




RISC-Linz
Research Institute for Symbolic Computation
Johannes Kepler University
A-4040 Linz, Austria, Europe

CHR 2008

The 5th Workshop on
Constraint Handling Rules

Tom SCHRIJVERS, Frank RAISER,
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Preface

This book contains the proceedings of CHR 2008, the fifth workshop on Con-
straint Handling Rules, held at the occasion of RTA 2008 in Hagenberg (Austria)
on July 14, 2008.

The Constraint Handling Rules (CHR) language has become a major declar-
ative specification and implementation language for constraint reasoning algo-
rithms and applications. Algorithms are often specified using inference rules,
rewrite rules, proof rules, or logical axioms that can be directly written in CHR.
Based on first-order predicate logic, this clean semantics of CHR facilitates non-
trivial program analysis and transformation.

Previous Workshops on Constraint Handling Rules were organized in May
2004 in Ulm (Germany), in October 2005 in Sitges (Spain) at ICLP, in July 2006
in Venice (Italy) at ICALP, and in September 2007 in Porto (Portgual) at ICLP.
It means to bring together in an informal setting, people involved in research
on all matters involving CHR, in order to promote the exchange of ideas and
feedback on recent developments.

Twelve papers were submitted to the workshop, all of which were carefully
reviewed by three reviewers. Ten papers and one short paper were accepted to
the workshop.

We are grateful to all the authors of the submitted papers, the program
committee members, and the referees for their time and efforts spent in the
reviewing process, and the RTA 2008 organizers for hosting our workshop.

July 2008 Tom Schrijvers
Frank Raiser

Thom Frühwirth
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The CHR-Celf Connection

Anders Schack-Nielsen and Carsten Schürmann

IT University of Copenhagen
Denmark

Abstract. Celf is a meta-language for specifying and implementing de-
ductive and concurrent systems from areas, such as programming lan-
guage theory, process algebras, and logics. It is based on the concurrent
logical framework CLF [CPWW02a]. The Constraint Handling Rules
(CHR) language [Frü98] is a major specification and implementation
language for constraint-based algorithms.
In this invited talk, we give a tutorial-style introduction to Celf for the
CHR programmer where we highlight some of Celf’s features including
the support of higher-order encodings, first-class execution traces, and
a logically inspired proof search semantics. Furthermore we show where
the semantics of the two languages coincide.

The Celf system is a tool for experimenting with deductive and concurrent
systems prevalent in programming language theory, process algebras, and logics.
It supports the specification of object language syntax and semantics through a
combination of deductive methods and resource-aware concurrent multiset tran-
sition systems. Furthermore it supports the experimentation with those specifi-
cations through concurrent logic programming based on multiset rewriting.

Many case studies have been conducted in Celf including all of the motivating
examples that were described in the original CLF technical report [CPWW02b].
In particular, Celf has been successfully employed for experimenting with concur-
rent ML, its type system, and a destination passing style operational semantics
that includes besides the pure core a clean encoding of Haskell-style suspen-
sions with memoizations, futures, mutable references, and concurrency omitting
negative acknowledgments. Other examples include various encodings of the π-
calculus, security protocols, petri-nets, etc.

CLF is a conservative extension over LF, which implies that Celf’s function-
ality is compatible with that of Twelf [PS99]. With a few syntactic modifications
Twelf signatures can be read, type checked, and queries can be executed. Celf
does not yet provide any of the meta-theoretic capabilities that sets Twelf apart
from its predecessor Elf, such as mode checking, termination checking, coverage
checking, and the like, which we leave to future work. In this presentation we
concentrate on the two main features of Celf.

Specification. CLF was designed with the objective in mind to simplify the
specification of object languages by internalizing common concepts used for spe-
cification. Celf supports dependent types for the encoding of judgments as types,
e.g. typing relations between terms and types, operational relations between
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terms and values, open and closed terms, derivability, and logical truth. It also
supports the method of higher-order abstract syntax, which relieves the user of
having to specify substitutions and substitution application. In CLF, every term
is equivalent to a unique inductively defined β-normal η-long form modulo α-
renaming and let-floating providing an induction principle to reason about the
adequacy of the encoding. In addition, CLF provides linear types and concur-
rency encapsulating monadic types in support of the specification of resource
aware and concurrent systems. Examples include operational semantics for lan-
guages with effects, transition systems, and protocol stacks.

Experimentation. Celf provides a logic programming interpreter that imple-
ments a proof search algorithm for derivations in CLF type theory in anal-
ogy to how Elf implements a logical programming interpreter based on uni-
form proof search. Celf’s interpreter is inspired (with few modifications) by Lol-
limon [LPPW05], an extension of Lolli, the linear sibling of λ-Prolog. The inter-
preter implements backward-chaining search within the intuitionistic and linear
fragment of CLF and switches to forward-chaining multiset rewriting search
upon entering the monad. Celf programs may jump in and out of the concur-
rency monad and can therefore take advantage of both modes of operation. In
addition, the operational semantics of Celf is conservative over the operational
semantics of Elf, which means that any Twelf query can also be executed in Celf
leading to the same result.

Celf is written in Standard ML and compiles with SML/NJ, MLton and
MLKit. The source code and a collection of examples are freely available from
http://www.twelf.org/∼celf.
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Abstract. Multi-headed rules are essential for the expressiveness of
Constraint Handling Rules (CHR), but incur considerable performance
overhead. Current indexing techniques are often unable to address this
problem—they require matchings to have particular form, or offer good
run-time complexity rather than good absolute figures.
We introduce two lightweight program transformations, based on term
flattening, which improve the effectiveness of existing CHR indexing tech-
niques, in terms of both complexity and constant factors. We also de-
scribe a set of complementary post-processing program transformations,
which considerably reduce the flattening overhead.
We compare our techniques with the current state of the art in CHR
compilation, and measure their efficacy in K.U.Leuven CHR and CHRd.

1 Introduction

Constraint Handling Rules (CHR) [1] is a high-level rule-based declarative pro-
gramming language, usually embedded in a host language such as Prolog or
Haskell. Typical applications of CHR include scheduling [2] and type check-
ing [3]. CHR features multi-headed rules, i.e., rules with multiple predicates on
the left-hand side (the head), which sets it apart from conventional declarative
languages, e.g., Prolog or Haskell, where a rule’s head admits only one predicate
or function.

Multi-headed rules afford much of CHR’s expressive power by allowing to
easily combine information from distinct constraints via matching. However, as
the matching procedure significantly affects the complexity of rule evaluation,
this source of expressiveness often leads to performance bottlenecks. This effect is
borne out by the approximative complexity formula of [4], where the multiplicity
of rule’s head appears in the exponent.

Aware of this problem, CHR developers have built data structures to sup-
port efficient indexing on variables (attributed variables [5]) and ground data

? Post-Doctoral Researcher of the Fund for Scientific Research - Flanders (Belgium)
(F.W.O. - Vlaanderen)
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(search trees [6]). With [7] came the realization that O(1) indexing is essential
to implement CHR algorithms with optimal complexity, which led to the use of
hash tables for indexing ground data, and the general result that the complexity
of CHR systems equals that of RAM machines [8]. CHRd [9] has slimmed the
original indexing techniques based on attributed variables for faster evaluation
of the class of direct-indexed CHR and use in a tabulated environment.

In this paper we advance the research on CHR indexing with the following
contributions:

– two independent program transformations that improve the indexing behav-
ior of CHR in the presence of function symbols

– a sequence of program post-processing steps that eliminate the overhead
incurred by the indexing transformations

– the experimental measurements that clearly demonstrate the potential for
time complexity improvements and the practical usefulness of our approach
in K.U.Leuven CHR and CHRd

– the implementation of the presented transformations1

Our presentation begins with an overview of the problem of indexing with
partial structures (Section 2). We then introduce our two indexing techniques
(Sections 3 and 4), and describe applicable post-processing steps (Section 5).
Next, we present the experimental evaluation of all proposed transformations
(Section 6), relate our approach to other work (Section 7), and conclude (Sec-
tion 8).

2 Problem Overview

The Problem CHR systems build indexes on the constraint store to speed up
matching multi-headed rules. Consider the rule:

a(X), b(X,Y) ==> write(Y).

Given X, an index returns all stored constraints b(X,Y). Thus, for a new a(X)
we can quickly find all matchings of the form b(X,Y) that make the rule fire.
Now consider the variant of the previous rule:

a(X), b(f( , ),Y) ==> write(Y).

Here, for efficient matching, we need an index that returns all instances of b/2
in which the first argument has top-level function symbol f/1. Currently, CHR
systems do not generate indexes that involve partial structure of the constraints.
Instead, they enumerate all b(A,B) in the constraint store and, for each A, test
whether its top-level function symbol is f/1. When only a small fraction of all

1 available at http://www.cs.kuleuven.be/~toms/CHR/Indexing/
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As have this form, there are many failing tests. The problem becomes even more
apparent if partial structures are parameterized, as in the rule:

a(X), b(f(X, ),Y) ==> write(Y). (2.1)

Existing CHR systems cannot exploit the variable X to find all stored constraints
matching b(f(X, ),Y) more quickly: as before, finding the matchings for an
active constraint a(X) requires that all stored b/2 constraints are enumerated.

The Solution We propose two techniques—both based on term flattening—for
building indexes on partial structures. The first, generic flattening (Section 3),
transforms rule (2.1) into:

a(X), b’(f,X, ,Y) ==> write(Y),

and the second, constraint symbol specialization (Section 4), into:

a(X), bf(X, ,Y) ==> write(Y).

As source-to-source transformations, both proposed techniques are portable to
many CHR systems. Moreover, since they both reuse available indexing data
structures, further optimizations of such data structures also improve the index-
ing performance of our techniques. As we prove in [10], both proposed techniques
preserve the theoretical [1] and refined [11] semantics of CHR, as well as the set-
based semantics of CHRd [9].

Preliminaries We restrict our presentation to CHR programs where each rule
head contains at most one occurence of a functional term, at a fixed argument
position of some constraint c/n. We consider the ith argument of c/n, and a
given set F of function symbols fj/aj that appear in the rule heads at the ith
position of c/n. We define the maximal arity of F as amax = maxfj/aj∈F (aj).

We assume that, at run time, all instances of c/n have the top-level function
symbol in their ith argument instantiated, but not necessarily to a symbol in
F . This assumption can be satisfied by groundness analysis [12] or programmer-
supplied mode annotations.

Example 1. The first argument of the constraint c/1 from the CHR program in
Table 1 takes on function symbols given by the set F = {f/2, g/1}. The maximal
arity of F , amax , is 2.

3 Generic Flattening

Our first flattening approach augments the arity of each constraint symbol c,
which appears in the heads of the program rules with function-term arguments,
to accommodate new arguments of c representing these function terms.
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:- chr_constraint c/1.

r1 @ c(X) \ c(X) <=> true.

r2 @ c(f(X,Y)) ==> c(X), c(Y).

r3 @ c(g(X)) ==> c(X).

r4 @ c(X) <=> write(X).

Table 1. A CHR program with constraints on function symbols

Definition 1 (Flattening and Unflattening Functions). The flattening
function φ with respect to the set of function symbols F , maps a term T onto a
sequence of terms:

φ(T ) =


fj , t, e, . . . , e︸ ︷︷ ︸

dj

if T = fj(t) s.t. fj/aj ∈ F and |t| = aj

T, e, . . . , e︸ ︷︷ ︸
amax

otherwise

where dj = amax − aj and e is an arbitrary constant.
The unflattening function ψ = φ−1 maps a sequence of terms onto a term:

ψ(T ) =
{
fj(t) if T = fj , t, e s.t. fj/aj ∈ F and |t| = aj and |e| = amax − aj

t if T = t, e s.t. |e| = amax

Example 2. The flattening and unflattening functions for the CHR program in
Table 1, with F = {f/2, g/1}, are defined as:

φ(T ) =

f,X, Y if T = f(X,Y )
g, Z, e if T = g(Z)
T, e, e otherwise

ψ(A,B,C) =

f(X,Y ) if A,B,C = f,X, Y
g(Z) if A,B,C = g, Z, e
T if A,B,C = T, e, e

The original and flattened instances of the constraints are related by the flat-
tening rules:

Definition 2 (Flattening Rule). The flattening rule Φ replaces a given con-
straint c/n with its flat form:

Φ @ c(t1,...,i−1, ti, ti+1,...,n) <=> c′(t1,...,i−1, φ(ti), ti+1,...,n) (3.2)

Example 3. The flattening rule for constraint c/1 of the CHR program in Table 1
is listed in line 3 of Table 2.
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:- chr constraint c/1, c’/3. 1

2

Φ @ c(T) <=> c’(φ(T)). 3

4

r1’ @ c’(A,B,C) \ c’(A,B,C) <=> true. 5

r2’ @ c’(f,X,Y) ==> c(X), c(Y). 6

r3’ @ c’(g,X,e) ==> c(X). 7

r4’ @ c’(A,B,C) <=> T = ψ(A,B,C) | write(T). 8

Table 2. CHR program from Table 1 after generic flattening

Definition 3 (Flattened Rule). The flattening φ of a CHR rule with respect
to the ith argument of a constraint c/n for a set of function symbols F is defined
as:

φ(H ?=> G | B) = H ′ ?=> G′, G | B
where

– H ′ differs from H in that any constraint c(t1, . . . , ti, . . . , tn) is replaced by
c′(t1, . . . , t′i, . . . , tn) where t′i = φ(ti) if ti = fj(t′1, . . . , t

′
aj

) s.t. fj/aj ∈ F , or
t′i = t, where t are fresh variables, otherwise

– the new guard G′ relates the flattened arguments back to the original ones,
and contains one ti = ψ(t′i) for each flattened argument.

Example 4. Lines 5-8 of Table 2 list flattened rules of the CHR program in
Table 1, partially post-processed (Section 5) for readability.

Definition 4 (Flattened Program). The flattening φ(P) of a CHR program
P given by the set of rules R, with respect to the ith argument of a constraint
c/n, for a set of function symbols F , is defined as the flattening of each rule in
R, the flattening and unflattening functions, and the encoding of Φ:

φ(P ) = φ(R) ∪ φ ∪ ψ ∪ Φ

4 Constraint Symbol Specialization

Our second flattening technique differs from the first one in that it uses a different
constraint symbol for each function symbol. As a consequence, it defines one
flattening function and multiple unflattening functions:

Definition 5 (Flattening and Unflattening Functions). The flattening
function φ with respect to the set of function symbols F , maps a term T onto a
sequence of terms:

φ(T ) =
{
t if T = fj(t) s.t. fj/aj ∈ F and |t| = aj

T otherwise

The unflattening function for a function symbol fj/aj, ψfj , maps a sequence of
terms onto a term: ψfj (t1, . . . , taj ) = fj(t1, . . . , taj ). The default unflattening
function is the identity function’: ψ′(t) = t.
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Example 5. The flattening and unflattening functions for the CHR program in
Table 1, with F = {f/2, g/1}, are defined as:

φ(T ) =

X,Y if T = f(X,Y )
Z if T = g(Z)
T otherwise

ψf (X,Y ) = f(X,Y )
ψg(Z) = g(Z)
ψ′(T ) = T

Note that the flattening function is the left inverse of each unflattening func-
tion:

φ ◦ ψfj (t) = t (4.3)
φ ◦ ψ′(t) = t (4.4)

and it is the right inverse for terms with appropriate function symbols:

ψfj ◦ φ(fj(t)) = fj(t) where fj ∈ F (4.5)
ψ′ ◦ φ(f(t)) = f(t) where f 6∈ F (4.6)

Hence, unlike in the previous section, the flattening function is (in general) not
injective: the original term t cannot be reconstructed from its flattened form t
alone. Consider F = {f/2, g/2} and two terms, f(a, b) and g(a, b). Since both
terms flatten to a, b, the original term cannot be determined based solely on this
flat form, because it does not preserve the function symbol. To enable recovery
of this information, we encode it in the flattened constraint symbol.

Definition 6 (Flattening Rules). The flattening rules Φfj
and Φ′ replace a

given constraint c/n with its flat form:

Φfj @ c(t1,...,i−1, ti, ti+1,...,n) <=> ti = fj(t′1, . . . , t
′
aj

) ∧ fj/aj ∈ F
| cfj (t1,...,i−1, φ(ti), ti+1,...,n) (4.7)

Φ′ @ c(t1,...,i−1, ti, ti+1,...,n) <=> ti = f(t′1, . . . , t
′
a) ∧ f/a 6∈ F

| c′(t1,...,i−1, φ(ti), ti+1,...,n) (4.8)

Now we can distinguish between the flattened constraints cf (a, b) and cg(a, b) by
looking at constraint symbols cf and cg: the former constraint originates from
c(f(a, b), and the latter from c(g(a, b)).

As each original constraint symbol maps to multiple specialized constraint
symbols, rule flattening in case of symbol specialization is more complex than
for generic flattening. Every original rule maps to multiple flattened rules, one
for each combination of specialized constraint symbols.

Definition 7 (Flattened Rules). The flattening φ of a CHR rule (H ?=> G | B)
with respect to the ith argument of a constraint c/n for the set of function symbols
F is the set with maximal cardinality, containing rules of the form:

H ′ ?=> G′, G | B
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:- chr constraint c/1, cf/2, cg/1, c’/1.

Φf @ c(T) <=> T = f(X,Y) | cf(φ(T)).
Φg @ c(T) <=> T = g(Z) | cg(φ(T)).
Φ’ @ c(T) <=> T 6= f(X,Y), T 6= g(Z) | c’(φ(T)).

r1f @ cf(X,Y) \ cf(X,Y) <=> true.

r1g @ cg(Z) \ cg(Z) <=> true.

r1’ @ c’(T) \ c’(T) <=> true.

r2f @ cf(X,Y) ==> c(X), c(Y).

r3g @ cg(Z) ==> c(Z).

r4f @ cf(X,Y) <=> R = ψf(X,Y) | write(R).

r4g @ cg(Z) <=> R = ψg(Z) | write(R).

r4’ @ c’(T) <=> R = ψ’(T) | write(R).

Table 3. CHR program from Table 1 after constraint symbol specialization

where

– H ′ differs from H in that any constraint c(t1, . . . , ti, . . . , tn) is replaced by
a specialized flattened form, cfj (t1, . . . , t′, . . . , tn) if ti = fj(t′1, . . . , t

′
aj

) s.t.
fj/aj ∈ F , or c′(t1, . . . , ti, . . . , tn) otherwise

– the new guard G′ contains the pre-condition: one ψfj (t′) = ti for each flat-
tened argument ti = fj(t′1, . . . , t

′
aj

) s.t. fj/aj ∈ F , or ψ′(t′) = t′ otherwise.

The flattened program is defined as for generic flattening:

Definition 8 (Flattened Program). The flattening φ(P ) of a CHR program
P given by the set of rules R, with respect to the ith argument of a constraint
c/n, for the set of function symbols F , is defined as the flattening of each rule
in R, the flattening and unflattening functions and the flattening rules:

φ(P ) = φ(R) ∪ φ ∪
⋃

fj∈F

(ψfj
∪ Φfj

) ∪ (ψ′ ∪ Φ′)

Example 6. Table 3 shows the program from Table 1 flattened using constraint
symbol specialization. The rules r1f to r3g have been simplified for readability
(see Section 5).

5 Post-Processing

The experimental results in Section 6 indicate that the performance improve-
ment attained by better indexing is offset, or in some cases even surpassed, by
the run-time overhead of applying the flattening and unflattening functions. In
this section we outline two transformations that statically eliminate most of
this overhead. The effectiveness of these transformations is borne out by the
benchmarks in Section 6.
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5.1 Repeated Flattening and Unflattening

original flat

c(X)
φ

**TTTTTTTTTTTTTT

c′(Y )
ψ

ttjjjjjjjjjjjjjj

c(Z)
φ

**TTTTTTTTTTTTTT

c′(U)
ψ

tthhhhhhhhhhhhhh

. . .
(a) Actual Situation

original flat

c(X)
φ

**TTTTTTTTTTTTTT

c′(Y )

��
c′(U)

��. . .

. . .
(b) Ideal Situation

Fig. 1. Transitions between original and flattened constraints

Alternating flattening and unflattening of values is a major source of runtime
overhead. In a typical scenario (Fig. 1(a)), a value is flattened and matched in
a head of a rule, then it is unflattened in that rule’s body for calling a new con-
straint, flattened again to match another rule, and so on. To avoid this overhead,
the transformed rules should operate solely on the flattened constraints, whereas
the unflattened constraints should be called only by the queries external to the
programs.

We propose a four-step rewriting procedure that aims to trigger this ideal sce-
nario (Fig. 1(b)). Execution of a program enhanced with our procedure consists
of two phases:

(1) constraint flattening, and
(2) processing of the flattened constraints.

For all but the most trivial programs, we expect the runtime cost of (1) to be
marginal with respect to the cost of (2).

We formulate the steps of the procedure in terms of generic flattening; their
counterparts for constraint symbol specialization can be easily derived.

Step 1: Make flattening explicit.
Unfold constraint calls according to the flattening rules.

Example 7. Flattening the rule d(X,N) <=> N>0, d(X,N-1) w.r.t. the
first argument of d(X,N) yields:

d’(A,B,N) <=> X = ψ(A,B), N>0 | d(X,N-1).
By applying Step 1 to the above rule we obtain:
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d’(A,B,N) <=> X = ψ(A,B), N>0
| (A1,B1) = φ(X), d’(A1,B1,N-1).

We refer the reader to the work of Tacchella et al. [13] for the formal
definition and correctness proof of unfolding of CHR rules.

Step 2: Eliminate flattening after unflattening.
Apply the following equation from left to right:

∀t : φ ◦ ψ(t) = t

which is valid since φ is the (left) inverse of ψ.

Example 8. Applying Step 2 to the last rule in Example 7 yields:
d’(A,B,N) <=> X = ψ(A,B), N>0 | d’(A,B,N-1).

Step 3: Move matchings from unflattened to flattened values.
Apply the equivalence from left to right:

∀t1, t2 : ψ(t1) = ψ(t2) ⇔ t1 = t2

which is valid since ψ is injective.

Example 9. Consider rule r1 in Table 1. Since the head constraints share
the variable X, before transformation the rule should be normalized. Flat-
tening the normalized rule yields:

c’(A1,B1,C1) \ c’(A2,B2,C2) <=>
TX = ψ(A1,B1,C1), TY = ψ(A2,B2,C2), TX = TY | true.

By applying Step 3, we obtain:
c’(A,B,C) \ c’(A,B,C) <=> TX = ψ(A,B,C) | true.

Step 4: Clean up.
Drop unused unflattening guards and refold the unfolded constraint calls
that could not be simplified.

Example 10. Applying Step 4 to the last rule in Example 9 yields:
c’(A,B,C) \ c’(A,B,C) <=> true.

In general, these rewriting steps are not sufficient to enforce our ideal scenario.
However, as the results in Section 6 show, they have good practical effects.

5.2 Flattening Indirection

Another source of overhead stems from the processing indirection imposed by
flattening, with which all constraints are flattened before the rules are executed.
Usually this overhead is marginal. The main exception are, common in CHR, un-
conditional simplification rules—single-headed simplification rules in which the
form of a rule’s head uniquely determines whether or not that rule is applicable.
As a typical example, consider the following fragment of the zebra program in
our benchmark suite (Section 6):
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domain(X,[]) <=> fail.
domain(X,[V]) <=> X=V.
domain(X,L1), domain(X,L2) <=> intersect(L1,L2,L), domain(X,L).

which after constraint symbol specialization takes the form:

domain(X,[]) <=> domain[](X).
domain(X,[H|T]) <=> domain[|](X,H,T).

domain[]( ) <=> fail.
...

The domain[]/1 constraint denotes a base case, which obviously always2 sim-
plifies to fail. Because of the flattening indirection, the otherwise short-lived
domain(X,[]) constraints live longer—the liftetime of two calls instead of one.
To avoid this indirection overhead we inline the rule body:

domain(X,[]) <=> fail.
domain(X,[H|T]) <=> domain[|](X,H,T).

The same technique applies to generic flattening.

6 Evaluation

We have implemented our optimizations in two CHR systems on SWI-Prolog:
CHRd [9] and K.U.Leuven CHR [14]. All run times, given in seconds for the
original programs and relative to the original for the transformed versions, were
measured on an Intel Pentium 4, 2.00 GHz, with 512 MB RAM. Our benchmark
suite3 includes several common CHR programs [10]. For each optimization we
consider only the relevant benchmarks, for which the transformed programs differ
from the original ones.

6.1 Generic Flattening

Table 4 shows the results of generic flattening. For each CHR system we list run
times measured without flattening or post-processing (−flat,−pp), with flat-
tening but without post-processing (+flat,−pp), and with both flattening and
post-processing (+flat,+pp).

In K.U.Leuven CHR generic flattening has little (but mainly positive) effect
on all benchmarks, except for mergesort, with a speed-up close to 50%, and
gamma prime, with almost 40% of slow-down. In CHRd we observe an improve-
ment in gamma prime, listdom and ram, and a minimal overhead in mergesort
and zebra. For these two small programs, the run-time cost of unflattening ex-
ceeds the savings provided by the transformation. All benchmarks demonstrate
positive effects of post-processing, and we blame insufficient post-processing for
the slow-down of gamma prime in K.U.Leuven CHR: With stronger reasoning on
the constraint argument types we (manually) achieved a relative timing of 99%.
Hence, further improvement of the automated post-processing seems worthwhile.
2 Note that the flattening transformation exposes the unconditionality.
3 Available at http://www.cs.kuleuven.ac.be/∼toms/CHR/Indexing/
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K.U.Leuven CHR CHRd
function symbols function symbols
−flat +flat +flat −flat +flat +flat

benchmark −pp −pp +pp −pp −pp +pp
gamma prime 3.1 219% 137% 5.4 111% 93%

listdom 5.0 114% 108% 6.9 86% 84%
mergesort 1.9 592% 56% 6.6 113% 103%

ram op 8.8 130% 96% 8.3 94% 89%
ram prog 2.9 102% 96% 4.4 91% 86%

zebra 5.1 124% 93% 6.4 113% 102%
Table 4. Run times (in sec.) for generic flattening benchmarks

6.2 Constraint symbol specialization

Table 5 shows the results of constraint symbol specialization. The columns in
the table have the same meaning as in Table 4. Table 5 includes two new bench-
marks, zebra2 and manners, not reported in Table 4. The benchmark zebra2
shows the effect of repeated (until a fixed point is reached) flattening on the
zebra program: the unoptimized entry in zebra2 corresponds to the entry in
zebra processed with the (+flat,+pp) option. The manners benchmark involves
constraints with constant but no partial-structure arguments, and hence it is not
improved by generic flattening. We use this benchmark to demonstrate that con-
straint symbol specialization may improve the performance of programs without
partial structures.

Even before post-processing, constraint symbol specialization has good ef-
fects in both systems. In K.U.Leuven CHR only gamma prime and listdom suf-
fer performance slow-downs, whereas other benchmarks show run-time improve-
ment. This success is caused by the system’s guard optimization [15], which
detects dead code for the specialized constraint symbols. Post-processing con-
siderably improves the performance of listdom and eliminates the overhead of
gamma prime. It has no significant effect on other benchmarks. In CHRd we
observe initial performance slow-down in listdom and manners, the former of
which is eliminated by the post-processing step. For manners, the cost of pro-
cessing extra constraints outweighs the benefits of specialization apparent in
K.U.Leuven CHR.

In both systems, the repeated flattening of zebra2 is unsuccessful—its in-
cremental benefit is offset by the incremental overhead.

6.3 Improved Time Complexity

Although flattening improves the performance of most benchmarks in our suite,
it does not decrease the complexity of the evaluation. We attribute this to the fact
that the programmers—aware of CHR’s poor handling of partial structures—
tend to write already flattened programs, especially for problems which involve
referencing partial structure arguments (as in rule (2.1)). Such practice, however,
obscures formulation of problems where partial structures appear naturally and
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K.U.Leuven CHR CHRd
function symbols function symbols
−flat +flat +flat −flat +flat +flat

benchmark −pp −pp +pp −pp −pp +pp
gamma prime 1.5 114% 94% 4.6 93% 83%

listdom 5.2 174% 99% 7.2 129% 90%
manners 2.2 70% 65% 4.9 131% 124%

mergesort 7.8 30% 30% 6.7 82% 81%
ram op 8.5 81% 82% 7.5 87% 88%

ram prog 2.9 93% 93% 4.5 82% 80%
zebra 5.1 96% 91% 6.3 97% 97%
zebra2 4.8 103% 100% 6.9 96% 97%

Table 5. Run times (in sec.) for constraint symbol specialization benchmarks

are extensively used, e.g., database reasoning. For problems of this kind, flatten-
ing does cause complexity improvement, thus extending applicability of CHR to
their natural specifications.

For instance, consider a database of employees represented using the con-
straint employee(Name,Date), in which the date of birth Date is a compound
term date(Day,Month,Year). The following rule finds out which employees’
birthdays to celebrate on the current date:

check_birthdays(date(Day, Month, CurrentYear)),
employee(Name, date(Day, Month, YearOfBirth)) ==>

Age is CurrentYear - YearOfBirth,
celebrate(Name, Age)

The following table lists the run times4, in milliseconds, before and after flatten-
ing the compound date, for three database sizes. The original program exhibits a
linear behavior, whereas the run time for the flattened version remains constant.

program number of employees
version 1,000 10,000 50,000

−flat −pp 2.000 22.000 108.000
+flat +pp 0.029 0.028 0.029

The impact of symbol specialization on the birthday program is virtually the
same as for generic flattening w.r.t. both the complexity and absolute run times.

6.4 Discussion

The results in Tables 4 and 5 suggest that our flattening transformations may
improve performance of CHR, however, additional optimizations—such as post-
processing—are needed to fully exploit their potential.

Overall, in both systems constraint symbol specialization yields more run-
time savings than generic flattening. This, in part, comes from the nature of
4 in K.U.Leuven CHR; CHRd can evaluate only a transformed version of the rule.
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our benchmarks, which do not exhibit the potential of symbol specialization for
increasing the program size. The following table shows the number of CHR rules
in the original benchmark programs and their two flattened versions:

benchmarks original generic symbol specialization
gamma prime 6 6 8

listdom 14 13 39 (13)
manners 12 n/a 14

mergesort 2 2 3
ram 13 13 13

zebra 5 4 4

Note that three transformed programs actually contain fewer rules than the cor-
responding original programs beacuse of inlining of the exposed unconditional
simplification rules (see Section 5.2). We see a modest increase in two cases and a
considerable increase for the symbol-specialized listdom benchmark: from 13 to
39 rules. In case of listdom, the blow-up is fully compensated by K.U.Leuven’s
guard simplification [15]: of the 39 rules, 26 rules have inconsistent guards. In
general, however, the increase in program size may be too large to be contained.
Such pathological cases must be detected and transformed using generic flatten-
ing rather than constraint symbol specialization.

7 Related Work

Most relational databases we are aware of do not support compound values.
Hence, to map compound data onto (flat) rows requires application of techniques
similar to the flattening transformations presented in this section.

Program Specialization The need for symbol specialization arises naturally in
the context of partial evaluation [16]. Similar, but less ambitious in scope, is the
work on constructor specialization for the Glasgow Haskell Compiler [17]. These
two approaches, for single-headed languages, aim in the first place at reducing
intermediate data structures and matching costs, and specializing the body. In
contrast, the foremost goal of our approach, for multi-headed CHR rules, is to
provide better constraint store indexes. Of course, our techniques benefit from
the other effects as well.

Symbol Indexing Structures In XSB [18] specialized trie-like structures store pre-
viously computed answer substitutions. These substitutions are indexed on their
call patterns, and interpreted as partial structure indexes for subsumption-based
tabling. However, this approach requires excessive data structure implementa-
tion, does not enable further rule specialization, and does not easily compose
with other indexes.

The join-calculus [19] features multi-headed rules that are similar in nature
to CHR’s rules. However, the expressivity of these rules is severly limited: ar-
guments cannot be matched and rules cannot be otherwise guarded. The main
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motivation for this limited expressivity is enabled compilation to a highly effi-
cient finite-state automaton [20]. In recent work [21], a flattening specialization
similar to ours has been proposed to somewhat lift the severe expressivity restric-
tions. In this context, the flattening does not improve performance, but rather
makes it possible for the rules to be compiled at all.

CHR Program Transformation We are not the first to consider program trans-
formation in the context of CHR. Frühwirth [22] proposed the specialization of
rules (rather than constraints) with respect to a given goal (rather than head
matchings). Tacchella et al. [13] introduced a general technique for unfolding
CHR rules in the body of other rules. However, to the best of our knowledge, we
are the first to utilize program transformation for performance improvement: we
have a fully automated implementation and empirical evidence of its effective-
ness. Neither of the above works makes any specific claims about performance
improvement, nor demonstrates practical usefulness of the reported technique.

8 Conclusion & Future Work

We presented two transformational techniques improving the performance of
CHR indexing: generic and specialized function symbol flattening, and a comple-
mentary post-processing procedure that compensates their potential overhead.

All techniques have been implemented for the CHRd and K.U.Leuven CHR
systems on SWI-Prolog. Evaluation on a set of benchmarks shows that the index-
ing optimizations enable performance improvement, and that the post-processing
is a critical step towards the full realization of their potential. Our approach en-
ables CHR programmers to exploit structured constraint arguments that most
naturally fit their applications.

We restrict our attention to function-symbol arguments that are always in-
stantiated. Adding support for uninstantiated arguments is a natural next step
in our work. We anticipate this step to further increase the flattening overhead,
as well as its complexity when abiding by CHR’s refined operational semantics.

The presented framework for CHR program transformation (based on flat-
tening, unflattening and post-processing) is proving useful for expressing other
indexing approaches. Our current work concerns a technique for ground terms,
called attributed data [10], which has better constant factors than hash-tables.
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Abstract. Term rewriting systems are a formalism in widespread use,
often implemented by means of term graph rewriting. In this work we
present preliminary results towards an elegant embedding of term graph
rewriting in Constraint Handling Rules with rule priorities (CHRrp). As
term graph rewriting is well-known to be incomplete with respect to term
rewriting, we aim for sound jungle evaluation in CHRrp. Having such an
embedding available allows to benefit from CHR’s online property and
parallelization potential.

1 Introduction

Term rewriting is an important branch of computer science with applications in
algebra, recursion theory, software engineering, and programming languages [1].
There is a wealth of known results available concerning term rewriting systems
(TRSs).

Constraint handling rules (CHR) is a concurrent committed-choice constraint
logic programming language consisting of guarded rules, which transform mul-
tisets of atomic formulas (constraints) into simpler ones until exhaustion [2].
Initially created for the development of constraint solvers [3] it has meanwhile
grown to a general-purpose programming language [4, 5].

As CHR shares the basic property with TRSs of replacing left-hand sides by
right-hand sides, several properties of TRSs have also been investigated in the
context of CHR. The most important of these being confluence and termination.
However, up to now there is no existing work on embedding a TRS in CHR.
Despite their similarities there is a major difference in the way a TRS and a
CHR program work, which makes this embedding non-trivial: a TRS can replace
subterms of a term independent of how deeply nested the subterm is, whereas
CHR replaces multisets of top-level constraints.

Many practical implementations of term rewriting actually perform term
graph rewriting [6] instead, which is a sound, but incomplete, alternative to
pure term rewriting. The lack of completeness is made up for with the efficiency
of the rewriting process. As term graph rewriting can perform multiple term
rewrite steps in one step there are even examples of exponential speedups, like
the computation of Fibonacci numbers [7]. The reason for these speedups is that
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term graph rewriting makes use of structure sharing, such that equal subterms
only exist once in a term graph and the need for equality checking, therefore, is
avoided. Considering, that term graph rewriting is based on graph transforma-
tions for which an embedding in CHR exists [8], this work focuses directly on
embedding term graph rewriting into CHR as a means to achieve sound term
rewriting.

The theory for term graph rewriting is based on jungles which are introduced
in Sect. 2. We also introduce CHRrp [9] there, which is a variant of CHR assign-
ing priorities to rules. It is used in this work instead of plain CHR, as it greatly
simplifies the process of updating structure sharing in term graphs without be-
ing as restrictive as the refined semantics for CHR. Section 2 further details
the correspondence between term rewriting and term graph rewriting, before
Sect. 3 presents our approach to embed term graphs with structure sharing in
CHRrp. It is shown there, that our proposed CHRrp encoding of term graphs
ensures a terminating and confluent computation of term graphs with a maxi-
mal amount of shared structures. We plan to use these normal form term graphs
as a basis for performing term graph rewriting in CHRrp, which is outlined in
Sect. 4. In that section future work regarding jungle evaluation and properties of
the CHRrp implementation of term graph rewriting are outlined as well, before
Sect. 5 concludes this work.

2 Preliminaries

The following preliminaries are taken from [7]:

Strings A∗ denotes the set of all strings over some set A, including the empty
string ε. f∗ : A∗ → B∗ denotes the homomorphic extension of a function
f : A→ B.

Abstract Reductions Let → be a binary relation on some set A.
We write →+ and →∗ for the transitive and transitive-reflexive closure of
→, respectively. The n-fold composition of → (n ≥ 0) is denoted by →n; in
particular, →0 is the equality on A.
Some a ∈ A is a normal form (w.r.t. →) if there is no b ∈ A with a→ b. A
normal form a is called a normal form of b ∈ A if b→∗ a.
We say → is terminating if there is no infinite chain a0 → a1 → a2 → . . .

The relation → is confluent if for all a, b1, b2 ∈ A, b1
∗← a →∗ b2 implies

b1 →∗ c∗← b2 for some c ∈ A.
Terms and Substitution T (X) denotes the set of all terms over the set X of

variables. Terms can contain function symbols from the set Σ. Each function
symbol f is associated with an arity arity(f) ≥ 0. A function symbol c with
arity(c) = 0 is called a constant.
A substitution σ : T (X) → T (Y ), rewrite rules, and term rewriting systems
are defined as usual.
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2.1 Constraint Handling Rules with Rule Priorities

This section presents the syntax and operational semantics of constraint han-
dling rules [2, 3]. Constraints are first-order predicates which we separate into
built-in constraints and user-defined constraints. Built-in constraints are pro-
vided by the constraint solver while user-defined constraints are defined by a
CHR program. A CHR program consists of CHR rules, for which three variants
exist: simplification, propagation, and simpagation rules. As simpagation rules
are the most general and can directly simulate the other two variants we consider
only simpagation rules in this work.

There are different operational semantics available for CHR [4]. We chose to
use CHR with rule priorities (CHRrp) for this work, as it is most suitable to the
underlying idea of establishing maximal term structure sharing before applying
term graph rules. The remaining operational semantics are not as suitable for
our work:

refined semantics The operational semantics found in most common CHR im-
plementations is the so-called refined semantics. It is geared towards imple-
mentation issues and its major drawback in our case is that the application
order of rules is fixed by their order of occurrence in the program text. In or-
der to be able to generally embed term graph rewriting, however, we require
a non-deterministic rule selection as it is available for term graph rewriting.

abstract semantics The abstract (or standard) operational semantics is the
default operational semantics for CHR, which includes non-deterministic rule
selection. However, as we want to ensure, that term graphs use maximal
structure sharing before term graph rules are applied to them, additional
effort would be required: it has to be guaranteed, that despite the non-
deterministic rule selection term graph rules can only be applied after the
corresponding term graphs provide for maximal structure sharing.

CHRrp extends the abstract semantics with priorities for rules, such that
rules with the same priority are still selected non-deterministically, but only
when no other rules of higher priority can be applied. This allows us to split
our rules for the term graph embedding into two classes: a high-priority class of
rules responsible for ensuring maximal structure sharing and a low-priority class
of rules corresponding to the embedded term graph rewriting rules.

In CHRrp simpagation rules are of the form

priority :: Rulename @ H1 \H2 ⇔ g | C

where priority is the priority of the rule, Rulename is an optional unique iden-
tifier of a rule, the head H1 \ H2 is a non-empty conjunction of user-defined
constraints, the guard g is a conjunction of built-in constraints and the body C is
a conjunction of built-in and user-defined constraints. Note that with respect to
H1,H2, and C we mix the use of the terms conjunction, sequence, and multiset.

The operational semantics is based on an underlying constraint theory D for
the built-in constraints and a state, which is a pair 〈G, S,B, T 〉 where G is a goal,
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i.e. a multiset of user-defined and built-in constraints, S is the CHR constraint
store, B is the built-in store, and T is the propagation history [4]. Table 1 shows
the possible state transitions for CHRrp under the operational semantics of CHR
with rule priorities, denoted as ωp.

1. Solve 〈{c} ]G, S, B, T 〉n
ωp

�P 〈G, S, c ∧B, T 〉n where c is a built-in constraint.

2. Introduce 〈{c} ] G, S, B, T 〉n
ωp

�P 〈G, {c#n} ∪ S, B, T 〉n+1 where c is a CHR
constraint.

3. Apply 〈∅, H1 ∪H2 ∪S, B, T 〉n
ωp

�P 〈Θ(C), H1 ∪S, B, T ∪{t}〉n where P contains
a rule of priority p of the form

p :: r @ H ′
1 \H ′

2 ⇔ g | C

and a matching substitution Θ such that chr(H1) = Θ(H ′
1), chr(H2) =

Θ(H ′
2),D |= B → ∃B(Θ ∧ g), Θ(p) is a ground arithmetic expression and

t = 〈r, id(H1) + + id(H2)〉 6∈ T . Furthermore, no rule of priority p′ and sub-
stitution Θ′ exists with Θ′(p′) < Θ(p) for which the above conditions hold.

Table 1. Transitions of ωp

2.2 Jungle Evaluation and Term Rewriting

A survey on term graph rewriting can be found in [6], with additional details,
especially considering jungle evaluation, in [7]. The following definitions and facts
are taken from those two works.

It is well-known, how a term can be represented as a tree. The sharing of
equal subterms, however, is not allowed in the usual tree structure. To this end,
jungles are used, which are a specialization of hypergraphs:

Definition 1 (Hypergraph). A hypergraph G = (VG, EG, attG, labG) con-
sists of a finite set VG of nodes, a finite set EG of hyperedges (or edges for short),
and a mapping labG : EG → Σ, labeling hyperedges with function symbols and
a mapping attG : EG → V +

G such that | attG(e)| = 1 + arity(labG(e)).
Given e ∈ EG with attG(e) = v0v1 . . . vn, res(e) = v0 is called the re-

sult node and arg(e) = v1, . . . , vn are called the argument nodes. We define
indegreeG(v) = |{e | v ∈ arg(e)}| and outdegreeG(v) = |{e | v = res(e)}|

Let v1, v2 be two nodes in a hypergraph G. Then v1 >G v2 denotes that there
is a non-empty path from v1 to v2 in G; v1 ≥G v2 means v1 >G v2 or v1 = v2.
G is acyclic if there is no node v ∈ VG such that v >G v.

This allows us to define a jungle:
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Definition 2 (Jungle). A hypergraph G = (VG, EG, attG, labG) is a jungle if

1. outdegreeG(v) ≤ 1 ∀v ∈ VG,
2. G is acyclic.

