
An Abstract Interpretation Scheme

for Groundness, Freeness, and Sharing Analysis

of Logic Programs

Renganathan Sundararajan
John S. Conery

University of Oregon

Abstract

Static global analyses based on abstract interpretation have been used to derive proper-
ties of programs. The analyses differ in the expressiveness of the abstract domains and the
precision and efficiency of domain operations. We extend an abstract domain defined by Ja-
cobs and Langen and present new abstract domain operations to derive freeness, groundness,
and sharing of variables in logic programs. Analysis of non-trivial programs shows that our
method is more precise and more efficient than previous proposals.
Keywords: logic programming, abstract interpretation, groundness analysis, sharing anal-
ysis.

Proc. 12th Conference on Foundations of Computer Science and Theoretical Computer Science

(New Delhi, Dec. 18–20), 1992, pp. 203–216.

Lecture Notes in Computer Science 629, Springer-Verlag, Heidelberg, Germany.

1



1 Motivation, Research Review and Contributions

Most of the recent work in abstract interpretation of programming languages has concentrated
on languages that have a large declarative component. Static analyses of logic programs were
initially proposed by Bruynooghe [1], Debray [6], Jones and Sondergaard [12] and Mellish [16],
and there have been a number of other important contributions to this field[1, 4, 5, 10, 14, 15,
17, 18, 20].

Our use of abstract interpretation is in a compiler for independent AND-parallel logic pro-
grams [8, 3]. In programs based on this model, two body goals may be solved in parallel if they
do not bind variables in arguments to conflicting terms. The simplest solution to this problem
is to test at runtime to make sure two goals have no unbound variables in common. However,
run-time tests for independence of terms can be very costly: O(mn) where m and n correspond
to the size of terms.

Three types of static analysis may help us determine at compile time that two goals will be
independent:

groundness Obviously, if a term is ground (contains no unbound variables) then it is indepen-
dent of any other term.

sharing Two nonground terms are independent if they have no variables in common, i.e. no
variable occurs in both terms.

freeness Even if a variable occurs as an argument in two goals, the goals may be solved in
parallel if one goal does not bind the variable to a nonvariable term; essentially the variable
is a free variable of the body of the goal.

Several papers have been published on analyzing procedure calls for common variables. Ja-
cobs and Langen [10] defined an abstract domain named Sharing to express variable sharing
and independence information. Muthukumar and Hermenegildo [17] extended Sharing to derive
freeness of variables and suggested an alternative set of abstract domain operations over Sharing.
Both these analyses conclude that if variables X and Y may have a shared variable and Y and
Z may have a shared variable, then X and Z may also have a shared variable. In the abstract
interpretation scheme of Jones and Sondergaard, sharing is non-transitive [12]. Treating it as
transitive introduces imprecision in sharing propagation. Codish [2] used the abstract domains
of Jones and Sondergaard to formally rederive an abstract unification algorithm for the domains.
The abstract domains of [12] are less expressive than Sharing (see [10] for examples) but sharing
propagation is better since it is not transitive. A brief look at the abstract unification algorithms
of [12, 2] will show that the time complexity is dominated by transitive closures and hence O(n3)
in the number of variables in the input terms.

Two projects related to freeness analysis are a static analysis, proposed by Debray and
Warren for deriving input and output modes of procedures, which can detect the occurrence
of free variables in some cases [6], and a detailed analysis by Winsborough which detects more
cases of free variable occurrences [21].

In this paper, we extend Jacobs and Langen’s Sharing domain to derive groundness, free-
ness, and sharing of variables more precisely than previous schemes. Although the worst case
time complexity of our abstract unification algorithm is exponential in the input size (as are
those of [10] and [17]), the actual behavior of our algorithm on realistic programs is better than
previous algorithms. The exponential component of our abstract domain operation is executed

2



rarely, only when terms with repeated variable subterms occur. Such occurrences are not fre-
quent in practical programs, whereas computing transitive closures is an integral part of sharing
propagation in [12] and [2].

To substantiate our claim, we defined and implemented a domain-independent abstract in-
terpreter for logic programs [19] and instantiated it with the abstract domains and operations
of Jones and Sondergaard [12], Jacobs and Langen [10], and our own extended version of Shar-

ing. Analyses of non-trivial programs showed that our method captures variable sharing and
independence information more accurately than previous proposals. These analyses also confirm
our belief that the efficiency our algorithm (at least for the examples we tested) is much better
than other algorithms. Furthermore, analysis times for the complex domains and operations
proposed here compare very favorably with the times reported for much simpler analyses, for
example Warren, Hermenegildo, and Debray’s global flow analysis [20].

