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Abstract

The subject of this paper is Abstract Interpretation of Logic Programs, based on Constraint Solving over
Finite Domains. More specifically, we use Toupie, a Constraint language based on the p-calculus. Fixpoint
computation is the basic execution mechanism of this language. Therefore it is very convenient and efficient
for Abstract Interpretation of Logic programs. The following topics are covered in this paper. 1) The
semantics and implementation of Toupie are described. 2) A class of abstract domains for Logic programs
is defined. This class can be viewed as an extension of the domain Prop [1] to a limited class of first order
formulae with equality. It happens that the elements of this domain coincide with the objects manipulated
by Toupie, i.e. 07 formulae. It is also shown that 01 formulae can be used to define a completely different
abstract domain for possible sharing analysis. 3) Transformation rules which allow the transformation of
flat logic programs into Toupie programs are given. It is proved that execution of the Toupie programs on this
abstract domains provides a correct bottom-up abstract interpretation of the corresponding Logic programs.
That is: it provides a complete description of the success patterns for the program. 4) An experimental
evaluation of the resulting analysis tool was performed and is thoroughly described. The system was used
to analyse the benchmark programs used for the same purpose in [2, 3, 4, 5]. Four different instances of the
generic domain were evaluated. Two variants of Prop were used for groundness and covering analysis.
Two other instanciations were used for simple (but useful) type analyses. The experimental results shows
that the system is very efficient and accurate on the benchmark programs. This seems to demonstrate that
the proposed approach to abstract interpretation provides a versatile alternative to previous proposals for a
significant class of analyses.

Finally, we explain in the conclusion that the approach can be extended to top-down Abstract Interpre-
tation of logic programs along three possible ways that we will investigate in the future.

1 Introduction

Abstract Interpretation of logic and CLP programs is currently a very active field of research. This
is due to the fact that the declarative nature of those languages make them amenable to a large
variety of optimizations. Moreover, optimizing logic and CLP programs is a very important issue
to make them competitive with procedural languages for large-scale applications.

Since the early work of Mellish [6], many frameworks have been proposed, for instance [7, 8,9, 10,
11, 12, 13, 14, 15], and a large variety of applications and abstract domains have been developped,



for example [16, 17, 6, 18, 19, 20, 15]. Considerable progress has also been realised in terms of the
algorithms (e.g., [8, 21, 4, 22, 10, 2, 23]), and the implementations (e.g., [4, 24, 3, 2, 25]).

In the Abstract Interpretation framework, the simulation of the unification can be seen as the
problem of solving a set of equations over a so-called abstract domain. As numerous abstract
domains are finite, it seems relevant to investigate the application of constraint programming lan-
guages to this field of research. In this paper, we investigate this issue in a comprehensive manner,
including a semantic framework, two abstract domains, an implementation, and an experimental
evaluation. Preliminary results were presented in [26, 27]. We only address bottom-up abstract
interpretation but we sketch, in the conclusion, three possible methods to extend the method
to top-down abstract interpretation. To the best of our knowledge, this work provides the first
practical attempt to apply constraint programming techniques to Abstract Interpretation of logic
programs.

The paper is organised as follows:

Section 2 presents the constraint language used as the basis of our work. Toupie [28] is a
constraint language over symbolic finite domains, based on the p-calculus [29]. The semantics of
the language is formally defined and its main implementation features are described: the decision
diagrams [30], the caching technique and the fixpoint algorithm.

Section 3 describes, in an informal way, how any pure Prolog program can be automatically
translated in Toupie for the sake of Abstract Interpretation.

Section 4 describes a generic abstract domain ( 07 ) whose abstract substitutions are exactly
the kind of constraints handled by Toupie. The meaning of abstract substitutions is semantically
defined by means of a concretization function. Operationally however, instantiating the domain
amounts to rewrite in Toupie an abstract version of the built-in predicates of Prolog (mainly:
unification). We show how this can be done systematically. Four sample domains are described.

Section 5 is a formal presentation of the various concepts presented in section 3. Moreover, we
establish the correctness of the translation proposed.

Section 6 proposes a detailed experimental evaluation of the obtained Abstract Interpretation
system. The evaluation uses the set of benchmarks which was extensively used for similar experi-
ments in [4, 3, 31, 5]. The system is evaluated from the point of view of time and space efficiency.
The results are excellent on the benchmarks and (seem to) suggest that the approach is practical.
In particular, measurements on the size and number of generated decision diagrams seem to show
that the potentially exponential behaviour of the system never occurs in practice. Accuracy of the
analysis was also evaluated.

Section 7 describes another abstract domain easily implementable with Toupie. This domain
can be used for possible sharing analysis.

Finally, section 8 provides the conclusion and explain how the approach can be extended to
top-down abstract interpretation of logic and CLP programs.

2 Toupie: Syntax, Semantics and Implementation

2.1 Introduction

Toupie is a finite domain pu—calculus model checker that uses extended decision diagrams to represent
relations and formulae. The propositional p-calculus is a language that permits the description of



properties of finite states machines, see [29]. The idea is to introduce a least fixpoint operator p,
and to model the behaviour of finite state automata by means of Boolean formulae.

Toupie is a constraint language designed on an extension of p-calculus for symbolic finite do-
mains (i.e. arithmetic is not built-in in the language). In addition to the classical functionalities
of symbolic finite domain constraint languages, one can define, in Toupie, relations (predicates) as
fixpoints of equations. This gain in expressiveness is coupled with a practical efficiency that comes
from the management of the relations via Decision Diagrams:

e Decision Diagrams encode the relations in a very compact manner by means of subtrees
sharing.

e The algorithm that computes logical operations between two Decision Diagrams uses a gen-
eralized caching mechanism: no computation is performed twice.

In recent papers [26, 27], we have demonstrated that such a language can model and solve
difficult problems, such as Al Puzzles with very impressive running times.

The rest of this section is organized as follows: subsection 2.2 and 2.4 give a formal presentation
of the Toupie language. Subsection 2.5 presents the Decision Diagrams. Finally, subsection 2.6
describes the fixpoint algorithm which implements the semantics.

2.2 Syntax

A number of different versions of the u-calculus have been proposed. Hereunder, we give the syntax
of Toupie programs. For a more complete presentation the interested reader may see [32] and [33].

The first part of a Toupie program is a domain declaration (the domain in which the variables
will be interpreted). It is of the form:

domain {k1, k2, ... , kr}

The interpretation domain is thus a set of constants (the symbols of constants have the same
syntax as those in Prolog).

Now, there are two syntactic categories: formulae and predicate definitions. A Toupie program is
a set of predicate definitions, having different predicate symbols for head (in reality, two predicates
with distinct arities may use the same symbol, but for sake of simplicity we use in the remaining
the former definition). A Toupie query is a formula. Formulae have the following form:

e The two constants 0 and 1.

o (X1=X2) or (X1=k) or (X1#X2) or (X1#k) where X1 and X2 are variables and k is a constant
symbol belonging to the domain.

e P(X1,..., Xn) where P is an n-ary predicate variable and X1,...,Xn are individual variables.

o "f, f &g, f | g, £f<=>g, ...wheref andgareformulacand ~, &, |, <=> denote the
logical connectives =, A, V, <=

e forall X1,..., Xn f or exist X1,..., Xn f where X1,...,Xn are variables and f is a
formula.



Predicate definitions are as follows:

P(X1,...,Xn) += f where P is an n-ary predicate variable, and X1,...,Xn are individual vari-
ables, and f is a formula. The token += denotes a least fixpoint definition!.

As in Prolog, the unquantified variables occurring in the right members of fixpoint definitions
are assumed to be existentially quantified in front of the right hand side formula of the definition.

2.3 An example

In order to illustrate the previous subsection, we present the Toupie program for the well-known
boatman’s problem. The sad story is the following, a poor old man wants to cross the river with his
wolf, his goat and cabbage; alas his two-places boat is too small for all his belongings, the river is
too deep to cross it by foot and the closest bridge is far from there. He cannot leave alone the wolf
and the goat nor the goat and the cabbage. To solve this terrible problem, the poor guy could try
the program depicted figure 1. The four variables Man, Wolf, Goat, Cabbage are the respective
positions of the man, wolf, goat and cabbage on the river’s banks. The initial state is described
by ((Man=left) & (Wolf=left) & (Goat=left) & (Cabbage=left)). The forbidden states are
described by ~(((Wolf=Goat) | (Goat=Cabbage)) & (Man#Goat)). The set of accessible states
are computed via fixed point, and our ol’'man reaches safely the other bank with his goods since
the call of reachable succeeds with the four arguments settled with right (see the session sample
depicted figure 2).

domain {left,right}

reachable(Man,Wolf,Goat,Cabbage) += (
“(((Wolf=Goat) | (Goat=Cabbage)) & (Man#Goat))
&
(
((Man=left) & (Wolf=left) & (Goat=left) & (Cabbage=left))
|
((M2#Man) & reachable(M2,Wolf,Goat,Cabbage))
|
((M2=W2) & (Man=Wolf) & (M2#Man) & reachable(M2,W2,Goat,Cabbage))
|
((M2=G2) & (Man=Goat) & (M2#Man) & reachable(M2,Wolf,G2,Cabbage))

|
((M2=C2) & (Man=Cabbage) & (M2#Man) & reachable(M2,Wolf,Goat,C2))

Figure 1: The wolf, the goat and the cabbage

! Greatest fixpoints are also definable but we ignore them for simplicity.



2p |= load wgc.2p
2p -> loading file wgc.2p
2p |= reachable(Man,Wolf,Goat,Cabbage) 7

{Man=1eft, Wolf=left, Goat=left}

{Man=1left, Wolf=left, Goat=right, Cabbage=left}
{Man=1left, Wolf=right, Goat=left}

{Man=right, Wolf=left, Goat=right}

{Man=right, Wolf=right, Goat=left, Cabbage=right}
{Man=right, Wolf=right, Goat=right}

2p |= reachable(right,right,right,right) 7

2p |I=

Figure 2: A session sample

2.4 Semantics

The semantics of Toupie formulae is determined with respect to a structure S = (Const,V) where
Const is the interpretation domain defined at the beginning of the program, V is a denumerable
set of variables including all the variables of the program.

Definition 1 [Individual Variable Assignments]
An individual variable assignment is a mapping from V into Const.

Definition 2 [Relation]
A relation on S is a mapping from V — Const into B, where X — Y stands for the set of mappings
from X to Y and B stands for the Boolean values.

Definition 3 [Predicate Variable Interpretations]
Let Pr be the set of predicates occurring in the program. A predicate variable interpretation is a
mapping from Pr into (IN — Const) — B, where IN stands for the set of natural numbers.

This definition avoids the complications due to the different arities of the predicates. For a
predicate of arity n, it suffices to consider that the corresponding function depends only on the first
n numbers.

The semantics of a formula is thus a relation, and the semantics of a predicate (defined with a
fixpoint equation) is a mapping from (IN — Const) into B.

A Toupie program P assigns a meaning to a set of predicate symbols Pr. The semantics of
the program is defined as the least fixpoint of a transformation 7. Let us denote PR the set



Pr — (IN — Const) — B of predicate variable interpretations, and RE the set (V — Const) — B
of relations.
The program defines a continuous transformation:

T:PR—PR

Fach formula £ defines a function:

T[[f]] PR — RE

And each equation defines a function:

T[Eq] : PR — (N — Const) — B

The definition of 7 will use the following notation.

