

Abstract— This paper presents an improved variable ordering

method to obtain the minimum number of nodes in Reduced Ordered
Binary Decision Diagrams (ROBDD). The proposed method uses the
graph topology to find the best variable ordering. Therefore the input
Boolean function is converted to a unidirectional graph. Three levels
of graph parameters are used to increase the probability of having a
good variable ordering. The initial level uses the total number of
nodes (NN) in all the paths, the total number of paths (NP) and the
maximum number of nodes among all paths (MNNAP). The second
and third levels use two extra parameters: The shortest path among
two variables (SP) and the sum of shortest path from one variable to
all the other variables (SSP). A permutation of the graph parameters is
performed at each level for each variable order and the number of
nodes is recorded. Experimental results are promising; the proposed
method is found to be more effective in finding the variable ordering
for the majority of benchmark circuits.

Keywords— Binary Decision Diagrams, Graph Representation,
Boolean Functions Representation, Variable Ordering

I. INTRODUCTION
 large variety of problems in digital system design,
combinational optimization and verification can be

formulated in terms of operations on Boolean functions [1].
Algorithms that efficiently manipulate Boolean functions have
become increasingly popular and important in Very Large
Scale Integration (VLSI) and Computer Aided Design (CAD)
applications. Many methods have been developed, such as
truth tables, disjunctive normal form and Boolean formulas.
Due to the ever increasing demand for better performance,
most of these methods have been unable to produce efficient
solutions for combinational problems in digital systems. This

Manuscript received February 12, 2006.

P. W. C. Prasad, is with the College of Information Technology, United
Arab Emirates University, P.O. Box 17555, Al Ain, UAE (telephone: 971-3-
7133051, e-mail: prasadc@uaeu.ac.ae,).

A. Assi is with the College of Engineering, Electrical Department, United
Arab Emirates University, P.O. Box 17555, Al Ain, UAE (telephone: 971-3-
7133609, e-mail: ali.assi@uaeu.ac.ae).

A. Harb is with the College of Engineering, Electrical Department, United
Arab Emirates University, P.O. Box 17555, Al Ain, UAE (telephone: 971-3-
7133606, e-mail: adnan.harb@uaeu.ac.ae).

V. C. Prasad is with Faculty of Engineering Technology, Multimedia
University, Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia (e-mail:
vishnu.prasad@mmu.edu.my

demand has encouraged the researchers to look for a better
method to manipulate Boolean functions.

During the last two decades, Binary Decision Diagrams
(BDDs) have achieved great popularity as data structures for
representing Boolean functions in solving most of the
combinational problems which arise in synthesis and
verification of digital systems [1]-[3]. Despite the fact that the
BDD is a relatively old technique, its advantages for canonical
representation were recognized and emphasized by Bryant [2].
Significant breakthroughs in the optimization of digital
circuits have been achieved using the two remarkable and
important properties of BDDs. First, BDDs are canonical; this
property is useful when verifying the equivalence between
two circuits [3]. In fact, two circuits are equivalent if and only
if their BDDs are identical for a specific variable ordering.
Second, BDDs are effective structures for the representation
of large combinatorial sets.

BDDs can be represented by algorithms that travel
through all the nodes and edges of the directed graph in some
order and therefore take polynomial time in the current size of
the graph. However, when new BDDs are created, it might
significantly increase the number of nodes in the BDD,
depending on the node placement in the graph, which can lead
to exponential memory and run time requirements [4]. The
choice of BDD variable order has a direct impact on the size
of the BDD, and determining an optimal variable ordering is
an NP-hard problem [5].
 The ROBDD representation is defined by imposing
restrictions on the BDD specification of Akers [6] such that
the resulting form is canonical. ROBDD gained widespread
use in logic design verification, test generation, fault
simulation and logic synthesis. Since the size of an ROBDD
heavily depends on the variable order used, the researchers in
this area are actively involved in finding a variable order that
minimizes the number of nodes in the ROBDD. While the
ROBDD is canonical for a given variable ordering, the
number of nodes that form the ROBDD may vary dramatically
from one order to the other. Accordingly, much attention has
been devoted to techniques used to find optimal variable
orderings. All these variable ordering techniques fall into two
categories: mainly Static [7], [8] or Dynamic [9]-[11] variable
ordering techniques.

