IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 6, JUNE 1978

509

Binary Decision Diagrams

SHELDON B. AKERS, FELLOW, IEEE

Abstract—This paper describes a method for defining, analyzing,
testing, and implementing large digital functions by means of a
binary decision diagram. This diagram provides a complete, concise,
“implementation-free” description of the digital functions involved.
Methods are described for deriving these diagrams and examples are
given for a number of basic combinational and sequential devices.
Techniques are then outlined for using the diagrams to analyze the
functions involved, for test generation, and for obtaining various
implementations. It is shown that the diagrams are especially suited
for processing by a computer. Finally, methods are described for
introducing inversion and for directly “interconnecting” diagrams to
define still larger functions. An example of the carry look-ahead
adder is included.

Index Terms—Binary decision diagrams, digital functions, logical
analysis, logic diagrams, logic synthesis, test generation.

I. INTRODUCTION

ITH THE ever increasing complexity of digital func-
Wtions and systems, the researcher whois charged with
their analysis, testing, and implementation is faced with a
very real “description” dilemma. On the one hand, he has at
his disposal a variety of sophisticated design languages
which can provide concise functional descriptions of the
device orsystem with which heis concerned. However, when
he attempts to use such descriptions in any sort of formal
analysis procedure, he typically discovers that their very
conciseness virtually precludes any detailed logical investi-
gation. On the other hand, when he turns to those descrip-
tions which are amenable to extensive analysis, he finds that
these take the form of truth tables, Boolean equations,
Karnaugh maps, etc.—all of which have the unpleasant
property of growing exponentially with the number of
variables involved. What he would like to have would be a
concise, “implementation-free” description which could still
yield meaningful results about the logical structure and
testing requirements of the function involved. This paper
will explore one possible approach to bridging this “descrip-
tion gap.”

The general idea will be to define a digital function in
terms of a “diagram” which tells the user how to determine
the output value of the function by examining the values of
the inputs. We shall begin by describing these diagrams and
showing how they may be derived for various digital devices.
Techniques will then be described for using the diagrams to
analyze the functions involved, for test generation, and for
obtaining actual implementations. Finally, methods will be

Manuscript received July 29, 1977; revised February 28, 1978.
The author is with the Electronics Laboratory, General Electric, Syra-
cuse, NY 13221.

described for directly “interconnecting” diagrams to define
larger digital functions.

II. BINARY DECISION DIAGRAMS
Consider the switching function,

f=AvBC

and assume we are interested in defining a procedure for
determining the binary value of f given the binary values of
A, B, and C. One way to do this would be to begin by looking
at the value of A. If A = 1, then f = 1 and we are finished. If
A =0, we look at B. If B =1, then f = 0 and again we are
finished. Otherwise, we look at C and its value will be the
value of f.

Fig. 1 shows a simple diagram of this procedure. We enter
at the node indicated by the arrow and then simply proceed
downward through the diagram, noting at each node the
value of its variable and then taking the indicated branch.
When a 0 or 1 value is reached, this gives the value of fand
the process ends.

Fig. 2 shows similar diagrams for some simple AND, OR,
and EXCLUSIVE-OR functions. In each case, the reader should
have little difficulty in confirming that the diagram does
indeed describe a procedure for finding the value of the
indicated function. We shall refer to these diagrams as binary
decision diagrams.!

Before examining some of the properties and uses of these
diagrams, let us look at how they may be derived. A number
of procedures are possible depending on the form in which
the function fis defined. If, for example, we are given nothing
more than the truth table for f, then a simple but possibly
cumbersome procedure is to construct a diagram such as
that shown in Fig. 3 which has a one-to-one correspondence
between the 2" rows of the table and the 2" paths to the
outputs of the diagram. These outputs may then be labeled
with the corresponding binary values of f and the required
diagram automatically results. With n variables, there will
initially be 2" — 1 nodes in such a diagram.? There are,
however, several obvious ways in which this number can be
considerably reduced. Consider the diagram in Fig. 4(a)

! Strictly speaking, all paths through the diagram terminate at a single
0-node or a single 1-node (as with the EXCLUSIVE-OR diagram). However, it
will be convenient to indicate this by simply terminating a branch with the
value of the terminal node to which it is directed. It will be understood
that all branches are directed downward.

