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Abstract 

Zero-suppressed binary Decision Diagrams (ZDDs) [21] provide an efficient way of solving problems expressed in terms of 
set theory. This tutorial paper presents ZDDs for a reader with a background in Boolean algebra and Binary Decision 
Diagrams [4], without any prior experience with ZDDs. 

The case studies considered in the tutorial include the computation of the union of two sets, the generation of all primes of 
a Boolean function, and the computation of the Irredundant Sum-of-Products of an incompletely specified Boolean function, 
the latter being perhaps the most practical and useful ZDD operator. The tutorial contains the complete annotated source 
code implementing a ZDD-based procedure in C with CUDD decision diagram package. 

The appendix to the paper contains a list of 35+ ZDD procedures included in the decision diagram package CUDD 
Release 2.3.1 [36] and 50+ additional ZDD procedures included  in the EXTRA library [30] available as a public-domain 
extension of CUDD. 
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1 Introduction 

Fifteen years ago, Binary Decision Diagrams (BDDs) [4] 
and their variations entered the scene of computer design. 
Since that time they have been often used in research 
software and industrial CAD tools. The role of BDDs is 
two-fold. They are used as (1) a memory-efficient storage 
and convenient processing media for Boolean or multi-
valued functions and (2) a representation facilitating the 
analysis of data leading to new implicit algorithms, which 
tend to be more efficient than the classical ones [9]. 

One of the reasons why decision diagrams, and in 
particular BDDs, became useful for the CAD tool 
developers, is that they provide canonical representation of 
discrete objects. Canonical means that under certain 
condition for every object there is only one representation 
of this kind. This property is extremely important for 
verification because in order to prove the identity of two 
objects it is sufficient to build their canonical 
representations and show that these representations are 
identical. This property is also important it synthesis. For 
example, canonical representations are useful as signatures 
when storing objects in hash tables.  

The experience of using BDDs in numerous applications 
shows that they are not a panacea for all types of problems. 
In some cases, due to the specific properties of the discrete 
data arising in particular settings, the BDDs grow large 
making processing inefficient or impossible. In particular, 
this situation occurs when the applications work with sparse 
sets represented by characteristic functions [5].  

A set is sparse if the number of elements in it is much 
smaller than the total number of elements that may appear 
in the set. Cube covers are an example of sparse sets, 
because a typical cube contains only a few literals, out of all 
possible literals that may appear in the cube. The maximum 
number of literals is reached when a cube is a minterm 
containing each variable as either the negative or the 
positive literal. In the case of minterms, the sparseness of 
the set is ½, because each minterm contains exactly one half 
of all possible literals that may appear in the cubes. 

The problem of prohibitively large BDD size of the 
sparse set representation can be remedied by introducing a 
different brand of decision diagrams, called Zero-
suppressed binary Decision Diagrams (ZDDs) [21]. These 
diagrams are similar to BDDs with one of the underlying 
principles modified. The latter explains the improved 
efficiency of ZDDs when handling sparse sets and a number 
of other semantic differences between the two types of 
diagrams.  

While BDDs are better for the representation of functions, 
ZDDs are better for the representation of covers. 
Additionally, there are efficient procedures to perform 
conversions between them. Taken together, BDDs and 

ZDDs provide a powerful framework to solve problems in 
logic synthesis, such as two-level sum-of-product (SOP) 
minimization [8], three-level minimization, factorization 
[27][35], and decomposition [18]. 

The use of ZDDs is not limited to logic synthesis. They 
have been used, independently of BDDs, in a number of 
applications, ranging from the graph-theory problems to 
handling polynomials and regular expressions. (See Section 
8 for what is intended to be a complete list of ZDD 
applications published to date.) 

This tutorial paper is designed to be an introduction to 
ZDDs for a reader with background in Boolean algebra and 
an understanding of basic principles of BDDs. The goal is 
to present the three major types of applications: 

•  ZDDs for sets 
•  ZDDs for cube covers  
•  Mixed BDDs/ZDDs for functions and cube covers 
To this end, we first discuss the basic principles and uses 

of ZDDs. In particular, Section 3 focuses on the main 
differences between BDDs and ZDDs when it comes to 
representing Boolean functions, sets, and cube covers. 

In Section 4, we classify and discuss the elementary ZDD 
operators provided by the DD package.  After this 
discussion, we explore the generic structure of the DD-
based recursive procedure. This is important for the 
understanding of the material of the following sections. 

Section 5 shows how ZDDs can be used to manipulate 
sets. The set-union operator is considered as an illustrative 
example. The complete source code of this operator in the 
CUDD package is included in the paper and explained 
assuming the reader’s familiarity with the C programming 
language.  

Section 6 introduces the basics of ZDDs for manipulation 
of cube covers using the cover-product operator as an 
illustrative example.  

Section 7 contains two practically important examples of 
mixed ZDD/BDD applications: generation of a ZDD 
representing all primes of the completely specified Boolean 
function given as a BDD, and computation of a ZDD 
representing an Irredundant Sum-of-Products of the 
incompletely specified Boolean function.  

Section 8 provides the complete list of ZDD applications 
published to date, followed by conclusions in Section 9. 

Two complementary appendices contain annotated lists of 
ZDD-based procedures implemented in the CUDD package 
[36] and the EXTRA library [30], respectively.  

 
Ideally, after completing the tutorial, the reader should be 

able to write his or her own ZDD-based procedures using 
the CUDD package. 
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2 Definitions  

A literal is a propositional variable or its negation, e.g. 
a, b . A  product, or cube, is a Boolean product of literals, 
e.g. cb . A cover is a set of products. The cardinality of the 
cover is the number of cubes in the cover. A complement, 
or a negative phase, of cover S is a cover T such that the 
union of S and T is a tautology, that is, the Boolean 
function constant-1. 

Let f: Bn → B, B∈ {0,1}, be a completely specified 
Boolean function (CSF). Let F: Bn → {0,1,-} be an 
incompletely specified Boolean function (ISF) represented 
by two CSFs: the on-set, f1 = {x | F(x) = 1 } and the don’t-
care-set, fdc = {x | F(x) = - }. 

A CSF can be represented by a set of cubes. This 
representation is known as a two-level sum-of-product 
representation (SOP). An SOP, or cover, is irredundant, if 
no cubes can be removed without reducing the area of the 
covered Boolean space and no two cubes can be combined 
into one cube.  

A function essentially depends on a variable if the 
variable appears in an irredundant SOP or in a reduced 
ordered BDD of the Boolean function. The variable set X, 
on which f essentially depends, is called support of f. 

A minterm is the smallest cube, in which every variable is 
represented by either a negative or a positive literal. 
A variable that is not represented by a negative or a positive 
literal in the cube is said to have the don’t-care literal. Each 
don’t-care literal can be seen as a sum of the positive literal 
and the negative literal. This leads to splitting the cube into 
two smaller cubes.  In general, if a cube has k don’t-care 
literals, it is equal to the sum of 2k minterms, created by 
splitting each don’t-care literal. 

The area of the Boolean space covered by the cube 
consists of all minterms created by splitting the don’t-care 
literals of the cube. Two areas of the Boolean space overlap 
if they have common minterms. 

Two cubes are disjoint if the areas of the Boolean space 
covered by the cubes do not overlap. Two covers are 
disjoint if the areas covered by their cubes do not overlap. 

Given a Boolean function f, the negative cofactor of f 
with respect to (w.r.t.) variable x is the Boolean function 
fx=0 = f( x = 0 ). Similarly, the positive cofactor is the 
Boolean function fx=1 = f( x = 1 ). 