When we consider ground terms represented as trees, then all leafs are con-
stants. For jungles these constants become hyperedges with arity 1, i.e. hyper-
edges which are attached to a result node, but have no argument nodes. Con-
versely, if a node in a jungle is not a result node of an edge we treat it like a
variable. It is easy to see that non-linear terms of a term rewriting system, i.e.
terms in which a variable occurs multiple times, can be represented by jungles
with one shared variable node per variable of the TRS.

Notation VARG = {v ∈ VG | outdegreeG(v) = 0} denotes the set of variables
associated with a jungle G.

Example 1. Figure 1 shows an exemplary jungle used in a rule for computing
Fibonacci numbers. Nodes are shown as black dots and hyperedges as rectangles.
For an edge, the associated operation symbol is written inside the rectangle and
the result node is given by a line without an arrow, whereas the argument nodes
are given by arrows. In general, we assume that the order of arguments coincides
with the left-to-right order of arrows in a figure.

In Fig. 1 the node r is a root node of the jungle and the node n is a variable
node.

Also see the jungles in Fig. 3 for how jungles allow the sharing of common
substructures.

fib

s

s

r

u

v

n

Fig. 1. Exemplary jungle G

To associate jungles with terms we define a mapping assigning terms to each
node of a jungle:
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Definition 3 (Term Representation Function). Let G be a jungle. Then

termG(v) =

v if v ∈ VARG,
labG(e)(termG(v1), . . . , termG(vn)) for the unique edge e such

that attG(e) = vv1 . . . vn

defines a function termG : VG → T (VARG).
The set termG(VG) of all terms represented by a jungle G is denoted by

TERMG.

Example 2. The terms represented by Fig. 1 are:
node termG

r fib(s(s(n)))
u s(s(n))
v s(n)
n n
All terms represented by G, hence, are:

TERMG = {fib(s(s(n))), s(s(n)), s(n), n}
For the remainder of this work we require various morphisms between jungles,

which have to satisfy the following definition:

Definition 4 (Jungle Morphism). Let G, H be jungles. A jungle morphism
f : G → H is a pair of mappings f = (fV : VG → VH , fE : EG → EH)
which preserves sources, targets, and labels, i.e. attH ◦fE = f∗V ◦ attG and
labH ◦fV = labG.

A jungle morphism f = (fV , fE) is injective (surjective) if and only if fV

and fE are both injective (surjective).

Notation ROOTG = {v ∈ VG | indegreeG(v) = 0} denotes the set of roots of
a jungle G.

Analogous to [6] we equate a node v with the set of paths from a root node to
v in order to get standard term graphs and avoid the usual isomorphism details.
As we allow for multiple root nodes only the path from a specific root node
to v is unique, and thus, we include paths from all root nodes to get a unique
standard term graph.

As jungles can contain variables, which are represented as nodes that are not
result nodes of an edge, every jungle morphism assigning such a node to a node
in the target jungle induces a substitution:

Definition 5 (Induced Substitution). Let f : G→ H be a jungle morphism.
Then the induced substitution σ : T (VARG) → T (VARH) is defined for all
x ∈ VARG by

σ(x) = termH(fV (x))

Example 3. Figure 2 shows a jungle morphism g between two jungles G and H.
The morphism is depicted by dotted arrows. The jungle H represents the ground
term fib(s(s(s(0)))) which is used to compute the third Fibonacci number.
The jungle morphism g, which maps n to g(n) = n′, induces a substitution σ
with σ(n) = termH(n′) = s(0).
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Fig. 2. Jungle morphism g : G → H

3 Structure sharing in CHRrp

This section explains how to encode jungles in CHRrp and introduces a set of
rules which implement structure sharing on these jungles. It is shown, that the
rules ensure that the maximal amount of structures is shared.

3.1 Jungle Encoding in CHRrp

Definition 6 (Jungle Encoding). Let G = (VG, EG, attG, labG) be a jungle.
Then G is encoded in CHRrp as follows:

1. for all v ∈ VG introduce a unique variable Xv.
2. For each edge e ∈ EG with res(e) = v and arg(e) = v1, . . . , vn add the

constraint Eq(Xv, labG(e)(Xv1 , . . . , Xvn))

Let encode(G) denote the set of Eq constraints for the CHRrp encoding of G
and let XVG

denote the set of variables introduced for the encoding of G1.
Let Xv be a variable used in encode(G). Then

term(Xv) =

v if 6 ∃ Eq(Xv, . . .) ∈ encode(G)
op(term(Xv1), . . . , term(Xvk

))) if ∃ Eq(Xv, op(Xv1 , . . . , Xvk
))

∈ encode(G)

defines a function term : XVG
→ T (XVG

).
1 Note that for each variable Xv ∈ XVG there is at most one Eq(Xv, ) ∈ encode(G)

due to outdegree(v) ≤ 1 (Def. 2)
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Example 4. Consider again the jungle H from Fig. 2. It’s encoding in CHRrp is:
Eq(Xr′ , fib(Xx)), Eq(Xx, s(Xy)), Eq(Xy, s(Xn′)), Eq(Xn′ , s(Xz)), Eq(Xz, 0).

The following lemma ensures, that the set of terms represented by encode(G)
via term is the same as the set of terms represented by G via termG:

Lemma 1 (Encoding preserves terms). For an encoding encode(G) of a
jungle G = (VG, EG, attG, labG) it holds that:

∀X ∈ XVG
: term(X) ∈ TERMG (1)

∀t ∈ TERMG ∃X ∈ XVG
: t = term(X) (2)

Proof. Proof for (1) by structural induction:
if 6 ∃ Eq(Xv, . . .) ∈ encode(G) this implies by Definition 6(1) that Xv corresponds
to a node v ∈ VARG, and thus, term(Xv) = v = termG(v) ∈ TERMG.
if ∃ Eq(Xv, op(Xv1 , . . . , Xvk

)) ∈ encode(G) this implies the existence of an edge
e ∈ EG with resG(e) = v, labG(e) = op and argG(e) = v1, . . . , vk. The term
op(term(Xv1), . . . , term(Xvk

)), thus, equals the term (Def. 3)
labG(e)(termG(v1), . . . , termG(vk)) and is, therefore, contained in TERMG.

Each term in TERMG corresponds to a node v ∈ VG to which a variable
Xv ∈ XVG

is associated. Hence, the proof of (2) is another structural induction
analogous to the above. ut

3.2 Structure sharing

The idea of structure sharing is that identical subterms can share the same
nodes and edges in a jungle. This cuts down on the space usage of an encoded
term, as well as allowing to apply a term rewriting rule to all occurrences of
the shared subterm in one step. Based on a lemma from [7] this leads us to the
basic idea of how to embed term graph rewriting in CHRrp: Every jungle G is
first transformed into a jungle G representing the same terms, but for which
its subterm structures are maximally shared. It is then known, that for each
application of a term graph rewriting rule to the jungle G the rule also applies
to the transformed jungle G.

Using this property of structure sharing we can provide for a CHRrp embed-
ding which avoids the previously mentioned problem of having to detect subterm
equality. Whenever two subterms are equal this is trivially seen from the cor-
responding jungle nodes and edges being shared. The remaining part of this
section, therefore, details how structure sharing can be enforced in CHRrp, with
the following definitions being adapted from [6]:

Definition 7 (Collapsing). Given two jungles G and H, G collapses to H if
there is a jungle morphism f : G → H such that fV (ROOTG) = ROOTH and
termG(fV (ROOTG)) = termH(ROOTH)). This is denoted by G � H, or if the
morphism is non-injective, by G � H. The latter kind of collapsing is said to be
proper.
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Given the notion of collapsing jungles we can further identify the jungles
which are fully collapsed, i.e. to which no more proper collapsing steps are ap-
plicable:

Definition 8 (Tree, Fully Collapsed). A jungle G is a tree if there is no H
with G ≺ H, while G is fully collapsed if there is no H with G � H.

The following alternative definition of a fully collapsed jungle is given in [7]
and is independent from the notion of collapsing via a jungle morphism:

Definition 9 (Fully Collapsed, Alternative Definition). A jungle G is
called fully collapsed if termG is injective.

Example 5. Figure 3 shows a jungle which occurs during the computation of
fib(3) representing the recursive computation fib(3) = (fib(1)+fib(0))+fib(1).
The duplicate occurrence of fib(1) can then be optimized by structure sharing.
The collapse step shown in Fig. 3 eliminates one hyperedge representing the
term fib(1) by reusing another hyperedge which represents the same term.
The corresponding jungle morphism is the identity morphism, except for the
mapping depicted by the dashed arrows. Overall, structure sharing leads to a
linear computation of Fibonacci numbers, as opposed to the naive exponential
computation.

s

fib

+

+

fib

s

fib

+

+

fib

fib

00

G H

.

Fig. 3. Collapsing of a jungle

The process of collapsing a jungle (called Folding in [7]) is instrumented via
a set of folding rules according to the following definition:
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Definition 10 (Folding Rule). Let op ∈ Σ be a function symbol such that
arity(op) = k ≥ 0.

The folding rule for op is given by a pair (L←↩ K
b→ R) of jungle morphisms

as depicted in Fig. 4 (”x = y” indicates that b identifies the roots of K; note
that L and R have no variables if op is a constant, ←↩ denotes an inclusion
morphism). F denotes the set of folding rules for Σ.

x y x y

L K

op op op

...

... ... ...
op

x=y

R

...

b

Fig. 4. Folding rule for op ∈ Σ

We now port this instrumentation to jungles encoded in CHR by encode.
The generated folding rules are assigned a static priority of 1. This enforces our
basic idea of fully collapsing a jungle, before applying rules of the actual TRS
to it.

Definition 11 (CHR folding rule). Let op ∈ Σ be a function symbol such
that arity(op) = k ≥ 0. Then we define the following CHR folding rule:

1 :: fold op @ Eq(X, op(X1, . . . , Xk)) \ Eq(Y, op(X1, . . . , Xk))⇔ X = Y.

PF denotes the CHR program consisting of all CHR folding rules for Σ.
Note that due to CHR’s built-in support for syntactic equivalence we can also

use the following single fold rule instead:

1 :: fold @ Eq(X, Term) \ Eq(Y, Term)⇔ X = Y

A single folding step is defined in [7] as follows. In CHR such a folding step
coincides with the application of a folding rule, as the following theorem shows.

Definition 12 (Folding Step). Let G be a jungle. A folding step G⇒
F

Hfrom

G to a hypergraph H is constructed as follows:

– Find a morphism g : L→ G for some folding rule (L←↩ K
b→ R) such that

gE is injective.
– Obtain D from G by removing gE(e), where e is the unique edge in L \K.
– Obtain H from D by identifying gV (x) and gV (y), where x and y are the

roots in L.
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Fact 1 (Folding Steps Preserve Jungles [7]) Given a jungle G and a fold-
ing step G⇒

F
H, H is a jungle, too.

Theorem 1 (CHR folding is sound and complete). For a op ∈ Σ and a
jungle G the following steps are equivalent:

1. G⇒
F

H

2. encode(G)
ωp

�PF encode(H)

Proof. (1)⇒ (2):
Let g : L → G be the required morphism for the folding rule corresponding
to the function symbol op ∈ Σ with gE being injective. This morphism ex-
tends to a matching for the head of the corresponding CHR folding rule for
op. The two edges in L directly correspond to the two Eq constraints in the
head of the CHR rule. As gE is injective there exist two edges e1 and e2 in
gE(EL) with labG(e1) = labG(e2) = op, resG(e1) = v, resG(e2) = w, and
attG(e1) = attG(e2) = v1, . . . , vk. By Definition 6 there also exist corresponding
constraints Eq(Xv, op(Xv1 , . . . , Xvk

)) and Eq(Xw, op(Xv1 , . . . , Xvk
)). Therefore,

these two constraints match the two Eq constraints in the head of the correspond-
ing CHR folding rule and the rule can be applied.

D is obtained from G by removing gE(e) with e being the unique edge in L\K.
Let w.l.o.g. gE(e) = e2 and Xw = Y be the substitution used for the matching
of the CHR folding rule’s head. Then the application of the simpagation rule
removes the Eq constraint corresponding to e2, as demanded for the generation
of D.

Finally, H is obtained by identifying gV (x) and gV (y) where x and y are
the roots in L. As defined by the edges e1 and e2 it follows that gV (x) = v and
gV (y) = w. By the implied matching the variables X and Y in the head of the
CHR folding rule are bound to the variables Xv and Xw. Therefore, the applica-
tion of the rule unifies Xv with Xw as required by Definition 12.
(2)⇒ (1):
This proof is mostly analogous to the previous argumentation: The CHR match-
ing induces the required morphism g where the injectivity is guaranteed by the
multiset semantics of CHR. Additionally, we have to show that applying a CHR
folding rule actually results in a state which is an encoding of a jungle. This can,
however, be seen from what such a rule does. The encoded graph has to contain
two edges with the same label and argument nodes and different result nodes. As
one of these edges is removed and it’s result node identified with the result node
of the other edge the result is again a jungle with the resulting state being its
encoding modulo variable renaming. ut

Example 6. Consider again the folding step depicted in Fig. 3 and let
encode(G) = Eq(Xr,+(Xv1 , Xv2)),

Eq(Xv1 ,+(Xv3 , Xv4)), Eq(Xv2 , fib(Xv5)),
Eq(Xv3 , fib(Xv5)), Eq(Xv4 , fib(Xv6)),
Eq(Xv5 , s(Xv6)), Eq(Xv6 , 0).
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The CHR folding rule is defined as
1 :: fold @ Eq(X, Term) \ Eq(Y, Term)⇔ X = Y
and can be applied to the Eq constraints for Xv2 and Xv3 leading to the following
CHR state:
encode(H) = Eq(Xr,+(Xv1 , Xv2)),

Eq(Xv1 ,+(Xv2 , Xv4)), Eq(Xv2 , fib(Xv5)),
Eq(Xv4 , fib(Xv6)), Eq(Xv5 , s(Xv6)), Eq(Xv6 , 0).

Using Theorem 1 several properties of jungle folding can be transferred to
PF :

Fact 2 (Folding Steps Preserve Terms [7]) Let G ⇒
F

Hbe a folding step.

Then TERMG = TERMH .

Corollary 1 (CHR folding preserves terms). The application of a CHR

folding rule encode(G)
ωp

�PF encode(H) preserves the terms represented by the
encoded jungle G.

Proof. A direct consequence of Fact 2 and Theorem 1. ut

Fact 3 ([7]) ⇒
F

is terminating and confluent.

Corollary 2 (CHR folding is terminating and confluent).
ωp

�PF is ter-
minating and confluent.

Proof. This follows directly from the soundness and completeness result in The-
orem 1 and Fact 3. ut

Following the idea of fully collapsing jungles by the application of folding
rules, we transfer the following fact to CHR:

Fact 4 ([7]) A jungle G is fully collapsed if and only if there is no folding step
G⇒

F
H.

Corollary 3 (fully collapsed with CHR folding). Let G be a jungle with
encoding encode(G). G is fully collapsed if and only if there is no rule in PF
applicable to encode(G).

Proof. This is a direct consequence of Thm. 1 and Fact 4.

Corollary 4 (CHR folding fully collapses). Let G be a jungle with encod-

ing encode(G). Then there exists a terminating computation encode(G)
ωp

�
∗

PF

encode(H), such that the jungle H is fully collapsed.

Proof. This is a direct consequence of Corollary 2 and Corollary 3. ut
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4 Discussion and Future Work

Targeting term graph rewriting instead of term rewriting allows us to avoid
equivalence problems occurring with non-linear TRSs. A non-linear TRS allows
the usage of the same variable multiple times on the left-hand side in order to
express equal subterms. Considering a direct approach of flattening a term into
a linear number of CHR constraints and associating a variable to each subterm
has shown to be problematic in terms of these non-linear equalities.

One possible approach is to compute equality of subterms eagerly, similar
to the structure sharing presented in this work. However, when the structures
are not shared, but the constraint store only knows that two structures are
equal a rewrite rule could change only one of the structures. This leads to the
constraint store still modeling equivalence between the structures, and thus, a
recomputation is required to regain a consistent store.

Another possibility is to include checking equivalent subterms in guards for
non-linear rules resulting in the following kind of rules:

c(. . . , X, . . . , Y, . . .),H ⇔ test eq(X, Y ) ∧G | B

Technically however, these constraints are not built-in, as they have to inspect
the constraint store and CHR only allows built-in constraints in guards. Hence,
the computation of these equality checks can be triggered by additional propa-
gation rules according to the following scheme:

c(. . . , X, . . . , Y, . . .),H ⇒ test eq(X, Y,R)
c(. . . , X, . . . , Y, . . .), test eq(X, Y, 1),H ⇔ G | B

This approach, however, is targeted towards the refined semantics of CHR, as a
non-deterministic execution model resembles eager computation – as all propa-
gation rules may fire first leading to the computation of all possible equalities.

Using Adaptive CHR [10] for eagerly computing equivalent subterms is an-
other approach we plan to investigate in the future. With Adaptive CHR the
equivalence of subterms also contains a justification, such that in the case of the
replacement of a term in only one of the subterms the justification is violated
and equivalence is recomputed on demand. While term graph rewriting is in-
complete w.r.t. pure term rewriting an embedding in Adaptive CHR can achieve
completeness at the cost of the efficiency granted by term graph rewriting.

The collapsing process detailed above is a necessary prerequisite for embed-
ding term graph rewriting in CHR. The next step is the application of jungle
evaluation rules to a jungle in order to simulate one or more term rewriting
steps. This application is based on general graph transformations using the dou-
ble pushout approach [11]. An embedding for graph transformations in CHR has
already been investigated in [8].

However, the matching of left-hand sides of jungle evaluation rules to host
jungles has to be injective in CHR due to its multiset semantics. Consider the jun-
gle evaluation rule in Fig. 5, which represents the term rewriting rule +(0, 0)→ 0.
As we take care that host jungles are fully collapsed, the left-hand side of the rule
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has to use a non-injective matching for the two 0-edges to a shared occurrence
of such a 0-edge.

We plan to investigate the possibility of collapsing the jungles occurring in a
jungle evaluation rule in order to enforce an injective matching. Figure 6 shows
how the resulting jungle evaluation rule for the rule in Fig. 5 looks like. In CHR
this can easily be realized, by using each of the jungles as input to PF and use
the collapsed output jungle for the construction of the corresponding CHRrp

rule. However, additional investigations are required to ensure, that using these
collapsed rules is sound and complete with respect to the original rules being
applied to fully collapsed jungles.

0 0

+

yx

r r

0 0

x y

0 0

x y=r

b

Fig. 5. Jungle evaluation rule

+

r

0

x

r

0

x

0

x=r

b

Fig. 6. The collapsed jungle evaluation rule

With a guaranteed injective matching the results from [8] can then be re-
used in order to perform term graph rewriting in CHRrp. Slight adjustments
will be necessary to account for the possible non-injectivity of b and due to the
structure sharing idea no edges – except for the one representing the topmost
term which is replaced by the rule – must be removed. This could result in a
possibly large proportion of the constraint store being garbage left over from
rule applications, and thus, requires the addition of cleanup rules. This garbage
problem also conflicts with confluence, which is solved by considering pointed
reductions in [6]. We expect to get a cleaner result for confluence modulo garbage
by applying the results on observable confluence [12] in CHR.

5 Conclusion

In this paper we provide a basis for embedding term graph rewriting in Con-
straint handling rules with rule priorities (CHRrp). We presented how jungles
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are representing term graphs, and how these jungles can be encoded in CHRrp

such that the encoding is term preserving. We then introduced the concepts of
structure sharing and fully collapsing a jungle, for which we proposed means to
achieve them in a sound and complete, as well as terminating and confluent, way
in CHRrp. Furthermore, we outlined initial ideas for the remaining part of the
embedding of term graph rewriting in CHRrp.
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Abstract. Today, there exist two distinct direct approaches to prove
termination of CHR programs. Both are applicable on separate classes
of CHR programs. One approach, by T. Frühwirth, proves termination of
CHR programs without propagation rules. A second approach deals with
CHR programs with propagation rules. Due to its extended scope to such
programs, it fails to prove termination for a class of CHR programs with-
out propagation that are in the scope of Frühwirth’s approach. In this
paper, we introduce a termination condition for CHR which is strictly
more powerful than both of these and deals with a new class of programs.
Keywords: Constraint Handling Rules, Analysis, Termination.

1 Introduction

Constraint Handling Rules (CHR), created by Thom Frühwirth [1], is a declar-
ative programming languages. It is a concurrent, committed-choice, logic pro-
gramming language. CHR is constraint-based and has guarded rules that rewrite
multisets of atomic formulas. Its simple syntax and semantics make it well-suited
for implementing arbitrary solvers [1, 2]. It is the latter feature of the language
that caused its success and impact on the research community [3–5].

Many solvers were implemented in CHR, some examples can be found in [6,7].
However, to make the language appealing to the larger public, thorough analysis
techniques need to be developed to improve both comprehension of and compi-
lation schemes for the language. One of the most important properties of CHR
programs is termination. As the execution of multi-headed rules is fairly com-
plicated, mistakes are easily made, leading to unwanted infinite computations.
Also, other important properties of CHR programs, such as confluence [8, 9],
require that a constraint solver is terminating.

Termination analysis of CHR programs received increasing attention in recent
years. The main work in the field was presented some years ago in [10]. There,
Frühwirth demonstrates that termination proof methods from Logic Program-
ming (LP) and Term-Rewrite Systems (TRS) are applicable to the CHR context.
By measuring the multiset size of the constraint store and formulating conditions
on simplification rules, he was able to successfully prove an important class of
CHR programs terminating. Unfortunately, propagation rules cause explicit in-
creases. Since such rules only add constraints, a different approach was required
for programs with propagation rules.
? Supported by I.W.T. Flanders - Belgium
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Recently, a second direct approach was presented in [11]. Beside programs
with simplification, it proves termination of programs with propagation. This
was possible by considering a fire-once policy for propagation rules [5, 12]. A
new termination condition was formulated. The condition compares individual
constraints in rules, as such guaranteeing finite addition of constraints when ex-
ecuting a CHR program. However, in the case of a simplification only programs,
it is less powerful than the approach for CHR without propagation.

In this paper, we present a new approach to prove termination of general CHR
programs. Our approach generalizes both of the existing direct approaches and
is able to prove a new class of CHR programs terminating. We develop for this
purpose a new measure for CHR states, based on a new concept: the propagation
store. The latter represents constraints which can be added to a state by only
propagating on that state. By also introducing the notion of a token store, to
prevent trivial non-termination by propagation rules, we prove decreases on any
kind of rule by composing all three stores into a single lexicographical description
of a CHR state.

Overview. In a preliminary section, we recall CHR by its syntax and theoretical
operational semantics. There, we introduce the concept of a propagation store.
The next section discusses termination of CHR programs. First, we introduce
some general notions, adapted from termination analysis in other declarative
languages. Then, we recall the existing approaches, to be able to later compare
them with our approach. Finally, we present our approach, where we first discuss
a ranking condition on propagation and afterwards one on simplification. We
prove that our conditions are sufficient to prove termination. In Section 4, we
discuss our method. Finally, in Section 5, we draw conclusions.

2 CHR syntax and semantics

In this section, we recall syntax and semantics of CHR [1,2,5,12] and introduce
new concepts w.r.t. semantics, used for termination of CHR programs.

2.1 Syntax of CHR

CHR manipulates conjunctions of constraints.

Definition 1 (Constraint). A constraint is syntactically defined as a special
first-order predicate c(t1, . . . , tn) of arity n ≥ 0. We distinguish built-in con-
straints from CHR constraints. Built-in constraints are pre-defined and solved
by an underlying constraint solver CT . CHR constraints are user-defined and
solved by a CHR program P . �

A CHR program relates conjunctions of constraints by three different kinds
of rules. A simplification rule replaces constraints by simpler constraints, a simp-
agation rule replaces constraints conditional on the presence of other constraints
and a propagation rule adds constraints without removing any.
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Definition 2 (CHR program). Let Hk, Hr and C denote conjunctions of
CHR constraints and let G and B denote conjunctions of built-in constraints. A
CHR program P is a finite set of CHR rules of the following form:

Simplification rule: Propagation rule: Simpagation rule:
Hr ⇔ G | B,C. Hk ⇒ G | B,C. Hk \Hr ⇔ G | B,C.

CHR rules are named by adding ”rulename @” in front of the rule. �

The next example program in CHR computes prime numbers.

Example 1 (Primes). The primes example consists of two different kinds of rules:

test @ primes(M) \ primes(N) ⇔ N > M, N mod M is 0 | true.
generate @ primes(N) ⇒ N > 2 | Np is N − 1, primes(Np).

The first rule, a simpagation rule, tests whether a generated prime number has
a divisor. If this is the case, it is removed. The second rule, a propagation rule,
generates numbers for prime evaluation, top-down. �

In the following, we refer by simplification to both simplification and simpa-
gation, as these have a similar behavior w.r.t. termination.

2.2 The theoretical operational semantics of CHR

A CHR program defines a state transition system, where the transition relation
is given by the rules in the program and by the underlying CT for solving built-
ins. Declaratively, simplification defines a logical equivalence between removed
constraints Hr and added constraints B ∧C, provided that the kept constraints
Hk are present in the constraint store and that the guard G holds: G → (Hk →
Hr ↔ B ∧ C). For propagation rules, there are no removed constraints. Added
constraints are therefore a consequence of constraints present in the constraint
store: G → (H → B ∧ C).

Operationally, rules are applied exhaustively on the CHR constraints in
the constraint store, until an answer state is reached. Rule application is non-
deterministic, meaning that we can choose to fire any of the rules applicable to
a CHR state. This choice is however a committed choice, it cannot be undone.
When solving built-ins, this results either in a failed state or in an introduction
of bindings for variables, called a computed answer substitution (c.a.s.).

Constraint store. The constraint store is a collection of labeled CHR con-
straints and built-in constraints. Simplification replaces constraints with ”sim-
pler” ones. Propagation only adds constraints to complete state information.

Definition 3 (Constraint store). The constraint store is a set S of uniquely
labeled CHR constraints c]i and built-in constraints b. We define chr(c]i) = c to
obtain the constraint and id(c]i) = i to obtain the label. �
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Labeling constraints is required to prevent trivial non-termination. This kind
of non-termination is caused by propagation in the program. Propagation rules
do not remove constraints and therefore are infinitely applicable on the same
combination of constraints. In order to keep track of which combinations of
constraints that have caused which propagation rules to fire, a fire-once policy
is introduced on combinations of labeled constraints.

Token store. As propagation rules need an applicability condition to avoid
trivial non-termination [1, 12], we introduce the token store. This store keeps
information about how propagation rules can be applied on a given set of CHR
constraints. Once a propagation rule has been applied to these constraints, the
appropriate token is removed, so that the rule cannot be reapplied on the same
combination of constraints, as such implementing a fire-once policy.

Definition 4 (Token store). Let P be a CHR program and S a constraint
store. Then a token store T given S, is a set of tokens (Ri, id1, . . . , idn), where
(Ri @ h1, . . . , hn ⇒ G | B,C) is a propagation rule in P and where cj]idj are
constraints in S, such that ∃σθ : CT |= c1 = h1σ ∧ · · · ∧ cn = hnσ ∧Gσθ. Here,
σ is a match substitution for the heads and θ a c.a.s. for guard satisfaction. �

Our definition of the token store is a more strict version of the one in [12].
There, constraints have to be unifiable with heads. In such a setting, tokens
can appear in the token store, not corresponding to applicable rules. It covers
however for propagation rules that become applicable as a consequence of solving
built-ins. We disregard such programs. Therefore in our case, tokens are also only
added as a consequence of adding CHR constraints.

Definition 5 (Addition of tokens). Let P be a CHR program, S a constraint
store and C0 a labeled CHR constraint added to the constraint store S, then

TA
(C0,S) = {(R, i1, . . . , in) | (R @ h1, . . . , hn ⇒ G | B,C) ∈ P, where

{c1]i1, . . . , cn]in} ⊆ C0 ∪ S such that
C0 ∈ {c1]i1, . . . , cn]in} and
CT |= ∃σθ : (c1 = h1σ) ∧ · · · ∧ (cn = hnσ) ∧Gσθ

If multiple constraints C0 = {C1, . . . , Cn} = {c1]i1, . . . , cn]in} are added, then

TA
(C0,S) = TA

(C1,S) ∪ TA
(C2,C1∪S) ∪ · · · ∪ TA

(Cn,C1∪···∪Cn−1∪S)

Note that σ is a match substitution and θ a c.a.s. �

When removing constraints from the store, the invalid tokens are removed.

Definition 6 (Elimination of tokens). Let T be a token store and C0 =
{C1, . . . , Cn} labeled CHR constraints removed from the constraint store S, then

TE
(C0,T ) = {(R, i1, . . . , in) ∈ T | ∃Cj ∈ C0 : id(Cj) ∈ {i1, . . . , in}} �

Simplification corresponds to T ′ = (T \TE
(Hr,T ))∪TA

(C,S\Hr), where Hr are the
CHR constraints removed by simplification and C the CHR constraints added.
Propagation on the other hand corresponds to T ′ = (T \{(R, i1, . . . , in)})∪TA

(C,S),
where {(R, i1, . . . , in)} is the token removed when applying the propagation rule.
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CHR state and CHR transition relation. A CHR state is a tuple of two
elements: the constraint store and the token store. It is annotated with a fresh
integer value, used to label constraints which enter the constraint store.

Definition 7 (CHR state). A CHR state is a tuple 〈S, T 〉ν , where S is the
constraint store and T the token store. Every state is annotated with a fresh
integer ν, not yet assigned to a constraint. An initial state is a tuple 〈S, TA

(S,∅)〉v,
with v a fresh integer value. In a final state no more transitions are possible. �

Transitions between states occur in two different settings. Either at least one
constraint is removed and we simplify the state or no constraints are removed
and we propagate on the state. The transition relation −→ between CHR states,
given CT for built-ins and P for CHR constraints, is therefore defined as follows.

Definition 8 (Transition relation). Let Hk = h1, . . . , hj, Hr = hj+1, . . . , hn

and C = d1, . . . , dm denote conjunctions of CHR constraints, let G and B denote
conjunctions of built-in constraints, let σ be a match substitution for the heads
of the rule R and let θ be a c.a.s. for built-ins in the guard. Then, −→ is:

Solve
IF S = b ∪ S′, where b is a built-in constraint such that CT |= ∃θ : bθ

THEN 〈S, T 〉ν
CTθ−−−→ 〈S′θ, T 〉ν

Simplify
IF (Rs @ Hk \Hr ⇔ G | B,C) is a fresh variant of a rule in P

and S = H ′
k ∪H ′

r ∪ S′, with
H ′

k = {c1]i1, . . . , cj]ij} and H ′
r = {cj+1]ij+1, . . . , cn]in}

such that CT |= ∃σθ : (c1 = h1σ) ∧ · · · ∧ (cn = hnσ) ∧Gσθ

THEN 〈S, T 〉ν
Rsσθ−−−→ 〈S′′, T ′′〉ν+m

where S′′ = (H ′
k ∪ S′ ∪B ∪ {d1]ν, . . . , dm](ν + m− 1)})σθ and

where T ′′ = ((T \ TE
(H′

r,T )) ∪ TA
({d1]ν,...,dm](ν+m−1)},H′

k∪S′))

Propagate
IF (Rp @ Hk ⇒ G | B,C) is a fresh variant of a rule in P

and S = H ′
k ∪ S′, with H ′

k = {c1]i1, . . . , cj]ij}
and T = {(Rp, i1, . . . , ij)} ∪ T ′

such that CT |= ∃σθ : (c1 = h1σ) ∧ · · · ∧ (cj = hjσ) ∧Gσθ

THEN 〈S, T 〉ν
Rpσθ−−−→ 〈S′′, T ′′〉ν+m

where S′′ = (S ∪B ∪ {d1]ν, . . . , dm](ν + m− 1)})σθ and
where T ′′ = (T ′ ∪ TA

({d1]ν,...,dm](ν+m−1)},S))

Note that the label represented by ν is an integer assigned to the first con-
straint in C that is added to the constraint store. Then, ν + 1 is assigned to the
second added constraint and so on. �

The definition for the transition relation states that for a rule to be applicable
there must exist matching CHR constraints in the constraint store for which the
guard can be satisfied.
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Example 2 (Executing Primes). We revisit Primes from Example 1 and execute
it with a query 〈{primes(7)]1}, {(R2, 1)}〉2. We get as a possible computation:

I0 = 〈{primes(7)]1}, {(R2, 1)}〉2
R2−−→

I1 = 〈{primes(7)]1, primes(6)]2}, {(R2, 2)}〉3
R2−−→

I2 = 〈{primes(7)]1, primes(6)]2, primes(5)]3}, {(R2, 3)}〉4
R2−−→

I3 = 〈{primes(7)]1, primes(6)]2, primes(5)]3, primes(4)]4}, {(R2, 4)}〉5
R2−−→

I4 = 〈{primes(7)]1, primes(6)]2, primes(5)]3, primes(4)]4, primes(3)]5}, {(R2, 5)}〉6
R1−−→

I5 = 〈{primes(7)]1, primes(5)]3, primes(4)]4, primes(3)]5}, {(R2, 5)}〉6
R2−−→

I6 = 〈{primes(7)]1, primes(5)]3, primes(4)]4, primes(3)]5, primes(2)]6}, ∅〉7
R1−−→

I7 = 〈{primes(7)]1, primes(5)]3, primes(3)]5, primes(2)]6}, ∅〉7

Note that we have omitted discussion of the solve transition. We assume in
this example that built-ins are solved immediately. �

2.3 Solving built-in constraints

Solve transitions in computations introduce bindings. These can be delayed,
however. Whether bindings caused by such built-ins are available at the time
CHR constraints cause rules to fire, is therefore uncertain. In some cases however,
delaying a built-in causes a CHR constraint to be delayed as well. The next
example revisits a rule of Primes in Example 1 in which this is the case.

Example 3. generate @ primes(N) ⇒ N > 2 | Np is N − 1, primes(Np).
When adding the built-in Np is N − 1, it can be noted, given the guard N > 2,
that the added CHR constraint primes(Np) can only fire the rule again when
the built-in has been solved. That is, the constraints matching with primes(N)
in the head of the rule have to be ground. Therefore, in this case, we can use
the built-in to infer interargument relations. �

By analyzing which constraints can fire rules, we know to what extent ar-
gument positions will be instantiated. By considering therefore a call set and a
rigid interpretation in this call set, we can use built-ins, as we only measure argu-
ment positions which will be instantiated enough. As such, only interargument
relations from added built-ins of which we know these must introduce bindings,
are taken into account. When measuring sizes of added built-ins, we assign the
level value 0. After all, we assume them to terminate on their own.

2.4 CHR computations

In CHR, a transition is often called a computation step and a sequence of com-
putation steps is called a computation. For a query I and a program P , there
are usually several different possible computations.

Termination of CHR programs executed under a theoretical semantics cor-
responds to the notion of universal termination, where we require finiteness of
all computations originating from a query.

Definition 9 (Termination of a CHR program). We say that a CHR pro-
gram P terminates for a query I iff all computation of P for I are finite. �
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Without loss of generality, we regard computations in CHR as a subsequence
of simplification steps, interleaved with sequences of zero or more propagation
steps. Computations are therefore of the following form,

s(1,1)

Rp(1,1)−−−−→ s(1,2)

Rp(1,2)−−−−→ . . .
Rs1−−→ s(2,1)

Rp(2,1)−−−−→ s(2,2)

Rp(2,2)−−−−→ . . .
Rs2−−→ . . .

where Rp(i,j) represents the application of a propagation rule and Rsi
that of a

simplification rule. Note that a propagation sequence may be infinitely long.

2.5 The propagation store

Propagation in CHR computations serves as a way to complete state information.
When the state after simplification is propagated upon, we reach some more
completed state on which we can further simplify.

W.r.t. propagation we distinguish two different kinds of CHR states. A fully
propagated state is a state with an empty token store. Therefore, no propagation
can take place on a fully propagated state. A partially propagated state is a state
which does contain tokens. We define the action of full propagation and partial
propagation, where we refer to a sequence of propagation steps, originating from
a CHR state and ending in a fully or partially propagated state, respectively.

When fully propagating on a state, independent of the order in which prop-
agation rules are applied, we end up in an equivalent state. Such equivalent
states contain the same constraints. However, they may be labeled differently as
propagation rules are applied in different orders.

Given a state, we refer to the propagation store as the multiset of all the
constraints that are added when fully propagating on the given state. Obviously,
the constraints added by partially propagating on a state correspond to a subset
of the propagation store as applying a propagation rule now corresponds to the
introduction of constraints from the propagation store to the constraint store.
Up to identification, their union therefore remains constant under propagation.
Example 4 (Executing Primes). We revisit the computation of Primes from Ex-
ample 2 and represent for it the propagation store:

〈{primes(7)]1}, {primes(6), primes(5), primes(4), primes(3), primes(2)}, {(R2, 1)}〉2
〈{primes(7)]1, primes(6)]2}, {primes(5), primes(4), primes(3), primes(2)}, {(R2, 2)}〉3

〈{primes(7)]1, primes(6)]2, primes(5)]3}, {primes(4), primes(3), primes(2)}, {(R2, 3)}〉4
〈{primes(7)]1, primes(6)]2, primes(5)]3, primes(4)]4}, {primes(3), primes(2)}, {(R2, 4)}〉5

〈{primes(7)]1, primes(6)]2, primes(5)]3, primes(4)]4, primes(3)]5}, {primes(2)}, {(R2, 5)}〉6
〈{primes(7)]1, primes(5)]3, primes(4)]4, primes(3)]5}, {primes(2)}, {(R2, 5)}〉6

〈{primes(7)]1, primes(5)]3, primes(4)]4, primes(3)]5, primes(2)]6}, {}, {}〉7
〈{primes(7)]1, primes(5)]3, primes(3)]5, primes(2)]6}, {}, {}〉7

Note that we have left out state names as well as transitions due to space
restrictions. The propagation store together with the constraint store remains
constant when propagation occurs. When simplifying, their combined size de-
creases. It turns out that this is typical for terminating programs. �

A problem regarding the propagation store is that it can be infinitely large for
some states in computations of a CHR program. To prevent this, we formulate
conditions on propagation rules that guarantee that no sequence of propagation
rules in computations of a CHR program can be infinitely long. Since such a
condition is related to termination, we discuss it in the next section.
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3 Termination of general CHR programs

Due to CHR’s multi-headed rules and multiset semantics, it is often difficult to
predict the behavior of CHR programs. Especially the concept of propagation,
complicates reasoning about program properties, since it requires a fire-once
policy on propagation rules to prevent trivial non-termination. New concepts
are therefore required to handle propagation, which cannot be directly adapted
from existing notions in LP an TRS termination analysis.

Example 5. Consider the following propositional CHR program,

R1 @ a, a ⇒ b. R2 @ b, b, b ⇔ a.

For a query with two constraints a, the program terminates as R1 can only be
applied in two different ways, as such only adding 2 constraints b. However, when
querying with three a’s, the propagation rule can be applied in 6 different ways.
As a consequence, the second rule becomes applicable twice, as such causing new
tokens to be introduced. It is therefore a non-terminating program. �

Currently, two approaches exist, one for CHR without propagation and an-
other for CHR with propagation. The first one, essentially adapts existing condi-
tions in LP and TRS. It measures the size of the constraint store and guarantees
decreases between consecutive CHR states. The second approach formulates con-
ditions on adding constraints to the constraint store. In order to be able to handle
propagation, it is strictly less powerful on CHR programs without propagation.

Although the approaches can trivially be combined into a global approach
(by using one condition for simplification only programs, the other for programs
with propagation), it would be satisfactory to formulate general conditions. In
addition, this turns out to gain a new class of programs we can prove terminating.

Example 6 (Problem class). The program is a constructed example, representing
a class of CHR programs which cannot be proved terminating using existing
approaches. It contains both a propagation rule and a simplification rule and
terminates for all finite queries.

R1 @ a(s(N)), a(N), a(N) ⇔ a(s(N)), a(N). R2 @ a(s(s(N))) ⇒ a(N).

As the program contains a propagation rule, only the condition for CHR with
propagation can be used to prove termination. However, as the condition for
CHR with propagation requires that |a(s(s(N)))| > |a(N)| for the propagation
rule, a decrease in the number of maximally ranked constraints in the simplifi-
cation rule can never be shown. �

In this section, we present a general approach, capable of proving termination
of an entirely new class of CHR programs of the kind as presented in the example
above. Our conditions are strictly more powerful than those formulated in the
existing approaches. We resolve therefore the drawbacks of existing approaches.
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3.1 Preliminaries

First, we define some preliminary notions w.r.t. interpretations for constraints in
CHR programs. These notions are adapted from the LP context [13–15]. Then,
we introduce the existing approaches [10,11].

TermP and ConP denote the sets of respectively all terms and all constraints
that can be constructed from the alphabet underlying P . As in LP, we wish to
describe the constraints that participate in computations of a CHR program P ,
given the constraints S that are part of the query, by its call set. As such, we can
establish interpretations which result in better approximations of the behavior
of a CHR program.

Definition 10 (Call set). Let S ⊆ ConP . Then by Call(P, S), we denote the
subset of ConP , such that C ∈ Call(P, S) whenever C is a constraint used to
apply a rule in some computation of P for I, where I ⊆ S. �

To measure constraints, we use norms and level mappings. In general this is
referred to as interpretations for CHR constraints. The sizes of consecutive com-
putation states are compared using the level values (or ranks) of the constraints
in the state. We recall their definition here in the context of CHR.

Definition 11 (Norm, level mapping). Let P be a CHR program. Then, a
norm is a function ‖.‖ : TermP → N and a level mapping |.| : ConP → N. �

Several examples of norms and level mappings can be found in literature on
LP termination analysis [13]. Two well-known norms are list-length and term-
size. The most common kind of level mapping is the linear level mapping, where
a constraint is mapped to a positive linear combination of the positive integer
norms of its terms. We also require norms and level mappings to be rigid w.r.t.
the constraints represented by the call set. That is, all constraints in the call set
must have unique interpretations, which cannot alter under substitution.

Termination of CHR programs without propagation. In [10], a condition
for CHR programs without propagation is discussed. In such a setting, decreases
are shown between consecutive CHR states. These are compared by using a
multiset order [16] on the constraint store. If such a decrease is shown for every
application of a rule, the program must terminate.

Definition 12 (Multiset order). Let r represent the level value of some atom
and let ns

r represent the number of atoms of level r in a multiset s. Then a
multiset order is an induced order, given a level mapping |.| for its atoms. A
multiset s is considered larger than a multiset t, denoted s �m t, if some atom
of level value r exists, such that ns

r > nt
r and such that ∀q > r : ns

q = nt
q. �

The next example demonstrates how to prove termination of a CHR program
with a multiset order on the constraint store.

Example 7. The program is terminating for all ground queries.
R1 @ a(s(N)), a(N), a(N) ⇔ a(s(N)), a(N). R2 @ a(s(N)) ⇔ a(N).

Termination is shown using a level mapping |a(N)| = ‖N‖ and multiset order.
�
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Termination of CHR programs with propagation. The ranking condition
(RC) for CHR with propagation proves termination in an entirely different way
[11]. It guarantees that only a finite number of constraints can be added to
the constraint store. Because simplification removes constraints and propagation
respects the fire-once policy, this implies termination.

