
 

 

  
Abstract— This paper presents an improved variable ordering 

method to obtain the minimum number of nodes in Reduced Ordered 
Binary Decision Diagrams (ROBDD). The proposed method uses the 
graph topology to find the best variable ordering. Therefore the input 
Boolean function is converted to a unidirectional graph. Three levels 
of graph parameters are used to increase the probability of having a 
good variable ordering. The initial level uses the total number of 
nodes (NN) in all the paths, the total number of paths (NP) and the 
maximum number of nodes among all paths (MNNAP). The second 
and third levels use two extra parameters: The shortest path among 
two variables (SP) and the sum of shortest path from one variable to 
all the other variables (SSP). A permutation of the graph parameters is 
performed at each level for each variable order and the number of 
nodes is recorded. Experimental results are promising; the proposed 
method is found to be more effective in finding the variable ordering 
for the majority of benchmark circuits. 
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I. INTRODUCTION 
 large variety of problems in digital system design, 
combinational optimization and verification can be 

formulated in terms of operations on Boolean functions [1]. 
Algorithms that efficiently manipulate Boolean functions have 
become increasingly popular and important in Very Large 
Scale Integration (VLSI) and Computer Aided Design (CAD) 
applications. Many methods have been developed, such as 
truth tables, disjunctive normal form and Boolean formulas. 
Due to the ever increasing demand for better performance, 
most of these methods have been unable to produce efficient 
solutions for combinational problems in digital systems. This 

 
Manuscript received February 12, 2006.  

P. W. C. Prasad, is with the College of Information Technology, United 
Arab Emirates University, P.O. Box 17555, Al Ain, UAE (telephone: 971-3-
7133051, e-mail: prasadc@uaeu.ac.ae,).  

A. Assi is with the College of Engineering, Electrical Department, United 
Arab Emirates University, P.O. Box 17555, Al Ain, UAE (telephone: 971-3-
7133609, e-mail: ali.assi@uaeu.ac.ae ).  

A. Harb is with the College of Engineering, Electrical Department, United 
Arab Emirates University, P.O. Box 17555, Al Ain, UAE (telephone: 971-3-
7133606, e-mail: adnan.harb@uaeu.ac.ae ).  

V. C. Prasad is with Faculty of Engineering Technology, Multimedia 
University, Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia (e-mail: 
vishnu.prasad@mmu.edu.my 

demand has encouraged the researchers to look for a better 
method to manipulate Boolean functions. 

During the last two decades, Binary Decision Diagrams 
(BDDs) have achieved great popularity as data structures for 
representing Boolean functions in solving most of the 
combinational problems which arise in synthesis and 
verification of digital systems [1]-[3]. Despite the fact that the 
BDD is a relatively old technique, its advantages for canonical 
representation were recognized and emphasized by Bryant [2]. 
Significant breakthroughs in the optimization of digital 
circuits have been achieved using the two remarkable and 
important properties of BDDs. First, BDDs are canonical; this 
property is useful when verifying the equivalence between 
two circuits [3]. In fact, two circuits are equivalent if and only 
if their BDDs are identical for a specific variable ordering. 
Second, BDDs are effective structures for the representation 
of large combinatorial sets.  

BDDs can be represented by algorithms that travel 
through all the nodes and edges of the directed graph in some 
order and therefore take polynomial time in the current size of 
the graph. However, when new BDDs are created, it might 
significantly increase the number of nodes in the BDD, 
depending on the node placement in the graph, which can lead 
to exponential memory and run time requirements [4]. The 
choice of BDD variable order has a direct impact on the size 
of the BDD, and determining an optimal variable ordering is 
an NP-hard problem [5]. 
 The ROBDD representation is defined by imposing 
restrictions on the BDD specification of Akers [6] such that 
the resulting form is canonical. ROBDD gained widespread 
use in logic design verification, test generation, fault 
simulation and logic synthesis. Since the size of an ROBDD 
heavily depends on the variable order used, the researchers in 
this area are actively involved in finding a variable order that 
minimizes the number of nodes in the ROBDD. While the 
ROBDD is canonical for a given variable ordering, the 
number of nodes that form the ROBDD may vary dramatically 
from one order to the other. Accordingly, much attention has 
been devoted to techniques used to find optimal variable 
orderings. All these variable ordering techniques fall into two 
categories: mainly Static [7], [8] or Dynamic [9]-[11] variable 
ordering techniques. 
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Some applications have ROBDDs with different variable 
ordering, whereas further manipulations of these ROBDDs 
require identical variable ordering. For truth tables, this is not 
the case, since truth tables are explicit representations of each 
and every point of the function [12]. In a BDD, each path 
(from the root node to the terminal node) corresponds to a 
cube of the Boolean function and the order of variables 
defines the min-terms which will be simplified as cubes. 
Reduction of the number of paths would imply reduction in 
the number of cubes. This also can be done by finding an 
optimal order of the BDD variables [13].  