The following terminology is accepted in the BDD 
research [4]. The BDD represents the function as a rooted 
directed acyclic graph. Each non-terminal node N is labeled 
by a variable v and has edges directed towards two 
successor (children) nodes, else(N) and then(N), 
representing the cofactors of N w.r.t. v. Each terminal node 
is labeled with 0 or 1. For a given assignment of the 
variables, the value of the function is found by tracing a 
path from the root to a terminal vertex following the 
branches indicated by the values assigned to the variables. 

The function value is given by the terminal vertex label. For 
example, Fig. 1 (left) shows the BDD of the Boolean 
function F = ab + cd. The edges are directed downwards. 
The dashed edges (solid) edges correspond to v = 0 (v = 1). 

In the following, we use the terms “procedure”, 
“functions”, “routine” and “operator” interchangeably to 
denote a fragment of functionality implemented with DDs.  

3 Comparing BDDs and ZDDs 

Both BDDs and ZDDs can be seen as decision trees, 
simplified using two reduction rules that guarantee the 
canonicity of the resulting representation. The second 
reduction rule (merging of isomorphic subgraphs) holds for 
both BDDs and ZDDs; however, they differ in the first 
reduction rule (node elimination).  

For BDDs, the node is removed from the decision tree if 
both its edges point to the same node. For ZDDs, the node 
is removed if its positive edge (then-edge) points to the 
terminal node 0. This variation in the rule, as mentioned 
before, explains the improved efficiency of ZDDs when 
handling sparse sets and the semantic differences between 
the two types of diagrams.  

One way of understanding the principles of ZDDs is to 
compare them with BDDs for simple illustrative functions 
while keeping in mind their main difference.  

3.1 Boolean functions  
It can be shown that, in a BDD, all paths from the root to 

terminal node 1 can be seen as cubes constituting a disjoint 
cover of the function. A variable is present in the positive 
(negative) polarity in the corresponding cube if the path 
contains the 1-edge (0-edge) of a node labeled by this 
variable; the variable is absent in the cube if the path does 
not go through a node labeled by this variable. 

In a ZDD for the same function, all paths from the root to 
terminal 1 also represent a disjoint cover of the function. 
(This cover is the same if the variable ordering is the same 
in both diagrams.) A variable is present in the positive 
polarity in the corresponding cube if the path goes through 
the 1-edge of a node labeled with this variable. A variable 
is present in the negative polarity in the cube if the path 
goes through the 0-edge or if the path does not go through a 
node labeled by this variable. A variable is absent in a 
cube, if the path goes through a node labeled by this 
variable and both edges of the node point to the same node.  

Consider a BDD and a ZDD of the function F = ab + cd 
shown in Fig. 1. Both diagrams can be used to trace the 
disjoint cover of the function: {ab, cda , cdba }. As can be 
seen from Fig. 1, the size of the ZDD, expressed as the 
number of nodes in the diagram, is almost two times larger 
than that of the BDD. This is because ZDDs are not as 
efficient as BDDs when it comes to representing typical 
Boolean functions. 
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Figure 1. BDD and ZDD for F = ab + cd. 

3.2 Sets of subsets 
The classical BDDs represent completely specified 

Boolean functions. In order to represent sets∗  (and sets of 
subsets), the characteristic functions have been introduced 
[5] in such a way that each set is put in one-to-one 
correspondence with its characteristic function. 

Informally, the characteristic function of a set of subsets 
is a CSF that depends on as many input variables as there 
are elements that can potentially appear in a subset. For 
each subset in the set, one minterm is added to the on-set of 
the characteristic function. In this minterm, variables appear 
in positive (negative) polarities if they are present (absent) 
in the set. In the extreme case of one subset (that is, if a set 
of subsets contains only one subset), the characteristic 
function has only one minterm in its on-set. 

For example, given three elements (a,b,c), consider the set 
of subsets { {a,b}, {a,c}, {c} }. If we associate each 
element with a binary variable having the same name, the 
characteristic function of the set of subsets is 
F = cab + cba + cba . The first minterm corresponds to the 
subset {a,b}, and so on.  

Important for our discussion are the following 
observations. The empty subset is represented by the 
minterm F = cba , while the subset containing all elements 
is represented by F = abc. The empty set is represented by 
the characteristic function F = 0, while the set composed of 
all possible subsets is represented by the characteristic 
function F = 1. The latter is obvious if we observe that the 
constant-0 function has no on-set minterms, while the 
constant-1 function has 2^n on-set minterms, corresponding 
to the complete Boolean space. 

Notice that there is a difference between the empty set 
and the set of subsets composed of the empty set only. The 

                                                           
∗  In this paper, sets stand for unordered arrangements of elements from a 
finite collection. In other words, when defining the uniquenes of a set, 
only the presence of elements matters, not their order. Sets {a,b} and 
{b,a} are considered identical, while sets {a,b,c} and {a,b} are different. 
Sometimes it is convenient to assume that the elements are initially 
ordered and appear in the sets only in this order. Assuming that a precedes 
b in the order, both {a,b} and {b,a} will be represented by {a,b}. 

former has the characteristic function equal to constant 0, 
while the latter has the characteristic function F = cba . 

Once the characteristic function is constructed, it can be 
represented using a BDD or a ZDD. The two 
representations of the set of subsets {{a,b}, {a,c}, {c}} are 
given in Fig. 2.  

 
 
 
 
 
 
 
 

 

Figure 2. The BDD and the ZDD for the set of subsets 
{{a,b}, {a,c}, {c}}. 

In both diagrams, there are three paths from the root node 
(on top) to the terminal node 1, which correspond to the 
subsets {a,b}, {a,c}, and {c}. The encoding of the variables 
in the paths is discussed in section 3.1. 

Notice that the size of the ZDD in Fig. 2 is smaller than 
that of the BDD. It can be proved that the upper bound on 
the size of the ZDD is the total number of elements 
appearing in all subsets of a set. Meanwhile, the upper 
bound on the size of the BDD is given by the number of 
subsets multiplied by the number of all elements that can 
appear in them. This observation shows that ZDDs should 
be much more compact when representing sets of subsets. 
The above theoretical upper bound on the ZDD size is 
rarely reached; in practice ZDDs tend to be even more 
compact. 

3.3 Cube covers  
Let us now consider the ZDD representation of cube 

covers. First, it is necessary to introduce additional 
variables, because BDDs and ZDDs depending on the 
primary input variables represent only one type of disjoint 
covers. To represent arbitrary covers, two variables are 
used for each primary input: one of them stands for the 
positive literal and another for the negative literal. These 
variables are always kept adjacent in the variable order. 
Similarly to the set of subsets, a cube cover is represented 
by its characteristic function introduced as follows: 

•  The characteristic function depends on the 2*n 
variables, where n is the number of primary inputs. 

•  For each cube of the cover, one minterms is added to 
the on-set of the characteristic function.  

•  The minterm has those variables in the positive 
polarity that correspond to literals present in the cube 
and those variables in the negative polarity that 
correspond to literals missing in the cube.  

10 
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For example, to represent arbitrary covers of the four-
variable function F = ab + cd, eight variables are used: 
(a1, a0, b1, b0, c1, c0, d1, d0). These variables correspond to 
the positive and negative literals of each input variable.  

Consider the cover {ab, cd}. The characteristic functions 
of this cover is: χ = 01010101 ddccbbaa + 01010101 ddccbbaa . 

ZDD for the characteristic function is shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. ZDD for the cover {ab, cd}. 