The RC compares sizes of individual constraints, rather than multisets of
constraints. It requires that propagation rules can only add constraints ranked
strictly lower than any of the head constraints that gave cause to it. For sim-
plification rules the number of constraints removed of maximal rank, has to be
strictly greater than those added of maximal rank.

Example 8. The following example demonstrates the use of the RC for CHR
with propagation.

R1 @ a(s(s(N))) ⇒ a(s(N)), a(N). R2 @ a(s(N)) ⇔ a(N).

Termination is shown for ground queries, using a level mapping from constraints
|a(N)| = ‖N‖ to the set of natural numbers. As such, a decrease in maximally
ranked constraint exists in the second rule, while the first rule only adds con-
straints which are ranked strictly lower than those which fired the rule. �

Notice that the condition on simplification is a strengthened case of multiset
order. Therefore, in the case of a program with only simplification rules, the
condition for CHR without propagation covers more programs.

Example 9. We revisit Example 7.

R1 @ a(s(N)), a(N), a(N) ⇔ a(s(N)). R2 @ a(s(N)) ⇔ a(N).

Termination cannot be shown as the second rule requires that |a(s(N))| >
|a(N)|. As such, no decrease in maximally ranked constraint can be shown
for the first rule. The reason is that in the case of a propagation rule, e.g.
R2 @ a(s(N)) ⇒ a(N), we obtain a non-terminating program. �

3.2 Termination of general CHR programs

As mentioned earlier, we can regard a computation in CHR as a subsequence
of simplification steps, interleaved with sequences of propagation steps. A CHR
program can only be guaranteed to terminate if these sequences of propagation
steps cannot be infinitely long. The RC on propagation rules guarantees this.

Definition 13 (RC on propagation rules). Let Rp @ h1, . . . , hn ⇒ G |
b1, . . . , bm be a propagation rule in a CHR program P , I a query and σ a match
substitution for the heads of Rp such that CT |= ∃θ : Gσθ holds. Then, the RC
on propagation rules is satisfied w.r.t. a rigid level mapping |.| for Call(P, I) iff
∀hi, bj : |hiσθ| > |bjσθ|. �
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At first sight, the condition on propagation seems unnecessarily strict. How-
ever, if we would not require that all body constraints are ranked strictly lower
than any of the head constraints, it is possible that added constraints replace
those which gave cause to them, enabling the rule to be fired at the same level
of interpretation. We illustrate the RC by proving termination of the following
example program without simplification rules.

Example 10 (Fibonacci). The program calculates Fibonacci numbers. The first
rules resolve base cases, while the third rule adds Fibonacci constraints.

R1 @ fib(N,M) ⇒ N = 0 | M = 0.
R2 @ fib(N,M) ⇒ N = s(0) | M = 1.
R3 @ fib(s(s(N)),M1), fib(s(N),M2) ⇒ fib(N,M),M1 is M2 + M.

As we will query the program with constraints of the type fib(n, m) with n
ground and m a variable, we measure these constraints by the term-size of their
first argument. Therefore, |fib(N,M)| = ‖N‖ts is rigid w.r.t. the call set. The
first rules trivially satisfy the RC as no CHR constraints are added. As for the
third rule the first argument decreases in term-size, we prove termination. �

The next proposition formulates that when the RC is satisfied for all propaga-
tion rules in a CHR program, there cannot exist infinite sequences of propagation
steps in computations for the program.

Proposition 1. If a CHR program P with a query I satisfies the RC on prop-
agation rules w.r.t. a rigid level mapping |.|, then there cannot exist infinite
propagation in a computation of P , if the constraint store S is finite.

Proof. We rank tokens according to the corresponding CHR constraint of small-
est rank. Therefore, no token added by propagation can be of equal size or greater
than the token removed. This implies that the multiset size of the token store
decreases after every application of a propagation rule. No infinite sequences of
propagation steps can therefore exist. �

When a CHR program satisfies the RC on propagation rules, then in any
CHR state in a computation of the program, the propagation store is finite.

Corrolary 1 If a CHR program P with a query I satisfies the RC on propaga-
tion rules w.r.t. a level mapping |.|, then for any CHR state in a computation of
P for I, the propagation store V is finite if the constraint store S is finite. �

We now come to the heart of our approach. As we could already observe in
Example 4, when propagating, the combined size of constraint and propagation
store |chr(S) ] V | remains equal while the size of the token store |T | decreases.
We define therefore the following lexicographical interpretation for CHR states.

Definition 14 (CHR state interpretation). The CHR state interpretation,
is a lexicographical order of the following form:
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|〈S, T 〉ν | = 〈|chr(S) ] V |, |T |〉

Here, ] denotes multiset union, chr(S) = {chr(C) | C ∈ S} the unlabeled variant
of the constraint store, V the propagation store and T the token store. chr(S)
and V are multisets of constraints. The tokens are measured by the smallest
level value of a CHR constraint represented in the token: |(Ri, id1, . . . , idn)| =
min{|chr(c1]id1)|, . . . , |chr(cn]idn)|}. �

We formulate a theorem stating that termination of a CHR program is guar-
anteed, when decreases are found in the CHR state interpretation, as defined
above, for every application of a rule in a CHR program.

Theorem 1. Let P be a CHR program and I a query. Furthermore, let |.| be a
rigid level mapping for the constraints in Call(P, I). Then, a CHR program P
terminates for I if for all applications of rules in P , using only constraints in
Call(P, I), the lexicographical ordering on CHR states decreases.

Proof. The ordering we use is well-founded. Therefore, computations can only
be finitely long. By definition, this implies termination of P . �

Note that whenever the RC on propagation rules is satisfied, we guarantee
that there is a decrease in the CHR state interpretation for every application of
a propagation rule. To observe decreases when simplifying on states, we must
guarantee decreases in |chr(S)]V | as the token store may increase in size. Such
decreases can be observed in Example 4 as well.

To formulate a condition on simplification rules, which guarantees decreases
in |chr(S)]V |, we first guarantee that a multiset decrease exists in the constraint
store chr(S). Such a decrease can be shown using the condition of Frühwirth [10].

Definition 15 (RC on simplification rules). Let Rs @ h(s,1), . . . , h(s,js) \
h(s,js+1), . . . , h(s,ns) ⇔ Gs | b(s,1), . . . , b(s,ms) be a simplification rule in a CHR
program P . Let σ be a match substitution for the head constraints such that
CT |= ∃θ : Gsσθ holds and let |.| be a rigid level mapping w.r.t. a CHR program
P and a query I, such that the added and removed constraints in Rs have ranks
r1 > r2 > ... > rk and such that na

i and nr
i represent respectively the number of

constraints of rank ri added and removed by Rs. Then, Rs satisfies the RC on
simplification rules w.r.t. |.| iff ∃rj : nr

j > na
j and ∀ri > rj : nr

j = na
j . �

We already illustrated the RC in Example 7 on a program without prop-
agation. However, when propagation is present, simplification rules cannot be
considered separately. After all, by propagating on the added constraints of the
simplification rule, the decrease caused in chr(S) can still be undone. The con-
straints that can be added by propagation are represented in V . As a conse-
quence, we have to refine our condition on simplification rules to guarantee that
none of the constraints added to V can undo the decrease caused in chr(S). It
is however impractical to analyze this multiset of added constraints.

Therefore, we observe the following. By definition, the tokens that enter the
token store correspond to added constraints in the simplification rule. These
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tokens can result in the addition of new constraints and thus new tokens. This
process dies out when the RC on propagation rules is satisfied.

The application of a propagation rule is in one-to-one correspondence with
a token. Given all tokens in the token store, we can apply their corresponding
propagation rules simultaneously. The resulting multiset of added constraints
from applying these rules simultaneously is referred to as the layer 1 constraints
and is denoted by the multiset L1. By adding these constraints, new tokens are
added, resulting as such in layer two constraints L2. For a finite propagation
store, there are only a finite number of such layers: V = L1 ] L2 ] · · · ] Lv.

Given the RC on propagation rules, we know that if constraints in L1 cannot
undo the multiset decrease in the constraint store that none of the subsequent
layers Li can undo it either. This is because, if the added constraints in the
first layer are already smaller than the relevant ranks in the simplification rule,
than the added constraints in next layers need to be even smaller. Thus, they
can definitely not influence the relevant ranks of the simplification rule. It is
therefore sufficient to only consider L1 constraints.

Definition 16 (Refined RC on simplification rules). Consider a simplifi-
cation rule Rs @ h(s,1), . . . , h(s,js) \ h(s,js+1), . . . , h(s,ns) ⇔ Gs | b(s,1), . . . , b(s,ms)

in a CHR program P that satisfies the RC on simplification rules for I w.r.t.
a rigid level mapping |.|. Therefore, ∃rj : nr

j > na
j and ∀ri > rj : nr

j = na
j .

Then, the refined RC on simplification rules is satisfied for Rs iff for all heads
h(p,ip) in propagation rules in P for which CT |= ∃µσ′θ′ : (Gsσθ ∧ (b(s,is)σθ =
h(p,ip)µ)∧Gpµσ′θ′) holds: rj > |b(p,k)µσ′θ′| for all b(p,k). Here, b(p,k) is an added
constraint in the propagation rule and µ a substitution for matching b(s,is)σθ with
h(p,ip). The substitutions σθ come from matching and answer substitutions in the
simplification rule and σ′ is a match substitution for the heads of the propagation
rule and θ′ a c.a.s. for satisfaction of the guard Gp of the propagation rule. �

We illustrate the refined RC by proving termination of the problem class
from Example 6.

Example 11 (Problem class). The program terminates for ground queries.

R1 @ a(s(N)), a(N), a(N) ⇔ a(s(N)). R2 @ a(s(s(M))) ⇒ a(M).

By the RC on propagation rules, we require that |a(s(s(M)))| > |a(M)|. This is
satisfied if we measure constraints by a term-size norm: |a(N)| = ‖N‖. By the
refined RC on simplification rules, we have that the constraints of rank |a(N)|
are decreased in number. By propagation on the added constraints this number
cannot be increased again: |a(M)| < |a(N)| when a(s(N)) = a(s(s(M))). �

Proposition 2. If a CHR program P satisfies the refined RC for simplification
rules w.r.t. a rigid level mapping |.| for Call(P, I), then there exists no infinite
subsequence of simplification rules in a computation for P with I.

Proof. By the RC for simplification we know that ∃rj : nr
j > na

j and ∀ri >
rj : nr

j = na
j . There is therefore a decrease in the size of the constraint store.
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By considering the added constraints by propagating on the obtained state, we
guarantee that the added constraints to the propagation store by simplification
cannot undo this decrease. As such, there can only exist a finite subsequence of
simplification steps in computations for P with I. �

By Proposition 1 and 2, we guarantee decreases for every application of a
rule in a CHR program if the RC on propagation rules and the refined RC on
simplification rules are satisfied. Therefore, the CHR program must terminate.

Theorem 2. A CHR program P terminates for a query I if it satisfies the RC
for propagation and the refined RC for simplification w.r.t. a rigid level-mapping
|.| for Call(P, I).

Proof. By Proposition 1 and 2, a decrease in state size can be detected for each
rule application. By Theorem 1, P must terminate for I. �

4 Discussion

We evaluate our method first by comparing it to existing approaches. As stated
earlier the condition on CHR without propagation requires a multiset decrease.
In that setting, our method is as strong for the considered class of CHR programs.

Proposition 3. The RC for CHR programs without propagation [10] is a special
case of the RC for general CHR programs.

W.r.t. the approach taken for CHR with propagation, our approach is more
general as well. The condition formulated on propagation rules is identical to
ours. However, our condition on simplification rules is more general. Our method
also allows lower ranked constraints to be evaluated.

Proposition 4. The RC for CHR programs with propagation [11] is a special
case of the RC for general CHR programs.

Therefore, our approach is able to prove strictly more programs terminating.
w.r.t. both approaches. Consider the next example program.

Example 12. R1 @ list([D|L]), list(L) ⇔ list([D|L]).
R2 @ list([A,B, C|L1]), list([A,B, C|L2]) ⇒

length(L1, S1), length(L2, S2), S1 = S2 | list(L1), list(L2).
Termination cannot be proved when using the existing approaches. Our ap-

proach can prove termination for queries with nil-terminated lists. As such the
constraints in the call set can be measured by a rigid level mapping, list-length.
In case of the propagation rule, the condition states that: ∀hi, bj : |hiσθ| > |bjσθ|.

|list([A,B, C|L1])| > |list(L1)| |list([A,B, C|L2])| > |list(L1)|
|list([A,B, C|L1])| > |list(L2)| |list([A,B, C|L2])| > |list(L2)|



Termination Analysis of CHR revisited 49

For list-length these conditions are satisfied.
For the first rule, the number of constraints of rank |list([D|L])| remains the

same and the number of constraints of rank |list(L)| is decreased in number.
Now, we verify that none of the constraints added by propagating on the added
constraint list([D|L]) can undo this decrease. That is,

|list(L)| > |list(L1)| and |list(L)| > |list(L2)|
This is a consequence of matching the body of the simplification rule with the
heads of the propagation rule: [D|L] = [A,B, C|L1] and [D|L] = [A,B, C|L2].
Therefore, the number of constraints of maximally rank |list([D|L])| remains
the same, the number of constraint of rank |list(L)| decreases. Both RCs are
therefore satisfied w.r.t. list-length. The program therefore terminates for all
queries of constraints with nil-terminated lists. �

Our approach is currently unable to handle the following kind of programs:

Example 13. The program terminates for ground queries.

R1 @ a(s(N)), a(N), a(N) ⇔ a(s(N)). R2 @ a(s(N)) ⇒ a(N).

Note that the program terminates because the simplification rule removes two
constraints of rank rj , while the propagation rule only adds one such constraint.

The refined RC on simplification rules cannot be satisfied for this program.
The constraints of rank |a(N)| are decreased in number in the first rule while the
constraints added by propagating on the added constraints of the simplification
rule are of the same rank. That is, rj = |b(p,k)µσ′θ′|.

For single-headed propagation rules, we can however refine our condition by
considering that no recombinations are required to fire these rule. Because of
this direct correspondence, we do not have to assume that multiple instances
of some constraint can be added. Therefore, for every added CHR constraint in
rule 1, we add only one constraint by the propagation rule. The decrease caused
in the constraint store is therefore not undone by propagation. In such cases,
we can allow that rj = |b(p,k)µσ′θ′|, given that the combined effect of multiple
single-headed propagation rules does not undo the decrease. �

We will study this refinement in future work.

5 Conclusion

In this paper, we presented a new approach to termination analysis of CHR pro-
grams. Our approach proves termination by formulating conditions on the size
of a CHR state. To measure states, we introduced a new interpretation, based
on the constraint store, the token store and the propagation store. On the basis
of these we compose a lexicographical interpretation and formulate conditions
guaranteeing decreases between all consecutive CHR states. We showed that our
approach generalizes the existing approaches and that it is able to prove termi-
nation of an entirely new class of CHR programs. In future work, we will refine
the approach for single-headed propagation rules. We will develop an efficient
termination tool to support thorough experimentation.
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Abstract. We provide a comparison between Constraint Handling Rules
and Join-Calculus. Constraint Handling Rules is a concurrent constraint
programming language originally designed for writing constraint solvers.
Join-Calculus is a process calculus designed to provide the programmer
with expressive concurrency abstraction. The semantics of both calculi
is based on the Chemical Abstract Machine. Hence, we expect that both
calculi share some commonalities. Surprisingly, both calculi have thus far
been studied independently, yet we believe that a comparison of these
two independent fields of study is long overdue. This paper establishes a
first bridge between Constraint Handling Rules and Join-Calculus as a
basis for future explorations. Specifically, we provide examples showing
that Join-Calculus can benefit from guarded constraints and constraint
propagation as found in Constraint Handling Rules. We provide a com-
pilation scheme for such an enriched Join-Calculus by applying the con-
straint matching methods of the refined operational Constraint Handling
Rules semantics.

1 Introduction

Constraint Handling Rules (CHR) [1] is a concurrent committed-choice con-
straint logic programming language to describe rewritings among multi-sets of
constraints. Join-Calculus [2] is a process calculus designed to provide expressive
concurrency abstractions in the form of reaction rules, known as Join-Patterns.
Rule triggering depends on the availability and simultaneous consumption of
messages received from various shared channels.

The Chemical Abstract Machine (CHAM) [3] provides the semantic founda-
tions for both calculi. We therefore expect that both calculi share some common
features. Surprisingly, CHR and Join-Calculus have been studied so far in com-
plete isolation. We believe that a comparison between both calculi is long overdue
and should enable a fruitful exchange of ideas and results. To the best of our
knowledge, we are first to conduct such a comparison. In this paper, we make
the following contributions:
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Primitives:

Process Name p Variable x

Constant Value v List of a’s a

Join-Calculus Essentials Expressions:

Term t ::= x | v

Process P ::= p (̄t)
Concurrent Processes M ::= P | M , M

Join-Pattern J ::= P | J|J

Join-Body B ::= P | B|B

Reaction Rule D ::= J ⊲ B

Fig. 1. Join-Calculus Essentials

– We illustrate programming in CHR and Join-Calculus by example. It is
known that both calculi are Turing-complete, hence, equally expressive. How-
ever, we show that Join-Calculus can benefit from having CHR style guarded
and propagated constraints (Section 2.3).

– We introduce a new compilation scheme for Join-Patterns, which is essen-
tially based on the CHR rule matching semantics (Section 3). This allows us
to straight-forwardly introduce CHR features like guards, propagation and
shared variables (non-linear patterns) into the Join-Pattern world.

– We investigate the commonalities and differences among the standard compi-
lation schemes for rule matching of CHR rewrite rules and Join-Calculus re-
action rules (Section 3.3).

Section 2 introduces Join-Calculus informally. We assume that the reader
has some basic knowledge of CHR. We conclude and discuss future works in
Section 4.

This paper is a revised and extended version of [4]. Our focus here is on a
more detailed comparison among Join-Calculus and CHR. The issue of how to
integrate CHR into a host language such as Haskell is left for future work.

2 Programming Examples

In this section, we informally introduce Join-Calculus via a simple example: a
printer spooler coordinating a network of printers and clients which submits
print jobs.

2.1 Join Calculus

Join-Calculus [2] is a process calculus that introduces an expressive high-level
concurrency model, aimed at providing a simple and intuitive way to coordinate
concurrent processes via reaction rules known as Join-Patterns.

Figure 1 shows the essential core Join-Calculus language. Processes are typi-
cally modeled as unique names p each with a fixed number of term arguments. A
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collection of concurrently running processes (denoted M ) is represented by pro-
cesses composed together with a binary operator “,”. This collection is treated as
an unordered set of processes. For instance, the following illustrates a collection
of concurrent processes, representing the state of the printer spooler, denoted S:

S = ready(p1), ready(p2), job(j1), job(j2), job(j3)

A printer Pm which is available for printing will call the process ready(Pm),
while a print job Jn is submitted to the spooler via calling the process job(Jn).
We shall use standard CHR/Prolog notation to distinguish values and variables:
Lowercase references for function/constant names and uppercase references for
variables. Hence the above illustrates a state consisting of two available printers
and three outstanding print jobs. A print job Jn is to be matched with any
available printer Pm, during which printing can be initiated by sending Jn to
Pm (send(Pm,Jn)). This behavior is captured by the reaction rule D, defined as
follows:

D = ready(Pm) | job(Jn) ⊲ send(Pm,Jn)

A reaction rule (J ⊲ B) has two parts. We refer to the left-hand side J

as the Join-Pattern and to the right-hand side B as the Join-Body (in our
simplified setting rule processes). The Join-Pattern J specifies that processes
matching Join-Pattern J can be consumed and replaced by rule processes B .
Note that we will sometimes refer to the reaction rules as Join-Patterns as
well if there is no ambiguity doing so. A set of reaction rules can be applied
to a collection of concurrent processes. This is defined by two forms of transi-
tion steps, namely structural steps (R ⊢ M ) ⇋ (R ⊢ M ′) and reduction steps
(R ⊢ M ) −→ (R ⊢ M ′) where R is the set of reaction rules and M , M ′ are
collections of concurrent processes. This exploits the analogy that concurrent
processes are a “chemical soup” of atoms and molecules, while reaction rules de-
fine chemical reactions in this chemical soup. Structural steps heat/cool atoms
to and from molecules (switching to-and-fro ’,’ and ’|’), while reduction steps
apply reaction rules to the matching molecules. The following shows a possible
sequence of structural/reduction steps which results from applying the printer
spooler rule D on the spooler state S:

D = ready(Pm) | job(Jn) ⊲ send(Pm,Jn)

({D} ⊢ ready(p1) , ready(p2) , job(j1) , job(j2) , job(j3))
⇋ ({D} ⊢ ready(p2) , job(j2) , job(j3) , ready(p1) | job(j1))

−→ ({D} ⊢ ready(p2) , job(j2) , job(j3) , send(p1,j1))
⇋ ({D} ⊢ job(j3) , send(p1,j1) , ready(p2) | job(j2))

−→ ({D} ⊢ job(j3) , send(p1,j1) , send(p2,j2))

When concurrent processes J ′ matches a reaction rule J ⊲ B (ie. J ′ = θ(J )
for some substitution θ) causing the rule to be applied, we say that J ′ has
triggered the Join-Pattern J . Note the inherent non-determinism in matching
processes with Join-Patterns: any pair of ready(P) and job(J) can be arbitrarily
chosen by a structural step and matched with the Join-Pattern.

There are several implementations of Join-Calculus style concurrency ab-
stractions. The JoCaml system [5] is one such example, which introduces Join-
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Patterns into the programming language Caml. For instance, the printer spooler
can be implemented in JoCaml as follows (omitting details of the function send):

let ready(P) & job(J) = send(P,J)

in ready(p1) & ready(p2) & job(j1) & job(j2) & job(j3)

As shown above, Join-Patterns in JoCaml are declared by the ’let’ definition.
There are some minor syntax differences (’⊲’ reaction rule symbol is replaced
by the more common ’=’) but it’s intended meaning corresponds to it’s Join-
Calculus counterpart. Also, the symbol ’&’ replaces both ’|’ and ’,’ as a parallel
composition operator for specifying both Join-Patterns and concurrent processes.
The keyword ’or’ is used to concatenate multiple reaction rules in a ’let’ defini-
tion. Process calls are treated just like ordinary procedural calls without return
values, with the exception that they are matched with Join-Patterns.

On top of Join-Patterns, language extensions like JoCaml also introduces
synchronous process calls which returns values, thus provide a synchronization
mechanism among concurrent processes. We will omit this to focus our attention
on Join-Calculus and CHR.

2.2 Constraint Handling Rules

Independently, Constraint Handling Rules (CHR) [1] has been developed in the
field of constraint solving. CHR is a concurrent committed choice constraint
programming language. Originally designed for writing constraint solvers, CHRs
have through the years been exploited in a wide range of applications [6, 7]. A
CHR program essentially consist of a set of multi-headed guarded rules, describ-
ing rewritings among multisets of constraints. These rewritings share a strik-
ing similarity with Join-Calculus and the chemical abstract machine reductions:
CHR rules can be treated as the reaction rules and CHR constraint multiset as
the chemical soup.

We illustrate this by reformulating the printer spooler reaction rule from the
previous section, with the following CHR program and CHR derivation:

P = {print @ ready(P),job(J) ⇐⇒ send(P,J)}

{ready(p1),ready(p2),job(j1),job(j2),job(j3)}
P {ready(p2),job(j2),job(j3),send(p1,j1)}
P {job(j3),send(p1,j1),send(p2,j2)}

Concurrent processes are represented by the multiset constraint store and
CHR derivation steps take the place of the chemical abstract machine reduc-
tion steps. Unlike the CHAM semantics which explicitly express matching via
structural steps , CHR constraint matching is implicit within derivation steps.

CHR also supports other features like constraint propagation and rule guards
which can be possible useful extensions to the Join-Pattern implementations.
There are also several well-developed CHR operational semantics [8] and highly
competitive state-of-the-art implementations [9, 10].

2.3 Extending Join-Patterns with Guards and Propagation

A particularly useful extension to the Join-Calculus language is Join-Patterns
with guard constraints (also known as guarded Join-Patterns), which allows
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the programmer to express boolean conditions on Join-Patterns. To illustrate
guarded Join-Patterns, we consider a more complex variant of the printer spooler:
Suppose that there are now conditions which must be met before a print job can
be sent to a printer, namely:

– Print jobs have color requirements, namely black-and-white (bw), 16 bit color
(color16) or 32 bit color (color32). Hence not all printers can execute a
given print job.

– Only print jobs with authorized identity will be entertained.

To handle these requirements, we represent print jobs as job(J,Cid,Cr),
where additional arguments Cid and Cr are the client identifier and color require-
ments respectively. Available printers also additionally report their capabilities
(ie. ready(P,Cr)). A new process auth(Cid) is also introduced to indicate that
Cid is an authorized client. Note that we assume that the color values are ordered
to reflect their increasing requirement levels (ie. bw < color16 < color32). This
new printer spooler can be implemented via the following guarded Join-Pattern,
expressed in a pseudo JoCaml extension:

let auth(Cid1) & ready(P,Pcr) & job(J,Cid2,Jcr)

when (Cid1 == Cid2) && (Pcr ≥ Jcr) = auth(Cid1) & send(P,J)

in ...

We assume that guard constraints are followed by the “when” keyword, and
&& represents logical conjunction. Note that auth(Cid1) is “propagated”, mean-
ing that it is reintroduced in the Join-Body. This is because Cid1 should remain
authorized even after a print job is submitted.

Existing Join-Pattern implementations (eg. JoCaml [5], Polyphonic C# [11])
use a Join-Pattern compilation scheme [12] that maintains the states of Join-
Patterns to determine when they can be triggered during runtime. (we briefly
discuss this scheme in Section 3.1). Unfortunately, as indicated in [11], such com-
pilations do not directly support Join-Patterns with guard constraints. It may
seem that guarded Join-Patterns can be easily encoded in basic Join-Patterns.
For instance, one attempt in JoCaml could be as follows:

let auth(Cid1) & ready(P,Pcr) & job(J,Cid2,Jcr) =

if (Cid1 == Cid2) && (Pcr ≥ Jcr)

then auth(Cid1) & send(P,J)

else auth(Cid1) & ready(P,Pcr) & job(J,Cid2,Jcr)

in ...

This encoding uses a standard if-then-else conditional statement to replicate
the semantics of a guarded Join-Pattern: if conditions are favourable then pro-
ceed as normal, otherwise abort by replenishing the involved processes for future
matching. While this encoding ensure correctness (authorized print jobs are only
sent to printers with sufficient capabilities), it cannot ensure completeness (all
authorized print jobs will be submitted to any available and capable printer).
This is because standard Join-Pattern compilation schemes do not test all com-
binations of concurrent processes, as it is unnecessary when matching is merely
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a test of presence/absence of processes (This is true for standard Join-Patterns).
To date, no existing implementations provide efficient and practical compilation
of Join-Patterns with guard constraints.

Yet guard constraints are natively supported in the CHR framework. Fur-
thermore, CHR provides other features like propagation and non-linear patterns
(variables appearing in multiple unique locations), which would be obviously use-
ful if available in Join-Patterns. For instance, we can represent the new printer
spooler Join-Pattern as the following CHR rule:

print @ auth(Cid) \ ready(P,Pcr),job(J,Cid,Jcr) ⇐⇒ Pcr ≥ Jcr | send(P,J)

CHR rules natively support propagation: constraints like auth(Cid) are
known as propagated head (appearing before the ’\’ symbol), which are nec-
essary for triggering the rule but not deleted after its application. Variables are
also allowed to appear in multiple locations of the rule head (non-linear patterns).
This approach will also benefit from well-developed CHR operational semantics
[8] as well as existing CHR optimizations such as hash indexing and optimal
join-ordering. Hence we believe that the CHRs would be the ideal solution to
handle guarded Join-Patterns, offering a highly optimized and well-studied mul-
tiset rewriting operational semantics that shares a similar foundational semantics
(chemical abstract machine).

3 Compilation Schemes

In this section, we review the compilation scheme which is currently the de-facto
standard for Join-Pattern implementations. Following this, we introduce a new
compilation scheme which is based on CHR rule matching.

3.1 Standard Join-Pattern Compilation Scheme

Existing Join-Pattern implementations compile Join-Patterns into state ma-
chines that maintain the matching states of the Join-Patterns [12]. For instance,
in JoCaml, this compilation involves constructing n message channels (which are
typically queues) and a finite state machine (automaton) for each ’let’ defini-
tion, that keeps track of the matching status of the n queues. Note that ’let’
definitions can contain any finite number of Join-Patterns delimited by the ’and’
keyword. Each message channel is assigned to a unique process name, and rep-
resents the collection of calls to this process by concurrent computation threads.
Hence, a call to a process is analogous to the arrival of a new message in the
corresponding message channel.

States of this automaton are essentially tuples of n bits, one assigned to each
message queue stating whether it is empty (0) or non-empty (N). This automaton
is updated every time a new process is call (ie, a new message has arrived) or
when a Join-Pattern is successfully matched. Figure 2 shows an example of a let

definition, consisting of two Join-Patterns, as well as it’s corresponding matching
status automaton that is constructed. We label the first Join-Pattern as J1 and
the other as J2 (Note that this labeling is for our presentation only and not part
of the semantics).

Each edge labeled with a transition label, which is either of the form m-j stat-
ing that arrival of message m has triggered Join-Pattern j, or just m which states
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Implementation in JoCaml:
let p() & q() = a() (J1)

or p() & r() = b() (J2)

in ...

Chemical Abstract Machine Interpretation:
({J1, J2} ⊢ ...)
where J1 = p() | q() ⊲ a()

J2 = p() | r() ⊲ b()

Fig. 2. A Matching Status Automaton for two Join-Patterns

that arrival of message m has triggered nothing and therefore is just queued. If
there are more than one alternative transitions between two states of the au-
tomaton, we will represent them as a single edge with the set of alternative
transitions. Since the Join-Patterns considered do not have guard conditions,
messages channels are normally implemented with shared queue data structures,
and the task of triggering Join-Patterns is as simple as popping messages from
the relevant sets of queues. The choice of taking p-J1 to 000 or 0N0 depends on
whether there are any more q’s left after J1 is triggered.

A state automaton compilation like this implements a matching policy re-
ferred to as “match as soon as possible”, where join patterns are immediately
triggered upon the arrival of the final message that complete it’s match. For
example, suppose that all queues are currently empty (000), the arrival of q

transits the automaton to 0N0 and does not triggering any join patterns since no
complete matches are available. The arrival of p completes J1’s match and trig-
gers it, hence the automaton makes the p-J1 transition. Note that the “match
as soon as possible” matching policy is sound with respect to the chemical ab-
stract machine semantics, but does not allow all its possible non-deterministic
behaviors. We will discuss more of this issue in Section 3.3.

3.2 CHR Rule Matching Compilation Scheme

We introduce a new Join-Pattern compilation scheme, based on CHR rule match-
ing semantics. The idea is to compile Join-Patterns into CHR rules, where known
CHR operational semantics can be applied to derive Join-Pattern triggering. Our
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CHR Primitives:

Constraint Names c Variables x

Constant Values v List of a’s a

CHR Terms and Constraints:

Substitutions θ ::= [v1 /x1 , .., vn/xn ]
Terms t ::= x | v

CHR Constraints C ::= c(̄t)
Numbered Constraints Cn ::= C#n

Occurrence Constraints Co ::= C : i

Active Constraints A ::= C#n : i

CHR Matching Sets:

Rule Head H ::= Co | H ∧ H

Matching Set P ::= {H } | P ⊎ P

CHR Stores and States:

Stores St ::= ∅ | {Cn} ⊎ St

Match States σ ::= 〈C ,St〉n (Initial)
| 〈A,St〉n (Intermediate)
| 〈θ,R,St〉n (Match Success)
| 〈ǫ,St〉n (Match Fail)

Fig. 3. CHR Rule Matching Essentials

presentation here is inspired by the refined CHR operational semantics [8]. Fig-
ure 3 reviews the essential components of the CHR language. The actual CHR
framework is much richer than presented here (eg. guards, propagation, etc..).
We will omit these features for simplicity, but note that extending this scheme
with guards and propagation is straight-forward.

Lists are denoted by [x | xs], where x is the first element and xs the tail. The
empty list is denoted by [ ] and x̄ is short for a list of x’s. Sets are denoted by
{x1, ..., xn} and multi-set union of two sets S1 and S2 is denoted by S1 ⊎ S2.

We are particularly interested in the multi-set matching part of CHR ex-
ecutions, hence we only consider CHR rule heads (rule bodies are omitted).
Constraints in rule heads are assigned unique occurrence numbers (eg. C : i)
with respect to there textural order in the program. Rule heads are matched
against constraints in the multi-set store. Stored constraints are numbered (eg.
C#n) to distinguish duplicate copies. Constraint matching is driven by an active
constraint, C#n : i, which matches numbered constraint C#n with occurrence
i. A matching set P is a set of CHR rule heads. We define two auxiliary functions
cons and maxOccurs, which returns constraints from numbered constraints and
returns the maximum occurrence number from a matching set respectively.



A Comparison Between Constraint Handling Rules and Join-Calculus 59

Single-Step Matching Reduction: σ →P σ

(Activate) 〈C, St〉n →P 〈C#n : 1, {C#n} ⊎ St〉n+1

(Match)

H ′
1 ∧ C′ : j ∧ H ′

2 ∈ P

∃θ such that θ(C′) = C θ(H ′
1) = cons(H1) θ(H ′

2) = cons(H2)

〈C#m : j, {C#m} ⊎ H1 ⊎ H2 ⊎ St〉n →P 〈θ, H ′
1 ∧ C′ : j ∧ H ′

2, St〉n

(Continue)
j < maxOccur(P)

〈C#m : j, St〉n →P 〈C#m : (j + 1), St〉n

(Deactivate)
j ≥ maxOccur(P)

〈C#m : j, St〉n →P 〈ǫ, St〉n

Exhaustive Matching Reduction: σ →∗

P σ

(Transitive)

σ →P σ′ σ′ →∗

P σ′′

σ →∗

P σ′′

(Match-Success)

σ →P 〈θ, R,St〉n

σ →∗

P 〈θ, R,St〉n

(Match-Fail)

σ →P 〈ǫ, St〉n

σ →∗

P 〈ǫ, St〉n

Fig. 4. CHR Multi-set Rule Matching Semantics

Figure 4 formally specifies the CHR rule matching semantics. This seman-
tics is defined in terms of reduction steps (→P ) which maps matching states to
matching states. Matching starts from an initial matching state 〈C, St〉n. Tran-
sition rules are tried in sequence. Rule (Activate) begins the matching procedure
by activating constraint C. This involves adding C to the store and assigning
it occurrence number 1. The rule (Match) specifies the successful matching of
a CHR rule. Active constraint C#m : i matches with the ith occurrence of P
and matching partners H1 and H2 are present in the store. This leads to the
match state 〈θ, R, St〉n where θ is the matching substitution, R is the rule heads
that is matched and St is the remaining store after matching constraints are
removed. Rule (Continue) moves the search forward by incrementing the occur-
rence number of the active constraint, while (Deactivate) ends the search when
last occurrence is tried and no match is found. Exhaustive reductions →P de-
fines the reduction sequence from a initial match state to a final state (match
success/match fail).

Figure 5 illustrates the CHR-Based Join-Pattern matching semantics. We
assume a straight forward compilation scheme for Join-Patterns. Namely, pro-
cesses (messages) are treated as constraints and Join-Patterns are assigned oc-
currence numbers, depending on the textual order of their appearance. A CHR-
Based Join-Pattern matching state (R ⊢ M ,St ,n) consist of the reaction rules
R, the concurrent messages/processes M (ie. chemical soup), a CHR store St

and store identifier n. It essentially maintains the matching status of a set of
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Primitives:

Process Name p Variable x

Constant Value v List of a’s a

Compiled Join-Pattern Expressions:

Term t ::= x | v

Process/Constraint P ::= p (̄t)
Concurrent Processes M ::= P | M , M

Compiled Join-Pattern J ::= P : i | J ∧ J

Reaction Rules R ::= {J ⊲ M } | R ⊎ R

CHR-Based Join-Pattern Matching State:

Matching State E ::= (R ⊢ M , ∅, 1 ) (Initial)
| (R ⊢ ∅, St ,n) (Final)
| (R ⊢ M ,St , n) (Intermediate)

CHR-Based Reduction Step: (R ⊢ M ,St ,n) −→ (R ⊢ M ,St , n)

(Join-Pattern Triggered)

R = {H1 ⊲ B1 , ..., Hn ⊲ Bn} P = {H1 , ..., Hn}

〈p (̄t),St〉n →∗

P 〈θ,Hi ,St ′〉n′ for some i ∈ {1 , ..., n}

(R ⊢ {p (̄t)} ⊎ M ,St , n) −→ (R ⊢ θ(Bi) ⊎ M ,St ′,n ′)

(Message Stored)

R = {H1 ⊲ B1 , ..., Hn ⊲ Bn} P = {H1 , ..., Hn}

〈p (̄t),St〉n →∗

P 〈ǫ,St ′〉n′

(R ⊢ {p (̄t)} ⊎ M ,St ,n) −→ (R ⊢ M ,St ′,n ′)

Fig. 5. CHR-Based Join-Pattern Matching Semantics

Join-Pattern reaction rules. Hence, it is the runtime structure that replaces the
matching state automaton of standard Join-Pattern compilations. For instance,
the following shows Join-Patterns (in JoCaml syntax) and its CHR-Based inter-
pretation:

Implementation in JoCaml:
let p() & q() = a() (J1)

or p() & r() = b() (J2)

in ...

CHR-Based Matching State:
({J1,J2} ⊢ ...)
where J1 = p():1 ∧ q():2 ⊲ a()

J2 = p():3 ∧ r():4 ⊲ b()

Reduction steps −→ are defined by two transitions (Join-Pattern Triggered)
and (Message Stored), both of which specify arbitrary scheduling of a process
for CHR matching (Figure 4) and the respective outcomes of the matching.
Transition (Join-Pattern Triggered) is taken when scheduled process is success-
fully matched (according to CHR matching semantics), hence the corresponding



A Comparison Between Constraint Handling Rules and Join-Calculus 61

Join-Pattern is triggered. Transition (Message Stored) is taken when scheduled
process fails to match, hence the process is stored as a “message” in the CHR
store, awaiting for future matching.

3.3 Discussion

Non-Determinism in CHR Matching Semantics: One important char-
acteristic of this compilation scheme is that multiple CHR matchings are not
intended to be done in parallel, but in an interleaving manner (transitions
(Join-Pattern Triggered) and (Message Stored) are performed as “atomic” steps,
hence cannot be intermediately interleaved). While this would likely limit perfor-
mance of an actual implementation, it simplifies our CHR matching semantics by
a great deal by not allowing execution of multiple active constraints in parallel,
thus not introducing more non-determinism than needed. Note that our CHR
matching semantics is no more non-deterministic than the refined CHR opera-
tional semantics ωr [8] (Given a fixed sequence of goal constraints to activate,
our matching semantics will derive similar results). The main additional source
of non-determinism is instead introduced by the top level Join-Pattern reduc-
tion steps, which allows processes (constraints) to be scheduled for activation in
arbitrary sequences.

“Match as soon as Possible” versus CHR Matching Semantics:

The CHR matching semantics shares remarkable similarities with the Join-
Pattern state automata “match as soon as possible” matching policy. The Join-
Pattern state automata trigger Join-Patterns immediately once a complete match
has “arrived”, by keeping track on which message channels are empty/non-
empty. Similarly, CHR matching semantics executes constraints in sequence of
activation and triggers a rule immediately when the CHR store consists of a
complete rule head match. Let’s consider an example by examining the state
transitions taken by the state automaton of Figure 2 in response to the message
sequence, p(), q() then r():

Message Sequence: [p(),q(),r()]

Join-Pattern Trigger via State Automata (Figure 2):

This results in the triggering of the join pattern J1 as it is triggered immedi-
ately from the state N00 once q() arrives. This finally leads to a state where only
r() is left (00N). We consider the CHR matching of this example. For brevity, we
omit the top-level Join-Pattern reduction steps, but we illustrate the underlying
CHR derivations in the sequence of activation: [p(),q(),r()]

Join-Pattern Trigger via CHR Matching (Figure 4 and 5):

CHR rule head patterns:
P = {J1,J2} where J1 = p():1 ∧ q():2 , J2 = p():3 ∧ r():4
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Activation Sequence: [p(),q(),r()]

〈p(), ∅〉1
(Activate) →P 〈p()#1 : 1, {p()#1}〉2
(Continue) × 4 →P 〈p()#1 : 5, {p()#1}〉2
(Deactivate) →P 〈ǫ, {p()#1}〉2

〈q(), {p()#1}〉2
(Activate) →P 〈q()#2 : 1, {p()#1, q()#2}〉3
(Continue) →P 〈q()#2 : 2, {p()#1, q()#2}〉3
(Match) →P 〈[ ], J1, ∅〉3

〈r(), ∅〉3
(Activate) →P 〈r()#1 : 1, {r()#1}〉4
(Continue) × 4 →P 〈r()#1 : 5, {r()#1}〉4
(Deactivate) →P 〈ǫ, {r()#1}〉4

Similarly, the CHR derivation shows the triggering of rule J1 and the final
CHR store corresponding to 00N in the state automaton. In both case, Join-
Pattern (CHR rule) J1 is triggered as the match {p(),q()} is completed first.

Deleting Matching Transition versus Rule Ordering: CHR rule heads
and Join-Patterns may contain overlapping partial matches. Such overlaps are
sources of non-deterministic behaviors in the theoretical CHR semantics and
Join-Calculus semantics based on the chemical abstract machine. Overlapping
partial matches allow multiple rules (CHR rule / reaction rule) to be applicable
from certain states, and applying different rules in such states may lead to dif-
ferent outcomes. For example, given Join-Patterns in Figure 2, suppose we are
in a state with messages q() and r(), according to chemical abstract machine,
we can trigger either J1 or J2 is a p() arrives next. This situation is captured
by the state 0NN of the automaton in Figure 2 where we have two edges (p-J1
and p-J2), both triggered by the message p(). This indicates that we can trig-
ger either of the two Join-Patterns. In standard Join-Pattern implementations
(eg. JoCaml), this is dealt with by allowing the compiler to choose an arbitrary
transition edge and remove the other (compiler deletes either p-J1 or p-J2).
Hence the final matching status automaton generated would not exhibit such
non-determinism.

For the CHR matching semantics, overlapping rules are dealt with in a less
ad-hoc way. Consider the CHR matching reductions of this scenario (we assume
that CHR store already contains constraints q() and r() when p() is activated:

〈p(), {q()#1, r()#2}〉3
(Activate) →P 〈p()#3 : 1, {q()#1, r()#2, p(X)#3}〉4
(Match) →P 〈[ ], J1, {r()#2}〉4

Note that the active constraint p()#3 : j can only match with occurrence
j of the CHR program, hence p()#3 : 1 will always try matching with J1 first
before taking transitions (Continue) twice to reach p()#3 : 3 which will try
matching with J2 (Note this never happen since matching with J1 succeeds).
Thus rule textual ordering would prevent such non-deterministic behaviors.
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In essence, the CHR refined operational semantics is comparable to a Join-
Pattern matching status automaton with a “match as soon as possible” policy
and overlapping transitions are deleted depending on textual ordering (ie. tran-
sitions involving lower textual ordering join-patterns are deleted). Interestingly,
researchers of the two communities proposed very different motivations for en-
forcing determinism:

– Join-Pattern matching status automata: Non-determinism is removed
purely for efficiency (we don’t need to decide which overlapping rules to
trigger at runtime, because there is at most one), doing so have a price in
terms of semantics [12] as some behaviors stated by the theoretical calculus
(ie. the chemical abstract machine) can no longer be observable. This sug-
gests that deletion of non-deterministic transitions is viewed as a trade off
favouring efficiency over modeling non-deterministic behaviors of concurrent
programs.