Definition 4 Let f: A — B be a function. Let aq,...,a, be distinct elements of A and bq,...,b,
be arbitrary elements of B. We note

f[al/bl,. . .,an/bn]

the function ¢ : A — B such that ga; = b; (1 <i<n)and ga = fa Va &€ {a1,...,a,}).
The notation

[al/bl,. . .,an/bn]

stands for flay/by,...,a,/b,] where f is an arbitrary function.

We are now in position to define the semantic function 7. Let 7w be a predicate variable
interpretation, a be an individual variable assignment, and o be an element of (IN — Const). 7 is
defined inductively on the structure of formulae in the following way :

Tl]ra =1 and 70] 7 a =o0.
TIX:i = X;] 7o = a(Xi) = a(X;).

TIX; = k] 7 a = a(X;) = k.

TIf lglma = T[] x av Tg = a.

TIf & glra = T[f] 7 a A T[g] 7 o

TIV X f17 0 = Avecons(TLA 7 alX/H]).

T3 X f17 & = Viecou TLA 7 a[X/R]).

TIP(X:, ..., X: )] © a=n(P)(a(Xi,),....a(X:)).
TIP(X1,.... X)+=f | 7 o=T[f] © [X1/o(1), ..., Xn/a(n)]-
Finally, the transformation associated with the program is:

T[Eq...Eq.] © = x[pt/T[Eq] 7, ..., pn/T[Eq] 7]
where the p; are the predicates defined by the equations Fg;.



Definition 5 [Denotation of a Toupie Formula wrt a Program] Let P be a Toupie program. Let f

be a Toupie formula. Let D be the set of free variables occurring in f. By definition, the denotation
of f wrt P is the function D[f] : (D — Const) — B such that, for all & € (D — Const),

D[fla = TLAWTIPD),
where o' is any variable assignment such that
a'X =aX (VX € D).

(The underlying program is kept implicit.)

2.5 Implementation of Constraints: Decision Diagrams

Decision Diagrams (DD for short) used in Toupie to encode relations, are an extension for symbolic
finite domains of the Bryant’s Binary Decision Diagrams [34, 30]. Thus, we review here only basic
definitions and properties.

2.5.1 Shannon’s Decomposition of Relations

In order to present Decision Diagrams, we need to introduce the case connective:

Definition 6 [case connective]
Let Const = {ky,...,k,} be the interpretation domain, X be a variable, and fy, ..., f, be formulae.
Then:

case(X, fr,...,f)= (X =k)ANf)V..VU(X =k)Af)

Definition 7 [Shannon’s Normal Form]
A formula f is in Shannon’s normal form if one of the following points holds:

e f=0or f=1,

o f=case(X, f1,...,[r), where X is a variable and f; ... f, are formulae in Shannon’s normal
form wherein X does not occur.

Property 8 [Shannon’s Decomposition]
Let V. = {X1,...X,,} be a set of variables. Then, for any n-ary relation R : (V — Const) — B
there exists a formula in Shannon’s normal form encoding R.

Note that it may exist several formulae (even in Shannon’s normal form) that are the syntactical
expressions of a n-ary relation.

2.5.2 Reduced Ordered Decision DAGs

We can now define Decision DAGs:

Definition 9 [Decision DAGs]
Let Const = {kq,...,k,} be the interpretation domain, V' = {Xy,..., X,,} be a set of variables. A
Decision DAG F is a directed acyclic graph such that:



e [’ has two leaves 0 and 1.

e Each internal node of F’is labelled by a variable X belonging to V' and has r outedges labelled
by ki,.... k..

o If a node labelled with the variable X is reachable from a node labelled with the variable Y
then X #Y.

Now, it is clear that a DD encodes a formula in Shannon’s normal form: the leaves of the DAG
encode the corresponding Boolean constants and each internal node encodes a case connective.
We can know define reduced ordered decision DAGs:

Definition 10 [Reduced Ordered Decision DAGs]
Let < be a total order on the variables Xy,..., X,. A Reduced Ordered Decision DAG F is a
decision DAG such that:

o If a node labelled with the variable X is reachable from a node labelled with the variable Y
then X > Y.

e Any node has at least two distincts sons (case(X, f,..., f) H f).

e Two distinct nodes F' and G are syntactically distinct, i.e. they are either labelled by different
variables or there exists an index ¢ € 1..r such that the i-nth son of F is distinct of the ¢-nth
son of G (reduction by means of maximum sharing of the sub-graphs)

In the remaining, we will consider only Reduced Ordered Decision DAGs and call them Decision
DAGs (or DD for short).

Example 11 Assume the domain is {a,b} and p(X,Y, 7) = {{(a,a,a),{a,a,b),{a,b,a),(b,a,a),{(b,b,a)};
then the DD associated with p for the order X < Y < Z is pictured figure 3. It encodes the formula:
case( X, case(Y,1,case(Z,1,0)),case(Z,1,0)) which is equivalent to p.

Property 12 [Canonicity]
Let R be a n-ary relation on the variables Xy,..., X,, and let < be a total order on these variables.
Then, there exists exactly one Reduced Ordered Decision DAG encoding R.

The proof is done by induction on the number of variables.
This property is fundamental: the test of equality between two relations encoded by means of
two DDs is thus reduced to a test between the addresses of the DDs.

2.5.3 Logical Operations on DDs

Decision Diagrams are also very efficient for performing logical operations on relations. The fol-
lowing property holds:

Property 13 [Induction Principle]
Let @ be any binary logical operation and let p = case(X,p1,...,p,) and ¢ = case(X,q1,...,¢,)
be two formulae in Shannon’s normal form. Then, the following equality holds:

case(X,p1,...,pr) @ case( X, q1,....q.) = case(X,p1 O q1,...,pr O qr)



Figure 3: a Decision Diagram

Proof
case(X,p1,...,pr) @ case( X, q1,...,q)
= (X = k1) A (case(X,p1,....p,) ©case(X,q1,...,q))
V
V
(X =k ) A (case(X,p1,...,p,) ©case(X,q1,...,q.))
= X=k)APmO@)V..V(X=k)AN(p ©g)
= Case(X7p1®q17"'7pT®(ZT)

O

It is easy to induce an effective procedure from this principle.

2.5.4 Memory Management for DDs

Decision Diagrams encode relations over finite domains in a very compact way by means of the
sharing of the subtrees. This sharing is automatically performed by storing the nodes in a hashtable:
each time a node case( X, py1,...,p,) is required, one first looks up the table and the node is created
only if it does not belong to the table.

Another very important point that makes DDs efficient in practice is that the computation
procedure uses a learning mechanism: each time a computation p © ¢ is performed, the result
is memorized in an hashtable. Thus, this computation is never performed twice. Since the time
required to an access in the hashtable is quasi-linear, the overhead due to this memorization is
negligible. On the other hand, the improvement obtained in this way is often very big in practice,
and becomes more and more important as the size of the problem grows up.



2.6 The Fixpoint Algorithm

The Toupie formulae are evaluated with a bottom-up lazy strategy that can also be seen as a top-
down computation with memoization (see [35]). It means that for evaluating f&g one begins by
computing the Decision DAGs associated with f and g and then one computes the binary operation
& between these two DAGs in order to obtain the result. The fixpoint equations are evaluated in
the same way, when needed: the DD associated with a predicate is computed at the first call of
this predicate.

Sometimes a few lines of code are worth than long discurses. Figure 4 depicts the algorithm
that computes the decision DAG associated with a fixpoint definition, as it is written for Toupie.
The general principle is as follows: The formulae are encoded by means of syntactic trees. Fach
node corresponds to a variable or a connective and has an attribute ”"value” which is a pointer on
a decision dag. The function compute_dag_of_formula goes trough the tree in a top-down way
and computes the DD associated with a node by means of the DD associated with its sons.

In order to detect the recursive calls, each predicate definition has a status in IDLE, ACTIVE,
REACHED. Intuitively, a predicate definition is IDLE when the predicate has never been called, ACTIVE
when the computation of its value is in progress and REACHED when it is finished. This status is
necessary to detect the mutually recursive calls and sufficient to reach the fixpoints by iterating
the computation at each level of stack of calls.

With the above principle, the algorithm may perform many useless iterations and becoming
quadratic (for the number of iterations) in the following case:

Assume the following program:

=

[y

S
By By
R e

pu(X)*=(...pi(Y)..)

Assume too that the p; occurring in the right members are the only predicate calls of the fixpoint
definitions. Then, after a first computation of p, the value of this predicate will change only if the
one of p; changes. Thus, it is not necessary to recompute p, in order to reach the fixpoint of p,_;.
The same thing holds for p,_1 and p,_o ...p3 and ps.

In order to capture this phenomenon, the attribute dependencies has been added to predicate
definitions. It encodes, for a predicate, the list of predicates calling it. The value of a predicate p is
not recomputed until the one of another predicate ¢ having p in its dependency graph has changed.

Now, the exact meaning of the attribute status can be defined:

e IDLE An equation is in this status when either it has never been called at the current step
of the computation, or it has reached a local fixpoint but another predicate sent it a re-
initialization message (with the function update_fixed_point_status_in_list described
figure 5).

e ACTIVE An equation is in this status when the computation of its fixpoint is in progress.

e REACHED An equation is in this status when the computation of a local fixpoint is over, that
is to say that a new iteration will not change its value. The global fixpoint is reached when
all the local fixpoints are reached.

10



type_decision_dag compute_dag_of_fixed_point_equation(
type_fixed_point_equation self)
{

type_decision_dag mnew_value;

if (self->fixed_point_status==IDLE) {
self->fixed_point_status=ACTIVE;
while (self->fixed_point_status!=REACHED) {
new_value=compute_dag_of_formula(self->body);
if (new_value==self->decision_dag)
self->fixed_point_status=REACHED;
else {
self->decision_dag=new_value;
update_fixed_point_status_in_list(self->dependencies);
ks
ks
ks

return(self->decision_dag);

}

Figure 4: The Toupie fixpoint algorithm

void update_fixed_point_status_in_list(type_list dependencies)
{

type_list current;

type_fixed_point_equation called;

current=dependencies;
while (! isemptylist(current)) {
called=(type_fixed_point_equation) carlist(current);
if (called->fixed_point_status==REACHED) {
called->fixed_point_status=IDLE;
update_fixed_point_status_in_list(called->dependencies);
ks

current=current->cdr;

}

Figure 5: updating status with the dependency graph

3 Informal presentation

Before going on the formal definitions, theorems and proofs of our abstract interpretation with
Toupie, we first give an intuition of the process.

11



In our framework, an abstract interpretation consists (roughly speaking) in executing a program
over a finite abstract domain — which is built from a finite set of constants representing a partition
of the concrete Herbrand domain — in order to get information about the concrete executions of
the program. Our intention is to use the abstract domain as the interpretation domain for the
translated Toupie program.

The domain Prop: The (abstract) domain? we consider along this section, is a slight variant
of the domain Prop [36, 1, 5]. It uses two constants g (for ground) and ng (for nonground).
All the theoretical results can be found in [1]. In Prop an abstract substitution over the set
D =A{zq,...,2,} of variables is thus a function from D — {g,ng} into the set B of Boolean values.

