
Under consideration for publication in Theory and Practice of Logic Programming 1

As Time Goes By: Constraint Handling Rules
A Survey of CHR Research from 1998 to 2007

JON SNEYERS, PETER VAN WEERT,
TOM SCHRIJVERS, and LESLIE DE KONINCK

Dept. of Computer Science, K.U.Leuven, Belgium

(e-mail: FirstName.LastName @cs.kuleuven.be)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Constraint Handling Rules (CHR) is a high-level programming language based on multi-
headed multiset rewrite rules. Originally designed for writing user-defined constraint solvers,
it is now recognized as an elegant general purpose language.

CHR-related research has surged during the decade following the previous survey by
Frühwirth (1998). Covering more than 180 publications, this new survey provides an
overview of recent results in a wide range of research areas, from semantics and anal-
ysis to systems, extensions and applications.

KEYWORDS: Constraint Handling Rules, CHR, survey

Contents

1 Introduction 2
1.1 Historical Overview 2
1.2 Constraint Handling Rules 4

2 Semantics 6
2.1 Logical Semantics 7
2.2 Operational Semantics 8

3 Program Analysis 11
3.1 Confluence 11
3.2 Termination 12
3.3 Complexity 13

4 Systems and Implementation 14
4.1 Systems 14
4.2 Compilation 18
4.3 Programming Environments 21

5 Extensions and Variants 22
5.1 Deviating Operational Semantics 22
5.2 Language Extensions 23
5.3 Solver Hierarchies 25

6 Relation to Other Formalisms 25
6.1 Set-Based Formalisms 26
6.2 Graph-Based Formalisms 27

7 Applications 27
7.1 Constraint Solvers 27
7.2 Union-Find and Other Classic Algorithms 31
7.3 Programming Language Development 31
7.4 Industrial CHR Users 34

8 Conclusions 35
8.1 Survey Coverage and Bibliographic Meta-Information 35
8.2 Retrospection 36
8.3 Grand Challenges 38

References 40

1 Introduction

Constraint Handling Rules (CHR) is a high-level programming language based on
multi-headed, committed-choice, guarded multiset rewrite rules. Originally designed
in 1991 by Frühwirth (1992; 1995; 1998; 2009) for the special purpose of adding
user-defined constraint solvers to a host-language, CHR has matured over the last
decade to a powerful and elegant general-purpose language with a wide spectrum
of application domains. Its logical semantics and monotonicity properties naturally
lead to anytime, online, and concurrent programs.

The previous survey on CHR (Frühwirth 1998) was written in 1998. The aim of
this paper is to complement that survey by giving an overview of the last decade
of CHR-related research. We advise readers that are not yet familiar with CHR to
read Frühwirth (1998) first as we have kept the amount of overlap minimal.

Overview. We start with a short historical overview of the past 10 years of CHR
research, followed by an introduction to the language itself. Section 2 describes the
logical and operational semantics; Section 3 covers program analysis topics such as
confluence, termination, and complexity. Next, in Section 4, we discuss the different
CHR systems and compilation techniques. Extensions and variants of CHR are dealt
with in Section 5, while Section 6 discusses the relation between CHR and other
formalisms. In Section 7 we give an overview of the many applications of CHR.
Finally, Section 8 concludes this survey.

1.1 Historical Overview

Early CHR research is performed at the Ludwig Maximilians Universität (LMU)
and the European Computer-Industry Research Centre (ECRC), both in Munich,
by Frühwirth (who later moves to Ulm) and his students Abdennadher (who later
moves to Cairo), Meuss, and Wolf (in Berlin).

At the end of the nineties, CHR research focusses on theoretical properties of

2

Fig. 1. CHR research groups all over the world: 1. Ulm, Germany (Frühwirth, Meis-

ter, Betz, Djelloul, Raiser, . . .); 2. Leuven, Belgium (Schrijvers, Demoen, Sneyers, De Koninck,

Van Weert, . . .); 3. Melbourne, Australia (Duck, Stuckey, Garćıa de la Banda, Wazny, Brand,

. . .); 4. Vienna, Austria (Holzbaur); 5. Berlin, Germany (Wolf); 6. Roskilde, Den-
mark (Christiansen); 7. Paris, France (Coquery, Fages); 8. Castellón, Spain (Escrig, . . .);
9. Bologna/Ferrara, Italy (Mello, Lamma, Tacchella, . . .); 10. Chieti, Italy (Meo, . . .);
11. Cairo, Egypt (Abdennadher, . . .); 12. Michigan, USA (Sarna-Starosta); 13. Vancouver,
Canada (Dahl); 14. Recife, Brazil (Robin, Vitorino, . . .); 15. Singapore (Sulzmann, Lam);

CHR programs like confluence, completion, operational equivalence, termination,
and complexity (Section 3). In the same period, the seminal Holzbaur-Frühwirth
CHR system in SICStus Prolog is developed (Holzbaur and Frühwirth 1998; 1999;
2000a) and the first CHR systems in Java are created (Section 4.1.3).

Until about 2001, most of the CHR research is still done in Germany and Vi-
enna; other groups are discovering CHR, at first mostly as an implementation lan-
guage for applications. For instance, Sulzmann et al. use CHR for type systems
(Section 7.3.1) and Christiansen and Dahl develop CHR grammars for language
processing (Section 7.3.3). Meanwhile, Brand, Monfroy, Abdennadher and Rigotti
study the automatic generation of CHR programs (Section 7.1.5). Starting around
2002 there is a strong growth of international research interest in CHR, leading to a
series of workshops on CHR (Frühwirth and Meister 2004; Schrijvers and Frühwirth
2005b; Schrijvers and Frühwirth 2006; Djelloul, Duck et al. 2007). Figure 1 gives an
(incomplete) overview of the most active CHR research groups all over the world.

In 2003 and 2004, the groups in Melbourne and Leuven start working on (static)
analysis and optimizing compilation of CHR, culminating in the Ph.D. theses of
Duck (2005) and Schrijvers (2005). This work leads to the formulation of the refined
operational semantics (Section 2.2.2) and the creation of new, highly optimizing
CHR systems (Section 4.2).

In Leuven and Brazil, research starts around 2005 on search and Java imple-
mentations of CHR (Sections 4.1.3 and 5.2.1), while the Ulm group investigates

3

alternative logical semantics for CHR (Section 2.1). The study of an implementa-
tion of the union-find algorithm in CHR leads to a focus on compiler optimizations
(Section 4.2.2) and the use of CHR for general-purpose programming (Section 7.2).

Recent trends in CHR-related research include the relation between CHR and
other formalisms (Section 6), extensions and variants of CHR (Section 5), and a
renewed interest in theoretical properties like confluence, termination, and complex-
ity (Section 3). In the context of the NICTA project “G12”, the Melbourne group
is currently developing Cadmium, an ACD term rewriting language which extends
CHR (Section 6). The Ulm group is currently researching global constraints in the
context of the DFG project “GLOBCON”; this work is related to automatic rule
generation (Section 7.1.5) and program transformation (Section 4.2.3).

1.2 Constraint Handling Rules

To make this survey somewhat self-contained, we briefly introduce the syntax and
informal semantics of Constraint Handling Rules. For a gentler introduction to
CHR, we refer the reader to Frühwirth (1998), Frühwirth and Abdennadher (2003),
Schrijvers (2005), Duck (2005), or Frühwirth (2009).

CHR is embedded in a host language H that provides data types and a number
of predefined constraints. These constraints are called host language constraints
or built-in constraints. The traditional host language of CHR is Prolog. Its only
host language constraint is equality of Herbrand terms; its data types are Prolog
variables and terms. We denote the host language in which CHR is embedded
between round brackets: i.e. CHR(H) denotes CHR embedded in host language H.
Most systems are CHR(Prolog) systems, but there are also several implementations
of CHR(Java) and CHR(Haskell), and recently a CHR(C) system was developed.
A thorough discussion of existing CHR implementations is given in Section 4. We
require the host language to provide at least the basic constraints true and fail, and
syntactic equality (“==”) and inequality (“\==”) checks.

1.2.1 Syntax

CHR constraint symbols are drawn from the set of predicate symbols, denoted by a
functor/arity pair. CHR constraints, also called constraint atoms or constraints for
short, are atoms constructed from these symbols and the data types provided by
the host language. A CHR program P consists of a sequence of CHR rules. There
are three kinds of rules: (where l,m, n, o ≥ 1)

• Simplification rules: h1, . . . , hn ⇐⇒ g1, . . . , gm | b1, . . . , bo.
• Propagation rules: h1, . . . , hn =⇒ g1, . . . , gm | b1, . . . , bo.
• Simpagation rules: h1, . . . , hl \ hl+1, . . . , hn ⇐⇒ g1, . . . , gm | b1, . . . , bo.

The sequence, or conjunction, h1, . . . , hn are CHR constraints; together they are
called the head or head constraints of the rule. A rule with n head constraints is
called an n-headed rule and when n > 1, it is a multi-headed rule. All the head

4

constraints of a simplification rule and the head constraints hl+1, . . . , hn of a simp-
agation rule are called removed head constraints. The other head constraints — all
heads of a propagation rule and h1, . . . , hl of a simpagation rule — are called kept
head constraints. The conjunction b1, . . . , bo consists of CHR constraints and host
language constraints; it is called the body of the rule. The part of the rule between
the arrow and the body is called the guard. It is a conjunction of host language
constraints. The guard “g1, . . . , gm | ” is optional; if omitted, it is considered to be
“true | ”. A rule is optionally preceded by name @ where name is a term. No two
rules may have the same name, and rules without an explicit name get a unique
name implicitly.

For simplicity, both simplification and propagation rules are often treated as
special cases of simpagation rules. The following notation is used:

Hk \ Hr ⇐⇒ G | B

If Hk is empty, then the rule is a simplification rule. If Hr is empty, then the rule
is a propagation rule. At least one of Hr and Hk must be non-empty.

1.2.2 Informal Semantics

A derivation starts from an initial query: a multiset of constraint atoms, given by
the user. This multiset of constraints is called the constraint store. The derivation
proceeds by applying the rules of the program, which modify the constraint store.
When no more rules can be applied, the derivation ends; the final constraint store
is called the solution or solved form.

Rules modify the constraint store in the following way. A simplification rule can be
considered as a rewrite rule which replaces the left-hand side (the head constraints)
with the right-hand side (the body constraints), on the condition that the guard
holds. The double arrow indicates that the head is logically equivalent to the body,
which justifies the replacement. The intention is that the body is a simpler, or more
canonical form of the head.

In propagation rules, the body is a consequence of the head: given the head,
the body may be added (if the guard holds). Logically, the body is implied by
the head so it is redundant. However, adding redundant constraints may allow
simplifications later on. Simpagation rules are a hybrid between simplification rules
and propagation rules: the constraints before the backslash are kept, while the
constraints after the backslash are removed.

1.2.3 Examples

The program leq (Fig. 2) is a classic example CHR program to solve less-than-or-
equal constraints. The first rule, reflexivity, replaces the trivial constraint leq(X,X)
by true. Operationally, this entails removing this constraint from the constraint
store (the multiset of all known CHR constraints). The second rule, antisymmetry,
states that leq(X,Y) and leq(Y,X) are logically equivalent to X = Y. Operationally
this means that constraints matching the left-hand side may be removed from the

5

reflexivity @ leq(X,X) ⇐⇒ true.
antisymmetry @ leq(X,Y), leq(Y,X) ⇐⇒ X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) ⇐⇒ true.
transitivity @ leq(X,Y), leq(Y,Z) =⇒ leq(X,Z).

Fig. 2. The CHR(Prolog) program leq, a solver for the less-than-or-equal con-
straint.

generate @ upto(N) ⇐⇒ N > 1 | prime(N), upto(N-1).
done @ upto(1) ⇐⇒ true.
remove nonprime @ prime(A) \ prime(B) ⇐⇒ B mod A = 0 | true.

Fig. 3. The CHR program primes, a prime number sieve.

store, after which the Prolog built-in equality constraint solver is used to unify X
and Y. The third rule, idempotence, removes redundant copies of the same leq/2
constraint. It is necessary to do this explicitly since CHR has multiset semantics.
The last rule, transitivity, is a propagation rule that computes the transitive closure
of the leq/2 relation. An example derivation could be as follows:

leq(A,B), leq(B,C), leq(C,A)
(transitivity) � leq(A,B), leq(B,C), leq(C,A), leq(B,A)
(antisymmetry) � leq(B,C), leq(C,A), A = B
(Prolog) � leq(A,C), leq(C,A), A = B
(antisymmetry) � A = C, A = B

Figure 3 lists another simple CHR(Prolog) program called primes, a CHR variant
of the Sieve of Eratosthenes. Dating back to at least 1992 (Frühwirth 1992), this is
one of the very first examples where CHR is used as a general-purpose programming
language. Given a query of the form “upto(n)”, where n is a positive integer, it
computes all prime numbers up to n. The first rule (generate) does the following: if
n > 1, it ‘simplifies’ upto(n) to upto(n− 1) and adds a prime(n) constraint. The
second rule handles the case for n = 1, removing the upto(1) constraint. Note that
removing a constraint is done by simplifying it to the built-in constraint true. The
third and most interesting rule (remove nonprime) is a simpagation rule. If there
are two prime/1 constraints prime(A) and prime(B), such that B is a multiple
of A, the latter constraint is removed. The effect of the remove nonprime rule is to
remove non-primes. As a result, if the rules are applied exhaustively, the remaining
constraints correspond exactly to the prime numbers up to n.

2 Semantics

In this section, we give an overview of both the logical (declarative) semantics and
the operational semantics of CHR. The logical semantics (Section 2.1) constitute
the formal foundations for the CHR programming language, whilst the operational
semantics (Section 2.2) determine the behavior of actual implementations.

6

2.1 Logical Semantics

2.1.1 Classical Logic Semantics

Let x̄ denote the variables occurring only in the body of the rule. We use ∀̄(F)
to denote universal quantification over all free variables in F . A simplification rule
H ⇐⇒ G | B corresponds to a logical equivalence, under the condition that
the guard is satisfied: ∀̄(G → (H ↔ ∃x̄B)). A propagation rule H =⇒ G | B
corresponds to a logical implication if the guard is satisfied: ∀̄(G → (H → ∃x̄B)).
A simpagation rule Hk \ Hr ⇐⇒ G | B corresponds to a conditional equivalence:
∀̄(G→ (Hk → (Hr ↔ ∃x̄B))). The (classical) logical semantics (Frühwirth 1998) of
a CHR program — also called its logical reading, declarative semantics, or declar-
ative interpretation — is given by the built-in constraint theory DH (which defines
the built-ins of the host language H) in conjunction with the logical formulas for
each rule. As an example, consider the program leq of Fig. 2. The logical formulas
corresponding to its rules are the following:
∀x, y : x = y → (leq(x, y)↔ true) (reflexivity)
∀x, y, x′, y′ : x = x′ ∧ y = y′ → (leq(x, y) ∧ leq(y′, x′)↔ x = y) (antisymmetry)
∀x, y, x′, y′ : x = x′ ∧ y = y′ → (leq(x, y)→ (leq(x′, y′)↔ true)) (idempotence)
∀x, y, y′, z : y = y′ → (leq(x, y) ∧ leq(y′, z)→ leq(x, z)) (transitivity)

or equivalently:
∀x : leq(x, x) (reflexivity)
∀x, y : leq(x, y) ∧ leq(y, x)↔ x = y (antisymmetry)
true (idempotence)
∀x, y, z : leq(x, y) ∧ leq(y, z)→ leq(x, z) (transitivity)

Note the strong correspondence between the syntax of the CHR rules, their logical
reading, and the natural definition of partial order.

The classical logical reading, however, does not reflect CHR’s multiset semantics
(the idempotence rule is logically equivalent to true). Also, the classical logic reading
does not always make sense. For example, consider the classical logic reading of the
primes program of Fig. 3:
∀n : n > 1→ upto(n)↔ ∃n′prime(n) ∧ n′ = n− 1 ∧ upto(n′) (generate)
upto(1)↔ true (done)
∀a, b : a|b→ prime(a)→ (prime(b)↔ true) (remove nonprime)

which is equivalent to:
∀n > 1 : upto(n)↔ prime(n) ∧ upto(n− 1) (generate)
upto(1) (done)
∀a, b : prime(a) ∧ a|b→ prime(b) (remove nonprime)

The last formula nonsensically states that a number is prime if it has a prime factor.

