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1 Introduction

Our paper presents an application of Constraint Handling Rules (CHR) for the
type analysis of the Q functional language. We implemented the qtchk type
inference tool, which has been developed in a collaborative project between
Budapest University of Technology and Economics and Morgan Stanley Business
and Technology Centre, Budapest.

The main goal of the type inference tool is to detect type errors and provide
detailed error messages explaining the inconsistency. The qtchk program infers
the possible types of all expressions in the program. Consequently, for any syn-
tactically correct Q program the analyser will detect type inconsistencies, and
will assign a type to each type-consistent expression of the Q program at hand.

We reported on the main issues of the type inference application in our
ICLP2012 paper [9]. There we described type inference as a Constraint Satisfac-
tion Problem (CSP) and presented how the task of type analysis can be mapped
onto a CSP. In the present paper we focus on the implementation details: how we
solved this problem using the Constraint Handling Rules extension of Prolog [4,
6].

In Section 2 we briefly introduce the Q language and provide some back-
ground information. In Section 3 we give an overview of the main issues and of
the implementation details of the constraint based type inference tool for Q. Sec-
tion 4 is devoted to the discussion of some difficulties in using CHR. In Section 5
we provide an evaluation of using CHR.

2 Preliminaries

In this section we give some background to our work following [9], where the
reader can find more details. We first introduce the Q programming language,
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and then give an overview of the type language developed for Q. Finally we dis-
cuss the mapping of a type inference task into a Constraint Satisfaction Problem.

2.1 The Q Programming Language

Q is a highly efficient vector processing functional language, which is well suited
to performing complex calculations quickly on large volumes of data.

Types Q is a strongly typed, dynamically checked language. This means that
while each variable, at any point of time, is associated with a well defined type,
the type of a variable is not declared explicitly, but stored along its value during
execution. The most important types are as follows:

– Atomic types in Q correspond to those in SQL with some additional date
and time related types that facilitate time series calculations.1

– Lists are built from Q expressions of arbitrary types, e.g. (1;2.2;‘abc) is
a list comprising two numbers and a symbol.

– Dictionaries are a generalisation of lists and provide the foundation for
tables. A dictionary is a mapping that is given by exhaustively enumerating
all domain-range pairs.

– Tables are lists of special dictionaries that correspond to SQL records.
– Functions correspond to mathematical mappings specified by an algorithm.

Main Language Constructs Q being a functional language, functions form the
basis of the language. A function is composed of an optional parameter list
and a body comprising a sequence of expressions to be evaluated. Function
application is the process of evaluating the sequence of expressions obtained
after substituting actual arguments for formal parameters. For example, the
expression f: {[x] $[x>0;sqrt x;0]} defines a function of a single argument
x, returning

√
x, if x > 0, and 0 otherwise.

Some built-in functions (dominantly mathematical functions) with one or
two arguments have a special behaviour called item-wise extension. Normally,
the built-in functions take atomic arguments and return an atomic result of some
numerical calculation. However, these functions extend to list arguments item-
wise. If a unary function is given a list argument, the result is the list of results ob-
tained by applying the function to each element of the input list. A binary func-
tion with an atom and a list argument evaluates the atom with each list element.
When both arguments are lists, the function operates pair-wise on elements in
corresponding positions. Item-wise extension applies recursively in case of deeper
lists, e.g. ((1;2); (3;4)) + (0.1; 0.2) = ((1.1;2.1); (3.2;4.2))

While being a functional language, Q also has imperative features, such as
multiple assignment2 of variables and loops.

1 Q has the following 16 atomic types: boolean, byte, short, int, long, real, float,
char, symbol, date, datetime, minute, second, time, timespan, timestamp.

2 Assignment is denoted by a colon, e.g. x:x*2 doubles the value of the variable x.
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2.2 Type Language for Q

In this subsection we describe the type language developed for Q. We allow
polymorphic type expressions, i.e., any part of a complex type expression can be
replaced with a variable. Expressions are built from atomic types and variables
using type constructors. The abstract syntax of the type language – which is at
the same time the Prolog representation of types – is as follows:

TypeExpr =

AtomicTypes | TypeVar | symbol(Name ) | any

| list(TypeExpr ) | tuple([TypeExpr ,...,TypeExpr ])

| dict(TypeExpr , TypeExpr ) | func(TypeExpr , TypeExpr )

AtomicTypes This is shorthand for the 16 atomic types of Q. Furthermore, the
numeric keyword is used to denote a type consisting of all numeric values.