The intuition behind the domain Prop is that a substitution # is abstracted by a function f
such that f(2;) = g if and only if for all instances ' of 6, #' grounds z;. As an example, the
formula (z = g Ay = g )is a description for the substitution § = {2/a,y/b}, where z and y
are variables whilst ¢ and b are (Prolog) constants.

Flat programs: For technical reasons, the Toupie translation rules assume that logic programs
are given in flat form. Any pure logic program can be translated into its flat form in a straightfor-
ward manner, thus it is not a restriction to only consider flat programs.

The correctness of the method is formally proved later in the section 5.

As an example, the flat version of the quicksort program using difference lists is given in figure 6.

The basic idea is to write explicitely all the unifications with two builtins X = Y where X and
Y are variables or X = ¢t where X is a variable and ¢ a flat term 7.e. a term with a functor and
only variables as arguments.

The Toupie translation: To translate a (flat) Prolog program into a Toupie program is rather
simple. To each Prolog literal corresponds a Toupie relation. Fach sequence of Prolog literals is
translated into a conjunction of relations. Finally each set of clauses with same head is viewed as
a disjunction of conjunction of relations. The figure 7 will enlight the process.

When considering Toupie as a tool for abstract interpretation of logic programs, there are two
main difficulties :

1. one has to deal with the explicit unification of the form X = Y or X = ¢t where X,Y are
variables and ¢ is any (flat) prolog term.

2. The computation rule for Toupie is Bottom-Up, whilst the one for Prolog is Top-Down.

The translation of the builtin X =V is straightforward, whereas the translation of the builtin
X =t heavily depends on the domain under interest, as an example figure 7 depicts the automated
translation of the quicksort program for the domain Prop wherein the pr_ prefix stands for predicate
and the bi_ prefix for built-in.

For the second problem, one has to formally prove the correctness of the computation, see
section 5.3 below.

To conclude this section, we give an example of a possible session with Toupie.

The solution for the query pr_gsort(L1,L2) ? is{ {Li=g, L2=g},{Li=ng, L2=ng} } which
means that L1=L2 in the interpretation domain Prop.

2the abstract domain for the Prolog program, and the domain for the Toupie program

12



gsort (X1, X2) :- gsort(X1 , X2 ) :-
gsort (X1, X2, [1). X3 = [1,
gsort( X1 , X2 , X3 ).

partition([l, _, [1, [1).
partition([ X5 | X6 1, X2 , [X5 | X7] , X4) :- partition(X1 , X2 , X3 , X4 ) :-
X5 <= X2, X1 =1[1,
partition( X6 , X2 , X7 , X4 ). X3 = [1,
partition([ X5 | X6 1, X2 , [X5 | X7] , X4) :- X4 = [1.
X5 > X2, partition(X1 , X2 , X3 , X4 ) :-
partition( X6 , X2 , X3 , X7 ). X1= [X5 1] X671,
X3= [X5 | X717,
gsort([] , X, X). X5 <= X2,
gsort([X4 | X5] , X2 , X3 ) :- partition( X6 , X2 , X7 , X4 ).
partition( X5 , X4 , X6 , X7 ), partition(X1 , X2 , X3 , X4 ) :-
gsort( X6 , X2 , [ X4 | X9 1), X1= [X5 1] X671,
gsort( X7 , X9 , X3 ). X4= [X5 ] X711,
X5 > X2,

partition( X6 , X2 , X3 , X7 ).

gsort(X1 , X2 , X3 ) :-
X1 =11,
X3 = X2.
gsort(X1 , X2 , X3 ) :-
X1 = [X4 | X517,
partition( X5 , X4 , X6 , X7 ),
gsort( X6 , X2 , X8 ),
X8 = [X4 | X917,
gsort( X7 , X9 , X3 ).

Figure 6: The original and flat versions of Quicksort
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domain {g, ngl}

pr_gsort(X1,X2) +=
bi_nil(X3) & pr_qgsort(X1,X2,X3)

pr_partition(X1,X2,X3,X4) +=
bi_nil(X1) & bi_nil(X3) & bi_nil(X4)
|
bi_cons(X1,X5,X6) & bi_cons(X3,X5,X7) &
bi_ari(X5,X2) & pr_partition(X6,X2,X7,X4)
|
bi_cons(X1,X5,X6) & bi_cons(X4,X5,X7) &
bi_ari(X5,X2) & pr_partition(X6,X2,X3,X7)

pr_gsort(X1,X2,X3) +=
bi_nil(X1) & X3 = X2
|
bi_cons(X1,X4,X5) & pr_partition(X5,X4,X6,X7) &
pr_gsort(X6,X2,X8) & bi_cons(X8,X4,X9) &
pr_gsort(X7,X9,X3)

bi_nil(X1) += X1 = g

bi_ari(X1,X2) += X1 = g & X2 = g

bi_cons(X1,X2,X3) +=
¥1=g&X2=g&X3=g

|
Xi=ng & ( X2 = ng | X3 = ng)

Figure 7: Toupie translation of Quicksort
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2p |= load quick_prop.2p

2p -> loading file quick_prop.2p
2p |= display domain

domain {g,ng}

2p |= pr_gsort(L1,L2) 7

{L1i=g, L2=g}
{Li=ng, L2=ng}

2p |= pr_gsort(g,L) 7

{L=g}

2p |= pr_partition(X1,X2,X3,X4) 7

{X1=g, X3=g, X4=g}

2p I= (. ( X1=X2 ) & pr_partition(X1,X2,X3,X4) ) ?

{X1=g, X2=g, X3=g, X4=g}

Figure 8: Quicksort analysis with Toupie + Prop
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The solution for the query pr_partition(X1,X2,X3,X4) ? is {X1=g, X3=g, X4=g} , this
means that any assignment for X2 , wrt the domain, is correct, or in other words, the solution is
{ {X1=g, X2=g, X3=g, X4=g}, {X1=g, X2=ng, X3=g, X4=g} }.

4 0": a Generic Abstract Domain for Logic Programs

This section describes a generic abstract domains for logic programs which can be viewed as an
extension of the domain Prop [36, 1]. Prop has proven to be useful for a large variety of appli-
cations including groundness [36, 5], covering and suspension [21, 37] analysis. The domain is
parametrized on a set of constant symbols whose meaning is captured, semantically, by means of
a concretization function and, operationally, by means of two abstract operations (unification). It
is downwards closed (see [36]) and therefore adequate for success pattern analysis by bottom-up
abstract interpretation [12].

As a matter of fact, abstract substitutions in this domain are exactly the kind of objects handled
by the constraint language Toupie. Therefore, implementation of the domain is straightforward
within Toupie.

The domain can also be interpreted over ground terms only. Hence it can be used for a simple
form of type analysis.

This section is organized as follows. Subsection 4.1 recalls basic notions about substitutions
and provides notational conventions. Subsections 4.2 and 4.3 present the abstract substitutions
and their semantics. Subsection 4.4 defines the abstract unification and subsection 4.5 the other
abstract operations. The generic domain is instantiated to two variants of the Prop domain in
subsection 4.6. Two other instantiations, for type analysis are given in subsection 4.7. Finally, we
explain in section 4.8 a method to support automatic instantiation of the generic domain.

4.1 Basic notions

We use the same conventions as in [38, 10, 39] for (concrete) substitutions. Those conventions are
convenient for a clear and rigorous definition of the abstract domain.

We assume the existence of sets F; and P; (i > 0) denoting sets of functors and predicate
symbols of arity ¢ and of an infinite set PV of program variables. Variables in PV are ordered and
denoted by the z1,29,...,2;,....

The motivation behind these definitions is to allow the result of any predicate p/n to be ex-
pressed as a set of substitutions on program variables zq, ..., z,.

We assume the existence of another infinite set RV of renaming (or standard) variables. We
distinguish two kinds of substitutions: program substitutions whose domain and codomain are
subsets of PV and RV respectively, and renaming (or standard) substitutions whose domain and
codomain are subsets of RV . In the following, P.S denotes the set of program substitutions and RS
the set of renaming substitutions. We use var(o) to represent the set of variables in the syntactical
object o.

PSp is the set of 8 such that dom(8) = D We note CSp, the set of subsets of PSp which are
complete. A set of substitutions is complete if it contains all variants of any of its elements.

Let 6 be a substitution and D C dom(6). The restriction of § to D, denoted 0, , is the
substitution 6 such that dom(6') = D and 26 = 26’ for all 2 € D.
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The definition of substitution composition is slightly modified to take into account the special
role held by program variables. The modification occurs when 8 € PS and ¢ € RS for which
6o € PS is defined by dom(fc) = dom(6) and z(fo) = (28)o for all 2 € dom(8).

Unifiers are defined as usual but only belong to RS hereafter. We use mgu(t1,t2) to denote the
set of most general unifiers of ¢; and 5.

4.2 Abstract Substitutions

In our generic abstract domain, abstract substitutions can be defined either as syntactic objects
(i.e. formulae) or as semantic objects (i.e. functions from assignments to Boolean values). The first
approach is more convenient for writing particular abstract substitutions. The second approach is
simpler to define the semantics of the abstract domain. Therefore we basically use the semantic
presentation in the following but we take the liberty of denoting semantic objects (functions) by
formulae when convenient.

Definition 14 [Constants]
The abstract domain is parametrized on a finite set of constant symbols or constants. We note
Const, the set of constants. We use the letter ¢ to denote constants.

Definition 15 [Assignments]
Let D be a finite set of program variables. An assignment for D is any total function from D
to Const. As usual, the set of assignments for D is denoted D — Const.

Definition 16 [Abstract Substitutions]
Let D be a finite set of program variables. An abstract substitution over D is a function from
D — Const to the set B of truth-values. Truth is denoted 1; falsity is denoted 0. The set of abstract

substitutions over D is thus (D — Const) — B. We use the griek letter 3 to denote elements of
this set. D is called the domain of § and denoted by dom(j3).

Abstract substitutions over D can be denoted in an obvious way by first order formulae built
with free variables from D, constants from Const, the equality predicate, logical connectives and
quantifiers. Formulae are interpreted on Const.

4.3 Semantics of Abstract Substitutions

The meaning of abstract substitutions only depends on the meaning of constants which is given by
the following function.

Definition 17 [Concretization of Constants]
The concretization function for constants has the following signature:

Ce : Const — P(Terms).
It is required that
U Ce(c) = Term.

c€ Const
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It can be useful to define Cec in such a way that the family {Cec(c¢)}eeconst is a partition of
Term because otherwise the abstract domain entails some redundancy. But, on the other hand,
non-redundancy can increase the number of constants and induce a loss of efficiency. Moreover,
abstract operations can be simpler to define and to implement. As the partition hypothesis is not
strictly necessary we do not assume it in the following.

The meaning of an abstract substitution over D is given by the following definition. The un-
derlying intuition is that a variable assignment must satisfy the (formula representing the) abstract
substitution whenever it consistently describes the terms bound to the variables of the domain of
a (concrete) substitution described by f.

Definition 18 [Concretization Function]
Let § € (D — Const) — B. The meaning or concretization of § is, by definition, the set of
program substitutions Cec(3) such that

Ce(f) = {#:Vo € RS:Ya € (D — Const): (Vx € D :2bo € Cc(azx)) = fa = 1}.