7

2.1.2 Linear Logic Semantics

For general-purpose CHR programs such as primes, or programs that rely on CHR’s
multiset semantics, the classical logic reading is often inconsistent with the intended
meaning (see previous section). To overcome these limitations, Bouissou (2004) and
Betz and Frühwirth (2005; 2007) independently proposed an alternative declara-
tive semantics based on (intuitionistic) linear logic. The latter, most comprehensive
study provides strong soundness and completeness results, as well as a semantics
for the CHR∨ extension of CHR (see Section 5.2.1). For CHR programs whose
constraints represent a multiset of resources, or whose rules represent unidirec-
tional actions or updates, a linear logic semantics proves much more appropriate.
A simple example is the following coin-throwing simulator (which depends on the
nondeterminism in the operational semantics):

throw(Coin) ⇐⇒ Coin = head.
throw(Coin) ⇐⇒ Coin = tail.

The classical logic reading of this program entails head = tail. The linear logic
reading of the coin-throwing program boils down to the following formula:

!(throw(Coin)((Coin = head)&(Coin = tail))

In natural language, this formula means “you can always replace throw(Coin) with
either (Coin = head) or (Coin = tail), but not both”. This corresponds to the
committed-choice and unidirectional rule application of CHR.

2.1.3 Transaction Logic Semantics

The linear logic semantics is already closer to the operational semantics than the
CHR classical logical semantics. However, it still does not allow precise reasoning
about CHR derivations: while derivations correspond to proofs of logic equivalence
of the initial and the final state, it only allows reasoning on the result of an execu-
tion, not on the execution itself. The transaction logic semantics (Meister, Djelloul
et al. 2007) bridges the remaining gap between the logical and operational semantics
of CHR by providing a framework for both inside one formal system.

2.2 Operational Semantics

The behavior of CHR implementations is determined by their operational seman-
tics. As the original theoretical semantics of CHR (Section 2.2.1) proved too non-
deterministic for practical programming, more deterministic instances have been
specified that offer more execution control (Sections 2.2.2 and 2.2.3).

2.2.1 Theoretical Operational Semantics ωt

The operational semantics ωt of CHR (Frühwirth 1998), sometimes also called the-
oretical or high-level operational semantics, is highly nondeterministic. It is formu-
lated as a state transition system.

8

Definition 2.1
An identified CHR constraint c#i is a CHR constraint c associated with some
unique integer i, the constraint identifier. This number serves to differentiate be-
tween copies of the same constraint. We introduce the functions chr(c#i) = c and
id(c#i) = i, and extend them to sequences and sets of identified CHR constraints
in the obvious manner, e.g., id(S) = {i|c#i ∈ S}.

Definition 2.2
An execution state σ is a tuple 〈G,S,B,T〉n. The goal G is a multiset of constraints
to be rewritten to solved form. The CHR constraint store S is a set of identified
CHR constraints that can be matched with rules in the program P. Note that chr(S)
is a multiset although S is a set. The built-in constraint store B is the conjunction
of all built-in constraints that have been posted to the underlying solver. These
constraints are assumed to be solved (implicitly) by the host language H. The
propagation history T is a set of tuples, each recording the identities of the CHR
constraints that fired a rule, and the name of the rule itself. The propagation history
is used to prevent trivial non-termination for propagation rules: a propagation rule
is allowed to fire on a set of constraints only if the constraints have not been used to
fire the same rule before.1 Finally, the counter n ∈ N represents the next integer that
can be used to number a CHR constraint. We use σ, σ0, σ1, . . . to denote execution
states and Σchr to denote the set of all execution states.

For a given CHR program P, the transitions are defined by the binary rela-
tion �P⊂ Σchr × Σchr shown in Figure 4. Execution proceeds by exhaustively
applying the transition rules, starting from an initial state.

The Solve transition solves a built-in constraint from the goal, the Introduce
transition inserts a new CHR constraint from the goal into the CHR constraint
store, and the Apply transition fires a rule instance. A rule instance instantiates
a rule with CHR constraints matching the heads, using a matching substitution (a
one-way variable substitution).

Relatively strong soundness and completeness results (Frühwirth 1998) link the
logical semantics and the operational semantics. Maher (2002) discusses the notion
of propagation completeness and proves an impossibility result for CHR.

Variants of ωt have been introduced to formalize extensions and variants of CHR.
For example, the operational semantics of CHR∨(Abdennadher 2000), probabilistic
CHR (Frühwirth, Di Pierro et al. 2002), and CHR with aggregates (Sneyers, Van
Weert et al. 2007) are all based on ωt. We discuss these and other extensions in
Section 5.

1 Early work on CHR, as well as some more recent publications (e.g., Bouissou 2004; Duck,
Stuckey et al. 2007; Haemmerlé and Fages 2007), use a token store instead of a propagation
history (this explains the convention of denoting the propagation history with T). A token store
contains a token for every potential (future) propagation rule application, which is removed
when the rule is actually applied. The propagation history formulation is dual, but closer to most
implementations. Confusingly, the term token store has also been used for what is commonly
referred to as the “propagation history” (e.g., Chin, Sulzmann et al. 2003; Tacchella, Gabbrielli
et al. 2007).

9

1. Solve. 〈{c}]G, S,B,T〉n �P 〈G, S, c ∧ B,T〉n
where c is a built-in constraint and DH |= ∃̄∅B.

2. Introduce. 〈{c}]G, S,B,T〉n �P 〈G, {c#n} ∪ S,B,T〉n+1

where c is a CHR constraint and DH |= ∃̄∅B.
3. Apply. 〈G, H1]H2] S,B,T〉n �P 〈B]G, H1] S, θ ∧ B,T ∪ {h}〉n

where P contains a (renamed apart) rule of the form r @ H ′
1 \ H ′

2 ⇐⇒ G | B,
θ is a matching substitution such that chr(H1) = θ(H ′

1) and chr(H2) = θ(H ′
2),

h = (r, id(H1), id(H2)) 6∈ T, and DH |= (∃̄∅B) ∧ (B→ ∃̄B(θ ∧G)).

Fig. 4. The transition rules of the theoretical operational semantics ωt, defining
�P . We use] for multiset union. For constraint conjunctions B1 and B2, ∃̄B2(B1)
denotes ∃X1, . . . , Xn : B1, with {X1, . . . , Xn} = vars(B1)\vars(B2).

We should also mention the work on an and-compositional semantics for CHR
(Delzanno, Gabbrielli et al. 2005; Gabbrielli and Meo 2009), which allows one to
retrieve the semantics of a conjunctive query given the semantics of the conjuncts.
This property is a first step towards incremental and modular analysis and verifi-
cation tools.

2.2.2 Refined Operational Semantics ωr

The refined operational semantics ωr (Duck, Stuckey et al. 2004) instantiates the
ωt operational semantics by removing much of the nondeterminism. It formally
captures the behavior of many CHR implementations (see also Section 4). CHR
programs often rely on the execution control offered by the ωr semantics for cor-
rectness, or to achieve a good time complexity.

The refined operational semantics uses a stack of constraints: when a new con-
straint arrives in the constraint store it is pushed on the stack. The constraint
on top of the stack is called the active constraint. The active constraint attempts
to match rule heads, together with suitable constraints from the constraint store
(partner constraints), All occurrences of the active constraint are tried in the order
in which they occur in the program. When all occurrences have been tried, the
constraint is popped from the stack. When a rule fires, its body is executed im-
mediately from left to right, thereby potentially suspending the active constraint
because of newly arriving constraints. When a constraint becomes topmost again,
it resumes its search for matching clauses.

Alternative formalizations of the ωr semantics have been made for easier reason-
ing about certain optimizations or analyses. Examples are the call-based refined
operational semantics ωc (Schrijvers, Stuckey et al. 2005) and the semantics for
occurrence representations ωo (Sneyers, Schrijvers et al. 2005). Variants of ωr have
also been introduced to formalize implementations of proposed extensions to CHR
or variants of CHR. To mention just a few of them: the ω¬r semantics for CHR¬ (Van
Weert, Sneyers et al. 2006), the ω∨r semantics for CHR∨ which is equivalent to the
tree-based ω� semantics (De Koninck, Schrijvers et al. 2006b), the set-based ωset
semantics of CHRd (Sarna-Starosta and Ramakrishnan 2007), and the concurrent

10

refined semantics (Lam and Sulzmann 2007). These extensions and variants are
discussed in more detail in Section 5.

2.2.3 Priority Semantics ωp

While the refined operational semantics reduces most of the nondeterminism of
the ωt semantics, it arguably does not offer the CHR programmer an intuitive and
predictable way to influence control flow. The ωr semantics in a sense forces the
programmer to understand and take into account how CHR implementations work,
to achieve the desired execution control. De Koninck, Schrijvers et al. (2007b) in-
troduced the extension CHRrp, with a corresponding operational semantics called
ωp. The programmer assigns a priority to every rule. The ωp semantics is an in-
stantiation of ωt which ensures that of all applicable rules, the one with the highest
priority is applied first. This feature gives the programmer a much more precise
and high-level control over program execution compared to the ωr semantics.

3 Program Analysis

In this section we discuss important properties of CHR programs: confluence (Sec-
tion 3.1), termination (Section 3.2), and complexity (Section 3.3), as well as (semi-)
automatic analysis of these properties. Program analyses that are mostly used for
optimizing compilation are discussed in Section 4.2.2.

3.1 Confluence

If for a given CHR program, for all initial states, any ωt derivation from that
state results in the same final state, the program is called confluent. Confluence
has been investigated thoroughly in the context of CHR (Abdennadher, Frühwirth
et al. 1999). Two important results are discussed already in (Frühwirth 1998): the
existence of a decidable, sufficient and necessary test for confluence of terminating
programs, and the result that confluence implies correctness (consistency of the log-
ical reading). Confluence under the refined ωr semantics is investigated in Chapter
6 of (Duck 2005), which also discusses a refined confluence test.

Recently, the topic of confluence received renewed attention because certain prob-
lems and limitations of the confluence test have surfaced. Firstly, many programs
that are in practice confluent fail this confluence test because non-confluence orig-
inates from unreachable states. The more powerful notion of observable confluence
(Duck, Stuckey et al. 2007) takes reachability into account. Secondly, the stan-
dard notion of confluence is only applicable to terminating programs. Raiser and
Tacchella (2007) extended the notion of confluence to non-terminating programs.

Haemmerlé and Fages (2007) develop a notion of abstract critical pairs for rewrit-
ing systems in general. They illustrate this notion for CHR’s theoretical semantics.
A particularly interesting result is that some traditional critical pairs can be disre-
garded because they are redundant.

11

Related Analyses. Abdennadher and Frühwirth (1998) showed how to do comple-
tion of CHR programs. Completion is a technique to transform a non-confluent
program into a confluent one by adding rules. It allows extension, modification and
specialization of existing programs.

A very useful notion is that of operational equivalence of two CHR programs.
Two programs are operationally equivalent if for each query, the answer is the
same (modulo variable renaming) according to each program. A straightforward
extension of confluence, called compatibility of two programs, is shown to be too
weak to capture the operational equivalence of CHR programs (Abdennadher and
Frühwirth 1999; Abdennadher 2001). Instead, Abdennadher and Frühwirth (1999)
give a decidable, sufficient, and necessary syntactic condition for operational equiv-
alence of well-behaved (confluent and terminating) CHR programs. A sufficient syn-
tactic condition is also given for the equivalence of two CHR constraints, defined
in two different well-behaved CHR programs. The latter condition is also shown
necessary for an interesting class of CHR programs.

Abdennadher and Frühwirth (2004) investigated the merging of two well-behaved
CHR solvers. If the two programs are not compatible, well-behavedness can be
regained by completion. Furthermore, Abdennadher and Frühwirth (2004) identify
a class of solvers whose union is always confluent, and argue why finding a class
whose union preserves termination is hard. Finally, Abdennadher and Frühwirth
(2004) present a method to remove redundant rules from CHR programs, based on
the notion of operational equivalence.

3.2 Termination

The first work on termination analysis of CHR programs was presented by Frühwirth
(2000). Frühwirth demonstrated that termination proof techniques from logic pro-
gramming and term rewrite systems can be adapted to the CHR context. Termina-
tion of CHR programs is proved by defining a ranking function from computation
states to a well-founded domain such that the rank of consecutive computation
states decreases. A condition on simplification rules guarantees such rank decreases
for all consecutive states. This approach, however, cannot prove termination of
CHR programs with propagation rules, because it is impossible to show decreases
between consecutive states as these rules do not remove constraints from the store.

Recently, two new results on termination analysis of CHR were presented. Pilozzi,
Schrijvers et al. (2007) describe a termination preserving transformation of CHR
programs to Prolog programs. By reusing termination tools from logic programming
and, indirectly, from term rewriting, proofs of termination of the transformed CHR
programs are generated automatically, yielding the first fully automatic termination
prover for CHR. The transformation, however, does not consider propagation his-
tories. As such, it is applicable only to CHR programs without propagation rules. A
transformation of single-headed propagation rules to equivalent simplification rules
overcomes this problem partially.

The second contribution is presented by Voets, Pilozzi et al. (2007). Compare to
previous approaches, theirsapproach is applicable to a much larger class of CHR pro-

12

grams. By formulating a new termination condition that verifies conditions imposed
on the dynamic process of adding constraints to the store, they derive conditions
for both simplification and propagation rules.

3.3 Complexity

For various CHR programs — general purpose programs as well as constraint solvers
— an accurate, though rather ad hoc, complexity analysis has been made. We
list the most notable examples in Section 3.3.1. While ad hoc methods give the
most accurate results in practice, they cannot easily be generalized. Therefore,
more structured approaches to complexity analysis have been proposed by means
of meta-complexity theorems. An overview is given in Section 3.3.2.

3.3.1 Ad Hoc Analysis

A CHR implementation of the classical union-find algorithm was proven optimal
by Schrijvers and Frühwirth (2006). Sneyers, Schrijvers et al. (2006a) showed the
optimal complexity of an implementation of Dijkstra’s shortest path algorithm that
uses Fibonacci heaps. Frühwirth (2005a) formulated the complexity of a general-
purpose lexicographical order constraint solver in terms of the number of ask and tell
built-in constraints encountered during execution. Finally, Meister, Djelloul et al.
(2006) derived the complexity of a solver for existentially quantified equations over
finite and infinite trees, using bounds on the derivation length.

3.3.2 Meta-Complexity Results

Frühwirth (2001; 2002a; 2002b) investigated the time complexity of simplification
rules for naive implementations of CHR. In this approach, a suitable termination
order (called a tight ranking) is used as an upper bound on the derivation length.
Combined with a worst-case estimate of the number and cost of rule application
attempts, this results in a complexity meta-theorem which gives a rough upper
bound of the time complexity. Recent work on optimizing compilation of CHR (cf.
Section 4.2.2) allows meta-theorems that give much tighter complexity bounds. We
now discuss two distinct approaches.

Ganzinger and McAllester (2002) propose a formalism called Logical Algorithms
(LA) and prove a meta-complexity result. De Koninck, Schrijvers et al. (2007a)
establish a close correspondence between CHR and LA (see also Section 6.1.3),
allowing the LA meta-complexity result to be applied (indirectly) to a large class
of CHR programs. De Koninck, Schrijvers et al. (2007a) actually address the meta-
complexity of CHRrp programs, an extension of CHR discussed in Section 5.1.3.
All CHR programs are also CHRrp programs. The Logical Algorithms approach
was previously used, in a more ad hoc way, by Christiansen (2005) to derive the
complexity of CHR grammars (see Section 7.3.3).

Sneyers, Schrijvers et al. (2009) explicitly decouple the two steps in the approach
of Frühwirth (2002a; 2002b) by introducing abstract CHR machines. In the first

13

step, the number of rule applications is estimated; this corresponds to the number of
CHR machine steps. If a suitable termination order can be found, it can be used to
show an upper bound. However for programs that are non-terminating in general,
like a RAM machine simulator, or for which no suitable ranking can be found,
other techniques have to be used to prove complexity properties. In the second
step, the complexity of rule application is computed for a given CHR program;
this corresponds to simulating a CHR machine on a RAM machine. The first step
depends only on the operational semantics of CHR, whereas the second step depends
strongly on the performance of the code generated by the CHR compiler.

3.3.3 Complexity-wise Completeness of CHR

Sneyers, Schrijvers et al. (2009) also consider the space complexity of CHR pro-
grams. Some compiler optimizations like memory reuse (Sneyers, Schrijvers et al.
2006b) are crucial to achieve tight space complexity bounds (cf. Section 4.2.2).
The most interesting result of Sneyers, Schrijvers et al. (2009) is the following
“complexity-wise completeness” result for CHR, which implies that “everything
can be done efficiently in CHR”: For every algorithm (RAM machine program)
which uses at least as much time as space, a CHR program exists which can be
executed in the K.U.Leuven CHR system with time and space complexity within
a constant from the original complexities. Complexity-wise completeness implies
Turing completeness but is a much stronger property.

4 Systems and Implementation

CHR is first and foremost a programming language. Hence, a large part of CHR
research has been devoted to the development of CHR systems and efficient execu-
tion of CHR programs. The two most comprehensive works on this subject are the
Ph.D. theses of Duck (2005) and Schrijvers (2005). In this section, we provide an
overview of their work as well as the many other contributions to the field.