In general, it is hard to predict the effect of variable 
ordering on the BDD size, this requiring the trial of all 
possible ordering schemes. It is also hard to find the best order 
for a given Boolean function [12], [14], [15]. However, there 
are some observations that help in finding a good variable 
ordering. 

There are two main concerns in building the BDDs of 
Boolean functions: time and space requirements. For a given 
Boolean function, the primary requirement to minimize time 
and space complexity is to represent its BDD with minimum a 
number of nodes [14]-[16]. Usually, the number of nodes in a 
BDD is directly related to the variable ordering of the BDD 
[17]-[23]. There are a variety of methods to find the optimal 
variable ordering for BDDs but none can fulfill both the time 
and the space requirements.  

The rest of this paper is organized as follows: In the 
second section, background information pertaining to the 
construction and implementation of BDDs is discussed. In 
section three, the new variable ordering technique based on 
three level permutations of graph parameters (3-LPGP) is 
introduced and the experimental results are given in section 
four. Finally in section five we conclude our paper with an 
outline of our future work. 

II. PRELIMINARIES 
Basic definitions for binary decision diagrams are 

detailed in standard sources [2], [3], [6], [24]. However, we 
summarize the following definitions. 

 
Definition 2.1: A BDD is a rooted directed acyclic graph 

),( EVG = with vertex set V containing two types of vertices, 
non-terminal and terminal vertices. A non-terminal vertex 
v has as label a variable },......,,{)( 21 nxxxvindex ∈ and two 
children )(vlow , Vvhigh ∈)( . A terminal vertex v is labeled 
with a value and has no outgoing edge: }1,0{)( ∈vvalue  
A BDD can be used to compute a Boolean function 

),......,,( 21 nxxxf in the following way. Each input 
n

naaaa }1,0{),......,,( 21 ∈= defines a computation path through 
the BDD that starts at the root. If the path reaches a non-

terminal node v  that is labeled by ix , it follows the path 

)(vlow  if 0=ia , and it follows the path )(vhigh  if 1=ia . 

The label of the terminal vertex determines the return value of 
the BDD on input a . In a more formal way, we can define 
recursively a Boolean function that corresponds to a BDD. 
 
Definition 2.2: A BDD having root vertex v denotes a 

Boolean function vf defined as follows: 
1) If v is a terminal vertex and 

)0)((1)( == vvaluevvalue , then )0(1 == vv ff . 

2) If v is a non-terminal vertex and ixvindex =)(  , 

then vf is given by 

.),.........,( 21 =nv xxxf  

).,.........,(),.........( 21)(2,1)( nvhighinvlowi xxxfxxxxfx ⋅+⋅  

The variable ix is called the decision variable for v . 
 
Definition 2.3: An ordered binary decision diagram (OBDD) 
is a BDD with the constraint that the input variables are 
ordered in every source to sink path in the OBDD visits the 
input variables in ascending order. 
 
Definition 2.4: A reduced ordered binary decision diagram 
(ROBDD) is an OBDD where each node represents a distinct 
logic function. It has the following two properties: 

(i) There are no redundant nodes in which both of the two 
edges leaving the node point to the same next node are 
present within the graph. If such a node exists, it is 
removed and the incoming edges redirected to the 
following node. 

(ii) If two nodes point to two identical sub-graphs (i.e. 
isomorphic sub-graphs), then one sub-graph will be 
removed and the remaining one will be shared by the 
two nodes. 

 
2.1 Variable Ordering 

The size of a BDD is largely affected by the choice of the 
variable ordering. This is illustrated by the following example: 

Example: Let nn xxxxf 21221 ..... ⋅++⋅= − . If the variable 

ordering is given by ),......,,( 21 nxxx , i.e. iixi ∀=)(π , the 

size of the resulting BDD is n2 . On the other hand, if the 
variable ordering is chosen 
as )....,,,....,,( 2,421231 nn xxxxxx − , the size of the BDD 

is )2( nθ . Thus, the number of nodes in the graph varies from 
linear to exponential, depending on the variable ordering 
chosen. Fig. 1 shows the effect of the variable ordering on the 
size of BDDs2 for the following function (1): 
 

431432121 xxxxxxxxxf ⋅⋅+⋅⋅⋅+⋅=                       (1)  
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                     (a) 4321 xxxx                                  (b) 4231 xxxx  

Fig.1   Effect of the variable ordering on the size of BDDs 

III. PROPOSED VARIABLE ORDERING ALGORITHMS 

The proposed variable ordering algorithms use the graph 
topology to find a good variable order. In these algorithms the 
input Boolean function is converted into a unidirectional 
graph [25]. All Boolean operations in the Boolean function 
are converted into combinations of AND and NOT operations 
[26], which are represented as nodes in the graph. Each input 
and output of the Boolean function is also represented as a 
node in the graph. 