Example 19 Assume the set Const defined as { g, ng }, and let D={ x, y, z }, and consider
0 as

(x=g A y=g A z=g )V( x=g A y=ng A z=ng )
Then the substitution §={ x/f(a), y/g(z) }, belongs to Cc(p)

We now define a notion of non redundant abstract substitution which will be useful for discarding
useless abstract substitutions from the abstract domain. The motivation is that, in general, several
abstract substitutions have the same value through the concretization function. The aim is to
keep only one of them in the domain. It is natural to choose the least one (wrt implication). For
example, 0 will be the only abstract substitution whose concretization is empty.

Definition 20 [Preordering over Assignments]
Let a, o’ be two variable assignments for D. By definition,

o < a
iff
V0 € PSp: (Ve € D:ab € Ce(ax))= (Jo € RS :VYa € D : 260 € Ce(a'z)).
o' < a means that every substitution which satisfies @ has an instance which satisfies o’. There-
fore, if o satisfies an abstract substitution 3 but o' does not satisfy &, no concrete substitution

corresponding to a belongs to Cc(/3). So 3 is in some sense redundant and can be replaced by a
stronger abstract substitution. This observation is captured by the following definition.

Definition 21 [Non Redundant Abstract Substitutions]
Let g € (D — Const) — B. (3 is non redundant if and only if, by definition,

Va,o' € (D — Const) :a' <a = (fa=1= pa’ =1).

The following example will enlight the previous definitions.
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Example 22 Tet D = { x, y }, Const ={ g, ng }, a = [ x/g, y/ng |, &' = [ x/g, y/g ]
Then o' < a.

If one considers 3 as (x=g A y=ng) V (x=g A y=g) and ' as (x=g A y=ng) , then
(3 is non redondant whereas /3’ is not.

Definition 23 [Abstract Substitutions Revisited]
We will denote ASp the set of 5 € (D — Const) — B which are non redundant. All abstract
substitutions considered in the rest of this section belong to some ASp.

There are abstraction functions which map program substitutions on their “best” description
and sets of program substitutions on the “smallest” abstract substitution whose concretization is
a superset of the given set.

Definition 24 [Abstraction of a Program Substitution]
Let 8§ € PSp. By definition,

Abs(8) = \/ (1= Ao Axy = cp).
C1,...,¢cn € Const:

(3o € RS :Vi:1 <1< n:xi00 € Cc(c))
This equality defines a function Abs : PSp — ASp.

Example 25 Assume the set Const defined as { g, ng }, and let D={ x, y, z }, and consider
the substitution 6 defined as follows: §={ x/f(a), y/g(z) }. Then Abs(f) is

(x=g A y=g A z=g )V( x=g A y=ng A z=ng )

Definition 26 [Abstraction of a Set of Program Substitutions]
Let © € CSp. By definition,

Abs(©) = \/ Abs(0).
fe®

This equality defines a function Abs: CSp — ASp.

The next theorem expresses that the concrete and abstract domains fulfill all conditions required
by the abstract Interpretation framework of the Cousots [40].

Theorem 27 (CSp, ASp, Abs, Cc) is a Galois insertion.

4.4 Abstract Unification

In this section, we give general formulae which allow the definition of abstract versions of built-in
predicates, for any particular instantiation of the abstract domain. We focus on abstract unification.
Similar formulae are easily found for other built-in predicates such as arithmetic predicates: is,
<,... . Notice that some built-in predicates are not usable in the basic (bottom-up) Abstract Inter-
pretation framework implemented by Toupie. However this aspect is independent of the abstract
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domain in se. Moreover it is also possible to use Toupie for top-down Abstract Interpretation. In
this more elaborate context, test predicates will be considered.

To define an abstract operation, we state two different kind of definitions. The specification
states the property that the abstract operation must enjoy in order to be a correct (consistent)
approximation of the corresponding “concrete” operation. The implementation defines the practical
way to compute the abstract operation, i.e. an algorithm or the definition of a finitely representable
object. Correctness of an operation is ensured if its implementation meets its specification.

In our framework we use flat (or normalized) programs. Therefore, unification of terms is
achieved by two operations: wunification of two program variables and wunification of a program
variable and a functor. We define hereunder the abstract versions of those operations.

4.4.1 Unification of Two Program Variables (z; = z;)
Specification 28

Let D = {z4,...,2,}. The abstract unification of z; and z; (1 <, < n), denoted
UNIF-VAR(¢, 7, D), returns an abstract substitution 5 € ASp for which the following holds:

;0 = ;0

6c PS } = 0¢€ Ce(B).

Implementation 29

Theorem 30 Implementation of UNIF-VAR is consistent.

4.4.2 Unification of a Program Variable and a Functor (z; = f(zj,,...,2;,,))

Specification 31

Let D = {z4,...,2,}. The abstract unification of z; and f(z;,...,z;,) (1 <4,j1,...,0m < n),
denoted UNIF-FUNC(f,?,j1,...,Jm,?), returns an abstract substitution 5 € ASp for which the
following holds:

0= flzj,....2;,)0
6 ¢ PSp = 0¢€ Ce(B).

Implementation 32
Let Ry be the (m 4 1)-ary relation such that Ve, eq, ..., ¢, € Const :

F(t1s. e itm) € Ce(e) &

(c,c1y..006m) € Ry iff 3tq,...t, € Term:{ Vitl<i<m: i€ Celc)

20



B \/ (z;=chzjy =1 N...ANxj, =cp)
(¢ic1,.mem)ERy

Theorem 33 Implementation of UNIF-FUNC is consistent.

4.5 Other Abstract Operations

Additionally to abstract unification, some other abstract operations are needed for the purpose of
bottom-up abstract interpretation: intersection, union, projection, extension and renaming.

4.5.1 Intersection of Abstract Substitutions

This operation is useful to express that an atom p(z1,...,z,)0 is an output pattern whenever there
exists a clause p(x1,...,2,) < l1,..., 1, such that [16,...,[,,6 are all output patterns.

Specification 34 [Intersection of Abstract Substitutions]
Let (53;)ier a finite family of abstract substitutions over the same domain D. The intersection
of (8:); € I, denoted [;c13; has to satisfy the following properties.

1. dom([;e1B;) = D,
2. Mier Ce(Bi) € Ce(Tierfs).

Implementation 35
def
M = N\ B
el

Theorem 36 Operation [1is consistent. In fact, there is a stronger result: [1is exact in the sense
that:

() Ce(B:) = Ce(MicrBi)-

el

4.5.2 Union of Abstract Substitutions

This operation is useful to express that an atom p(z1,...,2,)0 is an output pattern for a procedure
of name p whenever there exists a clause ¢ of the procedure for which p(z1,...,2,)8 is an output
pattern.

Specification 37 [Union of Abstract Substitutions] Let (3;);cs a finite family of abstract substi-
tutions over the same domain D. The union of (3;); € I, denoted | |;; 3; has to satisfy the following
properties.

L. dom(| J;er i) = D,
2. User Ce(Bi) C Ce(ier B5)-
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Implementation 38

| |8 def \/ 8.

el el
Theorem 39 Operation | | is consistent. Once again, there is a stronger result:

J Ce(8:) = ce(| | 5.

el el
4.5.3 Projection on a Subdomain

The following operation will be used to express that p(z1,...,%,)80/(z .. 2.} is an ouput pattern
whenever p(z1,...,2,)8 is.

Specification 40 [Projection of an Abstract Substitution on a Subdomain] Let § be an abstract
substitution and D a set of program variables such that D C dom(f). The projection of 3 on D,
denoted 3,p, has to respect the following conditions:

L. dom(B,p) = D,

2.V € Ce(B): 0 € Ce(B) = 6;p € Ce(Bp)

Implementation 41

B/p 3wy, .. 3a, 1 8)
where {z;,,...,2;,} = dom(p) — D.

Theorem 42
Projection is consistent.
4.5.4 Domain Extension

This operation will be used to express that p(z;,,...,2;, )0 is an ouput pattern
whenever p(z;,, .. .,win)O/{xi17...mn} is.

Definition 43 [Domain Extension]
Let 3 be an abstract substitution and D a set of program variables such that dom(3) C D. The
extension of § to D, denoted §p, is the unique abstract substitution such that:

1. dom(fp) =D,

2. Va € D:Bpa = Blag oy, ..., v, [ax,]
where 2;,,...,z;, = dom([3).

Theorem 44
Let 8 be an abstract substitution and D a set of program variables such that dom(3) C D. Let 6
such that dom(6#) = D. Under those hypotheses,

O/dom(ﬁ) S Cc(ﬂ) = 0e€ CC(ﬁD).
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4.5.5 Domain Renaming

The following definitions will be helpful to handle procedure calls.

Definition 45 [Domain Renaming for a Program Substitution]
Let 6 be a substitution of the form {z; /ti,...,2;,/t,}. Let z;,...,z; be distinct program
variables. The substitution {z;, /t1,...,2;,/t,} will be denoted by

Olzi, — jy sy, — 25,].

n

When {z;,,...,2;,} C dom(0),

0[$i1 T gy Ty, wjn]

will denote

(0/{731177731”})[$21 Ly ey Ty $]‘n].

Definition 46 [Domain Renaming for an Abstract Substitution]
Let 3 be an abstract substitution such that dom(3) = {z;,,...,2;,}. Let z;,...,2; be distinct
program variables. The abstract substitution 5" : ({z},,...,2;,} — Const) — B such that

ﬁ/a = ﬁ[le /Oé$2'1, ) xjn/axin]v
will be denoted by
ﬁ[xll — le? i ‘7$in — x]n]
When {z;,,...,2;,} C dom(f3),
ﬁ[xll — $j17. * ‘7$in — x]n]
will denote
B/ {aiyin @i = gy - @iy = @5,

Theorem 47 [Consistency of Domain Renaming]
Let § and 6 be , respectively, an abstract and a program substitution such that dom(3) =
dom(0). Let z;,,...,z;, be distinct program variables. Assume {z;,...,2;,} C dom(3). Then,

e Cc(f) =0z —ajy,....0;, — ;] € Ce(Blay — xj,...,2, — z5,]).

4.6 Instantiations 1 and 2: two variants of Prop

Prop The first instantiation is equivalent to the domain Prop, first introduced by Marriott and
Sondergaard [36], studied theoretically in [1] and experimentally in [5]. The only difference is that
we use two constants instead of interpreting program variables as propositional formulae. This
domain was shown useful for a large variety of applications in [37]. Its accuracy was shown very

high in [5].
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Recall that instantiating the abstract domain amounts to defining the set Const of constants
and the basic concretization function Ce: Const — P(Terms). In this instantiation:

Const

Ce(g)

Ce(ng)

def

{g,ng}

{t:t€ Term & tis ground.}
{t:t € Term & tis not ground.}

For each m-ary functor symbol f, the corresponding relation Ry is defined by:

(c,e1,..006m) €ERp Ml (c=c1=...=¢;,,=g) or(c=ng& Ji:1<1i<m:¢ =ng).

Recall that the underlying meaning of Prop is to compute definite groundness of variables.

Prop™ The second instantiation is a slightly more specialized version of Prop, first sketched in [26].
Three constants are used and constant ng is replaced by ngv and v. This domain allows for more

refined results on many interesting examples such as quicksort.