4.1 Systems

Since the conception of CHR a large number of CHR systems (compilers, inter-
preters and ports) have been developed. In particular, in the last ten years the
number of systems has exploded. Figure 5 presents a timeline of system develop-
ment, branches and influences. We discuss these systems, grouped by host language
or host paradigm, in more detail.

4.1.1 CHR(LP)

Logic Programming is the natural host language paradigm for CHR. Hence, it is
not surprising that the CHR(Prolog) implementations are the most established
ones. Holzbaur and Frühwirth (2000a) have laid the groundwork with their general
compilation scheme for Prolog. This compilation scheme was first implemented in

14

Fig. 5. A timeline of CHR implementations.

SICStus Prolog by Holzbaur, and later further refined in HAL by Holzbaur, Garćıa
de la Banda et al. (2005) and in hProlog by Schrijvers and Demoen (2004b). The
latter system, called the K.U.Leuven CHR system, was subsequently ported to many
other Prolog systems and is currently available in XSB (Schrijvers, Warren et al.
2003; Schrijvers and Warren 2004), SWI-Prolog (Schrijvers, Wielemaker et al. 2005),
YAP, B-Prolog (using Action Rules; Schrijvers, Zhou et al. 2006), SICStus 4 and
Ciao Prolog. Another system directly based on the work of Holzbaur and Schrijvers
is the CHR library for SiLCC by Bouissou (2004). SiLCC is a programming language
based on linear logic and concurrent constraint programming. All of these systems
compile CHR programs to host language programs. The only available interpreter
for CHR(Prolog) is TOYCHR2.

2 by Gregory J. Duck, 2003. Download: http://www.cs.mu.oz.au/∼gjd/toychr/

15

http://www.cs.mu.oz.au/~gjd/toychr/

Recently, systems with deviating operational semantics have been developed. The
CHRd system by Sarna-Starosta and Ramakrishnan (2007) runs in XSB, SWI-
Prolog and hProlog. It features a constraint store with set semantics and is par-
ticularly suitable for tabled execution. The CHRrp system by De Koninck, Stuckey
et al. (2008) for SWI-Prolog provides rule priorities.

4.1.2 CHR(FP)

As type checking is one of the most successful applications of CHR in the con-
text of Functional Programming (see Section 7.3.1), several CHR implementations
were developed specifically for this purpose. Most notable is the Chameleon system
(Stuckey and Sulzmann 2005) which features CHR as the programming language
for its extensible type system. Internally, Chameleon uses the HaskellCHR imple-
mentation3. The earlier HCHR prototype (Chin, Sulzmann et al. 2003) had a rather
heavy-weight and impractical approach to logical variables.

The aim of a 2007 Google Summer of Code project was to transfer this CHR
based type checking approach to two Haskell compilers (YHC and nhc98). The
project led to a new CHR interpreter for Haskell, called TaiChi (Boespflug 2007).

With the advent of software transactional memories (STM) in Haskell, two pro-
totype systems with parallel execution strategies have been developed: STMCHR4

and Concurrent CHR (Lam and Sulzmann 2007). These systems are currently the
only known CHR implementations that exploit the inherent parallelism in CHR
programs. Concurrent CHR also serves as the basis for Haskell-Join-Rules (Sulz-
mann and Lam 2007b) (cf. Section 6.1.2).

We also mention the Haskell library for the PAKCS implementation of the func-
tional logic language Curry (Hanus 2006). The PAKCS system actually compiles
Curry code to SICStus Prolog, and its CHR library is essentially a front-end for
the SICStus Prolog CHR library. The notable added value of the Curry front-end
is the (semi-)typing of the CHR code.

4.1.3 CHR(Java) and CHR(C)

Finally, CHR systems are available for both Java and C. These multiparadigmatic
integrations of CHR and mainstream programming languages offer powerful syn-
ergetic advantages to the software developer: they facilitate the development of
application-tailored constraint systems that cooperate efficiently with existing host
language components. For a detailed discussion on the different conceptual and
technical challenges encountered when embedding CHR into an imperative host
language, we refer to Van Weert, Wuille et al. (2008).

3 by Gregory J. Duck, 2004. Download: http://www.cs.mu.oz.au/∼gjd/haskellchr/
4 by Michael Stahl, 2007. Download: http://www.cs.kuleuven.be/∼dtai/projects/CHR/

16

http://www.cs.mu.oz.au/~gjd/haskellchr/
http://www.cs.kuleuven.be/~dtai/projects/CHR/

CHR(Java). There are at least four implementations of CHR in Java. The earliest is
the Java Constraint Kit (JaCK) by Abdennadher (2001) and others (Abdennadher,
Krämer et al. 2002). It consists of three major components:

1. JCHR (Schmauß 1999) — a CHR dialect intended to resemble Java, in order
to provide an intuitive programming experience. No operational semantics is
specified for this system, and its behavior deviates from other CHR imple-
mentations.

2. VisualCHR (Abdennadher and Saft 2001) — an interactive tool visualizing
the execution of JCHR (cf. Section 4.3).

3. JASE (Krämer 2001) — a “Java Abstract Search Engine” in which tree-based
search strategies can be specified. The JASE library is added to the JaCK
framework as an orthogonal component. It provides a number of utility classes
that aid the user to implement search algorithms in the Java host language.
A typical algorithm consists of the following two operations, executed in a
loop: a JCHR handler is run until it reaches a fix-point, after which a new
choice is made. If an inconsistency is found, backtracking is used to return to
the previous choice point. JASE aids in maintaining the search tree, and can
be configured to use either trailing or copying.

DJCHR (Dynamic JCHR; Wolf 2001a) is an implementation of adaptive CHR
(see Section 5.1.4). The incremental adaptation algorithm underlying DJCHR main-
tains justifications for rule applications and constraint additions. Wolf (2005) shows
that these justifications, and in particular those of any derived false constraint,
also serve as a basis for intelligent search strategies. As in JaCK, the different
search algorithms are implemented orthogonally to the CHR program. Wolf’s ap-
proach confirms that advanced search strategies are often more efficient than a
low-level, built-in implementation of chronological backtracking (as in Prolog).

The K.U.Leuven JCHR system (Van Weert, Schrijvers et al. 2005) addresses
the main issue of JaCK, its poor performance. The focus of K.U.Leuven JCHR is
on both performance and integration with the host language. K.U.Leuven JCHR
handlers integrate neatly with existing Java code, and it is currently one of the
most efficient CHR systems available. The current implementation does not feature
search capabilities.

Finally, the CHORD system (Constraint Handling Object-oriented Rules with
Disjunctive bodies)5, developed as part of the ORCAS project (Robin and Vitorino
2006), is a Java implementation of CHR∨ (Menezes, Vitorino et al. 2005).

CHR(C). CCHR (Wuille, Schrijvers et al. 2007) implements CHR for C. It is an
extremely efficient CHR system conforming to the ωr refined operational semantics.
It uses a syntax that is intuitive to both CHR adepts and imperative programmers.

5 by Jairson Vitorino and Marcos Aurelio, 2005, http://chord.sourceforge.net/

17

http://chord.sourceforge.net/

4.2 Compilation

Considerable research has been conducted on the efficient compilation of CHR.
Section 4.2.1 provides an overview of the compilation schemes used by the different
CHR systems; Sections 4.2.2 and 4.2.3 survey existing analyses and optimizations.

4.2.1 Compilation Schemes

The first CHR compilation scheme, for ECLiPSe Prolog, was described by Frühwirth
and Brisset (1995). Holzbaur and Frühwirth (1999; 2000a) have adapted this scheme
from ECLiPSe’s fairly specific suspension mechanism to the more primitive and flex-
ible attributed variables feature found in SICStus Prolog. The latter form has been
adopted by HALCHR, K.U.Leuven CHR, and was formalized in the refined opera-
tional semantics (Duck, Stuckey et al. 2004). A good overview of the compilation
scheme can be found in the Ph.D. theses of Duck (2005) and Schrijvers (2005), and
in (Van Weert, Wuille et al. 2008).

In its essence, the scheme maps each constraint to a procedure. Imposing the
constraint then corresponds to calling the procedure. This procedure puts the new
constraint in the constraint store datastructure, and attempts to fire rules involving
the new constraint. For the latter purpose, the scheme contains an occurrence pro-
cedure for each occurrence of the constraint symbol in a rule. The main constraint
procedure calls these occurrence procedures in the textual order of the rules. The
reactivation of a constraint is realized through calling the occurrence procedures
anew. Each procedure looks up the required additional constraints in the constraint
store datastructure and checks both the guard and propagation history. If all tests
succeed, the rule is committed to: an entry is added to the propagation history, the
appropriate matching constraints are removed from the constraint store and the
body of the rule is executed.

The Prolog compilation scheme is specifically designed for the built-in constraint
theory of Herbrand equations. Duck, Stuckey et al. (2003) show how it can be
extended to cover arbitrary constraint theories and solvers.

Schrijvers, Zhou et al. (2006) experimented with an action rules compilation
scheme in BProlog. However, capturing the intricate reactivation behavior of CHR’s
refined operational semantics turned out to be hard because the action rules’ be-
havior differs considerably on that account.

Lam and Sulzmann (2007) showed that software transactional memories (STM),
as supported by the Glasgow Haskell Compiler, are a good match for the concur-
rent implementation of CHR. Sulzmann and Lam (2007a) also explored the use
of Haskell’s laziness and concurrency abstractions for implementing the search of
partner constraints.

CHR(Java). Both JaCK (Schmauß 1999) and CHORD take a different approach
compared to most other CHR compilers. Their front-end transforms the CHR source
files to Java code that initializes the data structures of a generic runtime. CHR
programs are then essentially interpreted. No major optimizations are performed.

18

DJCHR uses a compilation scheme similar to the basic CHR(Prolog) scheme, but
extended with truth maintenance facilities required for adaptive constraint handling
(Wolf 2001a). Justifications for constraints and rule applications are implemented
efficiently using bit vectors. The runtime also implements adaptive unification and
entailment algorithms. Following the approach of Holzbaur and Frühwirth (1999;
2000a), fast partner constraint retrieval is achieved using a form of attributed vari-
ables (Wolf 2001b).

K.U.Leuven JCHR and CCHR. The compilation schemes used by the K.U.Leuven
JCHR and CCHR systems (Van Weert, Schrijvers et al. 2005; Wuille, Schrijvers
et al. 2007) are based on the basic compilation scheme for CHR(Prolog), modified
to fit an imperative language (Van Weert, Wuille et al. 2008). Searching for partner
constraints is done through explicit iteration. Also, the data structures required
for the implementation of the constraint store are implemented more naturally and
efficiently in an imperative host language than in an LP language. An important
issue is that the host language typically cannot handle recursive calls efficiently. The
common CHR(Prolog) scheme was therefore adjusted significantly to avoid frequent
call stack overflows. The compilation scheme used by the K.U.Leuven JCHR system
is described in detail in (Van Weert 2008).

The CCHR compiler performs some limited optimizations, like memory reuse,
basic join ordering (see Section 4.2.2), as well as imperative-language specific opti-
mizations. The K.U.Leuven JCHR compiler implements most of the optimizations
mentioned in Section 4.2.2. For more details, see (Van Weert, Wuille et al. 2008).

CHRrp. A compilation scheme for CHRrp that is strongly based on the one for
regular CHR in Prolog, is presented in (De Koninck, Stuckey et al. 2008). It is
formalized in the refined priority semantics ωrp, which combines the refined opera-
tional semantics ωr of regular CHR, with the priority semantics ωp of CHRrp.

The main differences are the following. The initial goal, as well as rule bodies,
are executed in batch mode, i.e., no rule can fire as long as there are unprocessed
goal or body constraints (i.e., the Apply transition is not allowed if the Introduce
transition is applicable, cf. Fig. 4). New constraints are scheduled for activation at
all priorities at which they have occurrences, instead of being activated as soon
as they are processed. Constraints are activated at a given priority and as such
only consider those rules that share this priority. Finally, after each rule firing, it
is checked whether a scheduled constraint needs to be activated. To deal with so-
called dynamic priority rules, which are rules for which the actual priority is only
determined at runtime, a source-to-source transformation is given in (De Koninck,
Stuckey et al. 2008), that transforms these rules to the desired form for the ωrp

semantics.

4.2.2 Analysis and Optimizing Compilation

A number of (mostly static) analyses and optimizations have been proposed to
increase the performance of CHR systems (Holzbaur, Garćıa de la Banda et al.

19

2005; Schrijvers 2005; Duck 2005; Van Weert, Wuille et al. 2008). Without going
into the technical details, we very briefly discuss a list of recent optimizations:

Indexing. The efficient, selective lookup of candidate partner constraints is in-
dispensable for the efficient determination of matching rules. The traditional
CHR(Prolog) compilation scheme (see Section 4.2.1) uses attributed variables
for a constant time lookup of the constraints containing a known, unbound vari-
able. Holzbaur, Garćıa de la Banda et al. (2005) propose the use of a balanced
tree for the lookup of constraints via known ground arguments, which allows for
logarithmic worst-case time lookup. Schrijvers (2005) further improves this using
hash tables to get amortized constant time constraint store operations. Sneyers,
Schrijvers et al. (2006a) finally introduce array-based indexes to obtain correct
space and time complexity guarantees (see also (Sneyers, Schrijvers et al. 2009)).
Sarna-Starosta and Schrijvers (2007) show how indexing on compound term pat-
terns is reduced to the above indexing techniques via program transformation.

Abstract interpretation. Schrijvers, Stuckey et al. (2005) present a general and
systematic framework for program analysis of CHR for optimized compilation
based on abstract interpretation. Two instances are given: late storage analysis
(for reducing constraint store updates) and groundness analysis.

Functional dependencies. Functional dependency analysis (Duck and Schrijvers
2005) is a third instance of the abstract interpretation framework. It aims at
tracking the cardinality of constraints (zero, one or more) for specializing con-
straint store indexes and related operations.

Guard optimization. The guard optimization (Sneyers, Schrijvers et al. 2005) re-
moves redundant conjuncts in rule guards by reasoning on the ramifications of the
refined operational semantics. More precisely, non-applicability of rules contain-
ing earlier removed occurrences of a constraint, can be used to infer redundant
guard conditions.

Continuation optimization. The continuation optimization (Sneyers, Schrijvers
et al. 2005) uses a similar reasoning to skip occurrences that can never lead to
rule firings.

Delay avoidance. Schrijvers and Demoen (2004a) and Holzbaur, Garćıa de la
Banda et al. (2005) describe techniques for avoiding the unnecessary delay and
reactivation of constraints.

Memory reuse. Two memory optimizations (in-place updates and suspension reuse)
were introduced by Sneyers, Schrijvers et al. (2006b). They significantly reduce
the memory footprint and the time spent in garbage collection.

Join ordering. The time complexity of executing a CHR program is often deter-
mined by the join ordering — the order in which partner constraints are looked
up in order to find matching rules. Holzbaur, Garćıa de la Banda et al. (2005)
and Duck (2005) discussed ad-hoc heuristics for join ordering. De Koninck and
Sneyers (2007) proposed a more rigorous investigation.

20

4.2.3 Code Specialization and Transformation

Most of the optimizations in the previous section are not expressible as source-to-
source transformations. Like compiler optimization, program transformation can
also be used to improve performance. The first proposal for CHR source-to-source
transformation, by Frühwirth (2005c), adds redundant, specialized rules to a CHR
program; these rules capture the effect of the original program for a particular goal.
In more recent work, Tacchella, Gabbrielli et al. (2007) adapt the conventional
notion of unfolding to CHR.

While the above study program transformation from a more theoretical point of
view, Sarna-Starosta and Schrijvers (2007) show that various program transforma-
tion techniques improve indexing performance.

Frühwirth and Holzbaur (2003) propose to express CHR source-to-source trans-
formations in CHR itself, and they show how to implement various language ex-
tensions (such as probabilistic CHR) by transformation to plain CHR. Van Weert,
Sneyers et al. (2008) implemented an extension of CHR with aggregates (see Sec-
tion 5.2.2) using a similar approach, with a more expressive transformation lan-
guage.

4.3 Programming Environments

Over the past decade there has been an exponential increase in the number of CHR
systems (Section 4.1), and CHR compilation techniques have matured considerably
(Section 4.2). The support for advanced software development tools, such as debug-
gers, refactoring tools, and automated analysis tools, lags somewhat behind, and
remains an important challenge for the CHR community.

VisualCHR (Abdennadher and Saft 2001), part of JaCK (see Section 4.1.3), is
an interactive tool visualizing the execution of CHR rules. It can be used to debug
and to improve the efficiency of constraint solvers.