– CHR refined operational semantics: Determinism is motivated not only
because of efficiency, but also to make rule-based constraint programming
easier (determinism enhances properties like termination and confluence [8])
Rule ordered executions also allow us to write more deterministic programs,
which would not work as intended in a unordered setting.

Rule ordered matching semantics introduced by CHR would allow us to write
more expressive Join-Patterns. This is illustrated by the following:

let get(X) & put(Y) = got(X,Y) (gsucc)

or get(X) = got(X,ǫ) (gfail)

in ...

The intend is to model a shared buffer, where get retrieves an object if
one exists, retrieves nothing otherwise, while put places an object in the buffer.
We assume that ǫ denotes the null object. According to the CHR matching
semantics, an active get(X) will always try to match in rule order (ie. try gsucc

before gfail). Hence this effectively models the firing of gfail in the absence
of put(y) (ie. get nothing if there are no put(Y) found).

The matching status automaton generated by the standard Join-Pattern com-
pilation scheme is illustrated by the following:

Note that arrival of a get message at state 0N will cause two possible tran-
sitions (get-gsucc or get-gfail). Hence, according to standard compilation
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practice, the compiler will choose either of the two transitions of state 0N to
be deleted from the final automaton. If the get-gsucc transitions are removed,
only gfail will ever be triggered at runtime. If get-gfail is removed instead
we get the desired behavior for this example. Unfortunately, this choice is not
observable to the programmer, hence we cannot make any assumptions on order-
ing of Join-Patterns in standard Join-Pattern compilations, unlike in our CHR
compilation.

Performance versus Expressiveness: Competitive implementations of
Join-Patterns (eg. Polyphonic C# [11]) do not explicitly construct state au-
tomata but represent Join-Pattern matching states as bitmaps. Hence triggering
of Join-Patterns can be executed in constant time, with known bit-masking tech-
niques. The main disadvantage of using such compilation scheme is its incompat-
ibility with the introduction of guard conditions. Our CHR compilation scheme
benefits from the straight-forward extensions of features like propagation, guards
and non-linear patterns. We also benefit from existing CHR optimizations (eg.
constraint indexing, optimal join ordering, passive occurrences, etc.. [8, 13, 14]
). Most of such optimizations however, benefit only programs which uses guard
conditions and non-linear patterns. Thus, for the class of programs which use
only basic Join-Patterns, it is likely that our CHR matching compilation scheme
will perform less efficiently compared to the standard schemes.

4 Conclusion and Future Work

We introduced a new Join-Pattern compilation scheme, based on the CHR
matching semantics. This matching semantics is inspired by the CHR refined op-
erational semantics. We have shown the basic difference and similarity between
the standard Join-Pattern compilation scheme and CHR matching compilation
scheme. The main benefits of our CHR matching compilation scheme is the pos-
sibility of extension with CHR features like guards and propagation, which will
prove to be extremely useful.

An extension of Join-Patterns which introduces algebraic pattern matching
in the matching of Join-Patterns is studied in [15]. Our approach generalizes this,
as CHR matching semantics handles pattern matching over constraint (message)
variables.

In the future, we intend to explore this relation further by implementing a
prototype Join-Pattern system based on the CHR matching compilation scheme.
Our CHR matching compilation scheme here is inherently single threaded, yet
practical implementations would demand a system which is capable of executing
matchings in parallel. Our works in a parallel implementation of CHR [16] would
provide the framework for a prototype system based on parallel CHR matching.
We also intend to investigate the implications of such implementations on per-
formance, as well as on theoretical CHR properties (confluence, determinism).
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Abstract. Constraint Handling Rules (CHR) is a declarative concurrent
programming language. Like the class of Concurrent Constraint (CC)
languages, CHR features a declarative semantics based on Girard’s intu-
itionistic linear logic. The phase semantics of linear logic has been used in
the past to prove safety properties for the class of CC languages. In this
paper we show that we can adapt this result to prove safety properties
for CHR as well.

1 Introduction

Constraint Handling Rules (CHR) is a concurrent committed-choice rule-based
programming language introduced in the 1990s by Frühwirth [1]. While it has
been originally designed for the design and implementation of constraint solvers,
it has come into use as a general-purpose concurrent programming language.
Owing to its origins in the tradition of logic and constraint logic programming,
CHR features a classical declarative semantics. Recently, Betz and Frühwirth [2,
3] proposed an alternative declarative semantics based on Girard’s Linear Logic
(LL) [4].

The class of Concurrent Constraint programming language (CC) was intro-
duced by Saraswat in 1987 [5] as an unifying framework for constraint logic
programming and concurrent logic programming with a synchronisation mecha-
nism bases on constraint entailment. From the logic programming tradition, the
operational aspects of CC programming have been early connected to a logical
semantics based on classical logic [6], however Ruet [7] has shown that a precise
logical interpretation of these languages requires linear logic (LL). The class of
Linear logic Concurrent Concurrent languages (LCC) is a general extension of
CC languages where the constraints are based on linear logic instead of classical
logic. In addition to the classical constraint programming featured by CC, the
LCC class of languages provides state changes.

The phase semantics is the natural provability semantics of linear logic. In
the spirit of classical model theory, it associates formulas with values and can
thus be considered the most traditional semantics of linear logic. Despite having
been named “the less interesting semantics” by Girard himself [8], Fages, Ruet
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and Soliman [9] have proposed an original application of the phase semantics
to prove safety properties of (L)CC using the links between LL and (L)CC
previously introduced by Ruet.

In this paper, we show how the phase semantics of linear logic can be applied
to Constraint Handling Rules in a similar way to Fages’, Ruet’s and Soliman’s
proposal for (L)CC paradigm. In practice, to prove a safety property of a CHR
program, we will exhibit a phase space and an interpretation of the program in
which that particular property does hold. This result illustrates the usefulness
of both the phase semantics of linear logic and linear logic semantics of CHR.

The paper is structured as follow: First we recall the basics of Constraint
Handling Rules (CHR) in Sect. 2 and its LL semantics in Sect. 2.3. In Sect. 3
we present Girard’s phase semantics of LL and in Sect. 4 we explain how it can
be applied to prove safety properties for CHR Programs. Finally, we apply this
method in one introductory and one more advanced example in Sect. 5.

2 Constraint Handling Rules

In CHR, we distinguish two sets of atomic constraints: The set of built-in con-
straints is handled by a predefined constraint handler. It contains at least the
constraints true and false as well as equality =. The set of user-defined con-
straints is disjoint from the built-in constraints and is handled by a CHR pro-
gram.

2.1 Syntax

Definition 1 (CHR Program). A CHR program is a finite sequence of CHR
rules, where a CHR rule is either:

– a simplification rule of the form:
H <=> G | B

– or a propagation rule of the form:
H ==> G | B

where H (the head) is a non-empty multi-set of user-defined constraints, G (the
guard) a conjunction of built-in constraints, and B (the body) is a multiset of
built-in and user-defined constraints.

The empty guard true can be omitted together with the symbol |. The no-
tation name @ R gives a name to a CHR rule R. For the sake of simplicity, we
assume without loss of generality that a variable appears at most once in the
head of a rule. Furthermore, we do not allow nested disjunction in the body of
a rule.

Example 1. The following CHR rules [1] define an ordering constraint solver.
Note that equality = is as usual a built-in constraint whereas we assume that
=< is a user-defined constraint here.
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reflexivity @ X=<Y <=> X=Y | true.
antisymmetry @ W=<X, Y =<Z <=> W=Z,X=Y | W=X.
transitivity @ W=<X, Y =<Z ==> X=Y | W=<Z.

The first rule eliminates =< constraints where both arguments are equal, the
second replaces two symmetric inequality constraints by one equality constraint,
and the third adds constraints in such a way as to implement transitive closure.

2.2 Operational Semantics

We introduce the abstract operational semantics of CHR. In this most general
variant of the operational semantics, the language is inherently non-deterministic.
More restricted variants of the operational semantics guarantee deterministic ex-
ecution and avoidance of trivial non-determinsm but are less interesting from the
theoretical point of view and with respect to concurrency.

Definition 2 (CHR state). A CHR state is a tuple 〈F,C〉 where F is a mul-
tiset of built-in and CHR constraints called goal store and C a conjunction of
built-in constraints, called built-in store.

We assume without loss of generality that a constraint theory is a set of
implications called non-logical axioms of the form: ∀(C ⊃ D) where the C and
the D are conjunction of built-in constraints.

Definition 3 (Operational Semantics[10]). Given a CHR program D and
a constraint theory CT , the transition relation → over states of the operational
semantics, is defined inductively as the least relation satisfying the following
rules:

Solve 〈{C} ] F,D〉 → 〈F,C ∧D〉
if C is a built-in constraint

Simplify 〈G ] E,D〉 → 〈B ] E,G=HG ∧ ∧D〉
if (H <=> C | B) is in P renamed with fresh variables
and CT |= D → ∃(G=H ∧ C)

Propagate 〈G ] E,D〉 → 〈B ]G ] E,G=H ∧G ∧D〉
if (H ==> C | B) is in P renamed with fresh variables
and CT |= D → (G=H ∧ C) then

Example 2. One possible execution of the program of the previous example 1 is:

〈{Z=<X, X=<Y, Y=<Z}, true〉
〈{X=<Z, Z=<X, X=<Y, Y=<Z}, true〉 (Propagate transitivity)
〈{X=Z, X=<Y, Y=<Z}, true〉 (Simplify antisymmetry)
〈{X=<Y ∧ Y=<Z}, X=Z〉 (Solve)
〈{X=Y}, X=Z〉 (Simplify antisymmetry )
〈∅, X=Y ∧ X=Z〉 (Solve)
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2.3 Linear Logic Semantics

In this section we recall the result of [2]. The CHR rules and CHR states are
translated into ILL as presented in the table 2.3.

true true† = 1

non-logical axioms ∀(C ⊃ D) =!∀(C† ( D†)

built-in constraints C† =!C

CHR constraint C† = C

empty multiset ∅† = 1

conjunction (C1 ∧ · · · ∧ Cn)† = C†
1 ⊗ · · · ⊗ C†

n

simplification rules (H <=> G|B)† = ∀((G† ⊗ H†) ( ∃ȳ.B†)

propagation rules (H ==> G|B)† = ∀((G† ⊗ H†) ( H† ⊗ ∃ȳ.B†)

programs {R1, . . . , Rn}† = {R†
1, . . . , R

†
n}

with ȳ = fv(G, B) \ fv(H)

Table 1. Translation of CHR into ILL

In the following, CT † is the translation of some constraint theory CT using
usual Girard’s translation of classical logic into linear logic.

Theorem 1 (Soundness [2]). If a CHR state T is derivable from another
CHR state S under a program D and a constraint theory CT then the following
holds:

CT †, P † ` ∀(S† ( T †)

Theorem 2 (Completeness [2]). Let S and T be two CHR states. If two
states are such that :

CT †, P † ` ∀(S† ( T †)

then there exists a state T ′ derivable from S such as :

CT † ` (S† ( T †)

3 Phase Semantics

Phase semantics is the natural provability semantics of linear logic [4]. It has
been successfully applied by Fages et al. in order to prove safety properties of
LCC programs through the logical semantics of LCC.

Definition 4 (Phase Space). A phase space P = (P, ·, 1,F) is a commutative
monoid (P, ·, 1) together with a set F of subsets of P , whose elements are called
fact, such that:
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– F is closed under arbitrary intersection,
– for all A ⊂ P , for all F ∈ F , A ( F = {x ∈ P : ∀a ∈ A, a ·x ∈ F} is a fact.

A parametrical fact A is a total function from V to F assigning to each variable
x a fact A(x). Any fact can be seen as a constant parametrical fact, and any
operation defined on fact: (A ? B)(x) = A(x) ? B(x).

Given A and B two parametrical facts, we define the following facts:

A&B = A ∩B
A⊗B =

⋂
{F ∈ F : A ·B ⊂ F}

A⊕B =
⋂
{F ∈ F : A ∪B ⊂ F}

∃x.A =
⋂ {

F ∈ F : (
⋃

x∈V A(x)) ⊂ F
}

∀x.A =
⋂ {

F ∈ F : (
⋂

x∈V A(x)) ⊂ F
}

Here are a few notable facts: the greatest fact > = P , the smallest fact 0 and
1 =

⋂
{F ∈ F : 1 ∈ F}.

Definition 5 (Enriched Phase Space). An enriched phase space is a phase
space (P, ·, 1,F) together with a subset O of F , whose elements are called open
facts, such that:

– O is closed under arbitrary ⊕,
– 1 is the greatest open fact,
– O is closed under finite ⊗,
– ⊗ is idempotent on O (if A ∈ O then A⊗A = A).

!A is defined as the greatest open fact contained in A.

Definition 6 (Valuation). Given an enriched phase space, a valuation is a
mapping η from atomic ILL formulas to facts such that η(>) = >, η(1) = 1 and
η(0) = 0.

Definition 7 (Interpretation). The interpretation η(A) of a formula A is
defined inductively a follows:

η(A⊗B) = η(A)⊗ η(B)
η(A ( B) = η(A) ( η(B)

η(A&B) = η(A)&η(B)
η(A⊕B) = η(A)⊕ η(B)

η(!A) = !η(A)
η(∃x.A) = ∃x.η(A)

η(A) = η(A)

We extend this interpretation to multi-sets of formulas in the obvious way by
considering the coma as ⊗, that is to say η(∅) = 1 and η(A1, . . . , An) = η(A1)⊗
· · · ⊗ η(An).

This takes us to defining a notion of validity:
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Definition 8 (Validity).

P, η |= (Γ ` A) if and only if η(Γ ) ⊂ η(A)

P |= (Γ ` A) if for every valuation η P, η |= (Γ ` A)

|= (Γ ` A) if for every phase space P P |= (Γ ` A)

Theorem 3 (Soundness [4, 11]).

If there is a sequent calculus proof of Γ ` A then |= (Γ ` A).

Theorem 4 (Completeness [4, 11]).

If |= (Γ ` A) then there exists a sequent calculus proof of Γ ` A.

4 Proving Safety Properties

As Fages et al. [9] have done for the (L)CC paradigm, we can use the phase
semantics presented above to prove safety properties for CHR. Indeed, by con-
sidering CHR under the abstract operational semantics presented in Definition
3 CHR can be viewed as a subset of a Linear CC language.

Due to the soundness theorem 3 with respect to ILL, we know that:

If ∀CT †,D† ` ∀(ST ( T †) then η(CT †,D†) ⊂ η(∀(ST ( T †)).

By contrapositive we get that there exists a phase space P and a valuation
η such that

If η(CT †,D†) 6⊂ η(∀(ST ( T †)) then ∀CT †,D† 6` ∀(ST ( T †).

Finally, by using the contrapositive of the soundness theorem 1 we have

If ∀CT †,D† 6` ∀(ST ( T †) then S 6→ T.

We have hence the following proposition which allows us to reduce a problem
of non-existence of a derivation between two CHR states – i.e. a safety property –
to a problem of existence of a phase space and an interpretation of the program
in which a simple inclusion is not possible. As explained in [9], only the com-
pleteness of the logical semantics is used in to prove the property. Nonetheless,
the soundness theorem gives us the certitude that a such semantical proof of a
true property exists.

Proposition 1. Let CT be a constraint theory and D a CHR program. To prove
a safety property of the form S 6→ T , it is enough to prove there exists a phase
space P, a valuation η a substitution σ and a element a ∈ η(Sσ†) such that:

1. For any non-logical axiom: ∀(C1 ∧ · · · ∧Cm) ⊃ (D1 . . . Dn) of CT , the inclu-
sion (η(!C1)⊗ · · · ⊗ η(!Cm)) ⊂ (η(!D1)⊗ · · · ⊗ η(!Dn)) holds;
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2. For any CHR rule H1, . . . ,Hl <=> G1 ∧ · · · ∧ Gm | B1, . . . , Bn of D the
inclusion (η(H1)⊗· · ·⊗η(Hl)⊗η(!G1)⊗· · ·⊗η(!Gm)) ⊂ (η(B†

1)⊗· · ·⊗η(B†
n)))

holds;
3. a /∈ η((Tσ)†).

Proof. First notice that conditions 1 and 2 imply that P, η |= CT †,D† and then
1 ∈ η(CT †,D†). Now let us suppose that that a ∈ η((Sσ)†) and a /∈ η((Tσ)†).
Hence we infer that 1 /∈ η((Sσ)†) ( η((Tσ)†). Therefore 1 /∈ η(∀((S)†) (
η((T )†)) and then η(CT †,D†) 6⊂ ∀η((S)†) ( η((T )†). Using the soundness the-
orem 3 we infer that (CT †,D†) 6` ∀η((S)†) ( η((T )†). Using the soundness
theorem 1, we conclude that S 6→ T . �

5 Examples

5.1 The Three Dining Philosophers Problem

In this example, we formulate a CHR program that implements the Dining
Philosophers Problem for three philosophers. Subsequently, we use the phase
semantics of linear logic to prove that from the canonic initial state, our program
will never reach a state in which both philosopher #1 and philosopher #2 are
eating at the same time.

i) The Program.

Let D be the following program defined under the trivial constraint theory
CT :

fork(1), fork(2) <=> eat(1)
fork(2), fork(3) <=> eat(2)
fork(3), fork(1) <=> eat(3)
eat(1) <=> fork(1), fork(2)
eat(2) <=> fork(2), fork(3)
eat(3) <=> fork(3), fork(4)

ii) Formulate the Property.
Our goal here is to prove, using Proposition 1, the following safety property:

〈true, fork(1), fork(2), fork(3)〉 6→ 〈C, eat(1), eat(2),H〉

where H is an arbitrary multiset of constraints.

iii) The Phase Space.
Consider the following structure P:

– the monoid is {N, ·, 1}
– F = D(N) (the set of parts of N)
– O = {∅, {1}}
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For such phase space, any valuation η respects the two conditions: η(1) = {1}
and η(>) = N.

iv) The Valuation.
We define η as follows :

– η(fork(1)) = {2}
– η(fork(2)) = {3}
– η(fork(3)) = {5}
– η(eat(1)) = {6}
– η(eat(2)) = {15}
– η(eat(3)) = {10}

– η(X = Y ) =

{
{1} if X = Y

∅ otherwise

v) Verify the Validity of the Constraint System (condition 1).

We need to prove now that the constraint system is valid with respect the
phase space P and the valuation η. In this basic example, we can suppose without
loss of generality that the constraint system is the trivial one, i.e. in only contains
the basic non-logical axioms for equality:

– (reflexivity) ∀X.(true ⊃ X < X + 1)
– (symmetry) ∀XY.(X = Y ⊃ Y = X)
– (transitivity) ∀XY Z.((X = Y ∧ Y = Z) ⊃ X = Y )

Firstly, note than since η(X = Y ) is an open fact, η(!X = Y ) = η(X = Y ).
For (reflexivity) note that η(1) = η(X = X) = {1}, for (symmetry) note that
obviously η(X = Y ) = η(Y = X). For (transitivity), either X, Y and Z are
equal, in which case η(X = Y ) ⊗ η(Y = Z) = η(X = Z) = {1}, or at least one
of them is different from the others, in which case η(X = Y )⊗ η(Y = Z) equals
the empty set and is therefore trivially included in η(X = Z).

vi) Verify the Validity of the Program (condition 2).

In order to prove the validity of the program we only have to notice that:

– η(eat(1)) = η(fork(1)⊗ fork(2)) = {6}
– η(eat(2)) = η(fork(2)⊗ fork(3)) = {15}
– η(eat(3)) = η(fork(3)⊗ fork(1)) = {10}

vii) Counter-example (condition 3).

It can now be easily verified that:
η(〈true, fork(1), fork(2), fork(3)〉†) = η(fork(1)⊗ fork(2)⊗ fork(3)) = {30}
η(〈C, eat(1), eat(2),H〉†) ⊂ η(eat(1)⊗ eat(2)⊗>) = 90 · N

We deduce hence that 30 ∈ η(〈true, fork(1), fork(2), fork(3)〉†) and 30 /∈
η(〈C, eat(1), eat(2),H〉†). Therefore we infer that the intended safety property
(〈true, fork(1), fork(2), fork(3)〉 6→ 〈C, eat(1), eat(2),H〉) holds.
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5.2 The n Dining Philosophers Problem

In this example, we implement the Dining Philosophers Problem for an arbitrary
number of philosphers and we show using the phase semantics that the program
can never reach a state in which any two philosophers directly neighboring each
other are eating at the same time.

i) The Program and the Constraint Systems.

For the sake of simplicity, we add to each CHR constraint an extra argu-
ment N for the total number of philosophers. We suppose that CT includes the
constraint theory for natural numbers.

eat0 @ fork(M, s(M)), fork(0, s(M)) <=> eat(0, s(M)).
think0 @ eat(0, s(M)) <=> fork(M, s(M)), fork(0, s(M)).
eats(X) @ fork(I, N), fork(s(I), N) <=> eat(s(I), N).
thinks(X) @ eat(s(I), N) <=> fork(I,N), fork(s(I), N).
base case @ put fork(0, N) <=> true
rec @ put fork(s(I), N) <=> fork(I,N), put fork(I, N).

ii) Reformulate the Property.

We want to prove that two philosophers (among N philosophers) which are
seated side by side cannot be eating at the same time. This can be formalized
by the two following safety properties (we naturally assume there are at least
two philosophers):

– case of the philosophers 0 and N :

∀M.(〈true, put fork(s(s(M)), s(s(M)))〉 6→ 〈C, eat(s(M), s(s(M))), eat(0, s(s(M))), H〉)

– case of the philosophers I and I + 1:

∀M.(〈true, put fork(s(s(M)), s(s(M)))〉 6→ 〈C, eat(I, s(s(M))), eat(s(I), s(s(M))), H〉)

iii) The Phase Space.

We consider the same structure P as previously:

– the monoid is {N, ·, 1}
– F = D(N) (the set of parts of N)
– O = {∅, {1}}

iv) The Valuation.

Let φ be an arbitrary bijection between natural numbers and prime numbers.
Now, let us define η as:

– η(fork(I,N)) = {φ(I)}
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– η(eat(I, J)) =


{1} if I = 0 and J = 0
{φ(M) · φ(0)} if I = 0 and J = s(M)
{φ(K) · φ(s(K))} if I = s(K)

– η(put fork(I, N)) =




K∏
j=0

φ(j)

 if I = s(K)

{1} if I = 0

– η(I = N) =

{
{1} if I = N

∅ otherwise

v) Verify the Validity of the Constraint System (condition 1).

We can assume the very simple following axiomatization:

1. ∀X(true ⊃ X = X)
2. ∀XY (X = Y ⊃ Y = X)
3. ∀XY Z(X = Y ∧ Y = Z ⊃ Y = X)
4. ∀XY.(s(X) = s(Y ) ⊃ X = Y )

The verification of the six first axioms is quite straightforward.

vi) Verify the Validity of the Program (condition 2).

– Validity of the rules eat0 and think0: Notice that for any M we have

η(fork(M, s(M))) ⊗ η(fork(0, s(M))) = {φ(M) · φ(0)} = η(eat(0, s(M))).

– Validity of the rules eatn et thinkn: Notice that for any K and any N :

η(fork(K, N)) ⊗ η(fork(s(K), N)) = {φ(K) · φ(s(K))} = η(eat(s(I), N)).

– Validity of the rule base case: Notice that for any for any N ze have:

η(put fork(0, N)) = {1} = η(1).

– Validity of the rule rec: The proof is by cases on the first argument s(I)
of the put fork constraint:
• s(I) = s(0): in this case notice that for any N :

η(put fork(s(0), N)) =

(
0Y

i=0

φ(i)

)
= {φ(0)} ⊗ {1}

= η(fork(0)) ⊗ η(put fork(0, N))

• s(I) = s(s(K)) for some K: in this case notice that for any N :

η(put fork(s(s(K)), N)) =

8<:
i=s(K)Y

i=0

φ(i)

9=; = {φ(s(K))} ⊗

8<:
i=s(K)Y

i=0

9=;
= η(fork(s(s(K)))) ⊗ η(put fork(s(K))
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vii) Counter-example (condition 3).

We now have to present two counter-examples, one for each safety property.
First, we easily verify that (for any constraint multisets C and H):

– η(put fork(s(s(M)), s(s(M)))) =
i=s(M)∏

i=0

– η(eat(s(M), s(s(M))), eat(0, s(s(M))), C, H) ⊂ φ(0) · φ(M) · φ(s(M))2 · N
– η(eat(I, s(s(M))), eat(s(I), s(s(M))), C, H) ⊂ φ(I) · φ(s(I))2 · φ(s(s(I))) · N

Since φ(0), φ(M) and φ(s(M)) are pairwise distinct prime numbers we have∏i=s(M)
i=0 /∈ φ(0) ·φ(M) ·φ(s(M))2 ·N. Similarly since φ(I), φ(s(I)) and φ(s(s(I)))

are pairwise distinct prime numbers we have
∏i=s(M)

i=0 /∈ φ(I)·φ(s(I))2·φ(s(s(I)))·
N. By Proposition 1, we prove the two safety properties.

6 Conclusion

Relying on the linear logic semantics of CHR, we showed that the method de-
scribed by Fages, Ruet and Soliman in [9] to verify safety properties of (L)CC
programs can be adapted to CHR programs as well. This adaptation is straight-
forward as from the point of view of its linear logic semantics, CHR can indeed
be viewed as a subset of LCC. We have given a detailed explanation of our
method, illustrated with two examples.

Our result provides evidence that the linear logic semantics is a useful tool
for the analysis and verification of CHR programs.

While a fully automatic application of our method might not be feasible, it
should be possible to significantly speed up the process with a semi-automatic
system that propagates a given valuation of the facts over a program and checks
whether or not this valuation proves a certain property defined by the user. This
could be done with a specific finite domain solver implemented in CHR and
optimized for our purpose. Such a system could spare the user the tedious and
error-prone process of propagating a valuation manually.

For the future, further investigation of the apparently close relationship be-
tween CHR and (L)CC as well as the relationship between CHR and algebraic
structures such as the phase semantics seems a promising approach and will
hopefully produce further useful results with respect to analysis and verification
of CHR programs.
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Abstract. Constraint Handling Rules (CHR) is an elegant, high-level
programming language based on multi-headed, forward chaining rules.
A distinguishing feature of CHR are propagation rules. To avoid trivial
non-termination, CHR implementations ensure a CHR rule is applied
at most once with the same combination of constraints by maintaining
a so-called propagation history. The performance impact of this history
is often significant. We introduce two optimizations to reduce or even
eliminate this overhead, and evaluate their implementation in two state-
of-the-art CHR systems.

1 Introduction

Constraint Handling Rules (CHR) [1, 2] is a high-level committed-choice CLP
language, based on multi-headed, guarded multiset rewrite rules. Originally de-
signed for the declarative specification of constraint solvers, it is increasingly used
for general purposes, in a wide range of applications. Efficient implementations
exist for several host languages, including Prolog [3, 4], Haskell, and Java [5].

An important, distinguishing feature of CHR are propagation rules. Un-
like traditional rewrite rules, propagation rules do not remove the constraints
matched by their head. They only add extra, implied constraints. Logically, a
propagation rule corresponds to an implication.

The formal study of properties such as confluence and termination, led to the
extension of CHR’s operational semantics with a token store [1]. The token store
contains a token for every constraint combination that may match a propagation
rule. Each time a propagation rule is applied, the corresponding token is removed.
Trivial non-termination is thus avoided by applying a propagation rule at most
once with the same combination of constraints.

Practical implementations of CHR use the dual notion of a token store, called
a propagation history ; history for short [6, 3–5]. A history contains a tuple for
each constraint combination that already fired a rule. A rule is only applied with
some constraint combination, if the history does not contain the corresponding
tuple. This is also reflected in more recent CHR operational semantics [7].

The implementation and optimization of propagation histories never received
much attention [6, 4]. Our results show however that the propagation history
can have a significant impact on both space and time performance. This paper

? Research Assistant of the Research Foundation– Flanders (FWO-Vlaanderen).
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constitutes a first attempt to resolve this apparent discrepancy. We introduce
two novel optimization techniques that either reduce or eliminate the overhead
associated with propagation history maintenance

Contributions and Overview

– In Section 3 we explore the design space for the implementation of propaga-
tion histories. We show why implementing a history efficiently is challenging,
and review some approaches taken by existing CHR systems. We then intro-
duce an optimization for two-headed propagation rules.

– Section 4 introduces an innovative optimization that eliminates the need
for maintaining a propagation history for all non-reactive CHR rules. This
important class of CHR rules covers the majority of rules found in general-
purpose CHR programs. We prove that the optimization is correct with
respect to CHR’s refined operational semantics [7].

– We implemented these optimizations in two state of the art CHR implemen-
tations, K.U.Leuven CHR [4, 8] for SWI-Prolog, and K.U.Leuven JCHR for
Java [5]. Section 5 reports on the significant performance gains.

2 Preliminaries

To make this paper relatively self-contained, this section briefly reviews CHR’s
basic syntax and operational semantics. Gentler introductions are found for in-
stance in [6, 1, 4].

2.1 CHR Syntax

CHR is embedded in a host language H. A constraint type c/n is denoted by
a functor/arity pair; a constraint c(x1, . . . , xn) is an atom constructed from
these predicate symbols, and a list of arguments xi, instances of data types
offered by H. Two classes of constraints exist: built-in constraints, solved by an
underlying constraint solver of the host H, and CHR constraints, handled by a
CHR program. Many CHR systems support type and mode declarations for the
arguments of CHR constraints. A CHR program P, also called a CHR handler,
is a sequence of CHR rules. The generic syntactic form of a CHR rule is:

ρ @ Hk \ Hr ⇔ G |B

The rule’s name ρ uniquely identifies a rule. The head consists of two conjunc-
tions of CHR constraints, Hk and Hr. Their conjuncts are called occurrences
(kept and removed occurrences resp.). If Hk is empty, the rule is a simplification
rule. If Hr is empty, the rule is a propagation rule and the symbol ‘⇒ ’ is used
instead of ‘⇔’. If both are non-empty, the rule is a simpagation rule. Either Hk

or Hr has to be non-empty. The guard G is a conjunction of built-in constraints.
If ‘G | ’ is omitted, it is considered to be ‘true | ’. The rule’s body B, finally, is
a conjunction of CHR and built-in constraints.
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reflexivity @ leq(X, X) ⇔ true.

idempotence @ leq(X, Y) \ leq(X, Y) ⇔ true.

antisymmetry @ leq(X, Y), leq(Y, X) ⇔ X = Y.

transitivity @ leq(X, Y), leq(Y, Z) ⇒ leq(X, Z).

Fig. 1. leq, a CHR program for the less-than-or-equal constraint.

Example 1. Fig. 1 shows a classic example CHR program, leq. It defines one
CHR constraint, a less-than-or-equal constraint, using four CHR rules. All three
kinds of rules are present. The constraint arguments are logical variables. The
handler uses one built-in constraint, namely equality. If the antisymmetry rule
is applied, its body adds a new built-in constraint to the built-in equality solver
provided by the host environment. The body of the transitivity propagation rule
adds a new CHR constraint, which is handled by the CHR program itself.

Head Normal Form In the Head Normal Form of a CHR program P, de-
noted HNF(P), a variable occurs at most once in rule heads. For instance, in
HNF(leq), the normalized form of the transitivity rule from Fig. 1 is:

transitivity @ leq(X, Y), leq(Y1, Z) ⇒ Y = Y1 | leq(X, Z).

2.2 The Refined Operational Semantics

The behavior of most current CHR implementations is formally captured by the
refined operational semantics [7], commonly denoted as ωr. The ωr semantics
is formulated as a state transition system, in which transition rules define the
relation between subsequent execution states. The version presented here follows
[6, 4], and is a slight modification from the original specification [7].

Notation Sets, multisets and sequences (ordered multisets) are defined as usual.
We use S[i] to denote the i’th element of a sequence S,++ for sequence concatena-
tion, and [e|S] to denote [e]++S. The disjoint union of sets is defined as follows:
∀X, Y, Z : X = Y t Z ⇔ X = Y ∪ Z ∧ Y ∩ Z = ∅. For a logical expression X,
vars(X) denotes the set of unquantified variables, and πV (X) ⇔ ∃v1, . . . , vn : X
with {v1, . . . , vn} = vars(X) \ V . The meaning of built-in constraints is assumed
determined by DH, a consistent (first order logic) built-in constraint theory.

Execution States An execution state of ωr is a tuple 〈A, S, B, T〉n. The execution
stack A is a sequence, used to treat constraints as procedure calls. Its function
is explained in more detail below. The CHR constraint store S is a set of iden-
tified CHR constraints. An identified CHR constraint c#i is a CHR constraint
c associated with a unique constraint identifier i. The two connated mapping
functions, chr(c#i) = c and id(c#i) = i, are extended to sequences and sets in
the obvious manner. The constraint identifiers are used to distinguish otherwise
identical constraints (chr(S) is a multiset of constraints). The counter n repre-
sents the next free CHR constraint identifier. The built-in constraint store B is
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1. Solve 〈[b|A], S, B, T〉n �P 〈S ++A, S, b∧B, T〉n if b is a built-in constraint and S ⊆ S
such that ∀c ∈ S : vars(c) 6⊂ fixed(B) and ∀H ⊆ S : (∃K, R : H = K ++R ∧ ∃ρ ∈ P :
¬appl(ρ, K, R, B) ∧ appl(ρ, K, R, b ∧ B)) → (S ∩H 6= ∅).

2. Activate 〈[c|A], S, B, T〉n �P 〈[c#n : 1|A], {c#n} t S, B, T〉n+1 if c is a CHR con-
straint (which has not yet been active or stored in S).

3. Reactivate 〈[c#i|A], S, B, T〉n �P 〈[c#i : 1|A], S, B, T〉n if c is a CHR constraint
(re-added to A by a Solve transition but not yet active).

4. Simplify 〈[c#i : j|A], S, B, T〉n �P 〈B ++ A, K t S, θ ∧ B, T′〉n with S = {c#i} t
K tR1 tR2 t S, if the j-th occurrence of c in P occurs in rule ρ, and θ is a matching
substitution such that appl(ρ, K, R1 ++[c#i]++R2, θ, B) = B.

Let t = (ρ, id(K ++R1)++[i]++ id(R2)), then t /∈ T and T′ = T ∪ {t}.

5. Propagate 〈[c#i : j|A], S, B, T〉n �P 〈B ++ [c#i : j|A], S \ R, θ ∧ B, T′〉n with S =
{c#i} tK1 tK2 t R t S, if the j-th occurrence of c in P occurs in rule ρ, and θ is a
matching substitution such that appl(ρ, K1 ++[c#i]++K2, R, θ, B) = B.

Let t = (ρ, id(K1)++[i]++ id(K2 ++R)), then t /∈ T and T′ = T ∪ {t}.

6. Drop 〈[c#i :j|A], S, B, T〉n �P 〈A, S, B, T〉n if c has no j-th occurrence in P.

7. Default 〈[c#i :j|A], S, B, T〉n �P 〈[c#i :j +1|A], S, B, T〉n if the current state cannot
fire any other transition.

Fig. 2. The transition rules of the refined operational semantics ωr.

an abstract logical conjunction of built-in constraints, modeling all constraints
passed to the underlying solvers. The propagation history T, finally, is a set of
tuples, each recording a sequence of constraint identifiers of CHR constraints
that fired a rule, and the unique name of that rule.

Given an initial query Q, a sequence (conjunction) of built-in and host lan-
guage constraints, an initial execution state is of the form 〈Q, ∅, true, ∅〉1.

Transition Rules The transition rules of ωr are listed in Fig. 2. The top-most
element of A is called the active constraint. Each newly added CHR constraint
initiates a search for partner constraints that match the heads of the rules in an
Activate transition. A built-in constraint is passed to the underlying constraint
solver in a Solve transition. If the newly added built-in constraint may affect
the outcome of guards, similar searches for applicable rules are initiated for the
affected CHR constraints. Constraints whose variables are all fixed are never
reactivated; formally:

Definition 1. A variable v is fixed by a conjunction of constraints B, denoted
v ∈ fixed(B), if and only if DH |= π{v}(B)∧π{θ(v)}(B) → v = θ(v) for arbitrary
substitution θ.

The order in which occurrences are traversed is fixed by ωr: an active con-
straint tries its occurrences in a CHR program in a top-down, right-to-left order.
To realize this order in ωr, identified constraints on the execution stack are oc-
currenced (in Activate and Reactivate transitions). An occurrenced identified
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CHR constraint c#i : j indicates that only matches with the j’th occurrence of
c’s constraint type are considered when the constraint is active.

Each active constraint traverses its different occurrences by a sequence of
Default transitions, followed by a Drop transition. During this traversal all
applicable rules are fired (i.e. Propagate and Simplify transitions). The ap-
plicability of a CHR rule is defined as follows:

Definition 2. Given a conjunction of built-in constraints B, a rule ρ is applica-
ble with sequences of identified CHR constraints K and R, denoted appl(ρ,K,R, B),
if and only if a matching substitution θ exists for which appl(ρ,K,R, θ, B) is de-
fined. The latter partial function is defined as appl(ρ,K,R, θ, B) = B if and only
if K ∩R = ∅ and, renamed apart, ρ is of the form (Hk or Hr may be empty):

ρ @ Hk \ Hr ⇔ G |B

such that chr(K) = θ(Hk), chr(R) = θ(Hr) and DH |= B → πvars(B)(θ ∧G).

As with a procedure, when a rule fires, other constraints (its body) are exe-
cuted, and execution does not return to the original active constraint until after
these calls have finished. By putting the body on the activation stack, the differ-
ent conjuncts of the body are solved (for built-in constraints) or activated (for
CHR constraints) in a left-to-right order. This approach corresponds closely to
that of the stack-based programming languages to which CHR is compiled.

Derivations Execution proceeds by exhaustively applying transitions. Formally,
a derivation D is a sequence of states, with D[1] a valid initial execution state for
some query Q, and D[i]�P D[i + 1] for all subsequent states D[i] and D[i + 1].
We also say these transitions D[i]�P D[i+1] are transitions of D. The common
notational abbreviation σ1 �?

P σn denotes a finite derivation [σ1, . . . , σn].

3 Propagation History Implementation

As stated also in [6, Section 4.3.4], a propagation history is very easy to imple-
ment naively, but quite challenging to implement efficiently. Obviously, tuples
have to be stored in some efficient data structure, e.g. a balanced tree or a hash
table. Naively implemented, tuples are only added to the propagation history,
but never removed. Note that this is also the case in the ωr formalism (cf. Sec-
tion 2.2). This potentially leads to unbounded memory use.

The main challenge is thus to avoid this memory problem, with minimal over-
head. All tuples referring to removed constraints are redundant. Formally, for a
state 〈A, S, B, T〉n, these are all tuples not in live(T, S) = {(ρ, I) ∈ T |I ⊆ id(S)}.
Practice shows that eagerly removing redundant tuples after each constraint re-
moval is not feasible due to time or space overheads. CHR implementations
therefore commonly use ad-hoc garbage collection techniques, which may result
in excessive memory use, but perform adequately in practice.

One technique is to lazily remove redundant tuples during history checks (see
[6]). A second technique is denoted distributed propagation history maintenance
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(see [4]). With this technique, no global propagation history is maintained. In-
stead, the runtime representation of each individual CHR constraint contains
(a subset of) the history tuples they occur in. When a constraint is removed,
the corresponding part of the propagation history is thus removed as well. Both
techniques could easily be combined.

We refer to [6, 4] for some more details on the implementation of propagation
histories in current CHR systems. Many design choices, however, are not fully
covered by these theses:

– Is one global history maintained, or one history per rule?
– Is the distributed history information stored in all constraints of the match-

ing combination, or only in one of the partners? In the latter case, is the
active constraint used, or the constraint matching some fixed occurrence?

– In which cases are more eager garbage collection techniques feasible?
– How to exploit functional dependencies?

In the following subsection we introduce an improved technique to maintain
the propagation history of two-headed propagation rules.

3.1 Two-headed Propagation Rules

For two-headed propagation rules, a distributed propagation history can be im-
plemented more efficiently. Assume that, if there are multiple propagation rules,
a separate history is maintained per rule, as is the case e.g. in the K.U.Leuven
JCHR system [5]. By default, history tuples for a two-headed rule contain two
constraint identifiers. It is however more efficient to simply store, in each con-
straint, the identifiers of all partner constraints it fired with whilst active. This
avoids the creation of tuples, and allows for more efficient hash tables. We refer
to Section 5 for empirical results.

Care must be taken when both heads are occurrences of the same constraint
type, as for instance in the transitivity rule of Example 1. One possibility is
to maintain a separate history per occurrence. Another trick is to use negated
constraint identifiers if the the active constraint matches one of the occurrences.

With a similar reasoning, a reduction of the tuple size for all propagation
rules is possible. Experiments only showed negligible performance gains though.

4 Non-reactive CHR Rules

In this section we consider non-reactive CHR rules, i.e. rules that are never
matched by a reactivated CHR constraint. We will show that for this important
class of rules no propagation history has to be maintained.

Example 2. Consider the following common CHR pattern to compute the sum
of the arguments of elem/1 constraints:

sum, elem(X) ⇒ sum(X).
sum ⇔ true.
sum(X), sum(Y) ⇔ sum(X+Y).
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If the type or mode declarations of the elem/1 constraint specify that its argu-
ment is always fixed, say a (ground) integer value, then elem/1 constraints are
never reactivated under ωr. As the sum/0 constraint is clearly also never reacti-
vated, the first rule is thus never matched by a reactivated CHR constraint.

Formally, non-reactive CHR constraints and rules are defined as follows:

Definition 3. A CHR constraint type c/n is non-reactive in a program P under
a refined operational semantics ω?

r if and only if for all ω?
r derivations D with

that program, for all Solve transitions in D of the form

〈[b|A], S, B, T〉n �P 〈S ++A, S, b ∧ B, T〉n

the set of reconsidered constraints S does not contain constraints of type c/n.
A CHR rule ρ ∈ P is non-reactive if and only if all constraint types that occur
in its head are non-reactive in P.

Under the ωr semantics as defined in Section 2.2, only fixed, or ground, CHR
constraint types are non-reactive. Formally, a CHR constraint type c/n is fixed
iff for all CHR constraints c′ of type c/n, vars(c′) ⊆ fixed(∅) (see Definition 1).
A CHR compiler derives which constraints are fixed from their mode declara-
tions, or using static groundness analysis [9]. Both constraints in Example 2, for
instance, are fixed.

A substantially larger class of CHR programs, however, can be made non-
reactive by a slight modification of the refined operational semantics.