In this instantiation:

Const

Ce(g)
Ce(ngv)
Ce(v)

{g,ngv, v}

{t:t€ Term & tisground.}
{t:t € Term & tis not ground nor a variable.}

{t:t € Term & tisa variable.}

For each m-ary functor symbol f, the corresponding relation Ry is defined by:

(c,e1,006m) ERp Ml (c=c1=...=¢,=g) or(c=ngv& Fi:1<i<m:¢ #g).

The intended meaning of Prop™ is to compute definite nonfreeness information.

4.7 Instantiation 3 and 4: Type, Simple Type Analysis

The two next instantiations implement a simple type analysis which can be useful for optimizations

such as tag removal in a compiler.

Ground Types This third instantiation only deals with ground types. Clearly our framework
can be restricted to ground patterns. All theoretical results remain valid and all proofs can be
rewritten without any change except restricting to ground terms and patterns. Four basic types
are considered: integers, lists, constants and functors (the other terms)

More precisely, the set of constants and the basic concretization function are defined as follows:

Const def
Ce(int) def

def
Ce(lst) =
Ce(cst) def
Ce(fet) def

{int,1st,cst,fct}

{t:
{t:
{t:
{t:

t € Term
t € Term
t € Term
t € Term

& tis an integer.}

& tis alist.}

& tis a constant different from the empty list.}
& tis any other term.}
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For each m-ary functor symbol f, the corresponding relation Ry is defined as follows (¢ denotes
an integer, a denotes a constant different from nil and f denotes an m-ary functor different from
the list constructor (m > 0):

(¢) € R; iff  ¢=int.
(c) € Ry iff  ¢=1st.
(c,c1,e2) € Ry iff  c=1st & ¢y = 1st.
(c) € R, iff  ¢=cst.
(c,c1,..,6) € Ry iff ¢ = fet.

Types In this instantiation, non ground terms are also considered. Curiously however, the only
modification amounts to adding a new constant v to the set Const. The relations R; are unchanged.

4.8 Towards the Automatic Instantiation of 0%

Instantiating the relations Ry manually can become cumbersone and error-prone for more complex
instantiations. It is possible to design a formal language for describing the denotation of constants.
This language could be processed to infer automatically the basic relations. A similar approach
has already been used for type verification in the FOLON system, a programming environment for
logic programming (see [41, 42]). It has proven to be useful and efficient in such a context.

In the context of type verification, types can be specified by context-free grammars or any
equivalent formalism (see [43]). Deriving the basic information is then almost straightforward.
This approach is different from the usual approach of “infering” the types from the program. We
believe that it can nevertheless be useful, for example, in a programming environment context.

5 Bottom-up Abstract Interpretation of Prolog with Toupie

In this section, we present our framework for Abstract Interpretation. Bottom-up Abstract Inter-
pretation of logic programs has been studied by numerous researchers. See, for example, [7, 22, 12].
The correctness of our approach mostly relies on the results of [7, 12]. We provide a direct proof
of our method, however, in order to propose a self-contained and convincing presentation.

The rest of the section is organized as follows.

Subsection 5.1 describes the syntax of flat logic programs. (Considering flat programs is not a
restriction, because any pure logic program can be translated into a flat program in a straightfor-
ward way). Subsection 5.2 gives the rules allowing to translate a flat logic programs into a Toupie
program whose execution performs the abstract interpretation of the logic program. Subsection 5.3
formally proves the correctness of the method.

5.1 Syntax of Flat Prolog

The abstract syntax of the language can be defined by the following grammar:
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P ¢ Programs
pr € Procedures
¢ € C(lauses Pou= Apri,..oprad
g € Goals prou= clcpr
) € Literals ¢ = pa1,..,7) = g
= l.
f € [Functors g ) <> [lyg
p € ProcedureNames l n= v =y vy = f(@n, v | P, w,)
x; € ProgramVariables

5.2 Translation Rules

In order to handle abstract unification of a variable and a functor, a Toupie predicate definition is
associated to each functor f/n, as follows:

bif(Xo,X1,...,%,) += (Xo=c¢} & Xy=cl & ... & X,=cl) |
(Xo=cy® & Xy=c" & ... & X,=c").

where {(cb,¢i,...,¢) + 1 < i< m} = Ry It is worth noticing that any given Prolog program
contains only finitely many functors. Therefore, only a finite number of such predicate definitions
will be actually generated for a given analysis. Moreover, in practice, many relations Ry are the
same. Hence several simplifications are possible.

It is straightforward that the Toupie formula bi_f(X;,,X;, ,...,X;,) denotes the same abstract
substitution as the following “usual” formula:

\/ (zig =coNTiy =1 Ao ATy, = Cp).
(co,cl,...,cn)ERf

Therefore it correctly implements operation UNIF_FUNC.

Several other abstract operations have been used in the experiments. They implement arith-
metic predicates such as is, <, >, .... They can be implemented in a similar way that we do
not explain for brevity. Finally, other built-in predicates can be “simulated” at the Prolog program
level (see section 6).

The translation rules of a flat Prolog program in Toupie are given in figure 9. We take the
convention of denoting constr* the Toupie translation of the syntactic construct constr. Figure 7
depicts the translation of the quicksort program from figure 6 wrt Prop.

5.3 Correctness

The correctness of our Abstract Interpretation method relies on the next theorem which is a straight-
forward consequence of well-known results of logic programming.

Theorem 48

let [ be a literal of the form p(x1,...,2,). Let 6 be a program substitution such that dom(8) =
{x1,...,2,}. Then [0 is a success pattern wrt a flat logic program Prog if and only if there exists
a clause ¢ in Prog and a program substitution ¢’ such that:
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constr*

constr
{pri,...,pri,biy, ..., biy}
{pros-opra} where biy, ..., bi,, are the predicate definitions
corresponding to all the built-ins used in {pry,...,pr,}.
pr, of the form prp(Xy,...,X,) += (exist X,41,...,%,,:97) |
e |
P, .., %) — 01 (exist Xpq1s---s%p,100)
P(T1y. oy Tn) — G where X, 41,...,X;, are the local variables of g7 (1 < j < m).
Iy, ... 0, & ... &l
T; = @y X;=X;
T :f(aciz),...,xin) bfl._f(XZ'l,XZ’2 s ey Xin)
p(xim"'vxin) prp(Xy,...,X%,)

Figure 9: Translation rules
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1. dom(8') ={z1,...,2,} where x1,...,2,, is the set of variables in ¢;
2. ¢ u= par, ., xn) = 1yl
3. 1,6 is a success pattern wrt P (1 < ¢ < r);

—_ ol
4. 0 — 0/{1,17“.71,”}.

The previous theorem motivates the next definition:

Definition 49 [Level of a success pattern]
We define the level of a success pattern thanks to the following two rules:

1. A success pattern has level 0 if and only if it is an instance of a built-in predicate.

2. Let ¢ > 1. A success pattern has level ¢ iff it has not level j for 0 < j < 7 and it can be
obtained from success patterns of level lower than ¢ according to the previous theorem.

Theorem 50
Any success pattern has a unique level according to the previous definition.

Proof Consequence of well-known results from logic programming. O

The next, fundamental, theorem states the correctness of the proposed Abstract Interpretation
method. To understand its meaning it is worth remembering that

1. Given a Toupie program, Toupie computes a set of decision diagrams; each of those decision
diagrams is associated to a predicate symbol p of the program and encodes the relation

Dlp(X1,...,%0)]-
2. The computed decision diagrams can then be displayed or used for further calculations.

3. The relations D[p(X1,...,Xn)] are abstract substitutions in the sense of section 4.

Theorem 51 [Correctness of Bottom-up Abstract Interpretation with Toupie]

Let Prog be a flat Prolog program. Assume Prog* to be the underlying Toupie program. Let
[ be a literal occurring in Prog and p the name of a n-ary procedure of Prog. Let D be a set of
program variables and @ a program substitution such that D = dom(#). The following results hold:

var(l) C D, .
1 [0 is a success pattern } = 0 € Ce(D[I"]p);
dom(0) = {x1,..., 2.}, .
2 p(xlv .. .,wn)O is a success pattern =0€ CC(D[[p(xlv . 'vwn) ]])
Proof

The proof is by induction on the level of success patterns.

e Consider first success patterns of level 0. Then [ must be a built-in. Therefore two cases are
to be considered.
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1. lis of the form z; = x;. In this case,

[0 is a success pattern

= a0 = xjﬂ

= 0 € Ce((z; =2z;)p) (consistency of AI_VAR)
= 6fe CC(D[[Xi = Xj]]D)

= 6¢€ Cc(D[I"]p)

2. [ is of the form z;, = f(@4,...,2;,). In this case,

[0 is a success pattern

= xiOO:f(acil,...,xin)O

= 0€ Cc(V(eyernon)ery(Tig = COAN T = L AL Ay, = o)D)
(consistency of AI_FUNC)

= 6fe CC(D[[bi_f(Xio, Xil’ .. .,Xin)]]D)

= 6¢€ Cc(D[I*]p)

o Let us consider now patterns of level ¢ > 0.

1. We first prove the second part of the theorem because the first part is based on the
second one.

p(21,...,2,)0 is a success pattern
there exists a clause p(21,...,2,) < l1,...,{, and a substitution #such
that [;0" are success patterns of level k; < ¢ (1< j<r)and 6 = 0’/{1,1 .

{ 0 € Ce(D[IX]p) (1< j<r)

where D is the set of all variables in the clause (induction hypothesis)
= 0 € Ce(Nj21 P[I7]p) (consistency of abstract intersection)
= 0 eCeD[lf & ... & [I}]p) (definition of D)

€ Cc(Fzpyq ... Fz, (DT & ... & IF]D))

= where 2,41,...,2, are the local variables of the clause
(consistency of projection)

e Ce(Dlgr | .- | 93])
= where g1, ..., g, are the bodies of the clauses of procedure p
(consistency of abstract union, definition of D)

6 € Ce(D[p(z1y..r20)*])
= { (deﬁnitiofof D)

2. Let [0 be a success pattern of level ¢ > 0. [ must be of the form p(z;,,...,;,). Therefore,
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[0 is a success pattern
= p(xy,...,2;, )0 is a success pattern

= pla1,...,2,)0[z — x1,...,2;, — &,]is a success pattern

n

= Oz, —21,...,24, — 2, € Cc(D]p(z1,...,2,)*]) (part 1. above)

{ 0/{1’11,,1’,”} € CC(D[[p(xH? SRR xln)*]])

(consistency of renaming, definition of D)
= 0e Ce(Dp(ziy,...,2;,) D) (consistency of domain extension)

= e Ce(D[I"]p)

6 Experimental Evaluation

In this section, we apply the four abstract domains presented in subsections 4.6 and 4.7 to the
analysis of a significant set of benchmark programs and we give some statistics to demonstrate the
space and time efficiency of our approach.

The section is organized as follows. Subsection 6.1 describes the benchmark programs. Sub-
sections 6.2 to 6.6 discuss in great details the time and space efficiency of the system on the
benchmarks. Subsection 6.7 provides information related to the accuracy of the analysis.

6.1 Benchmark Programs

We use the benchmark programs proposed by B. Le Charlier and P. Van Hentenryck in [2, 3, 31, 5].
The hereunder description is extracted from [2].