TypeVar represents an arbitrary type expression, with the restriction that the
same variables stand for the same type expression. Type variables make it
possible to define polymorphic type expressions, such as list(A) -> A (a
function mapping a list of a certain type to a value of the given type) and
tuple([A,A,B]).

symbol(Name ) The named symbol type is a degenerate type, as it has a single
instance only, namely the provided symbol. Nevertheless, it is important
because in order to support certain table operations, the type reasoner needs
to know what exactly the involved symbols are.

any This is a generic type description, which denotes all data structures allowed
by the Q language.

list(TE ) The set of all lists with elements from the set represented by TE.
tuple([TE 1, ..., TE k]) The set of all lists of length k, such that the ith

element is from the set represented by TEi.
dict(TE 1,TE 2) The set of all dictionaries, defined by an explicit association be-

tween domain list (TE1) and range list(TE2) via positional correspondence.
func(TE 1, TE 2) The set of all functions, such that the domain and range are

from the sets represented by TE1 and TE2, respectively.3

2.3 Type Inference as a Constraint Satisfaction Problem

In this subsection we give an overview of our approach of transforming the
problem of type reasoning onto a CSP. Type reasoning starts from program
code that can be seen as a complex expression built from simpler expressions.
Our aim is to assign a type to each expression appearing in the program in a
coherent manner. The types of some expressions are known immediately, while
other kinds of information are provided by the program syntax, which imposes
restrictions between the types of certain expressions. The aim of the reasoner is
to assign a type to each expression that satisfies all the restrictions.

3 To help readability, we often use the notation A -> B instead of func(A,B).
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We associate a CSP variable with each sub-expression of the program. Each
variable has a domain, which initially is the set of all possible types. Different
type restrictions can be interpreted as constraints that restrict the domains of
some variables. In this terminology, the task of the reasoner is to assign a value
to each variable from the associated domain that satisfies all the constraints.
However, our task is more difficult than a classical CSP, because there are in-
finitely many types (e.g. tuples can be of arbitrary length), which cannot be
represented explicitly in a list. Representing infinite domains is a challenge for
performing type reasoning.

Partial Ordering We say that type expression T1 is a subtype of type expression
T2 (T1 ≤ T2) if, and only if, all values that belong to T1 also belong to T2. The
subtype relation determines a partial ordering over the type expressions.

For example, consider the tuple([int,int]) type which represents all lists
of length two, where both elements are integers. It is obvious that every value
that belongs tuple([int,int]) also belongs to list(int), i.e., the type ex-
pression tuple([int,int]) is a subtype of list(int).

It is very easy to check whether the subtype relation holds between two type
expressions. For atomic type expressions this is immediate. Complex type expres-
sions can be checked using some simple recursive rules. For example, list(A) is
a subtype of list(B) if, and only if, A is subtype of B.

Finite Representation of the Domain The domain of a variable is initially the
set of all the types, which can be constrained with different upper and lower
bounds, based on the partial ordering.

An upper bound restriction for variable Xi is a list Li = [Ti1, . . . , Tini
],

meaning that the upper bound of Xi is
⋃ni

j=1 Tij , i.e., the type of Xi is a subtype
of some element of Li. Disjunctive upper bounds are very common and natural in
Q, for example, the type of an expression might have to be either list or dict.
The conjunction of upper bounds is easily described by having multiple upper
bounds. If variable Xu gets a new upper bound Lv (e.g. because it turns out
that variable Xu is a subtype of Xv, and so Xu inherits the upper bound of Xv),
this means that the value of Xu has to be in

⋃
(Tuj

⋂
Tvk), for all 1 ≤ j ≤ nu

and 1 ≤ k ≤ nv.
A lower bound restriction for variable Xi is a single type expression Ti,

meaning that Ti is a subtype of Xi. For lower bounds, it is their union which is
naturally represented by having multiple constraints: if X has two lower bounds
T1 and T2, then T1 ∪T2 is a subtype of X. We do not use lists for lower bounds,
so we cannot represent the intersection of lower bounds. We chose this represen-
tation because no language construct in Q yields a conjunctive lower bound.