Example 3. Suppose the type or mode information implies the first argument of
fib/2 constraints is always fixed. The second argument on the other hand can
be a free (logical) variable:

fib(N,M1) \ fib(N,M2) ⇔ M1 = M2.
fib(N,M) ⇒ N ≤ 1 | M = 1.
fib(N,M) ⇒ N > 1 | fib(N-1,M1), fib(N-2,M2), M = M1 + M2.

For this handler, a fib/2 constraint does not have to be reactivated when a built-
in constraint is added. Indeed: because there are no guards on this argument,
no additional rules become applicable by constraining it further.

Using constraints unbound, unguarded arguments to retrieve computation
results is very common in CHR. These constraints should not be reactivated. Un-
fortunately, this is insufficiently specified in the standard ωr semantics. We there-
fore propose a semantical refinement, based on the concept of anti-monotonicity [10].
Anti-monotonicity generalizes both fixed and unguarded constraint arguments:

Definition 4. A conjunction of built-in constraints B is anti-monotone in a set
of variables V if and only if:

∀B1, B2 : (πvars(B)\V (B1 ∧B2)) ⇔ (πvars(B)\V (B1))
⇒ (DH 6|= B1 → B) ⇒ (DH 6|= B1 ∧B2 → B)
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Definition 5. A CHR program P is anti-monotone in the i’th argument of a
CHR constraint type c/n, if and only if for every occurrence c(x1, . . . , xi, . . . , xn)
in HNF(P), the guard of the corresponding rule is anti-monotone in {xi}.

Based on these definitions, the anti-monotony-based delay avoidance opti-
mization reduces the amount of needlessly reactivated constraints [10]. Con-
cretely, let delay varsP(c) denote the set of variables that occur in the argu-
ments of an (identified) CHR constraint c in which P is not anti-monotone, then
the Solve transition of ωr (cf. Fig. 2) can be replaced with:

1. Solve’ 〈[b|A], S, B, T〉n �P 〈S ++ A, S, b ∧ B, T〉n if b is a built-in
constraint and S ⊆ S such that ∀c ∈ S : delay varsP(c) 6⊂ fixed(B)
and ∀H ⊆ S : (∃K, R : H = K ++ R ∧ ∃ρ ∈ P : ¬appl(ρ,K,R, B) ∧
appl(ρ,K,R, b ∧ B)) → (S ∩H 6= ∅).

The resulting semantics, denoted ω′
r, is an instance of ωr

1.
Clearly, the following properties hold for any CHR program P:

– If the CHR constraint type c/n is fixed, i.e. if c/n is non-reactive in P under
ωr, then P is anti-monotone in all n arguments of c/n.

– If P is anti-monotone in all n arguments of c/n, then that CHR constraint
type is non-reactive in P under ω′

r.

We now show how the maintenance of a propagation history for non-reactive
CHR rules can be avoided. The central observation is that when a non-reactive
rule is fired, the active constraint is more recent than its partner constraints:

Lemma 1. Let P be an arbitrary CHR program, with ρ ∈ P a non-reactive
rule, and D an arbitrary derivation with this program. Then for each Simplify
or Propagate transition in D of the form

〈[c#i :j|A], S, B, T〉n �P 〈A′, S′, B′, T t {(ρ, I1 ++[i]++I2)}〉n (1)

the following holds: ∀i′ ∈ I1 ∪ I2 : i′ < i.
Proof. Assume i′ = max(I1tI2) with i′ ≥ i. By Definition 2 of rule applicability,
i′ 6= i, and ∃c′#i′ ∈ S. This c′#i′ partner constraint must have been stored in an
Activate transition. Since i′ = max(I1t{i}tI2), in D, this transition came after
the Activate transitions of all other partners, including c#i. In other words, all
constraints in the matching combination of transition (1) were stored prior to
the activation of c′#i′. Also, in (1), c#i is back on top of the activation stack.
Because c is non-reactive, and thus never put back on top by a Reactivate
transition, the later activated c′#i′ must have been removed from the stack
in a Drop transition. This implies that all applicable rules matching c′ must
have fired. As all required constraints were stored (cf. supra), this includes the
application of ρ in (1). By contradiction, our assumption is false, and i′ < i. �

1 The Solve’ transition presented here differs from the one proposed in [10]. As shown
in Appendix A, the latter version is not entirely correct. The appendix further pro-
vides a correctness proof for our version, and shows that it is stronger than that
of [10].
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Let ω′′
r denote the semantics obtained by replacing the phrase

Let t = (ρ, id(H1)++[i]++ id(H2)), then t /∈ T and T′ = T ∪ {t}.

in the Simplify and Propagate transitions of ω′
r with

If ρ is non-reactive, then ∀i′ ∈ id(H1∪H2) : i′ < i and T′ = T. Otherwise,
let t = (ρ, id(H1)++[i]++ id(H2)), then t /∈ T and T′ = T ∪ {t}.

To avoid trivial non-termination where the same combination of constraints fires
a propagation rule infinitely many times, we also assume the following property
to hold for ω′′

r :

Definition 6 (Duplicate-free Propagation). For all derivations D of a CHR
program P where the j’th occurrence of c is kept, if the following holds:
– σ1 �P σ2 �?

P σ′1 �P σ′2 is part of D
– σ1 = 〈[c#i :j|A], S, . . .〉 and σ′1 = 〈[c#i :j|A], S′, . . .〉
– σ1 �P σ2 is a Propagate transition applied with constraints H ⊆ S
– σ′1 �P σ′2 is a Propagate transition applied with constraints H ′ ⊆ S′
– between σ2 and σ′1 no Default transition occurs of the form

σ2 �?
P 〈[c#i :j|A], . . .〉 �P 〈[c#i :j + 1|A], . . .〉 �?

P σ′1

then H 6= H ′.

This property, in combination with Lemma 1, allows us to show that ω′
r and

ω′′
r are equivalent:

Theorem 1. Define the mapping function α as follows:

α(〈A, S, B, T〉n) = 〈A, S, B, {(ρ, I) ∈ T | ρ is a reactive CHR rule}〉n
If D is an ω′

r derivation, then α(D) is an ω′′
r derivation. Conversely, if D is an

ω′′
r derivation, then there exists an ω′

r derivation D′ such that α(D) = D′.
Proof. If D is an ω′

r derivation, then α(D) is an ω′′
r derivation by Lemma 1.

For the reverse direction, let D be an ω′′
r derivation, and D′ the derivation

obtained from D by adding the necessary tuples to the propagation history. That
is, for each Propagate or Simplify transition in D of the form

〈A, S, B, T〉n �P 〈B++A, S′, B, T〉n

the corresponding transition in D′ becomes of the form

〈A, S, B, T〉n �P 〈B++A, S′, B, T ∪ {(ρ, I)}〉n (2)

We treat the history T to be a multiset here, because otherwise possible dupli-
cates would disappear unnoticed. All Propagate and Simplify transitions in
D′ now have form (2). It suffices to show that for all these transitions (ρ, I) /∈ T.

First, we show that Lemma 1 still holds for the derivation D. That is, for all
transitions of D of form (2), if the active constraint matched the k’th occurrence
in ρ’s head, then I[k] = max(I). By definition of ω′′

r , this is true for the tuples



88 Peter Van Weert

procedure up to(U)#id : 2

foreach fib(N,M2)#id2 in ...

foreach fib(N-1,M1)#id1 in ...

if N < U

if id < id1 and id < id2
. . .

(a) Unoptimized

procedure up to(U)#id : 2

foreach fib(N,M2)#id2 in ...

if id < id2 and N < U

foreach fib(N-1,M1)#id1 in ...

if id < id1
. . .

(b) After Loop Invariant Code Motion

Fig. 3. Pseudocode for the second occurrence of the up to/1 constraint of Example 4.

that were not added to the history in the original derivation D. For those added
in both D and D′, this also holds by definition of ω′′

r and Lemma 1.
Suppose, for some transition of form (2), that (ρ, I) ∈ T, and that the active

constraint matched the k’th occurrence of ρ. Then I[k] = max(I). Moreover,
when the (ρ, I) tuple was first added to the history, by uniqueness of constraint
identifiers, the active constraint was the same constraint as active in the consid-
ered constraint. As propagation is duplicate-free in D, and the active constraint
is non-reactive, this is not possible. �

This theorem shows the correctness of replacing the propagation history of
non-reactive CHR rules with more efficient constraint identifier comparisons.
The next subsection shows how this optimization can be implemented in typical
ωr-based CHR implementations.

4.1 Implementation and Further Optimizations

The standard CHR compilation scheme (see e.g. [6, 3, 4]) generates, for each
occurrence, a nested iteration that looks for matching partner constraints for the
active constraint. If the active constraint is not removed, all partner constraint
iterators are suspended until the body is fully executed. Afterwards, the nested
iteration is simply resumed to find more matching combinations.

Example 4. The following handler, called fibbo, performs a bottom-up compu-
tation of all Fibonacci numbers up to a given number (all arguments are fixed):

up to(U) ⇒ fib(0,1), fib(1,1).
up to(U), fib(N-1,M1), fib(N,M2) ⇒ N < U | fib(N+1,M1+M2).

If an up to(U) constraint is told, the first rule propagates two fib/2 constraints.
After this, the second rule propagates all required fib/2 constraints, each time
with a fib/2 constraint as the active constraint. When, finally, the up to(U)
constraint reaches its second occurrence, some mechanism is required to prevent
the second rule to propagate everything all over again.

A propagation history would require O(U) space. Because all constraints
are non-reactive, however, no propagation history is maintained. Instead, con-
straint identifiers are simply compared. Fig. 3(a) shows the generated code for
the second occurrence of the up to/1 constraint.
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SWI JCHR
tree 2-hash hash 2-hash

eq(35) 3,465 N/A2 47 37 (79%)
leq(70) 3,806 2,866 (75%) 85 65 (76%)

Table 1. Benchmark results for the eq and leq benchmarks.

SWI JCHR
tree non-react hash non-react non-react+

wfs(200) 2,489 2,143 (86%) 71 67 (94%) 67 (94%)
fibbo(1000) 15,929 4,454 (28%) 70 67 (95%) 21 (30%)
fibbo(2000) 61,290 17,704 (29%) 206 275 (133%) 90 (44%)
fibbo(3000) timeout timeout 542 464 (85%) 153 (28%)

Table 2. Benchmark results for the wfs and fibbo benchmarks.

If none of the iterators return candidate partner constraints more than once,
propagation is guaranteed to be duplicate-free (see Definition 6). Most iterators
used by CHR implementations obey this property. If not, a temporary history
can be maintained whilst the active constraint is considering an occurrence.

Loop-invariant Code Motion Lemma 1 not only applies to propagation rules,
but also to simplification and simpagation rules. Whilst maintaining a history
for non-propagation rules is pointless, comparing partner constraint identifiers is
not. As shown in Fig. 3(b), the standard Loop-invariant Code Motion optimiza-
tion can be extended to include not only guards (e.g. N < U), but also identifier
comparisons. For multi-headed CHR rules — including simplification and sim-
pagation rules — this may considerably prune the search space of candidate
partner constraints. Moreover, if an iterator returns constraints in ascending
order of identifiers, the corresponding (nested) iteration can be stopped early.

5 Evaluation

We implemented the optimizations presented in this paper in the K.U.Leuven
CHR system [4, 8] for SWI-Prolog, and in the K.U.Leuven JCHR system [5] for
Java. The benchmark results are given in Tables 1 and 2. For each system, the
first column gives the reference timings: for SWI this is a tree-based propagation
history, for JCHR a hash-based history. Both systems use distributed history
maintenance (see Section 3). The 2-hash and non-react columns give timings
using the optimization for two-headed propagation rules given in Section 3, and
the optimization for non-reactive CHR rules of Section 4 respectively. For the
non-react+ measurements the non-reactiveness optimization was combined with
loop invariant code motion (currently only implemented in JCHR).

2 In the current SWI implementation, the history of a two-headed propagation rule
is only optimized if there are no other propagation rules in the program. In JCHR,
this is not relevant, as JCHR maintains a separate history per rule.
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For both optimizations significant performance gains are measured. Note that
the improved timings in Table 1 for the SWI-Prolog system may be due to mov-
ing from a tree-based history to a hash-based one. For JCHR, however, this is
definitely not the case, showing the relevance of the improved data structure. Ta-
ble 2 contains one surprising timing for the fibbo(N) benchmark in JCHR: even
though identifier comparisons are cheaper than checking a propagation histories,
for N = 2000, the performance nevertheless worsened. Detailed profiling showed
that this is due to unpredictable behavior of the JVM’s garbage collector.

For non-reactive rules, space complexity is furthermore optimal: propagation
histories no longer consume space at all. The complexity for the history of the
fibbo handler, for instance, is improved from linear to constant (see Example 4).

6 Related Work, Conclusions and Future Work

Related Work The propagation history contributes to significant performance
issues when implementing CHR in a tabling environment [11]. Based on a similar
approach explored in [11], an alternative CHR semantics is proposed in [12].
Being set-based, this semantics addresses the trivial non-termination problem
without the use of a propagation history. It would be interesting to see whether
these results can be transferred to CHR without abandoning its common multiset
semantics (see also Future Work).

In [6], a simple analysis is presented to eliminate the propagation histories for
certain fixed CHR constraints. Advanced CHR systems such as [8, 5] implement
more powerful versions of this analysis, extended towards non-reactive CHR
constraints, or made more accurate by abstract interpretation [9]. Our results in
Section 4, however, considerably reduce the benefits of these complex analyses,
as comparing constraint identifiers is much cheaper than maintaining a history.

Conclusions We showed that maintaining a propagation history comes at a
considerable runtime cost, both in time and in space. We introduced two opti-
mizations to reduce or eliminate this overhead. We showed that for two-headed
propagation rules more efficient data structures can be used. This is interesting,
as rules with more than two heads are relatively rare. We then argued that non-
reactive CHR propagation rules do not require the maintenance of a propagation
history. Instead, cheap constraint identifier comparisons can be used. Further-
more, these comparisons can be moved early in the generated nested loops, thus
pruning the search space of possible partner constraints. We formally proved the
correctness of the optimization for non-reactive rules with respect to CHR’s re-
fined operational semantics. We implemented both optimizations, and observed
significant performance gains.

Future Work For reactive CHR rules a propagation history still has to be main-
tained. This includes the rules of most true constraint solvers. Most constraint
solvers though, such as the archetypal leq handler of Example 1, have set se-
mantics. As argued by [12] (see Related Work paragraph), if constraints have set
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semantics, a propagation history is less compelling. Under the refined operational
semantics, however, set semantics alone does not suffice to justify the elimina-
tion of propagation histories, that is without affecting a program’s semantics. A
stronger property called idempotence is required. We are currently developping
an analysis to derive this property, and have already observed promising perfor-
mance improvements for several programs. For certain programs, an automated
confluence analysis (see e.g. [1]) would be useful, as rules that remove duplicate
constraints may be moved to the front of a confluent CHR program.
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A On Anti-Monotony-based Delay Avoidance

In [10], the following version of the Solve transition is proposed:

1. Solve† 〈[b|A], S, B, T〉n �P 〈S ++A, S, b∧B, T〉n if b is a built-in constraint
and S ⊆ S such that ∀c ∈ S \S : ∃V1, V2 : vars(c) = V1∪V2∧V1 ⊆ fixed(B)∧
all variables in V2 appear only in arguments of c that are anti-monotone in P.

Proposition 1. Using our notation, this Solve† transition is equivalent to:

1. Solve‡ 〈[b|A], S, B, T〉n �P 〈S ++ A, S, b ∧ B, T〉n if b is a built-in
constraint and S ⊆ S such that ∀c ∈ S \S : delay varsP(c) ⊆ fixed(B).

Proof. Let c ∈ S \ S, with S defined as in Solve†. Then sets V1 and V2 exist,
as defined in Solve†. By definition, V2 ⊆ vars(c)\delay varsP(c), and thus
V2 ∩ delay varsP(c) = ∅. Therefore, delay varsP(c) ⊆ V1 ⊆ fixed(B).

Conversely, assume c ∈ S \ S, with S defined as in Solve‡. Then the required
sets V1 and V2 exist: simply take V1 = delay varsP(c) and V2 = vars(c) \ V1. �

In [10] the resulting semantics is shown to be correct with respect to the
original refined operational semantics ωr [7], where Solve is specified as:

1. Solve? 〈[b|A], S, B, T〉n �P 〈S ++A, S, b∧B, T〉n where b is a built-in
constraint and S ⊆ S such that vars(S \S) ⊆ fixed(B).

That is, all constraints with at least one non-fixed argument have to be reac-
tivated. The original specification of the ωr semantics therefore prohibits any
form of delay avoidance for non-fixed arguments, as illustrated by this example:

Example 5. Consider the following CHR program:

c(X) ⇒ X = 2, b.
c(_), a ⇔ true.
c(_), b ⇔ true.

For the query ‘a, c(X)’ with X a free logical variable, Solve? specifies that
the c(X) constraint has to be reactivated when ‘X = 2’ is added to the built-
in constraint solver, which leads to a final constraint store {b#3}. This is the
only final store allowed by the original refined semantics. However, as the pro-
gram is clearly anti-monotone in c’s argument, the Solve‡ transition might not
reactivate c, which then leads to an incorrect final constraint store {a#1}.

This counterexample shows the proof in [10] must be wrong. The essential
problem is that Solve? specifies that constraints with non-fixed arguments have
to be reactivated, even if the newly added built-in constraint does not enable any
new matchings with them. This problem is not restricted to delay avoidance. It
was first noted in [6, 4] in a different context:

Example 6. Consider the following CHR program:

c(X) ⇒ Y = 2, b.
c(_), a ⇔ true.
c(_), b ⇔ true.
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For the query ‘a, c(X)’ with X a free logical variable the original Solve? tran-
sition specifies that the c(X) constraint must be reactivated when ‘Y = 2’ is
added to the built-in constraint solver. The only final store allowed by the origi-
nal refined semantics is thus {b#3}. However, actual CHR implementations will
not reactivate the c(X) constraint, as the newly added ‘Y = 2’ constraint does
not affect X, the only variable occurring in c(X).

Because the original refined operational semantics is thus inconsistent with
the behavior of actual (Prolog) CHR implementations, a slightly more relaxed
version of the Solve transition was defined in [6, 4]. This is also the version of
ωr we presented in Section 2.2. The following theorem shows that our definition
of Solve’ in Section 4 is correct with respect to this relaxed ωr semantics:

Theorem 2. Let P be an arbitrary CHR program, and σ = 〈[b|A], S, B, T〉n an
arbitrary state with b a built-in constraint. If σ �P 〈S ++ A, S, b ∧ B, T〉n is a
valid Solve’ transition of ω′

r, then it is a valid ωr Solve transition as well.
Proof. By definition of Solve’, S ⊆ S, and

(1) ∀c ∈ S : delay varsP(c) 6⊂ fixed(B),
(2) ∀H ⊆ S : (H = K ++R ∧ ∃ρ ∈ P :

¬appl(ρ,K,R, B) ∧ appl(ρ,K,R, b ∧ B)) → (S ∩H 6= ∅).
As the lowerbound of the Solve transition in ωr is also exactly (2), it suffices
to prove that ∀c ∈ S : vars(c) 6⊂ fixed(B). This is obvious given (1), as by
definition ∀c : delay varsP(c) ⊆ vars(c). �

The optimized semantics of [10] on the other hand remains incorrect with
respect to the relaxed ω′

r semantics. The reason is that the Solve‡ transition
only restricts the constraints that are not reactivated. The constraints that are
reactivated, on the other hand, are not restricted:

Example 7. Consider the following CHR program:
c ⇒ X = 2, b.
c, a ⇔ true.
c, b ⇔ true.

For the query ‘a, c’ the Solve transition of Fig. 2 specifies that the c constraint
may not be reactivated when the ‘X = 2’ constraint is told. This leads to the
only final store allowed by the ωr semantics of Section 2.2, namely {b#3}. The
Solve‡ transition, however, allows the c’s reactivation. The resulting semantics
thus may lead to an incorrect final constraint store {a#1}.

The final theorem show that our Solve’ transition is indeed stronger then
Solve‡, since it never reactivates more constraints:

Theorem 3. Let P be a CHR program, and σ = 〈[b|A], S, B, T〉n astate with b
a built-in constraint. If σ�P 〈S ++A, S, b ∧ B, T〉n is a valid Solve‡ transition,
and σ�P 〈S′++A, S, b ∧ B, T〉n a valid Solve’ transition of ω′

r, then S′ ⊆ S.
Proof. By definition of Solve‡: ∀c ∈ S\S : delay varsP(c) ⊆ fixed(B), and by
definition of Solve’: S′ ⊆ S ∧ ∀c ∈ S′ : delay varsP(c) 6⊂ fixed(B). Therefore
clearly (S\S) ∩ S′ = ∅, and thus (S′ ⊆ S ∧ S′ ∩ (S\S) = ∅) → S′ ⊆ S. �
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Abstract. In this paper, we introduce a modular version of the Con-
straint Handling Rules language CHR, called CHRat for modular CHR
with ask and tell. Any constraint defined in a CHRat component can
be reused both in rules and guards in another CHRat component to
define new constraint solvers. Unlike previous work on modular CHR,
our approach is completely general as it does not rely on an automatic
derivation of conditions for checking entailment in guards, but on a pro-
gramming discipline for defining both satisfiability (tell) and entailment
(ask) checks by CHRat rules for each constraint. We define the opera-
tional and declarative semantics of CHRat, provide a transformation of
CHRat components to flat CHR programs, and prove the preservation of
the semantics. We then provide examples of the modularization of clas-
sical CHR constraint solvers and of the definition of complex constraint
solvers in a modular fashion.

1 Introduction

The Constraint Handling Rules language CHR was introduced nearly two decades
ago as a declarative language for defining constraint solvers by multiset rewrit-
ing rules with guards assuming some built-in constraints [1]. The CHR program-
ming paradigm resolves implementing a constraint system into the declaration of
guarded rewriting rules, that transform the store into a solved form allowing to
decide the satisfiability. Each transformation is supposed to preserve the satisfi-
ability of the system, and the solved form, reached when no more transformation
can be applied, is unsatisfiable if it contains the constraint “false”, and is oper-
ationnally satisfiable otherwise. One important, but not mandatory, property of
these transformations is confluence which means that the solved form is always
independent of the order of application of the rules, and is in fact a normal form
for the initial constraint store [2].

Since then, CHR has evolved to a general purpose rule-based programming
language [1] with some extensions such as for the handling of disjunctions [3]
or for introducing types [4]. However, one main drawback of CHR as a language
for defining constraint solvers, is the absence of modularity. Once a constraint
system is defined in CHR with some built-in constraints, this constraint system
cannot be reused in another CHR program taking the defined constraints as new
built-in constraints. The reason for this difficulty is that a CHR program defines
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a satisfiability check but not the constraint entailment check that is required in
guards.

Previous approaches to this problem have studied conditions under which
one can derive automatically an entailment check from a satisfiability check. In
[5] such conditions are given based on the logical equivalence:

D |= C → c ⇔ D |= (C ∧ c) ↔ C

In this paper, we propose a different paradigm for modular CHR, called CHR
with ask and tell, and denoted CHRat. This paradigm is inspired by the frame-
work of concurrent constraint programming [6, 7]. The programming discipline
in CHRat for programming modular constraint solvers is to enforce, for each
constraint c, the definition of simplification and propagation rules for the con-
straint tokens ask(c) and entailed(c). Solvers for asks and tells are already re-
quired for the built-in constraint system implementation [8]; the discipline we
propose consists in the internalization of this requirement in the CHR solver
itself. A constraint c is operationally entailed in a constraint store containing
ask(c) when its solved form contains the token entailed(c). Beside the simpa-
gation rule c \ask(c) =⇒ entailed(c) which will be always assumed to provide
a minimalist entailment-solver, arbitrarily complex entailment checks can be
programmed with rules, as opposed to event-driven imperative programming[9].
With this programming discipline, CHRat constraints can be reused both in rules
and guards in other components to define new constraint solvers.

In the next section, we illustrate this approach with a simple example. Then
we define the syntax and declarative semantics of CHRat. Section 4 describes
the transformation of CHRat programs into flat CHR programs and proves its
correctness. Section 5 provides examples of the modularization of classical CHR
constraint solvers and of the definition of complex constraint solvers in a modular
fashion. Finally we conclude with a discussion on the simplicity and expressive-
ness of this approach and its current limitation to non-quantified constraints.

2 Introductory Example

2.1 CHRat Components for leq/2 and min/3

We begin with the pedagogical CHR constraint solver for ordering relations. This
solver defines the CHR constraint leq/2. The first task is to define, as usual, the
satisfiability solver associated to this constraint: this is done by the following
four rules. The first three rules translate the axioms for ordering relations, and
the rule redundant gives set semantics to the constraint leq/2.

File leq solver.cat

component l e q s o l v e r .
export l e q /2 .
r e f l e x i v e @ l e q (X,X) ⇐⇒ t r u e .
an t i s ymmet r i c @ l e q (X,Y) , l e q (Y,X) ⇐⇒ X = Y.
t r a n s i t i v e @ l e q (X,Y) , l e q (Y, Z) =⇒ l e q (X, Z ) .
redundant @ l e q (X,Y) \ l e q (X,Y) ⇐⇒ t r u e .
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There is a second task for defining a constraint solver in CHRat: the defi-
nition of rules for checking the entailment of leq(X, Y) constraint. These rules
have to rewrite the constraint token ask(leq(X, Y)) into the constraint token
entailed( leq(X, Y)). The rule leq(X,Y) \ ask(leq(X,Y)) ⇐⇒entailed( leq(X,Y)) is al-
ways assumed and provides a minimalist entailment-solver for free. In this simple
example, since checking leq(X, Y) for X 6= Y is directly observable in the store,
there is only a single rule to add for the reflexivity.

r e f l e x i v e A s k @ ask ( l e q (X,X) ) ⇐⇒ en t a i l e d ( l e q (X,X ) ) .

The satisfiability solver and the entailment solver together define a CHRat
component for the CHR-constraint leq(X, Y). Our implementation of CHRat relies
on a simple atom-based component separation mechanism: there is a component
by file; exported CHR-constraints are prefixed with the name of the component;
and the choice for the prefixes of internal CHR-constraints is done so as to avoid
collisions.

Such a component can then be used to define new constraint solvers using
the leq(X, Y) constraint both in rules and guards. For instance, a component for
the minimum constraint min(X,Y,Z), stating that Z is the minimum value among
X and Y, can be defined in CHRat as follows:

File min solver.cat

component m i n s o l v e r .
import l e q /2 from l e q s o l v e r .
export min /3 .
minLe f t @ min (X,Y, Z) ⇐⇒ l e q (X,Y) | Z=X.
minRight @ min (X,Y, Z) ⇐⇒ l e q (Y,X) | Z=Y.
minGen @ min (X,Y, Z) =⇒ l e q (Z ,X) , l e q (Z ,Y ) .

minAskLef t @ ask ( min (X, Y, X) ) ⇐⇒ l e q (X, Y) |
en t a i l e d ( min (X, Y, X ) ) .

minAskRight @ ask ( min (X, Y, Y) ) ⇐⇒ l e q (Y, X) |
en t a i l e d ( min (X, Y, Y ) ) .

The three first rules describe the satisfiability check for min(X,Y,Z). The rele-
vant rules to be discussed are the minAskLeft and minAskRight: it is worth noticing
that the entailment of min(X,Y,Z) can be stated if, and only if, Z is already known
to be equal to X or Y.

2.2 Transformation to a Flat CHR Program

The guards in CHR rules are restricted to built-in constraints [1]. In order to
translate CHRat programs into CHR programs, we proceed with a program trans-
formation which removes all the user defined constraints from the guard. This
transformation also renames the constraints ask( constraint ) to ask constraint and
entailed( constraint ) to entailed constraint . The resulting CHR program for the
min(X, Y, Z) CHRat solver is the following:
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min−auto - a s k @ min (X,Y, Z) \ ask min (X,Y, Z) =⇒ e n t a i l e d m i n (X,Y, Z ) .
m inLe f t - a s k @ min (X,Y, Z) =⇒ a s k l e q (X,Y ) .
minLeft− f i r e @ e n t a i l e d l e q (X,Y) , min (X,Y, Z)⇐⇒Z=X.
minRight - a s k @ min (X,Y, Z) =⇒ a s k l e q (Y,X ) .
minRight− f i r e @ e n t a i l e d l e q (Y,X) , min (X,Y, Z)⇐⇒Z=Y.
minGen @ min (X,Y, Z) =⇒ l e q (Z ,X) , l e q (Z ,Y ) .
minAskLef t - a s k @ ask min (X,Y,X) =⇒ a s k l e q (X,Y ) .
minAskLeft− f i r e @ e n t a i l e d l e q (X,Y) , ask min (X,Y,X)⇐⇒

e n t a i l e d m i n (X,Y,X ) .
minAskRight - a s k @ ask min (X,Y,Y) =⇒ a s k l e q (Y,X ) .
minAskRight− f i r e @ e n t a i l e d l e q (Y,X) , ask min (X,Y,Y)⇐⇒

e n t a i l e d m i n (X,Y,Y ) .

It is worth noting that the transformed program can be executed with any
regular CHR implementation [10, 11].

3 Syntax and Semantics of CHRat Components

Let V be a countable set of variables. Let fv (e) denotes the set of free variables
of a formula e.

3.1 Syntax

Definition 1. A built-in constraint system is a pair (C,`C), where:

– C is a set of formulas over the variables V , closed by logical operators and
quantifiers;

– C ⊆ C2 defines the non-logical axioms of the constraint system;
– `C is the least subset of C2 containing C and closed by the logical rules.

Let (C,`C) be a built-in constraint system over a domain D with variables
V , assumed to contain the standard axiom schemas for equality.

Let T be a set of constraint tokens of the form c(x1, . . . , xn) where x1, . . . , xn ∈
D and disjoint from C. We suppose that for any t ∈ T , ask(t) /∈ T and
entailed(t) /∈ T , and we define

Ta =̇
{
ask(t)

∣∣ t ∈ T
}

Te =̇
{
entailed(t)

∣∣ t ∈ T
}

T , Ta, Te and C are thus pairwise disjoint. Let:

T • =̇ T ] Ta ] Te

where ] denotes disjoint set union.
ask∗(·) and entailed∗(·) are the homomorphic extensions of ask(·) and entailed(·)

respectively to functions from multisets to multisets.

Definition 2. A CHRat rule is of one of the three forms that follow:
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Simplification rule-name @ H ⇔ G | B.
Propagation rule-name @ H ⇒ G | B.
Simpagation rule-name @ H \ H ′ ⇔ G | B.

where

– rule-name is an optional name for the rule;
– the heads H and H ′ are non-empty multisets of elements of T ] Ta ] C;
– the guard G is a multiset of elements of T ] C;
– the body B is a multiset of elements of T ] Te ] C.

In guards, the built-in constraints will be distinguished from the user-defined
constraints. For a guard C, we write Cbuilt-in = C ∩ C and CCHR = C ∩ T .

Definition 3. A CHRat program is a tuple ({r1, . . . , rn} , Σ) where r1, . . . , rn

are CHRat rules, and Σ is the signature of T , with the following side condition:
for every rule, all variables which appear in the CHR-constraint part of the guard
CCHR, also appear in the head or in the built-in constraints of the guard.

Remark 1. It is worth noticing that the restriction for guards in CHRat only
concerns the CHR-constraint part. In particular, since a CHR program has no
CHR-constraint in its guards, every CHR program is a valid CHRat program.

In principle, CHRat programs for ask should satisfy some further properties.
Putting an ask(·) token should indeed never lead to a failure, and an ask solver
should restrict its interaction with the store such that, as far as other components
are concerned, only consumption of ask(·) tokens and addition of entailed(·)
tokens can be observed, in particular rules for ask should not add tell constraints
to the store. However, the formal semantics described in the following sections
will not assume these further restrictions.

As usual, and without loss of generality, we will focus on slightly generalized
simpagation rules where one of the heads can be empty. Simplification rules and
propagation rules will then be mapped to simpagation rules, by assuming that
left heads are empty in translations of simplification rules, and that right heads
are empty in translations of propagation rules.

3.2 Operational Semantics

As usual, the operational semantics of CHRat is defined as a transition system
between states, called configurations, defined as for CHR [1] by:

Definition 4. A configuration is a tuple 〈F,E, D〉V where:

– the query F is a multiset of elements from C ] T •;
– the CHRat constraint store E is a multiset of elements from T •;
– the built-in store D is an element of C;
– V ⊂ V is the set of variables of the initial query.

Let C denotes the set of all configurations.
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Definition 5. We distinguish some relevant configurations:

– an initial configuration is of the form 〈F, ∅, true〉V where V = fv (F );
– a failed configuration is of the form 〈F,E, D〉V where D `C false;
– a successful configuration is of the form 〈∅, E, D〉V where D 6 `C false.

The set of variables of the initial query is written in the configuration to keep
these variables free when we consider the logical meaning of the configuration:

Definition 6. The logical meaning of a configuration:

〈F,E, D〉V
is:

∃y(F ∧ E ∧D)

where y enumerates fv (F,E, D) \ V.

Definition 7. Let P be a CHRat program. The transition relation 7→ ⊆ C2 is
the least binary relation closed by the following induction rules:

Solve
c ∈ C

〈{c} ] F,E, D〉V 7→ 〈F,E, c ∧D〉V
Introduce

t ∈ T •

〈{t} ] F,E, D〉V 7→ 〈F, {t} ] E,D〉V
Trivial Entailment

t ∈ T
〈F, {ask(t), t} ] E,D〉V 7→ 〈{entailed(t)} ] F, {t} ] E,D〉V

Ask
(H \ H ′ ⇔ Cbuilt-in, CCHR | B.) σ ∈ P D `C Cbuilt-in

〈F,H ]H ′ ] E,D〉V 7→ 〈ask∗(CCHR) ] F,H ]H ′ ] E,D〉V
Fire

(H \ H ′ ⇔ Cbuilt-in, CCHR | B.) σ ∈ P D `C Cbuilt-in

〈F,H ]H ′ ] entailed∗(CCHR) ] E,D〉V 7→ 〈B ] F,H ] E,D〉V
where σ denotes some variable substitution: the support of σ consists of the free
variables appearing in the rule which σ is applied to; in the Ask rule, variables
which do not appear in H, H ′, Cbuilt-in have to be mapped to fresh variables; in
the Fire rule, variables which do not appear in H, H ′, Cbuilt-in, CCHR have to
be mapped to fresh variables.

Whereas a CHR rule is reduced in only one step, CHRat reduces it in two
steps: first, if the heads and builtin guards match, ask solvers are awoken with
ask(·) tokens (Ask rule); then, when all ask solvers have answered positively to
the guard with entailed(·) tokens, the body of the rule is fired (Fire rule). Unlike
deep guards [12], asks are thus checked in CHRat in the same constraint store as
tells.
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Definition 8. A computation of a goal G is a sequence S0, S1, . . . of configu-
rations with Si 7→ Si+1, beginning with S0 = 〈G, ∅, true〉V and ending in a final
configuration or diverging. A finite computation is successful if the final con-
figuration is successful. It is failed otherwise. The logical meaning of the final
configuration of a finite computation is called the answer of the computation.

3.3 Declarative Semantics

CHR programs enjoy a logical semantics that is better suited than the opera-
tional semantics to reason about programs and establish program equivalence
for instance. In this section, we show that this logical reading of the rules applies
as well to CHRat programs.

Let C• be the closure of C ] T • by logical operators and quantifiers, and let
`C• be the logical extension of `C to T • with equality and no other non-logical
axiom. More precisely, `C• is the closure of C• by logical rules with:

C• =̇ C ]

{
(c(x1, . . . , xn), c(x′1, . . . , x

′
n)) ∈ (T •)2∣∣ `C x1 = x′1 ∧ · · · ∧ xn = x′n

}

Definition 9. Let:
(·)‡ : CHRat → C•

be defined for CHRat rules as follows:

(rule @ H \ H ′ ⇔ Cbuilt-in, CCHR | B.)‡ =̇

∀y(Cbuilt-in → H ∧H ′ → ask∗(CCHR))

∧ ∀y(Cbuilt-in → (H ∧H ′ ∧ entailed∗(CCHR) ↔ ∃y′(H ∧B)))

where:

– y enumerates the variables occurring in the head and the guard, and y′ enu-
merates the other variables occurring in the body (without occurring neither
in the head nor in the guard);

– for each multiset of constraints S = {c1, . . . , cn}, S denotes the constraint
c1 ∧ · · · ∧ cn;

The declarative semantics of a program P =̇ ({r1, . . . , rn} , Σ) is:

(P )‡ =̇

 ∧
1≤i≤n

(ri)
‡

∧
 ∧

(f/k)∈Σ

∀x(f(x1, . . . , xk) →
(ask(f(x1, . . . , xk)) ↔ entailed(f(x1, . . . , xk))))


Remark 2. Let (·)† denote the usual CHR declarative semantics. For all CHR

program P , we have `C• (P )‡ ↔ (P )†: CHR is thus a proper sublanguage of
CHRat and CHRat, both syntactically and semantically.
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The fundamental link between the operational and the declarative semantics
is stated by:

Lemma 1. Let P be a CHRat program and S 7→ S′ be a transition. Let C and
C ′ denote the logical reading of S and S′ respectively. We have:

(P )‡ `C• ∀x(C ↔ C ′)

where x enumerates fv(C) ∪ fv(C ′).

Proof. Case analysis over the kind of the transition S 7→ S′:

– immediate for Solve and Introduce; Trivial Entailment derives from
(P )‡ `C• c → (ask(c) ↔ entailed(c)) for all c ∈ T ;

– Ask and Fire derive from the logical translation of the CHRat rule which
they are applied to.

This result is the direct translation for CHRat of Fruhwirth’s soundness and
completeness results for CHR. As such, this lemma entails the soundness and
completeness of the operational semantics with respect to the declarative se-
mantics:

Theorem 1 (Soundness). Let P be a CHRat program and G be a goal. If G
has a computation with answer C then:

(P )‡ `C• ∀x(C ↔ G)

where x enumerates free variables of C and G.

Theorem 2 (Completeness). Let P be a CHRat program and G be a goal with
at least one finite computation. For all conjunctions of constraints C such that
(P )‡ `C• ∀x(C ↔ G), there exists a computation of answer C ′ from G such that:

(P )‡ `C• ∀x(C ↔ C ′)

where x enumerates free variables of C and C ′.

4 Program Transformation of CHRat to CHR

Definition 10. Let J·K : CHRat → CHR be defined for every CHRat rule by J·K
as follows:

Jrule @ H \ H ′ ⇔ Cbuilt-in, CCHR | B.K

=̇

{
rule-ask @ H,H ′ ⇒ Cbuilt-in | ask∗(CCHR).
rule-fire @ H \ H ′, entailed∗(CCHR) ⇔ Cbuilt-in | B.

(1)
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Transformations for simplification and propagation rules follow from 1 by im-
mediate specialization. The image of a whole CHRat program (R,Σ) by J·K is the
concatenation of images of the individual rules, with the propagation rules:

f(x1, . . . , xk) ⇒ entailed(f(x1, . . . , xk)).

implicitly added for each constraint declaration (f/k) ∈ Σ, if such a rule was
not already written by the user in R.

To take benefits of first functor symbol indexing, instead of using com-
pound terms ask (...) or entailed (...) in the implementation, we rather prefix
the constraint symbol in the generated CHR code: constraint (x, y, z) becomes
ask constraint (x, y, z) and entailed constraint (x, y, z). We could otherwise rely-
ing upon automatic program transformations to make this optimization [13].

It is worth noticing that the first and the second CHR rules produced for
each CHRat rule respectively follow the right and the left operands of ∧ in the
declarative semantics of this rule. That leads to the following result which states
the soundness of the transformation:

Theorem 3. For all CHRat program P , we have:

`C• (P )‡ ↔ (JP K)†

where (P )‡ is the CHRat declarative semantics of P (see definition 9) and (·)†
denotes the usual CHR declarative semantics (see remark 2)

Proof. Let P = ({r1, . . . , rn} , Σ). According to the definitions:

`C• (P )‡ ↔

 ∧
1≤i≤n

(ri)
‡

 ∧ e and `C• (JP K)† ↔

 ∧
1≤i≤n

(JriK)
†

 ∧ e

where:

e =̇

 ∧
(f/k)∈Σ

∀x(f(x1, . . . , xk) →
(ask(f(x1, . . . , xk)) ↔ entailed(f(x1, . . . , xk))))


Then it suffices to show that, for all 1 ≤ i ≤ n, `C• (ri)

‡ ↔ (JriK)
†. Let ri be the

simpagation rule:
H \ H ′ ⇔ Cbuilt-in, CCHR | B.

then:

JriK = {(H, entailed∗(CCHR) \ H ′ ⇔ Cbuilt-in | B.) ,

(H,H ′ ⇒ Cbuilt-in | ask∗(CCHR).)}

then we have:

(JriK)
† = ∀x

(
Cbuilt-in → H ∧H ′ → ask∗(CCHR)

)
∧ ∀x

(
Cbuilt-in →

(
H ∧H ′ ∧ entailed∗(CCHR) ↔ H ∧ ∃z(B)

))
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where x enumerates variables of Cbuilt-in and H, and z enumerates variables of
B. Since P is a CHRat program, variables in ask∗(CCHR) and entailed∗(CCHR)
are in x. Thus `C• (ri)

‡ ↔ (JriK)
†.

5 Examples

5.1 Union-Find Constraint Component

The union-find (or disjoint set union) algorithm [14] has been implemented in
CHR with its best-known algorithmic complexity [15]. This positive result is re-
markable because logic programming paradigm has been known to be ill-suited
to such implementations [16], and because the algorithm given in [15] indeed
benefits from the non-monotonic evolution of the store of the operational se-
mantics.

The union-find algorithm maintains a partition of a universe, such that each
equivalence class has a representative element. Three operations define this data
structure:

– make(X) adds the element X to the universe, initially in an equivalence class
reduced to the singleton {X}.

– find (X) returns the representative of the equivalence class of X.
– union(X,Y) joins the equivalence classes of X and Y (possibly changing the

representative).

Naive Implementation The naive implementation, which [15] begins with,
relies on the classical representation of equivalence classes by rooted trees. Roots
are representative elements, they are marked as such with the CHR-constraint
root(X). Tree branches are marked with A  B, where A is the child and B the
parent node.

File naive union find solver.cat

component n a i v e u n i o n f i n d s o l v e r .
export make/1 , ' /2 .
make @ make (A) ⇐⇒ r o o t (A ) .

un ion @ un ion (A, B) ⇐⇒ f i n d (A, X) , f i n d (B, Y) , l i n k (X, Y ) .

f indNode @ A  B \ f i n d (A, X) ⇐⇒ f i n d (B, X ) .
f i ndRoo t @ roo t (A) \ f i n d (A, X) ⇐⇒ X = A.

l i n kEq @ l i n k (A, A) ⇐⇒ t r u e .
l i n k @ l i n k (A, B) , r oo t (A) , r oo t (B) ⇐⇒ B  A, r oo t (A ) .

This implementation supposes that its entry-points make and union are used with
constant arguments only, and that the first argument of find is always a constant.