2 Abstract Interpretation

2.1 Definitions and Notation

In abstract interpretation, as in concrete interpretation, we are concerned with the values of
variables. An abstract interpreter will bind variables to values from an abstract domain, where
each element is an abstraction of one or more values from the corresponding concrete domain.
We use vars(A) to denote the set of variables in A, where A may be a term, body, head, or an
abstract domain.

The notion of binding a variable is captured by a mapping from variables to terms. A
substitution θ : Subst = Var → Term is a set of bindings {vi �→ ti, . . .} where the vi are
distinct logical variables and the ti are terms and the vi do not occur in any tj . The domain of
a substitution is the set of variables occurring on the left hand sides:

dom(θ) = {vi | vi �→ ti ∈ θ ∧ ti �= vi}

and the range is the set of terms on the right hand sides:
range(θ) = {ti | vi �→ ti ∈ θ ∧ ti �= vi}.

The definition of substitution can be extended from Var → Term to Term → Term. tθ is
the term obtained by applying substitution θ to a term t, i.e. replacing every variable vi of t

with the corresponding ti for which there is a binding vi �→ ti ∈ θ.
The composition of substitutions, denoted θj ◦ θi, is a function λ x.(x θi) θj where x ∈ Term.

Composition associates to the right: θi ◦ θj ◦ θk = θi ◦ (θj ◦ θk). The domain of θi ◦ θk is
dom(θi) ∪ dom(θj). Composition allows us to define a natural pre-ordering of substitutions:
θ1 ≤ θ2 iff ∃θ3 ∈ Subst such that θ2 = θ3 ◦ θ1.

We consider only idempotent substitutions, that is θ◦θ = θ for any substitution θ. What this
implies about the structure of a substitution is that no variable that occurs on the left hand side
of some binding also occurs in a term on the right hand side, i.e. dom(θ) ∩ vars(range(θ)) = ∅.

A substitution θ is a unifier of terms t1 and t2 if t1θ = t2θ. The most general unifier (mgu)
of two terms is a unifier which is least with respect to ≤ (modulo variable renaming). Define
a function mgu : Atom × Atom → Subst ∪ {fail} that yields the most general unifier of two
atoms if it exists and returns fail otherwise. We assume that the variables in a program have
been renamed so that a variable does not occur in more than one clause. Hence, we can refer
unambiguously to the set of program variables Pvar.

3



In an abstract interpretation framework it is customary to define a core semantics for a
language, leaving some semantic domains and functions unspecified. An interpretation of the
core semantics supplies the missing domains and functions. Each domain left unspecified in the
core semantics must be a complete lattice, or at least a complete partial order (cpo) [11]. The
abstract domains must be of finite height to ensure termination.

A modeling relation between an abstract domain Asub and the corresponding standard
domain P(Subst) is given by two continuous functions. An abstraction function α maps a
standard domain to an abstract domain, and a concretization function γ goes in the other
direction, mapping an abstract domain to a concrete domain:

α : P(Subst) → Asub

γ : Asub → P(Subst)

For any Θ ∈ P(Subst) and Φ ∈ Asub we have the following soundness property:

Φ = α(γ(Φ))
Θ ⊆ γ(α(Θ))

For every term x and function f of a concrete domain there will correspond a term x and function
f of the abstract domain. The result of the abstract application f(x) must yield an an abstract
object y such that γ(y) must describe the set of objects of the standard domain obtained by
applying f to x. In other words, we have a constraint that for every x in the standard domain,
f(x) ∈ γ(f(α(x))).

2.2 Abstract Interpretation of Logic Programs

Before describing abstract interpretation of logic programs, we will review the standard (con-
crete) interpretation [13]. A goal G, consisting of a set of subgoals {ai, . . . , an}, is solved in the
context of a program P and a current substitution θ (initially empty). A subgoal am is selected
using a computation rule; then a search rule is used to find a clause b ← b1, . . . , bk in P such that
b unifies with am using substitution θi (after renaming the variables of the clause). The body
literals replace am in the goal and the process continues after composing θi with the current
substitution, i.e. the new set of goals is (G − {am} ∪ {b1, . . . , bk})θi ◦ θ. This process repeats
until the set of goals is empty, in which case the initial goal has been successfully solved, or
there is a subgoal that does not unify with the head of any of the clauses. When the set of goals
is empty, we call the current substitution an answer substitution.