Unlike the BDD for function χ, which depends on all 
eight variables, the ZDD depends on four variables only. 
These are the variables that appear in the characteristic 
function in the positive polarity and correspond to literals 
actually present in the cover. All other variables are missing 
in the ZDD, because according to the ZDD reduction rules 
a variable missing on the path is interpreted as a variable 
taking the value 0 in the minterm of the characteristic 
function. This property makes ZDD ideal for representing 
and manipulating large cube covers.  

The terminal node 0 in a ZDD representing covers stands 
for the empty cover. In this case, there are no assignments 
for which the characteristic function evaluates to 1 and 
therefore there are no cubes in the cover.  

The terminal node 1 stands for the cover containing only 
the tautology cube, that is the cube in which all the literals 
are missing. Indeed, there is only one path for which the 
characteristic function evaluates to 1, and this path does not 
go through any nodes. According to the ZDD reduction 
rules, it means that all the variables on the path are equal to 
zero, which in turn means that all the literals are missing in 
the cube.  

The decomposition of a cover w.r.t. the primary input 
variable is a triple of covers that contain cubes: (1) with the 
variable as the positive literal, (2) with the variable as the 
negative literal, (3) without the variable (or with the 
variable as a don’t-care literal).  

The inverse operation is the composition of the three 
covers into one cover. The composition is performed using 
a primary input variable that is not currently used in the 
covers.  

For example, consider the cover C = cab + dba + ac + d. 
Decomposing C w.r.t. the primary input variable b yields: 
C0 = ad, C1 = ca , C2 = ac + d. The reverse operation, the 

composition of the covers C0, C1, and C2 w.r.t. b, which 
does not appear in them, produces the initial cover C. 

If the cover is represented by its ZDD, the decomposition 
and composition operations are performed by functions of 
the ZDD package. In the traversal procedures presented in 
this paper, the functions are denoted DecomposeCover() 
and ComposeCover().  

DecomposeCover() takes the cover and the primary input 
variable and returns three subcovers. ComposeCover() 
takes three subcovers and the primary input variable and 
returns the composed cover. 

For a detailed analysis of ZDD in the representation of 
cube covers, it is recommended for the reader to review 
references [23][26][27] where some basic ZDD-based 
recursive operators are introduced and explained.  

4 Basic ZDD procedures  

The basic functions dealing with ZDDs can be classified 
as follows: 

4.1 Procedures working with functions 
These procedures are similar to those developed to 

manipulate Boolean functions using BDDs.  
•  Procedures returning elementary functions: 

o Constant-0 ZDD (constant zero function, F = 0) 
o Universal ZDD (constant one function, F = 1) 
o Single-variable ZDD (the function equal to the 

elementary variable, F = v) 
•  Procedures performing boolean operations: 

o If-Then-Else (ITE) operator. This function returns 
the result of applying ITE to A, B, and C: 

ITE( A, B, C ) = AB+ CA . 
Notice that the complement of a ZDD cannot be 

computed by complementing a pointer, as it is done using 
BDDs with complement edges. Instead, we should apply the 
ITE operator to the function and constants and compute the 
complement as follows: F = ITE( F, 0, 1). 

4.2 Procedures working with sets  
•  Procedures returning elementary sets: 

o Constant-0 ZDD (the empty set, {}) 
o Constant-1 ZDD (the set of subsets consisting of 

the empty set, {{}}) 
o Single-variable ZDD (the set of subsets with a 

subset containing element v, {{v}}) 
•  Procedures performing operations on the set of subsets 

w.r.t. to a single element (variable): 
o Subset0( S, v ) returns the set of subsets of S not 

containing element v. 
o Subset1( S, v ) returns the set of subsets of S 

containing element v. 
o Change( S, v ) returns the set of subsets derived 

from S by adding element v to those subsets that 

1 0 

a1 

b1

c1 

d1 
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did not contain it and removing element v from 
those subsets that contain it. 

•  Procedures performing standard set operations for two 
sets of subsets: 
o Union( X, Y ) returns the set of subsets belonging 

to X or Y. 
o Intersection( X, Y ) returns the set of subsets 

belonging to both X and Y. 
o Difference( X, Y ) returns the set of subsets of X 

not belonging to Y. 
It is important to distinguish single-variable ZDDs as used 

in the manipulation of functions and from those used in the 
manipulation of sets. Fig. 4 shows the ZDDs for F = b, 
assuming that there are three variables (a,b,c). In  the case 
of functions, this ZDD represents the function F = b. In  the 
case of sets, the ZDD represents the characteristic function 
of the set containing a single element b. In this case, 
the characteristic function is F  = cba . 

 
 
 
 
 
 
 

 

Figure 4. ZDDs for elementary variable b used in functions 
manipulation (left) and in set manipulation (right). 

In addition to the above nine elementary operators 
defined for sets, the two pairs of set product and weak-
division operators have been implemented using ZDDs.* 
These two pairs of operators correspond to unate and binate 
algebras [23][27]. 

Speaking informally, in unate algebra, every literal of a 
cube is either positive polarity or missing, while in binate 
algebra every literal may be non-complemented, 
complemented, or missing.  

Correspondingly, to manipulate sets in unate algebra 
every literal is encoded with one ZDD variable, while to 
manipulate sets in binate algebra, two literals are used, one 
represents the variable in positive polarity, the other 
presents it in negative polarity.† 

In terms of the definitions introduced above, ZDDs used 
to manipulate sets of subsets implement the unate algebra, 
while ZDD used to manipulate the cube covers implement 
the binate algebra. 

                                                           
* The remainder can be considered as an operator related to each pair. In 
practice, however, it is implemented by reducing it to the product and 
weak-division as follows: X%Y = X – X*(X/Y).  
† In terms of procedures implemented in the main distribution of the 
CUDD package, unate product and division are Cudd_zddUnateProduct() 
and Cudd_zddDivide(), while binate product and division are 
Cudd_zddProduct() and Cudd_zddWeakDiv(). 

4.3 Generic structure of a recursive ZDD 
procedure 

In this subsection, we discuss the generic structure of a 
recursive ZDD procedure. The presentation is also true for 
recursive procedures written using other types of decision 
diagrams, in particular, BDDs and ADDs [2]. Therefore, in 
this subsection we use the term “DD” instead of “ZDD”. 

Procedures written with DDs can be roughly divided into 
two classes:  
•  Recursive procedures that rely on the DD structure to 

perform computation. 
•  Non-recursive procedures that do not use the DD 

structure but may call the recursive procedures. 
The former type is also known as traversal procedures, 

because, in the process of recursion, all nodes of the DD are 
visited in the depth-first manner starting from the root. The 
efficiency of traversal procedures comes from the fact that, 
due to the caching of the intermediate results of 
computation, each node in the tree of recursive calls is 
visited only once.  

If the traversal procedure takes only one DD as an 
argument, the number of nodes in the tree is equal to the 
number of nodes in the DD. If there are more arguments, 
the number of nodes in the tree has the upper bound of the 
product of the number of nodes in the argument DDs. This 
upper bound is rarely reached in practice. 
dd TraversalProcedure( dd A, dd B, ... )
{

// (1) consider terminal cases
if ( A = 0 ) return ...;
if ( A = 1 ) return ...;
...

// (2) perform a cache lookup
R = CacheLookup( A, B, ... );
if ( R exists ) return R;

// (3) find the topmost variable in A, B, ...
Var = TopMostVariable( A, B, ... );

// (4) cofactor arguments w.r.t. Var
A0 = Cofactor( A, Var’ );
A1 = Cofactor( A, Var );
...

