatie gëıntroduceerd
wordt.

Naast deze automatische en voorgedefinieerde uitvoeringsstrategieën, is het
ook mogelijk om de open keuzes door de programmeur te laten beslissen.
Bijvoorbeeld de volgorde waarin constraints gereactiveerd worden kan door
de programmeur bepaald worden op basis van prioriteiten. Het effect van
verschillende prioriteiten zou hetzelfde kunnen zijn als dat van verschillende
propagatorbuffers in constraint solvers gebaseerd op propagators (Schulte
and Stuckey 2004).