Abstract interpretation of a logic program starts with a program P and a set of entry points.
The entry points can be examples of actual queries together with an initial abstract substitution
for the variables in the query, or the entry points may be query patterns. The current substitution
is given a different name depending on the state of computation. If a goal is about to be unified
with the head of clause, the current substitution is known as the call substitution of the goal.
If a goal has just been successfully unified with the head of clause, the unifier is the entry

substitution for the clause; note that the entry substitution is also the call substitution for the
first literal in the body. If the last literal in a clause body has just been solved, the current
substitution is known as the exit substitution for the clause. Restricting the exit substitution of
a clause to the non-local variables (variables that do not occur in the clause) and then composing
it with the call substitution of the goal gives us the success substitution of the clause. The set

4



of success substitutions of all the clauses whose heads unified with a goal G is the set of answer
substitutions of G.

The goal of abstract interpretation is to collect information about each clause in the program,
in the form of an exit substitution relative to a given call substitution. For a unit clause, the exit
substitution is the same as the entry substitution, i.e. the call substitution composed with the
mgu of the head and the call. For a nonunit clause, we need to compute the success substitution
of the body literals, using the success substitution of literal i as the call substitution of literal
i + 1. The success substitution of the last literal in the clause is the exit substitution of the
clause. Although our eventual goal is to gather information about programs for independent
AND-parallel execution, in which goals are not executed from left to right, for this paper we
will use our abstract domains in an abstract interpreter that does a strict left-to-right execution.
Our goal here is to compare the precision of the analysis afforded by the different domains. Thus
our abstract interpreter uses the success substitution of body literal i as the call substitution of
literal i + 1. An abstract interpreter that is a front-end to a compiler which generates a goal
ordering based on an abstract interpretation is the subject of a current project.

Since a program may contain recursive predicates, abstract interpretation involves fixpoint
computation. Standard algorithms for fixpoint computations and their variations can be found
in [7, 5, 19, 10, 17], among others. In an abstract interpretation over domains of finite height,
we can solve the current set of goals in depth-first order without sacrificing completeness.

3 Abstract Domain ASub

Our abstract domain ASub is a triple �Free,Repeat,Sharing �. Each component of ASub repre-
sents a particular property of a set of concrete substitutions Θ:

• Sharing is the same as Jacobs and Langen’s domain of the same name. It is a set
{S0, . . . , Sn} where each Si is a set of variables which may be unified to terms in the
concrete domain that have variables in common by some substitution θ ∈ Θ.

• Free is a set of variables that are definitely free (not bound to non-variable terms) in all
θ ∈ Θ.

• Repeat identifies the set of variables that are bound to concrete terms that may have
subterms in which a variable occurs more than once.

Information about which variables may be bound to terms with repeated variable subterms
allows us to derive a precise abstract unification algorithm which does not treat sharing as a
transitive relation.

We now give formal definitions of the components of the abstract domain ASub. Definitions
1 through 3 are due to Jacobs and Langen [10].

Elements of the abstract domain Sharing will contain sets of variables that may have shared
subterms in the concrete interpretation:

Definition 1 Abstract Domain Sharing

Sharing: P(P(Var))
�Sharing =⊆

X1 �X2 = X1 ∪X2, for X1, X2 ∈ Sharing ✷

5



The partial ordering reflects the fact that Sharing is intended to express possible, as opposed to
definite, sharing among the variables in any execution.

A substitution θ may have a binding v �→ t where t contains a variable u. In this case we
say u occurs through v. The function occ(θ, u) is the set of all variables through which u can
occur given substitution θ:

Definition 2
occ : Subst×Var → P(Var)
occ(θ, u) = {v ∈ dom(θ) | u ∈ vars(vθ)} ✷

Note that occ(θ, u) is a set of variables that have a common variable subterm, namely u.
We can use occ to define a function shared(θ) that gives us all possible sets of variables

that may have shared subterms in substitution θ. A set of variables {x1, . . . , xn} is in shared(θ)
when x1, . . . , xn are bound respectively to terms t1, . . . , tn in θ and there is at least one common
variable that occurs in the terms t1, . . . , tn:

Definition 3
shared : Subst → Sharing

shared(θ) = {occ(θ, u) | u ∈ Var} ✷

Example 1 Let θ0 = {W �→ f(A,C, A), X �→ g(A,C), Y �→ B,Z �→ h(A,B, C, D)}.