// (5) recursively solve subproblems
R0 = TraversalProcedure( A0, B0, ... );
R1 = TraversalProcedure( A1, B1, ... );
...

// (6) derive the solution of the problem
// from those of the subproblems
R = GetResult( R0, R1, ... );

// (7) cache the result
CacheInsert( A, B, ..., R );

// (8) return the result
return R;

}

Figure 5. Structure of the recursive DD-based procedure. 
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Fig. 5 shows the structure of a recursive traversal 
procedure. Steps (2)-(5) and (7)-(8) are similar for the 
majority of the recursive procedures. Steps (1) and (6) are 
application-specific.  

In particular, step (1) solves the problem in the extreme 
case when the argument DDs are such that no further 
recursive calls are necessary. Step (6) answers the question: 
How to solve the problem if partial solutions of 
subproblems are known? In some cases, this step requires a 
lot of creativity to implement. Some of the algorithms 
cannot be implemented recursively, because Step (6) cannot 
be solved, or has not been solved so far. Here are two 
examples of such hard problems: 
•  Complementation of the cover represented by a ZDD. 

The simplest known solution requires two traversals: 
create the BDD of the function represented by the 
cover, complement the BDD (this is done in constant 
time for BDDs with complement edges), and compute 
the ZDD of the complemented cover. 

•  Computation of the set of dominated columns and rows 
in the unate covering problem represented by BDDs. 
So far, this problem has been solved either explicitly, 
without DDs, or by applying formulas with quantifiers 
to the BDDs of dominance relations [19]. 

5 Manipulation of sets 

In this section, we apply the principles of traversal 
procedures discussed above to a particular example of 
computation of the union of two sets of subsets.  

For example, given the two sets of subsets: 
A = {{a,b}, {c}} and B = {{a,b}, {a,c}}, the union of A 
and B is {{a,b}, {a,c}, {c}}. 
set Union( set A, set B )
{

// (1) consider terminal cases
if ( A = {} ) return B;
if ( B = {} ) return A;
if ( A = B ) return A;

// (3) find the topmost variable in A and B
var x = TopVariable( A, B );

// (4) cofactor arguments w.r.t. x
set A0 = Subset0( A, x );
set A1 = Subset1( A, x );
set B0 = Subset0( B, x );
set B1 = Subset1( B, x );

// (5) recursively solve subproblems
set R0 = Union( A0, B0 );
set R1 = Union( A1, B1 );

// (6) derive the solution of the problem
// from those of the subproblems
set R = CreateZdd( x, R1, R0 );

// (8) return the result
return R;

}

Figure 6. Pseudo-code of the union of two sets of subsets. 

The pseudo-code of the set-union operator is shown in 
Fig. 6, where steps (2) and (7) (the cache lookup and insert) 
have been omitted for clarity. Notice how the steps (1) and 
(6) are solved in the pseudo-code.  

The terminal cases take place when at least one of the 
arguments is an empty set  (in this case, the union is equal 
to the other argument) or when both arguments are equal (in 
this case, the union is any of the sets). 

Procedures Subset0() and Subset1() compute the 
cofactors of the initial sets, that is the sets that do not 
contain the topmost element and the sets that contain the 
topmost element. 

The solution R of the problem can be derived from the 
solution of the subproblems. To get the subsets with(out) 
the topmost element, R0 and R1, we compute the union of 
the argument subsets with(out) the topmost element. This is 
done using two recursive calls to Union().  

Next, we create the ZDD with the topmost element x and 
the cofactors R0 and R1. This way we include into the 
resulting set of subsets all the subsets with(out) the topmost 
element if they appear with(out) the topmost element in one 
of the argument sets of subsets, A or B. 

5.1 A case stude of the CUDD source code  
Now, consider the source code of the procedure 

cuddZddUnion(), which implements the recursive step of 
the set-union operator in the CUDD package (Fig. 7). 
The code is taken from the file “cuddZddSetop.c” of the 
CUDD Release 2.3.1. Here it is reproduced with minor 
changes to improve its readability. 

The procedure cuddZddUnion() is called with three 
arguments: the pointer to the decision diagram manager 
(zdd), and the ZDDs, P and Q. The local variables defined 
in the function store the levels of the topmost nodes in P 
and Q (p_top and q_top), the partial results (t and e), and 
the final result (res). Variables t, e, and res stand for R0, R1 
and R in Fig. 6. 

Function statLine(), implemented as a macro, is called 
with the pointer to the manager. It collects statistics about 
the number of recursive calls. It does not influence the 
functionality of cuddZddUnion(). 

The next three lines of the code implement the terminal 
cases. The macro DD_ZERO(zdd) returns the constant-0 
node of the DD manager that represents the ZDD of the 
empty set. 

Function cuddCacheLookup2Zdd() performs the cache 
lookup for a recursive procedure with two DD arguments. 
This function takes four arguments: the pointer to the 
manager, the pointer to the calling function (used as a 
signature to distinguish this cache entry from entries created 
by other functions called with the same argument DDs), and 
two arguments, P and Q. This function returns NULL if 
there is no matching entry in the cache; otherwise, it returns 
the pointer to the ZDD of the result. 
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Each DD node F in the CUDD package is annotated with 
the variable number (F->index). The terminal nodes have 
the variable number equal to CUDD_CONST_INDEX. 
Because reordering of variables may have taken place in the 
manager, the variable number alone is not enough to find 
the position of the given DD node in the variable order. To 
find the position, the levels of nodes should be determined.  

The next two if-statements in the source code determine 
levels, p_top and q_top, of the topmost nodes in the 
argument DDs, P and Q. The level is the same as the 
variable index (CUDD_CONST_INDEX), if the DD node 
represents the constant function; otherwise it is determined 
using the mapping of variables into the corresponding 
levels, which is stored in the array zdd->permZ.  

Next, three cases are considered:  
•  P is higher in the variable order than Q 
•  Q is higher in the variable order than P 
•  P is on the same level as Q 

We discuss only the last one, the other two being similar.  
Macros cuddT() and cuddE() return the “then” and “else” 

children (cofactors) of the given DD node. In ZDDs, these 
cofactors correspond to the sets of subsets, in which the 
topmost element is present (the “then” cofactor) or absent 
(the “else” cofactor). The cofactors are used in the recursive 
calls to cuddZddUnion(), which determine the two 
components of the result: the set of subsets with the topmost 
element (t) and without it (e).  

All the DDs returned by the function calls are checked for 
being NULL. If the returned pointer to the node is not 
NULL, the node is referenced. If the returned pointer is 
NULL, it means that during the call either (1) the operating 
system has run out of memory when the CUDD package 
tried to extend the node table, or (2) the dynamic variable 
reordering has been triggered. In both cases, the recursive 
traversal is interrupted and NULL is returned to the caller. 
Notice also that the intermediate results of computation, 
which have been referenced so far, are dereferenced by 
calling Cudd_RecursiveDerefZdd(). 

A few remarks should be made regarding the referencing 
conventions accepted in the CUDD package. A detailed 
treatment is given in CUDD User Manual [36]. 

Decision diagrams are stored in the DD manager as a 
shared directed acyclic graph of nodes. To mark the nodes 
that are in use, they are reference-counted. The reference 
counter of a DD node tells how many times this node 
participates in the DDs currently present in the manager. 
Therefore, each time a new DD node is created, its 
reference counter is incremented by the call to cuddRef(). 