In CHRat, one needs to add to this implementation the ability to check if two
elements A and B are in the same equivalence class: we denote such a constraint
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A ' B, where A and B are supposed to be constants. Telling this constraint just
yields to the union of the two equivalence classes:

t e l l S ame @ A ' B =⇒ un ion (A, B ) .

A way to provide a naive implementation for ask is to follow tree branches until
possibly finding a common ancestor for A and B.

askEq @ ask (A ' A) ⇐⇒ en t a i l e d (A ' A) .
a s kL e f t @ A  C \ ask (A ' B) ⇐⇒ C ' B | en t a i l e d (A ' B) .
a skR igh t @ B  C \ ask (A ' B) ⇐⇒ A ' C | en t a i l e d (A ' B) .

The computation required to check the constraint entailment is done with the
use of recursion in the definition of the guard A = B.

Optimized Implementation The second implementation proposed in [15]
implements both path-compression and union-by-rank optimizations.

File union find solver.cat

component u n i o n f i n d .
export make/1 , ' /2 .
make @ make (A) ⇐⇒ r o o t (A, 0 ) .

un ion @ un ion (A, B) ⇐⇒ f i n d (A, X) , f i n d (B, Y) , l i n k (X, Y ) .

f indNode @ A  B, f i n d (A, X) ⇐⇒ f i n d (B, X) , A  X.
f i ndRoo t @ roo t (A, ) \ f i n d (A, X) ⇐⇒ X = A.

l i n kEq @ l i n k (A, A) ⇐⇒ t r u e .
l i n k L e f t @ l i n k (A, B) , r oo t (A, N) , r oo t (B, M) ⇐⇒ N ≥ M |

B  A, N1 i s max(M+1, N) , r oo t (A, N1 ) .
l i n k R i g h t @ l i n k (B, A) , r oo t (A, N) , r oo t (B, M) ⇐⇒ N ≥ M |

B  A, N1 i s max(M+1, N) , r oo t (A, N1 ) .

An optimized check for common equivalence class can rely on find to effi-
ciently get the representatives and then compare them. check(A, B, X, Y) repre-
sents the knowledge that the equivalence class representatives of A and B are the
roots X and Y respectively. When X and Y are known to be equal, entailed(A ' B)

is put to the store (checkEq).

askEq @ ask (A ' B) ⇐⇒
f i n d (A, X) , f i n d (B, Y) , check (A, B, X, Y ) .

checkEq @ roo t (X) \ check (A, B, X, X) ⇐⇒ en t a i l e d (A ' B) .

These two rules are not enough to define a complete entailment-solver due to
the non-monotonous nature of the changes applied to the tree structure. Indeed,
roots found for A and B can be invalidated by subsequent calls to union, which
may transform these roots into child nodes. When a former root becomes a child
node, the following two rules put find once again to get the new root.
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ch e ckLe f t @ X  C \ check (A, B, X, Y) ⇐⇒
f i n d (A, Z) , check (A, B, Z , Y ) .

checkR ight @ Y  C \ check (A, B, X, Y) ⇐⇒
f i n d (B, Z) , check (A, B, X, Z ) .

These rules define complete solvers for satisfaction and entailment checking for
the ' constraint.

5.2 Rational Tree Equality Constraint Component

Let us now consider rational terms, i.e. rooted, ordered, unranked, labelled,
possibly infinite trees, with a finite number of structurally distinct sub-trees
[17]. Nodes are supposed to belong to the universe considered by the union-find
solver; two nodes belonging to the same equivalence class are supposed to be
structurally equal. Each node X has a signature F/N, where F is the label of X

and N its arity: the associated constraint is denoted fun(X, F, N). The constraint
arg(X, I , Y), for each I between 1 and N, states that the Ith subtree of X is
(structurally equal to) Y. These constraints have just to be compatible between
elements of the same equivalence class:

File rational tree solver.cat

component r a t i o n a l t r e e s o l v e r .
import ' /2 from u n i o n f i n d s o l v e r .
export fun /3 , a rg /3 , ∼ /2 .
eqFun @ fun (X0 , F0 , N0) \ fun (X1 , F1 , N1) ⇐⇒ X0 ' X1 |

F0 = F1 , N0 = N1 .
eqArg @ arg (X0 , N, Y0) \ arg (X1 , N, Y1) ⇐⇒ X0 ' X1 |

Y0 ' Y1 .

Telling that two trees are structurally equal, denoted X ∼ Y, can be reduced
to the union of the two equivalence classes.

eqProp @ X ∼ Y ⇐⇒ X ' Y.

The computation associated to asking A ∼ B requires a coinductive deriva-
tion of structural comparisons to break infinite loops. That is done here by
memoization. Each time a A ∼ B is asked, a new fresh variable M is introduced:

askEq @ ask (A ∼ B) ⇐⇒ checkTree (M, A, B ) .

This variable marks the checking(M, A, B) tokens, signaling that A can be assumed
to be equal to B since this check is already in progress.

checkTree (M, A, B) ⇐⇒ eqTree (M, A, B) | en t a i l e d (A ∼ B) .

ask ( eqTree (M, A, B) ) ⇐⇒
check i ng (M, A, B) , fun (A, FA , NA) , fun (B, FB , NB) ,
checkTreeAux (M, A, B, FA , NA, FB , NB) .

checkTreeAux firstly checks that signatures of A and B are equal, then compares
arguments.
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checkTreeAux (M, A, B, F , N, F , N) ⇐⇒
askArgs (M, A, B, 1 , N) , c o l l e c t A r g s (M, A, B, 1 , N) .

askArgs adds every askArg token corresponding to each pair of point-wise sub-
trees of A and B. askArg answers entailedArg if they match. collectArg ensures
every entailedArg token have been put before concluding about the entailment
of eqTree(M, A, B). It is very close to the definition of an ask solver, but the
considered guard deals with a variable number of tokens equals to the arity of
A and B.

askArgs (M, A, B, I , N) ⇐⇒ I ≤ N |
arg (A, I , AI ) , a rg (B, I , BI ) ,
askArg (M, A, B, I , AI , BI ) ,
J i s I + 1 , askArgs (M, A, B, J , N) .

askArgs (M, A, B, I , N) ⇐⇒ t r u e .
c o l l e c t A r g s (M, A, B, I , N) , e n t a i l e dA r g (M, A, B, I ) ⇐⇒

J i s I + 1 , c o l l e c t A r g s (M, A, B, J , N) .
c o l l e c t A r g s (M, A, B, I , N) ⇐⇒ I > N |

en t a i l e d ( eqTree (M, A, B ) ) .

askArg firstly checks if the equality is memoized. Otherwise, the eqTree guard is
recursively asked.

check i ng (M, AI , BI ) \ askArg (M, A, B, I , AI , BI ) ⇐⇒
e n t a i l e dA r g (M, A, B, I ) .

askArg (M, A, B, I , AI , BI ) ⇐⇒ eqTree (M, AI , BI ) |
e n t a i l e dA r g (M, A, B, I ) .

It is worth noticing that some garbage collection tasks are missing in this
example: memoization tokens checking(M,A,B) are never removed from the store,
and disentailment cases are not cleaned up.

6 Conclusion and perspectives

We have shown that by letting the programmer define in CHRat not only satis-
fiability checks but also entailment checks for constraints, CHRat becomes fully
modular, i.e. constraints defined in one component can be reused in rules and
guards in other components without restriction. Furthermore, this programming
discipline is not too demanding for the programmer, as for any constraint c, the
CHRat rule c \ ask(c) ⇐⇒entailed(c) constitutes a default rule for checking en-
tailment by simple store inspection. In the general case, however, CHRat rules
for ask(c) perform arbitrary complex simpagations, which lead either to the con-
straint token entailed(c), or to another store waiting for more information.

The operational and declarative semantics of CHRat have been defined and
the program transformation from CHRat to CHR which is at the basis of our
compiler has been proved to implement the formal semantics of CHRat. It is
worth noticing that the described transformation uniform and compatible with
other orthogonal approaches related to modularity, like methodologies to make
several constraint solvers collaborate [18].
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We have also shown that the classical examples of constraint solvers defined
in CHR could easily be modularized in CHRat and reused for building complex
constraint solvers.

As for future work, the CHRat scheme can be improved in several ways.
Variables in a CHRat guard have to appear either in the head or in the built-in
constraint part of the guard. One way to allow existentially quantified variables
guards without this restriction is to explicitly stratify guards as proposed in [9].

On the programming discipline side, ask-solvers should never lead to a failure
and should not interfere with the logical interpretation of exported constraints
present in the CHR store. The union-find example is a typical case where the ask-
solver does change the logical meaning of the store by path-compressions and
meanwhile keeps the interpretation of the exported constraint ' unchanged.
Formalizing sanity conditions for ask-solvers will be a step towards establishing
the link between ask-solvers and logical entailment in the semantics.

The transformation of CHRat programs into regular CHR programs make the
implementation directly benefit from optimized CHR implementations. While the
efficient management of ask and entailed is left to the underlying CHR implemen-
tation, garbage collection, caching and memoization for checking entailment are
left to the CHRat programmer. Good strategies for garbage collection still need
to be investigated as shown in the rational tree solver.

Finally, the issue of separate compilation has not been discussed here but is
a natural subject for future work in this framework.
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Abstract. CHR∨ has emerged as a versatile knowledge representation
language, usable for an unparalleled variety of automated reasoning
tasks: constraint solving, optimization, classification, subsumption, clas-
sical deduction, abduction, truth-maintenance, belief revision, belief up-
date and planning. In this paper, we add default reasoning to this list,
by showing how to represent default logic theories in CHR∨. We then
discuss how to leverage this representation together with the well-know
correspondence between default logic and Negation As Failure (NAF) in
logic programming, to propose an extension CHR∨,naf of CHR∨ allowing
NAF in the rule heads.

1 Introduction

CHR∨ [1] is a first-order, relational rule language that incorporates forward
chaining of conditional rewrite rules and guarded production rules, with logic
programming’s backtracking search of disjunctive alternatives in the rules’ right-
hand side (called “body” in CHR∨).

It was initially conceived to declaratively implement constraint solving tasks
by harmoniously integrating three techniques widely used for this task: (a) con-
straint simplification using conditional rewrite rules (called “simplification rules”
in CHR∨), (b) constraint propagation using guarded production rules (called
“propagation rules” in CHR∨), and (c) finite domain constraint search using
disjunctive rules (either simplification or propagation rules).

This integration turned out to be powerful enough to use CHR∨ for a surpris-
ingly wide variety of other reasoning tasks beyond constraint solving: classical
deduction [1], description logics, concept subsumption and individual classifica-
tion [2], abduction [3], truth-maintenance [4], belief revision [5], belief update
and planning [6].

In this paper, we first show how to add default reasoning to the list of au-
tomated reasoning tasks that can be performed by reusing a CHR∨ inference
engine. Our proposal is based on a mapping of a Default Logic Theory[7] into a
CHR∨ rule base. We then leverage this mapping, together with the well-known
correspondence between default reasoning and logic programming with Negation
As Failure (NAF) [8], to propose an extension CHR∨,naf of CHR∨ that allows
the naf connective in rule heads. We also explain how our CHR∨,naf proposal
semantically differs from the CHR¬ Negation As Absence (NAA) proposal [9]
and why we believe its applicability is wider.
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The contributions of this paper are (a) mapping of default logic formulas
into CHR∨ bases, and (b) leveraging it to extend CHR∨ with NAF. This is
very significant due to (a) the pervasive utility of default reasoning and NAF in
artificial intelligence applications, and (b) their well-studied relations with other
forms of non-monotonic reasoning abduction [10], truth-maintenance [10], belief
revision [11] and inheritance with overriding [12]. Each of these reasoning tasks
must be carried out by any agent that acts in a partially observable environment,
the most common case in practical applications.

The rest of this paper is organized as follows. In the next sections, we briefly
review in turn the syntax and semantics of Default Logic and CHR∨. In section
four we present our mapping of the former to the latter. In section five, we show
how to leverage such mapping to extend CHR∨ with NAF. In section six, we
discuss related work in non-monotonic reasoning in CHR∨, before concluding in
section seven.

2 Default Logic

Default Logic [13][14][7] formalizes the reasoning of an agent in a partially ob-
servable environment, where it misses some volatile knowledge, typically the
truth value of a fluent3, that is essential to choose its next action. In such situ-
ation, the agent needs to base its choice on some default hypothesis about the
truth value of that fluent. While this hypothesis must be consistent with the
agent’s current volatile knowledge about the current state of the environment, it
can nevertheless be deductively unsound and thus subject to revision upon sub-
sequent deduction from reliable new sensor information of contradictory volatile
knowledge.

Such reasoning cannot be appropriately formulated directly in Classical First-
Order Logic (CFOL) due to the knowledge monotonicity assumption of this
formalism. This is illustrated by the following example:

Example 1. Let us assume that we want to represent the following piece of knowl-
edge: Birds typically fly, Penguins and Albatrosses are birds, Penguins do not fly
and Tux is a Penguin.

The CFOL formula ∀x((Bird(x) → Flies(x)) ∧ (Penguin(x) → Bird(x)) ∧
Penguin(tux) ∧ (Penguin(x) → ¬Flies(x)) ∧ (Albatross(x) → Bird(x)) ∧
¬(Penguin(x)∧Albatross(x))) does not properly represent such knowledge be-
cause it entails ⊥ due to the inability of pure deduction in CFOL to retract
the conclusion Flies(tux) entailed by the first three clauses of the formula in
the light of the more specific conclusion ¬Flies(tux) entailed by the third and
fourth clauses. The core problem of CFOL is the inability to represent rules with
exceptions with the only two quantifiers of CFOL: universal and existential. De-
fault logic extends CFOL with default inference rules that capture such rules
with exception. It is formally defined below.
3 A property of the environment that changes over time or due to the actions executed

by the agent.
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Definition 1 (Default Logic Theory). A Default Logic Theory is a tuple
〈D,W 〉 where D is the set of default rules and W is a set of CFOL formulas.
Each default rule assumes the following form:

α : β

γ

where α (prerequisite), β (justification) and γ (conclusion) are CFOL
formulas. The intended meaning of this default rule is:

If α is entailed by the current knowledge base (KB |= α) and β is consistent
with the current knowledge base (KB ∧ β 2 ⊥) then γ can be assumed.

The extension ε of a Default Theory is the maximal set of formulas that
can be derived and assumed by default from it. This concept is formally defined
in the Definition 3. Notice that a Default Theory may have one, many or no
extension at all.

Definition 2 (Deductive Closure). Let T be a set of CFOL formulas. The
Deductive Closure of T is a set Th(T ) such that T ⊆ Th(T ) and for each
p ∈ Th(T ), if p |= q then q ∈ Th(T ).

Definition 3 (Extension of a Default Theory). We define ε as an extension
for the default theory 〈D,W 〉 if and only if it satisfies the following equations:

E0 = W

and for i > 0,

Ei+1 = Th(Ei) ∪
{

γ|α : β

γ
∈ D,α ∈ Ei,¬β /∈ ε

}
and,

ε =
∞⋃

i=0

Ei

Example 2. Let us show how to model the knowledge in the Example 1 as a
Default Theory. At first, the default rules:

D =

{
Bird(x) : Flies(x)

Flies(x)
,
Bird(x) : Penguin(x)

Penguin(x)
,
Bird(x) : Albatross(x)

Albatross(x)

}

Notice that, when we state this knowledge as default rules, we emphasize
what is assumed by hypothesis. We are now going to represent the logical for-
mulas of our theory:
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W = {Penguin(tux), P enguin(x)→ ¬Flies(x),¬(Penguin(x)∧Albatross(x))}

Two of the possible extensions for this theory are:

ε1 = W ∪ {Flies(x), Albatross(x)}

and,

ε2 = W ∪ {¬Flies(x), P enguin(x)}

2.1 NAF as Default Logics

In this section we show how to express NAF by means of Default Theories. This
negation is different from the usual CFOL one. In order to avoid misinterpre-
tations we utilize the symbol naf for negation as failure and cneg for classical
logical negation.

Take the following rules:

p← cneg(q).

p′ ← naf(q).

In the first case, p can be proved only if q can be proved to be false. In the
second one, p′ can be assumed to be true if q cannot be proved to be true. The
difference relies on the fact that q may be true, but unknown (i.e., it may not be
possible to deduce it). In the first example it is not possible to deduce p (because
it is not possible prove q false), but in the second example it is possible to deduce
p′ (because it is not possible to prove q true).

In [13], Grigoris Antoniou shows how to model NAF as Default Theories in
a natural way. The idea is to add a default rule like the following one for each
ground fact φ:

: nafφ

nafφ

This means that if the hypothesis nafφ is consistent (in other words, if φ
can’t be proved), nafφ can be assumed.

3 CHR∨

Constraint Handling Rules with Disjunction (CHR∨) [15] is a first-order, rela-
tional rule language for writing Constraint Solvers.

There are two kinds of constraints: the user defined and the built-ins. The
first set is formed by the constraints whose semantics is given by the set of rules
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and the second set is formed by the constraints whose semantics is provided by
the inference engine.

There are three kinds of rules in CHR∨: simplification, propagation and sim-
pagation. They can be respectively described as follows:

r@Hr ⇔ G|B.

s@Hk ⇒ G|B.

t@Hk\Hr ⇔ G|B.

In this example, r, s and t are identifiers for the rules and can be omitted.
Hr and Hk are the heads of the rules. More specifically, Hk are the kept heads,
which are kept in the constraint store; and Hr are the removed heads, which are
removed from it. G is the guard and B is the body. If the guard is true, it can
be omitted.

The abstract operational semantics for CHR∨ is defined as a transition sys-
tem. A CHR∨ state is a disjunction of one of more subgoals which are conjunc-
tions of user defined constraints, built-ins or disjunctions. A state is called final
if no transition is applicable or all of its subgoals are inconsistent (in this case,
it is called failed). For more details see [15].

The following diagram presents the transition rules of CHR∨:

Solve
If CT |= ∀(S ⇔ S′) and S′ is the normal form of S
then S 7→P S′

Propagate
If (H ⇒ G|B) is a fresh variant of a rule with variables x̄
and CT |= ∀(S → ∃x̄(H = H ′ ∧G)
then (H ′ ∧ S) 7→P (H = H ′ ∧B ∧G ∧H ′ ∧ S)

Simplify
If (H ⇔ G|B) is a fresh variant of a rule with variables x̄
and CT |= ∀(S → ∃x̄(H = H ′ ∧G)
then (H ′ ∧ S) 7→P (H = H ′ ∧B ∧G ∧ S)

Simpagate
If (Hk\HR ⇔ G|B) is a fresh variant of a rule with variables x̄
and CT |= ∀(S → ∃x̄(Hk = H ′

k ∧HR = H ′
R ∧G)

then (H ′
k ∧H ′

R ∧S) 7→P (Hk = H ′
k ∧HR = H ′

R ∧B ∧G∧H ′
k ∧S)

Split
(S1 ∨ S2) ∧ S 7→P (S1 ∧ S) ∨ (S2 ∧ S)
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4 Describing Default Logic Theories in CHR∨

In this Section we describe our approach to describing Default Theories as CHR∨

rule bases. It consists of mapping each default rule into two sets of propagation
rules. Let us take the following default rule:

α : β

γ

Without loss of generality, consider α and γ as being in the Conjunctive
Normal Form (CNF) and β as being in the Disjunctive Normal Form (DNF) 4:

α = (α1,1 ∧ . . . ∧ αn,1) ∨ . . . ∨ (α1,m ∧ . . . ∧ αn,m)

β = (β1,1 ∨ . . . ∨ βn,1) ∧ . . . ∧ (β1,m ∨ . . . ∨ βn,m)

γ = (γ1,1 ∧ . . . ∧ γn,1) ∨ . . . ∨ (γ1,m ∧ . . . ∧ γn,m)

Definition 4 (Search Rules). Given a default rule r as above, we define
search(r) as the set containing the following rules:

r1 @ α11, ..., αn1 ==> (r, γ) ; true.
...
rn @ α1m, ..., αnm ==> (r, γ) ; true.

The intended meaning of these rules is: if α, or any of its disjunctive compo-
nents, is in the Constraint Store (and is therefore entailed by it), we have two
options:

– assume β and add γ to the Constraint Store,
– do not assume β.

The new constraint r has exactly the meaning of β is assumed by default.
This can be accomplished by adding β to the constraint store. However, when
dealing with simplification and simpagation rules, part of β may be removed by
some simplification or simpagation rule and it might not be possible to prove its
falsehood in the future.

Definition 5 (Integrity Rules). Given a default rule r as above, we define
integrity(r) as the set containing the following rules:

s1 @ r, cneg_β11, ..., cneg_βn1 ==> false.
...
sn @ r, cneg_β1m, ..., cneg_βnm ==> false.

4 Notice that we employ Abdennadher’s notation for negation as defined in [3], in
which a negated constraint cneg(φ) is represented by a new constraint cneg φ and
a integrity constraint φ, cneg φ⇒ false.
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The intended meaning of this set of rules is: if cneg β can be proved, or any
of its components, and β has been assumed, then the store is inconsistent.

The idea behind this solution is to use CHR∨ as a platform for searching for
an extension for the Default Theory. For example, let us return to the Example
1. The result of the application of the transformation to this problem is:

r1 @ bird(X) ==> (r1(X), flies(X)) ; true.
r2 @ bird(X) ==> (r2(X), penguin(X)) ; true.
r3 @ bird(X) ==> (r3(X), albatross(X)) ; true.

s1 @ r1(X), cneg_flies(X) ==> false.
s2 @ r2(X), cneg_penguin(X) ==> false.
s3 @ r3(X), cneg_albatross(X) ==> false.

Let us feed the CHR∨ engine with the following set of rules and initial con-
straint store:

penguin(X) ==> cneg_flies(X).
penguin(X), albatross(X) ==> false(X).

query: bird(tux).

The following set of final states is going to be obtained (omitting the new
constraints added by the transformation):

S1 = { bird(tux), albatross(tux), flies(tux) }

S2 = { bird(tux), albatross(tux) }

S3 = { bird(tux), penguin(tux), cneg_flies(tux) }

S4 = { bird(tux), flies(tux) }

S5 = { bird(tux) }

Notice that each store corresponds to a set of assumed hypotheses, ranging
from two hypotheses in S1 and S3 to no hypothesis in S5.

We are now going to demonstrate that our approach successfully computes all
correct extensions, at least for a restricted set of Default Theories. We call this
restricted set of Propositional CHR Propagation Restricted Default Theories.

Definition 6 (Propositional CHR Default Theory). A default theory
〈D,W 〉 is said to be a Propositional CHR Default Theory, if

– D is composed of default rules of the form, where α and γ are in the CNF
and β is in the DNF, and are propositional CFOL formulas:

α : β

γ
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– W is composed of a conjunction of:
• A set of atomic constraints,
• A set of logical rules of the form H ∧G → B or G → (H ↔ B), equiv-

alent to CHR propagation and simplification rules without disjunctions,
respectively.

• For each constraint φ there is a rule of the form: φ ∧ cneg φ→ ⊥

Definition 7 (Propositional CHR Propagation Restricted Default
Theories). A default theory 〈D,W 〉 is said to be Propositional CHR Propa-
gation Restricted , if and only if it is a Propositional CHR Default Theory and
the rules in W are equivalent to non-disjunctive CHR propagation rules.

Our notion of equivalence of CHR states and Default Theories extensions
is outlined by the Definition 8. It captures the fact that the new constraints
introduced by our approach do not change the meaning of a state.

Definition 8 (Equivalence of States and Theories). Let 〈W,D〉 be a Propo-
sitional CHR Propagation Restricted Default Theory, and let W be the conjunc-
tion of the constraints in a CHR∨ state S and P a set of CHR rules. We say
that S is equivalent to W if W contains the logical meanings of the rules in P ,
the constraints in S and no other instance of a constraint appearing in P or in
S.

Theorem 1. Let 〈D,W 〉 be a Propositional CHR Propagation Restricted De-
fault Theory. Let W be the conjunction of the initial goal S and the set of CHR
rules P , and R the set obtained by transforming the default rules in D into CHR
rules. For every extension ε of 〈D,W 〉, if Ei is equivalent to a subgoal S′g of
some state S′ (such that S 7→P∪R . . . 7→P∪R S′ is a finite derivation), then
there exists an state S′′ such that Ei+1 is equivalent to a subgoal S′′g of S′′ and
S′ 7→P∪R . . . 7→P∪R S′′ is a finite derivation for it.

Proof (Sketch). If ε is an extension and the default rule r = α:β
γ is applied

between the step Ei and Ei+1. Since the extension exists, β is consistent with
it. It’s easy to see that we can divide the derivation between S′ and S′′ into two
steps: (i) compute the deductive closure of S′g and (ii) execute some of the rules
in search(r). Applying all the derivation steps to the subgoal S′g will lead us to
a state S′′ containing a subgoal S′′g which is equivalent to Ei+1.

ut

Theorem 2 (Completeness). Let 〈D,W 〉 be a Propositional CHR Propaga-
tion Restricted Default Theory. Let W be the conjunction of the initial goal S
and the set of CHR rules P , and R the set obtained by transforming the de-
fault rules in D into CHR rules. For each non-failed derivation S 7→∗

P∪R Sf , all
extensions ε of 〈D,W 〉 are subgoals of Sf .

Proof. By contradiction. Let us suppose there exists an extension ε which is not
a subgoal of Sf . By definition, ε =

⋃∞
i=0 Ei. By Theorem 1, it follows easily that

every Ei should be equivalent to a subgoal of Sf , and thus ε should also be a
subgoal of Sf .

ut
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Theorem 3 (Weak Correctness). Let 〈D,W 〉 be a Propositional CHR Prop-
agation Restricted Default Theory. Let W be the conjunction of the initial goal S
and the set of CHR rules P , and R the set obtained by transforming the default
rules in D into CHR rules. For each non-failed derivation S 7→∗

P∪R Sf , every
non-failed subgoal of Sf is equivalent to a subset of an extension ε of 〈D,W 〉.

Proof (Sketch). By induction on the derivation length. The initial constraint
store is equivalent to a subset of every extension, by definition. By the proof of
the Theorem 1 it is easy to verify that each transition in S 7→∗

P∪R Sf is one step
of the computation of a deductive closure or in the execution of a default rule
between some step Ei and Ei+1 in the derivation of an extension ε.

ut

If we try to extend these results to less restricted versions of the Theorems 2
and 3 we are going to see that both properties are going to be lost, mainly due
to the fact that the simpagation and simplification actually remove part of the
state. Therefore, the obtained subgoals are not going to be complete extensions
anymore.

Another possible extension is allowing disjunctive bodies. In this case, an
extension is not going to correspond to a subgoal, but to a set of subgoals,
which can be easily computed, each subgoal contains an extra constraints for the
assumed hypothesis: each explanation is the disjunction of the subgoals relying
on the same hypotheses.

5 CHR∨,naf : Extending CHR∨ with NAF in the rule
heads

In this Section, we are going to present CHR∨,naf , an extension for CHR with
negated rule heads. In this extension, there are three kinds of rules: simpagation,
propagation and simplification. The simpagation rules generalize all of them.
Their general syntax is:

r@Hk\Hr\\N1|G1\\ . . . \\Nn|Gn ⇔ G|B.

In this example, r is an identifier for the rule, which can be omitted. Hk are
the kept heads, which are kept in the constraint store when the rule fires. The
Hr are the removed heads, which are removed when the rule fires. Hk and Hr

are the positive heads of the rule, whereas N1, . . . , Nn are the negative heads. All
heads must contain only user defined constraints. G1, . . . , Gn are the negated
guards, and like the positive guard G, may be empty and in this case can be
omitted.

Any variable introduced in a guard cannot be used in another guard, i.e.,
the guards can only use the variables appearing in the positive heads and in
their corresponding negative head. The variables defined by the negative guards
cannot appear in the rule body and all guards are composed only of built-in
constraints.
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If Hk is empty, it can be omitted (along with the following backslash) and the
rule is called a simplification rule. If Hr is empty, it can also be omitted (along
with the preceding backslash) and the sign⇔ is changed to⇒. This rule is called
propagation rule. The negative heads cannot be empty. A rule is authorized to
have from 0 to any number of negated heads.

Finally, B is the rule body, and is composed of a disjunction of conjunctions
of user defined and built-in constraints. No variable defined in a negative head
can appear in the rule body.

For now, let us consider the semantics of a rule such that as being:

∀G→ (Hk ∧Hr ∧ naf(∃((N1 ∧G1) ∧ . . . ∧ (Nn ∧Gn)))↔ B)

In other words: if the head is in the constraint store and there is no proof
that the negated head is inconsistent with it, we can assume it by hypothesis.

Example 3. Let us suppose we want to find the minimum value X for which there
exists a c(X) in the constraint store.

The common approach is to do something like:

c(X) \ getMin(Min) <=> current(X,Min).
c(X) \ current(Current,Min) <=> X<Current | current(X,Min).
current(Current, Min) <=> Min = Current.

Notice that this solution explores the refined operational semantics of CHR
and it is inherently not confluent. In a isolated piece of code like this these prop-
erties might not cause grave problems. However, in large rule bases, confluence
problems may be much harder to solve. We want, as much as possible, to find
confluent solutions to the problems.

In CHR∨,naf , this example is implemented much simply, by the means of
following rule:

getMin(M), c(X) \\ c(Y) | Y < X ==> M = X.

The logical reading of this rule is:

∀X, M(getMin(M) ∧ c(X) ∧ naf(∃Y (c(Y ) ∧ Y < X))→ X = M)

5.1 Negation in Rule Heads as Default Reasoning

Now we show how to extract a Default Theory from a CHR∨,naf rule base. Let
us take the CHR∨,naf rule from the Example 3:

getMin(M), c(X) \\ c(Y) | Y < X ==> X = M.
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It is possible to translate the logical reading of this rule in the following
default rule:

∀X, Y,M
getMin(M), c(X) : ¬(c(Y ) ∧ Y < X)

X = M

From this example, it is possible to infer that every CHR∨,naf propagation
rule can be naturally translated into a default rule. The general pattern is that
the following rule:

r@H\\N1|G1\\ . . . \\Nn|Gn ⇒ G|B.

generates the following default rule:

∀H ∧G : (¬(N1 ∧G1) ∧ . . . ∧ ¬(Nn ∧Gn))
B

Unfortunately, this translation does not account either for general simpaga-
tion rules or for simplification rules. What is missing is the capability of removing
the constraints in the head from the constraint store.

This can be easily accomplished by mapping each simpagation or simplifi-
cation rule into a pair of rules, one for propagating the body and another for
removing the head.

For example, let us take the following simpagation rule:

r @ a(X) \ b(Y) <=> g(Z) | c.

It is possible to rewrite it into an equivalent pair of rules:

r1 @ a(X), b(Y) ==> g(Z) | s(X,Y,Z).
r2 @ s(X,Y,Z), b(Y) <=> c.

This pair of rules is equivalent to former one (in the sense of the Definition
8). Since the negated heads in a CHR∨,naf rule base act like a precondition,
this strategy can be extended to CHR∨,naf programs. The idea is than translate
each simpagation rule of the form:

r@Hk\Hr\\N1|G1\\ . . . \\Nn|Gn ⇔ G|B.

to a pair of rules, a propagation and a simplification rule:

r1@Hk,Hr\\N1|G1\\ . . . \\Nn|Gn ⇒ G|s.

r2@s,Hr ⇔ B.

The next step is then, transforming the rule r1 into a default rule, the result
is:

∀Hk ∧Hr ∧G : ¬(N1 ∧G1) ∧ . . . ∧ ¬(Nn ∧Gn)
s



122 Marcos Aurélio, François Fages, Jacques Robin

The following set of CHR∨ rules is obtained5.

r21 @ Hk, Hr ==> G | (r, s) ; true.
r22 @ r, N1 ==> G1 | false.
...
r2n @ r, Nn ==> Gn | false.

Let us return to the Example 3. The complete transformed rule base is as
follows:

r1 @ getMin(M), c(X) ==> (r(X,M), X = M) ; true.
r2 @ r(X,M), c(Y) ==> Y < X | false.

Let us suppose we feed the CHR∨ inference engine with the following goal:

c(3), c(9), getMin(M)

The two final Constraint Stores are:

S1 = { c(3), r(3,3), c(9), getMin(3) }
S2 = { c(3) , c(9), getMin(M) }

The first one is obtained by assuming c(3) as the minimum and the other
one is obtained by assuming no constraint as the minimum.

6 Related Work

6.1 Abduction in CHR∨

In [10], Kakas et al show that Default Logics is a special case of Abduction.
They say that the process of assuming hypotheses can be viewed as a form of
abduction, where instances of defaults are the candidate abducibles.

In [3], Abdennadher explains how to utilize CHR∨ as a platform for Ab-
ductive Reasoning and presents a method for expressing abductive problems as
CHR∨ rule bases.

In theory, it is possible to combine both approaches in order to reason about
Default Theories in CHR∨. The main advantage of our approach is that it allows
the addition of default rules to existing CHR∨ rule bases, while the hybrid ap-
proach combining [10] and [3] would require the translation of the existing rule
bases into abductive problems and then the translation of these problems into
CHR∨, which might not be trivial.

5 Notice that we map former guards into guards in the new rules.
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6.2 Comparing CHR¬ and CHR∨,naf

Both CHR¬ and CHR∨,naf share the same syntax, but differ substantially in
their semantics. The semantics for CHR¬ was based on the refined operational
semantics for CHR defined in [16] and consisted of restricting the applicability
of CHR rules to situations where no negated head were present and adding the
notion of Triggering on removal, in which, a rule should also fire when a negated
constraint is removed from the constraint store.

That semantics presented some undesirable features, which this one aims to
overcome. The first of these effects is the lost logical reading, in the sense that,
because of its essentially operational semantics, it is not anymore possible to
map each rule into a logical formula. The present semantics brings back a logical
reading to rules with negative heads, in the sense that each rule can be read as
a default rule, where the pre-requisites are in the positive head, the justification
is the negative head and the conclusion is the body.

Another undesired feature is the unexpected behavior for some programs.
The operational semantics for CHR¬ turned out to lead to counter-intuitive
results for some simple programs, as the one described in the Example 4.

Example 4 (Order). Under CHR¬, negatively occurring constraints have to be
added in the right order. In the following rule base, everytime the first rule
fires, the child is declared an orphan. The reason for that is the fact that when
the constraint child(C) is added to the constraint store and the constraints
father(F,C) and mother(M,C) have not yet been added, and thus, the second
rule fires.

birth(C,F,M) <=> child(C), father(F,C), mother(M,C).
child(C) \\ father(_,C) \\ mother(_,C) ==> orphan(C).

To illustrate the difference between both semantics, let us suppose we try the
following initial constraint store:

birth(a, b,c), child(e).

In this example, a is not orphan, but we don’t know whether e is. We are
going to obtain two final constraint stores:

S1 = { child(a), father(b, a), mother(c, a), child(e), orphan(e) }
S2 = { child(a), father(b, a), mother(c, a), child(e) }

The first one, assumes e to be an orphan, and the second one does not assume
anything. In CHR¬, the final constraint store for this initial constraint store is:

S1 = { child(a), father(b, a),
mother(c, a), child(e),
orphan(a), orphan(e) }

This result is unexpected because a is clearly not orphan.



124 Marcos Aurélio, François Fages, Jacques Robin

7 Conclusion

At this work, we confirmed the flexibility of the CHR∨ language by presenting
it as a platform for Default Reasoning services. We defined an approach that
permits us to rewrite Default Rules as CHR∨ propagation rules and reuse the
built-in search capabilities of CHR∨ in order to find consistent sets of hypotheses
that can be assumed in a given Default Theory.

We have also investigated how to leverage the correspondence between De-
fault Logic and Negation As Failure (NAF) in order to propose an extension
CHR∨,naf for CHR∨ allowing negated constraints and guards in the rule head.
We showed how this extension relate to CHR¬ [9], which employs an operational
concept of negation: Negation As Absence (NAA).

We propose the following future works:

– Triggering on Removal: This is an important feature of CHR¬ which
is not supported by CHR∨,naf because it is not declarative. In order to
allow this kind of reasoning we would need to employ some better-founded
semantics for removal, like the one employed by Adaptive CHR∨ [4].

– Complexity of Default Logics in CHR∨: As pointed out by [14], the
problem of enumerating all the extensions for a Default Theory has an
exponential time complexity. This is easily shown by the fact that each
possible hypothesis generates two possibilities: considering it and not con-
sidering it. Under this context, it is easy to notice that the number of states
computed by the CHR∨ machine increases exponentially with the input size.

In fact, only some of the returned states are complete extensions. For
example, in the list of final states presented at the example in the Section
4, only the first one was really an extension. One of the future works is
to develop an operational semantics taking a bias in the hypothesis into
accounts, making it possible to prioritize the returned solutions.

This new strategy will not be able to reduce its worst case complexity, but
will improve its average time complexity.

– Stronger Theoretical Results: the proofs presented at the Section 2.1
cover only a very limited range of Default Theories (the Propositional CHR
Propagation Restricted Default Theories). A future work is to extend this
results, initially to Default Theories with variables and quantifiers and then
to simpagation and simplification rules.
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Abstract. DatalogLB is an extension of Datalog supporting global stratification
of negation and functional dependencies, designed for use in industrial-scale de-
cision automation applications. Constraint Handling Rules (CHR) is a declara-
tive rule-based programming language, particularly suitable for specifying cus-
tom constraint solvers at a high level. Our goal is to enhance DatalogLB with
CHR-like capabilities in order to improve its expressive power and open it to
specification of general-purpose constraint solvers for industrial applications. In
this paper we relate the two formalisms and define a translation of a significant
class of CHR programs into DatalogLB. It turns out that the translation enables
reasoning about the properties of CHR programs at a high level of Datalog logic.

1 Introduction

Constraint Handling Rules (CHR) [1] is a declarative formalism of multi-headed, com-
mitted-choice, guarded, multiset rewriting rules, originally designed for extending host
languages, such as Prolog or Haskell, with user-defined constraint solvers. The ex-
pressiveness of CHR facilitates specification of a wide variety of problems at a high
level, and its clean semantics supports program analysis and transformation, enabling
non-trivial performance improvements. Thus, the formalism has evolved into a general-
purpose programming language, with application domains including computational lin-
guistics, software engineering, deductive databases, semantic web, and more.

We consider CHR in the context of its potential benefits for the domain of auto-
mated decision support. We are developing a framework for building configurable deci-
sion support systems, based on a reasoning language rooted in Datalog. Although more
powerful than pure Datalog, our language—called DatalogLB—often lacks the flexibil-
ity and generality to define constraint solvers for industrial applications. Thus, we aim
to port some of the features of CHR to DatalogLB in order to improve the latter’s ex-
pressive power, and to make our systems capable of handling more complex problems.

This paper reports our experience from the initial step towards porting the function-
ality of CHR to DatalogLB, in which we establish a relationship between the two for-
malisms. The benefit of this step is mutual. On one hand, by exposing aspects of CHR
that exceed DatalogLB’s handling capabilities, it fosters better design decisions leading
to the improvement of our language. On the other hand, by demarcating the classes of
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CHR programs that map into pure Datalog and DatalogLB, it allows reasoning about
the properties of these program classes at the level of the declarative and well-studied
Datalog logic. In summary, our paper makes the following contributions:

– it formally defines a basic translation schema from CHR to pure Datalog
– it identifies a class of CHR programs that are amenable for the basic translation,

and thus share properties with pure-Datalog programs
– it extends the basic translation schema to accommodate properties of CHR not com-

pliant with pure Datalog, but expressible in DatalogLB

– it identifies a class of CHR programs that are amenable for the extended translation,
and thus share properties with DatalogLB programs.

We illustrate different stages of our translation with examples of CHR programs and
their pure-Datalog or DatalogLB counterparts. All CHR programs are either borrowed
or adapted from the WebCHR online demo [2].

In the remainder of the paper, Section 2 provides background on Datalog, DatalogLB

and CHR; Section 3 defines the basic translation schema from a restricted subclass of
CHR to pure Datalog; Section 4 extends the basic translation schema onto a larger class
of CHR and DatalogLB; Section 5 considers some of the challenges of the unrestricted
CHR translation; and Section 6 concludes with a discussion and review of related work.

2 Preliminaries

We use standard notions of variables, constants, n-ary functions, terms and clauses [3],
and of databases and the relational algebra [4]. We use, possibly subscripted, upper-
case letters to denote sets and sequences of entities, and lower-case letters to denote
their elements. Usually, t refers to a term in general, c refers to a constraint term, with a
constraint symbol at the root, and d refers to a Datalog clause. We use vars(t) to denote
the set of variables in a term t. We extend the functions defined over elements of the
collections onto the entire collections whenever needed and obvious from the context.

2.1 Datalog

Datalog is a subset of Prolog developed in 1970s for deductive databases. The original
specification of Datalog, which we call pure Datalog, extended traditional database
query languages with support for recursion, at the same time avoiding Prolog’s non-
termination issues, and thus conforming to the set-at-a-time reasoning scheme of the
relational algebra. Syntactically, pure Datalog coincides with Prolog restricted so that:
(i) unit clauses (facts) are always ground, (ii) all predicate arguments are variables or
constants, and (iii) it is negation-free. To ensure that the condition (i) is satisfied, all
clauses must be safe, i.e., every variable in a clause must appear in the clause’s body.

The specification of pure Datalog is too confining for many practical applications,
and numerous extensions have been proposed to relax its restrictions. Most notably,
these include different models for handling negation, admitting disjunction in clause
heads, and support for object-oriented programming. In recent years, Datalog received
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attention of researchers from areas such as program analysis [5], networks [6], security
protocols [7], knowledge representation [8], robotics [9], games [10], and more.

The power of Datalog lies in its ability to define new predicates, which are cal-
culated in terms of given data. A Datalog program operates on two disjoint sets of
predicates: the extensional database (EDB)—the predicates defined by externally sup-
plied facts—and the intensional database (IDB)—the predicates calculated based on
the EDB and the program rules. Semantically, a model of a Datalog program is a choice
of IDB relations that, with the given EDB relations, makes all program rules true for all
variable substitutions. Like Prolog, pure Datalog features set semantics, meaning that it
does not distinguish between multiple instances of the same fact.
DatalogLB. The goal of DatalogLB is to provide a generally useful, declarative way
for expressing data structures, relations between data entities, sophisticated calcula-
tions, integrity constraints, and transactional processing. DatalogLB is a type-safe vari-
ant of Datalog, based on incremental evaluation, with trigger-like functionality and
support for dynamic updates, ability to declaratively specify functional dependencies,
non-deterministic choice, stratified negation and aggregation, and meta-programming.
DatalogLB retains pure Datalog’s set semantics, admitting at most one instance of any
fact in program’s database.

2.2 Constraint Handling Rules

Syntax. A CHR program is a finite set of rules that specify how multisets of user-
defined constraints are solved based on the host language’s built-in constraints (e.g.
Prolog predicates). CHR rules are of the form:

label @ Head
{

<=>
==>

}
Guard | Body

The most general are simpagation rules of the form H1 \ H2 <=> G | B where H1

and H2 are sequences of user-defined constraint terms (the heads of the rule), G (the
guard) is a sequence of built-in constraints and B (the body) is a sequence of built-in
and user-defined constraint terms. A rule specifies that when constraints in the store
match H1 and H2 and the guard G holds, the constraints that match H2 can be replaced
by the corresponding constraints in B. The literal true represents an empty sequence
of constraint terms. The guard part, G |, may be omitted when G = true.