3 Implementing Type Inference using CHR

We built a Prolog program called qtchk that implements the type reasoning as
a Constraint Satisfaction Problem using the Constraint Handling Rules library.
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It runs both in SICStus Prolog 4.1 [7] and SWI Prolog 5.10.5 [8]. It consists of
over 8000 lines of code4. Q has many irregularities and lots of built-in functions
(over 160), due to which a complex system of constraints had to be implemented
using over 60 constraints. The detailed user manual for qtchk can be found in [3]
that contains lots of examples along with the concrete syntax of the Q language.

The system has two main components: a parser and a type inference engine.
The parser builds an abstract tree (AST) representation of the code, where each
node represents a sub-expression. Afterwards, we traverse the AST and formulate
CHR constraints on which type inference is performed. Both phases detect and
store errors, which are presented to the user. In this section we focus on the
implementation of the CHR based type inference component.

3.1 Representing variables

All subexpressions of the program are associated with CSP variables. If some
constraint fails, we need to know which expression is erroneous in order to gen-
erate a useful error message. If the arguments of the constraints are Prolog
variables, we do not have this information at hand. Hence, instead of variables
we use identifiers ID = id(N,Type,Error)5 which are Prolog terms with three
arguments: an integer N which uniquely identifies the corresponding expression,
the type proper Type (which is a Prolog variable before the type is known) and
an error flag Error which is used for error propagation. We use the same rep-
resentation for type variables in polymorphic types, e.g. the type list(X) may
be represented by list(id(2)).

3.2 Constraint Reasoning

After parsing, the type analyser traverses the abstract syntax tree and imposes
constraints on the types of the subexpressions of the program. The constraints
describing the domain of a variable are particularly important, we call them
primary constraints. These are the upper and lower bound constraints. We will
refer to the rest of the constraints as secondary constraints. Secondary constraints
eventually restrict domains by generating primary constraints, when their argu-
ments are sufficiently instantiated (i.e., domains are sufficiently narrow).

Our aim is to eventually eliminate all secondary constraints. If we manage to
do this, the domains described by the primary constraints constitute the set of
possible type assignments to each expression. In case some domain is the empty
set, we have a type error. Otherwise, the program is considered type correct.

If the upper and lower bounds on a variable determine a singleton set6,
then we know the type of the variable and we say that it is instantiated. If

4 We are happy to share the code over e-mail with anyone interested in it.
5 In order to make the examples easier to read, we will omit the two variable arguments

of the id/3 compound term, i.e. use id(N) instead of id(N,Type,Error).
Also note that we will use the terms “variable” and “identifier” interchangeably.

6 This is the case, e.g., when the lower and upper bounds are the same, or when there
is an atomic upper bound.
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all arguments of a secondary constraint are instantiated, then there are two
possibilities. If the instantiation satisfies the constraint, then the latter can be
removed from the store. Otherwise, the constraint fails.

Constraint reasoning is performed using the Constraint Handling Rules li-
brary of Prolog. In the next two paragraphs we describe how these constraints
interact with each other.

Interaction of Primary Constraints Primary constraints represent variable do-
mains. If a domain turns out to be empty, this indicates a type error and we
expect the reasoner to detect this. Hence, it is very important for the constraint
system to handle primary constraints as “cleverly” as possible. For this, we for-
mulated rules to describe the following interactions on primary constraints:

– Two upper bounds on a variable should be replaced with their intersection.
– Two lower bounds on a variable should be replaced with their union.
– If a variable has an upper and a lower bound such that there is no type that

satisfies both, then the clash should be made explicit by setting the upper
bound to the empty set.

– Upper and lower bounds can be polymorphic, i.e., might contain other vari-
ables. Since lower bounds must be subtypes of upper bounds, we can prop-
agate constraints to the variables appearing in the bounds.

We illustrate our use of CHR by presenting some rules that describe the
interaction of primary constraints. Our two primary constraints are

– subTypeOf(ID,L): The type of identifier ID is a subtype of some type in L,
where L is a list of polymorphic type expressions.

– superTypeOf(ID,T): The type of identifier ID is a supertype of type T, a
polymorphic type expression.