DdNode *
cuddZddUnion(
DdManager * zdd,
DdNode * P,
DdNode * Q)

{
int p_top, q_top;
DdNode *t, *e, *res;

statLine(zdd);

if ( P == DD_ZERO(zdd) ) return ( Q );
if ( Q == DD_ZERO(zdd) ) return ( P );
if ( P == Q ) return ( P );

/* check cache */
res = cuddCacheLookup2Zdd(zdd,cuddZddUnion,P,Q );
if ( res != NULL ) return ( res );

if ( cuddIsConstant( P ) )
p_top = P->index;

else
p_top = zdd->permZ[P->index];

if ( cuddIsConstant( Q ) )
q_top = Q->index;

else
q_top = zdd->permZ[Q->index];

if ( p_top < q_top )
{
e = cuddZddUnion( zdd, cuddE( P ), Q );
if ( e == NULL ) return ( NULL );
cuddRef( e );
res = cuddZddGetNode(zdd,P->index,cuddT(P),e);
if ( res == NULL )
{
Cudd_RecursiveDerefZdd( zdd, e );
return ( NULL );

}
cuddDeref( e );

}
else if ( p_top > q_top )
{
e = cuddZddUnion( zdd, P, cuddE( Q ) );
if ( e == NULL ) return ( NULL );
cuddRef( e );
res = cuddZddGetNode(zdd,Q->index,cuddT(Q),e);
if ( res == NULL )
{
Cudd_RecursiveDerefZdd( zdd, e );
return ( NULL );

}
cuddDeref( e );

}
else
{

t = cuddZddUnion( zdd, cuddT(P), cuddT(Q) );
if ( t == NULL ) return ( NULL );
cuddRef( t );
e = cuddZddUnion( zdd, cuddE(P), cuddE(Q) );
if ( e == NULL )
{
Cudd_RecursiveDerefZdd( zdd, t );
return ( NULL );

}
cuddRef( e );
res = cuddZddGetNode( zdd, P->index, t, e );
if ( res == NULL )
{
Cudd_RecursiveDerefZdd( zdd, t );
Cudd_RecursiveDerefZdd( zdd, e );
return ( NULL );

}
cuddDeref( t );
cuddDeref( e );

}
cuddCacheInsert2( zdd,cuddZddUnion,P,Q,res );
return ( res );
} /* end of cuddZddUnion */

Figure 7. CUDD source code implementing the union of 
two sets represented as ZDD. 
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Similarly, each time an old DD node is deleted, its 
reference counter is decremented. If after decrementing the 
reference counter becomes zero, the node is considered 
“dead” and the reference counters of the successor nodes 
are decremented in turn. This recursive decrementing of the 
reference counters is performed by the call to 
Cudd_RecursiveDerefZdd(). 

Functions in the CUDD package (with very few 
exceptions mentioned in the user manual) return non-
referenced DD nodes. It is the responsibility of the caller 
function to reference the returned node after checking it for 
not being NULL. 

This principle is used in the source code in Fig. 7 several 
times. First of all, the returned nodes are referenced after 
each function call, except for the last call to 
cuddZddGetNode(). In this case, there is no need to 
reference the node to be returned (res) because the function 
should return the non-referenced node. Of course, it would 
not be an error to reference it by cuddRef(res) and then 
dereference it right before returning by cuddDeref(res). In 
the CUDD source code, these two steps are skipped for the 
sake of efficiency. 

The last comment is about function cuddZddGetNode(). It 
returns the new ZDD node of the manager (zdd) with the 
given variable (P->index) and cofactors (t and e). Notice 
the order of cofactors in the argument list: first the “then” 
cofactor, next the “else” cofactor. After the call to 
cuddZddGetNode(), the cofactor DDs (t and e) should be 
dereferenced because cuddZddGetNode() references them 
when it creates the new node (res). Because cofactor ZDDs 
(t and e) are now part of the result ZDD (res), there is no 
need for recursive dereferencing by the call to the function 
Cudd_RecursiveDerefZdd(). The cofactor ZDDs can be 
efficiently dereferenced using cuddDeref().  

Notice that this implementation can be improved by 
taking advantage of the communativeness of the set-union 
operation. It means that the argument ZDDs (P and Q) can 
be ordered to increase the cache hit-rate.  

There are several ways to implement this improvement. 
One of them is based on the assumption that the ordering of 
arguments is given by the ordering of the pointers to the 
argument DdNode-structures. In this case, it is enough to 
replace each recursive call to cuddZddUnion( zdd, A, B ) 
by the lines 
if ( (unsigned)A < (unsigned)B )
cuddZddUnion( zdd, A, B );

else
cuddZddUnion( zdd, B, A );

This improvement may lead to approximately 5% speedup 
in the applications, which perform many calls to 
Cudd_zddUnion(), the exported function of the package, 
which calls the internal function cuddZddUnion(). 

6 Manipulation of cube covers 

This section gives an illustrative example of a traversal 
procedure working with cube covers represented by ZDDs. 
Fig. 8 shows the pseudo-code of the function implementing 
the product of two cube covers. As in the case with 
Union(), the cache lookups are omitted. 
cover Product( cover A, cover B )
{

if ( A = {} || B = {} ) return {};
if ( A = {{}} ) return B;
if ( B = {{}} ) return A;
if ( A = B ) return A;

var x = TopVariable( A, B );

cover A0, A1, A2, B0, B1, B2;
( A0, A1, A2 ) = DecomposeCover( A, x );
( B0, B1, B2 ) = DecomposeCover( B, x );

cover TA0B0 = Product( A0, B0 );
cover TA0B2 = Product( A0, B2 );
cover TA1B1 = Product( A1, B1 );
cover TA1B2 = Product( A1, B2 );
cover TA2B0 = Product( A2, B0 );
cover TA2B1 = Product( A2, B1 );
cover TA2B2 = Product( A2, B2 );

cover R0 = Union( Union(TA0B0, TA0B2), TA2B0 );
cover R1 = Union( Union(TA1B1, TA1B2), TA2B1 );
cover R2 = TA2B2;
cover R = ComposeCover( x, R0, R1, R2 );
return R;

}

Figure 8. Pseudo-code of the product of two covers. 
Consider the terminal cases. If any of the covers contains 

no cubes, the function represented by the cover is the 
constant-0 function and the product is 0, so the empty cover 
is returned. If any of the covers is the tautology cube, the 
product is equal to the other cover. Finally, if the covers are 
the same, the product is equal to any of them. 

When the topmost variable x is determined, notice that 
this is a primary input variable, not a ZDD variable. Each 
primary input variable is represented by two ZDD 
variables. This is taken into account by the function 
TopVariable(), which is more complex than the function 
with the same name used in the procedure Union(). Next, 
both argument covers are cofactored into three subcovers 
containing cubes with the given variable in the negative 
polarity (A0 and B0), in the positive polarity (A1 and B1), 
and without the given variable (A2 and B2).  

The main part of computation of cover-product (step (6)) 
is based on the following equality:  

A * B = ( x A0 + xA1 + A2)* ( x B0 + xB1 + B2)=  
          = x ( A0*B2 + A2*B0 + A0*B0 ) +  
           + x( A1*B2 + A2*B1 + A1*B1 ) + A2*B2. 

This equality reduces the computation of the cover-
product to seven recursive calls to cover-product of the 
cofactor DDs. Out of nine possible combinations (each of 
the three subcovers of A with each of the three subcovers of 



 10

B), there is no need to consider only two combinations, 
A0*B1 and A1*B0, because the product of the negative and 
the positive literals reduces these sets to zero.  