A simplification rule, which has the form H2 <=> G | B can be represented by a
simpagation rule true \ H2 <=> G | B. Similarly, a propagation rule, which has the
form H1 ==> G | B, can be represented by a simpagation rule H1 \ true <=> G | B.
Semantics. CHR has a well-defined declarative as well as operational semantics [1,
11]. The declarative interpretation of a CHR program P is given by the set of universally
quantified formulas corresponding to the CHR rules, and an underlying consistent con-
straint theory.The constraint theory defines the meaning of host language constraints,
the equality constraint ‘=’, and the boolean atoms true and false.

The original operational semantics of CHR [11] is given in terms of a non-deterministic
transition system. The evaluation of a program P is a path through the transition sys-
tem. The transitions are made when a constraint is added from the goal to the store,
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:- constraints parent/2, ancestor/2, sibling/2.

parent @ parent(X,Y) ==> ancestor(X,Y).
ancestor @ parent(X,Y), ancestor(Y,Z) ==> ancestor(X,Z).

sibling @ parent(P,X), parent(P,Y) ==> X\==Y | sibling(X,Y).

setsem @ sibling(X,Y) \ sibling(X,Y) <=> true.

Table 1. A CHR program for deductive database of family relations

or by firing any applicable program rule. The refined operational semantics [12], fol-
lowed by most CHR implementations, defines a more deterministic transition system
specifying, among others, the order in which rules are tried. The refined operational
semantics is shown to be sound and to have better termination behavior than the original
semantics.

Example 1. Table 1 lists a CHR program encoding a simple deductive database of
family relations. The propagation rule parent, for each stored constraint matching
parent(X,Y), adds to the store an ancestor(X,Y) constraint; the propagation
rule ancestor, for each stored pair of constraints matching parent(X,Y) and
ancestor(Y,Z), adds an ancestor(X,Z) constraint; similarly, the propagation
rule sibling, for each pair of stored constraints that match parent(P,X) and
parent(P,Y), where X 6=Y, adds a sibling(X,Y) entry to the constraint store.
The simpagation rule setsem, in the presence of two identical stored constraints
matching sibling(X,Y), replaces one of these constraints (to the right of ‘\’) with
true, effectively removing the constraint from the store.

The evaluation of the program is triggered by a goal formed by a sequence of
user-defined constraints. The propagation rules deduce the ancestor and sibling
constraints implied by the given parent constraints, whereas the simpagation rule
setsem removes duplicate occurrences of the sibling constraint.

3 Basic Translation Schema: CHR to Pure Datalog

In this section we analyze Constraint Handling Rules in the context of the characteristic
properties of pure Datalog, and identify the class of CHR directly expressible as pure-
Datalog programs.

3.1 CHR vs. pure Datalog

Always-ground facts. Evaluation of a query over a pure-Datalog program computes a
fixed point according to a set of rules and a relational database expressed as a set of facts,
and the groundness of the facts guarantees its termination. In the context of CHR, facts
correspond to the contents of the constraint store. To ensure that all constraints stored
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during the evaluation of a CHR program are ground, we require that (i) the program is
range restricted, meaning that whenever a variable appears in a program rule’s body, it
also appears in the rule’s head1, and (ii) all queries issued to the program are ground.
No function symbols. Pure Datalog’s restriction to 0-ary function symbols manifests
in the context of CHR as two requirements: (i) that all constraint arguments in pro-
gram rules are variables or constants, and (ii) that no functions (e.g., arithmetic) are
evaluated in program rules’ bodies. For programs in which function symbols appear as
arguments only in the rules’ heads, we can lift the requirement (i) by applying one of
the flattening techniques introduced in [13]. Thus, this restriction admits to translation
into pure Datalog all CHR programs as long as their flattened versions comply with all
other requirements discussed in this section.
Negation freedom. Datalog’s property of negation freedom allows adding new facts
to a database, but does not allow removing any facts that are already there. Thus, at
any step of the evaluation, new facts are derived based on all facts added in the previous
steps. Furthermore, since we only add facts, and do so until no more facts are implied by
the current facts set and program rules, the order in which the facts are derived (i.e., the
order in which the program rules are applied) does not affect the final result of the eval-
uation, meaning that all pure-Datalog programs are confluent. On the other hand, CHR
supports constraint removal by means of simplification, which enables writing non-
confluent programs. In this section, when relating CHR to pure Datalog, we consider
only the simplification-free subset CHR. In Section 4 we identify a class of programs
with restricted simplification, which can be represented in DatalogLB, and in Section 5
we discuss issues around mapping to Datalog CHR with full-fledged simplification.

3.2 Translation schema

We now characterize the class of CHR programs amenable for direct translation into
pure Datalog, and define the translation schema for this program class.

Definition 1 (CHRδ rule). A CHRδ rule is a range-restricted CHR propagation rule,
in which all arguments of the body constraints are terms of arity < 1.

Definition 2 (CHRδ rule mapping). The mapping mδ : CHRδ 7→ D from CHRδ rules
to pure-Datalog clauses is defined as:

mδ(H ==> G | B) = B <- H,G.

Because the semantics of Datalog does not distinguish duplicate facts, translating
into Datalog CHR programs that place multiple instances of the same constraint in
the store will change their behavior. In our previous work [14] we identified the class
of set-CHR programs, for which the constraint store is always a set. Clearly, transla-
tion to Datalog is useful only for set-CHR programs. A common way to enforce set
semantics in CHR is by enhancing the programs with simpagation rules of the form:
c \ c <=> true. for every constraint symbol c, for which multiple constraint in-
stances may be added to the store during the evaluation. Rules of this kind, which we

1 this property coincides with the safety property of Datalog rules (see Section 2.1)
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call set-semantics rules, explicitly remove duplicate constraints, and are often utilized
in set-CHR programs. Guaranteed semantics of the output of our translation allows to
omit the set-semantics rules from the input programs:

Definition 3 (Set-semantics rule elimination). The elimination of CHR set-semantics
rules mσ : CHRδ 7→ D is defined as:

mσ(c \ c <=> true) = true.

Recall that the set of predicates in a Datalog program is partitioned into the EDB
and the IDB. Intuitively, EDB predicates are editable by the outside world and cannot be
modified by the system, whereas IDB predicates are calculated by the system and can-
not be edited by the outside world. In the context of CHR, the EDB are the constraints
provided by queries, and the IDB are the constraints deduced by rule application.

Example 2. In the family database program in Table 1, the constraint symbol parent
appears in the heads of all rules, and never in rule bodies. Thus, all instances of the con-
straint in the constraint store are those provided by the goal. Furthermore, parent is
a premise for deducing all other constraints, as the presence of its instances in the store
warrants applicability of all propagation rules. Clearly, this constraint represents an
EDB predicate. By contrast, the constraint symbols ancestor and sibling appear
in rule bodies, and so, the instances of these constraints are deduced by rule application.
As such, the constraints represent the IDB predicates.

Even with a clean distinction between the constraint representation of the EDB and
IDB in a CHR program, as in Example 2, nothing prevents posing the constraints repre-
senting the IDB in the queries, thus confusing these constraints with those representing
the EDB. To avoid similar confusion in Datalog programs generated by our translation,
we explicitly separate the constraints representing the IDB in program rules from their
counterparts allowed in the queries by introducing an EDB predicate and an EDB rule
for each constraint representing an IDB predicate in source CHR programs:

Definition 4 (EDB predicate and EDB rule). The EDB predicate pε represents the
IDB predicate p in the EDB. The EDB rule for a predicate p, rε(p), maps the EDB
predicate pε to its IDB counterpart:

rε(p) = p <- pε

Definition 5 (Program translation). A pure-Datalog translation of a CHR program
given by a set of CHRδ rules and a set of set-semantics rules over a set of user-defined
constraints, P (C) = Rδ ∪ Rσ , is a program mπ(P ) in which each constraint c ∈ C
representing an IDB predicate is associated with an EDB rule, each rule r ∈ Rδ is
mapped to a pure-Datalog clause, and all set-semantics rules are eliminated: mπ(P ) =
rε(C) ∪mδ(Rδ) ∪mσ(Rσ).

Example 3. The family database program in Table 1 consists of three CHRδ rules
(parent, ancestor, and sibling), and a set-semantics rule (setsem). The con-
straint parent represents the EDB predicate, whereas the constraints ancestor and
sibling represent the IDB predicates. The pure-Datalog translation of the program
is shown in Table 2, where lines 1, 2 list the EDB rules, lines 4, 5, 7 list direct mapping
of the CHRδ rules to pure Datalog, and the set-semantics rule has been eliminated.
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ancestor(X,Y) <- ancestorε(X,Y). 1

sibling(X,Y) <- siblingε(X,Y). 2

3

ancestor(X,Y) <- parent(X,Y). 4

ancestor(X,Z) <- parent(X,Y), ancestor(Y,Z). 5

6

sibling(X,Y) <- parent(P,X), parent(P,Y), X\=Y. 7

Table 2. A pure-Datalog representation of the family database program

Correctness The CHR programs expressible in pure Datalog are confluent and their
evaluation always terminates. The basic translation presented in this section is sound
and complete w.r.t. the data sets deduced by the input and output programs.

Theorem 1 (Soundness and Completeness). The constraint store resulting from the
evaluation of a goal Q over a CHR program P = Rδ ∪ Rσ is equivalent to the set of
facts deduced by the pure-Datalog translation of P , mπ(P ), for a set of EDB facts F
such that F = Q.

Theorem 1 holds based on the pure-Datalog semantics and the logical reading of CHR.

4 Extended Translation Schema: CHR to DatalogLB

In Section 3.2 we defined a mapping from CHR to pure Datalog. The mapping is
straightforward, and the subclass of CHR programs amenable for the mapping are guar-
anteed to have the properties of pure Datalog programs such as termination and con-
fluence. This subclass of CHR, however, is very small and leaves out many practical
programs. In this section we propose three extensions to the basic translation schema,
which accommodate features common in CHR, but not standard to pure Datalog. The
extensions, facilitated by the properties of the DatalogLB system underlying our trans-
lation, and by a simple CHR program transformation, still yield a translation schema
that guarantees well-behavedness of the input programs.

4.1 Restricted simplification

Pure Datalog’s requirement of negation freedom is perhaps the most prohibitive restric-
tion of the language, and numerous approaches have been taken towards relaxing it. For
example, many Datalog systems allow programs with stratified negation, i.e., programs
in which all instances of any predicate appearing in negated subgoals are computed
before the predicate is used with negation.

The negation-freedom requirement is very restrictive also in the context of our trans-
lation. As argued in Section 3.1, CHR implements negation by means of simplification.
Hence, the requirement bans all simplification from the basic translation schema, which
severely limits the schema’s applicability, as simplification rules are dominant in most
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CHR programs. In this section we identify a subclass of CHR with stratified simplifica-
tion, for which we can lift this restriction.

Intuitively, a program is simplification stratified if it is never the case that the sim-
plification of a constraint triggers further propagation. Our formal definition of simpli-
fication-stratified programs is based on the notion of constraint dependency graph:

Definition 6 (Constraint dependency graph). A constraint dependency graph for a
CHR program P is a graph G = 〈N,E〉 with a set of nodes N and a set of edges E,
in which the set of nodes is the set of user-defined constraints, and there is an edge on
a rule r ∈ P , denoted e(r), from a source node cs to a target node ct, if the constraint
represented by cs appears in the head of the rule r, and the constraint represented by
ct appears in the body of r.

Definition 7 (Negative edge and positive edge). A negative edge in a constraint de-
pendency graph is an edge e(r) from a source node cs such that r is a simplification
rule, or r is a simpagation rule and its application removes the constraint cs. A positive
edge is an edge that is not negative.

Definition 8 (Simplification-stratified program). A simplification stratified program
is a CHR program such that for all nodes in its constraint dependency graph it holds
that if a node has an outgoing edge, then all its incoming edges are positive.

The evaluation of a simplification-stratified program can be split into two concep-
tual steps, with a propagation step—computing all constraints (solution candidates) im-
plied by a given goal—followed by a simplification step—applying the solution se-
lection criteria which identify the actual solution. This property enables translation of
simplification-stratified programs into negation-stratified DatalogLB programs defining
the following sequence of operations:

1. based on the EDB facts and rules, derive the solution candidates (IDB facts)
2. identify the candidates that do not satisfy the program’s solution selection criteria
3. determine the solution as the set of candidates not ruled out by the selection criteria.

We formally define the extended translation schema in Section 4.4. Here we illustrate
the extension with an example CHR program and its DatalogLB counterpart.

Example 4. Table 3(a) lists a simplification-stratified program that, given a set of num-
bers, finds its smallest element. The program rule iterates over the elements of the set,
stored as individual constraints, and, upon finding one that is greater than some other
set element, removes its representation from the constraint store. The DatalogLB repre-
sentation of the program is listed in Table 3(b). The program directly implements the
three-step sequence outlined above. Line 1 identifies all set numbers as potential mini-
mum elements, line 2 compares the numbers pairwise and adds all that are greater than
some other number in the set to the predicate min¬, whereas line 3 identifies the actual
set minimum as the element defined in min but not in min¬.

Many of the early formulations of CHR, e.g., [1,11], considered a simpagation rule of
the form R@H1\H2<=>G|B a syntactic abbreviation—and thus a semantic equivalent—
of a simplification rule of the form R’@H1,H2<=>G|H1,B. The notion of simplifica-
tion stratification enables the following observation about this relationship. Given a
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:- constraints min/1.

min(I) \ min(J) <=> J>=I | true.

(a)

min(I) <- minε(I). 1

min¬(J) <- min(I), min(J), I<J. 2

minω(I) <- min(I), !min¬(I). 3

(b)

Table 3. A CHR program finding the smallest number in a set (a), and its representation
in DatalogLB (b)

simplification-stratified program P comprising a rule R, by replacing the rule with its
“equivalent” R’, we add to P ’s constraint dependency graph a self-loop (i.e., both in-
coming and outgoing) edge on each node representing a constraint in H1, and a negative
incoming edge from each node representing a constraint in H2 to each node represent-
ing a constraint in H1. Clearly, the resulting program is not simplification stratified,
meaning that, in general, the two kinds of rules are not equivalent.

4.2 Restricted function symbols

Datalog’s termination guarantee follows from the fact that the interpretation of every
predicate is a finite relation: for an n-ary predicate P , P ⊂ U1 × U2 . . . × Un where
each Ui is a finite Herbrand universe of 0-ary function symbols. Operationally, this
enables evaluation of Datalog programs by a search through a finite number of inter-
pretations. Extending Datalog with function symbols makes the Herbrand universe of
terms infinite, and introduces the possibility of the logic engine exhaustively search-
ing/enumerating an infinite space of solutions. Thus, pure Datalog—and our basic trans-
lation schema—disallow the use of function symbols of arity > 0. On the other hand,
artithmetic functions, for instance, are very common in CHR, and hence relaxing this
restriction may considerably expand the class of programs amenable for our translation.

DatalogLB facilitates declaration of predicates as functions rather than just as rela-
tions, by specifying their domains and codomains: p(d1, . . . , dn, t1, . . . tn). Such pred-
icates are interpreted as functions: d1 × . . . × dn 7→ t1 × . . . × tn. The DatalogLB’s
type system verifies that the universes for all di are finite. With a finite domain, even
if the interpretation of any ti is infinite, the function itself is guaranteed to be finite as
well.We exploit this feature of DatalogLB to allow the use of infinite-domain functions
in a way that preserves termination guarantees of pure Datalog.

Example 5. Table 4(a) lists a CHR program computing a distance from an arbitrary
node in a tree to the tree’s root (the depth of the node). The rule root sets the depth of
the tree’s root node to 0. The rule node repeatedly descends from a node to the node’s
child, and updates the depth counter. Even though the update applies an infinite-domain
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:- constraints root/1, edge/2, depth/2.

root @ root(N) ==> depth(N,0).
node @ edge(N1,N2), depth(N1,D1) ==> D2 is D1+1, depth(N2,D2).

(a)

depth(N,0) <- root(N).
depth(N2,D2) <- edge(N1,N2), depth(N1,D1), D2 = D1+1.

(b)

Table 4. A CHR program calculating depth of a tree node (a), and its representation in
DatalogLB (b)

function (‘+’) to the counter value, the program is well-behaved. This is because the
value of the counter functionally depends on the node, and so, the number of the incre-
ment operations is bound by the number of the nodes in the tree. The program translates
directly to DatalogLB, and its representation is listed in Table 4(b).

4.3 Restricted unboundedness

The requirement that all pure-Datalog facts are ground complies with the original pur-
pose of the language, which was to facilitate specification of database queries and (re-
cursive) views, but makes pure Datalog inapplicable to problems that involve top-down
recursion i.e., recursion through value-computing (in a broad sense) predicates. Since
such problems are easily, and commonly, represented in CHR, searching for ways to
relax this restriction seems worthwhile.

Example 6. Table 5(a) lists a CHR program encoding the naive union-find algorithm.
The algorithm defines a forest of disjoint sets and two operations on its elements: find to
determine which tree in the forest contains a given node, and union to merge two trees
into one. A tree is represented by its root node. In the program, the constraints root and
-> capture the structure of the forest, whereas the constraints make, union, find,
and link define the operations. The rule make creates a new tree with a single node,
and designates that node as the tree’s root. The rule union, given two nodes, merges
the trees containing these nodes by finding the root of each tree and linking the two
roots together. The rules findNode and findRoot repeatedly advance from a given
node to its parent until reaching a root. The rules linkEq and link create a new tree
by merging two existing root nodes, and designate one of these nodes as the tree’s root.

The program in Table 5(a) defines recursive value computation by means of the
find constraint which, given a node in a tree, returns the tree’s root. The constraint is
activated by the body of the union rule, with its first argument bound to the name of
the node, and its second argument unbound. Activation of the constraint triggers either
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:- constraints make/1, find/2, union/2, (->)/2, link/2, root/1.

make @ make(A) <=> root(A).

union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A -> B \ find(A,X) <=> find(B,X).
findRoot @ root(B) \ find(B,X) <=> X=B.

linkEq @ link(A,A) <=> true.
link @ link(A,B), root(A), root(B) <=> B -> A, root(A).

(a)

:- constraints make/1, find/2, union/2, (->)/2, link/2, root/1,
eq/2.

refl @ eq(X,X) ==> true.
symm @ eq(X,Y) ==> eq(Y,X).
trans @ eq(X,Y), eq(Y,Z) ==> eq(X,Z).

make @ make(A) <=> root(A).

union @ union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode @ A -> B \ find(A,X) <=> find(B,X).
findRoot @ root(B) \ find(B,X) <=> eq(X,B).

linkEq @ link(A,A) <=> true.
link @ link(A,B), root(A), root(B) <=> B -> A, root(A).

(b)

Table 5. The naive union-find algorithm in traditional CHR encoding (a), and with
user-defined unification (b)

the findNode or the findRoot rule, and only the latter unifies the second argument
with the name of the tree’s root node. Admitting unbound constraint arguments in a
rule’s body violates the range-restrictedness requirement of CHRδ , and, in the context
of Datalog, leads to generation of non-ground facts, thus enforcing subgoal ordering.
Hence, programs with top-down recursion cannot be represented in pure Datalog.

The translation of CHR programs with top-down recursion into DatalogLB is en-
abled by a simple program transformation. The goal of the transformation is to replace
the built-in constraint responsible for the delayed binding of the value argument with
a user-defined constraint that can be added to the store (thus simulating the binding) at
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any time of the evaluation. Transformed CHR programs are amenable for translation
using the extended schema formalized in Section 4.4.

Example 7. Table 5(b) lists the transformed union-find program which defines a new
constraint, eq, representing unification. The constraint is used in the body of the findRoot
rule to reflect the binding of the variable to the name of the root node. Three new rules,
refl, symm and trans, define the properties of the eq constraint.

4.4 Translation schema

The basic translation schema from Section 3.2 facilitates pure-Datalog representation
of CHR programs required (i) to contain only range-restricted propagation rules free
from function symbols, and (ii) to be evaluated only for ground queries. Clearly, these
requirements demarcate a very small, and not very useful, subclass of CHR. In this sec-
tion we define an extended translation schema for mapping a more interesting subclass
of CHR into DatalogLB, by relaxing the basic schema’s restrictions on program syntax
in the following ways:

1. admit programs with simplification rules (governed by stratified simplification,
Section 4.1)

2. admit rules with function symbols and local variables (governed by functional de-
pendency, Section 4.2)

3. admit non-ground queries over programs (governed by user-defined built-ins, Sec-
tion 4.3)

Hence, we generalize the notion of a rule amenable for translation:

Definition 9 (CHRχ rule). A CHRχ rule is a CHR rule

H1 \ H2 <=> G | A,B

where A is a (possibly empty) sequence of arithmetic constraints; B is a sequence of
user-defined and built-in (non-arithmetic) constraints; and for every constraint c ∈
A ∪ B, each variable argument of c either appears in vars(H1 ∪ H2), or functionally
depends on some variable in vars(H1 ∪H2).

Consequently, we generalize the definition of rule mapping:

Definition 10 (Rule mapping mχ). The mapping mχ : CHRχ 7→ D from CHRχ rules
to DatalogLB clauses is defined as:

mχ(H1 \ H2 <=> G | A,B) = B,H2¬ <- H1,H2,G,A

where the predicate H2¬ denotes a sequence of the negated versions of all constraint
symbols appearing in the head H2: H2¬ = {c¬ | c ∈ H2}.

The predicate H2¬ simulates constraint removal. Since DatalogLB does not support ex-
plicit removal of data, we denote removal of an instance of an IDB predicate p from a
program’s database by adding a corresponding fact to p¬. After completed evaluation,
the database contains a set of facts added to p, in p itself, and a set of facts (marked as)
removed from p, in p¬. We identify the facts that are actually in the database (i.e., are
not marked as removed), by means of an output predicate and an output rule:
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Definition 11 (Output predicate and output rule). The output predicate for an IDB
predicate p, pω, represents the actual definition of p in a program’s database. The output
rule for p, rω(p), defines the output predicate pω by selecting from the database the facts
of p that have been added, but not removed, during the evaluation:

rω(p) = pω <- p,!p¬.

The set-semantics rules elimination, as well as the EDB predicates and EDB rules
are preserved from the basic translation schema.

Definition 12 (Program translation). A DatalogLB translation of a CHR program
given by a set of CHRχ rules and a set of set-semantics rules over a set of user-defined
constraints, P (C) = Rχ ∪ Rσ , is a program mπ(P ) in which each constraint c ∈ C
representing an IDB predicate is associated with an EDB rule and an output rule, each
rule r ∈ Rχ is mapped to a DatalogLB clause, and all set-semantics rules are elimi-
nated: mπ(P ) = rε(C) ∪ rω(C) ∪mχ(Rχ) ∪mσ(Rσ).

Correctness The extended translation schema generates DatalogLB programs which are
operationally equivalent to the source CHR programs, and preserve well-behavedness
properties of pure Datalog.

5 Full-fledged simplification

In Section 4.4 we defined a translation schema facilitating DatalogLB representation of
an interesting, but restricted, class of CHR programs. In this section we discuss one of
the main challenges of translating into Datalog the unrestricted CHR.

The schema from Section 4.4 admits for translation into DatalogLB CHR programs
with stratified simplification, in which all constraint removals may be performed in a
single (and final) evaluation step. In CHR programs that are not simplification stratified,
simplification of constraints is interleaved with propagation, and it is possible that a
constraint c added to the store at some point of the evaluation, is later removed, and
then added again. Such behavior cannot be represented in DatalogLB simply by means
of a c¬ predicate as before, because this can capture at most one addition and removal
of any given fact2. To reflect subsequent additions and removals, we need to extend the
DatalogLB predicate representing the constraint c with a time dimension, which will
allow to keep track of the contents of the predicate at every point of program evaluation.
We have implemented this approach by means of time stamps, or steps, added to each
predicate in the translated program. With steps, a CHR simplification rule:

H <=> G | B

translates into a DatalogLB rule:

B(SN), H(SN), H¬(SP) <- H(SP), G, next step(SP,SN)

2 recall that set semantics treats identical facts (constraint instances) as the same fact (constraint)
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where SP and SN correspond to, respectively, the previous and the next step, and the
predicate next step advances from one step to the other. Simulating the time dimen-
sion in DatalogLB takes away much of the programs’ declarativeness, and leads to a
significant increase in their state space. Furthermore, programs with time dimension
are guaranteed to terminate only if the number of the steps taken is finite. To ensure
this requires pre-allocating the steps at the beginning of the evaluation. If the number
of steps necessary to fully process a problem cannot be determined statically, this may
result in the evaluation terminating early, before reaching the result. Given these short-
comings, the benefit of pursuing this direction of our approach is yet to be determined.

6 Discussion and Related Work

In this paper, by establishing a relationship between CHR and two variants of Datalog,
we have enabled reasoning about the logical reading of CHR programs in terms of the
declarative and well-studied Datalog logic. Our basic translation schema shows a clean
correspondence between pure Datalog and a small subclass of CHR. The programs in
this CHR subclass are guaranteed to hold strong termination and confluence proper-
ties of pure Datalog. The extended translation schema significantly augments that basic
subclass of CHR, at the same time preserving well-behavedness guarantees for the ad-
mitted programs. We expect to continue our investigation of this relationship, possibly
enhancing it with the consideration of other relevant formalisms.

Connections between CHR and other formalisms have been studied before [1, 15–
17]. First, a representation of CHR rules as universally quantified formulas in first-order
predicate logic, together with a built-in constraint theory of the host language, defined a
program’s classical declarative semantics [1]. This approach turned out not always ac-
curate (e.g., for programs with multiset semantics or procedural use of CHR3), opening
the way to alternative interpretations. For instance, mapping CHR to intuitionistic lin-
ear logic [15] proved better suited for providing declarative semantics to programs with
dynamic updates relying on non-deterministic committed choice. Even more accurate
interpretation of procedural applications of CHR has been accomplished by transform-
ing CHR programs into transaction logic [16], which uses a time-based dimension to
reason at the level of individual derivation steps rather than only at the level of the fi-
nal results. Our approach, relating CHR to (extended) Datalog, restores to the search
for a declarative interpretation of CHR. Even though both pure Datalog and DatalogLB

lack the time-based dimension that allows to express full-fledged simplification, our
translation enables declarative reasoning about a substantial subclass of CHR with re-
stricted simplification, and we can simulate full-fledged simplification by extending the
programs with a notion of pre-allocated evaluation steps.

CHR has been also related to (colored) Petri nets (CPN) [17]. The approach exploits
a positive, range-restricted, ground subset of CHR, and proposes CPN-based analysis
of concurrency properties of programs in this subset to facilitate parallelizing their ex-
ecution. Our extended translation schema considers a larger subset of CHR (we relax
both the range-restrictedness and groundness requirements), for which it guarantees
confluence, thus opening the programs in this set to parallel processing.

3 meaning, the use of CHR to express temporal, rather than purely logical, consequence
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The connections between CHR and Datalog have been explored in the context of
CHR∨ [18], an extension of CHR with disjunction, which facilitates CHR-based repre-
sentation of (disjunctive) deductive databases. With support for mixing top-down and
bottom-up programming paradigms, and admitting existentially quantified variables in
rule bodies, the approach is an interesting complement to our work, and further studies
of the relationship between the two seem worthwhile.
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Abstract. Constraint Handling Rules (CHR) is a high-level rule-based
programming language. In [1, 2], a model of computation based on the
operational semantics of CHR is introduced, called the CHR machine.
The CHR machine was used to prove a complexity-wise completeness
result for the CHR language and its implementations. In this paper, we
investigate three generalizations of CHR machines: CHR machines with
an instantiated operational semantics, non-deterministic CHR machines,
and self-modifying CHR machines.

1 Introduction

Constraint Handling Rules is a high-level language extension based on multi-
headed committed-choice rules [3–5]. The abstract operational semantics ωt of
CHR is very non-deterministic. Since rule applications are committed-choice —
CHR has no built-in search mechanisms like backtracking — confluence of a
CHR program is a crucial property.

In earlier work [1, 2] we have shown a complexity-wise completeness result for
CHR: everything (every RAM-machine program) can be implemented in CHR
(in a confluent way), and there are CHR systems which execute the resulting
CHR program with the right time and space complexity. Recently, Di Giusto et
al. have shown that even single-headed CHR rules suffice to implement a Turing-
equivalent Minsky machine [6], although they argue that in terms of expressive
power, multiple heads are still needed.

In the approach of [1, 2], a theoretical “CHR machine” is defined, which per-
forms one ωt transition in every step. In this paper we propose several more
general definitions for CHR machines. This is theoretical work, investigating
how classical (variants of) models of computation can be transferred to the set-
ting of CHR machines. Section 2 recaptures some of the definitions of [2]. The
particular kind of CHR machines used in [1, 2] are deterministic abstract CHR
machines, in the terminology of this paper. Section 3 introduces the concept of
strategy classes, which formalizes instantiations of the ωt operational semantics.

⋆ Research funded by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen). This research was
performed in large part while Jon Sneyers was visiting the University of Ulm.
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We also define and discuss a more general notion of confluence. Then, in Sec-
tion 4, we consider CHR machines with an instantiated operational semantics
(for example the refined operational semantics [7]). Finally, in Section 5, we de-
fine non-deterministic CHR machines, and in Section 6, we define CHR machines
with a stored program, also known as self-modifying CHR machines.

2 Deterministic Abstract CHR Machines

We assume the reader to be familiar with CHR. We will use the same notation
as in [2]. That is, we denote the host language with H, the built-in constraint
theory with DH, the set of queries for a program P with GH

P , the abstract (or
theoretical) operational semantics with ωt, its execution states with σ, σ0, σ1, . . .

and the set of all execution states with Σchr, the ωt transition relation withP

and its transitive closure with ∗
P . We use ∃̄φ as a shorthand for existentially

quantifying over all free variables of φ, and ∃̄V φ to existentially quantify over all
free variables of φ except those of V . Finally, we use ∈∈ to denote “is an element
of an element of”: x ∈∈ X ⇔ ∃A ∈ X : x ∈ A.

2.1 Derivations

Definition 1. Given an initial goal (or query) G ∈ GH
P , the corresponding ini-

tial state is defined as initstate(G) = 〈G, ∅, true, ∅〉1. We denote the set of all
initial states by Σinit ⊂ Σchr.

Definition 2. A final state σf = 〈G, S, B, T〉n is an execution state for which
no transition applies: ¬∃σ ∈ Σchr : σf P σ. In a failure state, the underlying
solver H can prove DH |= ¬∃̄B — such states are always final. A successful final
state is a final state that is not a failure state, i.e. DH |= ∃̄B. The set of final
states is denoted by Σfinal ⊂ Σchr.

Definition 3. Given a CHR program P, a finite derivation d is a finite sequence
[σ0, σ1, . . . , σn] of states where σ0 ∈ Σinit , σn ∈ Σfinal , and σi P σi+1 for
0 ≤ i < n. If σn is a failure state, we say d has failed, otherwise d is a successful
derivation.

Definition 4. An infinite derivation d∞ is an infinite sequence σ0, σ1, . . . of
states where σ0 ∈ Σinit and σi P σi+1 for i ∈ N.

We use #d to denote the length of a derivation: the length of a finite deriva-
tion is the number of transitions in the sequence; the length of an infinite deriva-
tion is ∞. A set of (finite or infinite) derivations is denoted by ∆. The set of all
derivations in ∆ that start with initstate(G) is denoted by ∆|G. We use ∆H

ωt
(P)

to denote the set of all derivations (in the ωt semantics) for a given CHR program
P and host language H. We now define the relation ∆: Σinit → Σchr ∪ {∞}:

Definition 5. State σn is a ∆-output of σ0 if [σ0, . . . , σn] ∈ ∆. We say σ0

∆-outputs σn and write σ0  ∆ σn. If ∆ contains an infinite derivation starting
with σ0, we say σ0 has a non-terminating derivation, denoted as σ0  ∆ ∞.
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Definition 6. The CHR program P is ∆-deterministic for input I ⊆ GH
P if the

restriction of  ∆ to initstate[I] is a function and ∀i ∈ I, d ∈ ∆|i : if d is a
successful derivation, then ∀d′ ∈ ∆|i : #d = #d′.

In other words, a program is ∆-deterministic if all derivations starting from
a given input have the same result and all successful ones have the same length.
Note that if a program P is ∆H

ωt
(P)-deterministic for all input GH

P , it is also
observable confluent [8]. The notion of observable confluence does not require
derivations to have the same length.

2.2 Deterministic Abstract CHR Machines

We now define a class of CHR machines, which corresponds to the definition
given in [2]. This class of CHR machines is somewhat restricted since it only
allows ∆H

ωt
-deterministic CHR programs. In Section 4 we will allow more general

CHR machines.

Definition 7. A deterministic abstract CHR machine is a tuple M = (H,P ,VG).
The host language H defines a built-in constraint theory DH, P is a CHR pro-
gram, and VG ⊆ GH

P is a set of valid goals, such that P is a ∆H
ωt

-deterministic
CHR program for input VG. The machine takes an input query G ∈ VG and
executes a derivation d ∈ ∆H

ωt
|G.

Terminology. If the derivation d for G is finite, we say the machine terminates
with output state M(G) = 〈G′, S, B, T〉n which is the last state of d. The machine
accepts the input G if d is a successful derivation and rejects G if d is a failed
derivation. If d is an infinite derivation, we say the machine does not terminate.
A CHR(X) machine is a CHR machine for which the host language H = X . We
use Φ to denote no host language: the built-in constraint theory DΦ defines only
the basic constraints true and fail, and syntactic equality and inequality (only to
be used as an ask -constraint). This implies that the Solve transition can only
be used once (to add fail). The only data types are logical variables (that will
not be bound) and constants. A CHR-only machine is a CHR(Φ) machine.

Definition 8. A sufficiently strong host language H is a host language whose
built-in constraint theory DH defines at least true, fail, == and \==, the integer
numbers and the arithmetic operations for addition, subtraction, multiplication
and integer division.

Clearly, most host languages are sufficiently strong. Prolog for instance de-
fines true, fail, == and \==, and allows arithmetic using the built-in is/2. In CHR
program listings where the host language is assumed to be sufficiently strong, we
will use a slightly abbreviated notation. For example, if c/1 is a CHR constraint,
we write expressions like “c(N+1)”: a host language independent notation that
is equivalent to “M is N+1, c(M)” for CHR(Prolog), to “c(intUtil.add(N,1))”
for CHR(Java), etc.
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r1 @ delta(Q,S,Q2,S2,left), adj(LC,C) \ state(Q), cell(C,S), head(C)

<=> LC \== null | state(Q2), cell(C,S2), head(LC).

r2 @ delta(Q,S,Q2,S2,right), adj(C,RC) \ state(Q), cell(C,S), head(C)

<=> RC \== null | state(Q2), cell(C,S2), head(RC).

r3 @ delta(Q,S,Q2,S2,left) \ adj(null,C), state(Q), cell(C,S), head(C)

<=> cell(LC,b), adj(null,LC), adj(LC,C), state(Q2), cell(C,S2), head(LC).

r4 @ delta(Q,S,Q2,S2,right) \ adj(C,null), state(Q), cell(C,S), head(C)

<=> cell(RC,b), adj(C,RC), adj(RC,null, state(Q2), cell(C,S2), head(RC).

fail @ nodelta(Q,S), rejecting(Q), state(Q), cell(C,S), head(C) <=> fail.

Fig. 1. The CHR program TMSIM, a Turing machine simulator.

2.3 Computational Power of CHR Machines

We assume the reader to be familiar with Turing machines; we refer to [2] for a
more detailed exposition.

A model of computation is called Turing-complete if it has the same computa-
tional power as Turing machines: every Turing Machine can be simulated in the
model and every program of the model can be simulated on a Turing machine.
Consider the CHR program TMSIM shown in Figure 1 and the corresponding
CHR-only machine MTm = (Φ, TMSIM,VGTm). The program simulates Turing
machines. Intuitively, the meaning of the constraints of TMSIM is as follows:

delta/5 encodes the transition function (the Turing machine program) in the
obvious way: the first two arguments are inputs, the last three are outputs;

nodelta/2 encodes the domain on which δ is undefined;
rejecting/1 encodes the set of non-accepting final states;
state/1 contains the current state;
head/1 contains the identifier of the cell under the head;
cell/2 represents a tape cell. The first argument is the unique identifier of the

cell. The second argument is the symbol in the cell.
adj/2 encodes the order of the tape cells. The constraint adj(A, B) should be

read: “the right neighbor of the tape cell with identifier A is the tape cell
with identifier B”. The special cell identifier null is used to refer to a not
yet instantiated cell. The rules r3 and r4 extend the tape as needed.

The set of valid goals VGTm corresponds to the goals that represent a valid
Turing machine and a correctly represented tape; it is defined formally in [2].

A simulation of the execution of a Turing machine M proceeds as follows.
The tape input is encoded as cell/2 constraints and adj/2 constraints. The
identifier of the cell to the left of the left-most input symbol is set to null and
similarly for the cell to the right of the right-most input symbol. The transition
function δ of M is encoded in multiple delta/5 constraints. All these constraints
are combined in the initial query together with the constraint state(q0) where
q0 is the initial state of M and the constraint head(c1) where c1 is the identifier
of the cell representing the left-most input symbol. Every rule application of the
first four rules of TMSIM corresponds directly to a Turing machine transition.
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If no more (Turing machine) transitions can be made, the last rule is appli-
cable if the current state is non-accepting. In that case, the built-in constraint
fail is added, which leads to a failure state. If the Turing machine ends in an
accepting final state, the CHR program ends in a successful final state.

The program TMSIM can easily be rewritten to use only simplification rules.
A Turing machine simulator can also be written using only propagation rules,
or using only single-headed simplification rules, or with only guardless rules.

2.4 Time and Space Complexity

We define the time complexity of a CHR machine in an obvious way:

Definition 9. Given a CHR machine M = (H,P ,VG), the function chrtimeM

returns the derivation length, given a valid goal:

chrtimeM : VG → N : G 7→ max{#d | d ∈ ∆H
ωt
|G}.

Definition 10. Given a CHR machine M = (H,P ,VG) and assuming that host
language constraints of H take constant time, the (worst-case) time complexity
function chrtimeM is defined as follows:

chrtimeM(n) = max{chrtimeM(G) | G ∈ VG ∧ inputsize(G) = n}

where inputsize is a function which returns the size of a goal1

Note that the definition of chrtimeM does not correspond to what is obtain-
able in real CHR implementations, because finding an applicable rule with k

heads in a store of size n may take up to O(nk) time.

Definition 11 (State size function).

size : Σchr → N : 〈G, S, B, T〉n 7→ size(G) + size(S) + size(B) + size(T)

where for sets X, size(X) =
∑

x∈X |x| and the size |x| is the usual term size.

Definition 12. Given a CHR machine M = (H,P ,VG), the space function
chrspaceM returns the worst-case execution state size, given an initial goal:

chrspaceM(G) = max{size(σ) | σ ∈∈ ∆H
ωt
|G}.

Definition 13. Given a CHR machine M = (H,P ,VG), the (worst-case) space
complexity function chrspaceM is defined as follows:

chrspaceM(n) = max{chrspaceM(G) | G ∈ VG ∧ inputsize(G) = n}

Note that if the size of individual constraints is bounded, the size of the
constraint store is asymptotically dominated by the number of Introduce steps,
and the size of the built-in store is dominated by the number of Solve steps of
the ωt operational semantics.

1 The function inputsize can be problem-specific: for instance, depending on the prob-
lem at hand, if the input is an integer number x (wrapped in some constraint), the
input size function could be defined as the number of bits needed to represent x,
or just as the number x itself — this choice of course dramatically influences the
resulting complexity. From now on, we will assume that the usual term size is used.
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2.5 Complexity of CHR Machines

In [2] we have demonstrated that there is a deterministic abstract CHR machine
that can simulate RAM machines (and hence also Turing machines) without any
overhead. This means that “everything can be done efficiently in CHR”.

Theorem 1 (Theorem 4.14 in [2]). For any sufficiently strong host language
H, a CHR(H) machine Mram exists which can simulate, in O(T +P +S) time
and O(S + P ) space, a T -time, S-space standard RAM machine with a program
of P lines.

We have also demonstrated that everything can be done efficiently in CHR
in practice, in the sense that the CHR program can be executed in existing
implemented CHR systems with the right time and space complexity:

Theorem 2 (Corollary 5.10 in [2]). For every (RAM machine) algorithm
which uses at least as much time as it uses space, a CHR program exists which
can be executed in the K.U.Leuven CHR system, with time and space complexity
within a constant from the original complexities.

3 Strategy Classes

The ωt operational semantics is very nondeterministic, in the sense that for most
programs, the number of possible derivations is very large. This is of course the
reason why the confluence property is crucial for program correctness.

However, all CHR implementations somehow restrict the nondeterminism of
the ωt semantics. While still guaranteeing rule application until exhaustion, they
usually impose some order in which rules are tried. In effect, they instantiate
the ωt semantics; the best-known such instantiation is the refined operational
semantics ωr [7].

In this section we examine instantiations of the ωt semantics in a general
formal framework. We hope that this will lead to more insight and intuition,
and this framework may also be used to study the effects of differences in im-
plementations.

3.1 Execution Strategies

Definition 14. An execution strategy fixes the output for every initial state.
Formally, ξ is an execution strategy for a program P if ξ ⊆ ∆H

ωt
(P) and  ξ is

a total function over Σinit , i.e.

∀x, y, z ∈ Σchr : x ξ y ∧ x ξ z ⇒ y = z (1)

∀σ ∈ Σinit : ∃σ′ ∈ Σchr ∪ {∞} : σ  ξ σ′ (2)

The set of all execution strategies for a program P is denoted by ΩH
t (P).

Clearly not every execution strategy can be implemented. For instance, with the
right execution strategy, the following program solves the halting problem:
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check_halts(TM) <=> true.

check_halts(TM) <=> fail.

Clearly we need a more realistic notion of execution strategies.

Definition 15. A computable execution strategy ξ is an execution strategy for
which the following objects exist: a set of concrete states CΣ, a computable2

abstraction function α : CΣ → Σchr, a computable initialization function β :
Σinit → CΣ such that ∀σ ∈ Σinitα(β(σ)) = σ, and a computable partial concrete
transition function Ct : CΣ → CΣ, such that, ∀x ∈ Σinit :

x ξ y ⇐⇒ ∃n ∈ N : α(Ctn(β(x))) = y and Ctn+1(β(x)) is undefined

3.2 Strategy Classes

An execution strategy completely determines the result of any query. In general,
although the result set may be smaller than that of all ωt derivations, most CHR
systems are still not completely deterministic. For instance, the refined opera-
tional semantics does not fix the order of constraint reactivation and partner
constraint matching, which could lead to different results for the same query.
However, a specific version of a CHR system, possibly with specific compiler op-
timizations turned on or off, should be completely deterministic, so it has only
one execution strategy for every CHR program.

Definition 16. A strategy class Ω(P) ⊆ ΩH
t (P) is a set of execution strategies

for P.