With polymorphic types we can restrict the domain by a type expression con-
taining the – not yet known – type of another identifier. If the type of such an
identifier becomes known, the latter is replaced by the type in the constraint.
For example, consider the following two constraints:

subTypeOf(id(1),[float,list(id(2))])

superTypeOf(id(1),tuple([id(3),int])

Suppose the types of id(2) and id(3) both turn out to be int. Then the above
two constraints are automatically replaced with constraints:

subTypeOf(id(1),[float,list(int)])

superTypeOf(id(1),tuple([int,int])

Due to the lower bound, float can be eliminated from the upper bound.
This is performed by the following CHR rule:

superTypeOf(X,A) \ subTypeOf(X,B0) <=> eliminate_sub(A, B0, B) |

subTypeOf(X, B).
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Here, the Prolog predicate: eliminate sub(A,B0,B) means that the list of upper
bounds B0 can be reduced to a proper subset B based on lower bound A.

To conclude the above example, we obtain:

subTypeOf(id(1),[list(int)])

superTypeOf(id(1),tuple([int,int])

In another example, we show how two upper bounds on the same identifier
are handled. Suppose we have the following constraints:

subTypeOf(id(1),[float,list(int)])

subTypeOf(id(1),[tuple([int,int]),func(int,float)])

The upper bounds trigger the following CHR rule:

subTypeOf(X,T1), subTypeOf(X,T2) <=> type_intersection(T1,T2,T) |

create_log_entry(intersection(X,T1,T2, T)),

subTypeOf(X,T).

The predicate type intersection(T1,T2,T) posts a constraint stating T is the
intersection of T1 and T2. We obtain a single upper bound:

subTypeOf(id(1),[tuple([int,int])])

Interaction of the Secondary Constraints Unfortunately, it is not realistic to cap-
ture all interactions of secondary constraints as that would require exponentially
many rules in the number of constraints. Hence, we only handle the interaction
of secondary constraints with primary constraints. This means, we do not have
any CHR rules with multiple secondary constraints in their heads. Secondary
constraints restrict domains by generating the proper primary and secondary
constraints, when the domains of their arguments are sufficiently narrow: if cer-
tain arguments of the constraints are within a certain domain, then some other
argument can be restricted further.

We obtain most of our secondary constraints from the program syntax. In
general, a syntactic construct imposes restrictions on the types of its subcon-
structs. E.g., the type of the left side of an assignment has to be at least as
“broad” as the type of the right side. Similarly, for every built-in function, there
is a well-defined relation between the types of its arguments and the type of the
result. These relations can be expressed with corresponding CHR constraints.

For example, we use the secondary constraint sum/3 to capture the relation
between the types of arguments and that of the result of the built-in function ‘+’.
Let us consider the Q expression x+y, and let the types associated with x, y and
x+y be id(1), id(2), and id(3), respectively. This Q expression gives rise to
the secondary constraint sum(id(1), id(2), id(3)). If the first argument of
sum/3 turns out to be integer, then the type of the second argument and the type
of the result must be the same (according to the behaviour of the function ‘+’ in
Q). Consequently, the sum constraint can be removed from the constraint store,
and a new constraint eq(id(2), id(3)) is added, expressing the equivalence of
two types. This is performed by the following CHR simplification rules:
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sum(X,Y,Z) <=> known_type(X,int) | eq(Y,Z).

sum(X,Y,Z) <=> known_type(Y,int) | eq(X,Z).

3.3 Error Handling

During constraint reasoning, a failure of Prolog execution indicates some type
conflict. In such situations, before we roll back to the last choice point, we re-
member the details of the error. We maintain a log7 that contains entries on
how various domains change during the reasoning and what constraints were
added to the store. Furthermore, to make error handling more uniform, when-
ever secondary constraints are found violated, they do not lead to failure, but
they set some domain empty. Hence, we only need to handle errors for primary
constraints. Whenever a domain gets empty, we mark the expression associated
with the domain and we look up the log to find the domain restrictions that
contributed to the clash. We create and assert an error message and let Prolog
fail. For example, the following message

Expected to be broader than (int -> numeric) and

narrower than (int -> int)

file:samples/s1.q line:13 character:4

{[x] f[x]}

^^^^^^^^^^

indicates that the underlined function definition is erroneous: the return value
is numeric or broader (inferred from the type of f), although it is supposed to
be narrower than integer (inferred from a type declaration).

