J. LOGIC PROGRAMMING 1994:19, 20:1-679 1

Theory and Practice of Constraint Handling Rules

Thom Fruhwirth

>

Constraint Handling Rules (CHR) are our proposal to allow more flexibility

and application-oriented customization of constraint systems. CHR are a
declarative language extension especially designed for writing user-defined
constraints. CHR are essentially a committed-choice language consisting of
multi-headed guarded rules that rewrite constraints into simpler ones until
they are solved.

In this broad survey we aim at covering all aspects of CHR as they cur-
rently present themselves. Going from theory to practice, we will define
syntax and semantics for CHR, introduce an important decidable property,
confluence, of CHR programs and define a tight integration of CHR with
constraint logic programming languages. This survey then describes im-
plementations of the language before we review several constraint solvers
- both traditional and non-standard ones - written in the CHR language.
Finally we introduce two innovative applications that benefited from using
CHR. <

1. INTRODUCTION

The advent of constraints in logic programming (LP) is one of the rare cases where
theoretical, practical and commercial aspects of a programming language have
been improved simultaneously. Constraint logic programming [JaLa87, vH89, vHI1,
Fr*92, JaMa94, FrAb97] (CLP) combines the advantages of logic programming and
constraint solving. In logic programming, problems are stated in a declarative way
using rules to define relations (predicates). Problems are solved by the built-in
logic programming engine using chronological backtrack search to explore choices.
In constraint solving, efficient special-purpose algorithms are employed to solve sub-
problems involving distinguished relations referred to as constraints. A constraint
solver can thus be seen as inference system. The solver supports some if not all of

Address correspondence to Ludwig-Maximilians-Universitat Muenchen (LMU), Institut
fuer Informatik, Oettingenstrasse 67, D-80538 Munich, Germany, fruehwir@informatik.uni-

RSSO LS Tl RS MR chon-de/personen/ fruchwie/

© Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066,/94/$7.00

the basic operations on constraints: solving (satisfaction), simplification, propaga-
tion, normalization, entailment (deciding implication) and optimization (computing
“best” solutions).

In the beginning of CLP, constraint solving was “hard-wired” in a built-in con-
straint solver written in a low-level language. While efficient, this so-called “black-
box” approach makes it hard to modify a solver or build a solver over a new domain,
let alone debug, reason about and analyze it. This is a problem, since one lesson
learned from practical applications is that constraints are often heterogeneous and
application-specific.

Actually, it has been demanded from the beginning of CLP that “constraint
solvers must be completely changeable by users” (p. 276 in [Ai*88]). By “user” we
mean the application programmer. Since then, several proposals have been made
to allow more for flexibility and costumization of constraint systems (“glass-box”
or even “no-box” approaches):

e Demons, forward rules and conditionals, CHIP [Di*88, vH89], allow defining
propagation of constraints in a limited way (Section 3).

e Constraint combinators, cc(FD) [vH91], allow building more complex con-
straints from simpler constraints (see also Section 8.1).

e Constraints connected to a Boolean variable, BNR-Prolog [BeO192], “nested
constraints” [Sid93], allow expressing any logical formula over primitive con-
straints.

e Indexicals, clp(FD) [CoDi96], allow implementing constraints over finite do-
mains at a medium level of abstraction.

e Meta- and attributed variables [Hol92], allow attaching constraints to vari-
ables (Section 7).

It should be noted that all the approaches but the last can only extend a solver over
a given, specific constraint domain, typically finite domains. Application-specific
domains can only be implemented directly using the last approach, however this
is tedious, a kind of “constraint assembler” programming, which is currently the
low-level basis for most delay mechanisms and constraint solver extensions.

Our proposal is a high-level language extension especially designed for writing
constraint solvers, called constraint handling rules (CHR) [Fru91, FrBr95a, Fru95,
FrBr95b, FAM97]. With CHR, one can introduce user-defined constraints into a
given host language, be it Prolog or Lisp. As language extension, CHR themselves
are only concerned with constraints, all auxiliary computations are performed di-
rectly in the host language. CHR are typically a library containing a compiler and
run-time system written in the host language and solvers written in CHR.

CHR are essentially a committed-choice language consisting of guarded rules that
rewrite constraints into simpler ones until they are solved. CHR define both sim-
plification of and propagation over user-defined constraints. Simplification replaces
constraints by simpler constraints while preserving logical equivalence. Propaga-
tion adds new constraints which are logically redundant but may cause further
simplification. CHR can be seen of generalization of the various CHIP constructs
for user-defined constraints.

In contrast to the family of the general-purpose concurrent logic programming
languages [Sha89], concurrent constraint languages [Sar93] and the ALPS frame-
work [Mah87], CHR are a special-purpose language concerned with defining declara-
tive constraints, not procedures in their generality. In another sense, CHR are more
general, since they allow “multiple heads”, i.e. conjunctions of constraints in the
head of a rule. Multiple heads are a feature that is essential in solving conjunctions
of constraints. With single-headed CHR alone, unsatisfiability of constraints could
not always be detected (e.g X<Y,Y<X) and global constraint satisfaction could not
be achieved.

Overview of the Survey Paper

In the next section, we introduce CHR by example. Then we talk about related
work. On our way from theory to practice, we will first give syntax and semantics
as well as soundness and completeness results for CHR. We will then introduce an
important property for constraint solvers, confluence, and a decidable, necessary
and sufficient test for it. We will next discuss the specifics of extending a CLP
language with CHR (like automatic labeling). We will also describe the principles
and characteristics of several existing implementations of CHR in Prolog and LISP.

CHR have been used to encode a wide range of constraint solvers, including new
domains such as terminological and temporal reasoning. We will give an overview
of several solvers, show how they can be extended or modified and we will briefly
describe related work that builds on these solvers. Finally, we will mention two
applications in non-standard domains, one optimizes the placement of radio cells
for transmitters, the other gives rent advice over the internet.

2. CHR BY EXAMPLE

We define a user-defined constraint for less-than-or-equal, =<, that can handle vari-
able arguments. The implementation will rely on syntactical equality, =, which is
assumed to be a predefined (built-in) constraint.

reflexivity @ X=<Y <=> X=Y | true.
antisymmetry @ X=<Y,Y=<X <=> X=Y.
transitivity @ X=<Y,Y=<Z ==> X=<Z.

The CHR specify how =< simplifies and propagates as a constraint. They im-
plement reflexivity, antisymmetry and transitivity in a straightforward way. CHR
reflexivity states that X=<Y is logically true, provided it is the case that X=Y. This
test forms the (optional) guard of a rule, a precondition on the applicability of the
rule. Hence, whenever we see the constraint X=<X we can simplify it to true. CHR
antisymmetry means that if we find X=<Y as well as Y=<X in the current constraint,
we can replace it by the logically equivalent X=Y. Note the different use of X=Y in
the two rules: In the reflexivity rule the equality is a precondition (test) on the
rule, while in the antisymmetry rule it is enforced when the rule fires.

The rules reflexivity and antisymmetry are simplification CHR. The rule
transitivity propagates constraints. It states that the conjunction X=<Y, Y=<Z

implies X=<Z. Operationally, we add logical consequences as a redundant constraint.
This kind of CHR is called propagation CHR.

Redundancy from propagation CHR is useful, as the query A=<B,C=<A,B=<C
shows: The first two constraints cause CHR transitivity to fire and add C=<B
to the query. This new constraint together with B=<C matches the head of CHR
antisymmetry, X=<Y,Y=<X. So the two constraints are replaced by B=C. In gen-
eral, matching takes into account the syntactical equalities that are implied by
built-in constraints. Therefore, since the built-in constraint B=C was added, CHR
antisymmetry applies to the constraints A=<B,C=<A, resulting in A=B. The query
contains no more inequalities, the simplification stops. The constraint solver we
built has solved A=<B,C=<A,B=<C and produced the answer A=B,B=C:

A=<B,C=<A,B=<C.

% C=<A,A=<B propagates C=<B by transitivity.

% C=<B,B=<C simplifies to B=C by antisymmetry.

% A=<B,C=<A simplifies to A=B by antisymmetry since B=C.
A=B,B=C.

Note that multiple heads of rules are essential in solving these constraints. Also
note that this solver implements a (partial) order constraint over any constraint
domain, this generality is only possible with CHR.

For the solver to work, we require conjunctions of constraints to be idempotent,
so that multiple occurrences of the same constraint are absorbed. This ensures
termination of the solver, since given a finite number of variables, there can only
be a finite number of different =< constraints between them. Then, the solver is
confluent, this means that from a given query, the answer will always be the same,
regardless of which order we apply the rules. E.g. in the above query we could have
started with applying transitivity to C=<A,B=<C.

3. RELATED WORK

3.1. Languages for Defining Constraints

CS-Prolog [KOMS87] was presumably the first proposal to implement constraint
solvers in a LP language itself utilizing a delay mechanism. Conditional rewrite
rules were used to describe the behavior of the solver. However, it was years too
early to be able to refine this idea and implement it efficiently.

CHIP was the first CLP language to introduce feasible constructs (demons, for-
ward rules, conditionals) [Di*88, vH89] for user-defined constraints. These various
constructs have been generalized into and made uniform by CHR. Demons are es-
sentially single-headed simplification CHR without guards. One version of CHIP
also included forward rules [Gr89], which correspond to CHR without guards. In
practice, demons and forward rules have been proven useful in CHIP applications
in the boolean domain for circuit design and verification. Their potential to define
constraint solvers in general was not realized, maybe because of their limitations.

The Guarded Rules [Smo93] correspond to single headed simplification CHR.
However, they are only used as “shortcuts” (lemmata) for predicates, not as defi-
nitions for user-written constraints. Interestingly, Smolka defines the built-in con-

straint system as a terminating and determinate reduction system. Hence it could
be implemented by simplification CHR.

We have already mentioned the other approaches towards user-defined con-
straints in LP in the introduction. There are also other languages outside of the
LP paradigm, that aim at defining constraint systems.

The functional language Betrand [Lel88] uses augmented term rewriting, which
is standard term rewriting extended by an equality theory, local variables, objects
and types. Confluence is preserved. An extension to allow multiple solutions is also
discussed, which would allow Betrand retaining the expressive power of LP. The
extensions of Bertrand mimic what is already present in LP: the equality theory
for unification of Herbrand terms and local variables.

The object-oriented language extension EQUATE [Wil91] simplifies arithmetic
constraints into a sequence of procedural solution steps. EQUATE uses rewrite
rules, which can be seen as LP rules. The procedural solutions use destructive
assignment, thus an ordering has to be imposed on the solutions steps to avoid
read-write conflicts. The approach has some capabilities to deal with added and
removed constraints.

3.2. Multiple Head Atoms

According to [Coh88] at the very beginning of the development of Prolog in the
early 70’s by Colmerauer and Kowalski, experiments were performed with clauses
having multiple head atoms. In committed-choice languages, multiple head atoms
have been considered only rarely. In his thesis, Saraswat remarks on multiple head
atoms that “the notion seems to be very powerful” and that “extensive further
investigations seems warranted” ([Sar89], p. 314). He motivates joint reductions
of multiple atoms as analogous to production rules of expert system languages like
OPS5. The examples given suggest the use of joint reductions to model objects in
a spirit similar to what is worked out in [AnPa90].

Indeed, clauses with multiple head atoms were proposed in the literature to
model parallelism and distributed processing as well as objects. The similarity with
CHR is merely syntactical. Rules about distribution, objects or agents involve non-
monotonicity, e.g. state changes caused by actions or method calls, as opposed to
declarative constraint solving. However, CHR can be (ab)used to model objects or
agents, e.g. a stack object equipped with a method push:

push(X), stack(S) <=> stack([X|S])

Multi-headed simplification CHR are sufficient to simulate the parallel machine
for multiset transformation proposed in [BCLS88]. This “chemical abstract machine”
is based on the chemical reaction metaphor as a means to describe highly parallel
computations. Following [BCL&8], we can implement the sieve of Eratosthenes to
compute primes simply as:

primes(1) <=> true.
primes(N) <=> N>1 | M is N-1,prime(N),primes(M).% generate candidates

prime(I),prime(J) <=> 0 is J mod I | prime(I). % J is multiple of I

The answer to the query primes(n) will be a conjunction of prime(p;) where

each p; is a prime (2 < p; < n). One should compare this to the standard concurrent
program as given in [Sha89] to appreciate the expressive power of multiple heads.
It is about three times as long. Programs for computing primes are contained in
the solver primes.chr of the CHR library [FrBr96].

4. SYNTAX AND SEMANTICS

In this section we give an overview of syntax and semantics as well as soundness and
completeness results for constraint handling rules. More detailed presentations can
be found in [FAM97, Abd97, Abd98]. We assume some familiarity with (concurrent)
constraint (logic) programming [JaLa87, vH91, Fr*92, Sar93, JaMa94].

As a special purpose language, CHR extend a host language with (more) con-
straint solving capabilities. Auxiliary computations in CHR programs are directly
executed as host language statements. To keep this section essential and self-
contained, we will not address host language issues here.

A constraint is considered to be a distinguished, special first-order predicate
(atomic formula). We use two disjoint sorts of predicate symbols for two different
classes of constraints: One sort for built-in (predefined) constraints and one sort for
CHR (user-defined) constraints. Built-in constraints are those handled by a prede-
fined constraint solver that already exists in the host language. CHR constraints
are those defined by a CHR program. Since host language statements that appear
in CHR must be declarative, we can consider them as built-in constraints in this
section (with a rather incomplete solver, the host language).

4.1. Syntaz

Definition 4.1. A CHR program is a finite set of CHR. There are three kinds of
CHR. A simplification CHR is of the form
Hy, ...,H; <=> Gl,...,Gj | By,..., By,

a propagation CHR is of the form
Hy,...,H;==>Gy,...,G; | By,...,By,

a simpagation CHR is of the form
Hy,...,H/\ Hy,...,H; <=>G1,...,Gj | Bi,...,By,

withs > 0,7 >0,k > 0,1 > 0 and where the multi-head Hy, ..., H; is a nonempty
sequence of CHR constraints, the guard G1,...,G; is a sequence of built-in con-
straints, and the body By, ..., By is a sequence of built-in and CHR constraints.

Empty sequences are represented by the built-in constraint true. For simplicity,
the empty guard, true, can be removed from a rule together with the commit
operator |.

Since a propagation rule could likewise be thought of as an abbreviation of a
simplification rule

Hl,...,Hl,H[+1,...,Hi <=> Gl,...,Gj | Hy,....,H,By,...,By

there is no need to discuss them further in this section, but we use them later when
we describe implementations and applications of CHR.