 Binary Decision Diagrams: An Improved
Variable Ordering using Graph Representation

of Boolean Functions
 P.W. C. Prasad, A. Assi, A. Harb and V.C. Prasad

A

International Journal of Electrical and Computer Engineering 1:1 2006

1

Some applications have ROBDDs with different variable
ordering, whereas further manipulations of these ROBDDs
require identical variable ordering. For truth tables, this is not
the case, since truth tables are explicit representations of each
and every point of the function [12]. In a BDD, each path
(from the root node to the terminal node) corresponds to a
cube of the Boolean function and the order of variables
defines the min-terms which will be simplified as cubes.
Reduction of the number of paths would imply reduction in
the number of cubes. This also can be done by finding an
optimal order of the BDD variables [13].

In general, it is hard to predict the effect of variable
ordering on the BDD size, this requiring the trial of all
possible ordering schemes. It is also hard to find the best order
for a given Boolean function [12], [14], [15]. However, there
are some observations that help in finding a good variable
ordering.

There are two main concerns in building the BDDs of
Boolean functions: time and space requirements. For a given
Boolean function, the primary requirement to minimize time
and space complexity is to represent its BDD with minimum a
number of nodes [14]-[16]. Usually, the number of nodes in a
BDD is directly related to the variable ordering of the BDD
[17]-[23]. There are a variety of methods to find the optimal
variable ordering for BDDs but none can fulfill both the time
and the space requirements.

The rest of this paper is organized as follows: In the
second section, background information pertaining to the
construction and implementation of BDDs is discussed. In
section three, the new variable ordering technique based on
three level permutations of graph parameters (3-LPGP) is
introduced and the experimental results are given in section
four. Finally in section five we conclude our paper with an
outline of our future work.

II. PRELIMINARIES
Basic definitions for binary decision diagrams are

detailed in standard sources [2], [3], [6], [24]. However, we
summarize the following definitions.

Definition 2.1: A BDD is a rooted directed acyclic graph

),(EVG = with vertex set V containing two types of vertices,
non-terminal and terminal vertices. A non-terminal vertex
v has as label a variable },......,,{)(21 nxxxvindex ∈ and two
children)(vlow , Vvhigh ∈)(. A terminal vertex v is labeled
with a value and has no outgoing edge: }1,0{)(∈vvalue
A BDD can be used to compute a Boolean function

),......,,(21 nxxxf in the following way. Each input
n

naaaa }1,0{),......,,(21 ∈= defines a computation path through
the BDD that starts at the root. If the path reaches a non-

terminal node v that is labeled by ix , it follows the path

)(vlow if 0=ia , and it follows the path)(vhigh if 1=ia .

The label of the terminal vertex determines the return value of
the BDD on input a . In a more formal way, we can define
recursively a Boolean function that corresponds to a BDD.

Definition 2.2: A BDD having root vertex v denotes a

Boolean function vf defined as follows:
1) If v is a terminal vertex and

)0)((1)(== vvaluevvalue , then)0(1 == vv ff .

2) If v is a non-terminal vertex and ixvindex =)(,

then vf is given by

.),.........,(21 =nv xxxf

).,.........,(),.........(21)(2,1)(nvhighinvlowi xxxfxxxxfx ⋅+⋅

The variable ix is called the decision variable for v .

Definition 2.3: An ordered binary decision diagram (OBDD)
is a BDD with the constraint that the input variables are
ordered in every source to sink path in the OBDD visits the
input variables in ascending order.

Definition 2.4: A reduced ordered binary decision diagram
(ROBDD) is an OBDD where each node represents a distinct
logic function. It has the following two properties:

(i) There are no redundant nodes in which both of the two
edges leaving the node point to the same next node are
present within the graph. If such a node exists, it is
removed and the incoming edges redirected to the
following node.

