Abstract Interpretation Based Formal Methods
and Future Challenges

Patrick CousoT

Ecole normale supérieure, Département d’informatique,
45 rue d’Ulm, 75230 Paris cedex 05, France
Patrick.Cousot@ens.fr http://www.di.ens.fr/“cousot/

Abstract. In order to contribute to the solution of the software reliabil-
ity problem, tools have been designed to analyze statically the run-time
behavior of programs. Because the correctness problem is undecidable,
some form of approximation is needed. The purpose of abstract interpre-
tation is to formalize this idea of approximation. We illustrate informally
the application of abstraction to the semantics of programming languages
as well as to static program analysis. The main point is that in order to
reason or compute about a complex system, some information must be
lost, that is the observation of executions must be either partial or at a
high level of abstraction.

A few challenges for static program analysis by abstract interpretation
are finally briefly discussed.

The electronic version of this paper includes a comparison with other
formal methods: typing, model-checking and deductive methods.

1 Introductory Motivations

The evolution of hardware by a factor of 10° over the past 25 years has lead
to the explosion of the size of programs in similar proportions. The scope of
application of very large programs (from 1 to 40 millions of lines) is likely to
widen rapidly in the next decade. Such big programs will have to be designed
at a reasonable cost and then modified and maintained during their lifetime
(which is often over 20 years). The size and efficiency of the programming and
maintenance teams in charge of their design and follow-up cannot grow in similar
proportions. At a not so uncommon (and often optimistic) rate of one bug per
thousand lines such huge programs might rapidly become hardly manageable in
particular for safety critical systems. Therefore in the next 10 years, the software
reliability problem is likely to become a major concern and challenge to modern
highly computer-dependent societies.

In the past decade a lot of progress has been made both on thinking/method-
ological tools (to enhance the human intellectual ability) to cope with complex
software systems and mechanical tools (using the computer) to help the pro-
grammer to reason about programs.

Mechanical tools for computer aided program verification started by execut-
ing or simulating the program in as much as possible environments. However

Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot/

132 Patrick CousoT

debugging of compiled code or simulation of a model of the source program
hardly scale up and often offer a low coverage of dynamic program behavior.

Formal program verification methods attempt to mechanically prove that
program execution is correct in all specified environments. This includes deduc-
tive methods, model checking, program typing and static program analysis.

Since program verification is undecidable, computer aided program verifica-
tion methods are all partial or incomplete. The undecidability or complexity is
always solved by using some form of approrimation. This means that the me-
chanical tool will sometimes suffer from practical time and space complexity
limitations, rely on finiteness hypotheses or provide only semi-algorithms, re-
quire user interaction or be able to consider restricted forms of specifications or
programs only. The mechanical program verification tools are all quite similar
and essentially differ in their choices regarding the approximations which have
to be done in order to cope with undecidability or complexity. The purpose of
abstract interpretation is to formalize this notion of approximation in a unified

framework (10; 17).

2 Abstract Interpretation

Since program verification deals with properties, that is sets (of objects with
these properties), abstract interpretation can be formulated in an application
independent setting, as a theory for approximating sets and set operations as
considered in set (or category) theory, including inductive definitions (25). A
more restricted understanding of abstract interpretation is to view it as a theory
of approximation of the behavior of dynamic discrete systems (e.g. the formal
semantics of programs or a communication protocol specification). Since such
behaviors can be characterized by fixpoints (e.g. corresponding to iteration),
an essential part of the theory provides constructive and effective methods for
fixpoint approximation and checking by abstraction (19; 23).

2.1 Fixpoint Semantics

The semantics of a programming language defines the semantics of any program
written in this language. The semantics of a program provides a formal math-
ematical model of all possible behaviors of a computer system executing this
program in interaction with any possible environment. In the following we will
try to explain informally why the semantics of a program can be defined as the
solution of a fixpoint equation. Then, in order to compare semantics, we will
show that all the semantics of a program can be organized in a hierarchy by ab-
straction. By observing computations at different levels of abstraction, one can
approximate fixpoints hence organize the semantics of a program in a lattice
(15).

2.2 Trace Semantics

Our finer grain of observation of program execution, that is the most pre-

Abstract Interpretation Based Formal Methods and Future Challenges 133

cise of the semantics that Initial states Final statos of th
we will consider, is that of iIntermediate states ma sﬁiigg ‘(c)racez
*—0—0—0—0—0—0—0

a trace semantics (15; 19).
An execution of a program

Infinite
for a given specific interac- Tt traces
tion with its environment SRR SRSRER SR n e on on o ;
is a sequence of states, ob- qu—¢—¢—0—0—¢—¢—o—o—q—o—o—o—o— WY
served at discrete intervals 9(—9—9—9—9—9—9—9—9—0—9—0—9—0—0— -

of time, starting from an
initial state, then moving
from one state to the next
state by executing an atomic
program step or transition and either ending in a final regular or erroneous state
or non terminating, in which case the trace is infinite (see Fig. 1).

6 1 2 3 4 5 6 7 8 9 discrete time

Fig. 1. Examples of Computation Traces

2.3 Least Fixpoint Trace Semantics

Introducing the computational partial ordering (15), we define the trace seman-
tics in fixpoint form (15), as the least solution of an equation of the form
X = F(X) where X ranges over sets of finite and infinite traces.

More precisely, let Behaviors be the set of execution traces of a program,
possibly starting in any state. We denote by Behaviors™ the subset of finite
traces and by Behaviors™ the subset of infinite traces.

A finite trace &—— . — & in Behaviors™ is either reduced to a final state

(in which case there is no possible transition from state o= %) or the initial state

& is not final and the trace consists of a first computation step 3 B after which,
from the intermediate state e, the execution goes on with the shorter finite trace

B 3 ending in the final state ¢. The finite traces are therefore all well
defined by induction on their length.