2 The reader may recognize the diagram of Fig. 3 as a binary decision
tree [3]. While these diagrams do share many of the same properties as
these trees, they differ in the important aspect that a node in a diagram
may have a number of branches directed into it (rather than just one).

0018-9340/78/0600-0509$00.75 © 1978 IEEE

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on June 25, 2009 at 22:14 from |IEEE Xplore. Restrictions apply.

510

Fig. 1. Diagram for Av BC.

Fig. 2. Some 3-variable diagrams.

which results from the truth table for f= ABC v AC. We
note that the value of f obtained at the leftmost C-node is 0
regardless of the value of C. Accordingly, we can remove this
node and replace it by 0. Likewise, the two rightmost
C-nodes are identical in the sense that they lead to identical
output values, so we can combine them into a single node.
The result is Fig. 4(b). But now we note that the rightmost
B-node is superfluous, since both of its branches go to the
same node. Thus, we can remove it to obtain the simplified
diagram of Fig. 4(c). (We shall return to this diagram in
Section VI to show that even further simplification is
possible.)

Normally, switching functions are specified in more com-
pact forms than that afforded by the truth table with its 2"
values. One of the most common is as a Boolean expression.
In this case, a “top-down” procedure can be used to derive
the diagram by repeated applications of the classical Shan-
non expansion formula:

f(4,B,C,--")=Af(1,B,C, ---)vAf(0, B, C, -).
Fig. 5 shows this procedure for the 5-variable function,
f= B(ACv CE)v E(ABv BD).

We begin by setting A = Qin fto obtain the function f, which
must be realized below the A = 0 branch. We then do the
same for A = 1 to obtain f, as shown in Fig. 5(a). Now the
process is repeated for variable B to obtain the four func-
tions in Fig. 5(b). Now we may note that two of the branches
lead to the same function (DE) so these may be directed to
the same node. [See Fig. 5(c).] We continue in this fashion—
merging identical subfunctions, and then expanding each
about one of its remaining variables—until all paths have
terminated with a 0 or 1. Clearly, all paths will terminate in
at most n steps.

Note that in the process of deriving this diagram we have
actually obtained the diagrams for a number of functions. If,
for example, we enter the diagram of Fig. 5(d) at the node

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 6, JUNE 1978

=] olo) oo

=|=felel=]~]o]lo|w

lol=lol=le] -l oln

EARARREDR
[

Fig. 3. Deriving a diagram from a truth table.

Fig. 4. Simplifying a diagram.

indicated by f,, we will exit with the value of f,,. If we enter at
the f,-node, we will exit with the value of f,, etc. Thus, we can
use a single diagram to specify a number of functions
depending on the node at which we enter the diagram. If, in
fact, we had initially wanted to derive a diagram for the two
functions, f, and f;, we would have followed the same steps
described above, beginning at Fig. 5(b) and ending with the
diagram of Fig. 5(d) (with the A-node missing). Thus; this
same procedure can be used to derive a diagram for an
arbitrary number of functions.

Fig. 6 shows the diagrams for some common combina-
tional functions derived by these procedures.® The general-
ization to larger numbers of variables for functions such as
the multiplexers or the majority and parity functions should
be obvious. In general, an n-input parallel-to-serial multi-
plexer will have a diagram with n — 1 nodes; the n-output
serial-to-parallel multiplexer willhave 2(n — 1). Fig. 7 shows
the diagrams for the next-state equations for several
common sequential devices. All of these equations are for
edge-triggered devices. While it can be shown that in the
worst case the number of nodes in a diagram of n variables
can be 0(2"/n), for almost all common dlgltal devices this
number grows linearly with n.