Both Holzbaur’s CHR implementation and the K.U.Leuven CHR system feature
a trace-based debugger that is integrated in the Prolog four port tracer. A generic
trace analysis tool, with an instantiation for CHR, is presented in (Ducassé 1999).

Checked type annotations are useful both for documentation and debugging pur-
poses. CHR systems with a typed host language commonly perform type checking,
or even type inference. The K.U.Leuven CHR system also allows optional type dec-
larations, with both dynamic and static type checking. Coquery and Fages (2005)
present a generic type system for CHR(H) (cf. also Section 7.3.1).

Ringwelski and Schlenker (2000a) propose the automatic inference of imported
and exported symbols of CHR solvers, and the composition of solvers by matching
up their interfaces (Ringwelski and Schlenker 2000b).

Schumann (2002) presents a literate programming system for CHR. The system
allows for generating from the same literate program source both an algorithm
specification typeset in LATEX using mathematical notation, and the corresponding
executable CHR source code.

Based on the theoretical results of Abdennadher, Frühwirth et al. (1999) (see

21

Section 3.1), Bouissou (2004) implemented a confluence analyzer in CHR. Duck
(2005) presents and evaluates a confluence checker based on the refined operational
semantics. We do not know of any practical implementations of the other analyses
of Section 3.1.

5 Extensions and Variants

Over the years, weaknesses and limitations of CHR have been identified, for instance
regarding execution control, expressivity, modularity, incrementality, and search. In
this section we consider extensions and variants of CHR that were proposed to tackle
these issues.

5.1 Deviating Operational Semantics

We first discuss variants of CHR with an operational semantics that deviates from
the commonly used refined operational semantics discussed in Section 2.2.2.

5.1.1 Probabilistic CHR

Probabilistic CHR (PCHR; Frühwirth, Di Pierro et al. 2002) extends CHR with
probabilistic choice between the applicable rules in any state (though only for a
given active constraint). It supports the implementation of algorithms like simulated
annealing, which is often used for constrained optimization. It also gives rise to
new concepts like probabilistic confluence and probabilistic termination. In PCHR,
the probabilities are either a fixed number or an arithmetic expression involving
variables that appear in the head. The latter are called parametrised probabilities.
The actual probability that a rule is executed in a given state is found by dividing
the rule probability by the sum of the probabilities of all fireable rule instances.
Frühwirth, Di Pierro et al. (2002) give an implementation of PCHR by means of
a source-to-source transformation using the framework proposed by Frühwirth and
Holzbaur (2003).

As a simple example, the following PCHR program simulates tossing a coin:

toss(Coin) <=>0.5: Coin=head.

toss(Coin) <=>0.5: Coin=tail.

Given a toss/1 constraint, one of the rules will be applied, with equal probability.

5.1.2 CHRd

The CHRd system (CHR with distributed constraint store) of Sarna-Starosta and
Ramakrishnan (2007) alleviates the limitations of conventional CHR systems for
efficient tabled evaluation encountered by Schrijvers and Warren (2004). For this
purpose it implements a set-based operational semantics, i.e. the constraint store
is a set rather than a multiset. Moreover, CHRd’s constraint store has no global
access point; constraints can only be retrieved through their logical variables. This
rules out (the efficient execution of) of ground CHR programs.

22

5.1.3 CHRrp

CHRrp (De Koninck, Schrijvers et al. 2007b) is CHR extended with user-definable
rule priorities. A rule’s priority is either a number or an arithmetic expression in-
volving variables that appear in the rule heads. The latter allows different instances
of a rule to be executed at different priorities. The following CHRrp-related top-
ics are dealt with in other sections: its operational semantics in Section 2.2.3; its
compilation schema in Section 4.2.1; and its implementation for SWI-Prolog in
Section 4.1.1.

An example that illustrates the power of dynamic priorities is the following
CHRrp implementation of Dijkstra’s algorithm:

1 :: source(V) ==> dist(V,0).

1 :: dist(V,D1) \ dist(V,D2) <=> D1 =< D2 | true.

D+2 :: dist(V,D), edge(V,C,W) ==> dist(W,D+C).

The priority of the last rule makes sure that new distance labels are propagated in
the right order: first the nodes closest to the source node.

5.1.4 Adaptive CHR

Constraint solving in a continuously changing, dynamic environment often requires
immediate adaptation of the solutions, i.e. when constraints are added or removed.
By nature, CHR solvers already support efficient adaptation when constraints are
added. Wolf (1999; 2000) introduces an extended incremental adaptation algorithm
which is capable of adapting CHR derivations after constraint deletions as well.
This algorithm is further improved by Wolf (2000a) with the elimination of local
variables using early projection. An efficient implementation exists in Java (Wolf
2001a; 2001b; cf. Section 4.1.3).

Interesting applications of adaptive CHR include adaptive solving of soft con-
straints, discussed in Section 7.1, and the realization of intelligent search strategies,
discussed in Sections 4.1.3 and 5.2.1.

5.2 Language Extensions

We now discuss some additional language features that have been added to the
CHR language.

5.2.1 Disjunction and Search

Most constraint solvers require search next to constraint simplification and propa-
gation. However pure CHR does not offer any support for search. Abdennadher and
Schütz (1998) propose a solution to this problem: an extension of CHR with dis-
junctions in rule bodies (see also Abdennadher 2000; 2001). The resulting language
is denoted CHR∨ (pronounced “CHR-or”), and is capable of expressing several
declarative evaluation strategies, including bottom-up evaluation, top-down evalu-
ation, model generation and abduction (see Section 7.3.2 for abduction). Any (pure)

23

Prolog program can be rephrased as an equivalent CHR∨ program (Abdennadher
2000; 2001). An interesting aspect of CHR∨ is that the extension comes for free
in CHR(Prolog) implementations by means of the built-in Prolog disjunction and
search mechanism.

As a typical example of programming in CHR∨, consider the following rule:

labeling, X::Domain <=> member(X,Domain), labeling.

Note the implicit disjunction in the call to the Prolog predicate member/2.
Various ways have been proposed to make the search in CHR∨ programs more

flexible and efficient. Menezes, Vitorino et al. (2005) present a CHR∨ implementa-
tion for Java in which the search tree is made explicit and manipulated at runtime
to improve efficiency. The nodes in the search tree can be reordered to avoid re-
dundant work. De Koninck, Schrijvers et al. (2006b) extend both the theoretical
and refined operational semantics of CHR towards CHR∨. The theoretical ver-
sion leaves the search strategy undetermined, whereas the refined version allows
the specification of various search strategies. In the same work, an implementation
for different strategies in CHR(Prolog) is realized by means of a source-to-source
transformation.

For CHR(Java) systems, unlike for CHR(LP) systems, the host language does not
provide search capabilities. The flexible specification of intelligent search strategies
has therefore received considerable attention in several CHR(Java) systems (Krämer
2001; Wolf 2005). As described in Section 4.1.3, in these systems, the search strate-
gies are implemented and specified in the host language itself, orthogonally to the
actual CHR program. Wolf, Robin et al. (2007) propose an implementation of CHR∨

using the ideas of (Wolf 2005), in order to allow a more declarative formulation of
search in the bodies of CHR rules, while preserving efficiency and flexibility. A re-
fined operational semantics of the proposed execution strategy is presented as well.
Along these lines is the approach proposed by Robin, Vitorino et al. (2007), where
disjunctions in CHR∨ are transformed into special purpose constraints that can be
handled by an external search component such as JASE (Krämer 2001).

5.2.2 Negation and Aggregates

CHR programmers often want to test for the absence of constraints. CHR was
therefore extended with negation as absence by Van Weert, Sneyers et al. (2006).
Negation as absence was later generalized to a much more powerful language fea-
ture, called aggregates (Sneyers, Van Weert et al. 2007). Aggregates accumulate
information over unbounded portions of the constraint store. Predefined aggregates
include sum, count, findall, and min. The proposed extension also features nested
aggregate expressions over guarded conjunctions of constraints, and application-
tailored user-defined aggregates. Aggregates lead to increased expressivity and more
concise programs. An implementation based on source-to-source transformations
(Van Weert, Sneyers et al. 2008) is available. The implementation uses efficient
incremental aggregate computation, and empirical results show that the desired
runtime complexity is attainable with an acceptable constant time overhead.

24

As an example of nested aggregate expressions, consider the following rule:

eulerian, forall(node(N),(

count(edge(N,_),X), count(edge(_,N),X)

)) <=> writeln(graph_is_eulerian).

The above rule is applicable if for every constraint node(N), the number of out-
going edges in N equals the number of incoming edges (i.e. if the first number is X,
the other number must also be X).

5.3 Solver Hierarchies

While the theory of the CHR language generally considers arbitrary built-in solvers,
traditional CHR implementations restrict themselves to the Herbrand equality con-
straint solver, with very little, if any, support for other constraint solvers.

Duck, Stuckey et al. (2003) show how to build CHR solvers on top of arbitrary
built-in constraint solvers by means of ask constraints. The ask constraints signal
the CHR solver when something has changed in the built-in store with respect to
variables of interest. Then the relevant CHR constraints may be reactivated.

Schrijvers, Demoen et al. (2006) provide an automated means for deriving ask
versions of CHR constraints. In this way full hierarchies of constraint solvers can
be written in CHR, where one CHR solver serves as the built-in solver for another
CHR solver.

6 Relation to Other Formalisms

The relation of CHR to other formalisms has recently received quite a lot of atten-
tion. In this section we give a brief overview.

As a general remark, we should mention that most of the formalisms related to
CHR are limited to ground terms and lack the equivalent of propagation rules. In
that sense, they are subsumed by CHR. Also, CHR can be seen as an instance or
a generalization of concurrent constraint programming, constraint logic program-
ming, constraint databases, and deductive databases.

Logical formalisms. In Section 2.1, we discussed the logical semantics of CHR. CHR
can be given a classical logic semantics (Frühwirth 1998), a linear logic semantics
(Betz and Frühwirth 2005; 2007), and a transaction logic semantics (Meister, Djel-
loul et al. 2007). Also, it should be noted that CHR∨ subsumes Prolog. Frame-
Logic (F-Logic) is an object-oriented extension of classical predicate logic. Käser
and Meister (2006) explore the relation between CHR and F-Logic by implementing
(a fragment of) F-Logic in CHR.

Term rewriting. CHR can be considered as associative and commutative (AC) term
rewriting of flat conjunctions. The term rewriting literature inspired many results
for CHR, for example on confluence (see Section 3.1) and termination (see Sec-
tion 3.2). Recently, Duck, Stuckey et al. (2006) proposed the formalism of ACD
term rewriting, which subsumes both AC term rewriting and CHR.

25

6.1 Set-Based Formalisms

Numerous formalisms have been proposed that are based on (multi-)set rewriting.

6.1.1 Production Rules / Business Rules

Production rules, or business rules as they are now often called, is a rule-based
paradigm closely related to CHR. Classic matching algorithms, such as RETE and
LEAPS, have influenced early work on CHR compilation. Production rules have also
inspired the research towards extending CHR with aggregates (see Section 5.2.2).

6.1.2 Join-Calculus

The join-calculus is a calculus for concurrent programming, with both stand-alone
implementations and extensions of general purpose languages, such as JoCaml
(OCaml), Join Java and Polyphonic C#.

Sulzmann and Lam (2007b) propose a Haskell language extension for support-
ing join-calculus-style concurrent programming, based on CHR. Join-calculus rules,
called chords, are essentially guardless simplification rules with linear match pat-
terns. In a linear pattern, different head conjuncts are not allowed to share variables.
Hence, CHR offers considerably increased expressivity over the join-calculus: prop-
agation rules, general guards and non-linear patterns.

6.1.3 Logical Algorithms

As already mentioned in Section 3.3.2, CHR is strongly related to the Logical Algo-
rithms (LA) formalism by Ganzinger and McAllester (2002). De Koninck, Schrijvers
et al. (2007a) have showed how LA programs can easily be translated into CHRrp

programs. The opposite only holds for a subset of CHRrp since the LA language
lacks the ability to plug in any built-in constraint theory, and also only supports
ground constraints (called assertions in LA terminology). The correspondence be-
tween both languages makes it possible to apply the meta-complexity result for LA
to a subset of CHRrp as explained in Section 3.3.2. It is also interesting that the
first actual implementation of LA is that of De Koninck, Schrijvers et al. (2007a),
which compiles the language into (regular) CHR rules.

6.1.4 Equivalent Transformation Rules

The Equivalent Transformation (ET) computation model is a rewriting system
which consists of the application of conditional multi-headed multi-body ET rules
(ETR). Although CHR and ETR are similar in syntax, they have different the-
oretical bases: CHR is based on logical equivalence of logical formulas, whereas
ETR is based on the set equivalence of descriptions. Shigeta, Akama et al. (2006)
investigate the relation between CHR and ETR.

26

6.2 Graph-Based Formalisms

Recently, CHR has also been related to a number of graph-based formalisms:

6.2.1 Graph Transformation Systems

Raiser (2007) describes an elegant embedding of Graph Transformation Systems
(GTS) in CHR. The confluence properties (see Section 3.1) for CHR and GTS are
similar; in particular, a sufficient criterion for confluence of a GTS is the confluence
of the corresponding CHR program. Using a slightly weaker notion of confluence of
CHR (in the spirit of observable confluence; Duck, Stuckey et al. 2007), standard
CHR confluence checkers can be reused to decide GTS confluence.

6.2.2 Petri Nets

Petri nets are a well-known formalism for the modeling and analysis of concurrent
processes. Betz (2007) provides a first study of the relation between CHR and
Petri nets. He provides a sound and complete translation of place/transition nets
(P/T nets) — a standard variant of Petri nets — into a small segment of CHR.
P/T nets are, unlike CHR (cf. Section 3.3), not Turing complete. A translation
of a significant subsegment of CHR into colored Petri nets is presented as well by
Betz (2007). This work is a promising first step towards cross-fertilization between
both formalisms. Results from Petri nets could for instance be applied to analyze
concurrency properties of CHR programs.

6.2.3 LMNtal

LMNtal (Ueda et al. 2006) is a language based on hierarchical graph rewriting which
intends to unify constraint-based concurrency and CHR. It uses logical variables to
represent connectivity and so-called membranes to represent hierarchy. Flat LMNtal
rules (rules without membranes) can be seen as simplification rules in CHR.

7 Applications

The main application domain considered in the previous CHR survey (Frühwirth
1998) is the development of constraint solvers. It also discusses two other applica-
tions of CHR in some depth. The first one is related to the problem of finding an
optimal placement of wireless transmitters (Frühwirth and Brisset 1998; 2000); the
second one is an expert system for estimating the maximum fair rent in the city of
Munich, called the Munich Rent Advisor (Frühwirth and Abdennadher 2001). In
this section, we give an overview of more recent applications of CHR.

7.1 Constraint Solvers

CHR was originally designed specifically for writing constraint solvers. We discuss
some recent examples of constraint solvers written in CHR. The following exam-

27

ples illustrate how CHR can be used to build effective prototypes of non-trivial
constraint solvers:

Lexicographic order. Frühwirth (2006a) presented a constraint solver for a lexi-
cographic order constraint in terms of inequality constraints offered by the under-
lying solver. The approach is general in that it can be used for any constraint do-
main offering inequality (less-than) constraints between problem variables. Still,
the program is very concise and elegant; it consists of just six rules.

Rational trees. Meister, Djelloul et al. (2006) presented a solver for existentially
quantified conjunctions of non-flat equations over rational trees. The solver con-
sists of a transformation to flat equations, after which a classic CHR solver for
rational trees can be used. This results in a complexity improvement with respect
to previous work. In (Djelloul, Dao et al. 2007), the solver for rational trees is
used as part of a more general solver for (quantified) first-order constraints over
finite and infinite trees.

Sequences. Kosmatov (2006a; 2006b) has constructed a constraint solver for se-
quences, inspired by an earlier solver for lists by Frühwirth. The solver expresses
many sequence constraints in terms of two basic constraints, for sequence con-
catenation and size.

Non-linear constraints. A general purpose CHR-based CLP system for non-
linear (polynomial) constraints over the real numbers was presented by De Kon-
inck, Schrijvers et al. (2006a). The system, called INCLP(R), is based on interval
arithmetic and uses an interval Newton method as well as constraint inversion to
achieve respectively box and hull consistency.

Interactive constraint satisfaction. Alberti, Gavanelli et al. (2005) describe
the implementation of a CLP language for expressing Interactive Constraint Sat-
isfaction Problems (ICSP). In the ICSP model incremental constraint propaga-
tion is possible even when variable domains are not fully known, performing
acquisition of domain elements only when necessary.

Solvers derived from union-find. Frühwirth (2006b) proposes linear-time algo-
rithms for solving certain boolean equations and linear polynomial equations in
two variables. These solvers are derived from the classic union-find algorithm (see
Section 7.2).

In the rest of this subsection we discuss, in a bit more detail, some typical appli-
cation domains in which CHR has been used to implement constraint solvers.