An infinite trace &—— . —— .. in Behaviors™ starts with a first computa-

tion step 3 B after which, from the intermediate state lo), the execution goes
on with an infinite trace ...——... starting from the intermediate state

lo). These remarks and Behaviors = Behaviors™ U Behaviors™ lead to the
following fixpoint equation:

Behaviors = {e| @ is a final state}
U {%—ko)— — | a8 is an elementary step &
8 dc Behaviors™}
U {%—ko)—] P is an elementary step &
. e Behaviors™}

In general, the equation has multiple solutions. For example if there is only one
non-final state & and only possible elementary step & then the equation is

134 Patrick CousoT

Behaviors = {&—e—— . —— .. | e—— . —— .. € Behaviors}. One solution
is {%—%—%—%—. . —— ..} but another one is the empty set (). Therefore,

we choose the least solution for the computational partial ordering (15):

« More finite traces & less infinite traces » .

2.4 Abstractions & Abstract Domains

A programming language semantics is more or less precise according to the
considered observation level of program execution. This intuitive idea can be
formalized by Abstract interpretation (15) and applied to different languages,
including for proof methods.

The theory of abstract interpretation formalizes this notion of approximation
and abstraction in a mathematical setting which is independent of particular
applications. In particular, abstractions must be provided for all mathemati-
cal constructions used in semantic definitions of programming and specification
languages (19; 23).

An abstract domain is an abstraction of the concrete semantics in the form
of abstract properties (approximating the concrete properties Behaviors) and
abstract operations (including abstractions of the concrete approximation and
computational partial orderings, an approximation of the concrete fixpoint trans-
former F, etc.). Abstract domains for complex approximations of designed by
composing abstract domains for simpler components (19), see Sec. 2.10.

If the approximation is coarse enough, the abstraction of a concrete seman-
tics can lead to an abstract semantics which is less precise, but is effectively
computable by a computer. By effective computation of the abstract semantics,
the computer is able to analyze the behavior of programs and of software before
and without executing them (16). Abstract interpretation algorithms provide ap-
proximate methods for computing this abstract semantics. The most important
algorithms in abstract interpretation are those providing effective methods for
the exact or approximate iterative resolution of fixpoint equations (17).

We will first illustrate formal and effective abstractions for sets. Then we will
show that such abstractions can be lifted to functions and finally to fixpoints.

The abstraction idea and its formalization are equally applicable in other ar-
eas of computer science such as artificial intelligence e.g. for intelligent planning,
proof checking, automated deduction, theorem proving, etc.

2.5 Hierarchy of Abstractions

As shown in Fig. 2 (from (15), where Behaviors, denoted 7= for short, is the
lattice infimum), all abstractions of a semantics can be organized in a lattice
(which is part of the lattice of abstract interpretations introduced in (19)). The
approzimation partial ordering of this lattice formally corresponds to logical im-
plication, intuitively to the idea that one semantics is more precise than another
one.

Abstract Interpretation Based Formal Methods and Future Challenges 135

Hoare
logics
weakest
precondition
semantics +D
) -e
denotational —————o—-o _
semantics T T T
0
FEM
relational : ./',._w. i
semantics oAT T

trace ° transition
semantics T semantics
T —» abstraction
I I | I | ___ equivalence

angelic natural demoniac - .. restriction

1 1
deterministic infinite

Fig. 2. The Hierarchy of Semantics

Fig. 3 illustrates the derivation of a relational semantics (denoted 7> in Fig.
2) from a trace semantics (denoted 7= in Fig. 2). The abstraction a,. from trace

to relational semantics consists in replacing the finite traces « . —3% by the
pair {a, z) of the initial and final states. The infinite traces i B

are replaced by the pair (a, L) where the symbol L denotes non-termination.
Therefore the abstraction is:

ar(X)= {{a,2) | %— . — %X} U {{a, L) | %—8— — X}
The denotational semantics (denoted 7% in Fig. 2) is the isomorphic representa-
tion of a relation by its right-image:

ag(R) =AXa-{z|{(a,z) € R}.

The abstraction from relational to big-step operational or natural seman-
tics (denoted 7F in Fig. 2) simply consists in forgetting everything about non-
termination, so an(R) = {{(a,z) € R |z # L}, as illustrated in Fig. 3.

A non comparable abstraction consists in collecting the set of initial and final

states as well as all transitions (z,y) appearing along some finite or infinite trace

-— . }o(—X ... of the trace semantics. One gets the small-step operational or

transition semantics (denoted 7 in Fig. 2 and also called Kripke structure in
modal logic) as illustrated in Fig. 4.

A further abstraction consists in collecting all states appearing along some
finite or infinite trace as illustrated in Fig. 5. This is the partial correctness
semantics or the static/ collecting semantics for proving invariance properties of
programs.

136 Patrick CousoT

Initial states
Final states

Initial states
Final states of
finite traces

Intermediate states

Infinite

traces « « .Zf".j
— —
. -
J g h
—0—0—0—0—0—0—0 o—o—o PY —o—0— -1 - @
vheroo i
H_H_¢_¢+¢_H_._._._H_, ; ; > . - - -
R A e
0123456717389 discrete time
Trace Relational Natural
semantics semantics semantics

Fig. 3. Abstraction from Trace to Relational and Natural Semantics

Initial states Transitions Final states

° —o 06—9 --- o0—o ®
a a b b ¢ d / d

° —e 0—0 0—0 o—0---0—0 .
e e f f

° —o 06— 0—90 --- o—o ®
g g h h

o —eo o—o o0—0 o—0 --- o—o], o
v 7 J J

.]A kH —o 06— 0—9 06— --- o—9o---

o(' (o—o —9 690 0690 690 069---0—90---

Fig. 4. Transition Semantics

All abstractions considered in this paper are “from above” so that the ab-
stract semantics describes a superset or logical consequence of the concrete
semantics. Abstractions “from below” are dual and consider a subset of the
concrete semantics. An example of approximation “from below” is provided by
debugging techniques which consider a subset of the possible program executions
or by existential checking where one wants to prove the existence of an execu-
tion trace prefix fulfilling some given specification. In order to avoid repeating
two times dual concepts and as we do usually, we only consider approximations
“from above”, knowing that approximations “from below” can be easily derived
by applying the duality principle (as found e.g. in lattice theory).