Before turning to some of the uses of these diagrams, let us
look at how they may be stored and processed by a digital
computer. Fig. 8 shows the diagram for the eight variable
function,

f=M(AB, C, DEvDF)® (G v H)

where M denotes the 3-variable majority function.
In order to completely define this diagram in a computer,

3 The notation and equations used in this figure and in Fig. 7 are taken
from [4] where the reader may find formal descriptions of the devices
involved. Where a path terminates at a variable, this simply indicates that
the value of the function will be the value of that variable. We shall refer to
these variables as exit variables.

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on June 25, 2009 at 22:14 from |IEEE Xplore. Restrictions apply.

AKERS: BINARY DECISION DIAGRAMS

f = B(AC v CE) v E(AB v BD)

fo=B(CviE?)vi€(HvD) 11=B€:i5vianis

(a) (b)

(c) @
Fig. 5. Deriving a diagram by expansion.

HALF ADDER FULL ADDER

gt MIxL YD

3 OUT OF 5 MAJORITY FUNCTION

f - M(A,B,C,D,E) o 2%y %0 @x

Fig. 6. Diagrams for some common combinational functions.

it is merely necessary to store for each node the binary
variable involved plus “pointers” to the two nodes to which
its 0 and 1 branches are directed. Thus, if we assign the 9
nodes in Fig. 8 to locations a, b, ¢, * -, i as shown, then the
diagram may be completely specified by simply storing an
ordered “triple” at each location as shown in the list in Fig. 8.
Procedures such as those to be described become quite
simple with such lists since they merely involve manipula-
tion of appropriate “pointers.”

511

CLOCKED D FLIP-FLOP T FLIP-FLOP

1= ek pEc Q1. hak, Kk
Q 1 o 1
Q) Q q
CLOCKED T FLIP-FLOP J-K FLIP-FLOP
Kol ok y ek v TRk . i
SRR A Q- sk Rt

CLOCKED J-K FLIP-FLOP
(WITH STATK OVERRIDE)

QF1. gy RK @Kk v cioMak v kKM

CLOCKED J-K FLIP-FLOP

Q1 - &k v kK v QK

Fig. 7. Diagrams for some common sequential devices.

<
>
£

~ T m om0 an o

Qlo||mlo]alo| w] >
o=zl |=]o|=lala]| o
T = = R e o o] =

Fig. 8. An 8-variable diagram with its list of triples.

III. ANALYZING A DIAGRAM

Since a diagram is intended to provide a convenient
means of finding the output of one or more functions for any
given input, let us now examine a diagram in the presence of
one such input. Fig. 9 shows the diagram of Fig. 8 in the
presence of the 8-bit input 00110100. The darkened branches
correspond to these input values and thus indicate the
“active” branch out of each node. We shall refer to such a
diagram as an activated diagram. It is a simple matter to
start at the f-node and follow down the path defined by the
activated branches to determine that for this input the value
of the function would be 0.

Now several interesting facts may be noted. Since each
node has two output branches and since one and only one of
these is activated for a given input, it follows that for any

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on June 25, 2009 at 22:14 from |IEEE Xplore. Restrictions apply.

512

1
] 0 1

1
Fig. 9. Diagram activated by 00110100.

input exactly half of the branches in a diagram are activated.
Moreover, since each node has one and only one active
output branch, it follows that from every node there is one
and only one active path to an output value of 0 or 1. This is an
important property of these activated diagrams which will
prove quite useful in what follows.

Note also that while any input induces an active path from
each node to an output value ®@ it does not always follow that
for any path from a node to a ® there exists an input which
activates it. This is for the simple reason that the same
variable may be involved twice in the path—once with a
branch value of 1 and once with 0. On the other hand, any
path which does not have this property (i.c., botha V=10
and a V = 1 branch) can be activated by simply setting the
variables involved to their indicated values. We shall call
such a path a feasible path. Diagrams which are derived
using the truth table or expansion procedures can be shown
to automatically have this property, and in others it is a
simple matter of path tracing to check for its existence.