The programs are hopefully representative of ”"pure” logic programs (i.e. without the use of
dynamic predicates such as assert and retract). They are taken from a number of authors and
used for various purposes from compiler writing to equation-solvers, combinatorial problems, and
theorem-proving. Hence they should be representative of a large class of programs. In order to
accommodate the many built-ins provided in Prolog implementations and not supported in our
current implementation, some programs have been extended with some clauses achieving the effect
of the built-ins. Examples are the predicates to achieve input/output, meta-predicates such as
setof, bagof, arg, and functor. The clauses containing assert and retract have been dropped
in the program containing them (i.e. Syntax error handling in the reader program).

The program kalah (KA for short) is a program which plays the game of kalah. It is taken
from [44] and implements an alpha-beta search procedure. The program Press is an equation-
solver program taken from [44] as well. We use two versions of this interesting program. The
first version is the standard version (P.1 for short) while the second version (P.2 for short) has a
procedure call repeated in the program (i.e. a procedure call is executed twice in a clause). The

30



two versions illustrate a fact often neglected in abstract interpretation. A more precise domain,
although requiring a higher cost for the basic operations, might in fact be much more efficient since
fewer elements in the domain are explored. The repetition of some procedure call in the Press
program allows us to simulate a more precise domain (and hence to gain efficiency). The program
cuttingstock (CS for short) is taken from [45]. It is a program used to generate a number of
configurations representing various ways of cutting a wood board into small shelves. The program
uses, in various ways, the nondeterminism of Prolog. The program disjunctive (DS for short)
is taken from [46] and is the generate and test equivalent of a constraint program used to solve
a disjunctive scheduling problem. This is also a program using the nondeterminism of Prolog.
The program read (RE for short) is the tokeniser and reader written by R. O’keefe and D.H.D.
Warren for Prolog. It is mainly a deterministic program, with mutually recursive procedures. The
program projgeom (PG for short) is a program written by W. Older to solve a specific mathematical
problem. The program browse (BR for short) is a program taken from the Gabriel benchmarks
[47]. The program planning (PL for short) is a planning program taken from Sterling & Shapiro.
The program queens (QU for short) is a simple program to solve the n-queens problem. Finally,
peephole (PE for short) is a program written by S.Debray to carry out the peephole optimization in
the SB-Prolog compiler. It is a deterministic program. We also use three classical small programs:
append, reverse and quicksort with difference lists (AP, RV and QS for short). Table 1 contains a
summary of the abbreviations.

AP | append

KA | an alpha beta procedure for kalah

QU a queens program

P.1 | the press program for symbolic equation solving
P.2 | the press program with a procedure call repeated
PE | peephole optimization in SB-Prolog

CS | a nondeterministic cutting stock program

DS | a generate and test program for scheduling

PG | a program to solve a geometrical problem

RE | the reader and tokeniser of Prolog

BR | the browse program from the Gabriel benchmark
PL a planning program

RV reverse

QS | quicksort with difference lists

Table 1: Summary of the Abbreviations for the Prolog Programs

A number of measures are given in the table 2 to evaluate the size of the programs. These
include the number of procedures, the number of clauses, the number of literals in the normalized
programs, and the number of procedure calls.

6.2 Time Efficiency

In the following table 3, the running times (in seconds) as well as the ratio number of tops of the
clock versus size of the program are given for each program and each domain. The size of the
program is defined here as the total number of variables occurring in its rules. All the running
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KA | QU | P1|P2|PE| CS|DS|PG|RE|BR|PL
Number of Procedures 44 51 52| 52 19| 32| 28| 10| 42| 20| 13
Number of Clauses 82 9 | 158 | 158 | 168 | 55| 52| 18 | 163 | 45| 26
Number of Literals 475 38 | 742 | 744 | 808 | 336 | 296 93 | 820 | 207 | 94
Number of Procedure calls | 84 8 | 130 | 131 | 90 | 57| 60| 17 | 168 | 37| 29
Number of Variables 363 42 | 355 | 356 | 148 | 294 | 284 97 | 328 | 160 | 74

Table 2: Sizes of the Programs

times have been obtained on a Sun sparc 1 IPX, with 16 MB of RAM.

The results show that Toupie is extremely fast on the benchmark programs and much more
faster that any system we are aware of. Similar experiments for the Prop domain and the same
programs have been reported in [5] for the generic abstract interpretation algorithm GAIA (see
also [4, 2, 31]). Toupie is at least five time faster than GAIA, on the average. Interestingly, the
implementation of [5] also uses decision diagrams for the domain and caching techniques. However,
caching is used to a lower extent. Finally, it is fair noticing that GAIA performs a top-down analysis
implying that input patterns have to be recorded, not only success patterns. This also complicates
the fixpoint algorithm.

prop prop+ small types types
name time | ratio | time | ratio | time | ratio | time | ratio
append | 0s01 | 0.10 | 0s01 | 0.10 | 0s01 | 0.00 | 0s03 | 0.20
cs 0s53 | 0.13 | 0s90 | 0.18 | 0s20 | 0.03 | 0s21 | 0.05
disj 0s48 | 0.11 | 0s68 | 0.15 | 0s30 | 0.06 | 0s36 | 0.08

gabriel | 0s18 | 0.08 | 0s26 | 0.10 | 0s18 | 0.08 | 0s21 | 0.09
kalah 0s50 | 0.09 | 0s80 | 0.13 | 0s35 | 0.06 | 0s43 | 0.07
peep 0s83 | 0.34 | 1s30 | 0.55 | 0sb5 | 0.22 | 0s70 | 0.30
Pg 0s11 | 0.07 | 0sl16 | 0.11 | Os11 | 0.08 | 0s15 | 0.11
plan 0s10 | 0.08 | 0s15 | 0.11 | 0s06 | 0.07 | 0s11 | 0.08
pressl 0s76 | 0.13 | 1s20 | 0.21 | 0s68 | 0.12 | 1s00 | 0.17
press2 0s75 | 0.13 | 1s20 | 0.21 | 0s70 | 0.13 | 1s00 | 0.19
gsort 0s03 | 0.08 | 0s05 | 0.15 | 0s06 | 0.19 | 0s08 | 0.27
queens | 0s03 | 0.07 | 0s06 | 0.10 | 0s03 | 0.05 | 0s03 | 0.05
read 0s83 | 0.16 | 1sh1 | 0.29 | 2540 | 0.45 | 4s05 | 0.80
reverse | 0s00 | 0.08 | 0s03 | 0.15 | 0s03 | 0.08 | 0s05 | 0.23

Table 3: Running times and Ratios

6.3 Number of iterations

In the following table 4, the total number of iterations required to compute all the fixpoint equations
as well as the ratio number of iterations versus size of the program are given for each bench and
each domain. The size of the program is defined here as the total number of variables occurring in
its rules.

The results show that the number of iterations is approximatively equal to half the size of the
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program. This ratio does not depend on the size of the program, but slightly on the domain.
The average number of iteration for a procedure ranges between 2 and 3 for recursive procedures,
showing that the potentially exponential behaviour of the domain does not occur in practice. The
algorithm appears to be basically linear. For most programs, the maximum number of iterations,
for a procedure, is equal to 4 or 5 on Prop and Prop™, and to 3 or 4 on the type domains showing
that the complexity of the domain does not necessarily increase with the number of constants. The
maximum number of iteration is 9 and is reached for PE on Prop™.

prop prop+ small types types
name iter. | ratio | iter. | ratio | iter. | ratio | iter. | ratio
append 8 0.80 8 0.80 8 0.80 8 0.80
cs 96 0.33 96 0.33 67 0.23 67 0.23
disj 91 0.32 91 0.32 71 0.25 71 0.25

gabriel 71 044 | 74 | 0.46 | 58 0.36 | 58 0.36
kalah 121 | 0.33 | 121 | 0.33 | 97 | 0.27 | 97 | 0.27

peep 71 0.48 77 | 0.52 | 58 0.39 | 59 0.40
Pg 37 1038 | 37 | 038 | 34 | 0.35 | 34 | 035
plan 41 0.55 | 41 0.55 | 39 0.53 | 39 0.53

pressl 158 | 0.45 | 161 | 0.45 | 135 | 0.38 | 135 | 0.38
press2 158 | 0.44 | 161 | 0.45 | 135 | 0.38 | 135 | 0.38
gsort 13 0.50 14 | 0.54 14 0.54 14 0.54
queens 25 0.60 25 0.54 | 22 0.52 | 22 0.52
read 135 | 0.41 | 135 | 0.41 | 135 | 0.41 | 138 | 0.42
reverse 10 0.77 10 0.77 9 0.69 9 0.69

Table 4: Number of iterations

6.4 Size of the (Substitutions) Decision DAGs

In the following table 5, the size of the biggest decision DAG, the average size of decision DAGs
and the average ratio size of decision DAG versus number of variables in the DAG are given for
each bench and each domain.

Once again the results contradict the potential exponential behaviour of the domain. It can be
observed that the size of decision diagrams is almost always lower than two times the number of
variables. More detailed results are given at subsection 6.6 showing that even the ratio does not
increase with the number of variables.

6.5 Number of Operations

The tables 6, 7, 8, 9 contain, for each domain and each bench,
e The number of operations stored.
e The number of operations reused.

e The ratio number of operations stored versus number of tops of the clock.
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prop prop+ small types types
name max ave rat | max ave rat | max ave rat | max ave Tat
append 15 8.88 | 2.12 23 11.75 | 2.50 12 7.50 | 1.88 15 8.75 | 1.88
cs 321 | 24.14 | 2.04 | 454 | 28.94 | 2.27 | 24 4.61 | 1.30 | 24 4.70 | 1.30
disj 139 | 24.26 | 2.00 | 153 | 27.11 | 2.22 | 28 597 | 1.38 | 30 6.52 | 1.45
gabriel 21 8.56 | 1.23 23 10.26 | 1.43 19 6.74 | 1.16 19 7.09 | 1.19
kalah 112 | 12.21 | 1.45 | 159 | 13.60 | 1.54 18 5.46 | 0.89 | 20 5.66 | 0.89
peep 75 16.41 | 1.99 98 | 23.16 | 2.60 | 28 7.07 | 0.90| 30 7.68 | 1.00
Pg 22 7.92 | 1.35 32 9.46 | 1.62 | 20 6.74 | 1.26 | 26 7.53 | 1.35
plan 29 8.10 | 1.83 29 8.39 | 1.88 10 4.74 | 1.31 11 4.85 | 1.31
pressl 42 11.34 | 1.41 63 14.19 | 1.78 | 25 7.47 | 1.00 | 29 8.33 | 1.15
press2 42 11.39 | 1.41 63 14.19 | 1.78 | 25 7.48 | 1.00 | 29 8.35 | 1.15
qsort 22 7.69 | 1.69 31 10.71 | 1.93 | 20 8.00 | 1.43 | 27 9.57 | 1.43
queens 14 5.76 | 1.56 14 5.76 | 1.56 5 3.73 | 1.27 5 3.73 | 1.27
read 88 13.62 | 1.41 | 134 | 17.87 | 1.74 | 156 | 22.62 | 2.02 | 231 | 26.85 | 2.37
reverse 15 8.00 | 2.00 20 9.50 | 2.30 13 7.00 | 1.67 15 7.67 | 1.78

Table 5: Decision DAGs

e The ratio number of operations stored versus size of the program.

e The number of operations performed when executing the program without cashing.

e The ratio number of operations performed versus number of tops of the clock when executing

the program without cashing.

e The ratio number of operations performed versus size of the program when executing the

program without cashing.