Finally, after five two-argument set-union operations 
which computes the three subcovers, R0, R1, and R2, the 
resulting cover R is composed from them using the topmost 
primary input variable. 

Another implementation of this function is possible that 
replaces two (out of seven) calls to Product() for two 
additional calls to Union(). Because the implementation of 
Union() is simpler, this implementation of Product() is 
more efficient. The alternative implementation is explained 
by the following equality: 

A * B = ( x A0 + xA1 + A2)* ( x B0 + xB1 + B2)=  
          =  x ( A0*B2 + B0*(A0+A2) ) + 
           + x( A1*B2 + B1*(A1+A2) ) + A2*B2. 

7 Mixed ZDD/BDD applications 

In this section, we discuss two procedures, which play an 
important role in the SOP minimization. These are (1) the 
computation of all primes of the CSF and (2) the 
computation of an irredundant SOP of the ISF. In  both 
cases, the function arguments are represented as BDDs 
while the return values are represented by ZDDs. Other 
procedures may take ZDDs and return BDDs or have more 
complex argument assignments. 

7.1 Computation of the set of all primes  
The recursive approach to the prime computation has 

been proposed in [30] and implemented using BDDs/ZDDs 
in [8]. The pseudo-code is shown in Fig. 9. 

The terminal cases are simple. If the input function is 
constant-0, the set of primes is empty. If the input function 
is constant-1, the prime set composed of the tautology cube 
is returned. Notice that the set of subsets that includes only 
the empty subset, {{}}, represents the cube with no literals, 
that is the tautology cube. 

If it is not a terminal case, the topmost variable in the 
BDD of F is determined and the function is decomposed 
w.r.t. this variable. Next, the problem is solved in three 
steps. 

First, the set of primes (P2) belonging to the intersection 
of cofactors is computed. These primes do not have the 
topmost variable as the positive or the negative literal.  

Second, the set of all primes of the negative cofactor of 
the function (P0) is computed. These primes will have the 
topmost variable in the negative polarity. Before the 
topmost literal is added (when composing the result at the 
end of the procedure), some of them may be identical to the 
primes in P2. After adding the literal corresponding to the 
topmost variable, some of the cubes in P2 will contain the 
corresponding cubes in P0, because cubes in P0 get the 
negative literal while the cubes in P2 do not get a literal 

associated with this variable. Because the contained cubes 
are, by definition, not primes, they should be removed. This 
is done by the set-difference operator applied to P0 and P2. 
cover Primes( func F )
{

if ( F = 0 ) return {};
if ( F = 1 ) return {{}};

var x = TopVariable( F );

func F0, F1;
(F0, F1) = DecomposeBdd( F, x );

cover P2 = Primes( F0 & F1 );
cover P0 = Primes( F0 );
P0 = P0 - P2;
cover P1 = Primes( F1 );
P1 = P1 - P2;

cover P = ComposeCover( x, P0, P1, P2 );
return P;

}

Figure 9. Pseudo-code of the prime set computation. 

Similarly, in the third step we compute the set of all 
primes with the positive literal (P1).  

Finally, the resulting set of primes is composed from the 
three subsets, P0, P1, and P2 and returned. 

Again, the prime computation procedure can be improved 
by detecting situations when the given function is unate in 
its topmost variable. In this case, there is no need to make 
one out of the three recursive calls to Primes() because the 
primes of the unate function do not have the given variable 
in any polarity of have it in only one polarity, either 
negative or positive, depending on the type of unateness. 

The mixed BDD/ZDD implementation of Primes() is very 
efficient, as witnessed by the fact that it takes less than a 
second to compute the primes of any function from the 
Espresso PLA benchmark set (including the so-called hard 
benchmarks) on a 500MHz Pentium computer with 128Mb 
RAM. For this purpose, multi-output functions are 
converted into single-output functions, as described in [5].  

7.2 Computation of an irredundant SOP 
The algorithm for recursive computation of ISOP has 

been proposed in [30]. It has been implemented in [7][20]. 
The pseudo-code is given in Fig. 10. Symbols “+”, “&”, 
and “-“ in the pseudo-code stand for the Boolean operations 
OR, AND, and SHARP. 

The procedure IrrSOP() to compute the irredundant sum-
of-products is called with two arguments representing an 
ISF. The first argument F is the on-set, while the second 
argument FD is the sum of the on-set and the don’t-care-set. 
If the ISF is represented by the on-set and off-set, FD is 
computed by complementing the off-set. 

The following are the terminal cases. If the on-set F is 
empty, the function can be implemented as a constant-0 
function, so the empty cover is returned. If the union of the 
on-set and dc-set, FD, covers the whole Boolean space, 
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returned is the set composed of the empty subset standing 
for the tautology cube. 

Next, the topmost variable x and the cofactors of F and 
FD w.r.t. the variable x are derived. To find the 
decomposition of BDDs, the ordinary BDD cofactoring 
w.r.t. the topmost variable is used. Notice that if one of the 
functions, F or FD, does not depend on the topmost 
variable, its cofactors w.r.t. the topmost variable are equal 
to the function itself. 

The ISOP is computed in three steps. The first step 
consists of finding the ISOP cover of that part of the on-set 
F, which cannot be covered by the cubes without the given 
variable. To achieve this, we compute the ISOP of the part 
of F0 that is outside FD1. This part can be covered only by 
the cubes that contain the topmost variable in the negative 
polarity. These cubes are assigned to R0. 

Similarly, in the second step, we compute the ISOP of the 
part of the on-set covered only by the cubes with the 
topmost variable in the positive polarity. These cubes are 
represented by R1. 

In the third and final step, we compute the area in the 
intersection of FD0 and FD1, which (1) belongs to F0 or F1 
and (2) is not covered by the cubes in R0 and R1. 
The pseudo-code employs the function Bdd(), which takes 
the cover as a ZDD and returns the BDD of the area of the 
Boolean space corresponding to the cover. 

The CUDD package provides the implementation of the 
ISOP procedure, in which two values are returned in each 
call: the ZDD of the ISOP cover and the BDD of the area 
covered by the cover. In this way, there is no need for the 
call to Bdd(). The penalty for this solution is the necessity 
to cache two values, the ZDD and the BDD, and the 
repetition of the recursive call if at least one of the values is 
lost in the cache (losing values in the cache happen when 
two different computed results hash into the same cache 
entry resulting in the loss of the earlier result). 

The EXTRA library gives an alternative implementation 
of this procedure, in which only one value is cached and 
returned. This implementation is based on a specialized 
operator, which takes two arguments, the BDD of the area 
and the ZDD of the cover and returns the BDD of the area 
that is not covered by the cover. This operator can 
implement expressions of the type A – Bdd(B) in one 
traversal, while in the pseudo-code of Fig. 10, expressions 
of this kind are implemented by two traversals: Bdd() and 
Boolean SHARP. Experimentation shows that this 
implementation of ISOP cover is more efficient than the 
one proposed in the CUDD package. 

The ISOP computed by the above algorithm has some 
remarkable propertied studied in [29]. The actual cover 
depends on the ordering of variables in the DD manager. As 
shown in [7][20], in many cases the quality of the ISOP 
computed is close to the quality of the exact minimum 
cover (typically, the number of cubes is within 15% from 
the exact minimum). 

cover IrrSOP( func F, func FD )
{

if ( F = 0 ) return {};
if ( FD = 1 ) return {{}};

var x = TopVariable( F, FD );

func F0, F1, FD0, FD1;
(F0, F1) = DecomposeBdd( F, x );
(FD0,FD1)= DecomposeBdd( FD, x );

func G0 = F0 – FD1;
cover R0 = IrrSOP( G0, FD0 );
func G1 = F1 – FD0;
cover R1 = IrrSOP( G1, FD1 );

func H = (F0 – Bdd(R0)) + (F1 – Bdd(R1));
func HD = FD0 & FD1;
cover R2 = IrrSOP( H, HD );

cover R = ComposeCover( x, R0, R1, R2 );
return R;

}

Figure 10. Pseudo-code of Irredundant SOP computation. 