As an example, there is a strategy class corresponding to the K.U.Leuven
CHR system (which may contain more than one execution strategy depending
on the version and the settings of the optimization flags), and it is a subset of
the strategy class corresponding to the refined operational semantics. Many CHR
implementations are (possibly different) instantiations of the refined semantics,
in the sense that their strategy class is a subset of ΩH

r .

Note that strategy classes are subsets of the power set of ∆H
ωt

. We will some-
times drop the argument (P) to avoid heavy notation.

Definition 17. A computable strategy class is a strategy class which contains
at least one computable execution strategy.

Clearly, the K.U.Leuven CHR strategy class is computable, which implies
that the refined semantics is also a computable strategy class, and so is the
abstract semantics.

2 A function is computable if there is a Turing machine that computes it.
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The refined operational semantics ωr. We define Σchr
r to be the set of

execution states of the refined semantics [7], and ΩH
r (P) as the strategy class

corresponding to ωr derivations of a program P .
Not all execution strategies in ΩH

r (P) are computable. As an example, con-
sider the following program:

check_halts(TM) <=> answer(true), answer(false), choose.

choose, answer(X) <=> do(X).

do(false) <=> fail.

With an appropriate ωr execution strategy, this program solves the halting prob-
lem. Since the second rule is applied with choose/0 as the active constraint, the
refined semantics does not fix the choice of partner constraint. The execution
strategy that always picks the correct answer is obviously not computable.

To show that ΩH
r (P) is a computable strategy class, it suffices to identify

one computable execution strategy in ΩH
r (P). Following [7], we can define an

abstraction function α which maps Σchr
r to Σchr:

α(〈A, S, B, T〉n) = 〈no id(A), S, B, T〉n

where no id(A) = {c | c ∈ A is not of the form c#i or c#i : j}. The set of
concrete states is Σchr

r and the initialization function is the identity function.
Now we still have not given a computable execution strategy, which needs

to have a transition relation that is a computable function, that is, every state
has a unique next state, and the latter can be computed from the former. The
transition relation of ωr is not a function, so we consider a subset of it which
is a function, for instance, the function which maps every execution state in
σ ∈ Σchr

r to the lexicographically first element in {σ′ | σ ωr σ′}. Since the
set of all next ωr states is computable, and the lexicographically first element of
a set is computable, this function is computable.

The priority semantics ωp. We define ΩH
p (P) as the strategy class corre-

sponding to derivations in the priority semantics ωp [9]. We denote an assign-
ments of priorities to rules with p̄, and we write ΩH

p (P , p̄) for the subset of

ΩH
p (P) which corresponds to ωp derivations with the priority assignments p̄.

Again, ΩH
p (P) contains non-computable execution strategies as well as com-

putable ones.

3.3 Generalized Confluence

We now generalize the definition of confluence to arbitrary strategy classes:

Definition 18 (Ω-confluence). A CHR program P is Ω(P)-confluent if, for
every initial state 〈G, ∅, true, ∅〉1 = σ ∈ Σinit and arbitrary execution strategies
ξ1, ξ2 ∈ Ω(P), the following holds:

σ  ξ1
〈G1, S1, B1, T1〉n1

∧
σ  ξ2

〈G2, S2, B2, T2〉n2







⇒ DH |= ∃̄G(S1 ∧ B1) ↔ ∃̄G(S2 ∧ B2)
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ΩH
t (P)

ΩH
r (P)

ΩH
p (P)

ΩH
p (P , p̄)

bdPCHR
bK.U.Leuven

bSICStus

b toyCHR

bJCHR

{K.U.Leuven}-confluent programs

ΩH
r -confluent

ΩH
p -confl.

confl.

Execution strategies CHR programs

Fig. 2. Execution strategies and CHR programs.

Note that ΩH
t (P)-confluence is the same as the usual confluence (per defini-

tion), while ΩH
r (P)-confluence corresponds to “confluent in the refined seman-

tics” (see also [10], chapter 6). If the strategy class Ω is a singleton, every CHR
program P is trivially Ω-confluent.

Figure 2 shows some strategy classes and the corresponding sets of Ω-confluent
programs. The execution strategy “dPCHR” is that of an implementation of
probabilistic CHR [11], in which all rules get the same probability and the rules
are picked using a deterministic pseudo-random number generator initialized
with some fixed seed.

We have the following duality property that follows directly from the defini-
tions: for all strategy classes Ω1 and Ω2: if Ω1 ⊆ Ω2, then every Ω2-confluent
program is also Ω1-confluent. In other words, if Ω2 is more general than Ω1 (i.e.
it allows more derivations), then Ω2-confluence is stronger than Ω1-confluence.

4 General CHR Machines

We generalize the deterministic abstract CHR machines of Section 2.2 as follows:

Definition 19. A CHR machine is a tuple M = (H, Ω,P ,VG) where the host-
language H defines a built-in constraint theory DH, P is a CHR program, VG ⊆
GH
P is a set of valid goals, and Ω ⊆ ΩH

t (P) is a strategy class. The machine
takes an input query G ∈ VG, picks any execution strategy ξ ∈ Ω, and executes
a derivation d ∈ ξ|G.

Note that we no longer require the program to be ∆H
ωt

-deterministic for valid
input, and we allow it to use any strategy class.
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Terminology. A CHR(H) machine is a CHR machine of the form (H, , , ).
An Ω-CHR machine is a CHR machine of the form ( , Ω, , ). Abstract CHR
machines are ΩH

t -CHR machines, and refined CHR machines are ΩH
r -CHR ma-

chines. A feasible CHR machine is one with a computable strategy class. A
confluent CHR machine ( , Ω,P , ) has a program P which is Ω-confluent. A de-
terministic CHR machine ( , Ω,P , ) has a programP which is ∆Ω-deterministic,
where ∆Ω =

⋃

Ω(P) is the set of all possible derivations.
We generalize the definitions of the time and space functions in the straight-

forward way:

Definition 20. Given an Ω-CHR machine M, the time function chrtimeM

returns the worst-case derivation length, given an initial goal G ∈ VG:

chrtimeM(G) = max{#d | ∃ξ ∈ Ω : d ∈ ξ|G}

Definition 21. Given an Ω-CHR machine M, the space function chrspaceM

returns the worst-case execution state size, given an initial goal:

chrspaceM(G) = max{size(σ) | ∃ξ ∈ Ω : σ ∈∈ ξ|G}

It is not clear what the added power is of generalized CHR machines com-
pared to CHR machines that follow the abstract operational semantics. For well-
known strategy classes, like ΩH

r or ΩH
p , we can still only decide the languages

in P in polynomial time. However, it seems that more instantiated strategy
classes add some power. For example, in the refined semantics, we can (non-
monotonically) check for absence of constraints, and in the priority semantics,
we can easily sort in linear time. We can imagine more exotic strategy classes,
that could still be computable while implicitly requiring more than a polynomial
amount of work to compute the next transition. For such strategy classes, the
corresponding generalized CHR machine could of course be much more powerful.

5 Non-deterministic CHR Machines

We define non-deterministic CHR machines similarly to the way non-deterministic
Turing machines are defined.

Definition 22. A non-deterministic CHR machine (NCHR machine) is a tuple
M = (H, Ω,P ,VG), where H, Ω, P, and VG are defined as before. The machine
takes an input query G ∈ VG and considers all execution strategies ξ ∈ Ω. If
there are strategies that result in a successful derivation d ∈ ξ|G, any of those
is returned. Otherwise, any failure derivation is returned. If all derivations are
infinite, any infinite derivation is returned.

As an example, consider the following CHR program P3SAT:

clause(A,_,_) <=> true(A).

clause(_,B,_) <=> true(B).

clause(_,_,C) <=> true(C).

true(X), true(not(X)) <=> fail.
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The NCHR machine (∅, ΩH
t ,P3SAT, 3SATCLAUSES) decides 3SAT clauses in

linear time. A 3SAT clause of the form (x1∨x2∨x3)∧(y1∨y2∨y3)∧. . . is encoded
as a query clause(x1,x2,x3), clause(y1,y2,y3), ..., where negative liter-
als are encoded by wrapping them in not/1. The valid goals 3SATCLAUSES
(i.e. admissible input clauses, but not necessarily satisfiable) are all goals of this
form.

In every derivation, all clause/3 constraints are simplified, so one of the
literals has been made true. If the instance of 3SAT has a solution, there is a
way to do this without producing a conflicting truth assignment, so there is a
successful derivation. If there is no solution, all derivations will fail because every
assignment causes a conflict, which fires the fourth rule.

The NCHR machine (∅, ΩH
r ,P3SAT, 3SATCLAUSES) — the same as above

but with its strategy class restricted to the refined semantics — is no longer
correct. Because execution strategies are limited to those of the ωr semantics,
every clause/3 constraint will be simplified by the first rule. As a result, the
only truth assignment that is tried is to make every first literal of all clauses
true.

Non-determinism in rule choice is exploited in the program P3SAT. However,
we can easily transfer the non-determinism to the choice of matching partner
constraints for an active constraint. For example, the following program, when
executed on a refined NCHR machine, decides 3SAT clauses in linear time:

clause(A,B,C) <=> d(X,A), d(X,B), d(X,C), c(X).

c(X), d(X,A) <=> true(A).

true(X), true(not(X)) <=> fail.

However, as a general rule, the smaller the strategy class, the harder it is to
write a correct NCHR program: when there are less sources of non-determinism,
the corresponding NCHR machine becomes less powerful. When the strategy
class is a singleton, there is of course no difference between a regular CHR
machine and an NCHR machine.

For regular CHR machines, the reverse rule of thumb holds: the larger the
strategy class, the harder it is to write a correct CHR program — more non-
determinism only means more wrong choices. If we denote the class of decision
problems that can be solved by a deterministic Ω-CHR machine in polyno-
mial time with PΩ, and the class of decision problems that can be solved by
a polynomial-time non-deterministic Ω-CHR machine with NPΩ, then we have
the following inclusions:

PΩHt
⊆ PΩHr

⊆ P{K.U.Leuven} = NP{K.U.Leuven} ⊆ NPΩHr
⊆ NPΩHt

Most of these inclusions collapse to equalities: since the RAM simulator pro-
gram of [2] is (ΩH

t -) confluent, we have PΩHt
= P{K.U.Leuven}. In this sense, the

strategy class does not seem to affect the computational power of the CHR ma-
chine. Still, it is our experience that it is easier to write programs for a more
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instantiated operational semantics. In the case of the self-modifying CHR ma-
chines of the next section, it does seem to be the case that instantiating the
operational semantics really adds power to the machine.

The class of languages that are decided in polynomial time by a non-deter-
ministic CHR machine (refined or abstract) coincides with NP. We only prove
the inclusion NPΩHr

⊆ NP :

Theorem 3. The non-deterministic refined CHR-only machine can simulate a
non-deterministic Turing machine with the same complexity.

Proof. The simulator program TMSIM (Fig. 1 page 146) also works if delta/5
is not a function but defines more than one transition for a given state and sym-
bol. The non-determinism in choosing the partner constraint for head/1 (the
computation-driving active constraint) ensures that all Turing machine compu-
tation paths are simulated.

In the above, the word “refined” can also be replaced by “abstract”.

6 Self-modifying CHR Machines

The RASP machine (random access stored program) [12] is essentially a RAM
machine which can access and change its own program instructions — much
like real computers which follow the von Neumann architecture: instructions
and data are stored in the same memory space, hence the term stored program.
In terms of computational power and complexity, the RASP machine is just as
powerful as a regular RAM machine; the reason is that you can write a RASP
simulator on a RAM machine, which takes only a constant factor more time and
space.

In this section, we examine CHR machines with a stored program, or CHRSP
machines. Since the CHR program is now stored in the CHR store, it can be
accessed and modified like any other CHR constraints.

6.1 Definition

We use a syntax that somewhat resembles that of [13], where it was proposed
in the context of source-to-source transformation. A CHR program is encoded
using “reserved keyword” constraints rule/1, khead/2, rhead/2, guard/2, and
body/2. For example, the rules

foo @ bar ==> baz.

qux @ blarg \ wibble <=> flob | wobble.

would be encoded as

rule(foo), khead(foo,bar), guard(foo,true), body(foo,baz),

rule(qux), khead(qux,blarg), rhead(qux,wibble),

guard(qux,flob), body(qux,wobble)
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3. Apply. 〈G, H1 ∪ H2 ∪ S, B, T〉n P 〈C′ ⊎ G, H1 ∪ S, θ ∧ B, T ∪ {h}〉n
where chr(S) contains the following constraints, which encode a rule: rule(r),

khead(r,h1), ..., khead(r,hk), rhead(r,hk+1), ..., rhead(r,hl),

guard(r,g), body(r,C), and neither G nor S contain any other rule-encoding
constraints with r as a first argument. Now let g′, C′, H ′

1, and H ′
2 be consistently

renamed apart versions of g, C, (h1 ∧ · · · ∧ hk), and (hk+1 ∧ · · · ∧ hl), respectively.
This encoding corresponds to a rule of the form r @ H ′

1 \ H ′
2 ⇐⇒ g′ | C′. As usual,

θ is a matching substitution such that chr(H1) = θ(H ′
1) and chr(H2) = θ(H ′

2)
and h = (r, id(H1), id(H2)) 6∈ T and DH |= (∃̄B) ∧ (B → ∃̄B(θ ∧ g′)).

Fig. 3. The new Apply transition in the ω
sp
t semantics for CHRSP machines

Now, we modify the Apply transition of ωt to refer to the stored program
as in Fig. 3. Note that because the program is now in the constraint store, we
no longer need to (implicitly) parametrize the semantics with a CHR program;
the program is now part of the query or, equivalently, corresponds to the initial
store. In order to avoid premature application of rules, i.e. firing a rule which is
still being constructed, we require that a rule can only fire if there are none of
its components in the goal, waiting to be introduced into the store.

A CHRSP machine is defined just like a regular CHR machine, except that
the operational semantics is altered in the way described above. Also, if a pro-
gram is given for CHRSP machines, it should be considered to be an abbreviation
for the encoded form, which is implicitly appended to all valid goals. As before,
every ω

sp
t transition takes constant time; the machine rejects the input if the

final state is a failure state, otherwise it accepts or does not terminate.

6.2 Complexity of CHRSP Machines

Unlike RASP machines, which can be efficiently simulated on RAM machines,
CHRSP machines cannot be simulated on regular CHR machines with only con-
stant overhead. The reason is that finding k partner constraints in a store of size
n can take O(nk) time. For a fixed program, k is bounded, but on a CHRSP
machine, rules with an arbitrary number of heads may be created.

In fact, self-modifying CHR programs can decide co-NP-complete languages
in only linear time. Consider the problem of Hamiltonian paths in directed
graphs. Deciding whether a graph has a Hamiltonian path is NP-complete; the
language of consisting of all graphs that do not have a Hamiltonian path is there-
for co-NP-complete. Now consider the following self-modifying CHR program:

size(N) <=> rule(find_path), size(N,A).

size(N,A) <=> N>1 |

khead(find_path,node(A)),

khead(find_path,edge(A,B)),

size(N-1,B).

size(1,A) <=>
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khead(find_path,node(A)),

body(find_path,fail).

As input query, we encode a graph in the following way: edge/2 constraints
for the edges; node/1 constraints for the n nodes; one size(n) constraint to
indicate the number of nodes. The program will create a rule of the form

find_path @ node(A1), node(A2), ..., node(An),

edge(A1,A2),edge(A2,A3), ..., edge(An-1,An) ==> fail.

If the graph has a Hamiltonian path, this rule fires and the CHRSP machine
rejects the input. Otherwise, the machine accepts the input. Either way, the
machine halts after O(n) steps.

If a regular CHR machine exists that can simulate CHRSP machines with
only polynomial overhead, then co-NP ⊆ P, and thus P = NP. So if P 6= NP ,
CHRSP machines are strictly more powerful than regular CHR machines.

7 Summary and Conclusion

We have defined three different generalizations of the CHR machine of [2]: CHR
machines with restricted strategy classes, non-deterministic CHR machines, and
stored-program (self-modifying) CHR machines. These generalizations are or-
thogonal, so they can be combined. Indeed, one could very well consider, for
instance, a refined self-modifying CHR machine. We have investigated the com-
plexity properties of these generalized CHR machines.

7.1 Complexity Summary

As shown in [2], a regular CHR machine can do in polynomial time what a
Turing machine (or a RAM machine) can do in polynomial time:

PΩt
= P

In Section 5 we showed a similar result for non-deterministic CHR machines:

NPΩt
= NP

However, although PRASP = P , self-modifying CHR machines are more pow-
erful than regular ones, although exact bounds are still an open problem:

coNP ⊆ PΩ
sp

t
⊆ PSPACE

Restricting the strategy class to an instantiation of Ωt (or Ω
sp
t ) can make

the CHR machine stronger: a self-modifying refined CHR machine can also solve
NP -complete problems in linear time by checking for absence of a solution to the
corresponding coNP problem. Checking for absence is not known to be possible
in the abstract semantics. So PΩ

sp

t
⊆ PΩ

sp
r

(and we conjecture the inclusion to
be strict), and also coNP ∪ NP ⊆ PΩ

sp
r

.
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7.2 Future Work

Determining the exact complexity classes corresponding to CHRSP machines is
still an open problem. It is also not clear to what extent the choice of strategy
class influences the computational power, even for regular generalized CHR ma-
chines, let alone in the case of non-deterministic and/or stored-program CHR
machines.
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Abstract. A class of Prioritized Abductive Logic Programs (PrioALPs)
is introduced and an implementation is developed in CHR for solving ab-
ductive problems, providing minimal explanations with best-first search.
Priorities may represent probabilities or a cost function to be optimized.
Compared with other weighted and probabilistic versions of abductive
logic programming, the approach is characterized by higher generality
and a flexible and adaptable architecture which incorporates integrity
constraints and interaction with external constraint solvers.
A PrioALP is translated in a systematic way into a CHR program which
serves as a query interpreter, and the resulting CHR code describes in a
highly concise way, the strategies applied in the search for explanations.

1 Introduction

Metaprogramming for implementation of advanced logic programming paradigms
is one established class of applications of CHR [1] that exceeds the original goal
of writing traditional constraint solvers in a declarative way; we may refer to
earlier work such as [2–6]. In particular, abduction in logic programs has been
implemented in an efficient way using a combination of Prolog and CHR, where
an abductive logic program is executed as a Prolog program with CHR tak-
ing care of abducibles and integrity constraints [5, 7]; however, these approaches
do not at present provide interesting use of negation. Such implementations of
abduction inherit Prolog’s depth-first search strategy.

Using instead CHR’s constraint store to hold a pool of pending processes,
it is possible to implement advanced breadth-first like strategies; [8] considers
a paradigm where the control jumps back and forth between different branches
depending on the content of a global knowledge base common to all branches
(Global Abduction [9, 10]); [11] implements a probabilistic version of CHR in
which the choice of rule to be applied is taken in a probabilistic way.

In the present paper, we study the use of the process-pool principle for best-
first search in abduction, referring to an arbitrary, user-defined priority function.
Probabilistic abduction is encoded using a probability distribution as priority
function. More precisely, we consider a class of Prioritized Abductive Logic Pro-
grams with integrity constraints. and where abducibles and explanations (sets of
abducibles) are assigned priorities. Best-first means that the execution follows
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the branch whose partial explanation has highest priority, which means that
the control may jump back to an earlier delayed branch, if that looks currently
best. It is also demonstrated how these programs can refer to existing constraint
solvers for a further pruning of the search space.

Related work. We have referred to earlier work on abduction in CHR above.
Different paradigms for prioritized, weighted and probabilistic abduction have
been studied in different contexts, e.g., [12–14]. The mentioned approaches do
not consider general integrity constraints and integration with constraint solvers.
Poole [13] defines a class of weighted abductive logic programs different from ours
and explains a best-first implementation as a metainterpreter in Prolog; among
abductive systems without priorities, [15–17] describe systems which interact
with specific constraint solvers, and [18] indicates an implementation in CHR
of a system which can handle some cases of negation outside the scope of the
present and other CHR based approaches referenced. We shall refrain from giving
detailed references to the tradition of Bayesian networks, which can be seen as
a highly restricted case of probabilistic abduction (from a semantic point of
view), but for which efficient methods exist that can handle very large data sets.
For an overview of abductive logic programming in general, we refer to [19, 20].
An advanced, rule-based system for defining preferences among abducibles is
proposed by [21], and it is not clear at present whether this can be expressed in
the framework presented below.

Overview. Section 2 defines prioritized abductive programs, and section 3 de-
scribes the architecture of their best-first query interpreters in CHR and Prolog.
Probabilistic abduction, as a special case of prioritized abduction, is explained
in section 4; section 5 exemplifies how external constraint solvers can be inte-
grated; finally, section 6 indicate further optimizations inspired by Dijkstra’s
shortest path algorithm and by simplifying integrity constraints.

2 Definition of Prioritized Abduction

Definition 1. A prioritized abductive logic program (PrioALP) is given by

– a set of predicate symbols, each with a fixed arity, distinguished into four
disjoint classes, abducibles, program defined, external and ⊥,

– a priority function F which maps sets of abducible atoms into a totally or-
dered set 〈P, <〉 (with ≤ defined in the usual way) such that F (A) ≥ F (A∪B)
and F (A) ≥ F (Aσ) for any substitution σ,

– a set of clauses of the form A0:-A1, . . . ,An, of which the following kinds
are possible,
• ordinary clauses where A0 is an atom of a program defined predicate and

none of A1, . . . , An, n ≥ 0, are ⊥,
• integrity constraints in which A0 = ⊥ and A1, . . . , An, n ≥ 1, are ab-

ducible atoms.

As usual, an arbitrary and infinite collection of function symbols, including con-
stants, are assumed, and atoms are defined in the standard way. �
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The relationship |= refers to the usual, completion-based semantics for logic
programs; for external predicates, we assume a semantics independent of the
actual program, and without specifying further, an a priori defined truth value for
|= e is given for any ground external atom e. In practice, external predicates can
be Prolog built-ins or defined by additional Prolog clauses, or constraints given
either by a Prolog library or by additional CHR rules. We need to require that
any call to an external predicate always succeeds at most once; until section 5,
constraints are excluded for simplicity.

When Π is a PrioALP and we write Π |= · · · or Π ∪ · · · |= · · ·, we use Π to
refer to the completion of all clauses of Π including the integrity constraints and
(for brevity) a theory defining a meaning for all external predicates. When no
ambiguity arises, a clause is usually an ordinary clause, and integrity constraints
will be referred to as such. The notation [[F1, . . . , Fn]], Fi being formulas, is taken
as a shorthand for ∃(F1 ∧ · · · ∧Fn)∧¬⊥. Notice the following trivial properties,

[[A ∧B]] ≡ [[A]] ∧ [[B]] (1)
[[A ∨B]] ≡ [[A]] ∨ [[B]] (2)

which mean that any standard distributive law that does not involve negation
can be used for formulas within [[−]].

Definition 2. A query or goal is a conjunction of non-⊥ atoms; a set of ground
abducible atoms is called a state; a set of (not necessarily ground) abducible
atoms is called a state term. In the context of a PrioALP Π, we say that state
or state term S is inconsistent whenever Π ∪∀S |= ⊥ and otherwise consistent.
For two state terms S1, S2, we say that S1 subsumes S2 and that S1 is more
general than S2, whenever

|= ∃S1 ← ∃S2. (3)

Whenever S1 subsumes S2 and vice-versa, we say that they are equivalent.
Given a PrioALP Π and a query Q, an explanation for Q is a state term E

such that
Π ∪ ∃E |= [[Q]] (4)

An explanation E for Q is minimal if it is not a subsumed by any other expla-
nation for Q. �

Notice that an explanation E with smallest priority, i.e., there is no other E′

with F (E′) < F (E), is also minimal. We say that an explanation with higher
(highest) priority number is better (best). Whenever E subsumes E′, we have that
F (E′) > F (E). Thus a priority function is monotonically decreasing in the sense
that more commitments may lower, but never raise, the priority; probability
distributions over (possibly independent) abducibles are examples of priorities.

3 A Generic Architecture for Best-First Implementation
of Prioritized Abduction

We describe here an architecture for implementing PrioALP by a translation
into CHR which, when given a query Q, calculates a best minimal explanation,



162 Henning Christiansen

and, if requested by the user, more minimal explanations ordered according to
their priority.

The priority function, integrity constraints, and indication of abducible and
external predicates are encoded into auxiliary predicates, and program clauses
are compiled into CHR rules.

3.1 Auxiliary Predicates

We do not need to specify a representation for explanations here but we assume
there is a notion of a reduced form of representations; we anticipate representa-
tions as lists of abducible literals without duplicates; we assume, though, that
the empty explanation is represented as []. From a logical point of view, the
reduced form is not interesting, but is useful for efficiency and when presenting
final explanations to the user. We assume a context which includes a PrioALP
so that we can refer to the notion of consistency and a priority function P .

subsumes(E1,E2) ≡ E1 subsumes E2, i.e., |= ∃E2 → ∃E1, when E1, E2 are
consistent state terms.

entailed(A,E) ≡ |= ∀(E → A) when A is an abducible atom and E a consis-
tent state term.

extend(A,E,F (E),E′,F (E′)) ≡ |= ∀(E′ ↔ A ∧ E) when A is an abducible
atom and E, E′ consistent state terms in reduced form so that entailed(A,E)
does not hold.1

Notice the different usages of quantifiers. For entailed/2 and extend/5, the
presence of common variables in the arguments are significant, and variables may
be bound later in the computation, whereas subsumes/2 concerns explanations
in different branches of computation (which, in fact, will have no variables in
common).

The following predicate is used whenever an explanation may be affected by
unifications, which may be a consequence of applying a rule of the given PrioALP
or a call to an external predicate.

recalculate(E,E1,F (E1)) ≡ ∀(E ↔ E1), E1 is in reduced form, and E and
E1 are consistent state terms.

We have introduced this predicate as it may be implemented quite efficiently;
it very seldom pays off to analyze the detailed effect of a unification in order to
reuse the previously calculated priority.

abducible(A) ≡ A is an atom of an abducible predicate.
external(A) ≡ A is an atom of an external predicates
priority less than(P1,P2) ≡ P1 < P2 where P1 and P2 are priorities and <

the priority ordering.
1 The third argument of extend, F (E), is redundant, but can be used for priority

functions that allow an incremental evaluation; this is the case for probability dis-
tributions.
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Finally, we need the following renaming predicates in order to create alternative
variants of a query when the execution splits in different branches for alternative
clauses of the given PrioALP.

rename(T1,T2) ≡ T2 is a variant of T1 with new variables that are not used
anywhere else.

The definition of these predicates are in most cases straightforward and we will
not pay much attention to this topic; versions for probabilistic priorities can be
found in [22]. A few remarks, though:

– When abducibles are known to be ground at the time of call, explanations
can be represented by sorted lists (by Prolog’s @< ordering), which allows
very efficient implementation of all operations on explanations.

– When nonground abducibles are considered, we cannot use sorted lists (as
unifications may destroy the ordering), and we need to handle cases where
abducible atoms become identical as a result of a unification; the subsumes
and entailed predicates become more complicated involving skolemization.

– When built-in constraint solvers are applied as external predicates, the re-
naming operation should also transfer copies of constraints attached to the
original term to the renamed version; see section 5.

3.2 Compiling Prioritized ALPs into CHR

Our overall strategy is to compile a PrioALP into a CHR program that applies
the constraint store as a pool of processes, which together maintain the semantics
of the initial query. These processes are transformed gradually into a final form
from which minimal answers can be read out.

A process is represented as a constraint · · · explain(Q,E,p), where the dots
indicate that the constraint is given in different versions, for control purposes
only. The meaning of such an explain constraint is that the query Q is what
remains to be proven in order to find an explanation for the initial query; E is
the partial explanation produced so far to get from the initial query to Q, and
p is the priority of E; Q is here represented as a list of atomic goals. The three
different variants of the explain constraint are the following.

– queue explain: the indicated process is in the constraint store which is seen
as a priority queue ordered by the priority p,

– step explain: the process is selected to perform one step, after which the
derived subprocesses are entered into the queue,

– printed explain: the process has terminated. i.e., with Q = [], and its
explanation has been presented to the user; it is needed in case the user asks
for alternative explanations in decreasing order of priority.

Some rules in the query interpreter are common for all PrioALP programs, and
some are specific for given program. We demonstrate below the translation for
the following prototypical predicate definition.
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p(X):- q(X,Y), r(Y).
p(X):- a(X).
p(1).

(5)

We show the entire query interpreter for this program. A top-level predicate sets
up initial parameters; for simplicity we have ignored variables in the initial query
but it is straightforward to add an extra argument to the interpreter that keeps
track of bindings to those variables so they can be printed out in the end.

explain(G):- step explain(G,[],F ([])). (6)

The following rule removes non-minimal explanations; to see that it works cor-
rectly, notice that the minimal E1 will be produced by rules below before any
extension E2 of it as this will have lower priority.

printed explain([],E1, ) \ queue explain( ,E2, ) <=>
subsumes(E1,E2) | true.

(7)

The currently best process in the queue is selected by the following rule, which
may fire when select best is called.

queue explain(G,E,P)#W, select best <=> max prio(P) |
step explain(G,E,P)
pragma passive(W).

(8)

The passive declaration does not affect the semantics of the program, but is an
obvious optimization to prevent calls to queue explain from considering this
rule; it can only be triggered by select best.

For brevity of the code, we use a straightforward and inefficient implemen-
tation of the priority queue; see [23] for a more detailed study of priority queues
in CHR. The constraint max prio defined by the following two rules is used, as
a call in a guard below, to check if the priority of a given process is the best one.

max prio(P0), queue explain( , ,P1)#W <=>
priority less than(P0,P1) | fail
pragma passive(W).

max prio( ) <=> true.

(9)

While constraints in the guard of a CHR rule may lead to dubious semantics,
the call to max prio in (8) gives sense as it does not change the constraint store
or binds variables; it is handled sensibly by most CHR implementations.

When the selected process has an empty query, it can be seen that no other
process can produce an explanation with a higher priority, so it is printed out
and stored as a printed explain constraint for possible future use by rule (7).
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step explain([],E,P) <=>
printed explain([],E,P),
write(’Best solution: ’), write(E),
write(’, Priority: ’), write(P),nl,
(user wants more -> select best ; true ).

user wants more:-
Ask user; if answer is y, succeed, otherwise fail.

(10)

Each predicate definition, such as (5) above is translated into one CHR rule,
which represents with the conjunction of the clauses; a number of different tech-
niques and straightforward optimizations are involved in this translation. This is
done by posting a new process for each clause, however, suppressing those where
the unification of selected subgoal and head-of-clause fails. The latter is done
by the pattern (test -> continue ; true), which means that a possible failure
of test is absorbed, and the branch continue vanishes rather that provoking a
failure in the execution of the CHR rules; this technique is also used in [8, 24].
Notice that when the arguments in the head of a clause are all variables, this is
unnecessary as unification will always succeed. When a unification is performed,
the auxiliary predicate recalculate is applied to get the new priority; in other
cases the priority is inherited unchanged from the calling subgoal (p(· · ·) in the
example definition). Finally, notice that all variables in the current query are
renamed for each clause to avoid cluttering up the different alternatives; this is
suppressed for the last clause as no further use is made of these variables. Notice
that recalculate may fail if integrity constraints are violated, in which case the
relevant subprocess should vanish in the same way as when a unification fails.

step explain( [p(X)|G], E, P) <=>
rename([p(X)|G]+E,[p(Xr1)|Gr1]+E1),
queue explain([q(Xr1,Y),r(Y)|Gr1], E1, P),
rename([p(X)|G]+E,[p(Xr2)|Gr2]+E2),
queue explain([a(Xr2)|Gr2], E2, P),
(X=1, recalculate(E,Er,Pr) -> queue explain(G, Er, Pr)
; true),
select best.

(11)

Abducible and external predicates are interpreted as follows. Notice that the pri-
ority stays the same if the abducible atom is already in the given explanation.
External predicates are here treated as non-analyzable devices that may pro-
duce unifications affecting the explanation, specializing non-ground abducibles,
perhaps making previously distinct ones identical. Notice the handling of a pos-
sible failure of extend, which may happen if integrity constraints are violated;
similarly for recalculate.
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step explain( [A|G], E, P) <=> abducible(A) |
(entailed(A,E) -> queue explain(G, E, P)
;
extend(A,E,P,E1,P1) -> queue explain(G,E1,P1)
; true),
select best.

(12)

step explain([X|G], E, P) <=> external(X) |
(call(X),recalculate(E,Er,Pr) -> queue explain(G,Er,Pr)
; true),
select best.

(13)

The following correctness statement, that captures soundness and completeness,
can be proved by induction over CHR derivations, showing that each of the
rules (6) to (13) preserve the condition (details for the probabilistic case can be
found in [22]).

Theorem 1. Let Π be a PrioALP and Γ the translation of Π into a CHR
program as described above. Consider any constraint store in a CHR derivation
starting with explain(Q) for some query Q; the set of its · · · explain con-
straints can be numbered as follows,

printed explain(Q1,E1,p1)
...

printed explain(Qk,Ek,pk)

queue explain(Qm,Em,pm)
...

queue explain(Qn,En,pn)

Either m = k+1, or m = k+2 and there is an additional step explain(Qk+1,
Ek+1,pk+1) in the store. Depending on the case, one of the conditions hold:

min(p1, . . . , pk) ≥ max(pk+1, . . . , pn), or

min(p1, . . . , pk) ≥ pk+1 ≥ max(pk+2, . . . , pn).

Furthermore,
Π |= ∀([[Q]]↔ ([[Q1, E1]] ∨ · · · ∨ [[Qn, En]]))

and pi = F (Ei), 1 ≤ i ≤ n. The printed explain constraints hold minimal
explanations and are added to the constraint store in a nondecreasing manner
(i.e., never removed or changed) throughout the CHR derivation, and they appear
in order of nondecreasing priority. �
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4 Probabilistic Abduction

Consider an abductive logic program for which each abducible atom Ai is seen
as an independent random variable with two possible outcomes, true and false,
with probability pi for true. As shown in details in [22], this gives rise to a proba-
bility distribution for the entire Herbrand universe and for explanations, and this
distribution satisfies the conditions for being a priority function (definition 1).

In [22], we define a language of Probabilistic Abductive Logic Programs
(PALP), in which abducibles are defined by declarations exemplified as follows.

abducible(a( ), 0.3). (14)

The distribution defined by this declaration gives, e.g., that P (a(1)) = P (a(2)) =
0.3, and P (∃a(X)) = 1.

We show here an example of a PALP and its implementation in CHR ac-
cording to the recipe of section 3. We consider a power supply network which
has one power plant pp, a number of directed wires wi and connecting nodes ni,
which may lead electricity to a collection of villages vi. The overall structure is
as follows.

pp n1 n2 n3

n4

v4 v5

v1 v2

v3
w1 w2 w3 w4

w5 w6 w7

w8 w9

Probabilistic abduction will be used to predict to most likely damages in the
network given observations about which villages have electricity and which have
not. As abducibles, we use up/1 and down/1 which apply to the power plant
and the wires (for simplicity, the connecting nodes are assumed always to work).
The network structure is represented by the following facts.

edge(w1, pp, n1). edge(w4, n3, v3). edge(w7, n3, v2).
edge(w2, n1, n2). edge(w5, n1, n4). edge(w8, n4, v4).
edge(w3, n2, n3). edge(w6, n2, v1). edge(w9, n4, v5).

(15)

The fact that a given point in the network has electricity, is described as follows.

haspower(pp):- up(pp).
haspower(N2):- edge(W,N1,N2), up(W), haspower(N1).

(16)
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As no negation is supported, the program includes also clauses that simulate the
negation of haspower.

hasnopower(pp):- down(pp).
hasnopower(N2):- edge(W, ,N2), down(W).
hasnopower(N2):- edge( ,N1,N2), hasnopower(N1).

(17)

To express that up/1 and down/1 are each other’s negation, we introduce an
integrity constraint, and define probabilities that sum to one.

abducible(up( ), 0.9).
abducible(down( ), 0.1).
⊥:- up(X), down(X).

(18)

We assume that top-level goals are conjunctions of ground haspower and hasno-
power atoms, which means that abducibles always are ground; this simplifies the
implementation of the auxiliary predicates (with sorted lists for explanations)
and allows some optimizations in the translating of clauses into CHR, by sup-
pressing renaming of explanations and avoiding calls to recalculate following
unifications. For example, the haspower predicates is translated as follows; recall
that renaming is unnecessary for the queue explain call that corresponds to the
last clause, as the variables in the query are not referenced elsewhere.

step explain( [haspower(N)|G], E, P) <=>
rename([haspower(N)|G], [haspower(Nr1)|Gr1]),
(Nr1=pp -> queue explain([up(pp)|Gr1], E, P) ; true),
queue explain([edge(W2,N12,N),up(W2),haspower(N12)|G],E,P),
select best.

(19)

The implementation of the extend auxiliary (which is used when a new ab-
ducible is encountered) includes the checking of the integrity constraint; the full
definition is as follows.

extend(A,E,P,AE,PAP):-
insert sorted(A,E,AE),
abducible(A,PA),
PAP is PA*P,
\+ ic fails(AE).

insert sorted(X,[],[X]).
insert sorted(X,[Y|Ys],[X,Y|Ys]):- X@<Y, !.
insert sorted(X,[Y|Ys],[Y|Ys1]):- insert sorted(X,Ys,Ys1).

ic fails(E):- member(up(X),E), member(down(X),E).

(20)

The rest of the query interpreter contains no surprises. The following excerpt of
a screen dialogue shows how the observation that no village have electricity is
explained by the interpreter.
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| ?- explain([hasnopower(v1), hasnopower(v2),
hasnopower(v3), hasnopower(v4), hasnopower(v5)]).

Best solution: [down(w1)], Priority=0.1
Another solution? y
Best solution: [down(pp)], Priority =0.1
Another solution? y
Best solution: [down(w2),down(w5)],
Priority=0.010000000000000002
Another solution? y
Best solution: [down(w3),down(w5),down(w6)],
Priority=0.0010000000000000002
Another solution? y
Best solution: [down(w2),down(w8),down(w9)],
Priority=0.0010000000000000002
Another solution?
....

(21)

It appears that the intuitively two most reasonable hypotheses, namely that
the power plant or the single wire connecting it with the rest of the network
is down, are generated as the first ones with highest probability. Then follow
combinations with lower and lower probability of different wires being down.

We refer to [22] giving implementations for the auxiliary predicates in two
versions, for ground abducibles and for the general case.

5 Integration with Constraint Solving

Application of existing constraint solvers may provide effective ways of reducing
the search space in abductive reasoning and may also help in producing more
concise programs. We refer to such constraints as external as to distinguish
them from the CHR constraints introduced above for the query interpreters.
In principle, such external constraint solvers may also be written in CHR, the
integration problem is the same.

In order to use external constraints with our query interpreters, we need a
way to locate in the executions state, the constraints pending on given variables,
so that we can copy them when new variants are produced of a running query in
order to account for alternative program clauses. A traditional way to implement
renaming without considering constraints is as follows,

rename(X,Y):- assert(aux(X)),retract(aux(Y)). (22)

We exemplify here for the clp(Q) constraint solver of SICStus Prolog [25, 26], how
the renaming can be extended properly. It includes a predicate projecting assert,
which adds, in the body of a clause, the possible variables pending on its argu-
ment. We illustrate its use by an example; the curly brackets indicate the syntax
for calling the constraint solver. Executing

{X=Y+Z}, projecting assert(aux(p(X,Y,Z))). (23)



170 Henning Christiansen

creates a clause equivalent with the following,

aux(p(X,Y,Z)):- {X=Y+Z}. (24)

Calling this predicate with new arguments can set up the relevant constraints.
The modified renaming predicate is as follows.

rename(X,Y):-
assert(aux(X)),retract(aux(Y)),
projecting assert(aux(X)),
aux(Y), retract((aux( ):- )).

(25)

No more adjustments are needed to incorporate the use of this constraint solver.
Consider as an example the following arrangement; the task is to place a number
of objects on a board in the positions number +2, . . ., −2 in such a way that the
board does not tilt and fall to the ground. The priority function is designed with
the purpose of achieving an arrangement with a minimum height for the given
set of object, i.e., the maximum number m of objects piled up in one position
should be as small as possible; abducibles describe placements of objects and
the priority of a given explanation is defined as 1/(m + 1).

-2-10+1+2

The PrioALP program is as follows; its translation into a query interpreter is
straightforward according to the recipe of section 3.

abducible(pos( object, position)).
external({ }).

place all:-
pos([P1,P2,P3,P4,P5,P6,P7]),
{P1*5+P2*7+P3*3+P4*7+P5*7+P6*12+P7*8 > 0},
place([b1,b2,b3,b4,b5,b6,b7], [P1,P2,P3,P3,P5,P6,P7]).

pos([]). pos([P|Ps]):- {P>=-2, P=<2}, pos(Ps).

place([],[]).

place([B|Bs],[PQ|Ps]):-
member(P,[2,1,0,-1,-2]), {PQ=P},
pos(B,P),
place(Bs,Ps).

(26)
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It considers the placement of objects b1, . . ., b7 having individual physical
weights 5, 7, 3, 7, 7, 12 and 8. The purpose of the call {PQ=P} is to convert
the integer P into a representation of a rational number so that the constraint
solver can work with it. Notice that a branch of computation is discarded as
soon as the objects placed represent an overweight to the right in the picture,
which is impossible to outbalance with the remaining objects.
| ?- explain([place all]).
Best solution: [pos(b1,-2),pos(b2,2),pos(b3,2),pos(b4,-2),

pos(b5,-1),pos(b6,1),pos(b7,0)],
Priority=0.33333
Another solution? y
...

(27)

On further requests follows a myriad of other solutions with the same priority,
and far later solutions with priority 0.25, etc. So while this example illustrates
how well an external constraint solver can be applied for pruning the search space
as early as possible, it also indicates that a coarse priority function that does not
distinguish possible solutions well, makes the search degenerate to a breath-first
search. (A better function to try may be one that combines the height measuring
with a priority of as much weight as possible to the left.)

6 Other Optimizations

Other optimizations have been considered which can be added to the query inter-
preters. For PrioALPs without integrity constraints, we can perform a pruning
analogous to what happens in Dijkstra’s shortest path algorithm [27]. Whenever
we have two or more processes with the same remaining subgoal (e.g., for finding
a path from the same intermediate node to the terminal node in the shortest
path example), we keep only the best one; in CHR:

queue explain(Q,E1,P1) \ queue explain(Q,E2,P2) <=>
prority less than(P2,P1) | true.

(28)

When remaining subqueries are syntactically small (e.g., one call to a path pred-
icate), this rule executes in an efficient way, and it will suppress the partial
execution of some branches which are deemed not to become best in the end.

We mention also the possibility to apply simplified integrity constraints in
specialized rules for each abducibles predicate. Simplification was suggested
by [28] for database integrity checking; an unfolding of the theoretical foun-
dations and a powerful method is given by [29]. We show here how this applies
to the integrity checking shown in the code fragment (20) above. Typically sim-
plification removes one order of magnitude (as in this example) or more.

step explain([up(X)|G],E,P) <=>
(member(down(X),E) -> true
;
insert sorted(up(X),E,E1), P1 is P*0.9,
queue explain(Q,E1,P1)),
select best.

(29)
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This principle can be further extended with specialized treatment for clauses
that produce more that one abducible.
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