4.2. Declarative Semantics

Unlike general committed-choice programs, CHR programs can be a given a declar-
ative semantics since they are only concerned with defining constraints, not proce-
dures in their generality.

The declarative interpretation of a CHR program P is given by a conjunction of
universally quantified logical formulas (one for each rule), P, and a consistent built—
in constraint theory CT which determines the meaning of the built—in constraints
appearing in the program. The theory CT is expected to include an equality
constraint = and the basic constraints true and false.

Let T denote the sequence of (global) variables occurring in the head atoms
Hy,...,H; of a CHR. Then 4 (Z) are the other (local) variables occurring in the
guard Gi,...,G; (body Bi,...,By) of the rule (they do not occur in the heads).
For simplicity we assume that there are no local variables that occur in both the
guard and the body of a rule!.

Definition 4.2. Declaratively, a simplification CHR is a logical equivalence if the
guard is satisfied:

Vi"(EIgj(Gl/\/\GJ))H (Hl/\.../\Hi<—>E|2(B1/\.../\Bk))
A propagation CHR is an implication if the guard is satisfied:
Vi"(EIgj(Gl/\/\GJ))H (Hl/\.../\Hi—)32(B1/\.../\Bk))

Example 4.1. The CHR
reflexivity @ X=<Y <=> X=Y | true
from the introductory example in Section 2 has the logical reading

VE,Y(X=Y) = (X=<Y < true).

4.8. Operational Semantics

The operational semantics of CHR programs is given by a transition system.

Definition 4.3. A state is an annotated tuple
<F7 Ev D>V7

where F' is a conjunction of CHR and built-in constraints called goal (store), E
is a conjunction of CHR constraints, D is a conjunction of built-in constraints,
called (constraint) stores, and the annotation V is a sequence of variables. Empty
conjunctions are represented by the built-in constraint true.

We attribute to each state (F, E, D)y, the formula

3 FAEAD

IElse use e.g. VaVg ((G1 A ... A Gj) = (HiN...ANH; >3z (By A... A Bg))) [Fru97].

as its logical meaning, where § are the variables occurring in the state except
the ones appearing in V, which remain free in the formula.

When it is clear from the context, we will confuse a state S and its logical reading.
We also will drop the annotation V from a state if it is not of interest.

Transitions

With computation steps (transitions, reductions) one can proceed from one state
to the next. Intuitively, in a state (F, E, D)y, F are the constraints that remain
to be solved, and D and F are the constraints that have been accumulated and
simplified so far. The aim of the computation is to incrementally reduce arbitrary
states to states that contain no more goals. There will be one transition for solving
built-in constraints, one transition that introduces CHR constraints into their store
and three transitions for applying each kind of CHR to them. All transitions leave
the annotation V unchanged.

Definition 4.4. Let P be a CHR program for the CHR constraints and CT be
a constraint theory for the built-in constraints. The transition relation — for
CHR is as follows. All variables occurring in states stand for conjunctions of
constraints. Z denotes the program variables occurring in the multi-head H.

Solve
<C/\F7E7D>V L (FvaD’>V
if C is a built-in constraint and CT |= (C A D) < D’

Introduce
(HANF,E,D)y — (F,HAE, D)y
if H is a CHR constraint

Simplify
(F,H' NE,D)y, — (BANF,E,H =H'A D)y
it (H<=>G|B)in P and CT =D — 3z(H = H AG)

Propagate
(F,H' NE,D)y, — (BANF,H'NE,H = H' AD)y
if(H==>G|B)inP and CT =D — 3z(H=H' ANG)

By equating two constraints, ¢(f1,...,tn) = ¢(81,-..,8n), We mean t; = sy A...A
ln = 8n. By (HiA...AH,)=(H{A...ANH]) wemean H; = H/A...ANH,, = H,.
Note that the conjuncts can be permuted since conjunction is assumed to be
associative and commutative.

In the Solve transition, the built-in solver updates the constraint store D with
a new constraint C' from the goal store. To wupdate the constraint store means
to deterministically produce a new constraint store D' that is - according to the
constraint theory CT - logically equivalent to the conjunction of the new constraint
and the old constraint store.

The Introduce transition transports a CHR constraint H from the goal store
into the CHR. constraint store. There it can be handled together with other CHR

constraints by applying rules. A CHR is applicable to CHR. constraints H' when-
ever these constraints match the head atoms H of the rule?(taking into account
syntactical equalities implied by the built-in constraint store D) and the guard G
is implied (entailed) by the store D.

If a simplification rule (H <=> G | B) appearing® in the given CHR program
P is applicable to the CHR constraint H’, the Simplify transition removes H’
from the CHR constraints store, adds B to the goal store and adds the equation
H = H' expressing the match between H' and the head atoms H to the built-in
constraint store.

If a propagation rule (H ==> G | B) is applicable to H', the Propagte tran-
sition adds B to the goal store and adds the equation H = H' to the built-in
constraint store.

We require that the rules are applied fairly, i.e. that every rule that is applicable
is applied eventually. Fairness is respected and trivial non-termination is avoided by
applying a propagation rule at most once to the same constraints. A more complex
operational semantics that addresses these issues can be found in [Abd97, Abd98].

Initial and Final States

Definition 4.5. The initial state consists of a goal F' and empty constraint stores,
(F, true, true)y,

where V is the sequence of variables occurring in F'. A final state is either of the
form

(F,E,false)y
(such a state is called failed), or of the form
(true, E, D)y

with no fair computation step possible anymore and D not false (such a state
is called successful).

F is also called query. A final state is called (conditional or qualified) answer for
the query F.

Thus the annotation V allows distinguishing between the query variables and
the variables introduced during the computation.

Ezample 4.2. A computation of the goal A <BAC < AAB < C for the introductory
example in Section 2 proceeds as follows:

2This is the effect of the existential quantification over the head equalities, e.g. 3Z(H = H').
3 As usual, variables are renamed apart.

10

A<BAC<AABLC true true), g o
true,A<BAC<AAB<C true), 5o
> Propagate Transitivity C S BvA S BAC S ANB S Cvtrue>[A,B,C’]

(

i (

(

= Introduce (true, A<BAC<AAB<CACK B7true>[A’B’C]

(

(

(

(

P Introduce

B=C,A<BAC<A true), 5
true,AﬁB/\CSAvB:Q[ABC]
A :thruevB = c)[ABC’]

= Simplify Antisymmetry
— Solve
= Simplify Antisymmetry

= Solve true,true,A=BAB= C>[A’B7C]

4.4. Soundness and Completeness

We now relate the operational and declarative semantics of CHR. These results are
based on [JaLa87, Mah87, vH91] and can be found with with proofs in [FAM97,
Abd9g].

Definition 4.6. A computation of a goal G is a sequence Sy, S1, ... of states with
S; — Si+1 beginning with the the initial state Sy = (G, true, true)y and ending
in a final state or diverging. A finite computation is successful if the final state
is successful. It is failed otherwise.

Definition 4.7. S+—* S holdsiff S=S5"or S— 51— ...~ S, — S5 (n>0).

The following results are based on the fact that the transitions for CHR preserve
the logical meaning of states. All states in a computation are logically equivalent.

Lemma 4.1. Let P be a CHR program and G be a goal. If C is the logical reading
of a state appearing in a computation of G, then

P,CT EV (C & G)

where VF denotes the universal closure of a formula F.
PROOF. By structural induction over the computation steps.

In the soundness and completeness results for CHR, there is no need to distin-
guish between successful and failed computations.

Theorem 4.1 Soundness. Let P be a CHR program and G be a goal. If G has a
computation with answer C' then

P,CT EV (C < G).
PROOF. Immediately from lemma 4.1.

Theorem 4.2 Completeness. Let P be a CHR program, G be a goal with at least one
finite computation and C be a conjunction of constraints. If P, CT =V (C < G),
then G has a computation with answer C' such that

P,CT =V (C < C").
Proor. Immediately from Theorem 4.1.

The theorem is stronger than the completeness result for CLP languages pre-
sented in [Mah87], in the way that we can reduce the disjunction in the strong com-

11

pleteness theorem to a single disjunct (due to lemma 4.1). The following example
shows that the completeness theorem does not hold if G has no finite computations.

Ezample 4.53. Let P be the CHR program:

p <=>p.
Let G be p. It holds that P,CT | p < p since P is {p < p}. However, G has only
infinite computations.

The soundness result, Theorem 4.1, can be specialized to failed computations.

Corollary 4.1. Let P be a CHR program and G be a goal. If G has a finitely failed
computation, then P,CT = -3G.
ProOOF. By Theorem 4.1.

However, an analogous completeness result, that is, the converse of Corollary
4.1, does not hold in general:

Ezample 4.4. Let P be the CHR program:

p <=> q.
p <=> false.

P,CT [= —q, but ¢ has no finitely failed computation.

Thus the completeness theorem 4.2 is rather weak for failed computations. A
stronger completeness result can be given for correct programs and data-sufficient
goals?. Data-sufficiency was introduced for completeness of deterministic ALPS
programs in [Mah87] (see also Section 5.1).

Definition 4.8. A CHR program P is correct iff P U CT is consistent.

Definition 4.9. A goal is data-sufficient if it has a computation ending in a final
state of the form (true, true, D)y.

Theorem 4.3 Stronger Completeness of Failed Computations. Let P be a correct
CHR program and G be a data-sufficient goal. If P,CT |= -3G then G has
a finitely failed computation.
PROOF. By Theorem 4.1, the definition of correctness and the fact that a final
state contains only built-in constraints, because G is data-sufficient.

We will see that the confluence property introduced next will further improve
our soundness and completeness results.

5. CONFLUENCE

We have already shown in the previous section (Lemma 4.1) that in a CHR program,
the result of a computation from a given goal will always have the same meaning.

4Data-sufficiency is missing from Theorem 19 in [FAM96], thus it is stated wrongly.

12

However it is not guaranteed that the result is syntactically the same. The con-
fluence property of a program guarantees that any computation starting from an
arbitrary given initial state, i.e. any possible order of rule applications, results in
the same final state. It does not guarantee that the solver will be (satisfaction)
complete, i.e. detect all inconsistencies.

Due to space limitations, we can just give an overview on confluence where some
definitions are just informal. Detailed confluence results for simplification rules only
are published in [FAM97]. Recently, these results have been simplified and extended
to all three kinds of CHR [Abd97, Abd98]. The papers adopt and extend the
terminology and techniques of conditional term rewriting systems [DOS88, KiKi91]
about confluence. The extensions enable handling of global knowledge (the built-in
constraint store), local variables and propagation rules. In [Abd98], it was also
possible to adapt to CHR the idea of Knuth-Bendix completion, an algorithm that
makes a set of rules confluent by introducing additional rules.

We require that states are normalized so that they can be compared syntactically
in a meaningful way. Since the formal definition of the normalization function is
quite involved, we describe normalized states just informally. Basically, we require
that the built-in constraints are in a (unique) normal form where all equalities are
made explicit and are propagated to all components of the state. The normalization
also has to make identical all failed states.

Furthermore, we require a more refined operational semantics. We augment
states with a second annotation. The new annotation 7 is a multiset of tokens
representing potential applications of propagation rules to constraints. When a
propagation rule is applied, the corresponding token is removed so that the rule
cannot be reapplied again to the same constraints. When a simplification rule is
applied, the appropriate tokens in which the removed constraints occur are removed.

In the rest of this section we assume that states are normalized and annotated.

Definition 5.1. Two states are variants if they can be obtained from each other
by a variable renaming.
Two states S1 and Sy are called joinable if there exist states Si, S5 such that
S1 —* 5] and Sy —* S and 5] is a variant of S).

Definition 5.2. A CHR program is called confluent if for all states S,Si,Ss:
If S+—*5,5—*S5, then S; and S, are joinable.
A CHR program is called locally confluent if for all states S,Sy,S2: If S —
S1,8 +— S5 then S7 and S5 are joinable.

Example 5.1. The CHR program from example 4.4 is not confluent since p can
either be simplified to q or false. The corresponding states are final and differ.
However the following program is confluent:

p <=> q.
p <=> false.
q <=> false.

13

We give a new motivation for critical pairs here based on the notion of nontrivial
direct common ancestor states.

To analyze local confluence of a given CHR program we cannot check joinability
of all pairs of states that derive from a common ancestor state, because in general
there are infinitely many such states. However one can construct a finite number of
minimal states where more than one rule is applicable: A direct common ancestor
state consists of the heads and guards of the rules. It suffices to construct non-
failed states from two rules. It is obvious that there is only a finite number of such
states for a given program. Due to the monotonicity property of CHR, these states
can be extended to any context, i.e. to all possible ancestor states. Monotonicity
states that adding constraints to the components of the state cannot inhibit the
application of a rule as long as the built-in constraint store remains consistent.

We now further restrict ourselves to nontrivial direct common ancestor states:
Joinability can only be destroyed if one rule inhibits the application of the other
rule. The application of a rule may remove CHR constraints from the user-defined
store and introduce new constraints. Only the removal of constraints can effect the
applicability of another rule, in case the removed constraint is needed by the other
rule. To possibly inhibit each other, at least one rule must be a simplification CHR
and the two rules must overlap, i.e. have at least one head atom in common in
the ancestor state. This is achieved by equating head atoms in the state and by
removing the resulting identical copies of head atoms.

Definition 5.3. Given a simplification rule R; and an arbitrary (not necessarily
different) rule Ry from a CHR program P, whose variables have been renamed
apart. Let G; denote the guard, B; denote the body of rule R; (i = 1,2). Let Hf
and H; be a partition of the head of the rule R; into two conjunctions, where the
conjunction of common head atoms H{ is nonempty. Then a nontrivial direct
common ancestor state S of Ry and Ry is

(true, HS A Hy A Hy, (H{ = HS) A Gy A Go) Y,

provided (Hf = H$) A G1 A G2 is consistent. V is the sequence of variables
appearing in H{ A H; A Hy. If R, is a simplification rule, 7 is the empty set, if
R, is a propagation rule, 7 is {{Rq, H{ A Ho)}.

The choice of 7 is motivated by the minimality criterion for the state: It covers
the case that all propagation rules (except possibly Rs) have already been applied
to the constraints of the user-defined store before the ancestor state S was reached.

The application of Ry and R» respectively to .S leads to two states that form the
so-called critical pair. In the states of the critical pair, the body B; of the rule R;
is in the goal store, H and H; have been removed from the CHR constraint store
in case R; is a simplification rule, 7 will be empty and the built-in constraint store
and the V annotation remain the same.

Definition 5.4. Let S be a nontrivial direct common ancestor state. If S —pg, S;
and S —pr, Sy then the tuple (Sy,Ss) is the critical pair’of S.
A critical pair (S, S2) is joinable, if Sq and Ss are joinable.