(ii) If two nodes point to two identical sub-graphs (i.e.
isomorphic sub-graphs), then one sub-graph will be
removed and the remaining one will be shared by the
two nodes.

2.1 Variable Ordering

The size of a BDD is largely affected by the choice of the
variable ordering. This is illustrated by the following example:

Example: Let nn xxxxf 21221 ⋅++⋅= − . If the variable

ordering is given by),......,,(21 nxxx , i.e. iixi ∀=)(π , the

size of the resulting BDD is n2 . On the other hand, if the
variable ordering is chosen
as)....,,,....,,(2,421231 nn xxxxxx − , the size of the BDD

is)2(nθ . Thus, the number of nodes in the graph varies from
linear to exponential, depending on the variable ordering
chosen. Fig. 1 shows the effect of the variable ordering on the
size of BDDs2 for the following function (1):

431432121 xxxxxxxxxf ⋅⋅+⋅⋅⋅+⋅= (1)

International Journal of Electrical and Computer Engineering 1:1 2006

2

 (a) 4321 xxxx (b) 4231 xxxx

Fig.1 Effect of the variable ordering on the size of BDDs

III. PROPOSED VARIABLE ORDERING ALGORITHMS

The proposed variable ordering algorithms use the graph
topology to find a good variable order. In these algorithms the
input Boolean function is converted into a unidirectional
graph [25]. All Boolean operations in the Boolean function
are converted into combinations of AND and NOT operations
[26], which are represented as nodes in the graph. Each input
and output of the Boolean function is also represented as a
node in the graph.

3.1 Level-I Algorithm (Node-Path Level)

In this Level, the variable order is found based on the
Number of Paths (NP), the Number of Nodes (NN) and the
Maximum Number of Nodes among All Paths (MNNAP) per
variable in the graph.
Since the variable with the highest number of nodes has the
greatest effect on the circuit, it is placed first in the variable
ordering. The proposed algorithm is explained in the
following:
Step 1: For every variable, we compute the NP from the
corresponding input node to all output nodes.
Step 2: For every variable, we compute the NN in every path
and we note the MNNAP.
Step 3: For every variable, we add the NN in all paths to get
the total number of nodes (TNN).
Step 4: The variables are then sorted in descending order
according to their TNN, then according to their NP, and
MNNAP respectively. A heuristic selection is made if two or
more variables have equal TNN, NP and MNNAP.

Example:
Consider the following Boolean function (2):

3244241421
xxxxxxxxxxf ⋅⋅+⋅+⋅+⋅⋅= (2)

This Boolean function that contains AND, OR and NOT
operations, is first converted into an equivalent Boolean
function (3) with only AND and NOT operations:

).().().()(3244241421
xxxxxxxxxxf ⋅⋅⋅⋅⋅⋅= (3)

Fig. 2 shows the graph of the function f where each operation
is represented as a node. Nodes 321 ,, xxx and 4x are the input
nodes and node 13 is the output node. Nodes 1, 3, 4, 6, 7, 9,
11 and 13 represent NOT operations and nodes 2, 5, 8, 10, and
12 represent AND operations. In this graph, the NP, TNN, and
MNNAP are given in Table 1.

Fig. 2 Graph representation for function (3)

According to this table, the algorithm selects (3124 ,,, xxxx) as
BDD variable ordering, which is the descending order of
TNN. The algorithm will not compare NN or MNNAP since
there is no equal TNN.

TABLE I
 GRAPHICAL PARAMETERS FOR EQUATION (3)

 Graphical Parameter X1 X2 X3 X4

Number of different paths (NP) 2 3 1 4

Total number of nodes among all paths (TNN) 10 13 4 18

Max number of nodes among all paths (MNNAP) 5 5 4 5

3.2 Level II Algorithm
This level is an improved version of the Node-Path level

algorithm explained in Section 3.1. It uses an additional
parameter per variable that is the Sum of the Shortest Paths
(SSP). The SSP of a variable is the sum of the shortest paths
from this variable to all other variables. In this level, the
variable order is found based on Primary (NP, TNN and SSP)
and Secondary (MNNAP) parameters. In the following, we
explain the proposed algorithm. Steps 1 to 3 are the same as
algorithm-I and they are repeated here for convenience.
Step 1: For every variable, we compute the NP from the
corresponding input node to all output nodes.
Step 2: For every variable, we compute the NN in every path
and we note the MNNAP.