7.1.1 Soft Constraints and Scheduling

An important class of constraints are the so-called soft constraints which are used
to represent preferences amongst solutions to a problem. Unlike hard (required)
constraints which must hold in any solution, soft (preferential) constraints must only
be satisfied as far as possible. Bistarelli, Frühwirth et al. (2004) present a series of
constraint solvers for (mostly) extensionally defined finite domain soft constraints,
based on the framework of c-semirings. In this framework, soft constraints can be
combined and projected onto a subset of their variables, by using the two operators

28

of a c-semiring. A node and arc consistency solver is presented, as well as complete
solvers based on variable elimination or branch and bound optimization.

Another well-known formalism for describing over-constrained systems is that
of constraint hierarchies, where constraints with hierarchical strengths or prefer-
ences can be specified, and non-trivial error functions can be used to determine
the solutions. Wolf (2000b) proposes an approach for solving dynamically changing
constraint hierarchies. Constraint hierarchies over finite domains are transformed
into equivalent constraint systems, which are then solved using an adaptive CHR
solver (Wolf, Gruenhagen et al. 2000; Wolf 2001a; see Section 5.1.4).

Scheduling. Abdennadher and Marte (2000) have successfully used CHR for schedul-
ing courses at the university of Munich. Their approach is based on a form of soft
constraints, implemented in CHR, to deal with teacher’s preferences. A related
problem, namely that of assigning classrooms to courses given a timetable, is dealt
with by Abdennadher, Saft et al. (2000). An overview of both applications is found
in (Abdennadher 2001).

7.1.2 Spatio-Temporal Reasoning

In the context of autonomous mobile robot navigation, a crucial research topic
is automated qualitative reasoning about spatio-temporal information, including
orientation, named or compared distances, cardinal directions, topology and time.
The use of CHR for spatio-temporal reasoning has received considerable research
attention. We mention in particular the contributions of Escrig et al. (Escrig and
Toledo 1998a; 1998b; Cabedo and Escrig 2003).

Meyer (2000) has applied CHR for the constraint-based specification and im-
plementation of diagrammatic environments. Grammar-based specifications of dia-
grammatic objects are translated to directly executable CHR rules. This approach
is very powerful and flexible. The use of CHR allows the integration with other
constraint domains, and additional CHR rules can easily be added to model more
complex diagrammatic systems. Similar results are obtained with CHRG in the
context of natural language processing (see Section 7.3.3).

7.1.3 Multi-Agent Systems

FLUX (Thielscher 2002; 2005) is a high-level programming system, implemented
in CHR and based on fluent calculus, for cognitive agents that reason logically
about actions in the context of incomplete information. An interesting application
of this system is FLUXPLAYER (Schiffel and Thielscher 2007), which won the 2006
General Game Playing (GGP) competition at AAAI’06. Seitz, Bauer et al. (2002)
and Alberti et al. (2004; 2004; 2006) also applied CHR in the context of multi-agent
systems.

Lam and Sulzmann (2006) explore the use of CHR as an agent specification lan-
guage, founded on CHR’s linear logic semantics (see Section 2.1.2). They introduce
a monadic operational semantics for CHR, where special action constraints have

29

to be processed in sequence. They reason about the termination and confluence
properties of the resulting language. They were also the first to propose the use of
invariants for CHR confluence testing, an approach that was later formalized by
Duck, Stuckey et al. (2007) — cf. Section 3.1.

7.1.4 Semantic Web and Web 3.0

One of the core problems related to the so-called Semantic Web is the integration
and combination of data from diverse information sources. Bressan and Goh (1998)
describe an implementation of the coin (context interchange) mediator that uses
CHR for solving integrity constraints. In more recent work, CHR is used for im-
plementing an extension of the coin framework, capable of handling more data
source heterogeneity (Firat 2003). Badea, Tilivea et al. (2004) present an improved
mediator-based integration system. It allows forward propagation rules involving
model predicates, whereas coin only allows integrity constraints on source predi-
cates.

The Web Ontology Language (OWL) is based on Description Logic (DL). Various
rule-based formalisms have been considered for combination and integration with
OWL or other description logics. Frühwirth (2007) proposes a CHR-based approach
to DL and DL rules. Simply encoding the first-order logic theory of the DL in
CHR results in a concise, correct, confluent and concurrent CHR program with
performance guarantees.

The Cuypers Multimedia Transformation Engine (Geurts, van Ossenbruggen
et al. 2001) is a prototype system for automatic generation of Web-based presenta-
tions adapted to device-specific capabilities and user preferences. It uses CHR and
traditional CLP to solve qualitative and quantitative spatio-temporal constraints.

7.1.5 Automatic Generation of Solvers

Many authors have investigated the automatic generation of CHR rules, constitut-
ing a constraint solver, from a formal specification. Most authors consider exten-
sionally defined constraints over (small) finite domains as the specification.

A first line of work is that of Apt and Monfroy (2001). From an extensional
definition of a finite domain constraint, a set of propagation rules is derived. These
rules reduce the domain of one variable based on the domains of the other variables
involved in the same constraint. As an extension, Brand and Monfroy (2003) propose
to transform the derived rules to obtain stronger propagation rules. This technique
is useful to obtain derived versions of constraints, such as the conjunction of two
constraints.

A second line of work is that of Abdennadher and Rigotti. In (2004) they de-
rive propagation rules from extensionally defined constraints. There are two main
differences with the previous line of work. Firstly, the rules are assembled from
given parts, and, secondly, propagation rules are transformed into simplification
rules when valid. This algorithm is implemented by the Automatic Rule Miner
tool (Abdennadher, Olama et al. 2006). They extend their approach to intensional

30

constraint definitions, where constraints are defined by logic programs (2005), and
further to symbolically derive rules from the logic programs, rather than from given
parts (2008).

Brand (2002) has proposed a method to eliminate redundant propagation rules
and applies it to rules generated by RuleMiner: one of the algorithms that forms
the basis of the Automatic Rule Miner tool by Abdennadher et al. (2006).

7.2 Union-Find and Other Classic Algorithms

CHR is used increasingly as a general-purpose programming language. Starting a
trend of investigating this side of CHR, Schrijvers and Frühwirth (2005a; 2006)
implemented and analyzed the classic union-find algorithm in CHR. In particular,
they showed how the optimal complexity of this algorithm can be achieved in CHR
— a non-trivial achievement since this is believed to be impossible in pure Prolog.
This work lead to parallel versions of the union-find algorithm (Frühwirth 2005b)
and several derived algorithms (Frühwirth 2006b). Inspired by the specific optimal
complexity result for the union-find algorithm, Sneyers, Schrijvers et al. (2009) have
generalized this to arbitrary (RAM-machine) algorithms (see Section 3.3.2).

The question of finding elegant and natural implementations of classic algorithms
in CHR remains nevertheless an interesting research topic. Examples of recent work
in this area are implementations of Dijkstra’s shortest path algorithm using Fi-
bonacci heaps (Sneyers, Schrijvers et al. 2006a) and the preflow-push maximal flow
algorithm (Meister 2006).

7.3 Programming Language Development

Another application area in which CHR has proved to be useful is the devel-
opment of programming languages. CHR has been applied to implement addi-
tional programming language features such as type systems (Section 7.3.1), meta-
programming (Section 7.3.4), and abduction (Section 7.3.2). Also, CHR has been
used to implement new programming languages, especially in the context of com-
putational linguistics (Section 7.3.3). Finally, CHR has been used for testing and
verification (Section 7.3.5).

7.3.1 Type Systems

CHR’s aptness for symbolic constraint solving has led to many applications in the
context of type system design, type checking and type inference. While the basic
Hindley-Milner type system requires no more than a simple Herbrand equality
constraint, more advanced type systems require custom constraint solvers.

Alves and Florido (2002) presented the first work on using Prolog and CHR for
implementing the type inference framework HM(X), i.e. type inference for exten-
sions of the Hindley-Milner type system. This work was followed up by TypeTool
(Simões and Florido 2004), a tool for visualizing the type inference process.

The most successful use of CHR in this area is for Haskell type classes. Type

31

classes are a principled approach to ad hoc function overloading based on type-level
constraints. By defining these type class constraints in terms of a CHR program
(Stuckey and Sulzmann 2005) the essential properties of the type checker (sound-
ness, completeness and termination) can easily be established. Moreover, various
extensions, such as multi-parameter type classes (Sulzmann, Schrijvers et al. 2006)
and functional dependencies (Sulzmann, Duck et al. 2007) are easily expressed. At
several occasions Sulzmann argues for HM(CHR), where the programmer can di-
rectly implement custom type system extensions in CHR. Wazny (2006) has made
considerable contributions in this setting, in particular to type error diagnosis based
on justifications.

Coquery and Fages (2003; 2005) presented TCLP, a CHR-based type checker
for Prolog and CHR(Prolog) that deals with parametric polymorphism, subtyping
and overloading. Schrijvers and Bruynooghe (2006) reconstruct type definitions for
untyped functional and logic programs.

Finally, Chin, Craciun et al. (2006) presented a control-flow-based approach for
variant parametric polymorphism in Java.

7.3.2 Abduction

Abduction is the inference of a cause to explain a consequence: given B determine A
such that A→ B. It has applications in many areas: diagnosis, recognition, natural
language processing, type inference, . . .

The earliest paper connecting CHR with abduction is that of Abdennadher and
Christiansen (2000). It shows how to model logic programs with abducibles and in-
tegrity constraints in CHR∨. The disjunction is used for (naively) enumerating the
alternatives of the abducibles, while integrity constraints are implemented as propa-
gation rules. The HYPROLOG system of Christiansen and Dahl (2005a) combines
the above approach to abductive reasoning with abductive-based logic program-
ming in one system. Both the abducibles and the assumptions are implemented as
CHR constraints. Christiansen (2006) also proposes the use of CHR for the imple-
mentation of global abduction, an extended form of logical abduction for reasoning
about a dynamic world.

Gavanelli, Lamma et al. (2003) propose two variant approaches to implementing
abductive logic programming. The first is similar to the above approach, but tries
to leverage as much as possible from a more efficient boolean constraint solver,
rather than CHR. The second approach propagates abducibles based on integrity
constraints.

The system of Alberti, Chesani et al. (2005) extends the abductive reasoning
procedure with the dynamic acquisition of new facts. These new facts serve to
confirm or disconfirm earlier hypotheses.

Sulzmann, Wazny et al. (2005) show that advanced type system features give
rise to implications of constraints, or, in other words, constraint abduction. An
extension of their CHR-based type checking algorithm is required to deal with
these implications.

32

7.3.3 Computational Linguistics

CHR allows flexible combinations of top-down and bottom-up computation (Ab-
dennadher and Schütz 1998), and abduction fits naturally in CHR as well (see
Section 7.3.2). It is therefore not surprising that CHR has proven a powerful im-
plementation and specification tool for language processors.

Penn (2000) focuses on another benefit CHR provides to computational linguists,
namely the possibility of delaying constraints until their arguments are sufficiently
instantiated. As a comprehensive case study he considers a grammar development
system for HPSG, a popular constraint-based linguistic theory.

Morawietz and Blache (2002) show that CHR allows a flexible and perspicuous
implementation of a series of standard chart parsing algorithms (cf. also Morawietz
(2000)), as well as more advanced grammar formalisms such as minimalist gram-
mars and property grammars. Items of a conventional chart parser are modeled as
CHR constraints, and new constraints are deduced using constraint propagation.
The constraint store represents the chart, from which the parse tree can be de-
termined. Along the same lines is the CHR implementation of a context-sensitive,
rule-based grammar formalism by Garat and Wonsever (2002).

A more recent application of CHR in the context of natural language processing
is (Christiansen and Have 2007), where a combination of Definite Clause Grammars
(DCG) and CHR is used to automatically derive UML class diagrams from use cases
written in a restricted natural language.

CHR Grammars. The most successful approach to CHR-based language process-
ing is given by CHR grammars (CHRG), a highly expressive, bottom-up grammar
specification language proposed by Christiansen (2005). Contrary to the aforemen-
tioned approaches, which mostly use CHR as a general-purpose implementation
language, Christiansen recognizes that the CHR language itself can be used as a
powerful grammar formalism. CHRG’s, built as a relatively transparent layer of
syntactic sugar over CHR, are to CHR what DCG’s are to Prolog.

CHRG’s inherent support for context-sensitive rules readily allows linguistic phe-
nomena such as long-distance reference and coordination to be modeled naturally
(Christiansen 2005; Aguilar-Solis and Dahl 2004; Dahl 2004). CHRG grammar rules
can also use extra-grammatical hypotheses, modeled as regular CHR constraints.
This caters, e.g., for straightforward implementations of assumption grammars and
abductive language interpretation with integrity constraints.

Applications of CHRG. Using CHRG, Dahl and Blache (2005) develop directly
executable specifications of property grammars. They show this combination of
grammar formalisms to be robust, and able to handle various levels of granularity,
as well as incomplete and incorrect input. In (Dahl and Gu 2006), an extension of
this approach is used to extract concepts and relations from biomedical texts.

Dahl and Voll (2004) generalize the property grammar parsing methodology
into a general concept formation system, providing a cognitive sciences view of
problem solving. Applications of this formalism include early lung cancer diagnosis

33

(Barranco-Mendoza 2005, Chapter 4), error detection and correction of radiology
reports obtained from speech recognition (Voll 2006, Section 5.2.8), and the analysis
of biological sequences (Bavarian and Dahl 2006).

Christiansen and Dahl (2003) use an abductive model based on CHRG to di-
agnose and correct grammatical errors. Other applications of CHRG include the
characterization of the grammar of ancient Egyptian hieroglyphs (Hecksher, Nielsen
et al. 2002), linguistic discourse analysis (Christiansen and Dahl 2005b), and the dis-
ambiguation of biological text (Dahl and Gu 2007). An approach similar to CHRG
is taken by Bès and Dahl (2003) for the parsing of balanced parentheses in natural
language.

7.3.4 Meta-Programming

Christiansen and Martinenghi (2000) develops a meta-programming environment,
DemoII, that relies on CHR for its powerful features. Firstly, the meta-interpreter is
made reversible in order to both evaluate queries and generate programs. Secondly,
soundness of negation-as-failure is achieved through incremental evaluation.

7.3.5 Testing and Verification

Another application domain for which CHR has proved useful is software testing and
verification. Ribeiro, Zúquete et al. (2000) present a CHR-based tool for detecting
security policy inconsistencies. Lötzbeyer and Pretschner (2000) and Pretschner,
Slotosch et al. (2004) propose a model-based testing methodology, in which test
cases are automatically generated from abstract models using CLP and CHR. They
consider the ability to formulate arbitrary test case specifications by means of CHR
to be one of the strengths of their approach. Gouraud and Gotlieb (2006) use a
similar approach for the automatic generation of test cases for the Java Card Virtual
Machine (JCVM). A formal model of the JCVM is automatically translated into
CHR, and the generated CHR program is used to generate test cases.

More of an exploration than testing application is the JmmSolve framework
(Schrijvers 2004). Its purpose is to explore and test the behavior of declarative
memory models for Java, based on the Concurrent Constraint-based Memory Ma-
chines proposal of V. Saraswat.

7.4 Industrial CHR Users

Although most CHR systems are essentially still research prototypes, there are a
few systems that can be considered to be robust enough for industrial application.
We give a few examples of companies that are currently using CHR.

The New-Zealand-based company Scientific Software & Systems Ltd. (2008) is
one of the main industrial users of CHR. The company uses CHR throughout its
flagship product the SecuritEase stock broking system6. SecuritEase provides front

6 http://www.securitease.com/

34

http://www.securitease.com/

office (order entry) and back-office (settlement and delivery) functions for stock
brokers in Australia and New Zealand. Inside SecuritEase CHR is used for:

1. implementing the logic to recognize advantageous market conditions to auto-
matically place orders in equity markets,

2. translating high-level queries to SQL,
3. describing complex relationships between mutually dependent fields on user

input screens, and calculating the consequences of user input actions, and
4. realizing a Financial Information eXchange (FIX) server.

The Canadian company Cornerstone Technology Inc.7 has created an inference
engine for solving and optimizing collections of design constraints, using Prolog
and CHR. The design constraints work together to determine what design config-
uration to use, select components from catalogs, compute dimensions for custom
components, and arrange the components into assemblies. The engine allows for
generating, interactive editing, and validating of injection mould designs. Part of
the system is covered by US Patent 7,117,055.

BSSE System and Software Engineering8, a German company specializing in the
discipline of full automation of software development, uses K.U.Leuven JCHR for
the generation of test data for unit tests.

At the MITRE Corporation9, CHR is used in the context of optical network
design. It is used to implement constraint-based optimization, network configuration
analysis, and as a tool coordination framework.