 
3.1 Level-I Algorithm (Node-Path Level)  

In this Level, the variable order is found based on the 
Number of Paths (NP), the Number of Nodes (NN) and the 
Maximum Number of Nodes among All Paths (MNNAP) per 
variable in the graph. 
Since the variable with the highest number of nodes has the 
greatest effect on the circuit, it is placed first in the variable 
ordering. The proposed algorithm is explained in the 
following: 
Step 1: For every variable, we compute the NP from the 
corresponding input node to all output nodes. 
Step 2: For every variable, we compute the NN in every path 
and we note the MNNAP. 
Step 3: For every variable, we add the NN in all paths to get 
the total number of nodes (TNN). 
Step 4: The variables are then sorted in descending order 
according to their TNN, then according to their NP, and 
MNNAP respectively. A heuristic selection is made if two or 
more variables have equal TNN, NP and MNNAP. 
 
Example: 
Consider the following Boolean function (2): 

3244241421
xxxxxxxxxxf ⋅⋅+⋅+⋅+⋅⋅=                      (2) 

This Boolean function that contains AND, OR and NOT 
operations, is first converted into an equivalent Boolean 
function (3) with only AND and NOT operations: 

 

).().().()( 3244241421
xxxxxxxxxxf ⋅⋅⋅⋅⋅⋅=        (3) 

 
Fig. 2 shows the graph of the function f where each operation 
is represented as a node. Nodes 321 ,, xxx and 4x  are the input 
nodes and node 13 is the output node. Nodes 1, 3, 4, 6, 7, 9, 
11 and 13 represent NOT operations and nodes 2, 5, 8, 10, and 
12 represent AND operations. In this graph, the NP, TNN, and 
MNNAP are given in Table 1. 

 
Fig. 2 Graph representation for function (3) 

 
According to this table, the algorithm selects ( 3124 ,,, xxxx ) as 
BDD variable ordering, which is the descending order of 
TNN. The algorithm will not compare NN or MNNAP since 
there is no equal TNN. 
 

TABLE I 
 GRAPHICAL PARAMETERS FOR EQUATION (3) 

 
       Graphical Parameter X1 X2 X3 X4 

Number of different paths (NP) 2 3 1 4 

Total number of nodes  among all paths (TNN) 10 13 4 18 

Max number of nodes among all paths (MNNAP) 5 5 4 5 

 
3.2 Level II Algorithm   
This level is an improved version of the Node-Path level 

algorithm explained in Section 3.1. It uses an additional 
parameter per variable that is the Sum of the Shortest Paths 
(SSP). The SSP of a variable is the sum of the shortest paths 
from this variable to all other variables. In this level, the 
variable order is found based on Primary (NP, TNN and SSP) 
and Secondary (MNNAP) parameters. In the following, we 
explain the proposed algorithm. Steps 1 to 3 are the same as 
algorithm-I and they are repeated here for convenience. 
Step 1: For every variable, we compute the NP from the 
corresponding input node to all output nodes. 
Step 2: For every variable, we compute the NN in every path 
and we note the MNNAP. 
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Step 3: For every variable, we add the NN in all paths to get 
the TNN. 
Step 4: For every variable, we compute the SSP. 
Step 5: NP, TNN, and SSP are considered as primary 
parameters 1, 2, and 3. MNNAP is considered as secondary 
parameter 4. 
Step 6: The variables are then sorted in descending order 
according to parameter 1, then according to parameters 2, 3 
and 4. A heuristic selection is made if two or more variables 
have equal parameters 1, 2, 3, and 4. 
Step 7: For the obtained variable ordering we note the number 
of nodes of the BDD. 
Step 8: We then repeat step 6 for the remaining permutations 
of parameters 1, 2 and 3. The variable ordering and the 
number of nodes are recorded for every permutation. 
Step 9: Among all permutations, the variable ordering with 
the minimum number of nodes is considered as the best 
variable ordering. 