The main advantage of the above computation procedure 
is its speed. For large benchmarks, good-quality covers 
containing thousands of cubes can be derived in a fraction 
of a second. Using ISOP instead of other heuristic 
algorithms for the SOP computation may lead to several- 
order-of-magnitude speedups in some applications, for 
example [18]. 

8 A complete list of published ZDD 
applications 

ZDDs have been introduced by S. Minato [21] in 1993 
and presented in [26][28]. Since that time several ZDD 
packages have been implemented [14][16][24][36]. ZDDs 
have been used to solve a number of problems arising in 
different areas of computer science and engineering: 
•  To represent sets in various problems [23][34]. 
•  To represent cubes and essential primes in two-level 

SOP minimization [8] and factorization of cube covers 
[22][27][35].  

•  To solve unate covering problem arising in multi-layer 
planar routing [10]. 

•  To find dichotomy-based constraint encoding [11][13]. 
•  To solve graph optimization problems [12]. 
•  To represent and manipulate regular expressions under 

length constraint [17]. 
•  To represent and manipulate polynomials with integer 

coefficients [25]. 
•  In exclusive SOP minimization [32][33][37]. 
•  In symbolic traversal of FSMs and Petri Nets [38][41]. 
•  In Davis-Putman resolution procedure [6]. 
•  In pass-transistor logic synthesis [3]. 
•  Finding all disjoint-support decompositions of 

completely specified logic functions [29]. 
•  Unate decomposition of boolean functions [18]. 
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9 Conclusions  

This tutorial introduces the reader into the beautiful world 
of Zero-Suppressed Binary Decision Diagrams and shows 
by way of example how to use them for solving a number of 
computationally hard problems that are important for 
practical applications. 
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11 Appendix A:  

ZDD procedures in CUDD (Release 2.3.1) 

This section lists the ZDD procedures implemented in the 
package, as described in the CUDD user manual.  

ZDD construction  

Cudd_ReadZero: Returns a contant-0 ZDD node 
representing the empty set.  

Cudd_ReadOne: Returns a contant-1 ZDD node 
representing the set composed of the empty subset only.  

Cudd_ReadZddOne: Returns the ZDD of the constant-1 
function assuming that this function depends on the given 
number of variables.  

Cudd_zddIthVar: Returns the ZDD of the function equal to 
the elementary variable if this variable exists in the DD 
manager, or creates a new ZDD variable.  

Cudd_zddIte: Computes the ITE of three functions 
represented by ZDDs.  

Cudd_zddChange: Substitutes a variable by its complement 
in a ZDD.  

Porting  

Cudd_zddPortFromBdd: Converts a BDD into a ZDD.  
Cudd_zddPortToBdd: Converts a ZDD into a BDD.  
Cudd_zddVarsFromBddVars: Creates one or more ZDD 

variables for each BDD variable.  

Cofactoring  

Cudd_zddSubset0 (Cudd_zddSubset1): Computes the 
negative (positive) cofactor of a ZDD w.r.t. a variable.  

Set operators  

Cudd_zddUnion: The union of two sets.  
Cudd_zddIntersect: The intersection of two sets.  
Cudd_zddDiff: The difference of two sets.  
Cudd_zddDiffConst: Inclusion test for sets (P implies Q).  
Cudd_zddUnateProduct: The product of two unate covers. 

Unate covers use one ZDD variable for each BDD 
variable.  

Cudd_zddDivide: The quotient of two unate covers.  

Cover manipulation 

Cudd_zddProduct: The product of two binate covers. The 
binate covers use two ZDD variables for each BDD 
variable. 

Cudd_zddWeakDiv: The quotient of two binate covers.  
Cudd_zddComplement: The complement of a cover.  
Cudd_zddIsop: An irredundant sum of products (ISOP) in 

ZDD form BDDs for the on-set and the on+dc-set.  
Cudd_BddFromZddCover: Returns the BDD of the 

function representated by a cover.  

Counting functions 

Cudd_zddDagSize: Counts nodes in a ZDD.  
Cudd_zddCount: Returns the number of paths in a ZDD.  
Cudd_zddCountMinterm (Cudd_zddCountDouble): Count 

the number of minterms of a ZDD.  

Reordering 

Cudd_zddReduceHeap: The main dynamic reordering 
routine for ZDDs.  

Cudd_zddShuffleHeap: Reorders ZDD variables according 
to given permutation.  

Cudd_zddSymmProfile: Prints statistics on symmetric ZDD 
variables.  

Realignment of Variables 

Cudd_zddRealignEnable: Enables realignment of the ZDD 
variable order to the BDD variable order after the BDDs 
and ADDs have been reordered.  

Cudd_zddRealignDisable: Disables realignment of ZDD 
order to BDD order.  

Cudd_zddRealignmentEnabled: Returns 1 if the 
realignment of ZDD order to BDD order is enabled.  

Printing and visualization 

Cudd_zddDumpDot: Writes a file representing the 
argument ZDDs in a format suitable for the graph drawing 
program DOT [1].  

Cudd_zddPrintCover: Prints an SOP representation of a 
ZDD.  
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Cudd_zddPrintDebug: Prints a DD and its statistics to the 
standard output.  

Cudd_zddPrintSubtable: Prints the ZDD table for 
debugging purposes.  

  

12 Appendix B:  

ZDD Procedures in the EXTRA library 
(Release 1.3) 

The ZDD operators belonging to the library are grouped 
according to their purpose. Unless stated otherwise, all the 
operators are implemented in the bottom-up reorder-
independent fashion, meaning that the operation restarts if 
the dynamic variable reordering has taken place.  
 

ZDD construction  

Extra_zddCombination: Creates a ZDD of one 
combination.  

Extra_zddUniverse: Builds a ZDD for all possible 
combinations of variables from the given set.  

Extra_zddTuples: Builds a ZDD representing the set of all 
tuples of the given cardinality composed of variables from 
the given set.  

Extra_zddRandomSet: Builds the random set of k 
combinations, each of which may contain up to n 
elements with the average density d.  

Extra_zddConvertBddCubeIntoZddCube: Takes a BDD of 
the variable product and returns a ZDD cube composed of 
the same variables. 

Set operators 

Extra_zddMaximal: Computes the maximal of the set of 
subsets defined as follows:  

max( S ) = { s ∈  S∀ s′ ∈  S, s ⊆  s′⇒ s = s′ }. 
Extra_zddMinimal: Computes the minimal of the set of 

subsets defined as follows:  
min( S ) = { s ∈  S∀ s′ ∈  S, s ⊇  s′⇒ s = s′ }. 

Extra_zddMaxUnion (Extra_zddMinUnion): Computes the 
maximal (minimal) of the union of sets X and Y in one 
bottom-up traversal.  

Extra_zddDotProduct: Computes the set of subsets created 
by taking pair-wise unions of subsets from X and Y: 

DotProduct( X, Y ) = { x ∪  y | x ∈  X, y ∈  Y }. 
Extra_zddMaxDotProduct: Computes the maximal of the 

set of subsets creates by taking pair-wise unions of 
subsets from X and Y: 
MaxDotProduct( X, Y ) = max({ x ∪  y | x ∈  X, y ∈  Y }). 