8 Conclusions

In this section, we first try to assess to what extent we have covered the CHR
literature in this survey (Section 8.1). Next, in Section 8.2, we look back at the
research topics that were mentioned in the previous CHR survey (Frühwirth 1998)
as being open issues. Finally, to conclude this survey, we propose four remaining
“grand challenges” for CHR researchers.

8.1 Survey Coverage and Bibliographic Meta-Information

This survey cites 182 publications related to CHR. For convenience, we define the
total number of CHR-related publications as the number of publications that cite
(Frühwirth 1998), according to Google Scholar (with some manual corrections for
errors in the Google Scholar result list). Figure 6 compares the number of publica-
tions we cite in this survey with the total number of CHR-related publications since
1998. Globally, we cite roughly half of the CHR-related publications; the remaining
half are preliminary versions of cited publications and papers that use CHR or refer
to CHR in only a relatively minor way.

7 http://www.cornerstonemold.com/
8 http://www.bsse.biz/
9 http://www.mitre.org/

35

http://www.cornerstonemold.com/
http://www.bsse.biz/
http://www.mitre.org/

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N
um

be
r

of
 p

ub
lic

at
io

ns
...

P
er

ce
nt

ag
e

co
ve

re
d

Year

citing the previous survey (source: Google Scholar)
cited in this survey, of which...
... from Melbourne/Singapore
... from Leuven
... from Ulm
% covered

Fig. 6. Estimation of the number of CHR-related publications and the number of
CHR-related publications cited in this survey (and their origin).

Figure 7 shows how CHR authors have collaborated. This graph is derived from
the joint authorships of papers cited in this survey.

8.2 Retrospection

The first CHR survey (Frühwirth 1998) ended with a list of research topics from
the first draft paper on CHR in 1991, noting that most of those topics were still
open in 1998. We re-examine that list:

• Termination and confluence. As seen in Sections 3.1 and 3.2, both conflu-
ence (Abdennadher, Frühwirth et al. 1999; Duck 2005; Duck, Stuckey et al. 2007;
Raiser and Tacchella 2007) and termination (Frühwirth 2000; Pilozzi, Schrijvers
et al. 2007; Voets, Pilozzi et al. 2007) have received a great deal of attention
in the past ten years. While substantial results have been obtained for conflu-
ence, this notion turned out to be rather impractical. The recent proposal of
observable confluence seems to be a first step towards a more practical notion of
confluence. In the area of termination analysis there appears to be a much wider
scope for improvement. Existing work, mostly carrying over results of other pro-
gramming languages, only works for a limited fraction of programs. Propagation
rules and logical variables, part of typical CHR programs, cannot be dealt with.
An important breakthrough is still ahead of us.

• Negation and entailment of constraints. Negation as absence (Van Weert,
Sneyers et al. 2006) was recently explored (see Section 5.2.2), but this has little
relation to the logical negation of constraints. The topic of entailment is closely

36

Stuckey

Sulzmann
Peyton-Jones

Frühwirth

García de la Banda

Holzbaur

Brand

Duck

Wang
Wazny

Demoen

Sneyers

Schrijvers

De Schreye

Bruynooghe

Warren

Wielemaker

Zhou

Van Weert

De Koninck

Wuille

Meuss

Abdennadher

Brisset

Djelloul

Meister

Olama

Salem

Thabet

Chesani

Gavanelli

Lamma

Mello

Milano

Torroni

Daolio

Krämer

Saft

Schmauss

Will

Aguilar-Solis

Dahl

Blache

Voll

Pilozzi

Voets

Schütz

Christiansen

Marte

Rigotti

Sobhi

Dao

Robin

Haemmerlé

Fages
Sarna-Starosta

Ramakrishnan

Martinenghi
Have

Alberti

Apt

Monfroy

Aurelio

Menezes

Vitorino

Bavarian

Betz

Cabedo

Escrig

Toledo

Chin

Coquery

Delzanno

Gabbrielli

Meo

Tacchella

Geske
Gruenhagen

Kaeser

Lam

Wolf

Morawietz

Raiser

Gu
Bes

Fig. 7. CHR author collaboration graph. Two authors are connected if they have
co-authored a CHR-related paper cited in this survey. The number of co-authored
papers is reflected in the edge thickness.

37

related to building solver hierarchies (Duck, Stuckey et al. 2003; Schrijvers, De-
moen et al. 2006) (see Section 5.3). Both topics are still an important issue today.

• Combination and communication of solvers. This topic is again related to
solver hierarchies (see the item above), but also to integration of solvers (Abden-
nadher and Frühwirth 2004) (see Section 3.1). Another potential approach could
be based on a compositional semantics for CHR (Delzanno, Gabbrielli et al. 2005)
(see Section 2.2). In any case, this is still an important open research topic.

• Correctness w.r.t. specifications, debugging. Although some progress has
been made (Section 4.3), these topics are still mostly open.

• Soft constraints with priorities. As we discussed in Section 7.1, two distinct
approaches were proposed for dealing with (prioritized) soft constraints in CHR.

• Dynamic constraints, removable constraints. Wolf, Gruenhagen et al. (2000)
designed an incremental adaptation algorithm that supports dynamic and remov-
able constraints. An efficient implementation of adaptive CHR exists for Java
(Wolf 2001a). We discussed this in Sections 5.1.4 and 4.1.3 respectively.

• Automatic labeling, variable projection. While progress has been made on
several accounts of constraint solver support, these topics have not been addressed
yet. The topic of projection, the elimination of existentially quantified variables,
is particularly challenging to generalize to arbitrary CHR solvers. Any progress
would be highly significant.

• Partial evaluation. Section 4.2.3 mentions recent work in this area (Frühwirth
2005c; Tacchella, Gabbrielli et al. 2007; Sarna-Starosta and Schrijvers 2007).
For now, it is clear that the multi-headedness of CHR makes a straightforward
application of partial evaluation techniques for conventional languages to CHR
programs nearly impossible. Further investigation of techniques tailored towards
CHR are necessary to make substantial improvements.

• Abstract interpretation. A general framework for abstract interpretation in
the context of CHR was proposed (Schrijvers, Stuckey et al. 2005) (see Sec-
tion 4.2.2). However, only a limited number of analyses have been formulated
in the framework so far. Moreover, little information is present in a CHR pro-
gram on its own. In order to make analysis results more accurate, we require an
analysis framework that encompasses both CHR and its host language. Such a
framework should prove to be beneficial to the accuracy of the analyses for both
languages.

8.3 Grand Challenges

Much progress has been made in the last ten years and many of the open problems
have been resolved. However, a few difficult questions are still unresolved, and in
the meantime many more problems have become apparent.

In our view the following four topics are grand challenges that must be addressed
by the CHR research community in the next decade. These four grand challenges
are not only of technical interest, they are also vital for the further adoption of the
CHR community and user-base.

38

1. Programming environments and tools. If measured by current stan-
dards, which dictate that a language is only as good as its tools, CHR is a
poor language indeed. While several strong theoretical results have been ob-
tained in the field of program analysis for CHR, little (if any) effort has been
made to embody these results into a practical tool for day-to-day program-
ming. For example, programmers have to manually check for confluence, and,
in the case of non-confluence, complete their solvers by hand.

2. Execution control. Compared to the refined operational semantics, the rule
priorities of the CHRrp semantics are a step in the realization of Kowalski’s
slogan “Algorithm = Logic + Control” in the context of CHR. However, there
are still many challenges in finding satisfactory ways to allow programmers
to fine-tune the execution strategy of their programs.

3. Parallelism, concurrency. Recent theoretical work (Frühwirth 2005b; Meis-
ter 2006) confirms CHR’s inherent aptness for parallel programming. Truly
leveraging the full power of current and future multi-core processors through
CHR, however, requires practical, efficient, concurrent implementations. Cur-
rently, these implementations are still in early stages (cf. Section 4.1.2 for
a discussion of some early Haskell-based prototypes). Many important prob-
lems are still to be researched in this domain, from language features and
semantics, to analysis, implementation, and optimization.

4. Scaling to industrial applications. Strong theoretical results have been
obtained concerning the performance of CHR (cf. Section 3.3.2), and these
have also been reflected in the actual runtimes of CHR programs. However,
CHR is still at least one or two orders of magnitude slower than most conven-
tional programming languages and constraint solvers. This becomes particu-
larly apparent for CHR applications that surpass the toy research programs
of 10 lines: industrial applications for instance, such as those mentioned in
Section 7.4, easily count 100 to 1000 lines. The refined semantics compilation
scheme (see Section 4) was not designed or benchmarked with such program
sizes in mind. Some potential scalability aspects are:

• huge constraint stores that have to be persistent and/or distributed;
• (dynamic) optimizations, also for variants and extensions of CHR;
• incremental compilation, run-time rule assertion, reflection;
• higher-order / meta-programming.

These and other aspects must be investigated to achieve further industrial
adoption.

Acknowledgments

The authors would like to thank Alan Baljeu (Cornerstone), Bart Demoen, Mike
Elston (Scientific Software & Systems), Thom Frühwirth, Ralf Gerlich (BSSE),
Gerda Janssens, Paolo Pilozzi, Dean Voets, Jonathan Weston-Dawkes (MITRE),
and Pieter Wuille for their invaluable contributions to this paper.

Jon Sneyers and Leslie De Koninck are funded by Ph.D. grants of the Institute for

39

the Promotion of Innovation through Science and Technology in Flanders (IWT-
Vlaanderen). Peter Van Weert is a Research Assistant of the fund for Scientific
Research - Flanders (Belgium) (F.W.O. - Vlaanderen). Tom Schrijvers is a Post-
Doctoral Researcher of the fund for Scientific Research - Flanders.

References

Abdennadher, S. 2000. A language for experimenting with declarative paradigms. In
RCoRP ’00(bis): Proc. 2nd Workshop on Rule-Based Constraint Reasoning and Pro-
gramming, T. Frühwirth et al., Eds.

Abdennadher, S. 2001. Rule-based constraint programming: Theory and practice. Ha-
bilitationsschrift. Institute of Computer Science, LMU, Munich, Germany.

Abdennadher, S. and Christiansen, H. 2000. An experimental CLP platform for
integrity constraints and abduction. In FQAS ’00: Proc. 4th Intl. Conf. Flexible Query
Answering Systems. Springer, 141–152.

Abdennadher, S. and Frühwirth, T. 1998. On completion of Constraint Handling
Rules. In CP ’98, M. J. Maher and J.-F. Puget, Eds. LNCS, vol. 1520. Springer, 25–39.

Abdennadher, S. and Frühwirth, T. 1999. Operational equivalence of CHR programs
and constraints. In CP ’99, J. Jaffar, Ed. LNCS, vol. 1713. Springer, 43–57.

Abdennadher, S. and Frühwirth, T. 2004. Integration and optimization of rule-based
constraint solvers. In LOPSTR ’03, M. Bruynooghe, Ed. LNCS, vol. 3018. Springer,
198–213.

Abdennadher, S., Frühwirth, T., and Holzbaur, C., Eds. 2005. Special Issue on
Constraint Handling Rules. Theory and Practice of Logic Programming, vol. 5(4–5).

Abdennadher, S., Frühwirth, T., and Meuss, H. 1999. Confluence and semantics of
constraint simplification rules. Constraints 4, 2, 133–165.

Abdennadher, S., Krämer, E., Saft, M., and Schmauß, M. 2002. JACK: A Java
Constraint Kit. In WFLP ’01: Proc. 10th Intl. Workshop on Functional and (Constraint)
Logic Programming, Selected Papers, M. Hanus, Ed. ENTCS, vol. 64. Elsevier, 1–17. See
also http://pms.ifi.lmu.de/software/jack/.

Abdennadher, S. and Marte, M. 2000. University course timetabling using Constraint
Handling Rules. In Holzbaur and Frühwirth (2000b), 311–325.

Abdennadher, S., Olama, A., Salem, N., and Thabet, A. 2006. ARM: Automatic
Rule Miner. In LOPSTR ’06, Revised Selected Papers. LNCS, vol. 4407. Springer.

Abdennadher, S. and Rigotti, C. 2004. Automatic generation of rule-based constraint
solvers over finite domains. ACM TOCL 5, 2, 177–205.

Abdennadher, S. and Rigotti, C. 2005. Automatic generation of CHR constraint
solvers. In Abdennadher, Frühwirth et al. (2005), 403–418.

Abdennadher, S. and Saft, M. 2001. A visualization tool for Constraint Handling
Rules. In WLPE ’01, A. Kusalik, Ed.

Abdennadher, S., Saft, M., and Will, S. 2000. Classroom assignment using constraint
logic programming. In PACLP ’00: Proc. 2nd Intl. Conf. and Exhibition on Practical
Application of Constraint Technologies and Logic Programming.

Abdennadher, S. and Schütz, H. 1998. CHR∨, a flexible query language. In FQAS ’98:
Proc. 3rd Intl. Conf. on Flexible Query Answering Systems, T. Andreasen, H. Chris-
tiansen, and H. Larsen, Eds. LNAI, vol. 1495. Springer, 1–14.

Abdennadher, S. and Sobhi, I. 2008. Generation of rule-based constraint solvers: Com-
bined approach. In LOPSTR ’07, Revised Selected Papers, A. King, Ed. LNCS, vol.
4915.

40

Aguilar-Solis, D. and Dahl, V. 2004. Coordination revisited – a Constraint Handling
Rule approach. In IBERAMIA ’04: Proc. 9th Ibero-American Conf. on AI. LNCS, vol.
3315. 315–324.

Alberti, M., Chesani, F., Gavanelli, M., and Lamma, E. 2005. The CHR-based
implementation of a system for generation and confirmation of hypotheses. In Wolf,
Frühwirth et al. (2005), 111–122.

Alberti, M., Daolio, D., Torroni, P., Gavanelli, M., Lamma, E., and Mello,
P. 2004. Specification and verification of agent interaction protocols in a logic-based
system. In SAC ’04: Proc. 19th ACM Symp. Applied Computing, H. Haddad et al., Eds.
ACM Press, 72–78.

Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., and Torroni, P.
2006. Compliance verification of agent interaction: a logic-based software tool. Applied
Artificial Intelligence 20, 2–4, 133–157.

Alberti, M., Gavanelli, M., Lamma, E., Mello, P., and Milano, M. 2005. A CHR-
based implementation of known arc-consistency. In Abdennadher, Frühwirth et al.
(2005), 419–440.

Alberti, M., Gavanelli, M., Lamma, E., Mello, P., and Torroni, P. 2004. Spec-
ification and verification of agent interaction using social integrity constraints. In
LCMAS’03: Logic and Communication in Multi-Agent Systems. ENTCS, vol. 85(2).
Elsevier, 94–116.

Alves, S. and Florido, M. 2002. Type inference using Constraint Handling Rules. In
WFLP ’01: Proc. 10th Intl. Workshop on Functional and (Constraint) Logic Program-
ming, Selected Papers, M. Hanus, Ed. ENTCS, vol. 64. Elsevier, 56–72.

Apt, K. R. and Monfroy, E. 2001. Constraint programming viewed as rule-based
programming. TPLP 1, 6, 713–750.

Badea, L., Tilivea, D., and Hotaran, A. 2004. Semantic Web Reasoning for Ontology-
Based Integration of Resources. PPSWR ’04: Proc. 2nd Intl. Workshop on Principles
And Practice Of Semantic Web Reasoning 3208, 61–75.

Barranco-Mendoza, A. 2005. Stochastic and heuristic modelling for analysis of the
growth of pre-invasive lesions and for a multidisciplinary approach to early cancer di-
agnosis. Ph.D. thesis, Simon Fraser University, Canada.

Bavarian, M. and Dahl, V. 2006. Constraint based methods for biological sequence
analysis. J. UCS 12, 11, 1500–1520.

Bès, G. G. and Dahl, V. 2003. Balanced parentheses in NL texts: a useful cue in the
syntax/semantics interface. In Proc. Lorraine-Saarland Workshop on Prospects and
Advances in the Syntax/Semantics Interface. Poster Paper.

Betz, H. 2007. Relating coloured Petri nets to Constraint Handling Rules. In Djelloul,
Duck et al. (2007), 33–47.

Betz, H. and Frühwirth, T. 2005. A linear-logic semantics for Constraint Handling
Rules. In CP ’05. LNCS, vol. 3709. Springer, 137–151.

Betz, H. and Frühwirth, T. 2007. A linear-logic semantics for Constraint Handling
Rules with disjunction. In Djelloul, Duck et al. (2007), 17–31.

Bistarelli, S., Frühwirth, T., Marte, M., and Rossi, F. 2004. Soft constraint prop-
agation and solving in Constraint Handling Rules. Computational Intelligence: Special
Issue on Preferences in AI and CP 20, 2 (May), 287–307.

Boespflug, M. 2007. TaiChi:how to check your types with serenity. The Monad.Reader 9,
17–31.