2.6 Effective Abstractions

Numerical Abstractions Assume that a program has two integer variables
X and Y. The trace semantics of the program (Fig. 1) can be abstracted in the
static/collecting semantics (Fig. 5). A further abstraction consists in forgetting
in a state all but the values x and y of variables X and Y. In this way the trace
semantics is abstracted to a set of points (pairs of values), as illustrated in the
plane by Fig. 6(a).

Abstract Interpretation Based Formal Methods and Future Challenges 137

Initial states Reachable states Final states
oa °,0, 0.0 0 0 0 0 {.d
o, e 00 00000000 & ® 1
., 000000000 .h,
'y e 0 0606060 0600 0 0 0 o ..

i 2 J J
.k 0000000000000 ---
./ 0000000000000 ---

y >0
>0
(a) [In]finite Set of Points (b) Sign Abstraction
v z € [3, 27] z = 5 mod 8
y € [4, 32 y =7 mod 9
(c) Interval Abstraction (d) Simple Congruence Ab-

straction

Fig. 6. Non-relational Abstractions

We now illustrate informally a number of effective abstractions of an [in]finite
set of points.

Non-relational Abstractions The non-relational, attribute independent or
cartesian abstractions (19, example 6.2.0.2) consists in ignoring the possible
relationships between the values of the X and Y variables. So a set of pairs is
approximated through projection by a pair of sets. Each such set may still be
infinite and in general not exactly computer representable. Further abstractions
are therefore needed.

The sign abstraction (19) illustrated in Fig. 6(b) consists in replacing integers
by their sign thus ignoring their absolute value. The interval abstraction (16)
illustrated in Fig. 6(c) is more precise since it approximates a set of integers by

138 Patrick CousoT

IIAN+HIA

LSLe ey
© Ut 0 -
<

—
8 AR

INIAIAIA

(a) Octagonal Abstraction (b) Polyhedral Abstraction

{3w+5y=8m0d7 Y

3z + Ty € [2,7] mod 8
22 —9y =3 mod 5 p

2z — 5y € [0,9] mod 4

(c) Relational Congruence Abstrac- (d) Trapezoidal Congruence Abstrac-
tion tion

Fig. 7. Relational Abstractions

it minimal and maximal values (including —oco and 4o0c as well as the empty
set if necessary).

The congruence abstraction (38) (generalizing the parity abstraction (19)) is
not comparable, as illustrated in Fig. 6(d).

Relational Abstractions Relational abstractions are more precise than non
relational ones in that some of the relationships between values of the program
states are preserved by the abstraction.

For example the polyhedral abstraction (31) illustrated in Fig. 7(b) approxi-
mates a set of integers by its convex hull. Only non-linear relationships between
the values of the program variables are forgotten.

The use of an octagonal abstraction illustrated in Fig. 7(a) is less precise
since only some shapes of polyhedra are retained or equivalently only linear
relations between any two variables are considered with coefficients +1 or -1 (of
the form +z + y < ¢ where ¢ is an integer constant).

A non comparable relational abstraction is the linear congruence abstraction
(39) illustrated in Fig. 7(c).

A combination of non-relational dense approximations (like intervals) and
relational sparse approximations (like congruences) is the trapezoidal linear con-
gruence abstraction (48) as illustrated in Fig. 7(d).

Symbolic Abstractions Most structures manipulated by programs are sym-
bolic structures such as control structures (call graphs), data structures (search

Abstract Interpretation Based Formal Methods and Future Challenges 139

x

(b) unkown

—~
o

~

<
@
1}

Fig. 8. Is 1/ (X+1-Y) well-defined?

trees, pointers (33; 34; 54; 58)), communication structures (distributed & mobile
programs (36; 41; 57)), ete. It is very difficult to find compact and expressive
abstractions of such sets of objects (sets of languages, sets of automata, sets of
trees or graphs, etc.). For example Biichi automata or automata on trees are
very expressive but algorithmically expensive.

A compromise between semantic expressivity and algorithmic efficiency was
recently introduced by (49) using Binary Decision Graphs and Tree Schemata
to abstract infinite sets of infinite trees.

2.7 Information Loss

Any abstraction introduces some loss of information. For example the abstrac-
tion of the trace semantics into relational or denotational semantics loses all
information on the computation cost since all intermediate steps in the execu-
tion are removed.

All answers given by the abstract semantics are always correct with respect to
the concrete semantics. For example, if termination is proved using the relational
semantics then there is no execution abstracted to {a, L), so there is no infinite

b
°

trace o ..——... in the trace semantics, whence non termination is
impossible when starting execution in initial state a.

However, because of the information loss, not all questions can be definitely
answered with the abstract semantics. For example, the natural semantics can-
not answer questions about termination as can be done with the relational or
denotational semantics. These semantics cannot answer questions about con-
crete computation costs.

The more concrete is the semantics, the more questions it can answer. The
more abstract semantics are simpler. Non comparable abstract semantics (such
as intervals and congruences) answer non comparable sets of questions.