Now let us look at how we can use a diagram to determine
various logical properties of the function(s) which it repre-
sents. It is easily seen that in Fig. 8 there are no paths
containing nodes with the same variable and hence that all
paths in the diagram are feasible. This means that if we
arbitrarily trace out a path from the f-node to (say) a 1 then
we have automatically found a set of input variable values
for which the function will be 1 regardless of the values of the
other variables. Assume, for example, that we choose the
leftmost path in the diagram of Fig. 8 exiting to 1 at the
G =0 branch. We now know that any input with
A = C =G =0 will cause f to be 1. In other words, that
ACG is an implicant of f. From this it follows that if we trace
out all possible paths from f to a 1, we will automatically
generate a sum-of-products form for f.* (Conversely, tracing
out all paths to 0’s will yield a product-of-sums form.)

4 For the readers who are concerned with methods for finding abso-
lutely minimal 2-level forms for a function, we hasten to point out that the
implicants obtained are not necessarily prime implicants. However, they
are collectively disjoint and essential ir. the sense that each minterm is
covered by one and only one such implicant.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 6, JUNE 1978

Unless we have a burning desire to actually see a sum-of-
products form for f; tracing out all paths is not a particularly
rewarding task since the number of such paths (products)
may well become quite large (e.g., 2"~ ! for the n-bit parity
function). What we can do with very little effort is to
determine the exact number of such paths. This is easily
accomplished by a branch labeling procedure. We begin
with the f-node and assign each of its branches a 1 indicating
that we have found 1 path containing that branch. (See Fig.
10.) We now look for a node having numbers on all of its
input branches. (A well-known property of directed acyclic
graphs [2] insures that this will always be so.) We add up the
numbers on its input branches and assign this number to
both of its output branches, thus giving the total number of
paths from f which pass through each such branch. In this
case, we would assign a 1 to each branch out of B. Now C has
a 1 on both its input branches so we assign 2 to its output
branches. Continuing in this way, we end up with all
branches labeled as shown in Fig. 10. Now we have only to
add up the numbers on the terminal 1-branches to determine
that there exists a sum-of-products form for fwith exactly 23
product terms. Likewise, the terminal 0-branch numbers
indicate a product-of-sums form with 22 sum terms.

Similar procedures may be used to count the number of
literals in these two-level forms or, if desired, to count the
exact number of min- and max-terms in the function. Thus,
we can very easily obtain meaningful information about the
two-level and min- and max-term forms of a large function
without resorting to the often horrendous task of actually
generating such forms.

IV. TEST GENERATION

Another area in which these diagrams can be particularly
useful is that of test generation, i.e., finding a set of inputs
which can be used to confirm that a given implementation
performs correctly. Since the diagram provides only a
functional description of the device or devices involved, it
would certainly be overly optimistic to expect that we can
use it to find a set of tests which will automatically provide
complete fault coverage for all implementations. (In fact,
given any possible test it is always possible to come up with a
contrived implementation in which only that test will detect
certain faults.)

On the other hand, if we generate a set of tests which fully
“exercises” all of the various nodes and branches of the
diagram, then certainly it would not be unreasonable to
expect that this same set will likewise be quite useful for
testing almost any reasonable implementation. Also, as we
shall see in the next section, there exists a variety of
implementations in which the diagram tests have a one-to-
one correspondence with tests of the implementation. How
then can we generate a set of tests for fully “exercising” a
given diagram?

For smaller devices, one obvious choice is to generate a set
of tests which will collectively activate all 0- and 1-paths
through the diagram. (Using procedures such as those
described in the previous section, we can initially check to
insure that the number of such tests will not be prohibitively

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on June 25, 2009 at 22:14 from |IEEE Xplore. Restrictions apply.

AKERS: BINARY DECISION DIAGRAMS

large.) These, in turn, will not only constitute test sets for
two-level sum-of-products and product-of-sums realiza-
tions of the device, but they will also constitute “universal
test sets” for various “AND-OR” implementations (see [5] and
[6]).