A quick glance shows that A occurs through the bindings of W , X, and Z. By
Definition 2, Wθ0 = f(A,C, A), Xθ0 = g(A,C), and Zθ0 = h(A,B, C, D); also
A ∈ vars(Wθ0), A ∈ vars(Xθ0), and A ∈ vars(Zθ0), so occ(θ0, A) = {W,X, Z}, as
expected.

Applying occ to all variables in θ0 gives us the value of shared:

shared(θ0) = {∅, {W,X, Z}, {Y, Z}, {Z}} ✷

When a variable x is bound to a ground term in θ, no variable occurs through x and hence x

does not appear in any set in shared(θ). By a slight abuse of terminology, we call such variables
“ground variables,” meaning they are variables that are bound to ground terms in the concrete
substitution. By extension, if ∅ is the only element of sharing(θ), then all variables in dom(θ)
are ground in θ.

Next we discuss our extensions, the domains Free and Repeat, which together with Sharing

form the abstract domain ASub.
The abstract domain Free will be a set of variables that will definitely be free at a given

program point in all possible executions. In the Sharing domain we were satisfied to know if
variables could possibly have shared subterms, so set union was used to define the lub operation
in that domain. Here, set intersection is the lub operation.

Definition 4 Abstract domain Free

Free: P(Var)
∀x, y ∈ Free, x �Free y iff x ⊇ y

∀x, y ∈ Free, x � y = x ∩ y ✷

A variable in the domain of a substitution is free if it is bound to another variable term. The
following function free(θ) defines the set of variables that are free in θ:

6



Definition 5
free : Subst → Free

free(θ) = {xi | xi ∈ dom(θ) ∧ xi �→ xj ∈ θ ∧ xj ∈ Var} ✷

Note the fact that substitutions are idempotent guarantees that no variables on the right hand
sides of bindings xi �→ xj can also be on the left hand side of some other binding.

Example 2 Using the substitution θ0 of Example 1, free(θ) = {Y }. ✷

The domain Repeat represents those variables that are bound to terms which may have
repeated variable occurrences. A larger set of substitutions may induce a larger set of variables
which have repeated variable subterms. Hence, set union is the lub operation on Repeat.

Definition 6 Abstract domain Repeat

Repeat: P(Var)
�Repeat =⊆

X1 �X2 = X1 ∪X2, for X1, X2 ∈ Repeat ✷

Function repeat(θ) returns a set of variables that are bound to terms containing multiple
occurrences of at least one variable:

Definition 7
repeat : Subst → Repeat

repeat(θ) = {xj | xj �→ tj ∈ θ ∧ ∃xk ∈ Var ∧ multioccurs(xk, tj)} ✷

The predicate multioccurs(v, t) is true if v occurs in more than one place in term t.

Example 3 repeat(θ0) = {W}. ✷

Note that we lose information about the number of occurrences of repeated variables and
the positions in which they occur. This may cause some loss of precision in sharing analysis but
is not expected to cause any significant loss in most cases. Keeping this information, on the
other hand, would make the domains too concrete and the analyses too costly. Also note that
∀θ repeat(θ) ∩ free(θ) = ∅.

Having introduced the domains Free, Repeat and Sharing, we now define ASub as the product
of these three domains. The partial ordering on and lub of ASub are derived from the component
domains. Domain subscripts are omitted when there can be no confusion.

Definition 8 Abstract Domain ASub = Free × Repeat × Sharing

�ASub = �Free × �Repeat × �Sharing

�ASub = �Free × �Repeat × �Sharing ✷

The initial abstract substitution for the top level goal or entry point with variables x0,
x1, . . . , xn has a Sharing component of the form {{x0}, {x1}, . . . , {xn}}, i.e. all variables are
independent, Repeat is the empty set, and Free is the set {x0, x1, . . . , xn}, i.e. all variables are
initially free.