International Journal of Electrical and Computer Engineering 1:1 2006

3

Step 3: For every variable, we add the NN in all paths to get
the TNN.
Step 4: For every variable, we compute the SSP.
Step 5: NP, TNN, and SSP are considered as primary
parameters 1, 2, and 3. MNNAP is considered as secondary
parameter 4.
Step 6: The variables are then sorted in descending order
according to parameter 1, then according to parameters 2, 3
and 4. A heuristic selection is made if two or more variables
have equal parameters 1, 2, 3, and 4.
Step 7: For the obtained variable ordering we note the number
of nodes of the BDD.
Step 8: We then repeat step 6 for the remaining permutations
of parameters 1, 2 and 3. The variable ordering and the
number of nodes are recorded for every permutation.
Step 9: Among all permutations, the variable ordering with
the minimum number of nodes is considered as the best
variable ordering.

Example:
Consider the following Boolean function (4):

3132121 xxxxxxxf ⋅+⋅⋅+⋅= (4)

This Boolean function (4) is converted into an equivalent
Boolean function, with only AND and NOT operations (5) as
follows:

)(.)(.)(3132121 xxxxxxxf ⋅⋅⋅⋅= (5)

Fig. 3 shows the graph of the new function f. Nodes 21 , xx

and 3x are the input nodes and 10 is the output node.

Fig. 3 Graph representation for function (4)

Nodes 1, 2, 3, 4, 5, 6, 7, 8, and 9 are intermediate nodes. From
Fig. 3 the NP, TNN, SSP and MNNAP are calculated and
summarized in Table 2. Table 3 presents the variable ordering
obtained using algorithm II for various permutations of
primary parameters.

TABLE II
 GRAPHICAL PARAMETERS FOR EQUATION (5)

Parameters X1 X2 X3

NP 3 2 2

TNN 14 9 8 Primary

SSP 5 5 6

 Secondary MNNAP 5 5 4

TABLE III

VARIABLE ORDERINGS BY PERMUTATION

Parameter Sequence Variables
Ordering

Number of
Nodes

NP, TNN, SSP, MNNAP 321 ,, xxx 3

TNN, SSP, NP, MNNAP 321 ,, xxx 3

SSP, NP,T NN, MNNAP 213 ,, xxx 4

NP, SSP, TNN, MNNAP 231 ,, xxx 3

SSP, NN, NP, MNNAP 213 ,, xxx 4

NN, NP, SSP, MNNAP 321 ,, xxx 3

The algorithm then selects the best variable ordering, i.e.

321 ,, xxx or 231 ,, xxx as the final variable order.

3.3 Level III Algorithm

This variable ordering algorithm is an improved version
of the Parameter Permutation algorithm explained in Section
3.2. In addition to the four parameters TNN, NP, SSP and
MNNAP, the Matrix algorithm uses one more parameter,
which is the shortest path (SP) between every pair of
variables. In the following we explain the proposed algorithm:
Step 1: For every variable, we compute the NP from the
corresponding input node to all output nodes.
Step 2: For every variable, we compute the NN in every path
and we note the MNNAP.
Step 3: For every variable, we add the NN in all paths to get
the TNN.
Step 4: For every variable, we find the SP to all other input
variables and the SSP.
Step 5: SP is considered as primary parameter 1, and NP,
TNN, SSP and MNNAP are considered as secondary
parameters 2, 3, 4 and 5 respectively.
Step 6: The variables are then sorted in descending order
according to parameter 2, then according parameter 3, 4 and 5.
A heuristic selection is made if two or more variables have
equal parameters 2, 3, 4, and 5.
Step 7: The first variable in the sorted list is considered the
first variable in the order.
Step 8: We repeat steps 9 to 13 for i = 2 to n (where i is the
variable sequence in the variables ordering and n is number of
variables)
Step 9: The variable with which the (i-1)th variable has the
minimum SP value is ranked next in the variable ordering.