To illustrate the loss of information, let us consider the problem of deciding
whether the operation 1/ (X+1-Y) appearing in a program is always well defined
at run-time. The answer can certainly be given by the concrete semantics since
it has no point on the line 2z + 1 — y = 0, as shown in Fig. 8(a).

140 Patrick CousoT

In practice the concrete abstraction is not computable so it is hardly usable
in a useful effective tool. The dense abstractions that we have considered are
too approximate as is illustrated in Fig. 8(b).

However the answer is positive when using the relational congruence abstrac-
tion, as shown in Fig. 8(c).

2.8 Function Abstraction

We now show how the abstraction of complex mathematical objects used in the
semantics of programming or specification languages can be defined by compos-
ing abstractions of simpler mathematical structures.

For example knowing abstractions of the Al clenai

parameter and result of a monotonic function ot

on sets, a function F' can be abstracted into

an abstract function F* as illustrated in Fig. : ‘
9 (19). Mathematically, F* takes its parame- v § o

ter in the abstract domain. Let v(x) be the
corresponding concrete set (v is the adjoined, : :
. . . ‘ F ®
intuitively the inverse of the abstraction func- L —

tion). The function F' can be applied to get
the concrete result o F' o y(z). The abstraction
function « can then be applied to approximate
the result F*(z) = a o F o y(x). Ff=aoF oy
In general, neither F', nor v are computable
even though the abstraction o may be effective.
So we have got a formal specification of the abstract function F* and an algo-
rithm has to be found for an effective implementation.

Concrete domain

Fig. 9. Function Abstraction

2.9 Fixpoint Abstraction

A fixpoint of a function F' can often be obtained as the limit of the iterations of
F from a given initial value L. In this case the abstraction of the fixpoint can
often be obtained as the abstract limit of the iteration of the abstraction F* of
F starting from the abstraction a(L) of the initial value L. The basic result is
that the concretization of the abstract fixpoint is related to the concrete fixpoint
by the approximation relation expressing the soundness of the abstraction (19).
This is illustrated in Fig. 10.

Often states have some finite component (e.g. a program counter) which can
be used to partition into fixpoint system of equations by projection along that
component. Then chaotic (18) and asynchronous iteration strategies (10) can be
used to solve the equations iteratively. Various efficient iteration strategies have
been studied, including ones taking particular properties of abstractions into
account and others to speed up the convergence of the iterates (24).

Abstract Interpretation Based Formal Methods and Future Challenges 141

Abstract domain 4 4
, gt P F fQF

£ .L»x/'x/”ﬁ/)

A n H 3 2

al v (yiif/ ()c Y« "‘:_h/ « .T.")’ Approximation

: ' relation C

F
F Concrete domain

Fig. 10. Fixpoint Abstraction Ifp F' C ~(1fp F¥)

2.10 Composing Abstractions

Abstractions hence abstract interpreters for static program analysis can be de-
signed compositionally by stepwise abstraction, combination or refinement (37;
13).

An example of stepwise abstraction is the functional abstraction of Sec. 2.8.
The abstraction of a function is parameterized by abstractions for the function
parameters and the function result which can be chosen later in the modular
design of the abstract interpreter.

An example of abstraction combination is the reduced product of two abstrac-
tions (19) which is the most abstract abstraction more precise than these two
abstractions or the reduce cardinal power (19) generalizing case analysis. Such
combination of abstract domains can be implemented as parameterized modules
in static analyzer generators (e.g. (46)) so as to partially automate the design
of expressive analyses from simpler ones.

An example of refinement is the disjunctive completion (19) which completes
an abstract domain by adding concrete disjunctions missing in the abstract
domain. Another example of abstract domain refinement is the complementation
(8) adding concrete negations missing in the abstract domain.

2.11 Sound and Complete Abstractions

Abstract interpretation theory has mainly been concerned with the soundness of
the abstract semantics/interpreter, relative to which questions can be answered
correctly despite the loss of information (17). Soundness is essential in practice
and leads to a formal design method (19).

However completeness, relative to the formalization of the loss of information
in a controlled way so as to answer a given set of questions, has also been
intensively studied (19; 37), including in the context of model checking (14).

In practice complete abstractions, including a most abstract one, always
exist to check that a given program semantics satisfies a given specification.

142 Patrick CousoT

Moreover any given abstraction can be refined to a complete one. Nevertheless
this approach has severe practical limitations since, in general, the design of
such complete abstractions or the refinement of a given one is logically equiva-
lent to the design of an inductive argument for the formal proof that the given
program satisfies the given specification, while the soundness proof of this ab-
straction logically amounts to checking the inductive verification conditions or
proof obligations of this formal proof (14). Such proofs can hardly be fully auto-
mated hence human interaction is unavoidable. Moreover the whole process has
to be repeated each time the program or specification is modified.

Instead of considering such strong specifications for a given specific program,
the objective of static program analysis is to consider (often predefined) spec-
ifications and all possible programs. The practical problem in static program
analysis is therefore to design useful abstractions which are computable for all
programs and expressive enough to yield interesting information for most pro-
grams.

3 Static Program Analysis

Static program analysis is the automatic static determination of dynamic run-
time properties of programs.

3.1 Foundational Ideas of Static Program Analysis

Given a program and a specification, a pro- [Program] [Specification]
gram analyzer will check if the program seman- \ /
tics satisfies the specification (Fig. 11). In case
of failure, the analyzer will provide hints to un-

‘ Program analyzer

derstand the origin of errors (e.g. by a backward l
analysis providing necessary conditions to be sat-

isfied by counter-examples).