5Due to the condensed presentation, this definition differs from the one in [Abd97]. However,
the difference is only syntactical, in the way the critical pair is represented.

14

Ezample 5.2. Consider the example of Section 2. The following nontrivial ancestor
state comes from equating the first head atom of the antisymmetry rule with the
first head atom of the transitivity rule: (true, X<YAY<ZAY<X, true)lf, where V
is the sequence of variables X,Y,Z and 7 contains just the token (transitivity,
X<YAY<Z).

The critical pair is ((X <Z,X<YAY<ZAY <X true)), (X =Y,Y < Z true)).
The critical pair is joinable, since there are computations from its two states with

empty multisets of tokens that result in the same final state (true,X < Z,X = Y)%

We are now able to give the main theorem connecting joinability of critical pairs
with local confluence:

Theorem 5.1. A CHR program is locally confluent iff all its critical pairs are join-
able.
PrOOF. The if-direction: Assume that we are in state S where there are two
or more possibilities for computation steps. We investigate all pairs of possible
computation steps and show that they are joinable.
The only-if-direction: By contradiction. We assume that we have a locally con-
fluent CHR program with a critical pair that is not joinable.

The following corollary gives us a decidable, sufficient and necessary test for
confluence of a terminating program:

Definition 5.5. A CHR program is called terminating, if there are no infinite com-
putations.

Corollary 5.1. A terminating CHR program is confluent iff all its critical pairs are
joinable.
Proor. Immediately from Theorem 5.1 and Newman’s lemma [New42].

Our notion of confluence subsumes the notion of determinacy as used by Maher
[Mah87] and Saraswat [Sar93] for (concurrent) constraint (logic) programs. In a
determinate program, guards of rules for the same predicate are mutually exclusive.
Thus they are trivially confluent, since no critical pairs exist.

5.1. Soundness and Completeness Reuvisited

We showed in [FAM97, Abd98] that confluence implies correctness (see Definition
8).

Theorem 5.2. If P is confluent, then P U C'T is consistent.

The following theorem shows that we can improve on soundness and completeness
if a CHR program is confluent and terminating.

Theorem 5.3 Strong Soundness and Completeness. Let P be a terminating and con-
fluent CHR program and G be a goal. Then the following are equivalent:

a) P,CT =Y (CoG).

15

b) G has a computation with answer C' such that P,CT EV (C<C").
c¢) Every computation of G has an answer C' such that P,CT EV (C—C").

PRrROOF. “a) = b)” by Theorem 4.2.
“b) = ¢)” by confluence and termination.
“c) = a)” by Theorem 4.1.

The following corollary is a soundness and completeness result for finitely failed
computations.

Corollary 5.2. (Soundness and Completeness of Finite Failure) Let P be a termi-
nating and confluent CHR program and G be a data-sufficient goal. Then the
following are equivalent:

a) P,CT = -3G
b) G has a finitely failed computation.
c¢) Every computation of G is finitely failed.

PrROOF. By Theorems 5.3, 5.2 and 4.3.

Maher proved similar soundness and completeness results for deterministic ALPS
programs with data-sufficient goals. Our results hold for a substantially larger class
of programs, confluent and terminating CHR programs. Note, however, that ALPS
in general has a different semantics (based on Clark’s completion) and a different
operational semantics (rules can commit more often) than CHR.

6. CLP + CHR

We now assume that constraint handling rules extend a given CLP language and
extend the definitions from the previous sections accordingly. For CLP, a tight
integration is possible: We allow clauses for CHR constraints. These are used
for labeling, i.e. introducing choices. The idea is that if no simplification and
propagation is possible anymore, a constraint is automatically chosen for labeling.

Conversely, we can regard any predicate as a (labeling routine of a) constraint
and add some CHR for it. Seen this way, CHR are lemmata that allow expressing
the determinate information contained in a predicate. Predicates and constraints
are just alternate views, don’t know and don’t care nondeterminism are combined
in a declarative way. This is also the idea of Guarded Rules [Smo93] mentioned in
section 3. To see the power of such lemmata consider the rule append (L1, [],L)
<=> L1=L. The recursion on the list L1 in the usual definition of append is replaced
by a simple unification L1=L.

Ezample 6.1. We continue with the example from Section 2. To illustrate auto-
matic labeling with the CHR constraint =<, we use successor notation for numbers.

label with X=<Y if ground(X).
label with X=<Y if ground(Y).
0=<Y.

16

s(X)=<s(Y) :- X=<Y.

The labeling declarations (starting with label with) state that one may label
with X=<Y if either X or Y are ground (variable-free terms).

s(s(0))=<A,A=<s(s(s(0))).

% s(s(0))=<A,A=<s(s(s(0))) propagates s(s(0))=<s(s(s(0))).

% Labeling using s(s(0))=<s(s(s(0))) succeeds.

% Labeling using s(s(0))=<A succeeds with A=s(s(X)).

% Labeling using A=<s(s(s(0))) succeeds with X=0.
A=s(s(0)).

% On backtracking A=<s(s(s(0))) succeeds with X=s(0).
A=s(s(s(0))).

% On backtracking A=<s(s(s(0))) fails.

Definition 6.1. A CLP+CHR program is a finite set of CLP clauses for predicates
and CHR constraints and of CHR rules for CHR. constraints. As usual, a CLP
clause is of the form

H:- By,...,B;. (k>0)
where the head H is an atom but not a built-in constraint, the body By, ..., By

is a conjunction of atoms. A [abeling declaration for a CHR constraint Hy, is of
the form

label_with HL if G17 .. .7Gj.

Definition 6.2. Let (Hy:- Bi1,...,Bn1),...,(Hs i= Bis,...,Bns), (1 < s) be
all the clauses with the same predicate p in the head with all the variables in
different clauses renamed apart. Then the logical reading of the predicate p by
Clark’s completion is defined as:

Vi(H <3z (H=H ABi1A...ABy))V...V(H = H;ABis A
...A Bps)))

H is of the form p(Xi,...,X,) where Xi,..., X, are new, pairwise different
variables. The labeling declaration serves as a precondition in the logical meaning
of the clauses for the CHR constraint:

Vi (3g(HL=HANGi A...NGj) — (H < 3z (By V...V By))).
where (H < 3z (B; V...V By))) is Clark’s completion.

Definition 6.3. The computation steps involving clauses are:

Unfold

(H'NF,E,Dy— (BANF,E;H=H'" A D)

if (H :- B) in P and H is not a CHR constraint
Label

(F,H NE,Dy— (BAF,E,H=H'" A D)

if (H :- B)in P and (label with H"” if G) in P and
D — 3z (H'=H"AG)

17

where T denotes the program variables occurring in H".

To unfold an atomic goal H' in F' means to look for a CLP clause (H: — B)
and to replace H' by (H = H') and B. Unfolding is nondeterministic and thus a
goal can be solved in different ways using different clauses. The clauses for CHR
constraints can only be unfolded by the Label transition provided the label with
declaration is satisfied.

7. IMPLEMENTATIONS

The first implementation of CHR in summer 1991 was an interpreter written in
ECL'PS® Prolog, called Cheer®[Fru91, Fru92, Fru93b, FrBr95a. Since then, the
CHR language has been implemented in 1993 in Common LISP at the German
Research Institute for Artificial Intelligence (DFKI) [Her93] and in 1994 as a library
of ECL'PS® [FrBr95a, FrBr95b, FrBr96]. It is currently implemented in Sicstus
Prolog at LMU, Munich, in ECL'PS® 2 at IC-Parc of Imperial College and in the
concurrent logical object-oriented constraint language OZ [SmTr94a].

Cheer [Fru91, Fru92, Fru93b] was a small but fully functional interpreter. By
small we mean about 300 clauses, 900 lines, 25KB of code. By fully functional we
mean that Cheer included a preprocessor for CHR, delaying conjunction, incremen-
tal constraints residuation, a tracing tool for CHR. constraints and variable bindings,
a simple partial evaluator based on simplifications, and simple statistics (number of
rules fired per kind, timings). First solvers were term equality (unification), finite
domains, term manipulation, maximum, types and temporal reasoning.

The LISP implementation [Her93] does not provide for simpagation rules, but
offers some interesting extensions. First, rules can be given priorities (encoded as
integers). Second, nondeterminism is introduced by disjunction in rule bodies. This
extension also allows expressing Prolog clauses. Rules with disjunction usually get
the lowest priority. The algorithm for executing CHR is somewhat similar to the
first implementation of CHR in Prolog. However, matching a head constraint in a
rule with several heads dynamically adds a new rule with the matched head removed
and the variables instantiated as in the matching. In [Her93], constraint solvers for
terminological reasoning with negation and concrete domains, further equality over
Herbrand terms, inequalities, finite domains, linear polynomial inequalities using
Fouriers algorithm and an implementation of the terminological language TAXLOG
are described as applications.

The CHR library, version 2, of ECL'PS® 3.5.3 [FrBr95a, FrBr95b, FrBr96] in-
cludes a compiler, a run-time system with debugger, 25 solvers (see Section &)
with examples as well as a full color demo using geometric constraints in a real-life
application for wireless telecommunication (see Section 9). In extension to the def-
initions given earlier, CHR rules can have deep guards’and local variables can be
shared between guard and body of a rule. Prolog and CHR statements can be freely
combined. With the library, a complete committed-choice language is available as
a side-effect. The compiler utilizes the delay-mechanism and the built-in predicates
of ECL'PS® to create, inspect and manipulate constraints as delayed goals based

6Ch for constraint handling, ee for extension of ECL*PS¢, and r for rules.
TGuards that allow for user-defined predicates in addition to built-in constraints.

18

on attributed variables. The compiler is about 450 clauses, 2700 lines, 26kB of
code, the run-time system is about 360 clauses, 1900 lines, 17kB of code including
comments.

The compilers in ECL’PS°and Sicstus Prolog are based on the idea that all three
types of CHR can be transformed into multi-headed and further into single-headed
simplification rules, i.e. into the guarded rules of a typical concurrent committed-
choice language [Sha89, Sar93] - provided the language can access delayed goals
and has deep guards. CHR constraint goals are modeled as goals that can delay.
Then these guarded rules are further translated into clauses of a CLP language
using its delay-mechanism (coroutining) based on attributed variables. A detailed
description of the compilation scheme and its actual implementation can be found
in [FrBr95a].

Performance

On a range of solvers and examples, the run-time penalty for our declarative and
high-level approach turned out to be a constant factor in comparison to dedicated
built-in solvers (if available). The slow-down is often within an order of magnitude.
On some examples (e.g. those involving finite domains with the element-constraint
or linear polynomial equations over rationals, see Section 8), and in some applica-
tions, our approach is faster, since we can exactly define and tune the amount of
constraint simplification and propagation as needed. For performance and simplic-
ity the solver can be kept as incomplete as the application allows it.

Besides the well-defined low-level support for manipulating delayed goals (adding,
searching for, activating and removing delayed goals) provided through attributed
variables, the reason for the good performance are a number of significant opti-
mizations which are the result of many experiments performed with the interpreter
Cheer.

For example, based on the observation that usually the head atoms of a rule are
connected through common variables, given one constraint, we usually only search
for other constraints in those that delay on a common variable. Since in many
constraint domains, the number of constraints in the normal form is linear in the
number of variables, one can often find the other constraints in constant time.

Moreover, the order in which the rules are tried matters. The ECL‘PS® CHR
compiler prefers simplification to propagation rules, single-headed to multi-headed
rules. Propagation from a constraint may cause further propagations from the
redundant constraints. The compiler first adds all constraints propagated from
a constraint before considering the new ones in turn. In simpagation rules, it is
preferred to remove the most recent constraint if there is a choice. In the new
Sicstus implementation of CHR the user can control the order of the rules.

Last but not least, there are user declarations and rule annotations that enforce
idempotence of constraints. One optimization related to idempotence is not to
remove a constraint that is generated again in the body of the rule that wants to
remove it. This may speed up the computation, improve the complexity of the
resulting algorithm and even avoid non-termination.

19

8. CONSTRAINT SOLVERS

In this section we introduce some of 25 constraint solvers that are part of the CHR
library of ECL'PS® 3.5.3 (see figure 8) [FrBr95b, FrBr96] - among them solvers for
finite domains over arbitrary ground terms, including reals and pairs, incremental
path consistency, temporal reasoning, for solving linear polynomials over the reals
and rationals, and last but not least for terminological reasoning.

Many of the solvers are described here for the first time. The solver may be
slightly edited, mainly to make them self-contained, consistent in presentation and
more readable. When we know about it, we also mention related work, i.e. how
these solvers have been used by other researchers, and related solvers written by
other researchers using CHR.

While we cannot - within the space limitations - introduce each constraint do-
main, we still can give an idea how one implements it using CHR. The usual ab-
stract formalism to describe a constraint system, i.e. inference rules, rewrite rules,
sequents, formulas expressing axioms and theorems, can be written as CHR in a
straightforward way. Starting from this executable specification, the rules can be
refined and adapted to the specifics of the application.

Note that any solver written with CHR will be determinate, incremental and
concurrent by nature. By “determinate” we mean that the user-defined solver
commits to every constraint simplification it makes. By “incremental” we mean that
constraints can be added to the constraint store one at a time (without affecting
computational cost). The rules can be applied concurrently to different constraints,
because logically correct CHR can only replace constraints by equivalent ones or
add redundant constraints.

Note that many solvers rely on an order on variables and terms (using the built-in
predicate <).

8.1. Booleans

The domain of Boolean constraints includes the constants 0 for falsity, 1 for truth
and the usual logical connectives of propositional logic, e.g. and, or, neg, imp,
exor, modeled here as relations. We assume that equality = is a built-in constraint.
The program bool.chr®is a simple solver mainly based on value propagation using
single-headed simplification rules and automatic labeling. For more sophisticated
algorithms see [Me*93].

We can define an and-gate with constraint handling rules (assuming that vari-
ables can only take Boolean values):

and(X,Y,Z) <=> X=0 |
and(X,Y,Z) <=> Y=0 |
and(X,Y,Z) <=> X=1 |
and(X,Y,Z) <=> Y=1 |
and(X,Y,Z) <=> Z=1 |
and(X,Y,Z) <=> X=Y | Y=Z.

For example, the first rule says that the constraint and(X,Y,Z), when it is known
that the first input argument X is 0, can be reduced to asserting that the output Z

8File names refer to [FrBr96].