International Journal of Electrical and Computer Engineering 1:1 2006

4

Step 10: If, in step 9, two or more variables have an equal
minimum value of parameter 1 (SP), then preference is given
to the variable with the higher value of parameter 2, 3, 4, and
5 in order.
Step 11: For the obtained variable ordering we note the
number of nodes of the BDD.
Step 12: We then repeat steps 6 to 11 for the remaining
permutations of parameters 2, 3, 4 and 5 respectively. The
variables ordering and the number of nodes are recorded for
all permutations.
Step 13: From all permutations, the variables ordering with
the minimum number of nodes is considered as the best
variable ordering.

Example:
Consider the following Boolean function (6):

4241431421 xxxxxxxxxxf ⋅+⋅+⋅⋅+⋅⋅= (6)

This Boolean function (6) is converted into an equivalent
Boolean function (7) with only AND and NOT operations.
Fig. 4 shows the graph of the converted function.

).().().()(4241431421 xxxxxxxxxxf ⋅⋅⋅⋅⋅⋅= (7)

Fig. 4 Graph representation for function (6)

Table 4 summarizes the SP of this graph. NP, NN, SSP, and
MNNAP are summarized in Table 5.

The number of nodes for all possible parameter permutations
is recorded and 1324 ,,, xxxx is considered as the final variable
ordering for level III method.

TABLE IV
 SHORTEST PATH TABLE

 X1 X2 X2 X4

X1 0 2 3 3

X2 2 0 6 3

X2 3 6 0 3

X4 3 3 3 0

TABLE V

GRAPHICAL PARAMETERS FOR EQUATION (6)

Parameters X1 X2 X3 X4

TNN 14 8 4 19

NP 3 2 1 4

MNNAP 5 4 4 5

SSP 8 11 12 9

The Permutation of the results from all three levels will
produce the best possible variable ordering sequence for a
given Boolean function.

IV. EXPERIMENTAL RESULTS

In this section we present the experimental results
obtained by applying the proposed three-level permutation
method to selected ISCAS benchmark circuits using the
Colorado University Decision Diagram (CUDD) Package
[27]. A large collection of ISCAS benchmark circuits [28]-
[30] has been selected to demonstrate the performance of the
proposed method. Tables 6 and 7 summarize a comparison of
our results to the best results obtained by three different
CUDD variable reordering methods (Random Swapping,
Symmetric Sifting and Window Permutation) for benchmark
circuits with 20-139 inputs and 22-137 outputs.

In Table 6 column 1 shows the ISCAS benchmark name,
and columns 2 and 3 show the size of the benchmark in term
of inputs and outputs number. Columns 4 to 6 show the
number of nodes required for the construction of the ROBDD
using those three CUDD variable ordering methods. The
results of the 3-LPGP method are shown in column 7, and the
gain factors of the proposed method are given in columns 8, 9,
and 10.

Table 7 shows a comparison with the result of the method
that leads to the minimum number of nodes. Therefore it takes
first seven columns of Table 6, along with four additional
columns. Column 8 shows the minimum number of nodes
among all four methods (i.e. the minimum number of nodes
shown in columns 4, 5, 6, and 7 for a given benchmark
circuit). The gain factors of each method against the method
that gives the minimum numbers of nodes are given in
columns 9, 10, 11 and 12.

International Journal of Electrical and Computer Engineering 1:1 2006

5

TABLE VI
 COMPARISON OF THE THREE-LEVEL PERMUTATION METHOD

AGAINST THREE CUDD METHODS FOR ISCAS BENCHMARK
CIRCUITS

The results shown in Table 6 indicate that the proposed 3-
LPGP algorithm decreases the number of nodes in 94% of the
circuits compared to Window Permutation, 93% compared to
Random Swapping and almost 69% compared to Symmetric
Sift.