The principle of the analysis is to compute an
approximate semantics of the program in order
to check a given specification. Abstract interpretation is used to derive, from a
standard semantics, the approximate and computable abstract semantics. The
derivation can often be done by composing standard abstractions to fit a partic-
ular kind of information which has to be discovered about program execution.
This derivation is itself not (fully) mechanizable but static analyzer generators
such as PAG (47) and others can provide generic abstractions to be composed
with problem specific ones.

In practice, the program analyzer contains a generator reading the pro-
gram text and producing equations or constraints whose solution is a com-
puter representation of the program abstract semantics. A solver is then used
to solve these abstract equations/constraints. A popular resolution method is
to use iteration. Of the numerical abstractions considered in Sec. 2.6, only
the sign and simple congruence abstractions ensure the finite convergence of

Fig. 11. Program Analysis

Abstract Interpretation Based Formal Methods and Future Challenges 143

the iterates. If the limit of the iterates is inexistent (which may be the case
e.g. for the polyhedral abstraction) or it is reached after infinitely many it-
eration steps (e.g. interval and octagonal abstractions), the convergence may
have to be ensured and/or accelerated using a widening to over estimate the
solution in finitely many steps followed by a narrowing to improve it (10; 17;
24).

In abstract compllatl.on, the gen- [Program} [Specificationj
erator and solver are directly com-
p'1led into a program which .dlrectly
yields the approximate solution.

This solution is an approxima— System of fixpoint equations/constraints
tion of the abstract semantics which

is then used by a diagnoser to check
the specification. Because of the loss Program
of information, the diagnosis is al- analyzer

ways of the form “yes”, “no”, ‘

7or “irrelevant” (e.g. a safety
specification for unreachable code).
The general structure of program an-
alyzers is illustrated in Fig. 12. Be-
sides diagnosis, static program analysis is also used for other applications in
which case the diagnoser is replaced by an optimiser (for compile-time opti-
mization), a program transformer (for partial evaluation (44)), etc.

(Approximate) solution

Fig. 12. Principle of Program Analysis

3.2 Shortcomings of Static Program Analysis

Static program analysis can be used for large programs (e.g. 220,000 lines of C)
without user interaction. The abstractions are chosen to be of wide scope with-
out specialization to a particular program. Abstract algebras can be designed
and implemented into libraries which are reusable for different programming
languages. The objective is to discover invariants that are likely to appear in
many programs so that the abstraction must be widely reusable for the program
analyzer to be of economic interest.

The drawback of this general scope is that the considered abstract specifi-
cations and properties are often simple, mainly concerning elementary safety
properties such as absence of run-time errors. For example non-linear abstrac-
tions of sets of points are very difficult and very few mathematical results are of
practical interest and directly applicable to program analysis. Checking termi-
nation and similar liveness properties is trivial with finite state systems, at least
from a theoretical if not algorithmic point of view (e.g. finding loops in finite
graphs). The same problem is much more difficult for infinite state systems be-
cause of fairness (49) or of potentially infinite data structures (as considered e.g.
in partial evaluation) which do not amount to finite cycles so that termination
or inevitability proofs require the discovery of variant functions on well-founded
sets which is very difficult in full generality.

144 Patrick CousoT

Even when considering restricted simple abstract properties, the semantics of
real-life programming languages is very complex (recursion, concurrency, modu-
larity, etc.) whence so is the corresponding abstract interpreter. The abstraction
of this semantics, hence the design of the analyzer is mostly manual (and beyond
the ability of casual programmers or theorem provers) whence costly. The con-
sidered abstractions must have a large scope of application and must be easily
reusable to be of economic interest.

From a user point of view, the results of the analysis have to be presented in
a simple way (for example by pointing at errors only or by providing abstract
counter-examples, or less frequently concrete ones). Experience shows that the
cases of uncertainty represent 5 to 10 % of the possible cases. They must be
handled with other empirical or formal methods (including more refined abstract
interpretations).

3.3 Applications of Static Program Analysis

Among the numerous applications of static program analysis, let us cite data
flow analysis (53; 28); program optimization and transformation (including par-
tial evaluation and program specialization (44) and data dependence analy-
sis for the parallelisation of sequential languages); set-based analysis (27); type
inference (12) (including undecidable systems and soft typing); verification of
reactive (40; 43), real-time and (linear) hybrid systems including state space re-
duction; cryptographic protocol analysis; abstract model-checking of infinite sys-
tems (28); abstract debugging, testing and verification ; cache and pipeline behav-
ior prediction (35); probabilistic analysis (50); communication topology analysis
for mobile/distributed code (36; 41; 57); automatic differentiation of numeri-
cal programs; abstract simulation of temporal specifications; Semantic tattoo-
ing/watermarking of software (30); etc.

Static program analysis has been intensively studied for a variety of pro-
gramming languages including procedural languages (e.g. for alias and pointer
analysis (33; 34; 54; 58)), functional languages (e.g. for binding time (56), strict-
ness (4; 51) and comportment analysis (26), exception analysis (59)), parallel
functional languages, data parallel languages, logic languages including Prolog
(1; 22; 32) (e.g. for groundness (9), sharing (7), freeness (5) and their combina-
tions (6), parallelizatiion (3), etc.), database programming languages, concurrent
logic languages, functional logic languages, constraint logic languages, concur-
rent constraint logic languages, specification languages, synchronous languages,
procedural/functional concurrent/parallel languages (21), communicating and
distributed languages (20) and more recently object-oriented languages (2; 55).

Abstract interpretation based static program analyses have been used for the
static analysis of the embedded ADA software of the Ariane 5 launcher' and
the ARD? (45). The static program analyser aims at the automatic detection of

! Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000
lines of Ada code).
2 Atmospheric Reentry Demonstrator.