For larger devices where this number of tests becomes
unmanageable, a useful alternative is to look for sets of tests
which induce “sensitized paths” [7] between the various
inputs and outputs of the device. Again, the diagram affords
a convenient means for quickly and systematically carrying
out such a procedure. It is a simple matter of path tracing, for
example, to determine that the input shown in Fig. 9 would
serve as a test (detectable at f') for variables C, D, and F s-a-0
and for variable G s-a-1.

A more comprehensive test set can be obtained by
postulating various “diagram faults” analogous to the
“stuck-at” faults in an actual implementation and then
generating tests for discovering each of these faults. (The
input of Fig. 9, for example, would detect “s-a-1 faults” on all
of the branches along the activated path beginning at the
fnode.) Again, such a procedure will insure that the device is
systematically put through a variety of different modes of
logical operation.

A discussion of precise methods for generating test sets
under these various conditions would take us far beyond the
scope (and permitted length) of this paper. Let it suffice to
say that the reader who has labored through test generation

procedures for logic networks will find it a far more simple

and straightforward task. In particular, he will find that
standard techniques and results in the literature, such as
path tracing [3] and the Max Cut/Min Flow theorem [1], can
greatly enhance the process. Instead, we shall now look at
how actual implementations of a device may be derived from
the diagram and thus directly related to the generated tests.

V. IMPLEMENTING A DIAGRAM

Assume we are given the diagram for a digital function f
and we wish to construct a logic network which will perform
precisely as indicated by the diagram. If the entry node for f
hasnode variable V, and its 0- and 1-branches are directed to
entry nodes for functions g and h, respectively, then it follows
that the logical value of f will be

f=VgvVh=(Vvg)Vvh)

Thus, if g and h are implemented, then f'can be implemented
by a single “1 out of 2” selector having V, g, and h as inputs.
Accordingly, to implement any diagram, we simply replace
each node by a “1 out of 2” selector with the resulting inputs
and outputs connected just asindicated by the diagram. Fig.
11 illustrates this implementation for the diagram of Fig. 8.
(The small dot on each logic element distinguishes the
g-input from the h-.) Note that the logic signals now flow
upward through the resulting implementation.

Clearly, a variety of such structures is possible depending
on the technology involved. (Some elements may often be
realized more simply than others because constant inputs
are involved or because the particular input variable in-

513

SUM OF PRODUCTS: 8 +8 + 7 =23

PRODUCT OF SUMS: 8 +7 + 7 = 22

Fig. 10. Counting products and sums.

Vgv Vh= (Vvg(Vvh)

0GH
Implementing a diagram.

1 GH
Fig. 11.

volved is unate.) What is of immediate interest is the fact that
there is a one-to-one correspondence between postulated
faults in the diagram and the stuck-at faults on the inputs
and interconnecting leads in the implementation.

Consider again the input used to activate the diagram in
Fig. 9. If this same input is applied to the implementation of
Fig. 11, it automatically sets the “1 out of 2” selectors as
shown in Fig. 12. Now it can be seen that for every active
path from a node to an output value ¢ in Fig. 9 there now
exists a sensitized path in Fig. 12 from that ¢-value to the
output of the logic element at that node. In other words,
there is a one-to-one correspondence between the (down-
ward) active paths in the diagram and the (upward) sen-
sitized paths in the implementation.

In particular, this means that for each of the five branch
s-a-1 faults which would be detected in the diagram there
exists a corresponding lead s-a-1 fault which will be detected
in the implementation. Likewise, there is a direct correspon-
dence between the four detectable node “stuck-at” faults in
the diagram and “stuck-at” faults on the corresponding

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on June 25, 2009 at 22:14 from |IEEE Xplore. Restrictions apply.

514

{lgv Vh=(Vv 8)(;/v h)

g V h

v
001
Fig. 12. Testing an implementation.

100

inputs in the implementation. (Checks in Fig. 12 indicate
nine lead and input faults which would be tested in this case.)