TABLE VII
 RESULTS COMPARISON AGAINST THE MINIMUM OF ALL FOUR

METHODS FOR ISCAS BENCHMARK CIRCUITS

The 3-LPGP method reaches its maximum gain for
circuits Alu2, Apex4, apex6, Misex1, Sao2, F51m, cc, cht,
comp, C880 and C432. Table 7 shows the superiority of the 3-
LPGP method since it is able to produce the minimum number
of nodes in almost 61% of the circuits (Alu2, Apex4, Con1,
Misex1, Sao2, F51m, X2, Z4ml, Apex6, cc, cht, comp, c8,
C880, C432, Misex2, My_adder, i1, i6 and i7) in comparison
with 24%, 27% and 9% for Random Swapping, Symmetric
Sift and Window Permutation respectively.
In general, it can be inferred that using the 3-LPGP method
gives a higher probability of achieving the minimum number
of nodes for medium and large scale benchmark circuits. The
number of nodes in BDDs is directly related to the space
complexity (i.e. area) of the circuit design.

So the above results prove that the proposed method
minimizes the space complexity of the circuit, which will
eventually minimize the cost of the design.

V. CONCLUSION
A three-level permutation of a graph parameter algorithm for
minimizing the number of nodes in BDDs has been presented.
The proposed 3-LPGP algorithm is capable of handling
multiple output benchmark circuits. This algorithm has been
implemented and tested using ISCAS benchmark circuits and
the results have been compared with three selected CUDD
reordering methods. The algorithm is deterministic in the
sense that there is no heuristic involved in any of the primary
parameters of the algorithm. Experimental results indicate that
this algorithm is a promising alternative to existing reordering
methods to reduce the number of nodes in BDD. Our on-going
work will address. We will also analyze the cases when this
method fails to produce near-best variable ordering. Our next
step in this research work will be the use of SYNOPSYS tool
to validate our results; especially the silicon area requirements
of the benchmarks used to support and justify the proposed 3-
LPGP algorithm.

REFERENCES
[1] R. E. Bryant, “On the complexity of VLSI implementations and graph

representations of Boolean functions with application to integer
multiplication,” IEEE Trans. On Computers, vol. 40, pp. 203−213,
1991.

[2] R. E. Bryant, “Graph−Based Algorithm for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. 35, pp. 677-691, 1986.

[3] K. Priyank, “VLSI Logic Test, Validation and Verification, Properties
& Applications of Binary Decision Diagrams,” Lecture Notes,
Department of Electrical and Computer Engineering University of Utah,
Salt Lake City, UT 84112, 1997.

[4] F. Aloul, I. Markov, K. Sakallah, “MINCE: A Static Global Variable-
Ordering Heuristic for SAT Search and BDD Manipulation,” to appear
in Journal of Universal Computer Science (JUCS), 2005.

[5] Justin E. Harlow and Franc Brglez, “Design of Experiments and
evaluation of BDD ordering Heuristics,” Inter. Journal on Software
tools for Technology Transfer, vol. 3, pp.193-206, 2001.

[6] S. B. Akers, “Binary Decision Diagram,” IEEE Trans. Computers, vol.
27 pp. 509-516, 1978.

[7] M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation and Improvements
of Boolean Comparison Method Based on Binary Decision Diagrams,”
in Proceedings of the International Conference on Computer Aided
Design (ICCAD), 1988, pp. 2-5.

International Journal of Electrical and Computer Engineering 1:1 2006

6

[8] Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Logic
Verification Using Binary Decision Diagrams in a Logic Synthesis
Environment,” in Proceedings of the International Conference on
Computer Aided Design (ICCAD), 1988, pp. 6-9.

[9] S. Panda and F. Somenzi, “Who Are the Variables in Your
Neighborhood,” in Proceedings of the International Conference on
Computer Aided Design (ICCAD), 1995, pp. 74-77.

[10] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision
Diagrams,” in Proceedings of the International Conference on
Computer Aided Design (ICCAD), 1993, pp. 42-47.