Finally, we define the abstraction and concretization functions that are mappings between
the concrete and abstract domains. The abstraction function α maps a set of substitutions to
an element of ASub. We define α in terms of the abstraction functions free, repeat and shared

of the component domains Free, Repeat and Sharing respectively.

7



Definition 9 Abstraction Function
α : P(Subst) → ASub

α(Θ) =
�

θ∈Θ

{(free(θ), repeat(θ), shared(θ))} ✷

The abstraction of a set of substitutions Θ includes all possible sharing of variables induced
by each substitution θ ∈ Θ, since set union is the lub operation for Sharing. Likewise, a variable
is ground in the abstraction of Θ only if it is ground in all the substitutions θ ∈ Θ. The Repeat

component of the abstraction of Θ includes a variable x if x is bound to a term with a repeated
variable occurrence in at least one θ ∈ Θ. Finally, a variable is free in an abstract substitution
Θ only if it is free in all θ ∈ Θ.

The definition of the concretization function γ follows naturally from the above definitions.

Definition 10 Concretization function
γ : ASub → P(Subst)
γ(A) = {θ ∈ Subst | (free(θ)× repeat(θ)× sharing(θ)) � A} ✷

It is easy to verify that our definitions of α and γ fulfill the modeling relation between ASub

and P(Sub) specified earlier.

4 Operations on the Abstract Domain

In abstract interpretation, as in concrete interpretation, the central operation is unification. In
this section we will explain how information in the heads of a called procedure is composed
with the current abstract substitution to form the abstract substitution used in the next step.
We start with definitions of functions relevant, closure under union (due to [10]), restrict, and
update, which will be used to construct the abstract unification function.

Our first function allows us to choose a subset of a Sharing that has variables in common
with a given term. Given a syntactic object t (an element of the domain of concrete terms A)
and a Sharing S, relevant(t, S) returns the subset of S that contains elements that have one or
more variables occurring in t:

Definition 11
relevant : A× Sharing → Sharing

relevant(t, S) = {X ∈ S | vars(t) ∩X �= ∅} ✷

Example 4 Recall from Example 1 that
θ0 = {W �→ f(A,C, A), X �→ g(A,C), Y �→ B,Z �→ h(A,B, C, D)}
and
S = sharing(θ0) = {∅, {W,X, Z}, {Y, Z}, {Z}}

The sets of variables that may share with Z are
relevant(Z, S) = {{W,X,Z}, {Y, Z}, {Z}} ✷

Suppose Z, bound to a nonground complex term, now becomes further instantiated as the
result of composition of another substitution with the current substitution. Such further in-
stantiations may cause some distinct subterms of Z to share. The closure under union of a
Sharing S approximates further sharing among the variables of S that may be caused by such
compositions.

8



Definition 12 Closure under union
The closure under union of a Sharing S, denoted S

∗, is the smallest superset of S

such that X ∈ S
∗ ∧ Y ∈ S

∗ ⇒ X ∪ Y ∈ S
∗. ✷

Function restrict is used to restrict a given abstract substitution to the variables of a clause
or to the variables in the goal’s environment.

Definition 13 restrict

restrict : ASub× P(Var) → ASub

restrict(�F,R, S �, V ) = �F ∩ V,R ∩ V, {X � | X ∈ S ∧ X
� = X ∩ V } � ✷

A function we will not define formally is update(T, V ) which returns a copy of term T with
the set of ground variables V replaced by constants.

We can now discuss the main abstract domain operations abstract unify, entry substitution,
and success substitution. Function entry substitution abstracts the effect of head unification and
is used to propagate information from the abstract environment of a goal to the abstract envi-
ronment of the clause whose head matched the goal. The abstract operation success substitution

is used for propagating information in the other direction, i.e., it abstracts the effect of com-
posing the exit substitution of a clause with the call substitution of a goal and restricting the
result to the variables of the goal environment. Most of the work of abstracting head unifica-
tion and abstracting the composition of exit and call substitutions will be done by the function
abstract unify. The technical details of renaming the variables of a clause is taken care of in
formal definitions but omitted in the remaining discussions.

4.1 entry substitution

Just before head unification, all the variables of a clause are free, pairwise independent, and not
bound to terms with repeated variable subterms. The entry substitution function will compute
the component-wise union of this initial abstract substitution (environment) of the clause with
the abstract substitution of the goal and use it as the environment in which the goal and the
clause head are unified.