20

Library File Constraint Domain <=> | == \ Co I
arc.chr Arc consistency 1 3 0 3 1
bool.chr Booleans 56 0] 19 7 3
cft.chr Feature Trees 2 1 3 3 2
control.chr Sound control primitives 6 0 0 5 4
domain.chr Finite domains 65 14 4 8 | 54
geons.chr Geometric objects 1 0 0 1 0
kl-one.chr Terminological reasoning 25 13 4 3 6
leq.chr Partially ordered variables 2 1 0 1 0
list.chr Lists with lengths 9 0 0 2 3
math-gauss.chr Linear polynomial equations 1 0 1 2 1
math-elim.chr + Inequations by slacks 26 0 4 8 | 16
math-fougau.chr | + Fouriers algorithm 28 5 3 8 | 16
math-fourier.chr | 4+ Fouriers algorithm 25 1 2 8 | 15
math-eager.chr + Inequations by slacks 7 0 2 2 7
math-ineq.chr + Inequations by slacks 16 0 0 6 | 10
math-lazy.chr + Inequations by slacks 7 0 3 2 9
minmax.chr Minima and maxima 17 6 | 24 5| 23
osf.chr Order-Sorted Feature Trees 5 1 1 2 4
path.chr Path consistency 2 3 4 1 0
primes.chr Prime numbers 12 0 2 8 9
set.chr Finite Sets 22 13 6| 12 4
term.chr Prolog term constructors 10 7 8 7 8
time-pc.chr Temporal reasoning 11 3 0 2 6
time-point.chr Time-points 4 2 0 2 4
tree.chr Rational trees + negation 9 1 2 3 8

FIGURE 8.1. The constraint solvers of the CHR library in ECL'PS® 3.5.3.<=> stands
for the number of simplification, ==> propagation, \ simpagation rules; Co for the number
of CHR constraints, | nonempty guards in the rules.

must be 0. Hence the query and(X,Y,Z) ,X=0 will result in X=0, Z=0.

It is obvious that the above rules terminate, since the CHR constraints and
is always reduced to the built-in constraint =. It is also confluent. The critical
pairs are easy to construct, since all the heads are identical. For example, the
rules and(X,Y,Z) <=> Z=1 | X=1,Y=1 and and(X,Y,Z) <=> X=Y | Y=Z lead to
the critical pair ({true, X=1 A Y=1, X=Y A Z=1 }, (true, Y=Z, X=Y A Z=1}). Both
states simplify to X=1 A Y=1 A Z=1.

Ezample 8.1. Consider the predicate add/4 taken from the well-known full-adder
circuit. It adds three single digit binary numbers to produce a single number
consisting of two digits:
add(I1,12,13,[01,02]):-

xor(I1,I2,X1), and(I1,I2,A1),

xor (X1,I13,02), and(I3,X1,A2),

or(A1,A2,01).

The query add(I1,12,13,[01,02]),I3=0,01=1 will reduce to I3=0,01=1,I1=1,

21

I12=1,02=0. The computation proceeds as follows: Because I13=0, the output A2
of the and-gate with input I3 must be 0. As 01=1 and A2=0, the other input A1
of the or-gate must be 1. Because A1l is also the output of an and-gate, its inputs
I1 and I2 must be both 1. Hence the output X1 of the first xor-gate must be 0,
and therefore also the output 02 of the second xor-gate must be 0. The query
add(1,1,I3,[01,02]) reduces to 13=02,01=1. This example illustrates the power
of this simple but incomplete solver.

Flexibility and Extensions

The cardinality constraint combinator was introduced in the CLP language cc(FD)
[vH91, HSD95] for finite domains. Here we adapt it for Boolean variables. The
Boolean cardinality constraint #(L,U,BL,N) holds if between L and U Boolean vari-
ables in the list BL of length N are equal to 1. In the solver, we assume that
for a constraint #(L,U,BL,N), the condition L=<U,0=<U,0=<N,L=<N initially holds,
where N is the length of the finite (closed) list BL. We also assume that arithmetic
constraints (or at least tests) between integers involving =< and subtraction are
built-in. delete/3 is the usual Prolog predicate removing an element from a list.

% trivial, positive and negative satisfaction

triv_sat@ #(L,U,BL,N) <=> L=<0,N=<U | true.

pos_sat @ #(L,U,BL,N) <=> L=N | all_true(BL).

neg_sat @ #(L,U,BL,N) <=> U=0 | all_false(BL).

% positive and negative reduction

pos_red @ #(L,U,BL,N) <=> delete(1,BL,BL1) | O<U,#(L-1,U-1,BL1,N-1).
neg_red @ #(L,U,BL,N) <=> delete(0,BL,BL1) | L<N,#(L,U,BL1,N-1).

% labeling, choice between positive and negative reduction
label_with #(L,U, [X|BL],N) if true.

#(L,U, [1|BL],N):- O<U, #(L-1,U-1,BL,N-1).
#(L,U,[0|BL],N):- L<N, #(L,U,BL,N-1).

When delete/3 is used in the guard, it will only succeed if the element to be
removed actually occurs in the list. E.g. delete(1,BL,BL1) will delay if it tries
to bind a variable in BL to 1. It can only succeed if there actually is a 1 in the
list. It will fail, if all elements of the list are zeros. The predicate all_true (resp.
all false) binds all elements of the list BL to 1 (resp. 0). Note that the call to
#/4 in the bodies of the labeling clauses is a call to the cardinality as constraint.

Since the cardinality constraint is either simplified into a built-in constraint or
reduced to a cardinality with a shorter list, this implementation terminates. If the
list of an initial cardinality constraint were open(-ended), i.e. its length not fixed,
there could be contexts in which the cardinality constraint does not terminate.
One can also show that the solver maintains the above condition, i.e. that it is an
invariant. With the invariant, the implementation is also confluent.

Related Solvers and Work

In [Dum95] experiments were performed in applying resolution and backtracking to
solving Boolean constraint satisfaction problems. A limited version of resolution,

22

called ordered resolution, was introduced and compared to that of the Davis Putnam
method [DaPu60).

The DP procedure has been extensively used on satisfiability problems, it is a
sound procedure that basically restricts resolution to unit clauses. A labeling phase
is added that tries truth values using backtracking for the variables one by one, thus
retaining completeness. Ordered resolution is a sound and complete restriction of
resolution where the literals in the clauses are globally ordered and resolution can
only be performed with the leftmost literals of each clause. This method was found
to be an improvement over DP when the length of the clauses generated was limited
to some small number and then again labeling was used for preserving completeness.

Here is an incremental version of the DP procedure?, other versions of resolution
can also be found in [Dum95]. Boolean CSPs are modeled as conjunctions of clauses,
where a clause is a disjunction of literals (positive or negative atomic propositions).
A clause is represented as a list of signed Boolean variables. For example, -aV bV ¢
is represented as c1 ([-A,+B,+C]). The variables in the lists are ordered. member/2
is the usual Prolog predicate about lists.

empty_cl @ cl1([]) <=> fail.
tautology @ cl(L) <=> member(-X,L),member(+X,L) | true.

unit_instantiation @ cl([+X]) <=> X=1.
unit_instantiation @ c1([-X]) <=> X=0.
unit_propagation @ cl(L) <=> delete(+0,L,L1) | c1(L1).
unit_propagation @ cl(L) <=> delete(-1,L,L1) | c1(L1).
unit_subsumption @ cl(L) <=> member(+1,L) | true.
unit_subsumption @ cl(L) <=> member(-0,L) | true.

% labeling only necessary if list has at least two elements
label_with c1([_,_I_]1) if true.
% X is either 0 or 1 and we already applied the unit_x rules
cl([+X|L]):- X=1 ; X=0, cl(L).
cl([-X|L]):- X=0 ; X=1, c1(L).

Note the similarity with the cardinality constraint. The argument for termination
is the same. Confluence can be proven.

8.2. Terminological Reasoning

Terminological formalisms are used to represent the terminological knowledge of
a particular problem domain on an abstract logical level. To describe this kind
of knowledge, one starts with atomic concepts and roles, and then defines new
concepts and their relationship in terms of existing concepts and roles. Although
there is an established notation for terminologies, we use a more verbose syntax to
help readers not familiar with the topic.

Concepts can be considered as unary relations which intensionally define sets of
objects (similar to types). Roles correspond to binary relations over objects (not
necessarily of the same kind - properties like color can be roles as well).

9 «“Pure literal deletion” is not implemented, because it is based on a global condition which is
not sound anymore when constraints can be added incrementally as is the case in CHR.

23

Definition 8.1. Concept terms are defined inductively: Every concept name C' is
a concept term. If s and ¢ are concept terms and R is a role name then the
following expressions are concept terms:

s and t (conjunction),

s or t (disjunction),

nota s (complement),

every R is s (value restriction),
some R is s (exists-in restriction).

Objects are constants or variables. Let a, b be objects, R a role, and C' a concept
term. Then b: C is a membership assertion and (a,b) : R is a role-filler assertion.
An A-box is a collection of membership and role-filler assertions.

Definition 8.2. A terminology (T-box) consists of a finite set of concept definitions
C isa s,

where C' is the newly introduced concept name and s is a concept term.

Since the concept C is new, it cannot be defined in terms of itself, i.e. concept
definitions are acyclic. This also implies that there are concepts without definition,
they are called primitive.

We will represent the T-box as CLP predicates and the A-box as CHR con-
straints, since we want to solve problems over a given terminology.

Example 8.2. The domain of a configuration application comprises at least devices,
interfaces, and configurations. The concept definitions express that these concepts
are disjoint:

interface isa nota device.
configuration isa nota (interface or device).

Assume that a simple device has at least one interface. We introduce a role
connector which relates devices to interfaces and employ the exists-in restriction.

simple_device isa device and some connector is interface.
We introduce instances of devices and interfaces as constraints:

pc:device, rs231:interface, (pc,rs231):connector

Solver

Terminological formalisms have a straightforward embedding in first-order logic.
However, the limited expressiveness of terminological formalisms allows decision
procedures for a number of interesting reasoning problems. These problems in-
clude consistency of assertions and classification of concepts. The key idea of
[ScSm9I1, BDS93]) for constructing such inference algorithms is to reduce all rea-
soning services to consistency checking. The unfolding and completion rules in

24

[ScSm91] and the propagation rules in [BDS93] for the consistency test translate
almost directly to CHR (library solver file k1-one. chr). However, the former work
does not provide an incremental algorithm and the latter does not simplify con-
straints.

Roughly, the consistency test of A-boxes simplifies and propagates the assertions
in the A-box to make the knowledge more explicit and looks for obvious contradic-
tions (“clashes”) such as “X:device, X:nota device”. We need only a single clash
rule, one may need more for extensions of the formalism.

I:nota S, I:S <=> false.

The following simplification CHR show how the complement operator nota can
be pushed towards to the leaves of a concept term, e.g.:

I:nota (S or T) <=> I:nota S and nota T.
I:nota every R is S <=> 1I:some R is nota S.

An exists-in restriction generates a variable that serves as a “witness” for the re-
striction:

I:some R is S <=> (I,J):R, J:S.

A value restriction has to be propagated to all role fillers:
I:every R is S, (I,J):R ==> J:S.

The unfolding rules replaces concept names by their definitions:

I:C <=> C(C isa S, I:S.
I:nota C <=> C isa S, I:nota S.

The conjunction rule generates two new, smaller assertions:
I:Sand T <=> 1I:S,I:T.

Disjunction is treated lazily by a CLP clause using automatic labeling. This is
where the exponential complexity of the consistency test for terminologies surfaces.

label with I:S or T if true.
I:Sor T :- (I:S; I:T).

The rules simplify terminological constraints until a normal form is reached. In
the normal form, the only constraints are I:C, I:nota C, I:S or T, I:every R
is S, (I,J):R, where Cis a primitive concept name.

To show termination we show that in each rule, all membership assertions in
the body are strictly smaller than the one in the head. We prove this by mapping
concept terms into numbers called ranks as follows:

rank(nota T) = 2 x rank(T)
rank(T) =1+ rank(S) if (T isa S) exists
rank(f(T1,...,Tn)) =14+ rank(Ty) + ... + rank(T,) (n >0) otherwise

Note that by definition, concept terms are ground (variable-free) and finite and
concept definitions are acyclic and finite.

25

The solver detects all inconsistencies through the clash rule independently of the
order in which constraints are added and CHR are applied, because it is confluent.
Since all CHR except the clash rule have pairwise disjoint heads at run-time, critical
pairs can only exist with the clash rule. For example, the inconsistent constraints

I:nota every R is S, I:every R is S
can be simplified by pushing nota down in the first constraint

I:some R is nota S, I:every R is S +— (some-rule)
(I,J):R, J:nota S, I:every R is S +— (every-rule)
(I,J):R, J:nota S, I:every R is S, J:S

and now the clash rule can still be applied, to J:nota S, J:S.

Flexibility and Extensions

Attributes (also called features) are functional roles, i.e. their interpretation is a
partial function. Assuming a declaration of an attribute F' by a unary predicate
attribute F', we just have to extend our implementation by

(I,J1):F, (I,J2):F ==> attribute F | J1=J2.

Example 8.3. Now we are ready to define a simple configuration which consists of
two distinguished simple devices:

attribute component_1.

attribute component 2.

simple_config isa configuration and
some component_l is simple_device and
some component 2 is simple_device.

Then from the constraints

configl:simple config, (configl,devl):component_1,
(configl,dev2) :component 2,

the solver can derive that devl and dev2 are simple devices. The reason is that
the attribute-rule constrains the witness for some component 1 is simple device
and the second argument of the role (configl,devl):component_1 to be equal
(analogously for dev?2).

In [FrHa95] we illustrate that other extensions to the basic terminological for-
malism proposed in the literature carry over to the implementation with CHR in
a painless manner. One such extension allows parameterizing terminologies with
concrete domains, e.g. linear constraints over rational numbers [BaHa91].

Related Solvers and Work

Related solvers where implemented [FrBr96] for various forms of feature trees,
namely order sorted feature trees (OSF) [APG93], osf.chr, including the arity

26

constraint [SmTr94b], cft.chr, as well as rational trees, tree.chr, including dise-
quality.

ConTeS is a prototype implementation of an interactive, graphical tool sup-
porting the configuration process of technical systems like process control systems
developed by A. Wolf et al. at GMD FIRST, Berlin. ConTeS includes a knowl-
edge base represented by an executable specification language, called TRLC. It
is a generalization of the terminological reasoning language and its implementa-
tion described before. The first version of ConTeS was presented at the Leipziger
Innovationsmesse in September 1996.