Bouissou, O. 2004. A CHR library for SiLCC. Diplomathesis. Technical University of
Berlin, Germany.

41

Brand, S. 2002. A note on redundant rules in rule-based constraint programming. In
Joint ERCIM/CologNet Intl. Workshop on Constraint Solving and Constraint Logic
Programming, Selected papers. LNCS, vol. 2627. Springer, 279–336.

Brand, S. and Monfroy, E. 2003. Deductive generation of constraint propagation rules.
In RULE ’03: 4th Intl. Workshop on Rule-Based Programming, G. Vidal, Ed. ENTCS,
vol. 86(2). Elsevier, 45–60.

Bressan, S. and Goh, C. H. 1998. Answering queries in context. In FQAS ’98: Proc.
3rd Intl. Conf. on Flexible Query Answering Systems, T. Andreasen, H. Christiansen,
and H. Larsen, Eds. LNAI, vol. 1495. Springer, 68–82.

Cabedo, L. M. and Escrig, M. T. 2003. Modeling motion by the integration of topology
and time. J. UCS 9, 9, 1096–1122.

Chin, W.-N., Craciun, F., Khoo, S.-C., and Popeea, C. 2006. A flow-based approach
for variant parametric types. SIGPLAN Not. 41, 10, 273–290.

Chin, W.-N., Sulzmann, M., and Wang, M. 2003. A type-safe embedding of Constraint
Handling Rules into Haskell. Honors Thesis. School of Computing, National University
of Singapore.

Christiansen, H. 2005. CHR grammars. In Abdennadher, Frühwirth et al. (2005),
467–501.

Christiansen, H. 2006. On the implementation of global abduction. In CLIMA ’06:
7th Intl. Workshop on Computational Logic in Multi-Agent Systems – Revised, Selected
and Invited Papers, K. Inoue, K. Satoh, and F. Toni, Eds. LNCS, vol. 4371. Springer,
226–245.

Christiansen, H. and Dahl, V. 2003. Logic grammars for diagnosis and repair. Intl. J.
Artificial Intelligence Tools 12, 3, 227–248.

Christiansen, H. and Dahl, V. 2005a. HYPROLOG: A new logic programming lan-
guage with assumptions and abduction. In Gabbrielli and Gupta (2005), 159–173.

Christiansen, H. and Dahl, V. 2005b. Meaning in context. In CONTEXT ’05: Proc.
4th Intl. and Interdisciplinary Conf. Modeling and Using Context. LNAI, vol. 3554.
Springer, 97–111.

Christiansen, H. and Have, C. T. 2007. From use cases to UML class diagrams using
logic grammars and constraints. In RANLP ’07: Proc. Intl. Conf. Recent Adv. Nat.
Lang. Processing. 128–132.

Christiansen, H. and Martinenghi, D. 2000. Symbolic constraints for meta-logic pro-
gramming. In Holzbaur and Frühwirth (2000b), 345–367.

Coquery, E. and Fages, F. 2003. TCLP: A type checker for CLP(X). In WLPE ’03,
F. Mesnard and A. Serebrenik, Eds. K.U.Leuven, Dept. Comp. Sc., Technical report
CW 371. 17–30.

Coquery, E. and Fages, F. 2005. A type system for CHR. In Schrijvers and Frühwirth
(2005b), 19–33.

Dahl, V. 2004. An abductive treatment of long distance dependencies in CHR. In CSLP
’04: Proc. First Intl. Workshop on Constraint Solving and Language Processing. LNCS,
vol. 3438. Springer, 17–31. Invited Paper.

Dahl, V. and Blache, P. 2005. Extracting selected phrases through constraint satisfac-
tion. In Proc. 2nd Intl. Workshop on Constraint Solving and Language Processing.

Dahl, V. and Gu, B. 2006. Semantic property grammars for knowledge extraction from
biomedical text. In Etalle and Truszczynski (2006), 442–443. Poster Paper.

Dahl, V. and Gu, B. 2007. A CHRG analysis of ambiguity in biological texts. In
CSLP ’07: Proc. 4th Intl. Workshop on Constraints and Language Processing. Extended
Abstract.

42

Dahl, V. and Niemelä, I., Eds. 2007. ICLP ’07: Proc. 23rd Intl. Conf. Logic Program-
ming. LNCS, vol. 4670. Springer.

Dahl, V. and Voll, K. 2004. Concept formation rules: An executable cognitive model of
knowledge construction. In NLUCS ’04: Proc. First Intl. Workshop on Natural Language
Understanding and Cognitive Sciences.

De Koninck, L., Schrijvers, T., and Demoen, B. 2006a. INCLP(R) - Interval-based
nonlinear constraint logic programming over the reals. In Fink, Tompits et al. (2006),
91–100.

De Koninck, L., Schrijvers, T., and Demoen, B. 2006b. Search strategies in
CHR(Prolog). In Schrijvers and Frühwirth (2006), 109–123.

De Koninck, L., Schrijvers, T., and Demoen, B. 2007a. The correspondence between
the Logical Algorithms language and CHR. In Dahl and Niemelä (2007), 209–223.

De Koninck, L., Schrijvers, T., and Demoen, B. 2007b. User-definable rule priorities
for CHR. In PPDP ’07, M. Leuschel and A. Podelski, Eds. ACM Press, 25–36.

De Koninck, L. and Sneyers, J. 2007. Join ordering for Constraint Handling Rules. In
Djelloul, Duck et al. (2007), 107–121.

De Koninck, L., Stuckey, P. J., and Duck, G. J. 2008. Optimizing compilation of
CHR with rule priorities. In Proc. 9th Intl. Symp. Functional and Logic Programming,
J. Garrigue and M. Hermenegildo, Eds. LNCS, vol. 4989. Springer, 32–47.

Delzanno, G., Gabbrielli, M., and Meo, M. C. 2005. A compositional semantics for
CHR. In PPDP ’05, P. Barahona and A. Felty, Eds. ACM Press, 209–217.

Demoen, B. and Lifschitz, V., Eds. 2004. ICLP ’04: Proc. 20th Intl. Conf. Logic
Programming. LNCS, vol. 3132. Springer.

Djelloul, K., Dao, T.-B.-H., and Frühwirth, T. 2007. Toward a first-order extension
of Prolog’s unification using CHR: a CHR first-order constraint solver over finite or
infinite trees. In SAC ’07: Proc. 2007 ACM Symp. Applied computing. ACM Press,
58–64.

Djelloul, K., Duck, G. J., and Sulzmann, M., Eds. 2007. CHR ’07: Proc. 4th Work-
shop on Constraint Handling Rules.

Ducassé, M. 1999. Opium: an extendable trace analyzer for Prolog. J. Logic Program-
ming 39, 1–3, 177–223.

Duck, G. J. 2005. Compilation of Constraint Handling Rules. Ph.D. thesis, University
of Melbourne, Victoria, Australia.

Duck, G. J. and Schrijvers, T. 2005. Accurate functional dependency analysis for
Constraint Handling Rules. In Schrijvers and Frühwirth (2005b), 109–124.

Duck, G. J., Stuckey, P. J., and Brand, S. 2006. ACD term rewriting. In Etalle and
Truszczynski (2006), 117–131.

Duck, G. J., Stuckey, P. J., Garćıa de la Banda, M., and Holzbaur, C. 2003.
Extending arbitrary solvers with Constraint Handling Rules. In PPDP ’03. ACM Press,
79–90.

Duck, G. J., Stuckey, P. J., Garćıa de la Banda, M., and Holzbaur, C. 2004. The
refined operational semantics of Constraint Handling Rules. In Demoen and Lifschitz
(2004), 90–104.

Duck, G. J., Stuckey, P. J., and Sulzmann, M. 2007. Observable confluence for
Constraint Handling Rules. In Dahl and Niemelä (2007), 224–239.

Escrig, M. T. and Toledo, F. 1998a. A framework based on CLP extended with
CHRs for reasoning with qualitative orientation and positional information. J. Visual
Languages and Computing 9, 1, 81–101.

Escrig, M. T. and Toledo, F. 1998b. Qualitative Spatial Reasoning: Theory and Prac-
tice — Application to Robot Navigation. IOS Press.

43

Etalle, S. and Truszczynski, M., Eds. 2006. ICLP ’06: Proc. 22nd Intl. Conf. Logic
Programming. LNCS, vol. 4079. Springer.

Fink, M., Tompits, H., and Woltran, S., Eds. 2006. WLP ’06: Proc. 20th Workshop
on Logic Programming. T.U.Wien, Austria, INFSYS Research report 1843-06-02.

Firat, A. 2003. Information integration using contextual knowledge and ontology merg-
ing. Ph.D. thesis, MIT Sloan School of Management, Cambridge, Massachusetts, USA.

Frühwirth, T. 1992. Constraint simplification rules. Tech. Rep. ECRC-92-18, European
Computer-Industry Research Centre, Munich, Germany. July.

Frühwirth, T. 1995. Constraint Handling Rules. In Constraint Programming: Basic and
Trends — Selected Papers of the 22nd Spring School in Theoretical Computer Sciences,
May 16–20, 1994, A. Podelski, Ed. LNCS, vol. 910. Springer, 90–107.

Frühwirth, T. 1998. Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming 37, 1–3, 95–138.

Frühwirth, T. 2000. Proving termination of constraint solver programs. In New Trends
in Constraints, Joint ERCIM/Compulog Net Workshop, October 1999, Selected papers,
K. Apt, A. Kakas, E. Monfroy, and F. Rossi, Eds. LNCS, vol. 1865. Springer, 298–317.

Frühwirth, T. 2001. On the number of rule applications in constraint programs. In
Declarative Programming - Selected Papers from AGP 2000, A. Dovier, M. C. Meo, and
A. Omicini, Eds. ENTCS, vol. 48. Elsevier, 147–166.

Frühwirth, T. 2002a. As time goes by: Automatic complexity analysis of simplification
rules. In KR ’02: Proc. 8th Intl. Conf. Princ. Knowledge Representation and Reasoning,
D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, Eds. Morgan Kaufmann,
547–557.

Frühwirth, T. 2002b. As time goes by II: More automatic complexity analysis of concur-
rent rule programs. In QAPL ’01: Proc. First Intl. Workshop on Quantitative Aspects
of Programming Languages, A. D. Pierro and H. Wiklicky, Eds. ENTCS, vol. 59(3).
Elsevier.

Frühwirth, T. 2005a. Logical rules for a lexicographic order constraint solver. In Schrij-
vers and Frühwirth (2005b), 79–91.

Frühwirth, T. 2005b. Parallelizing union-find in Constraint Handling Rules using con-
fluence. In Gabbrielli and Gupta (2005), 113–127.

Frühwirth, T. 2005c. Specialization of concurrent guarded multi-set transformation
rules. In LOPSTR ’04, S. Etalle, Ed. LNCS, vol. 3573. Springer, 133–148.

Frühwirth, T. 2006a. Complete propagation rules for lexicographic order constraints
over arbitrary domains. In Recent Advances in Constraints, CSCLP ’05: Joint
ERCIM/CoLogNET Intl. Workshop on Constraint Solving and CLP, Revised Selected
and Invited Papers. LNAI, vol. 3978. Springer.

Frühwirth, T. 2006b. Deriving linear-time algorithms from union-find in CHR. In
Schrijvers and Frühwirth (2006), 49–60.

Frühwirth, T. 2007. Description logic and rules the CHR way. In Djelloul, Duck et al.
(2007), 49–61.

Frühwirth, T. 2009. Constraint Handling Rules. Cambridge University Press. To appear.

Frühwirth, T. et al., Eds. 2000. RCoRP ’00: Proc. 1st Workshop on Rule-Based
Constraint Reasoning and Programming.

Frühwirth, T. and Abdennadher, S. 2001. The Munich rent advisor: A success for
logic programming on the internet. TPLP 1, 3, 303–319.

Frühwirth, T. and Abdennadher, S. 2003. Essentials of Constraint Programming.
Springer.

Frühwirth, T. and Brisset, P. 1995. High-level implementations of Constraint Han-
dling Rules. Tech. Rep. ECRC-95-20, European Computer-Industry Research Centre.

44

Frühwirth, T. and Brisset, P. 1998. Optimal placement of base stations in wireless
indoor telecommunication. In CP ’98, M. J. Maher and J.-F. Puget, Eds. LNCS, vol.
1520. Springer, 476–480.

Frühwirth, T. and Brisset, P. 2000. Placing base stations in wireless indoor commu-
nication networks. IEEE Intelligent Systems and Their Applications 15, 1, 49–53.

Frühwirth, T., Di Pierro, A., and Wiklicky, H. 2002. Probabilistic Constraint Han-
dling Rules. In WFLP ’02: Proc. 11th Intl. Workshop on Functional and (Constraint)
Logic Programming, Selected Papers, M. Comini and M. Falaschi, Eds. ENTCS, vol. 76.
Elsevier.

Frühwirth, T. and Holzbaur, C. 2003. Source-to-source transformation for a class
of expressive rules. In AGP ’03: Joint Conf. Declarative Programming APPIA-GULP-
PRODE, F. Buccafurri, Ed. 386–397.

Frühwirth, T. and Meister, M., Eds. 2004. CHR ’04: 1st Workshop on Constraint
Handling Rules: Selected Contributions.

Gabbrielli, M. and Gupta, G., Eds. 2005. ICLP ’05: Proc. 21st Intl. Conf. Logic
Programming. LNCS, vol. 3668. Springer.

Gabbrielli, M. and Meo, M. C. 2009. A compositional semantics for CHR. ACM
TOCL 10, 2.

Ganzinger, H. and McAllester, D. A. 2002. Logical algorithms. In Stuckey (2002),
209–223.

Garat, D. and Wonsever, D. 2002. A constraint parser for contextual rules. In Proc.
22nd Intl. Conf. of the Chilean Computer Science Society. IEEE Computer Society,
234–242.

Gavanelli, M., Lamma, E., Mello, P., et al. 2003. Interpreting abduction in CLP. In
AGP ’03: Joint Conf. Declarative Programming APPIA-GULP-PRODE, F. Buccafurri,
Ed. 25–35.

Geurts, J., van Ossenbruggen, J., and Hardman, L. 2001. Application-specific con-
straints for multimedia presentation generation. In MMM ’01: Proc. 8th Intl. Conf. on
Multimedia Modeling. 247–266.

Gouraud, S.-D. and Gotlieb, A. 2006. Using CHRs to generate functional test cases
for the Java card virtual machine. In PADL ’06: Proc. 8th Intl. Symp. Practical Aspects
of Declarative Languages, P. Van Hentenryck, Ed. LNCS, vol. 3819. Springer, 1–15.

Haemmerlé, R. and Fages, F. 2007. Abstract critical pairs and confluence of arbitrary
binary relations. In RTA ’07: Proc. 18th Intl. Conf. Term Rewriting and Applications.
LNCS, vol. 4533. Springer.

Hanus, M. 2006. Adding Constraint Handling Rules to Curry. In Fink, Tompits et al.
(2006), 81–90.

Hecksher, T., Nielsen, S. T., and Pigeon, A. 2002. A CHRG model of the ancient
Egyptian grammar. Unpublished student project report, Roskilde University, Denmark.

Holzbaur, C. and Frühwirth, T. 1998. Constraint Handling Rules reference man-
ual, release 2.2. Tech. Rep. TR-98-01, Österreichisches Forschungsinstitut für Artificial
Intelligence, Wien.

Holzbaur, C. and Frühwirth, T. 1999. Compiling Constraint Handling Rules into
Prolog with attributed variables. In PPDP ’99, G. Nadathur, Ed. LNCS, vol. 1702.
Springer, 117–133.

Holzbaur, C. and Frühwirth, T. 2000a. A Prolog Constraint Handling Rules compiler
and runtime system. In Holzbaur and Frühwirth (2000b), 369–388.

Holzbaur, C. and Frühwirth, T., Eds. 2000b. Special Issue on Constraint Handling
Rules. Journal of Applied Artificial Intelligence, vol. 14(4).

45

Holzbaur, C., Garćıa de la Banda, M., Stuckey, P. J., and Duck, G. J. 2005. Op-
timizing compilation of Constraint Handling Rules in HAL. In Abdennadher, Frühwirth
et al. (2005), 503–531.

Käser, M. and Meister, M. 2006. Implementation of an F-Logic kernel in CHR. In
Schrijvers and Frühwirth (2006), 33–47.

Kosmatov, N. 2006a. A constraint solver for sequences and its applications. In Proc.
2006 ACM Symp. on Applied Computing. ACM Press, 404–408.

Kosmatov, N. 2006b. Constraint solving for sequences in software validation and veri-
fication. In INAP ’05: Proc. 16th Intl. Conf. Applications of Declarative Programming
and Knowledge Management. LNCS, vol. 4369. Springer, 25–37.