 

Example: 
Consider the following Boolean function (4): 

3132121 xxxxxxxf ⋅+⋅⋅+⋅=                           (4) 

This Boolean function (4) is converted into an equivalent 
Boolean function, with only AND and NOT operations (5) as 
follows: 

)(.)(.)( 3132121 xxxxxxxf ⋅⋅⋅⋅=                                  (5) 

Fig. 3 shows the graph of the new function f. Nodes 21 , xx  

and 3x  are the input nodes and 10 is the output node. 

 
Fig. 3 Graph representation for function (4) 

 
Nodes 1, 2, 3, 4, 5, 6, 7, 8, and 9 are intermediate nodes. From 
Fig. 3 the NP, TNN, SSP and MNNAP are calculated and 
summarized in Table 2. Table 3 presents the variable ordering 
obtained using algorithm II for various permutations of 
primary parameters.  
 
 

TABLE II 
 GRAPHICAL PARAMETERS FOR EQUATION (5) 

 
Parameters X1 X2 X3 

NP 3 2 2 

TNN 14 9 8 Primary 

SSP 5 5 6 

    Secondary MNNAP 5 5 4 

 
TABLE III  

VARIABLE ORDERINGS BY PERMUTATION 
 

Parameter Sequence Variables 
Ordering 

Number of 
Nodes 

NP, TNN, SSP, MNNAP 321 ,, xxx  3 

TNN, SSP, NP, MNNAP 321 ,, xxx  3 

SSP, NP,T NN, MNNAP 213 ,, xxx  4 

NP, SSP, TNN, MNNAP 231 ,, xxx  3 

SSP, NN, NP, MNNAP 213 ,, xxx  4 

NN, NP, SSP, MNNAP 321 ,, xxx  3 

 
The algorithm then selects the best variable ordering, i.e. 

321 ,, xxx  or 231 ,, xxx as the final variable order. 
 
 
3.3 Level III Algorithm  

This variable ordering algorithm is an improved version 
of the Parameter Permutation algorithm explained in Section 
3.2. In addition to the four parameters TNN, NP, SSP and 
MNNAP, the Matrix algorithm uses one more parameter, 
which is the shortest path (SP) between every pair of 
variables. In the following we explain the proposed algorithm: 
Step 1: For every variable, we compute the NP from the 
corresponding input node to all output nodes. 
Step 2: For every variable, we compute the NN in every path 
and we note the MNNAP. 
Step 3: For every variable, we add the NN in all paths to get 
the TNN. 
Step 4: For every variable, we find the SP to all other input 
variables and the SSP. 
Step 5: SP is considered as primary parameter 1, and NP, 
TNN, SSP and MNNAP are considered as secondary 
parameters 2, 3, 4 and 5 respectively. 
Step 6: The variables are then sorted in descending order 
according to parameter 2, then according parameter 3, 4 and 5. 
A heuristic selection is made if two or more variables have 
equal parameters 2, 3, 4, and 5. 
Step 7: The first variable in the sorted list is considered the 
first variable in the order.  
Step 8: We repeat steps 9 to 13 for i = 2 to n (where i is the 
variable sequence in the variables ordering and n is number of 
variables) 
Step 9:  The variable with which the (i-1)th variable has the 
minimum SP value is ranked next in the variable ordering. 
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Step 10: If, in step 9, two or more variables have an equal 
minimum value of parameter 1 (SP), then preference is given 
to the variable with the higher value of parameter 2, 3, 4, and 
5 in order. 
Step 11: For the obtained variable ordering we note the 
number of nodes of the BDD. 
Step 12: We then repeat steps 6 to 11 for the remaining 
permutations of parameters 2, 3, 4 and 5 respectively. The 
variables ordering and the number of nodes are recorded for 
all permutations. 
Step 13: From all permutations, the variables ordering with 
the minimum number of nodes is considered as the best 
variable ordering. 

Example: 
Consider the following Boolean function (6): 

4241431421 xxxxxxxxxxf ⋅+⋅+⋅⋅+⋅⋅=                            (6) 

This Boolean function (6) is converted into an equivalent 
Boolean function (7) with only AND and NOT operations. 
Fig. 4 shows the graph of the converted function.  
 

).().().()( 4241431421 xxxxxxxxxxf ⋅⋅⋅⋅⋅⋅=          (7) 

 
Fig. 4 Graph representation for function (6)  

 
Table 4 summarizes the SP of this graph. NP, NN, SSP, and 
MNNAP are summarized in Table 5.  

 
The number of nodes for all possible parameter permutations 
is recorded and 1324 ,,, xxxx  is considered as the final variable 
ordering for level III method. 
 