VI. INVERTERS AND INTERCONNECTIONS

The process of designing large digital systems is typically
one of interconnecting smaller devices, such as flip-flops,
registers, multiplexers, etc., in such a way that the resulting
system has the required performance characteristics.
Normally, these devices are interconnected directly to each
other with various inverters being inserted as needed. Ac-
cordingly, we shall conclude this paper by showing, first,
how inversion may be introduced into the diagram process
and, second, how various diagrams may then be directly
“interconnected.” These techniques will then be used to
derive the diagram for a 4-bit carry look-ahead adder.

A simple way to introduce inversion into the diagram
process is to allow for the insertion of a small dot (or
inverter) on the entry branch to a node with the understand-
ing that whenever such a dot is encountered, the user will
automatically complement the binary value which he ulti-
mately obtains. (See Fig. 13.) During the process of follow-
ing the branches of an activated diagram, he may encounter
a number of such dots, but he need only keep track of
whether this number is odd or even in order to decide
whether or not to complement the final value.

The use of such inverters can reduce still further the
number of nodes required in the diagrams. Fig. 13(c)shows,
for example, how the function, X @ f, may be represented by
simply inserting a single node ahead of the diagram for . (In
these and subsequent diagrams, it will be understood that
unless otherwise indicated the left and right exit branches
from a node correspond to 0- and 1-values, respectively.)
Now, the n-bit parity function may be represented by just
n — 1 nodes (Fig. 13(d)] and other diagrams, such as that
derived in Fig. 4, may be similarly simplified [Fig. 13(¢) and
(f)] by inserting appropriate inverters.

In all of the diagrams discussed thus far, we have assumed
that the variables within the nodes were primary input
variables. However, there is no reason that we cannot permit
the node variable to itself be a subfunction (say, g) havingits
own diagram. In this case, the user who encounters this node
would proceed to the diagram for g, determine the value of g,

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 6, JUNE 1978
- xot
(a) () ()
A®BO®CS®D

D
(d) (e) (n

Fig. 13. Diagrams with inverters.

and then return to the original node and take the indicated
branch. This, of course, complicates the path tracing process
but, as we shall see, is more than offset by the ease with which
the resulting diagrams may now be manipulated.

To illustrate this process, consider the following equa-
tions defining the operation of a full carry adder in terms of a
subfunction (4; ® B)):

Ci+1=E,C;vE;A;
Si=E®C
where
E;=A,;® B,

Fig. 14 shows the diagrams for these three equations
(together with the three “triples” which define their opera-
tion). Now, if the user wanted the value of C;, ; when all the
primary inputs were 1, he would enter at the C;,; node
where he would be directed to the E; node. Here, he would
traverse the E; diagram to obtain O as the value of E;. He
would then return to the C;, , node and take the 0-branch,
exiting with C;,; = 4, = 1.

The primary advantage of allowing the node variables to
refer to other subfunctions is the ease with which diagrams
may then be interconnected. To see this, consider the two
devices shown in Fig. 15(a) and (b) havingdiagrams, D, and
D,, respectively.

Assume that we wish to interconnect these two devices as
shown in Fig. 15(c). How can we obtain adiagram D ; which
describes the operation of this new device? All that is
necessary is to simply replace each variable, Vin D, by g, the
output which drives it. If g is complemented, then V is
replaced by g. Thus, in D, we would replace Bby g,, Cby g,
D by g3, and E by g;.

With exit variables (such as D and E in D,), direct the
branches into these variables directly to the corresponding
g’s, inserting inverters as required. Fig. 15(c) shows the
diagram D, which results from these operations.

Now let us use these procedures to derive the diagram for
a 4-bit adder, i.e., a device having two 4-bit input words,
Ay — A, — A, — Ay and B; — B, — By — By, plus a carry
bit, C;n, Wwhose output is their binary sum, S, — S3 — S, —

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on June 25, 2009 at 22:14 from |IEEE Xplore. Restrictions apply.