3.4 Labeling

After all constraints are added to the constraint store, we use labeling to find
a type assignment to each program expression (i.e., to each identifier associated
with a node of the abstract syntax tree) that satisfies the constraints. This
involves another traversal of the abstract syntax tree to make sure no program
expression is left without a type assignment. We select the next identifier X to be
labelled and set its domain to a singleton set, based on its current domain. We
implemented this by adding a new constraint label(X). This constraint triggers
the narrowing of the domain of X through the following CHR rules:

label(X) <=> id_known_type(X,_) | true.

label(X), superTypeOf(X,A), subTypeOf(X,L) <=>

label_upwards(X,A,L,Type),

hasType(X,Type).

label(X), superTypeOf(X,A) <=>

label_upwards(X,A,[any],Type),

7 We use the create log entry procedure in all CHR rules to facilitate creating error
messages.
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hasType(X,Type).

label(X), subTypeOf(X,L) <=>

label_downwards(X,L,Type),

hasType(X,Type).

label(X) <=>

label_downwards(X,[any],Type),

hasType(X,Type).

First, we check if the type of X is already known. If so, we do nothing. Otherwise,
we have four cases based on the presence or absence of a lower and upper bound:

– If we have a lower and an upper bound, we nondeterministically select a
type from the domain. We start from the lower bound and successively try
the broader types. This directionality is comfortable for implementation,
because while a type might have many subtypes (e.g. any tuple of integers
is a subtype of the type ‘list of integers’), it has only few supertypes.

– If only a lower bound is present, we set the upper bound to any and proceed
as in the previous case.

– If only an upper bound is present, we start from that type and go successively
to its subtypes.

– If there is neither a lower, nor an upper bound, then we assume an implicit
upper bound any and proceed as above.

Note that the hasType/2 constraint, use above in the labeling code, translates
to an upper and a lower bound:
hasType(X,Y):- subTypeOf(X,[Y]), superTypeOf(X,Y).

4 Difficulties

In this section, we discuss some difficulties that we had to overcome during the
implementation of the type inference tool. These problems arose on the one hand
from some special features of the Q language, and on the other hand from some
limitations of the CHR library used. We hope that these experiences can be
useful for the CHR community.

4.1 Handling Meta-Constraints

As we described earlier, several built-in functions of Q have a special behaviour,
called item-wise extension. We discuss the implementation of this feature now.

Let us consider, for example, the constraint sum which captures the relation
between the arguments and the result of the built-in function ‘+’. If some of the
arguments turn out to be lists, then the relation should be applied to the types
of the list elements. We could capture this by adding adequate rules to the sum

constraint. However, the rules describing the list extension behaviour would have
to be repeated for each built-in function, which is counter-productive. Instead,
we introduced a meta-constraint list extension/3.
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Consider a binary built-in function f , which extends item-wise to lists in both
arguments and which imposes constraints Cs on its atomic arguments and result.
Suppose that f has argument types identified by X, Y and a result type identified
by Z. We cannot add the constraints of Cs to the constraint store until we know
that the arguments are all of atomic type. Instead, we use the meta-constraint
list extension(Dir,Args,Fun), where Dir specifies which arguments can be
extended item-wise to lists, Args is the list of arguments on which the list of
constraints8 imposed by function Fun, will have to be formulated.

Hence, the constraint list extension(both,[X,Y,Z],+) is added in our
example. If later the input arguments are inferred to be atomic, then the meta-
constraint list extension/3 adds the atomic constraints Cs and removes itself:

subTypeOf(X,Ux), subTypeOf(Y,Uy) \

list_extension(both,[X,Y,Z],Fun) <=> nonlist(Ux), nonlist(Uy) |

list_ext_constraints(Fun,[X,Y,Z],Cs), ( foreach(C,Cs) do C ).

Here, the complicated part is to find the arguments of the proper constraints
imposed by the given built-in function. We solved this by asserting the relevant
information in the list ext constraints predicate. E.g. in the case of the Q
function ‘+’ we have the following fact:

list_ext_constraints(+, [A,B,C], [sum(A,B,C)]).

If, on the other hand, some argument turns out to be a list, the meta-
constraint is replaced by another one. For example, if we know that the types of
X and Y are list(A) and list(B), then the type of Z must be a list as well and
we replace the list extension constraint with the following two constraints:
list extension(both,[A,B,C],+) and hasType(Z,list(C)).

In fact, the difficulty of the implementation was caused by the following
restriction of CHR: it is not possible to refer to a constraint in a rule head by
supplying a variable holding its name and a list of its arguments (cf. the call/N

built-in predicate group of Prolog).
To express item-wise extension, it would be more convenient to write rules

where the name of a constraint can also be a variable. If such “meta-rules” were
available the list extension meta-constraint would become unnecessary.