 
 
 
 
 

TABLE IV 
  SHORTEST PATH TABLE 

 
 X1 X2 X2 X4 

X1 0 2 3 3 

X2 2 0 6 3 

X2 3 6 0 3 

X4 3 3 3 0 

 
TABLE V 

GRAPHICAL PARAMETERS FOR EQUATION (6) 
 

Parameters X1 X2 X3 X4 

TNN 14 8 4 19 

NP 3 2 1 4 

MNNAP 5 4 4 5 

SSP 8 11 12 9 

 
The Permutation of the results from all three levels will 
produce the best possible variable ordering sequence for a 
given Boolean function. 

IV. EXPERIMENTAL RESULTS 

In this section we present the experimental results 
obtained by applying the proposed three-level permutation 
method to selected ISCAS benchmark circuits using the 
Colorado University Decision Diagram (CUDD) Package 
[27]. A large collection of ISCAS benchmark circuits [28]-
[30] has been selected to demonstrate the performance of the 
proposed method. Tables 6 and 7 summarize a comparison of 
our results to the best results obtained by three different 
CUDD variable reordering methods (Random Swapping, 
Symmetric Sifting and Window Permutation) for benchmark 
circuits with 20-139 inputs and 22-137 outputs. 

In Table 6 column 1 shows the ISCAS benchmark name, 
and columns 2 and 3 show the size of the benchmark in term 
of inputs and outputs number. Columns 4 to 6 show the 
number of nodes required for the construction of the ROBDD 
using those three CUDD variable ordering methods. The 
results of the 3-LPGP method are shown in column 7, and the 
gain factors of the proposed method are given in columns 8, 9, 
and 10.  

Table 7 shows a comparison with the result of the method 
that leads to the minimum number of nodes. Therefore it takes 
first seven columns of Table 6, along with four additional 
columns. Column 8 shows the minimum number of nodes 
among all four methods (i.e. the minimum number of nodes 
shown in columns 4, 5, 6, and 7 for a given benchmark 
circuit). The gain factors of each method against the method 
that gives the minimum numbers of nodes are given in 
columns 9, 10, 11 and 12. 
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TABLE VI  
 COMPARISON OF THE THREE-LEVEL PERMUTATION METHOD 

AGAINST THREE CUDD METHODS FOR ISCAS BENCHMARK 
CIRCUITS 

 
 

The results shown in Table 6 indicate that the proposed 3-
LPGP algorithm decreases the number of nodes in 94% of the 
circuits compared to Window Permutation, 93% compared to 
Random Swapping and almost 69% compared to Symmetric 
Sift.  

TABLE VII  
 RESULTS COMPARISON AGAINST THE MINIMUM OF ALL FOUR 

METHODS FOR ISCAS BENCHMARK CIRCUITS 

 

The 3-LPGP method reaches its maximum gain for 
circuits Alu2, Apex4, apex6, Misex1, Sao2, F51m, cc, cht, 
comp, C880 and C432. Table 7 shows the superiority of the 3-
LPGP method since it is able to produce the minimum number 
of nodes in almost 61% of the circuits (Alu2, Apex4, Con1, 
Misex1, Sao2, F51m, X2, Z4ml, Apex6, cc, cht, comp, c8, 
C880, C432, Misex2, My_adder, i1, i6 and i7) in comparison 
with 24%, 27% and 9% for Random Swapping, Symmetric 
Sift and Window Permutation respectively. 
In general, it can be inferred that using the 3-LPGP method 
gives a higher probability of achieving the minimum number 
of nodes for medium and large scale benchmark circuits.   The 
number of nodes in BDDs is directly related to the space 
complexity (i.e. area) of the circuit design.  

So the above results prove that the proposed method 
minimizes the space complexity of the circuit, which will 
eventually minimize the cost of the design.  

 

V. CONCLUSION 
A three-level permutation of a graph parameter algorithm for 
minimizing the number of nodes in BDDs has been presented. 
The proposed 3-LPGP algorithm is capable of handling 
multiple output benchmark circuits. This algorithm has been 
implemented and tested using ISCAS benchmark circuits and 
the results have been compared with three selected CUDD 
reordering methods. The algorithm is deterministic in the 
sense that there is no heuristic involved in any of the primary 
parameters of the algorithm. Experimental results indicate that 
this algorithm is a promising alternative to existing reordering 
methods to reduce the number of nodes in BDD. Our on-going 
work will address. We will also analyze the cases when this 
method fails to produce near-best variable ordering. Our next 
step in this research work will be the use of SYNOPSYS tool 
to validate our results; especially the silicon area requirements 
of the benchmarks used to support and justify the proposed 3-
LPGP algorithm. 
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