Extra_zddSubSet: Computes the set of subsets in X that are 
contained in at least one subset of Y: 

SubSet( X, Y ) = { x ∈  X | ∃ y ∈ Y, x ⊆  y }. 
Extra_zddSupSet: Computes the set of subsets in X that 

contain at least one subset of Y: 
SupSet( X, Y ) = { x ∈  X | ∃ y ∈ Y, x ⊇  y }. 

Extra_zddNotSubSet: Computes the set of subsets in X that 
are contained in at least one subset of Y: 

NotSubSet( X, Y ) = { x ∈  X | ∀ y ∈ Y, x /⊆  y }. 
Extra_zddNotSupSet: Computes the set of subsets in X that 

are contained in at least one subset of Y: 
NotSupSet( X, Y ) = { x ∈  X | ∀ y ∈ Y, x /⊇  y }. 

Extra_zddMaxNotSupSet: Computes the maximal of the set 
of subsets in X that do not contain any subset of Y in one 
bottom-up traversal. 

Extra_zddEmptyBelongs: Returns 1 if the given ZDD 
contains the empty combination, and 0 otherwise.  

Extra_zddExistAbstract: Removes from a ZDD the 
occurrences of variables belonging to the given set.  

Extra_zddChangeVars: Changes the values of the variables 
belonging to the given set in all combination of the ZDD.  

Extra_zddCommonCube: Computes all the variables that 
appear in all combinations of a ZDD.  

Extra_zddCofactor0 (Extra_zddCofactor1): Computes all 
combinations that contain (do not contain) the variables 
belonging to the given set. 

Extra_zddMaximum (Extra_zddMinimum): Returns a ZDD 
representing all combinations of the set S containing the 
maximum (minimum) number of elements.  

Extra_zddSinglesToComb: Takes a ZDD of singleton 
combinations (combinations including exactly one 
element) and returns a ZDD containing one combination 
composed of all elements.  

Cover manipulation 

Extra_zddPrimes: Given the BDD of the function F, 
computes a ZDD representing the set of all prime 
implicants of F.  

Extra_zddProductAlt: An alternative implementation of the 
product of two covers.  

Extra_zddPrimeProduct: Computes the product of two 
covers from which the contained cubes are removed “on 
the fly”.  

Extra_zddResolve: Computes all resolvents of the set of 
clauses S w.r.t. the set of variables Vars.  

Extra_zddCompatible: Computes all the cubes from the 
given set that overlap with the given cube.  

Extra_zddDisjointCover: Computes the ZDD of the cover 
represented by disjoint variable paths in the given BDD.  

Extra_zddSelectOneCube: Returns a randomly selected 
cube from the given cover.  



 14

Extra_zddCheckUnateness: Returns 1 if the given cover is 
(positive or negative) unate in all its variables.  

Extra_zddUnionExor: Computes the union of two covers, 
while removing the cubes contained in both covers.  

Extra_zddSupercubes: Given two sets of cubes, computes 
the set of their pair-wise supercubes.  

Extra_zddSelectDist1Cubes: Selects cubes from the given 
set that have at least one distance-1 cube in another set.  

Extra_zddEssential: Computes the essential cubes.  
extraDecomposeCover: Find the cofactors of the cover 

w.r.t. the top variable, without creating new DD nodes.  
extraComposeCover: Composes the cover from the three 

subcovers using the given variable.  

Cover/area manipulation 

Extra_zddCoveredByArea: Returns the cubes from the 
given cover, completely contained in the given area of the 
Boolean space.  

Extra_zddOverlappingWithArea: Returns the cubes from 
the given cover, overlapping with the given area do the 
Boolean space.  

Extra_zddNotCoveredByCover: Returns the cubes 
belonging to the given cover, that are not completely 
covered by another cover.  

Extra_zddNotContainedCubesOverArea: Computes the 
cubes that do not overlap with the cubes from the other 
set over the given area.  

Extra_zddConvertToBdd: An alternative implementation of 
the procedure Cudd_MakeBddFromZddCover from the 
CUDD package. 

Extra_zddConvertToBddAndAdd: Computes the Boolean 
OR of the given area and the area covered by the cover in 
one traversal. 

Extra_zddConvertEsopToBdd: Computes the BDD of the 
exclusive sum-of-products represented by a ZDD. 

Extra_zddSingleCoveredArea: Computes the area of the 
Boolean space covered by only one cube from the cover.  

Extra_zddGetMostCoveredArea: Computes the area 
covered by the maximum number of cubes in a ZDD.  

Irredundant SOP computation 

Extra_zddIsopCover: A wrapper around Extra_zddIsop 
from the CUDD package. This function returns only the 
ZDD of the cover and does not return its BDD.  

Extra_zddIsopCoverAlt: An alternative implementation of 
the ISOP computation. This function may be more 
efficient than Extra_zddIsop and Extra_zddIsopCover. 

Extra_zddIsopCoverRandom: Computes an ISOP cover 
assuming the random permutation of variables. 

Extra_zddIsopCoverAllVars: Tries all possible 
permutations of variables in every subcover and returns 

the ISOP with the smallest number of cubes (potentially 
very slow for more than 10 variables). 

Extra_zddIsopCoverUnateVars: Detects unate variables 
and performs decomposition w.r.t. these variables first 
(this function is slower but gives smaller covers compared 
to Extra_zddIsop and Extra_zddIsopCover.) 

Graph input/output 

Extra_zddGraphRead: Reads the file with the non-directed 
graph in DIMACS formats and creates its representation 
as a ZDD.  

Extra_zddGraphWrite: Writes the non-directed graph 
represented as a ZDD into a file in DIMACS ASCII 
format.  

Extra_zddGraphDumpDot: Writes a file representing the 
graph in a format suitable for the graph-drawing program 
DOT [1].  

Graph operators 

Extra_zddCliques: Finds the set of all cliques of the graph 
represented as a ZDD.  

Extra_zddMaxCliques: Finds the set of all maximal cliques 
of the graph represented as a ZDD in one bottom-up 
traversal.  

Extra_zddIncremCliques: Given a ZDD of the graph and a 
ZDD of all cliques of size k, computes the set of all 
cliques of size k+1. (Notice that the graph representation 
is the set of all cliques of the size two.)  

Extra_zddGraphColoring: Given a ZDD of the graph, finds 
a heuristic coloring of the graph (not finished)  

Extra_zddRandomGraph: Generates a ZDD representing a 
random graph with n nodes and density d (not finished)   

Set covering 

Extra_zddSolveUCP: Solves the set-covering problem 
specified as follows: Each element is encoded using a 
separate ZDD variable. The only argument S is the set of 
subsets that covers all elements. The set of elements is 
determined as the support of S (not finished).  

Extra_zddSolveCC: Solves the cyclic core specified by the 
pair of ZDDs representing the set of rows and the set of 
columns, using a fast greedy heuristic method.  

Reordering 

Extra_zddPermute: Given a ZDD and the permutation of 
variables, creates a ZDD with permuted variables.  

Counting functions 

Extra_zddLitCount: Counts how many times each element 
occurs in the combinations of the set.  
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Other functions 

Extra_zddSupport: Returns a ZDD representing a set of 
variables, on which the given DD depends.  

Extra_zddVerifyCover: Takes the cover and the function 
interval represented by two BDDs. Returns 1 if the cover 
belongs to the interval.  
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