Abstract Interpretation Based Formal Methods and Future Challenges 145

the definiteness, potentiality, impossibility or inaccessibility of run-time errors
such as scalar and floating-point overflows, array index errors, divisions by zero
and related arithmetic exceptions, uninitialized variables, data races on shared
data structures, etc. The analyzer was able to automatically discover the Ariane
501 flight error. The static analysis of embedded safety critical software (such
as avionic software (52)) is very promising (29).

3.4 Industrialization of Static Analysis by Abstract Interpretation

The impressive results obtained by the static analysis of real-life embedded
critical software (45; 52) is quite promising for the industrialization of abstract
interpretation.

This is the explicit objective of AbsInt Angewandte Informatik GmbH
created in Germany by R. Wilhelm and C. Ferdinand in 1998 commercial-
izing the program analyzer generator PAG and an application to determine
the worst-case execution time for modern computer architectures with memory
caches, pipelines, etc (35).

Pilaud in 1999 to develop and commercialize ADA and C program analyzers.

Other companies like Connected Components Corporation @d created in
the U.S.A. by W.L. Harrison in 1993 use abstract interpretation internally e.g.
for compiler design (42).

4 Grand Challenge for the Next Decade

We believe that in the next decade the software industry will certainly have to
face its responsibility imposed by a computer-dependent society, in particular
for safety critical systems. Consequently, Software reliability® will be a grand
challenge for computer science and practice.

The grand challenge for formal methods, in particular abstract interpretation
based formal tools, is both the large scale industrialization and the intensifica-
tion of the fundamental research effort.

General-purpose, expressive and cost-effective abstractions have to be devel-
oped e.g. to handle floating point numbers, data dependences (e.g. for paralleliza-
tion), liveness properties with fairness (to extend finite-state model-checking to
software), timing properties for embedded software, probabilistic properties, etc.
Present-day tools will have to be enhanced to handle higher-order compositional
modular analyses and to cope with new programming paradigms involving com-
plex data and control concepts (such as objects, concurrent threads, distrib-
uted/mobile programming, etc.), to automatically combine and locally refine
abstractions in particular to cope with “unknow” answers, to interact nicely
with users and other formal or informal methods.

% other suggestions were “trustworthiness” (C. Jones) and “robustness” (R. Leino).

http://www.absint.com
http://www.absint.com
http://www.polyspace.com
http://www.polyspace.com
http://www.concmp.com/index.html
http://www.concmp.com/index.html

146 Patrick CousoT

The most challenging objective might be to integrate formal analysis by
abstract interpretation in the full software development process, from the initial
specifications to the ultimate program development.

Acknowledgements I thank Radhia Cousot and Reinhard Wilhelm for their
comments on a preliminary version of this paper. This work was supported by
the DAEDALUS (29) and TUAMOTU (30) projects.

References

[1] R. Barbuti, R. Giacobazzi, and G. Levi. A general framework for se-
mantics-based bottom-up abstract interpretation of logic programs.
TOPLAS, 15(1):133-181, Jan. 1993.

[2] B. Blanchet. Escape analysis for object-oriented languages: Application to
Java. In Proc. ACM SIGPLAN Conf. OOPSLA ’99. ACM SIGPLAN
Not. 34(10), pages 20-34, Denver, CO, US, 1-5 Nov. 1999.

[3] F. Bueno, M.J. Garcia de la Banda, and M.V. Hermenegildo. Effectiveness
of abstract interpretation in automatic parallelization: A case study in
logic programming. TOPLAS, 21(2):189-239, Mar. 1999.

[4] G.L. Burn, C.L. Hankin, and S. Abramsky. Strictness analysis of
higher-order functions. Sci. Comput. Programming, 7:249-278, Nov.
1986.

[5] M. Codish, D. Dams, G. File, and M. Bruynooghe. Freeness analysis for
logic programs — and correctness? In D.S. Warren, editor, Proc. 10"
ICLP ’93, Budapest, HU, pages 116-131. MIT Press, 21-25 June 1993.

[6] M. Codish, H. Sgndergaard, and P.J. Stuckey. Sharing and groundness de-
pendencies in logic programs. TOPLAS, 21(5):948-976, Sep. 1999.

[7] A. Cortesi and G. Filé. Sharing is optimal. J. Logic Programming,
38(3):371-386, 1999.

[8] A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Comple-
mentation in abstract interpretation. TOPLAS, 19(1):7-47, Jan. 1997.

[9] A. Cortesi, G. Filé, and W.H. Winsborough. Optimal groundness analysis
using propositional logic. J. Logic Programming, 27(2):137-167, 1996.

[10] P. Cousot. Méthodes itératives de construction et d’approximation de points
fizxes d’opérateurs monotones sur un treillis, analyse sémantique de pro-
grammes. These d’ Etat és sciences mathématiques, Université scientifi-
que et médicale de Grenoble, Grenoble, FR, 21 Mar. 1978.

[11] P. Cousot. Constructive design of a hierarchy of semantics of a
transition system by abstract interpretation. ENTCS, 6, 1997.
http://www.elsevier.nl/locate/entcs/volume6.html, 25 pages.

[12] P. Cousot. Types as abstract interpretations, invited paper. In 2/** POPL,
pages 316-331, Paris, FR, Jan. 1997. ACM Press.

[13] P. Cousot. The calculational design of a generic abstract interpreter. In
M. Broy and R. Steinbriiggen, editors, Calculational System Design, vol-
ume 173, pages 421-505. NATO Science Series, Series F: Computer and
Systems Sciences. IOS Press, 1999.