Other work looked at theorem proving with constraints where terminological
reasoning was one domain of constraints considered. In CLP, proof procedures for
Horn clauses are enhanced with efficient constraint solvers. The question arises
whether it is possible to incorporate constraint processing into general, non-Horn
theorem proving calculi. In the paper [StBa94], a positive answer is given. A new
calculus is introduced which combines model elimination with constraint solving. A
prototype system has been implemented rapidly by combining a Prolog technology
implementation of model elimination with constraint solvers. Some example stud-
ies, e.g. terminological reasoning, show the advantages and some problems with
this procedure. Using an extension of the terminological solver, the authors were
able to solve the lion and unicorn puzzle in about 0.1s on a Sun4, which the authors
consider to be quite fast.

8.3. Path Consistency

In this section we introduce a constraint solver that implements the classical Artifi-
cial Intelligence algorithm of path consistency and backtracking to solve constraint
satisfaction problems.

Definition 8.3. A binary constraint network consists of a set of variables and a
set of binary constraints between them. The network can be represented by
a directed constraint graph, where the nodes denote variables and the arcs are
labeled by binary constraints.

Definition 8.4. A disjunctive binary constraint cy, between two variables X and
Y, also written X [r1,...,r,] Y, is a finite disjunction (X m Y)V...V(X r, Y),
where each r; is a relation that is applicable to X and Y. The r; are also called
primitive constraints. The converse of a primitive constraint r between X and
Y is the primitive constraint s that holds between Y and X as a consequence.

Usually, the number of primitive constraints is finite and they are pairwise dis-
joint. For simplicity, unary (domain) constraints are modeled as binary constraints
where one variable is fixed.

For example, A [<] B,A [<,>] B, A [<,=,>] B are disjunctive binary con-
straints c4p between A and B. A [<,>] B is the same as A # B, A [<,=,>| B
does not impose any restrictions on A and B, the constraint is redundant.

Definition 8.5. A solution of a constraint network is an assignment of values to the
variables that satisfies all the constraints. Such an assignment is called valid. A
constraint network is consistent if there exists a solution. A constraint network

27

is minimal if each primitive constraint is satisfied in a solution of the network;
i.e. there are no primitive constraints that do not participate in at least one
solution.

Definition 8.6. A network is path consistent if for pairs of nodes (7, j) and all paths
i—i1—12...i,—j between them, the direct constraint ¢;; is tighter (or the same)
than the indirect constraint along the path, i.e. the composition of constraints
Cii; @ ... ® ¢, ; along the path. A disjunctive constraint is tighter if it has less
disjuncts.

Path consistency can be used to approximate the minimal network. It follows
from the definition of path consistency that we can intersect the direct and indirect
constraint to arrive at a tighter direct constraint. Let intersection be denoted by
the operator @. A graph is complete if there is an edge or a pair of arcs, one in
each direction, between every pair of nodes. If the graph underlying the network
is complete it suffices to repeatedly consider paths of length 2 at most: For each
triple of nodes (i, k, j) we repeatedly compute ¢;; := ¢;j & cir, @ cx; until a fixpoint
is reached. The complexity of such an algorithm is O(n?3), where n is the number
of nodes in the network [MaFr85].

For example, given I[<,=]K AK[<,=]JAI[=,>]J, and taking the triple (i, 7, k),
ik @cy; results in I[<, =]J, the result of intersecting with ¢;; is I[=]J. From (j,, k)
we get J[=]K (we compute cj; as the converse of ¢;;). From (k, j, i) we get K[=]I.
Another round of computation causes no more change, so the fixpoint is reached
with J[=]K, K[=]|I (which is also minimal). Compare this result with the one using
the solver in Section 2.

Solver

Let the constraint c;; be represented by the predicate ¢c(I,J,C) where C is the
disjunction of primitive constraints forming the disjunctive constraint. The ba-
sic operation of path consistency, c¢;; := c¢;; @ cir, @ cxj, can be implemented by
one rule performing the composition and another rule performing the intersection.
c(1,K,C1),c(K,J,C2) ==> composition(C1,C2,C3), c(I,J,C3).
c(1,J,C1),c(1,J,C2) <=> intersection(C1,C2,C3), <(I,J,C3).

As we will see, splitting into the two operations using two rules offers a high de-
gree of flexibility. These two rules suffice to implement an incremental concurrent
path consistency algorithm for complete networks. The rules are confluent for all
properly defined (i.e. logically correct) composition and intersection operations.

Although for a given problem, there is only a finite number of variables and
possible disjunctive binary constraints, the solver above is too generic to terminate
under our operational semantics. The propagation rule can generate the same con-
straint(s) all over again, if intermediate constraints are not absorbed early enough
by the simplification rule, as the following trace shows (new constraints are added
to the right):

(1) c(X,Y,A), c(Y,X,B) % propagate with A and B
(2) c(X,Y,n), c(Y,X,B), c(X,X,0) % propagate with B and C
(3) c(X,Y,8), c(Y,X,B), c(X,X,0), c(Y,X,D) % simplify B and D

28

(4) c(X,Y,n), c(X,X,C), c(Y,X,B) % propagate with A and B
(5) c(X,Y,8), c(X,X,0), c(Y¥,X,B), c(X,X,C) % simplify C and C
(6) c(X,Y,A), c(Y,X,B), c(X,X,C) % same as state (2)

In most CHR implementations, however, even this solver will terminate when the
rules are applied fairly and idempotence is enforced (e.g. the new c(X,X,C) would
be absorbed in state (5)). Fairness means here that simplification by intersection
is applied to constraints over the same variable pair before too much propagation is
caused by them. Then, any solver derived from this generic path consistency solver
will terminate as well.

Generic path consistency solvers can be found in path.chr and time-pc.chr.
The solver below takes the optimizations of algorithm PC-2 [Mac77] into account,
but in addition is incremental, works with incomplete networks, removes redundant
constraints and implements equality by the built-in constraint =/2. More optimiza-
tions are discussed in detail in [Fru94]. The solver maintains the invariant that I<J
holds for each constraint ¢(I,J,C), since in PC-2 converses of a constraint are no
longer explicit.

% Special Cases

c(I,J,C) <=> ground(I),ground(J) | choose(B,C),checkc(I,J,B).
c(I1,J,C) <=> empty(C) | false.

c(I,J,C) <=> redundant(C) | true.

c(I1,J,C) <=> equality(C) | I=J.

c(I,I,C) <=> choose(B,C),equality(B).

% Intersection

c(1,J,C1),c(I,J,C2) <=> intersection(C1,C2,C3), c(I,J,C3).

% Composition

c(I,K,C1),c(K,J,C2) ==> I<J | composition(C1,C2,C3), c(I,J,C3).
c(K,I,C1),c(K,J,C2) ==> I<J | composition(C1,C3,C2), <(I,J,C3).
c(I,K,C1),c(J,K,C2) ==> I<J | composition(C3,C2,C1), <(I,J,C3).
% Labeling

label with c¢(I,J,C) if not singleton(C).

c(1,J,C) :- choose(B,C), c(I,J,B).

The special cases are simplification CHR. The first checks the satisfiability of the
constraint by trying the primitive constraints in the disjunction until one is found
for which the assignment of the variables is valid. The next one detects incon-
sistent constraints (those having empty disjunctions), one replaces the equality
constraint by the built-in constraint =/2, and one replaces a constraint between the
same nodes by a test if equality was present in the disjunction'®. The definitions
of the auxiliary predicates check_c, empty, singleton, redundant, equality,
choose, intersection, composition comes with the instance of the path con-
sistency solver (see Section 8.4).

Another simplification CHR performs the intersection, three propagation CHR
the composition. In the absence of explicit converses, the composition CHR have to
cover all possible orientations of constraints while keeping the nodes I,J ordered.

101f there are primitive relations which properly contain equality, the rule has to be weakened
into a propagation rule.

29

The computation of the converse is implicit in how the composition predicate is
used, if necessary “computing backwards”.

The labeling implements backtrack search to make complete the path consistency
algorithm. If a disjunctive constraint C is not a singleton, one nondeterministically
chooses a primitive constraint B from C and enforces B.

Flexibility and Extensions

The solver for path consistency can be specialized to one for arc consistency by re-
stricting exactly one of the binary constraints involved in the propagation CHR to
be actually unary. This is achieved by fixing one variable to a reference point, which
is smaller than any variable (e.g. zero). For such a unary constraint c(0,J,C) we
use the more common notation dom(J,C) (C is usually called the domain of J):

% Special Cases

dom(J,C) <=> ground(J) | choose(B,C),check dom(J,B).
dom(J,C) <=> empty(C) | false.

dom(J,C) <=> redundant(C) | true.

% Intersection

dom(J,C1) ,dom(J,C2) <=> intersection(C1,C2,C3), dom(J,C3).
% Composition

dom(K,C1),c(K,J,C2) ==> composition(C1,C2,C3), dom(J,C3).
dom(K,C1),c(J,K,C2) ==> composition(C3,C2,C1), dom(J,C3).
% Labeling...

A related solver for arc consistency is arc.chr. We will use a further specializa-
tion of this solver for finite domains in Section 8.5. An instance of path consistency
for temporal reasoning is introduced in the Section 8.4. More modifications are
discussed in [Fru94].

Related Solvers and Work

An application of the path consistency and backtracking algorithm in CHR to
qualitative spatial reasoning is described in [EsTo96]. The framework of Freksa
and Zimmermann is implemented and extended by the treatment of 2-dimensional
objects with non-zero dimensions. In this framework, space is qualitatively divided
into several regions which are defined by means of a reference system. There are
15 primitive relations, which basically denote relative directions (e.g. left-front,
behind). An important aspect of the work was that CLP extended with CHR
provides a level of abstraction suited for integrating different aspects of space. The
results of this research have been applied to toy examples and robot path planning.
Current work by the same authors extends the solver (and framework) further to
handle distances between objects.

8.4. Temporal Reasoning

Following the framework of Meiri [Mei91], temporal reasoning is viewed as a con-
straint satisfaction problem about the location of temporal variables along the time

30

line using path consistency and backtrack search. The framework integrates most
forms of temporal relations - qualitative and quantitative (metric) over time points
and intervals - by considering them as disjunctive binary constraints. We quickly
introduce the temporal constraints available.

Qualitative Point Constraints [ViKa86]. Variables represent time points
and there are three primitive constraints <, =, >. Composition of a constraint
with itself or equality yields the constraint again, any other composition yields the
redundant constraint.

Quantitative Point Constraints [DMP91]. The primitive constraints restrict
the distance of two time points X and Y to be in an interval a : b, i.e. a < (Y —X) <
b'!'. where @ and b are signed numbers or co. Note that there is an infinite number
of primitive quantitative constraints and that they can overlap. The composition
of the intervals a : b with ¢ : d results in (a + ¢) : (b + d), and the intersection in
maz(a,c) : min(b,d).

Interval Constraints [All83]. There are 13 primitive constraints possible be-
tween two intervals, equality and 6 other relations with their converses. These con-
straints can be defined in terms of the end-points of the intervals. Let I=[X,Y],
J=[U,V]. Notationally, we abbreviate chains of (in)equalities between variables.

I equals J if X=U<Y=V. I before J if X<Y<UKV.
I during J if U<X<KY<V. I overlaps J if X<U<Y<V.
I meets J if X<Y=U<V. I starts J if X=U<Y<V.

I finishes J if U<X<Y=V.

Converses areequals,after,contains,overlapped by,started by,finished by.
Point - Interval Constraints [Mei91]. There are 5 possible primitive con-
straints between a point and an interval. Let X be a point, J = [U,V] an interval.

X pbefore J if X<UKV.
X pafter J if U<V<X. X pduring J if U<X<V.
X pstarts J if X=U<V. X pfinishes J if U<X=V.

The converses express interval-point constraints.

Relating Counstraints of Different Types [KaLa9l]. Qualitative time point
constraints can be mapped into quantitative point constraints, while quantitative
constraints can only be approximated by qualitative constraints. Points can be
represented by end-points of intervals and interval constraints can be approximated
by constraints on their endpoints. These mappings are used to solve heterogeneous
constraints over the same variables.

Solver

We instantiate the generic path consistency solver of the previous section by defining
the intersection and composition operations. The implementation is described in
detail and with variations in [Fru94], the solver is time.chr using time-pc.chr.
Disjunctive constraints are represented as list of their primitive constraints. In-
tersection is simply defined as list intersection, while composition is defined in terms

N For simplicity of presentation we do not distinguish between open and closed intervals.

31

of pairwise combining the primitive relations. The check for validity is performed
by using the definition of the primitive temporal constraints as CLP clauses.

Since there is an infinite number of primitive quantitative constraints and since
they can overlap, these constraints need special treatment: Intersection and com-
position have to deal with overlapping intervals. Labeling can go beyond single
intervals by performing binary search on them: A single interval is split in half as
long as its size is above a certain threshold eps. eps is a lower bound for the size of
the smallest nonempty interval possible in the constraint problem at hand. Since
such a lower bound always exists, termination is not affected [Fru97].

Ezample 8.4. The constraints on intervals X, Y, Z

c(X,Y, [pbefore,pstarts]), c(X,Z, [pstarts,pduring]),
c(Y,Z, [before,contains,after])

can be tightened by path consistency to
c(X,Y, [beforel), c(Z,Y, [beforel), c(X,Z,[starts,duringl),
while the constraints on points U, V and on intervals Y, Z

c(v,U,[0-1,3-4]), c(U,Y, [pbefore,pstarts]),
c(Z,V, [pcontains,pstarted byl), c(Y,Z, [before,contains])

turn out to be inconsistent.

Flexibility and Extensions

We specialize our temporal solver to quantitative time point constraints over single
intervals as considered in [DMP91]. Their notation for ¢(I,J, [A:B]) is A=<I-J=<B,
meaning that the distance between I and J is between A and B. The solver can be
found in time-point.chr and another derivation for it by extending the solver for
inequality (section 2) is described in [Fru95].

% Special Cases
A=<I-J=<B <=> ground(I),ground(J) | A=<J-I, J-I=<B.
A=<I-J=<B <=> A>B | false.
A=<I-J=<B <=> A=-00,B=c0 | true.
A=<I-J=<B <=> A=0,B=0 | I=J.
A=<I-I=<B <=> A=<0, 0=<B.
% Intersection
A1=<T-J=<B1,A2=<I-J=<B2 <=>
A3 is max(A1,A2),B3 is min(B1,B2),A3=<I-J=<B3.
% Composition
A1=<I-K=<B1,A2=<K-J=<B2 ==> I<J| A3 is A1+A2,B3 is B1+B2,A3=<I-J=<B3.
A1=<K-I=<B1,A2=<K-J=<B2 ==> I<J| A3 is A2-B1,B3 is B2-A1,A3=<I-J=<B3.
A1=<I-K=<B1,A2=<J-K=<B2 ==> I<J| A3 is A1-B2,B3 is B1-A2,A3=<I-J=<B3.