AKERS: BINARY DECISION DIAGRAMS

Ci#l Sl El
a b ¢ C|+1 +a|e Al Cl
s bj|c C‘ oY
Ai
C‘ Bl ¢ Al Bi| B

o
>
>

~

Fig. 15. Interconnecting two diagrams.

S; — So. (S4 is normally denoted as Coyr.) To do this, we
simply make four copies of the full adder of Fig. 14 and then
interconnect them as described above. The result is the
“ripple-thru” adder of Fig. 16. Note that, in general, an n-bit
“ripple-thru” adder requires just 3z nodes.

In order to make this device into a carry look-ahead
adder, it is necessary to generate two additional functions, G
and P, which are used exclusively for generating the carry bit
Cout- The functions, G and P, can be defined as those which
result when Cyy is set to 0 and 1, respectively, in the function
for Coyr. Thus, to obtain the diagram for G, we take the
diagram for C,yy in Fig. 16, prune off the S’s since they do
not affect Coyr, and set Cyy = 0. Likewise, P is obtained by
repeating the process and setting C,= 1. Finally, the
diagram for Cgyyy is obtained by inserting C;y as shown in
Fig. 17, and the full diagram for the 4-bit carry look-ahead
adder results.® (Note that the C oy node is removed from the
ripple-thru adder since it is now generated separately.)

The extension of this diagram to any number of bits

5.The G and P functions used here are those which result when Cqyy is
“expanded” about C,. For a discussion of carry look-ahead logic and
other ways of defining G and P, see [8].

515

E, E, E, Eo
? QPR
By B, By By
COUT
A3 53
Az 52
Al Sl
Ay s

Fig. 16. Diagram for ripple through adder.

Ey E, E, %
B B, B, B,

3

Fig.17. A 4-bit adder with carry look-ahead.

should be obvious. In general, 5n nodes will be required.
This is in contrast to the truth table for such a device which
would require (n + 3) - 22"*! bits.

VII. CONCLUSION

Our primary goal in this paper has been to present a
“testimonial” to the potential usefulness of binary decision
diagrams for defining, analyzing, testing, and implementing
large digital functions and systems. With this in mind, we
have tried to emphasize the breadth of their applicability
rather than dwelling on precise methods for exploiting this
usefulness. We shall conclude, therefore, with some
questions which the interested reader may wish to explore.

How can the various methods for deriving these diagrams
be modified and extended so that a minimal (or near
minimal) number of nodes results? In the procedures of
Section II, for example, we blindly processed the input
variables in alphabetical order. Clearly, other orders and

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on June 25, 2009 at 22:14 from |IEEE Xplore. Restrictions apply.

516

techniques would lead to different and often simpler
diagrams.

What are some useful ways in which these diagrams can
and should be generalized? One possibility is to allow for
“DON’T CARE’S” or “DON’T KNOW’s” by simply including “X”
as a third terminal value.

How can the diagrams be used for various synthesis
procedures? We have seen (in Section III) that path tracing
can yield a many gate, two-level form while a direct substitu-
tion method, such as that in Section V, tends to result in few
gates but many levels.

REFERENCES

[1] C. Berge, The Theory of Graphs and Its Applications. London:
Methuen, 1962.

[2] F. Harary, R. Z. Norman, and D. Cartwright, Structural Models: An
Introduction to the Theory of Directed Graphs. New York: Wiley, 1966.

[3] D. E. Knuth, Fundamental Algorithms, The Art of Computer Program-
ming, Vol. 1. Reading, MA: Addison-Wesley, 1969.

[4] H. T. Nagle, Jr., B. D. Carroll, and J. D. Irwin, An Introduction to
Computer Logic. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[5] S. B. Akers, “Universal test sets for logic networks,” IEEE Trans.
Comput., vol. C-22, pp. 835-839, Sept. 1973.

[6] S. M. Reddy, “Complete test sets for logic functions,” IEEE Trans.
Comput., vol. C-22, pp. 1016-1020, Nov. 1973.