[14] P. Cousot. Partial completeness of abstract fixpoint checking, invited pa-
per. In B.Y. Choueiry and T. Walsh, editors, Proc. 4 Int. Symp.
SARA ’2000, Horseshoe Bay, TX, US, LNAI 1864, pages 1-25. Springer-
Verlag, 26-29 Jul. 2000.

http://www.elsevier.nl/locate/entcs/volume6.html

148

[15]

[16]

23]

24]

[25]

[26]

27]

Patrick CousoT

. Cousot. Constructive design of a hierarchy of semantics of a transition

system by abstract interpretation. Theoret. Comput. Sci., To appear
(Preliminary version in (11)).

. Cousot and R. Cousot. Static determination of dynamic properties of pro-

grams. In Proc. 2™ Int. Symp. on Programming, pages 106-130. Dunod,
1976.

. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints.
In 4" POPL, pages 238252, Los Angeles, CA, 1977. ACM Press.

. Cousot and R. Cousot. Automatic synthesis of optimal invariant asser-

tions: mathematical foundations. In ACM Symposium on Artificial In-
telligence € Programming Languages, Rochester, NY, ACM SIGPLAN
Not. 12(8):1-12, 1977.

. Cousot and R. Cousot. Systematic design of program analysis frame-

works. In 6" POPL, pages 269-282, San Antonio, TX, 1979. ACM Press.

. Cousot and R. Cousot. Semantic analysis of communicating sequential

processes. In J.W. de Bakker and J. van Leeuwen, editors, 7" ICALP,
LNCS 85, pages 119-133. Springer-Verlag, Jul. 1980.

. Cousot and R. Cousot. Invariance proof methods and analysis techniques

for parallel programs. In A.W. Biermann, G. Guiho, and Y. Kodratoff,
editors, Automatic Program Construction Techniques, chapter 12, pages
243-271. Macmillan, 1984.

. Cousot and R. Cousot. Abstract interpretation and application to logic

programs. J. Logic Programming, 13(2-3):103-179, 1992. (The editor of
J. Logic Programming has mistakenly published the unreadable galley proof.
For a correct version of this paper, see http://www.di.ens.fr/"cousot.).

. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and

Comp., 2(4):511-547, Aug. 1992.

. Cousot and R. Cousot. Comparing the Galois connection and widen-

ing/narrowing approaches to abstract interpretation, invited paper.
In M. Bruynooghe and M. Wirsing, editors, Proc. 4* Int. Symp.
PLILP ’92, Leuven, BE, 26-28 Aug. 1992, LNCS 631, pages 269-295.
Springer-Verlag, 1992.

. Cousot and R. Cousot. Inductive definitions, semantics and abstract in-

terpretation. In 19" POPL, pages 83-94, Albuquerque, NM, 1992. ACM
Press.

. Cousot and R. Cousot. Higher-order abstract interpretation (and ap-

plication to comportment analysis generalizing strictness, termination,
projection and PER analysis of functional languages), invited paper. In
Proc. 1994 ICCL, pages 95112, Toulouse, FR, 16-19 May 1994. IEEE
Comp. Soc. Press.

. Cousot and R. Cousot. Formal language, grammar and set-constraint-

based program analysis by abstract interpretation. In Proc. 7" FPCA,
pages 170-181, La Jolla, CA, 25-28 June 1995. ACM Press.

http://www.di.ens.fr/~cousot

Abstract Interpretation Based Formal Methods and Future Challenges 149

[28] P. Cousot and R. Cousot. Temporal abstract interpretation. In 27** POPL,
pages 12-25, Boston, MA, Jan. 2000. ACM Press.

[29] P. Cousot, R. Cousot, A. Deutsch, C. Ferdinand, E. Goubault, N. Jones,
D. Pilaud, F. Randimbivololona, M. Sagiv, H. Seidel, and R. Wilhelm.
DAEDALUS: Validation of critical software by static analysis and ab-
stract testing. Project IST-1999-20527 of the european 5 Framework
Programme (FP5), Oct. 2000 — Oct. 2002.

[30] P. Cousot, R. Cousot, and M. Riguidel. TUAMOTU: Tatouage électronique
sémantique de code mobile Java. Project RNRT 1999 n° 95, Oct. 1999 —
Oct. 2001.

[31] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In 5" POPL, pages 84-97, Tucson, AZ,
1978. ACM Press.

[32] S.K. Debray. Formal bases for dataflow analysis of logic programs. In G.
Levi, editor, Advances in Logic Programming Theory, Int. Schools for
Computer Scientists, section 3, pages 115-182. Clarendon Press, 1994.

[33] A. Deutsch. Semantic models and abstract interpretation techniques for in-
ductive data structures and pointers, invited paper. In Proc. PEPM ’95,
pages 226—229, La Jolla, CA, 21-23 June 1995. ACM Press.

[34] N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In J.
Palsberg, editor, Proc. 7" Int. Symp. SAS 2000, Santa Barbara, CA,
US, LNCS 1824, pages 115-134. Springer-Verlag, 29 June — 1 Jul. 2000.

[35] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache behavior predic-
tion by abstract interpretation. Sci. Comput. Programming, Special Issue
on SAS’96, 35(1):163-189, September 1999.

[36] J. Feret. Confidentiality analysis of mobile systems. In J. Palsberg, editor,
Proc. 7" Int. Symp. SAS ’2000, Santa Barbara, CA, US, LNCS 1824,
pages 135-154. Springer-Verlag, 29 June — 1 Jul. 2000.

[37] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpreta-
tions complete. J. ACM, 47(2):361-416, 2000.

[38] P. Granger. Static analysis of arithmetical congruences. Int. J. Comput.
Math. , 30:165-190, 1989.