32

Labeling can be performed by interval splitting (binary search).

Related Solvers

PMON is one of the logics for modeling of dynamical systems presented in [San94].
Syntactically, a scenario description (a description of a dynamical system) in PMON
consists of three parts: Observations (formulas that hold at specific time points),
action laws (formulas that defines possible change of values of symbols), schedule
statements (statements that describes occurrences of and the temporal relations
between actions). Additionally there are nochange axioms that specify when a
proposition cannot possibly change (to implement inertia). The basic idea of the
implementation [Bja96] was to see formulas as constraints and encode the action
laws as rules. Many ideas where borrowed from the CHR implementation of the
Meiri framework, such as disjunctions handled by the labeling mechanism. Amongst
other cases, various classical Turkey Shooting Problems were investigated.

The European Community funded ESPRIT project no. 2409, ”Environment for
Qualitative Temporal Reasoning” (EQUATOR), 1989-93, was concerned with mod-
eling process-based systems for industrial applications like aircraft scheduling and
urban traffic control. An extension of the event calculus [KoSe86, SaKo095] called
GRF including time granularity (different time scales) and continuous processes,
was implemented in several versions, one using CHR [Don93]. This version was
constraint-based in several ways: It used an extension of a CHR. solver for inequal-
ities and finite domains (the interval part) for modeling temporal order. It also
used a simplified version of the solver for linear equations for conversion between
different time scales. It modeled negation as a CHR constraint to avoid floundering
and achieve maximum propagation. Thus the predicates of the event calculus could
be called even when the time parameter was unknown.

8.5. Finite domains

Finite domains appeared first in CHIP [vH89], more recent and more advanced CLP
languages are clp(FD) [CoDi96] and cc(FD) [HSD95]. Since integers are used as
domain, some arithmetic is possible. The theory underlying this constraint domain
is Presburgers arithmetic. It axiomatizes the linear fragment of integer arithmetic
and is decidable. The constraint X: :Dom means that the value for the variable X
must be in the given finite domain Dom. More precisely, if Dom is an

o enumeration domain, List, then X is a ground term!'? in the list List,
e interval domain, Min:Max, then X is a ground term between Min and Max.

The difference between an interval domain and an enumeration domain is that
in the former constraint simplification is performed only on the interval bounds,
while in the latter constraint simplification is performed on each element in the
enumeration. Thus enumeration domains allow more constraint simplification but
on the other hand are only tractable for sufficiently small enumerations.

We will derive our solver, domain.chr, as an instance of the arc consistency
solver of Section 8.3 and time-point solver of Section 8.4. The latter already gives

12With CHR, there is no need for restricting the representation to integers.

33

us a partial solver for interval domains if we specialize it to A=<0-J=<B and write
it as J::A:B. In this specialization, the treatment of equality changes and we add
composition with binary constraints, as in the arc consistency solver:

% Special Cases
J::A:B <=> ground(J) | A=<J, J=<B.

J::A:B <=> A>B | false.
J::A:B <=> A=-00,B=00 | true.
J::A:B <=> A=B | B=J.

% Intersection

J::A1:B1,J::A2:B2 <=> A3 is max(A1,A2),B3 is min(B1,B2),J::A3:B3.
% Composition

::C1,c(K,J,C2) ==> composition(C1,C2,C3), J::C3.

::C1,c(J,K,C2) ==> composition(C3,C2,C1), J::C3.

= =

One possible instance of ¢(I,J,C) is the constraint I=<J:

K::A:B, K=<J ==> J::A:00.
K::A:B, J=<K ==> J::—00:B.

If an argument is known, the two rules can be strengthened to simplification
rules by projection onto the other argument:

K=<J <=> ground(K) | J::K:00.
J=<K <=> ground(K) | J::—o0:K.

For example, from X::1:2.5, Y::2.5:3, Y=<X we get X=2.5,Y=2.5 by apply-
ing the rules for composition and intersection yielding X: :2.5:2.5, simplifying it to
an equality, projecting the inequality on Y, then intersecting and simplifying again.

For enumeration domains, we specialize the arc consistency solver:

% Special Cases

X::L <=> ground(X) | member(X,L).

X::[] <=> false.

X::[Y] <=> X=Y.

% Intersection

X::L1,X::L2 <=> Li=[_|_], L2=[_|_] | intersect_list(L1,L2,L),X::L.
% Labeling

label_with X::[Y,ZIL] if true.

X::[YIL]:- member (X, [YI|L]).

Flexibility and Extensions

CHIP finite domains included n-ary arithmetic constraints (linear polynomials) and
constraints such as alldifferent, circuit, atmost, element. In the solver
domain.chr we implemented a version of element constraint which has lower com-
plexity than in CHIP by introducing path consistency for this constraint. This
makes sense, since the constraint is binary. It can be seen as an enumeration do-
main over pairs, I-V. Therefore we simply reused the special cases and intersection

34

of normal unary enumeration domains but also introduce some new special cases.
Sample rules for arithmetic constraints are (see also Section 9.2):

addz @ X+Y equal Z, X::MinX:MaxX, Y::MinY:MaxZ ==>
MinZ is MinX+MinY, MaxZ is MaxX+MaxY, Z::MinZ:MaxZ.

addy @ X+Y equal Z, X::MinX:MaxX, Z::MinZ:MaxZ ==>
MinY is MinZ-MaxX, MaxY is MaxZ-MinX, Y::MinY:MaxY.

For example:

A::1:3, B::2:4, C::0:4, A+B equal C
= addz A::1:3, B::2:4, C::0:4, A+B equal C, C::3:7
—intersection A::1:3, B::2:4, A+B equal C, C::3:4
—addetaddy A::1:3, B::2:4, A+B equal C, A::-1:2, B::0:3, C::3:4
intersection A¥B equal C, A::1:2, B::2:3, C::3:4

Related Solvers

In the work [Due96] structural character descriptions for east Asian ideograms
(Kanji) are both analyzed and generated. Sketches of characters can be produced
from a symbolic coordinate free description, when the description is interpreted
as a system of constraints. However, the constraints are highly underdetermined,
as there is no exact geometry information, and sometimes implicit, such as the
condition that the final sketch has to fill a square of fixed size. Therefore a special
constraint solving algorithm tailored to the problem was developed.

An initial solution was rewritten using the finite domain constraint solver of the
CHR library. According to the author, CHR lead to improvements in performance,
allowing generating sketches for characters with ten or more equivalence classes in
one direction. This was not feasible with the original solution that heavily relied
on the generate-and-test approach of LP.

8.6. Linear (and Non-Linear) Polynomials

The initial motivation for introducing constraints in LP was the non-declarative
nature of the built-in predicates for arithmetic computations. Therefore, from
the very beginning, CLP languages included constraint solving for linear equa-
tions and inequations over reals (CLP(R) [Ja*92]) or rationals (Prolog-IIT [Col90],
CHIP [Di*88]) adopting variants of Gaussian elimination and the Simplex algorithm
[Imb95]. The theory underlying this constraint system is that of real closed fields,
which covers linear and non-linear polynomials and was shown to be decidable by
Tarski.

In the CHR solver math-gauss.chr a minimalistic but powerful variant of vari-
able elimination is employed. A linear polynomial is represented as Poly equals
Constant where Poly is a list of monomials of the form Variable * Coefficient
with coefficients different from zero and the list is sorted on the variables in strictly
descending order. The two rules below suffice to implement a complete and efficient
solver for linear equations over both floating point numbers and rational numbers.

empty @ [] equals K <=> zero(K).

35

eliminate @ [XxC1|P1] equals K1 \ [X*C2|P2] equals K2 <=>
multiply_poly_const(P1-K1,C2/C1,P3-K3),
subtract_poly_poly(P2-K2,P3-K3,P4-K4),
P4 equals K4.

The empty rule says that if the polynomial is empty, the constant must be zero.
The predicate zero tests for zero with a user-definable error margin in case of a
floating point number. The eliminate rule is the workhorse that performs the
variable elimination. It takes two equations that start with the same variable, the
first equation is left unchanged, it is used to eliminate the occurrence of the common
variable in the second equation. Note that no variable is ever made explicit, i.e.
no pivoting is performed: Any two equations with the same first variable can react
with each other.

The solver terminates since the polynomial is ordered and a large variable is
replaced by several strictly smaller ones. The solver is complete since it results in
a normal form where the left-most variable of each equation is the only left-most
occurrence of this variable. However, it does not create explicit variable bindings
or necessarily make implicit equalities between variables explicit.

Even though the solver is not confluent (any of the two equations in the rule
eliminate could be chosen for eliminating its variable, resulting in different new
equations), it could be easily made so by introducing an order on equations. The
rule is more efficient as it is, and the result in terms of satisfiability and variables
that are uniquely determined are the same.

Flexibility and Extensions

Bindings of variables are introduced as special cases by the rules:

unify @ [X*C] equals K <=> X is K/C.

unified @ P equals K <=> delete(X*C,P,P1), ground(X) |
K1 is K-X*C,
P1 equals Kl1.

A more eager variant of the eliminate rule is possible, that eliminates a variable
no matter where it occurs in the equation.

eager @ [X*C1|P1] equals K1 \ P equals K2 <=> delete(X*C2,P,P2) |
% rule body as in rule eliminate

The rule makes all implicit equalities explicit. The remarks about termination and
confluence of the solver still apply. On an equation solving benchmark proposed
by Van Caneghem!?, using rational numbers the above solvers were slightly faster
than the lower level implementation of a rational solver in ECLPS¢3.5.1. It solved
a system of 50 variables and 50 equations in less than a minute on a 50MHz SUN
SPARC. However our solver does not implement optimization and variable projec-
tion.

As in the Simplex algorithm, an inequation is handled by replacing it with an
equation with the help of an additional variable, called a slack variable, that is
constrained to be positive. Then one has to introduce additional rules that maintain

13Solving Az = b for & where A is a dense matrix with A[i,j] = 4/ mod 101.

36

a normal form for equations that consist only of slack variables. This normal form
is more constrained than the standard one. The slack variables have to be re-
ordered such that the left-most slack variable of an equation has the same sign as
the constant. If this is not possible, the equations are inconsistent. Also, if all slack
variables have the same sign and the constant is zero, then all slack variables must
be zero. The solver can be found in math-elim.chr.

Another solver, math-fougau.chr, is the result of combining the above solver for
equations with a solver performing the classical Fourier algorithm for inequations.
The idea is to perform variable elimination as long as at least one equation is
involved in the process, otherwise - in the case of two inequations - the transitivity
rule (i.e. propagation) as suggested by Fourier is used. The combined solver is
more efficient than Fouriers algorithm alone and avoids the introduction of slack
variables.

Related Solvers and Work

GroAK [MRS96] is a CLP system over non-linear polynomial constraints which
appear e.g. in geometric reasoning. Before, techniques like Groebner Bases over
complex numbers (CAL [Ai*88]) and Partial Cylindrical Algebraic Decomposition
(RISC-CLP(Real) [Hon92]) have been utilized to tackle non-linear polynomials.
Another approach is to use interval arithmetic as in CLP(BNR) [Ben95], Newton
[BMH94] and Numerica [HMD97]. This approach can basically be seen as a sophis-
ticated extension of interval domains to the reals and to non-linear polynomials.

Instead of using a general and often inefficient decision procedure, GroAK han-
dles these constraints by cooperation of specialized solvers. This approach requires
the design of a client-server architecture to enable communication between the var-
ious components and solvers. CHR are used to introduce the constraints and to
plan the distribution of constraints to the solvers.

Each solver works on a special domain, with specific constraints: In order to
treat the linear constraints, GroAK uses the CHR equation solver math-elim.chr
with rational numbers. GB [Fau94], a software for fast Grébner bases computation,
yields a canonical form of the non-linear constraints from which the solutions can be
extracted. The symbolic computation software Maple [GGL91] is used to compute
the roots of univariate polynomials. Maple also simplifies polynomials before they
are treated by the other solvers.

9. APPLICATIONS

We present two innovative, non-standard uses of constraint techniques, that charac-
terize a large class of potential applications. The necessary constraint handling was
expressed and implemented with ease in CHR. Simplicity, flexibility, efficiency and
rapid prototyping were the advantages of using CHR. The applications were done at
the European Computer-Industry Research Center (ECRC) with the collaboration
from visitors, other research institutions and industry.

9.1. Planning Cordless Business Communication Systems

Mobile communications comes to company sites. Employees can be reached at
any time at any place. No cabling is required, but small, local radio transmitters

37

(senders) have to be installed. When planning their locations, the specifics of radio
wave propagation have to be taken into account. Since radio waves are absorbed
and reflected by walls and floors of a building, the received power at a single point
may exhibit discontinuities because of tiny changes in the sender location - for
example, a move around the corner.

The advanced industrial prototype POPULAR (Planning of Picocellular Radio)
[Mol94, FMB96, FrBr97], one of the first systems of its kind, computes the minimal
number of senders and their location, given a blue-print of the building and infor-
mation about the materials used for walls and ceilings. It does so by simulating
the propagation of radio-waves using ray tracing and subsequent constraint-based
optimization of the number of senders needed to cover the whole building. POP-
ULAR was developed by ECRC, Siemens Research and Development (ZFE), the
Siemens Personal Networks Department (PN), and the Institute of Communication
Networks at the Aachen University of Technology.

First, the characteristics of the building are computed using a grid of test points.
Each test point represents a possible receiver position. For each test point the space
where a sender could be put to cover the test point, the “radio cell”, is calculated.
The radio cell will usually be a rather odd-shaped object, since the coverage is not a
smooth or even differentiable function. If the test grid is sufficiently small (several
per square meter), we can expect that if two neighbouring test points are covered,
the space inbetween - hence the whole building - can also be covered.

For each radio cell a constraint is set up that there must be (at least) one location
of a sender (geometrically speaking, a point) somewhere in that space. Then, we
try to find locations that are in as many radio cell planes at the same time as
possible. Thus the possible locations are constrained to be in the intersections of
the radio cell planes covered. A sender at one of these locations will cover several
test points at once. In this way, a first solution is computed. To minimize the
number of senders, we use a branch-and-bound method. It consists in repeatedly
searching for a solution with a smaller number of senders until the minimal number
is found.

Solver

In a first attempt restricted to two dimensions, we approximated the radio cell by a
single rectangle. The 2-D coordinates are of the form X#Y, rectangles are orthogonal
to the coordinate system and are represented by a pair of their left upper and
right lower corner coordinates. For each radio cell, a constraint inside(Sender,
Rectangle) is imposed, where Sender is a point that must be inside Rectangle.