[7] D. B. Armstrong, “On finding a nearly minimal set of fault detection

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 6, JUNE 1978

tests for combinational logic nets,” IEEE Trans. Comput., vol. EC-15,
pp. 66-73, Feb. 1966.

[8] C. Ghest and J. Springer, Advanced Micro Devices Data Book, Ad-
vanced Micro Devices, Inc., pp. 8-9-8-28, 1974.

Sheldon B. Akers (SM’62-F’75) was born in
Washington, DC. He received the B.S. degree in
electrical engineering and the M.A. degree in
mathematics both from the University of Mary-
land, College Park, in 1948 and 1952, respectively.

From 1948 to 1956 he was employed in the
Washington, DC, area at the National Bureau of
Standards, the U.S. Coast Guard Headquarters,
and ACF Industries. In 1956 he joined the Elec-
tronics Laboratory, General Electric, Syracuse,
NY, where he is presently employed as a Staff
Computer Scientist. His primary areas of research include switching
theory, graph theory, combinatorial analysis, operations research, and
design automation. He is a coauthor of Design Automation of Digital
Computers (Englewood Cliffs, NJ: Prentice-Hall, 1972). He is also an
Adjunct Professor at Syracuse University, Syracuse, NY.

Mr. Akers is a member of Pi Delta Epsilon, Omicron Delta Kappa,
Sigma Xi, and the Mathematical Association of America. He belongs to
the IEEE Computer Society Technical Committee on Design Automation
and is Secretary and Publicity Chairman of the Technical Committee on
Mathematical Foundations of Computing. He has served in the Com-
puter Society’s Distinguished Visitor Program.

Efficiency of Random Compact Testing

JACQUES LOSQ, MEMBER, IEEE

Abstract—Random compact testing uses random inputs to test
digital circuits. Fault detection can be achieved by comparing some
statistic of the circuit under test, e.g., the frequency of logic ones at an
output, with the value of that statistic previously determined for the
fault-free circuit. In this paper, we show that random compact testing
can efficiently detect failures in both combinational and sequential
circuits. Although this testing method cannot guarantee detection of
all faults, it provides a simple way to detect the vast majority of
failures in most circuits. The effects of failures inside combinational
circuits are modeled in relation to the statistical property measured
by the test and a general evaluation of the testing efficiency is
obtained. The probability of detection is shown to increase with the
test length and to be dependent upon test parameters such as the
statistics of the input sequence. For sequential circuits, the uncer-
tainty of the initial state necessitates an initialization step, which is a
long sequence of random inputs. The length of such an initialization

Manuscript received August 11, 1977; revised February 23, 1978. This
work was supported by the National Science Foundation under Grant
MCS 76-05327, the Joint Services Electronics Program (JSEP) under
Contract N00014-75-0601, and the Air Force Office of Scientific Research
under Grant 77-3325.

The author was with the Digital Systems Laboratory, Departments of
Electrical Engineering and Computer Science, Stanford University, Stan-
ford, CA 94305. He is now with the IBM T. J. Watson Research Center,
Yorktown Heights, NY10598.

sequence is circuit dependent, but for most circuits, proper initializa-
tion can be achieved in a few seconds. Most failures inside the
memory elements are easily detected, even with short tests. Random
compact testing can also detect most of the failures inside the
excitation logic and the output circuitry. There, as for combinational
circuits, its efficiency is largely dependent upon the test length. Some
of the requirements and tradeoffs to achieve efficient detection are
presented.

Index Terms—Combinational digital circuits, compact testing of
digital circuits, random testing of digital circuits, sequential
digital circuits.

I. INTRODUCTION

HE INCREASING complexity of digital circuits has

made the testing problem extremely difficult. Deter-
ministic methods for test generation (D-Algorithm [1], [2],
Boolean difference [3], Poage’s method [4]) become prohibi-
tively expensive for large circuits. The number of multiple
stuck-at faults increases exponentially with the number of
gates. For large LSI chips, like microprocessors, the amount
of computation required to generate a vector test set that

0018-9340/78/0600-0516$00.75 © 1978 IEEE