[39] P. Granger. Static analysis of linear congruence equalities among variables
of a program. In S. Abramsky and T.S.E. Maibaum, editors, Proc. Int.
J. Conf. TAPSOFT 91, Volume 1 (CAAP ’91), Brighton, GB, LNCS
493, pages 169-192. Springer-Verlag, 1991.

[40] N. Halbwachs. About synchronous programming and abstract interpreta-
tion. Sci. Comput. Programming, 31(1):75-89, May 1998.

[41] R.R. Hansen, J.G. Jensen, F. Nielson, and H. Riis Nielson. Abstract inter-
pretation of mobile ambients. In A. Cortesi and G. Filé, editors, Proc.
6" Int. Symp. SAS ’99, Venice, IT, 22-24 Sep. 1999, LNCS 1694, pages
134-138. Springer-Verlag, 1999.

[42] W.L. Harrison. Can abstract interpretation become a main stream com-
piler technology? (abstract). In P. Van Hentenryck, editor, Proc. 4™

150

Patrick CousoT

Int. Symp. SAS 97, Paris, FR, 8-10 Sep. 1997, LNCS 1302, page 395.
Springer-Verlag, 1997.

[43] T.A. Henzinger, R. Majumbar, F. Mang, and J.-F. Raskin. Abstract in-

terpretation of game properties. In J. Palsberg, editor, Proc. 7" Int.
Symp. SAS ’2000, Santa Barbara, CA, US, LNCS 1824, pages 220-239.
Springer-Verlag, 29 June — 1 Jul. 2000.

[44] N.D. Jones. Combining abstract interpretation and partial evaluation (brief

[45] P.

[47] F.

[48] F.

[49] L.

[50] D.

overview). In P. Van Hentenryck, editor, Proc. 4 Int. Symp. SAS 97,
Paris, FR, 8-10 Sep. 1997, LNCS 1302, pages 396-405. Springer-Verlag,
1997.

Lacan, J.N. Monfort, L..V.Q. Ribal, A. Deutsch, and G. Gonthier. The
software reliability verification process: The ARIANE 5 example. In Pro-
ceedings DASIA 98 — DAta Systems In Aerospace, Athens, GR. ESA
Publications, SP-422, 25-28 May 1998.

. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic

abstract interpretation algorithm for Prolog. In Proc. 1992 ICCL, Oak-
land, CA, pages 137-146. IEEE Comp. Soc. Press, 20-23 Apr. 1992.
Martin. Generating Program Analyzers. Pirrot Verlag, Saarbriicken, DE,
1999.

Masdupuy. Semantic analysis of interval congruences. In D. Bjgrner, M.
Broy, and I.V. Pottosin, editors, Proc. FMPA, Akademgorodok, Novosi-
birsk, RU, LNCS 735, pages 142-155. Springer-Verlag, 28 June — 2 Jul.
1993.

Mauborgne. Tree schemata and fair termination. In J. Palsberg, editor,
Proc. ™ Int. Symp. SAS 2000, Santa Barbara, CA, US, LNCS 1824,
pages 302-321. Springer-Verlag, 29 June — 1 Jul. 2000.

Monniaux. Abstract interpretation of probabilistic semantics. In J. Pals-
berg, editor, Proc. 7" Int. Symp. SAS ’2000, Santa Barbara, CA, US,
LNCS 1824, pages 322-339. Springer-Verlag, 29 June — 1 Jul. 2000.

. Mycroft. Abstract Interpretation and Optimising Transformations for Ap-

plicative Programs. Ph.D. Dissertation, CST-15-81, Department of Com-
puter Science, University of Edinburgh, Edinburg, UK, Dec. 1981.

. Randimbivololona, J. Souyris, and A. Deutsch. Improving avionics soft-

ware verification cost-effectiveness: Abstract interpretation based tech-
nology contribution. In Proceedings DASIA 2000 — DAta Systems In
Aerospace, Montreal, CA. ESA Publications, 22-26 May 2000.

[53] D.A. Schmidt and B. Steffen. Program analysis as model checking of ab-

stract interpretations. In G. Levi, editor, Proc. 5" Int. Symp. SAS ’98,
Pisa, IT, 14-16 Sep. 1998, LNCS 1503, pages 351-380. Springer-Verlag,
1998.

. Stransky. A lattice for abstract interpretation of dynamic (LISP-like)

structures. Inform. and Comput., 101(1):70-102, Nov. 1992.

. Vallée-Rai, H. Hendren, P. Lam, E Gagnon, and P. Co. Soot - a Java™

optimization framework. In CASCON 99, Sep. 1999.

Abstract Interpretation Based Formal Methods and Future Challenges 151

[56] F. Védrine. Binding-time analysis and strictness analysis by abstract inter-
pretation. In A. Mycroft, editor, Proc. 2** Int. Symp. SAS ’95, Glasgow,
UK, 2527 Sep. 1995, LNCS 983, pages 400-417. Springer-Verlag, 1995.

[57] A. Venet. Automatic determination of communication topologies in mobile
systems. In G. Levi, editor, Proc. 5 Int. Symp. SAS ’98, Pisa, IT, 14-16
Sep. 1998, LNCS 1503, pages 152—167. Springer-Verlag, 1998.

[58] A. Venet. Automatic analysis of pointer aliasing for untyped programs. Sci.
Comput. Programming, Special Issue on SAS’96, 35(1):223-248, Septem-
ber 1999.

[59] Kwangkeun Yi. An abstract interpretation for estimating uncaught
exceptions in standard ML programs. Sci. Comput. Programming,
31(1):147-173, May 1998.

The electronic version of this paper includes additional material on static pro-
gram analysis applications as well as a comparison with other formal methods (typing,
model-checking and deductive methods) which, for lack of space, could not be included
in this published version. A broader bibliography is available in its extended version.