For example, in the case of unary functions, where the corresponding con-
straint has two arguments (the input and the output types), item-wise extension
could be implemented using the following, quite natural “meta-rule”9:

call(Cons,A,B) <=> is_list(A,X), is_list_extensible(Cons) |

call(Cons,X,Y), hasType(B,list(Y)).

where is list extensible(Cons) succeeds exactly when Cons has the list-
extension behaviour, is list(A,X) means that the type of A is list(X).

8 Note that there are several built-in functions, whose type is described using more
than one constraint.

9 Here we assume that CHR supports meta-constraints in rule heads using the call/N

formalism of Prolog.
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4.2 Copying Constraints over Variables

Local variables are made globally unique by the parser. This means, that vari-
ables with the same name have the same value, so we can constrain their types
to be the same. However each occurrence of a variable that holds a polymorphic
function can have a different type assigned. Let us show an example:

f:{[x] x+2} (1)

...

f [2] (2)

...

f [1.1f] (3)

In the first line, f is defined to be a function having a single argument x which
returns x+2. This means that the type of f is a (polymorphic) function which
maps A to B (A -> B), where a secondary constraint sum(A, int, B) holds
between the argument and the result. In (2) and (3) there are two different
applied occurrences of function f, which specialise this sum constraint in two
independent ways. In these examples f is applied to an integer and to a float,
therefore the types of the second and third occurrence of f are int -> int and
float -> float.

The above example shows that if the type of a variable is a (polymorphic)
function then we cannot assume that the type of an applied occurrence is the
same as that of the defining occurrence. To capture the relationship between
these types we introduced a relationship, called “specialisation”, which holds if
the type of the applied occurrence can be obtained from that of the defining
occurrence by first copying it and then substituting zero or more type variables
in it with (possibly polymorphic) types.

A straightforward natural implementation of the “specialisation” constraint
would be the following:

– at the defining occurrence of a variable: post the relevant type constraints;
– at the applied occurrence of a variable: read the type constraints posted for

a variable and apply the “specialisation” relationship.

This approach requires that the CHR library provides means for accessing the
constraints that involve a specified argument, a feature similar to the frozen(X.
Goals) built-in predicate of SICStus Prolog. Unfortunately, the CHR implemen-
tations we used do not have this feature. This means that a Q variable holding
a polymorphic function has to be treated specially: the constraints involving its
type have to be collected and remembered, so that they can be accessed at the
applied occurrences of the given Q variable.

We strongly believe that in order to support this and similar use cases, CHR
libraries should provide access to the constraints that are in the store.

4.3 Handling Equivalence Classes of Variables

The constraint system yields lots of equalities. For example, two occurrences
of the same (non-function-valued) variable give rise to an equality constraint.
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One way to handle this is to propagate all primary constraints between equal
variables, i.e. whenever X = Y , Y inherits all primary constraints of X and
the other way round. For example, a simple implementation of propagating the
upper bounds in the equality constraint (eq/2) would be the following:

eq(X,Y), subTypeOf(X, T) ==> subTypeOf(Y,T). (1)

eq(X,Y), subTypeOf(Y, T) ==> subTypeOf(X,T). (2)

Unfortunately, this solution is rather inefficient, since all reasoning is repeated for
each variable made equal to some other one. Moreover, we have found cases which
lead to an infinite propagation of CHR constraints. In the following paragraph
we outline an example of this.

As we have seen in Section 3 two upper bounds on a variable are replaced
with their intersection. Let us suppose that variable A has two upper bounds
list(X) and list(Y). There is an intersection rule which replaces these two
with the upper bound list(Z), where Z is a new variable and Z ≤ X and Z ≤ Y

also have to be satisfied. Consider the following state of the constraint store:

eq(id(1), id(2)),

subTypeOf(id(1), [list(id(3))]),

subTypeOf(id(2), [list(id(4))]).

First the equality rule can fire, yielding two upper bounds on id(1) and id(2).
Now, the intersection rule can produce new upper bounds on these variables,
which can be propagated to the other variable by the equality rule again.