[11] F. Somenzi, “Efficient Manipulation of Decision Diagrams,” in
International Journal on Software Tools for Technology Transfer
(STTT), vol. 3, pp.171-181, 2001.

[12] S. J. Friedman and K.J. Supowit, “Finding the Optimal Variable
Ordering for Binary Decision Diagrams,” IEEE Trans. On Computers,
vol. 39, pp. 710−713, 1990.

[13] F. Görschwin, R. Drechsler, “Minimizing the Number of paths in BDDs,”
in Proceedings of 15th symposium on Integrated Circuits and Systems
Design, 2002, pp. 359-364.

[14] R. Ebendt, “Reducing the number of variable movements in exact BDD
minimization,” in Proceedings of 2003 Int. Symp. on Circuits and
Systems, 2003, pp. 605-608.

[15] R. Ebendt, W. Gűnther and R. Drechsler, “Combination of lower
bounds in exact BDD minimization,” in Proceedings of Design
Automation and Test in Europe Conf. and Exhibition, 2003, pp. 758-
763.

[16] R. Drechsler, N. Drechsler and.W.Günther, “Fast Exact Minimization of
BDD’s,” IEEE Trans. on CAD of IC and Systems, vol.19, pp. 384−389,
2000.

[17] P. W. C. Prasad and A. K. Singh, “An Efficient Method for
Minimization of Binary Decision Diagrams,” in Proceedings of 3rd Int.
Conf. on Advances in Strategic Technologies, 2003, pp. 683-688.

[18] K.S. Brace, R.L. Rudell and R.E. Bryant, “Efficient implementation of a
BDD package,” in Proceedings of Design and Automation conf., 1990,
pp. 40-45.

[19] Tani, K. Hamaguchi, and S. Yajima, “The Complexity of the Optimal
Variable Ordering Problems of A Shared Binary Decision Diagram,” in
Proceedings of 4th International Symposium on Algorithms and
Computation (ISAAC’93), LNCS 762, 1993.

[20] R. Rudell, “Dynamic Variable ordering for ordered binary decision
diagrams,” in Proceedings of IEEE Inter. Conf. on CAD, 1993, pp. 42-
47.

[21] P. Chung, I. N. Haji and J. H. Patel, “Efficient Variable Ordering
Heuristics for Shared ROBDDs,” in Proceedings of Int. Sym. on
Circuits and Systems, 1993, pp. 40-45.

[22] Y. Lu, J. Jain, E. Clarke and M. Fujita, “Efficient Variable Ordering
using a BDD Based Sampling,” in Proceedings of 37th Design
Automation Conf., 2000, pp. 687-692.

[23] M. G. Karpovsky, R. S. Stankovic, and J. T. Astola, “Reduction of
Sizes of Decision Diagrams by Autocorrelation Functions,” IEEE
Transaction on computer, vol. 52, pp. 592-606, 2003.

[24] R. Drechsler and D. Sieling, “Binary Decision Diagrams in Theory and
Practice,” Springer-Verlag Trans., pp.112-136, 2001.

[25] P. W. C. Prasad, M. Raseen and A. Assi, “Improved Variables Ordering
for Binary Decision diagram,” in Proceedings of Int. Research Conf. on
Innovation in Information Technology, 2004, pp. 329-333.

[26] A. Kuehlmann, F. Krohm, “Equivalence checking using cuts and
heaps,” in Proceedings of 34th Design Automation conference
(DAC’97), 1997, pp.263-268.

[27] F. Somenzi, “CUDD: CU Decision Diagram Package,”
ftp://vlsi.colorado.edu/ pub/., 2003.

[28] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” Technical report, Microelectronic Centre of North
Caroline, Research Triangle Park, NC, January 1991.

[29] M. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering,” IEEE Trans. On
Design and Test, vol. 16, pp. 72-80, 1999.

[30] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational
circuits and a target translator in Fortran,” in Proceedings of Int.
Symposium on Circuit and Systems, Special Sess. On ATPG and Fault
Simulation, 1985, pp. 663-6985.

International Journal of Electrical and Computer Engineering 1:1 2006

7