% inside(Sender, LeftLowerCorner - RightUpperCorner)
nonempty @ inside(S,A#B-C#D) ==> A<C,B<D.

intersect @ inside(S,A1#B1-C1#D1),inside(S,A2#B2-C2#D2) <=>
A is max(A1,A2), B is max(B1,B2),
C is min(C1,C2), D is min(D1,D2),
inside(S,A#B-C#D) .

The first rule (named nonempty) says that the constraint inside(S,A#B-C#D) is
only valid if also the condition A<C,B<D is fulfilled, so that the rectangle has a
nonempty area. The intersect rule says that if a senders location S is constrained

38

by two inside constraints to be in two rectangles at once, we can replace these
two constraints by a single inside constraint whose rectangle is computed as the
intersection of the two initial rectangles.

To compute a solution, we try to equate as many senders as possible using the
following labeling procedure:

equate_senders([]).

equate_senders([SIL]) :-
(member (S,L) ; true), % equate S with another sender or not
equate_senders(L) .

For each sender S, (member(S,L) ; true) nondeterministically equates S with
one of the remaining senders in the list L using member or does not do so (true).
Equating senders causes the intersect rule to fire with the constraints associated
with the senders. As a result of this labeling procedure, a senders location will be
constrained more and more and thus the intersect rule will be applied again and
again until the rectangle becomes very small and finally empty. Then the nonempty
rule applies, causes failure and so initiates backtracking. A good labeling heuristic
is to equate senders from radio cells associated with nearby test points first.

It took just 10 minutes to extend this solver so that it works with union of
rectangles, that can describe the radio cell to any desired degree of precision. This
corresponds to a disjunctive constraint inside(S,R1) V ... V inside(S,Rn)
which is more compactly implemented as inside(S,[R1,...,Rn]).

% inside(Sender, List)

intersect @ inside(S, L1), inside(S, L2) <=>
intersect (L1, L2, L3),
L3 =[_I_1, % at least one rectangle left
inside(S, L3).

intersect (L1, L2, L3) :-
setof (R, intersect1(L1,L2,R), L3).

intersect1(L1, L2, rect(A#B,C#D)) :-
member (rect (A1#B1,C1#D1), L1),
member (rect (A2#B2,C2#D2), L2),
A is max(A1,A2), B is max(B1,B2),
C is min(C1,C2), D is min(D1,D2),
A<C, B<D. % nonempty

The above solver can be adapted quickly to work with other geometric objects
than rectangles by changing the definition of intersect1/3. Also, the lifting to
three dimensions just amounted to adding a third coordinate and code analogous
to the one for the other dimensions. The simplicity of the solver does not mean
primitiveness or triviality, it rather illustrates the power of CHR.

It would be quite hard to implement the functionality in a hard-wired black-box
solver. With finite domains coordinates would have to be rounded to integers. Also,
we found that for our application the built-in finite domain solver of ECL'PS® was
slightly slower than the CHR implementation. Using linear polynomial constraints
would be an overkill and thus inefficient, too. Interval arithmetic can express the
required constraints more adequately. Moreover, the disjunctive constraints needed

39

would require recasting using auxiliary variables, which is expensive, error-prone
and limits the amount of propagation. The cardinality constraint [HSD95] could
be used to express the disjunction, but is only available for finite domains.

Evaluation

For a typical office building, an optimal placement is found by POPULAR within a
few minutes. The overall quality of the placements produced is comparable to that
of a human expert. The only other comparable tool that was available in 1994 was
WISE [FGK*95], which is written in about 7500 lines of C++. For optimization
WISE uses an adaptation of the Nelder-Mead direct search method that optimizes
the percentage of the building covered. The CLP code for POPULAR is just
about 4000 lines with more than half of it for graphics and user interface. The
big advantage of the CLP approach is flexibility, e.g. when changing the labeling
heuristic or extending the solver.

9.2. The Munich Rent Advisor

The Munich Rent Advisor (MRA) [FrAb96], developed by ECRC and LMU, is the
electronic version of the “Mietspiegel” (MS) for Munich. MS are published regularly
by German cities. They are basically a written description of an expert system that
allows to estimate the maximum fair rent for a flat. These estimates are legally
binding.

The calculations are based on size, age and location of the flat and a series of
detailed questions about the flat and the house it is in. Some of these questions
are hard to answer. However, in order to be able to calculate the rent estimate
by hand, all questions must be answered. Usually, the calculation is performed by
hand in about half on hour by an expert from the City of Munich or from one of
the renter’s associations. The MRA that brought the advising time down to a few
minutes that the user needs to fill in the form. Using constraints, the user of the
MRA need not answer all questions. The user may not want to give information
away, or he does not care about the question or know the answer.

The MS is derived from a statistical model compiled from sample data using
statistical methods such as regression analysis [A1*94]. Due to the underlying sta-
tistical approach, there is the problem of inherent imprecision which is ignored
in the paper version of the MS. Using constraints the MRA can account for the
statistical imprecision.

The MRA is available on the internet. Using the World-Wide-Web (WWW),
there is no need for the user to acquire specific software and computer handling
skills. To process the answers from the questionnaire and return its result, we wrote
a simple stable special-purpose web-server directly in ECL'PS® using its C-sockets
for internet communication. This approach avoids the overhead of CGI interfaces.

Solver

From a CLP point of view, the MRA application is rather atypical: The computa-
tion proceeds deterministically from constrained input variables (the user data) to
constrained output variables (the rent estimate), since the original MS has already

40

solved the problem. There is no need for NP-hard constraint solving and labeling,
only for constraint propagation in the forward direction: The answer we expect is
the smallest interval covering all possible rents, not an enumeration of all possible
rents by backtracking.

Our approach was first to implement the tables, rules and formulas of the “Miet-
spiegel” with high-level and declarative programming in ECL?PS®, as if the provided
data was precise and completely known. Then we added constraints to capture the
imprecision due to the statistical approach and incompleteness due to partial user
answers. Finally, we considered the formulas of the rent calculation as constraints
that refine the rent estimate by propagation from the input variables which are
constrained by the partial answers.

In the MRA, dealing with imprecise numerical information involves non-linear
arithmetic computations with intervals. We simply modified the existing finite do-
main solver in CHR, domain.chr, described in Section 8.5, so that it can deal with
interval constraints over non-linear equations of the form

cx X1 xXox..xX,, =Y

where ¢ is a number and the X; and Y are different variables and n >= 0. In the
solver, ¢ x X7 * Xo *...x X,, =Y is represented by mult(C:C, [X1,X2,...,Xn],Y).

mult(Min:Max, [], Y) <=> Y::Min:Max.

mult (Min:Max, [XIL], Y) <=> number(X) |
NewMin is min(Min*X,Max*X),
NewMax is max(Min*X,Max*X),
mult(NewMin:NewMax, L, Y).

X::XMin:XMax \ mult(Min:Max, [X|L], Y) <=>
NewMin is min(min(Min*XMin,Max*XMax) ,min(Max*XMin,Min*XMax)),
NewMax is max(max(Min*XMin,Max*XMax) ,max (Max*XMin,Min*XMax)),
mult(NewMin:NewMax, L, Y).

Since we do not need backpropagation in our application, these three rules suffice.

Evaluation

In the last two years, more than ten thousand people haved used our MRA service
on the World-Wide-Web (WWW). It is one of the winners of the best application
prize of the JFPLC’96 [FAB96] conference in France and was presented at the
Systems’96 Computer Show in Munich.

It took about four man weeks to write the WWW user interface, only two weeks
to write the calculation part and one week to debug it. We think that the coding
would have dominated the implementation effort if a conventional programming
language had been used. We could presumably have used interval arithmetic to
express the required constraints. However it would have been quite difficult to tailor
the amount and direction of constraint propagation to the needs of the application
at hand. Our high-level approach also implies that the program can be easily
maintained and modified. This is crucial, since every city and every new version
comes with different tables and rules for the “Mietspiegel”.

41

The Munich Rent Advisor represents a class of applications that is rather atyp-
ical for constraint logic programming, since it is not concerned with the NP-hard
constraint-pruned search for a solution, but executing an existing calculation in the
presence of partial information. Nevertheless CLP can deal with imprecise knowl-
edge and partial information in an elegant, correct and efficient way, provided it
is possible to adopt the constraints to the application. We think that constraint
technology can be applied to many engineering applications where one wants to
reason with partial information without compromising correctness.

10. CONCLUSIONS

We gave syntax and semantics as well as soundness and completeness results for
CHR. We introduced an important property for constraint solvers, confluence, and
a decidable, necessary and sufficient test for it. CHR have been used to encode a
wide range of solvers, including new domains such as terminological and temporal
reasoning. We gave an overview of several solvers, showed how they can be extended
or modified and mentioned related work that builds on these solvers.

While existing solvers are usually about datastructures and their operations
(e.g. finite domains, Booleans, numbers), CHR open the way for more generic (e.g.
path consistency) and more conceptual constraint solvers (e.g. temporal, spatial
and terminological reasoning). CHR have been used successfully in challenging
applications, where other existing CLP systems could not be applied with the same
results in terms of simplicity, flexibility and efficiency. In most real-life applications,
soft and dynamic constraints are required. Work that has just been started [Wol97]
indicates that CHR are helpful in implementing general schemes to handle such
constraints independent of the constraint domain.

The topics for research mentioned in the first draft paper on CHR in 1991 were:

e Correctness w.r.t. specifications

e Termination and confluence

e Negation and entailment of constraints

e Combination and communication of solvers
e Debugging of constraint solvers

e Soft constraints with priorities

e Automatic labeling

e Dynamic constraints, removable constraints
e Variable projection

e Partial evaluation

e Abstract interpretation

42

Most of these topics are still an issue today. Clearly the termination property is
even more important than confluence and has to be a topic of future research (for
a start see the long version of this article, [Fru97]). While CHR solve conjunctions
of constraints, other operations typically expected from a constraint solver like
variable projection and entailment have not been investigated yet (except [Fru93a]).

We think that this survey illustrated that languages like CHR can fulfill the
promise of user-defined constraints as described in [ACM]: “For the theoretician
meta-theorems can be proved and analysis techniques invented once and for all; for
the implementor different constructs (backward and forward chaining, suspension,
compiler optimization, debugging) can be implemented once and for all; for the user
only one set of ideas need to be understood, though with rich (albeit disciplined)
variations (constraint systems).”

Acknowledgements

I would like to thank my collaborators: P. Brisset, T. Fortin, P. Blenninger, all of
them visitors to ECRC; especially S. Abdennadher, also H. Meuss, M. Marte, all
colleagues at LMU; and P. Hanschke, R. Mollwitz, Ch. Holzbaur.

Many people have discussed CHR with me, contributed with comments and used
them. Too many to thank them all by name. However, I would like to mention
my colleagues at ECRC: M. Wallace, T. Le Provost, V. Kuechenhoff, C. Gervet,
E. Monfroy, all from the constraint team, and J. Schimpf, A. Herold, J. Traeff and
N. Eisinger. While at ECRC from 1991 to 1996, my work on CHR was partially
supported by ESPRIT Project 5291 CHIC.

Last but not least, I thank my wife Andrea and my daughter Anna for her
ongoing support and patience.

The CHR papers and solvers mentioned in this article are available from URL
http://www.pst.informatik.uni-muenchen.de/personen/fruehwir/.

REFERENCES

. . ennadher erational Semantics an onfluence of Constraint Propa-
Abd97.] S. Abd dher, Op ional S i d Confl f C int Prop
gation Rules, 3rd Intl Conf on Principles and Practice of Constraint Programming

(CP’97), Linz, Austria, Springer LNCS 1330, pp 252-265, October/November 1997.

[Abd98.] S. Abdennadher, Analyse von regelbasierten Constraintlésern (in German),
Ph.D. Thesis, Dept of Computer Science, LMU Munich, to appear February 1998.

[ACM.] The Constraint Programming Working Group, ACM-MIT SDRC Workshop, Re-
port Outline, Draft, September 1996.

[Ai*88.] A. Aiba et al, Constraint Logic Programming Language CAL, Intl Conf on Fifth
Generation Computer Systems, 1988, Ohmsha Publishers, Tokyo, pp 263-276.

[AiNa86.] H. Ait-Kaci and R. Nasr, Login: A Logic Programming Language with Built-In
Inheritance, Journal of Logic Programming 3:185-215, 1986.

[A1*94.] R. Alles et. al, Gutachten zur Erstellung des Mietspiegels fiir Miinchen '94 (in
German), Sozialreferat der Stadt Miinchen - Amt fiir Wohnungswesen et. al, City of
Munich, Germany, 1994.

[AlI83.] J. F. Allen, Maintaining Knowledge about Temporal Intervals, Communications
of the ACM, Vol. 26, No. 11, 1983, pp 823-843.

43

[AnPa90.] J.-M. Andreoli and R. Pareschi, Linear Objects: Logical Processes with Built-
In Inheritance, Seventh Intl Conf on Logic Programming, MIT Press, Cambridge,
Mass., USA, 1990, pp 495-510.

[APG93.] H. Ait-Kaci, A. Podelski and S. C. Goldstein, Order-Sorted Feature Theory
Unification, DEC PRL Research Report 32, May 1993, DEC Paris Research Labora-
tory, France.

[BaHa91.] F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. 12" Intl Joint Conf on Artificial Intelligence, 1991.

[BCL88.] J.-P. Banatre, A. Coutant and D. Le Metayer, A Parallel Machine for Multiset
Transformation and its Programming Style, Future Generation Computer Systems
4:133-144, 1988.

[BDS93.] M. Buchheit, F. M. Donini and A. Schaerf, Decidable Reasoning in Terminolog-
ical Knowledge Representation Systems, Journal of Artificial Intelligence Research,
1:109-138, 1993.

[BeO192.] F.Benhamou and W.J. Older, Bell Northern Research, Applying interval arith-

metic to Integer and Boolean constraints, Technical Report, June 1992.

[Bja96.] M. Bjareland, Proving Consistency in K-IA Chronicles — An Implementation
of PMON, Master Thesis, Dept of Information and Computer Science, Linkoepings
Universitet, 1996.

[Ben95.] F. Benhamou, Interval constraint logic programming, Chapter in Constraint
Programming: Basics and Trends, (A. Podelski, Ed.), Springer LNCS 910, March
1995.

[BMH94.] F. Benhamou, D. MacAllester, and P. van Hentenryck, CLP (Intervals) Revis-
ited, ILPS’94, MIT Press, Cambridge, Mass., USA, 1994.

[CoDi96.] P. Codognet and D. Diaz, Compiling constraints in clp(£d), Journal of Logic
Programming, 27(3), 1996.

[Coh88.] J. Cohen, A View of the Origins and Development of Prolog, Communications
of the ACM 31(1):26-36, January 1988.