The results show that the generalized caching technique improves dramatically the efficiency of
the system. The fact that operations are cached implies that many operations which are called by

“top-level” operations are not reconsidered at all, even for beeing reused.

6.6 Sizes of Dags versus Numbers of Variables

The tables 10, 11, 12, 13 give for each domain and each number of variables the number of dags
studied, the average size of these dags and the ratio average size versus number of variables (for all
the programs of the benchmarks).

The results show that the ratio size of the decision diagrams versus number of variables does
not increase with the number of variables on the benchmarks indicating that programs with a big

number of variables can be analyzed as efficiently as small ones.
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name stored | reused | sto vs top | sto vs siz | perf | perf vs top | perf vs siz
append 95 70 95.00 9.50 210 210.00 21.00
s 5843 3528 149.82 19.87 18136 279.02 61.69
disj 4220 3589 131.88 14.86 15654 274.63 55.12
gabriel 1266 1361 105.50 7.91 3665 215.59 22.91
kalah 4151 3922 129.72 11.44 14779 268.71 40.71
peep 4555 9269 91.10 30.78 32698 268.02 220.93
Pg 775 561 110.71 7.99 1822 182.20 18.78
plan 551 620 91.83 7.45 1865 207.22 25.20
pressl 4877 7385 103.77 13.74 23316 256.22 65.68
press2 4891 7412 101.90 13.74 23375 251.34 65.66
qsort 238 120 119.00 9.15 433 144.33 16.6
queens 263 202 87.67 6.26 568 189.33 13.52
read 5160 7074 97.36 15.73 32016 266.80 97.61
Teverse 116 32 116.00 3.92 278 139.00 21.38
Table 6: Operations for Prop

name stored | reused | sto vs top | sto vs siz | perf | perf vs top | perf vs siz
append 95 70 95.00 9.50 302 151.00 30.20
s 7454 5418 140.64 25.35 32273 262.38 109.77
disj 5069 5972 120.69 17.85 52077 313.72 183.37
gabriel 1596 2041 99.75 9.98 5707 219.50 35.67
kalah 4936 7041 102.83 13.60 58630 305.36 161.52
peep 5666 14544 69.10 38.28 53913 247.31 364.28
Pg 966 311 87.82 9.96 2560 170.67 26.39
plan 687 1050 85.88 9.28 2940 183.75 39.73
pressl 6255 11813 82.30 17.62 45314 248.98 127.65
press2 6291 11882 82.78 17.67 45479 244.51 127.75
qsort 375 231 93.75 14.42 999 166.50 38.42
queens 280 288 70.00 6.67 780 156.00 18.57
read 7665 14568 81.54 23.37 126298 295.09 385.05
Teverse 154 126 77.00 11.85 449 149.67 34.54

Table 7: Operations for Prop™
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name stored | reused | sto vs top | sto vs siz | perf | perf vs top | perf vs siz

append 118 58 Inf 11.80 235 235.00 23.50
cs 683 314 75.89 2.32 1656 118.29 5.63
disj 1216 1694 67.56 4.28 4483 172.42 15.79
gabriel 768 1083 64.00 4.80 2649 155.82 16.56
kalah 1103 1838 52.52 3.04 26844 263.18 73.95
peep 1826 3849 55.33 12.34 15999 216.20 108.10
Pg 669 447 83.62 6.90 1616 146.91 16.66
plan 257 231 51.40 3.47 569 113.80 7.69
pressl 2119 4340 49.28 5.97 8973 154.71 25.28
press2 2136 4383 47.47 6.00 9033 138.97 25.37
qsort 359 150 71.80 13.81 720 144.00 27.69
queens 97 77 48.50 2.31 177 59.00 4.21
read 7372 | 26609 49.48 22.48 663500 281.86 2022.87
reverse 120 59 120.00 9.23 277 138.50 21.31

wn

Table 8: Operations for Small Type

name stored | reused | sto vs top | sto vs siz | perf | perf vs top | perf vs siz
append 150 67 75.00 15.00 287 143.50 28.70
s 736 966 49.07 2.50 1875 117.19 6.38
disj 1479 2131 67.23 5.21 5870 172.65 20.67
gabriel 360 1217 61.43 5.38 2912 145.60 18.20
kalah 1235 2102 47.50 3.40 27400 260.95 75.48
peep 2080 4539 47.27 14.05 20958 209.58 141.61
Pg 787 547 71.55 .11 2036 145.43 20.99
plan 282 264 47.00 3.81 642 30.25 3.68
pressl 2548 6013 43.19 7.18 12669 136.23 35.69
press2 2569 6086 38.92 7.22 12763 143.40 35.85
qsort 480 179 68.57 18.46 939 117.38 36.12
queens 102 92 51.00 2.43 198 66.00 4.71
read 10118 | 43639 38.33 30.85 916403 370.41 2793.91
Teverse 147 74 49.00 11.31 366 122.00 28.15

Table 9: Operations for Types

var 1 2 3 4 5 6 7 8 9 10 11 12 13
num | 116 70 100 110 64 128 86 54 64 43 18 34 22
ave 290 | 4.00 | 5.78 | 6.35 | 8.78 | 9.27 | 11.36 | 12.33 | 16.75 | 15.60 | 19.83 | 34.38 | 13.09
rat 290 | 2.00 | 1.93 | 1.59 | 1.76 | 1.55 1.62 1.54 1.86 1.56 1.80 2.87 1.01

var 14 15 16 17 18 19 20 22 23 24 25 27 42

num 6 31 23 13 8 4 4 8 4 15 4 2 2
ave 23.17 | 30.55 | 27.35 | 39.38 | 49.00 | 3.50 | 40.25 | 61.12 | 97.50 | 52.60 | 47.25 | 32.00 | 321.00
rat 1.65 2.04 1.71 2.32 272 | 018 | 2.01 2.78 4.24 2.19 1.89 1.19 7.64

Table 10: Sizes of DAGs vs number of Variables for Prop
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var 1 2 3 4 5 6 7 8 9 10 11 12 13
num | 116 70 100 116 64 131 88 54 67 44 18 35 22
ave 290 | 4.00 | 598 | 7.00 | 9.34 | 11.65 | 16.23 | 14.33 | 20.15 | 17.57 | 21.50 | 52.26 | 14.27
rat 290 | 2.00 | 1.99 | 1.75 | 1.87 | 1.94 2.32 1.79 2.24 1.76 1.95 4.35 1.10

var 14 15 16 17 18 19 20 22 23 24 25 27 42
num 6 31 23 13 8 4 4 8 4 15 4 2 2
ave 23.17 | 41.06 | 35.87 | 52.08 | 61.50 | 4.00 | 40.75 | 71.88 | 110.50 | 53.00 | 47.75 | 32.00 | 454.00
rat 1.65 2.74 2.24 3.06 3.42 | 0.21 2.04 3.27 4.80 2.21 1.91 1.19 10.81

Table 11: Sizes of DAGs vs number of Variables for Prop™

var 1 2 3 4 5 6 7 8 9 10 11 12 13
num | 115 70 99 105 57 102 71 41 42 33 13 28 22
ave 2.88 | 3.74 | 443 | 4.88 | 7.42 | 7.66 | 9.82 | 10.68 | 9.14 | 8.45 | 12.54 | 21.04 | 11.18
2.88 | 1.87 | 1.48 | 1.22 | 1.48 | 1.28 | 1.40 1.34 | 1.02 | 0.85 | 1.14 1.75 0.86

rat
var 14 15 16 17 18 19 20 22 23 24 25 27 42
num 3 21 18 8 7 3 2 6 3 7 2 1 1

ave 3.00 | 26.24 | 49.78 | 9.75 | 13.86 | 2.33 | 3.00 | 90.33 | 21.33 | 2.71 | 3.00 | 1.00 | 1.00
0.21 1.75 3.11 0.57 | 0.77 | 0.12 | 0.15 | 4.11 0.93 | 0.11 | 0.12 | 0.04 | 0.02

rat

Table 12: Sizes of DAGs vs number of Variables for Small Types
var 1 2 3 4 5 6 7 8 9 10 11 12 13
num | 115 70 99 106 57 103 71 43 42 33 13 28 22

ave 2.88 | 3.74 | 4.60 | 5.33 | 8.02 | 8.52 | 10.97 | 12.86 | 9.81 | 9.48 | 13.15 | 25.04 | 12.09
rat 2.88 | 1.87 | 1.53 | 1.33 | 1.60 | 1.42 | 1.57 1.61 1.09 | 0.95 1.20 2.09 0.93

var 14 15 16 17 18 19 20 22 23 24 25 27 42
num 3 21 18 8 7 3 2 6 3 7 2 1 1

ave 3.00 | 31.14 | 66.11 | 10.25 | 14.43 | 2.33 | 3.00 | 101.00 | 23.00 | 2.71 | 3.00 | 1.00 | 1.00
rat 0.21 2.08 4.13 0.60 0.80 | 0.12 | 0.15 4.59 1.00 | 0.11 | 0.12 | 0.04 | 0.02

Table 13: Sizes of DAGs vs number of Variables for Types
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6.7 Accuracy

It is difficult to evaluate the accuracy of our analyses with a statistical approach because they
provide information about success patterns, not about program points. Information about success
patterns can be reused by a post-processing algorithm to collect information about the program
points (see section 8), but we have not implemented such an algorithm yet.

However a “visual” examination of the results shows that they are very accurate. Let us
consider, for instance, the case of the quicksort program with difference lists which is know to be
a very difficult program to analyze accurately. The analysis on Prop provides the result 1 = x5,
expressing that the two outputs share exactly the same variables and, hence, will be grounded
simultaneously. Analysis on Prop™ returns (z7 = x3) A (77 # v) expressing additionally that
the outputs cannot be free variables. Finally, the analyses on the Type domains derive that both
outputs are lists. Similar results are obtained for the other programs.

Nevertheless, we have performed some measurements on the accuracy of the results. In the
table 14, the total number of variables occurring in the head of the rules as well as those compelled
to take an interesting value (g for the Prop domains, int or 1st for the Type domains) are given for
each bench and each domain. To have a better idea of the accuracy, we should unify (abstractly) the
abstract ouput patterns with relevant input patterns. Unfortunately this is not easily automatable.

name vars | prop | prop+ | small types | types
append 7 1 1 2 2
cs 104 37 37 70 70
disj 70 10 30 32 32
gabriel | 75 17 17 17 17
kalah 140 47 47 57 57
peep 79 12 12 21 21
Pg 43 19 19 19 19
plan 46 14 14 13 13
pressl 154 37 37 39 39
press2 154 37 37 39 39
qsort 15 6 6 9 9
queens 23 7 7 11 11
read 144 38 38 24 24
reverse 9 1 1 4 4

Table 14: The number of useful variables

7 Another (upwards) Abstract Domain based on 0": Partition,
a Domain for Possible Sharing Analysis
7.1 Introduction

In this section, we show that 0T can also be used to define other kinds of abstract domains for logic
program analysis. We present an exemple of an upwards closed abstract domain for possible sharing
analysis (see [48, 19, 16, 49, 50, 39, 51]). This domain is not as accurate as in most proposals. It
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is equivalent to the sharing component of the domain Mode described in [39] and extensively used
for experimental evaluation in [4, 31, 5, 52, 53]. In these experiments possible sharing analysis was
mainly used for improving the accuracy of mode analysis, not for its own information content. In
this particular context, it was shown useful enough, particularly when used in conjunction with a
reexecution strategy. In the Toupie context, it can be used in a similar way in the context of a post
processing algorithm (see section 8).