Krämer, E. 2001. A generic search engine for a Java Constraint Kit. Diplomarbeit.
Institute of Computer Science, LMU, Munich, Germany.

Lam, E. S. and Sulzmann, M. 2006. Towards agent programming in CHR. In Schrijvers
and Frühwirth (2006), 17–31.

Lam, E. S. and Sulzmann, M. 2007. A concurrent Constraint Handling Rules semantics
and its implementation with software transactional memory. In DAMP ’07: Proc. ACM
SIGPLAN Workshop on Declarative Aspects of Multicore Programming. ACM Press.
System’s homepage at http://taichi.ddns.comp.nus.edu.sg/taichiwiki/CCHR/.

Lötzbeyer, H. and Pretschner, A. 2000. AutoFocus on constraint logic program-
ming. In LPSE ’00: Proc. Intl. Workshop on (Constraint) Logic Programming and
Software Engineering.

Maher, M. J. 2002. Propagation completeness of reactive constraints. In Stuckey (2002),
148–162.

Meister, M. 2006. Fine-grained parallel implementation of the preflow-push algorithm
in CHR. In Fink, Tompits et al. (2006), 172–181.

Meister, M., Djelloul, K., and Frühwirth, T. 2006. Complexity of a CHR solver
for existentially quantified conjunctions of equations over trees. In CSCLP ’06: Proc.
11th Annual ERCIM Workshop on Constraint Solving and Constraint Programming,
F. Azevedo et al., Eds. LNCS, vol. 4651. Springer, 139–153.

Meister, M., Djelloul, K., and Robin, J. 2007. A unified semantics for Constraint
Handling Rules in transaction logic. In LPNMR ’07: Proc. 9th Intl. Conf. Logic Pro-
gramming and Nonmonotonic Reasoning, C. Baral, G. Brewka, and J. S. Schlipf, Eds.
LNCS, vol. 4483. Springer, 201–213.

Menezes, L., Vitorino, J., and Aurelio, M. 2005. A high performance CHR∨ execution
engine. In Schrijvers and Frühwirth (2005b), 35–45.

Meyer, B. 2000. A constraint-based framework for diagrammatic reasoning. In Holzbaur
and Frühwirth (2000b), 327–344.

Morawietz, F. 2000. Chart parsing and constraint programming. In COLING ’00: Proc.
18th Intl. Conf. on Computational Linguistics, M. Kay, Ed. Morgan Kaufmann.

Morawietz, F. and Blache, P. 2002. Parsing natural languages with CHR. Unpublished
Draft.

Penn, G. 2000. Applying Constraint Handling Rules to HPSG. In Frühwirth et al. (2000).

Pilozzi, P., Schrijvers, T., and De Schreye, D. 2007. Proving termination of CHR in
Prolog: A transformational approach. In WST ’07: 9th Intl. Workshop on Termination.

Pretschner, A., Slotosch, O., Aiglstorfer, E., and Kriebel, S. 2004. Model-based
testing for real. J. Software Tools for Technology Transfer (STTT) 5, 2–3, 140–157.

Raiser, F. 2007. Graph transformation systems in CHR. In Dahl and Niemelä (2007),
240–254.

Raiser, F. and Tacchella, P. 2007. On confluence of non-terminating CHR programs.
In Djelloul, Duck et al. (2007), 63–76.

46

Ribeiro, C., Zúquete, A., Ferreira, P., and Guedes, P. 2000. Security policy con-
sistency. In Frühwirth et al. (2000).

Ringwelski, G. and Schlenker, H. 2000a. Type inference in CHR programs for the
composition of constraint systems. In WLP ’00: Proc. 15th Workshop on Logic Pro-
gramming, S. Abdennadher, U. Geske, and D. Seipel, Eds. 137–146.

Ringwelski, G. and Schlenker, H. 2000b. Using typed interfaces to compose CHR
programs. In RCoRP ’00(bis): Proc. 2nd Workshop on Rule-Based Constraint Reasoning
and Programming, T. Frühwirth et al., Eds.

Robin, J. and Vitorino, J. 2006. ORCAS: Towards a CHR-based model-driven frame-
work of reusable reasoning components. In Fink, Tompits et al. (2006), 192–199.

Robin, J., Vitorino, J., and Wolf, A. 2007. Constraint programming architectures:
Review and a new proposal. J. UCS 13, 6, 701–720.

Sarna-Starosta, B. and Ramakrishnan, C. 2007. Compiling Constraint Handling
Rules for efficient tabled evaluation. In PADL ’07: Proc. 9th Intl. Symp. Practical
Aspects of Declarative Languages, M. Hanus, Ed. LNCS, vol. 4354. Springer, 170–184.
System’s homepage at http://www.cse.msu.edu/∼bss/chr d.

Sarna-Starosta, B. and Schrijvers, T. 2007. Indexing techniques for CHR based on
program transformation. Tech. Rep. CW 500, K.U.Leuven, Dept. Comp. Sc. Aug.

Schiffel, S. and Thielscher, M. 2007. Fluxplayer: A successful general game player.
In AAAI ’07: Proc. 22nd AAAI Conf. Artificial Intelligence. AAAI Press, 1191–1196.

Schmauß, M. 1999. An implementation of CHR in Java. Diplomarbeit. Institute of
Computer Science, LMU, Munich, Germany.

Schrijvers, T. 2004. Jmmsolve: A generative java memory model implemented in Prolog
and CHR. In Demoen and Lifschitz (2004), 475–476.

Schrijvers, T. 2005. Analyses, optimizations and extensions of Constraint Handling
Rules. Ph.D. thesis, K.U.Leuven, Leuven, Belgium.

Schrijvers, T. and Bruynooghe, M. 2006. Polymorphic algebraic data type recon-
struction. In PPDP ’06, A. Bossi and M. Maher, Eds. ACM Press, 85–96.

Schrijvers, T. and Demoen, B. 2004a. Antimonotony-based delay avoidance for CHR.
Tech. Rep. CW 385, K.U.Leuven, Dept. Comp. Sc. July.

Schrijvers, T. and Demoen, B. 2004b. The K.U.Leuven CHR system: Implementa-
tion and application. In Frühwirth and Meister (2004), 8–12. System’s homepage at
http://www.cs.kuleuven.be/∼toms/CHR/.

Schrijvers, T., Demoen, B., Duck, G. J., Stuckey, P. J., and Frühwirth, T. 2006.
Automatic implication checking for CHR constraints. In RULE ’05: 6th Intl. Workshop
on Rule-Based Programming. ENTCS, vol. 147(1). Elsevier, 93–111.

Schrijvers, T. and Frühwirth, T. 2005a. Analysing the CHR implementation of union-
find. In Wolf, Frühwirth et al. (2005), 135–146.

Schrijvers, T. and Frühwirth, T., Eds. 2005b. CHR ’05: Proc. 2nd Workshop on
Constraint Handling Rules. K.U.Leuven, Dept. Comp. Sc., Technical report CW 421.

Schrijvers, T. and Frühwirth, T., Eds. 2006. CHR ’06: Proc. 3rd Workshop on
Constraint Handling Rules. K.U.Leuven, Dept. Comp. Sc., Technical report CW 452.

Schrijvers, T. and Frühwirth, T. 2006. Optimal union-find in Constraint Handling
Rules. TPLP 6, 1–2, 213–224.

Schrijvers, T., Stuckey, P. J., and Duck, G. J. 2005. Abstract interpretation for
Constraint Handling Rules. In PPDP ’05, P. Barahona and A. Felty, Eds. ACM Press,
218–229.

Schrijvers, T. and Warren, D. S. 2004. Constraint Handling Rules and tabled execu-
tion. In Demoen and Lifschitz (2004), 120–136.

47

Schrijvers, T., Warren, D. S., and Demoen, B. 2003. CHR for XSB. In CICLOPS
’03: Proc. 3rd Intl. Colloq. on Implementation of Constraint and Logic Programming
Systems, R. Lopes and M. Ferreira, Eds. University of Porto, Portugal, Dept. Comp.
Sc., Technical report DCC-2003-05. 7–20.

Schrijvers, T., Wielemaker, J., and Demoen, B. 2005. Poster: Constraint Handling
Rules for SWI-Prolog. In Wolf, Frühwirth et al. (2005).

Schrijvers, T., Zhou, N.-F., and Demoen, B. 2006. Translating Constraint Handling
Rules into Action Rules. In Schrijvers and Frühwirth (2006), 141–155.

Schumann, E. T. 2002. A literate programming system for logic programs with con-
straints. In WFLP ’02: Proc. 11th Intl. Workshop on Functional and (Constraint)
Logic Programming, M. Comini and M. Falaschi, Eds. University of Udine, Research
Report UDMI/18/2002/RR.

Scientific Software & Systems Ltd. 2008. Company Profile: Solving problems with
proven solutions. Available at http://www.sss.co.nz/.

Seitz, C., Bauer, B., and Berger, M. 2002. Planning and scheduling in multi agent
systems using Constraint Handling Rules. In IC-AI ’02: Proc. Intl. Conf. Artificial
Intelligence. CSREA Press.

Shigeta, Y., Akama, K., Mabuchi, H., and Koike, H. 2006. Converting Constraint
Handling Rules to Equivalent Transformation Rules. JACIII 10, 3, 339–348.

Simões, H. and Florido, M. 2004. TypeTool: A type inference visualization tool. In
WFLP ’04: Proc. 13th Intl. Workshop on Functional and (Constraint) Logic Program-
ming, H. Kuchen, Ed. RWTH Aachen, Dept. Comp. Sc., Technical report AIB-2004-05.
48–61.

Sneyers, J., Schrijvers, T., and Demoen, B. 2005. Guard and continuation optimiza-
tion for occurrence representations of CHR. In Gabbrielli and Gupta (2005), 83–97.

Sneyers, J., Schrijvers, T., and Demoen, B. 2006a. Dijkstra’s algorithm with Fi-
bonacci heaps: An executable description in CHR. In Fink, Tompits et al. (2006),
182–191.

Sneyers, J., Schrijvers, T., and Demoen, B. 2006b. Memory reuse for CHR. In Etalle
and Truszczynski (2006), 72–86.

Sneyers, J., Schrijvers, T., and Demoen, B. 2009. The computational power and
complexity of Constraint Handling Rules. ACM TOPLAS 31, 2.

Sneyers, J., Van Weert, P., and Schrijvers, T. 2007. Aggregates for Constraint
Handling Rules. In Djelloul, Duck et al. (2007), 91–105.

Stuckey, P. J., Ed. 2002. ICLP ’02: Proc. 18th Intl. Conf. Logic Programming. LNCS,
vol. 2401. Springer.

Stuckey, P. J. and Sulzmann, M. 2005. A theory of overloading. ACM TOPLAS 27, 6,
1216–1269.

Sulzmann, M., Duck, G. J., Peyton-Jones, S., and Stuckey, P. J. 2007. Understand-
ing functional dependencies via Constraint Handling Rules. J. Functional Prog. 17, 1,
83–129.

Sulzmann, M. and Lam, E. S. 2007a. Compiling Constraint Handling Rules with lazy
and concurrent search techniques. In Djelloul, Duck et al. (2007), 139–149.

Sulzmann, M. and Lam, E. S. 2007b. Haskell - Join - Rules. In IFL ’07: 19th Intl. Symp.
Implementation and Application of Functional Languages, O. Chitil, Ed. 195–210.

Sulzmann, M., Schrijvers, T., and Stuckey, P. J. 2006. Principal type inference
for GHC-style multi-parameter type classes. In APLAS ’06: Proc. 4th Asian Symp. on
Programming Languages and Systems, N. Kobayashi, Ed. LNCS, vol. 4279. Springer,
26–43.

48

Sulzmann, M., Wazny, J., and Stuckey, P. J. 2005. Constraint abduction and con-
straint handling rules. In Schrijvers and Frühwirth (2005b), 63–78.

Tacchella, P., Gabbrielli, M., and Meo, M. C. 2007. Unfolding in CHR. In PPDP
’07, M. Leuschel and A. Podelski, Eds. ACM Press, 179–186.

Thielscher, M. 2002. Reasoning about actions with CHRs and finite domain constraints.
In Stuckey (2002), 70–84.

Thielscher, M. 2005. FLUX: A logic programming method for reasoning agents. In
Abdennadher, Frühwirth et al. (2005), 533–565.

Ueda, K. et al. 2006. LMNtal as a unifying declarative language. In Schrijvers and
Frühwirth (2006), 1–15. Invited talk.

Van Weert, P. 2008. Compiling Constraint Handling Rules to Java: A reconstruction.
Tech. Rep. CW 521, K.U.Leuven, Dept. Comp. Sc. Aug.

Van Weert, P., Schrijvers, T., and Demoen, B. 2005. K.U.Leuven JCHR: a user-
friendly, flexible and efficient CHR system for Java. In Schrijvers and Frühwirth (2005b),
47–62. System’s homepage at http://www.cs.kuleuven.be/∼petervw/JCHR/.

Van Weert, P., Sneyers, J., and Demoen, B. 2008. Aggregates for CHR through
program transformation. In LOPSTR ’07, Revised Selected Papers, A. King, Ed. LNCS,
vol. 4915.

Van Weert, P., Sneyers, J., Schrijvers, T., and Demoen, B. 2006. Extending CHR
with negation as absence. In Schrijvers and Frühwirth (2006), 125–140.

Van Weert, P., Wuille, P., Schrijvers, T., and Demoen, B. 2008. CHR for imper-
ative host languages. In Special Issue on Constraint Handling Rules. LNAI, vol. 5388.
Springer.

Voets, D., Pilozzi, P., and De Schreye, D. 2007. A new approach to termination
analysis of Constraint Handling Rules. In Djelloul, Duck et al. (2007), 77–89.

Voll, K. 2006. A methodology of error detection: Improving speech recognition in radi-
ology. Ph.D. thesis, Simon Fraser University, Canada.

Wazny, J. 2006. Type inference and type error diagnosis for Hindley/Milner with exten-
sions. Ph.D. thesis, University of Melbourne, Australia.

Wolf, A. 1999. Adaptive Constraintverarbeitung mit Constraint-Handling-Rules – ein
allgemeiner Ansatz zur Lösung dynamischer Constraint-probleme. Ph.D. thesis, Tech-
nical University Berlin, Berlin, Germany.

Wolf, A. 2000a. Projection in adaptive constraint handling. In New Trends in Con-
straints, Joint ERCIM/Compulog Net Workshop, October 1999, Selected papers, K. Apt,
A. Kakas, E. Monfroy, and F. Rossi, Eds. LNCS, vol. 1865. Springer, 318–338.

Wolf, A. 2000b. Toward a rule-based solution of dynamic constraint hierarchies over
finite domains. In Frühwirth et al. (2000).

Wolf, A. 2001a. Adaptive constraint handling with CHR in Java. In CP ’01, T. Walsh,
Ed. LNCS, vol. 2239. Springer, 256–270.

Wolf, A. 2001b. Attributed variables for dynamic constraint solving. In Proc. 14th Intl.
Conf. Applications of Prolog. Prolog Association of Japan, 211–219.

Wolf, A. 2005. Intelligent search strategies based on adaptive Constraint Handling Rules.
In Abdennadher, Frühwirth et al. (2005), 567–594.

Wolf, A., Frühwirth, T., and Meister, M., Eds. 2005. W(C)LP ’05: Proc. 19th
Workshop on (Constraint) Logic Programming. Ulmer Informatik-Berichte, vol. 2005-
01. Universität Ulm, Germany.

Wolf, A., Gruenhagen, T., and Geske, U. 2000. On incremental adaptation of CHR
derivations. In Holzbaur and Frühwirth (2000b), 389–416.

49

Wolf, A., Robin, J., and Vitorino, J. 2007. Adaptive CHR meets CHR∨: An extended
refined operational semantics for CHR∨ based on justifications. In Djelloul, Duck et al.
(2007), 1–15.

Wuille, P., Schrijvers, T., and Demoen, B. 2007. CCHR: the fastest CHR imple-
mentation, in C. In Djelloul, Duck et al. (2007), 123–137. System’s homepage at
http://www.cs.kuleuven.be/∼pieterw/CCHR/.

50

	Introduction
	Historical Overview
	Constraint Handling Rules

	Semantics
	Logical Semantics
	Operational Semantics

	Program Analysis
	Confluence
	Termination
	Complexity

	Systems and Implementation
	Systems
	Compilation
	Programming Environments

	Extensions and Variants
	Deviating Operational Semantics
	Language Extensions
	Solver Hierarchies

	Relation to Other Formalisms
	Set-Based Formalisms
	Graph-Based Formalisms

	Applications
	Constraint Solvers
	Union-Find and Other Classic Algorithms
	Programming Language Development
	Industrial CHR Users

	Conclusions
	Survey Coverage and Bibliographic Meta-Information
	Retrospection
	Grand Challenges

	References