[Col90.] A. Colmerauer, An Introduction to Prolog III, Communications of the ACM
33(7):69-90, July 1990.

[DaPu60.] M. Davis and H. Putnam, A Computing Procedure for Quantification Theory,
Journal of the ACM 7(3):201-215, 1960.

[Deb93.] S. K. Debray, QD-Janus : A Sequential Implementation of Janus in Prolog,
Software - Practice and Experience, Vol. 23, Number 12, December 1993, pp 1337-
1360.

[Di*88.] M. Dincbas et al., The Constraint Logic Programming Language CHIP, Fifth
Generation Computer Systems, Tokyo, Japan, December 1988.

[DMP91.] R. Dechter, I. Meiri and J. Pearl, Temporal Constraint Networks, Journal of
Artificial Intelligence 49:61-95, 1991.

[Don93.] G. Dondosolla, A constraint-based implementation of the GRF, ESPRIT
Project no. 2409 EQUATOR Report, June 1993.

[DOS88.] N. Dershowitz, N. Okada, and G. Sivakumar, Confluence of conditional rewrite
systems, 1st CTRS, pp 31-44, Springer LNCS 308, 1988.

[Due96.] M. Duerst, Prolog for Structured Character Description and Font Design, Jour-
nal of Logic Programming, Special issue on Applications, (Leon Sterling, Ed.), Febru-
ary 1996.

44

[Dum95.] E. Dumbill, Application of resolution and backtracking to the solution of con-
straint satisfaction problems, Project Report, Dept of Computer Science, University
of York, England, 1995.

[EsTo96.] M. T. Escrig and F. Toledo, Qualitative Spatial Orientation with Constraint
Handling Rules, ECAT 96, Budapest, Hungary, (W. Wahlster, Ed.), John Wiley &
Sons, August 1996.

[FAB96.] T. Frihwirth, S. Abdennadher and P. Blenninger, Rent Estimates with Con-
straints over the Internet - System Description, Journees Francophones de Program-
mation en Logique et programmation par Contraintes (JFPLC’96), Clermont Fer-
rand, France, June 1996.

[FAM96.] T. Frihwirth, S. Abdennadher and H. Meuss, On Confluence of Constraint
Handling Rules, 2nd Intl Conf on Principles and Practice of Constraint Programming

(CP’96), Cambridge, USA, Springer LNCS 1118, August 1996.

[FAM97.] T. Frithwirth, S. Abdennadher and H. Meuss, Confluence and Semantics of
Constraint Handling Rules, Constraint Journal, Kluwer Academic Publishers, ac-
cepted for publication, to appear 1998.

[Fau94.] J-C. Faugere. Résolution des systemes d’équations algébriques. PhD thesis, Uni-
versité Paris 6, 1994.

[FGK*95.] S. J. Fortune, D. M. Gay, B. W. Kernighan et al., WISE Design of Indoor
Wireless Systems, IEEE Computational Science and Engineering, Vol. 2, No. 1, pp
58-68, Spring, 1995.

[FMB96.] T. Frithwirth, J.-R. Molwitz and P. Brisset, Planning Cordless Business Com-
munication Systems, IEEE Expert Magazine, Special Track on Intelligent Telecom-
munications, February 1996.

r*92. . Frithwirth, A. Herold, V. Kiichenhoff, T. Le Provost, P. Lim, E. Monfroy an

Fr*92.] T. Frihwirth, A. Herold, V. Kiichenhoff, T. Le P P. Lim, E. Monf d
M. Wallace. Constraint Logic Programming - An Informal Introduction, Chapter in
Logic Programming in Action, Springer LNCS 636, September 1992.

[FrAb96.] T. Frihwirth and S. Abdennadher, The Munich Rent Advisor, 1st Workshop
on Logic Programming Tools for Internet Applications at JICSLP’96, Bonn, Ger-
many, September 1996.

[FrAb97.] T. Frithwirth and S. Abdennadher, Constraint-Programmierung (in German),
Textbook, Springer Verlag, Heidelberg, Germany, September 1997.

[FrBr95a.] T. Frithwirth and P. Brisset, High-Level Implementations of Constraint Han-
dling Rules, Technical Report ECRC-95-20, ECRC Munich, Germany, June 1995.

[FrBr95b.] T. Frihwirth and P. Brisset, Chapter on Constraint Handling Rules, in
ECLiPSe 3.5.1 Extensions User Manual, ECRC Munich, Germany, December 1995.

[FrBr96.] T. Frihwirth and P. Brisset, The CHR Library, Version 2, of ECL!PS® 3.5.3,
released by ECRC, Munich, Germany, January 1996.

[FrBr97.] T. Frihwirth and P. Brisset, Optimal Planning of Digital Cordless Telecom-
munication Systems, 3rd Intl Conf on The Practical Application of Constraint Tech-
nology (PACT97), London, U.K., April 1997.

[FrHa95.] T. Frihwirth and P. Hanschke, Terminological Reasoning with Constraint Han-
dling Rules, Chapter in Principles and Practice of Constraint Programming, (P. van
Hentenryck and V.J. Saraswat, Eds.), MIT Press, Cambridge, Mass., USA, April
1995.

[Fru91l.] T. Frithwirth, Introducing Simplification Rules, Workshop Logisches Program-
mieren, Goosen/Berlin, Germany, October 1991, Workshop on Rewriting and Con-
straints, Dagstuhl, Germany, October 1991, also Technical Report ECRC-LP-63,
ECRC Munich, Germany, October 1991.

45

[Fru92.] T. Frithwirth, Constraint Simplification Rules, JICSLP’92 Workshop on Con-
straint Logic Programming, Washington D.C., USA, November 1992, also Technical
Report ECRC-92-18, ECRC Munich, Germany, July 1992.

[Fru93a.] T. Frihwirth, Entailment Simplification and Constraint Constructors for CHR
Constraints, Workshop on Constraint Logic Programming, Marseille, France, March
1993.

[Fru93b.] T. Frithwirth, CHR Constraint Handling, Abstract and Poster, Intl Conf on
Logic Programming, (ICLP’93), Budapest, Hungary, MIT Press, Cambridge, Mass.,
USA, June 1993.

[Fru94.] T. Frithwirth, Temporal Reasoning with Constraint Handling Rules, Technical
Report ECRC-94-05, ECRC Munich, Germany, February 1994.

[Fru95.] T. Frihwirth, Constraint Handling Rules, Chapter in Constraint Programming:
Basics and Trends, (A. Podelski, Ed.), Springer LNCS 910, March 1995.

[Fru97.] T. Frithwirth, A Declarative Language for Constraint Systems - Theory and
Practice of Constraint Handling Rules, Habilitation, Dept of Computer Science, LMU
Munich, December 1997.

[GGLI1.] K. O. Geddes, G. H. Gonnet, and B. L. Leong, Maple V : Language Reference
Manual, Springer, New York, Berlin, Paris, 1991.

[Gr89.] T. Graf, Raisonnement sur les contraintes en programmation en logique (in
French), Ph.D. Thesis, Version of June 1989, Universite de Nice, France, Septem-
ber 1989.

[Her93.] B. Herbig, Eine homogene Implementierungsebene fiir einen hybriden Wis-
sensreprasentationsformalismus (in German), Master Thesis, University of Kaiser-
slautern, Germany, April 1993.

[Hol92.] C. Holzbaur, Metastructures vs. Attributed Variables in the Context of Exten-
sible Unification, Intl Symposium on Programming Language Implementation and

Logic Programming (PLILP’92), pp 260-268, Springer LNCS 631, August 1992.

[Hon92.] H. Hong, Non-linear Real Constraints in Constraint Logic Programming, Al-
gebraic and Logic Programming Conf (Volterra, Italy), (H. Kirchner and G. Levi,
Eds.), Springer LNCS 632, 1992, pp 201-212.

[HMD97.] P. van Hentenryck, L. Michel and Y. Deville, Numerica: a Modeling Language
for Global Optimization, MIT Press, Cambridge, Mass., USA, 1997.

[HSD95.] P. van Hentenryck, Vijay A. Saraswat, and Y. Deville, Constraint Processing
in cc(FD), Chapter in Constraint Programming: Basics and Trends, (A. Podelski,
Ed.), Springer LNCS 910, 1995.

[Imb95.] J.-L. J. Imbert, Linear Constraint Solving in CLP-Languages, Chapter in Con-
straint Programming: Basics and Trends, (A. Podelski, Ed.), LNCS 910, March 1995.

a . . Jaffar et al., e anguage and System, ransactions on Pro-
Ja*92.] J. Jaff l., The CLP(R) L dsS ACM T i P
gramming Languages and Systems, Vol.14:3, July 1992, pp 339-395.

[JaHa91.] S. Janson and S. Haradi, Programming Paradigms of the Andorra Kernel Lan-
guage, ILPS 91, San Diego, USA.

[JaLa87.] J. Jaffar and J.-L. Lassez, Constraint Logic Programming, ACM 14th POPL
87, Munich, Germany, January 1987, pp 111-119.

[JaMa94.] J. Jaffar and M. J. Maher, Constraint Logic Programming: A Survey, Journal
of Logic Programming 19,20:503-581, 1994.

[KaLa91.] H. A. Kautz and P. B. Ladkin, Integrating Metric and Qualitative Temporal
Reasoning, AAAI 91, pp 241-246.

46

[KiKi91.] C. Kirchner and H. Kirchner, Rewriting: Theory and Applications, North-
Holland, 1991.

[KOM87.] T. Kawamura, H. Ohwada and F. Mizoguchi, CS-Prolog: A Generalized Uni-
fication Based Constraint Solver, 6th Conf on Logic Programming (Tokyo, Japan,
June 1987), (K. Furukawa et al., Eds.), Springer LNCS 319, pp 19-39.

[KoSe86.] R. Kowalski and M. Sergot, A Logic-based Calculus for Events, New Genera-
tion Computing 4, 1986.

[Lel88.] W. Leler, Constraint Programming Languages: Their Specification and Genera-
tion, Addison-Wesley, Reading, Massachusetts, 1988.

[Mac77.] A. K. Mackworth, Consistency in Networks of Relations, Journal of Artificial
Intelligence 8:99-118, 1977.

[MaFr85.] A. K. Mackworth and E. C. Freuder, The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems, Journal of
Artificial Intelligence 25:65-74, 1985.

[Mah87.] M. J. Maher, Logic Semantics for a Class of Committed-Choice Programs, 4th
Intl Conf on Logic Programming, Melbourne, Australia, pp 858-876, MIT Press,
Cambridge, Mass., USA, 1987.

[Me*93.] S. Menju et al., A Study on Boolean Constraint Solvers, Constraint Logic Pro-
gramming: Selected Research, (F. Benhamou and A. Colmerauer, Eds.), MIT Press,
Cambridge, Mass., USA, 1993.

[Mei91.] I. Meiri, Combining Qualitative and Quantitative Constraints in Temporal Rea-
soning, AAAI 91, pp 260-267.

[Mol94.] J.-R. Molwitz, Entwicklung eines Werkzeugs zur Planung picozellularer
Funknetze fiir die drahtlose Kommunikation (in German), Master Thesis, Univer-
sity of Technology, Aachen, Germany, June 1994.

[MRS96.] E. Monfroy, M. Rusinowitch, and R. Schott, Implementing Non-Linear Con-
straints with Cooperative Solvers, (K. M. George et al., Eds.), ACM Symposium
on Applied Computing (SAC’96), Philadelphia, PA, USA, pp 63-72, ACM Press,
February 1996.

[Nai85.] L. Naish, Prolog Control Rules, 9th Intl Joint Conf on Artificial Intelligence,
Los Angeles, California, September 1985, pp 720-722.

[New42.] M. H. A. Newman, On Theories with a Combinatorial Definition of Equivalence,
Annals of Math, Vol. 43, pp 223-243, 1942.

[SaKo095.] F. Sadri and R. Kowalski, Variants of the Event Calculus, 12th Intl. Conf on
Logic Programming, Tokyo, Japan, pp 67-82, MIT Press, Cambridge, Mass., USA,
June 1995.

[San94.] E. Sandewall, Features and Fluents, The Representation of Knowledge about
Dynamical Systems, Vol. I, Oxford University Press, 1994.

Sar89.] V. A. Saraswat, Concurrent Constraint Programming Languages, Ph.D. Thesis
) g g guages,)
Carnegie Mellon Univ., Draft of January 1989.

[Sar93.] V. A. Saraswat, Concurrent Constraint Programming, MIT Press, Cambridge,
Mass., USA, 1993.

[ScSm91.] M. Schmidt-Schauf and G. Smolka, Attributive Concept Descriptions with
Complements, Journal of Artificial Intelligence, 47, 1991.

[Sha89.] E. Shapiro, The Family of Concurrent Logic Programming Languages, ACM
Computing Surveys, 21(3):413-510, September 1989.

47

[Sid93.] G. A. Sidebottom, A Language for Optimizing Constraint Propagation, Thesis,
Simon Fraser University, Canada, 1993.

[Smo93.] G. Smolka, Residuation and Guarded Rules for Constraint Logic Programming,
Constraint Logic Programming: Selected Research, (F. Benhamou and A. Colmer-
auer, Eds.), MIT Press, Cambridge, Mass., USA, 1993.

[SmTr94a.] G. Smolka and R. Treinen (Eds.), DFKI Oz Documentation Series, DFKI,
Saarbriicken, Germany, 1994.

[SmTr94b.] G. Smolka and R. Treinen, Records for Logic Programming, Journal of Logic
Programming 18:229-258, 1994.

[StBa94.] P. Baumgartner and F. Stolzenburg, Constraint model elimination and a
PTTP-implementation, 4th Workshop on Theorem Proving with Analytic Tableaux
and Related Methods, pp 201-216, (P. Baumgartner, R. Haehnle, and J. Posegga,
Eds.), Springer LNAT 918, 1995.

[vH89.] P. van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press,
Cambridge, Mass., USA, 1989.

[vH91.] P. van Hentenryck, Constraint Logic Programming, The Knowledge Engineering
Review, Vol 6:3, 1991, pp 151-194.

[ViKa86.] M. Vilain, H. Kautz, Constraint Propagation Algorithms for Temporal Rea-
soning, AAAI 86, pp 377-382.

[Wil91.] M. R. Wilk, Equate: An Object-Oriented Constraint Solver, ACM OOPSLA
91, 1991, pp 286-298.

[Wol97.] A. Wolf, Incremental Adaption of Constraint Handling Rule Derivations, CP’97
Workshop on the Theory and Practice of Dynamic Constraint Satisfaction, Linz,
Austria, November 1997.