We also show that more complex domains for sharing analysis can be expressed by means of
0T. Unfortunately these domains cannot be easily nor efficiently implemented in Toupie because
the corresponding abstract operations cannot be expressed with simple logical operations on 0T
formulae.

7.2 Abstract Domain

In the context of this new abstract domain, a two valued domain of constants is sufficient. Therefore
we could use Prop [1] as an alternative notation. As the particular meaning of the constants is
irrelevant in this context, we leave them unspecified. It can also be noticed that more elements
could be added to the constant set without enhancing the expressiveness of the abstract domain.
These additional constants should of course have bad consequences from the efficiency point of
view. Therefore we ignore those possibilities in the following.

It seems simpler to define abstract substitutions syntactically, in this case. Abstract substitu-
tions over D represents partitions of D, with the meaning that two program variables belong to
the same class if and only if they possibly share a (standard) variable.

Definition 52 [Abstract Substitutions]
Let D be a finite set of program variables. An abstract substitution over D is any function
(D — Const) — B which can be represented by the formula

/\ /\ (x:ac’)

D'eP \=z,z'eD!
where P is a partition of D. As usual, we note ASp the set of abstract substitutions over D.

Theorem 53 [Semantic characterization of Abstract Substitutions]
Let 8 € (D — Const) — B. § € ASp if and only if there exists a partition P of D such that
for all & € (D — Const),

there exists a partition {Py, P2} of P such

ﬁa =1 1ﬁ { that {UD/€P1 Dl?UD'EPQ D/} = Oé_l(COnSt).

Proof
Let P be a partition of D. Let o € (D — Const). Consider the formula

/\ /\ (z =a’)

D'eP \=z,z'eD’!

Clearly « satisfies this formula if and only if it also satisfies the condition of the theorem.
O
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Definition 54 [Ordering on ASp]
Let 3,3 € D. By definition,

pg<pifft §= 4.
Theorem 55 ASp is a complete lattice.

Proof See [39] for the proof of a similar result for partitions.

The least upper bound and greatest lower bound operations are defined by the conjunction and
the disjunction, respectively.

O

7.8 Semantics

Definition 56
Let € PSp. Let y € codom(f). We note
occ(y, 0) « {z:zeD & y€ var(z0)}.

Definition 57 [Abstraction of a Program Substitution]
Let 8 € PSp. The abstraction of 4 is given by the following equality:

Abs(6) = A ( N (z= w’)) :
yEcodom (0) \z,z'€occ(y,b)

Definition 58 [Abstraction of a Set of Program Substitutions]
Let © € CSp. The abstraction of O is given by the following equality:

Abs(©) = N Abs(0).
fe®

It is interesting to compare these definitions with the corresponding definition of section 4.3:
symbol “\/” has been replaced by “A”. This change is related to the fact that the new domain is
upwards closed while the previous one is downwards closed.

Definition 59 [Concretization]
Let 8 € ASp. The concretization of 8 is given by the following equality:

Ce(B) = {0:Vz,2" € D:(Ja € (D — Const): fpa=1%& ar # az') = var(z0) Nvar(z'0) = {} }.

Theorem 60 (CSp, ASp, Cc, Abs) is a Galois-insertion.
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7.4 Abstract Operations
7.4.1 Unification of Two Program Variables (z; = z;)
Specification 61

Let D = {zy,...,2,}. Let 3 € ASp. The abstract unification of z; and z; (1 < ¢,57 < n),
denoted UNIF-VAR(%,j,3), returns an abstract substitution ' for which the following holds:

o € mgu(z;0,z,0)

b ¢ Ce(d) } = o€ Ce(B).

Implementation 62

ﬁ/ d:ef (962 = acj) A ﬁ

Theorem 63 Implementation of UNIF-VAR is consistent.

7.4.2 Unification of a Program Variable and a Functor (z; = f(z;,,...,2;,))

Specification 64

Let D = {a1,...,2,}. Let 3 € ASp. The abstract unification of z; and f(z;,...,2;,)
(1 < 4015y Jm < n), denoted UNIF-FUNC(f, 4, j1,. .., jm,/3), returns an abstract substitution 3’
for which the following holds:

0, Hyeeey @ )0 !

Implementation 65

def
ﬁ/ = (wi:le A...Axi:xjm)Aﬁ.
Theorem 66 Implementation of UNIF-FUNC is consistent.

7.4.3 Other operations

It is interesting to note that in this abstract domain, the union of sets of substitutions is represented
by a conjunction of formulae. Therefore, the translation of a logic program in Toupie will be different
for sharing analysis: a procedure will be translated as a conjunction, no longer as a disjunction.
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7.4.4 Testing Impossible Sharing

As stated before the main raison d’étre of this domain, is to infer with certainty that some program
variables cannot share a free renaming variable or, in other words, that they are independent. Hence
the question arises to know if impossible sharing will be effectively (and efficiently) checkable with
Toupie. The answer to this question lies in the following theorem.

Theorem 67 [Testing Impossible Sharing]
Let 3 € ASp and z,2’ € D. The two following statements are equivalent.

1. VO € Ce(p) @ var(z8)nvar(z'0) = {}.
2. The formula (5 A (2 # 2')) is satisfiable in the intended interpretation.

Proof
Due to the given definitions, the following statements are equivalent.

1. V0 € Cc(f) : var(z8)novar(z') = {}.
2. There exists a € (D — Const) such that fa = 1 and az # az’.

3. (BA(x #2"))is true for the assignment a.

O

First, the previous results show, that Toupie can be used to test variable independence by
evaluating (8 A (z # 2)). If the result is 0, there is a possible sharing. Otherwise the variables
are independent. Second, this shows that the p-calcul is not sufficient for the purpose of Abstract
Interpretation: we need a more general language to program this kind of ask actions.

7.5 About possibly more precise domains for Sharing Analysis

In this last subsection, we show that the domain 0 is able to express deeper sharing information.
However this potentiality seems only theoretic because the implementation of the corresponding
abstract operations should require complicated and costly processing.

In the rest of this section, we discuss an abstract domain equivalent to the domain of [49].

Definition 68 [Representation of a Set of Sets of Program Variables]
Assume that Const= {sh,nosh}. Let P C P(D). We call representation of P, the function
g € (D — Const) — B corresponding to the following formula:

DVP (( /})/(w = sh)) /\ ( lé\_D/(x = nosh))) .

Theorem 69 [Validity of the representation]
Let P CP(D). Let § the representation of P. For each o € (D — Const), the following holds:

Ba=1 iff ID" € P:(Vz € D' :azx =sh) & (Vo € D — D' : az = nosh).

Obviously the given representation defines a bijection between (D — Const) — B and P(D).
This bijection can be used to adapt from [49], the definitions of the concretization and abstraction
functions. The idea is that 8 € Ce(f) iff for all y € codom(#), there exists D' € P such that
D" = occ(y, 0).
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The Problem with this representation is that abstract unification is not easily nor efficiently
implementable. Consider, for example, the simplest case of the built-in z; = z;. Roughly speaking,
for a given abstract substitution 5 representing the set P (of sets of variables), the abstract operation
has to build ' representing P’ where all D’ in P which can be influenced by the execution of z; = z;
are put together in all possible ways.

If we try to implement the operation as before, by adding the constraint z; = z;, we will simply
eliminate all sets in P which contain only one of the two variables. This is clearly not the intended
effect.

Any correct implementation should probably involve the execution of many satisfiability tests
and many constraints accumulations resulting in a very inefficient operation.

8 Conclusions

This section summarizes related work, and addresses some possible extensions of our work.

8.1 Related Work

The abstract interpretation of logic programs by means of constraint logic languages has already
been proposed in [54, 55] but only from a theoretical point of view. In this paper we have adressd
and demonstrated the practicality of such an approach. In an as yet unpublished work, M. Codish
et al use a similar approach to abstract interpretation over the domain Prop. Instead of translating
logic programs to Toupie, Codish et al transform them to Datalog, and apply a simple T'p evaluation.
Their approach is simpler since they do not use a constraint language. But, we believe that our
approach is more powerful, since BDD’s encoding permits larger interpretation domains without
loss of efficiency.

In [56], P. Dart defines a groundness formula algorithm. There are two main differences between
Dart’s approach and ours. First, our approach is not restricted to ground formulae, and is thus
more general. Second, even when our approach is applied to the domain Prop, it permits a larger
class of formulae, in particular those of the form “X or Y”.

In [57], J. Gallagher et al describe a method for deriving RUL programs from logic programs, where
the derived program approximates the original one. However, their implementation is written in
Prolog and cannot (as this writing) deal with large programs; they report in the conclusion that
the computation of the fixpoint for a program of 80 Prolog clauses takes several minutes.

8.2 Summary

We have shown in this paper how constraint solving over symbolic finite domains can be used
to implement efficiently a significant class of Abstract Interpretations of logic programs. The
constraint language Toupie is very adequate to bottom-up Abstract Interpretation of logic programs
because it implements an efficient fixpoint algorithm and because a straightforward translation of
logic programs in Toupie produces the required Abstract Interpretation. Our method also uses
constraints as abstract substitutions which leads to very accurate analyses because constraints
memorize dependencies between variables more faithfully than most abstract domains do. The
price to pay for this accuracy was shown very reasonable on the proposed benchmarks and domains.
Although the size of abstract substitutions can, in theory, become exponential in the number of
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variables, it is equal to two times the number of variables on the average, without any significant
exception. Of course, this is only true for the proposed benchmarks and domains, but we believe
that they are good representatives. As our implementation uses a careful caching technique which
ensures that no operation is performed twice, the time efficiency of our system is significantly better
than for other systems on this class of Abstract Interpretations.

8.3 Extensions

Some interesting extensions to our work will be addressed in the future.

First, we will address the problem of instantiating automatically the generic domain from a
formal description of the meaning of constants. This will allow us to test the practicability of the
system on much bigger domains.

Second, we will extend our approach to top-down analysis of logic programs (see, for instance,
[8, 9, 10, 11, 13, 14, 15]). Three possible ways will be investigated and compared experimentally.

1. Magic Sets transformations [58, 59, 60] allow to rewrite a logic program in such a way that
its bottom-up execution (or abstract interpretation) implements a top-down execution of the
original one. This approach seems straightforward to adapt in our context.

2. Instead of describing output patterns, it is possible to define a transformation of flat logic
procedures into a description of their input/output relation. This transformation is more
expensive than the one presented in this paper as the number of variable will be doubled.
However this approach is probably more accurate than magic sets (see [60]) and provides a
complete description of the input/output behaviour of the procedures.

3. The last approach consists in exploiting the results of the bottom-up analysis to derive in-
formation about the top-down execution of the program. The principle of the method is to
reexecute each clause of the flat logic program once and to use the information about success
patterns to “solve” the calls by abstract unification. A similar post-processing algorithm is
used by the system GAIA [2]. However GAIA uses input/ouput patterns not merely success
patterns. Hence we will also implement a similar algorithm to exploit results produced by
the second extension.
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