It is easy to show that the above constraint store yields an infinite loop using
these rules. Consider the following condition C: The two variables (id(1) and
id(2)) have got at least two upper bounds in total, where each variable has at
least one, and there exist two upper bounds, on which the intersection rule has
not fired yet. It is easy to see that if C holds, then at least one rule can fire
(intersection, or equality). On the other hand C is an invariant condition, as
when any of these two rules fire. C remains true, if it was true before. Together
with the initial state, where C also holds, this constraint store yields an infinite
loop (regardless of the rule execution order).

The problem is caused by repeating the reasoning at each equal identifier.
We solved this by introducing a directionality to the constraint propagation:
we take a strict total order on identifiers and only propagate constraints to-
wards the smaller identifier. The smallest in a set of equal identifiers thus rep-
resents the whole set in the sense that it accumulates all constraints.10 Once
the type of the smallest identifier becomes known, it gets propagated back to
the other identifiers. Hence, instead of eq(X,Y) we introduced the constraint
represented by(X,Y), where Y ≤ X holds. Furthermore, for all constraints C
we have a new rule, which states that if X is represented by Y and X occurs in C,
then it should be substituted with Y. As we could not formulate meta-constraints
with CHR, we had to provide propagation rules for every single constraint. For
example, in case of the constraint sum we needed the following code:

10 This is similar to how Prolog handles the unification of two variables.



28 János Csorba, Zsolt Zombori, and Péter Szeredi

represented_by(A,B) \ sum(A,C,D) <=> sum(B,C,D).

represented_by(A,B) \ sum(C,A,D) <=> sum(C,B,D).

represented_by(A,B) \ sum(C,D,A) <=> sum(C,D,B).

This yielded lots of new rules, however, it was easy to generate them automati-
cally, using a small Prolog program.

There are efficiency problems even with this solution. Suppose we have the
following constraint: c(...,id(2),...) and a propagation rule R, whose head
matches the above constraint (possibly involving other heads) and the body of
the rule contains a new CHR constraint: d(...,id(2),...). If id(2) later turns
out to be equivalent to id(1), then we substitute id(2) with id(1) in every
constraint that contains id(2). This yields a store with constraints:

c(...,id(1),...)

d(...,id(1),...)

The propagation rule (R) can fire now, which might infer the second constraint
(d) again. In order to avoid further efficiency losses we added idempotency rules
for every constraint, that is, we remove duplicate constraints.

However, this solution also has a negative consequence. It is possible that
duplicate constraints yield redundant inferences, if these are fired before the
idempontency rules. Consider the following example: let the constraint store
contain constraints Ci for all 1 ≤ i ≤ n, furthermore let us suppose we have
propagation rules (Rj): Cj => Cj+1 for all 1 ≤ j ≤ n − 1. Let us examine
what happens when C1 is a constraint inferred redundantly (twice), as described
above. If the Rj rules are fired before the idempontency rules, then it is possible
that we infer all Ci constraints twice, before eliminating the duplicates. This
results in 2n inference steps instead of the optimal 1 (if the duplicate C1 is
eliminated before applying rules Rj). The problem occurs because we have no
control over the firing order of CHR rules with different heads. We believe that
a way to prescribe the order of such rules, e.g. using some priorities, would often
help in improving the efficiency of CHR applications.

The solution of this problem of redundant inference is still an open question.

4.4 Labeling

The implementation of labeling posed several challenges. We noticed that the
order in which identifiers are selected is crucial for efficiency. For example, it
is important to label subexpressions first and then find the type of a complex
expression. Another example is the function application, where labeling should
first assign a type to the input and then the type of the output is typically auto-
matically inferred by the constraints. Consequently, labeling involves a traversal
of the abstract syntax tree, and at each node we decide the order in which ex-
pressions are labelled based on the syntactic construct involved. Often we had to
rely on heuristics as it was hard to guess what order would work best in practice.

The next difficulty arises when we already know which identifier to label,
and we have to choose a value. The set of all types is infinite, so we cannot try
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all values for a variable during labeling. hence we made some restrictions. First,
we only allow a fixed increase in the term depth of types. This depth increase
was experimentally set to two. E.g. if X is known to be a subtype of list(any),
then we replace any with terms of depth at most two. Hence, we will not replace
any with list(list(list(int))).

Second, we restrict using the tuple type. This is needed because tuples can
have arbitrarily many arguments. If there is an identifier X and neither its
lower nor its upper bound contains the tuple type, then we do not assign a
tuple type to it. E.g. if X has the upper bound list(int), then we only try
list(int). If, however, X also has a lower bound tuple([int,int]), then we
try both tuple([int,int]) and list(int). We have found no Q programs
where these restrictions led labeling astray: not finding an existing assignment.
This is because nested types are not typical in Q and because our constraint
system tends to recognise the need for a tuple type before labeling.

The main challenge of labeling comes from the fact that it aims to traverse
a huge search space. The abstract syntax tree can have many nodes even for
moderately long programs, hence we have many identifiers. Besides, Q programs
are typically full of ambiguous expressions (in terms of type), so without label-
ing, very few types are known for sure. All this amounts to labeling being the
bottleneck of type inference.

A solution to this problem would be to find a good partitioning of the pro-
gram, such that not all the tree is labelled together, but in smaller portions.
Consider, for example, two function definitions. The first expression contains an
expression E1 that allows many different types. Labeling assigns one possible
type to E1 and then starts labeling the second function definition. Suppose the
second definition contains a type error at expression E2 which leads labeling to
failure. Hence, we backtrack to the choice point at E1, and assign another pos-
sible type to E1. However, this type has nothing to do with the type mismatch
– since it occurs in a different function definition, – and we get failure again at
E2. This cycle is repeated until all possible types for E1 are tried and only then
do we conclude that the contains a type error. This procedure could be made
more efficient by placing a cut after labeling the first function definition, thus
eliminating the irrelevant choice point. Realizing that the types of expressions
in one piece of code are independent from those of another can lead to much
smaller fragments to be labelled, which has the potential to drastically reduce
the time spent on labeling. Dependency analysis ([1]) could be used to find a code
partitioning. Also, some kind of intelligent backtracking ([2]) algorithm could be
used to avoid unnecessary choice points. However, adapting these techniques to
the Q language requires further work.

5 Evaluation and Future Work

In this section we discuss our motivation for using CHR in the implementation of
the type inference tool and summarise our experiences. We also mention topics
that we intend to explore in the near future to improve our type reasoner.
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5.1 Why Use CHR?

As we have seen in Subsection 2.2, our types are not necessarily disjoint (e.g. list
and tuple). If the type of an expression becomes known to be a list of integers
(list(int)), it is possible that later it is further narrowed down to a specific
tuple (e.g. tuple(int,int)). Such a behaviour would be quite difficult to achieve
in a unification based (purely Prolog) setup. This recognition led us to handle the
problem of type inference as a CSP. Nevertheless, the number of possible types
– even with some depth limit – is so large that it is hard to imagine an efficient
implementation based on the CLP(FD) library. Furthermore, mapping the types
to natural numbers (required by most CLP(FD) libraries) is also a non-trivial
task. Choosing CHR for type reasoning seemed to be a good decision, as it is
flexible enough to handle the above problems. These considerations motivated
the use of the CHR library.

5.2 Our Experiences with Using CHR

CHR has proved to be a good choice as it is a very flexible tool for describing
the behaviour of constraints. In CHR, arbitrary Prolog structures can be used
as constraint arguments, therefore it was natural to handle the special domain
defined by the type language.

However, we also had negative experiences with CHR. As described in Sec-
tion 4, it often would be more convenient if we could write “meta-rules” in CHR.
The need to access the constraint store also arose in some situations. For effi-
ciency reasons, we believe it would often be useful to be able to influence the
firing order of rules with different heads. Furthermore, the most of the debugging
of our CHR programs was seriously hampered by the lack of a tracing tool.

5.3 Future Work

Lots of difficulties arose from our decision to represent CSP variables with identi-
fiers, instead of using logical variables. This complicates handling the type equal-
ity of expressions. We introduced identifiers to facilitate error handling: whenever
a constraint fails, its identifier arguments allows for immediately pointing to the
erroneous expression in the program. We intend to explore the possibility of
returning to logical variables, since it promises to be much more efficient.

There is an extension of CHR which allows for providing rule priorities,
called CHRrp [5], which could help avoiding some efficiency problems that we
mentioned in Section 4.

We would also like to examine our constraint propagation mechanism in
terms of soundness and completeness, in order to be able to make more precise
statements about the output of the reasoner.

Conclusion

This paper summarised our experiences using CHR for type analysis of program-
ming languages. We found CHR to be a valuable tool, however, we believe there
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is still room for improvement: giving the programmer greater control over the
constraint reasoning mechanism could further increase programmer productivity.
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