Definition 14
entry substitution : Atom× Clause×ASub → ASub

entry substitution(Goal,Head :- Body,ASubcall) =
let (H,B) = rename((Head, Body))

F = ASubcall↓Free ∪ vars (H) ∪ vars (B)
R = ASubcall↓Repeat

S = ASubcall↓Sharing ∪ {{X} | X ∈ vars (H) ∪ vars (B)}
ESub = abstract unify(Goal,H, �F,R, S �)

in rename
−1(restrict(Esub, vars (H) ∪ vars (B)))

✷

The notation S↓T is the projection of S onto T . The call to abstract unify implements
abstract head unification, and the updated abstract substitution is restricted to the clause
variables and is used for solving the body goals.

9



4.2 success substitution

Function success substitution is similar to entry substitution. It uses abstract unify to compose
the exit substitution and the call substitution by abstractly unifying the head and the goal in the
environment which is the component-wise union of the abstract exit substitution of the clause
and the abstract call substitution of the goal. The success substitution of a goal is then just the
restriction of the resulting unified substitution to the variables in the environment of the goal.

Definition 15
success substitution : Atom× Clause×ASub×ASub → ASub

success substitution(Goal,Head :- Body,ASubcall,ASubexit) =
let (H,B,ASubexit) = rename

�((Head, Body,ASubexit))
ASubboth = ASubexit ∪ ASubcall

ASubsucc = abstract unify(Goal,H,ASubboth)
in restrict(ASubsucc,Pvar)

✷

4.3 abstract unify

The abstract unify function updates an abstract substitution ASubin for a head and a goal
to reflect the effects of their unification. It first unifies the head and the goal in an empty
environment to obtain an idempotent substitution which can be thought of as a set of equations
E : {x1 = t1, . . . , xn = tn} [9]. These equations represent the unifications to be performed in the
current environment whose abstraction is ASubin. All we have to do is to safely abstract the
effect of each of these equations on the abstract substitution. In the rest of the paper, we will
refer to an mgu as a set of equations and each binding in the mgu as an equation.

Since variables bound to ground terms are not free, do not have subterms with shared
variables, and do not have repeated variable occurrences, it is convenient to identify the ground
variables defined by the abstract substitution and eliminate them from the abstract substitution
and the unification equations. The function propagate frs (defined later) will use the remaining
equations xi = ti to update the abstract substitution. Since propagate frs performs a safe
but imprecise approximation in the presence of variables bound to terms with repeated variable
subterms, explicit groundness propagation and elimination of ground variables from the abstract
substitution improves the precision of our analysis.

Definition 16
abstract unify : Atom×Atom×ASub → ASub

abstract unify(Goal,Head,ASubin) =
let θ = mgu(Goal, Head)

Ground0 = (vars(Goal) ∪ vars(Head)) \ vars(ASubin↓Sharing)
Ground1 = Ground0 ∪ {X| Vi �→ Ti ∈ θ ∧ Vi ∈ Ground0 ∧ X ∈ vars (Ti)}
Ground = Ground1 ∪ {Vi | Vi �→ Ti ∈ θ ∧ vars (Ti) ⊆ Ground1}

θ0 = {xi �→ ti | xi �→ t
�
i ∈ θ ∧ xi �∈ Ground ∧ ti = update(t�i,Ground)}

Sharing0 = ASubin↓Sharing \ relevant(Ground,ASubin↓Sharing)
Repeat0 = ASubin↓Repeat \ Ground

Free0 = ASubin↓Free \
�

relevant(Ground,ASubin↓Sharing)
in propagate frs(�Free0,Repeat0,Sharing0 �, θ0)

✷

10



Example 5 Unify goal p(X, f(Y ), Z, A) with head p(f(Q,P ), f(f(R, 2)), f(T, S), P ),
given current abstract substitution �Free, Repeat, Sharing � where:

Free = {P,Q,R, S, T}

Repeat = {Z,A}

Sharing = {∅, {Y }, {Y, Z}, {Y, B}, {A}, {P}, {Q}, {R}, {S}, {T}}

Unifying the head and the goal yields equations

{X = f(Q,P ), Y = f(R, 2), Z = f(T, S), A = P}

X is ground because it does not appear in the Sharing component of the abstract
environment. Any term equated to X must also be ground, so X = f(Q,P ) implies
that Q and P are also ground, and further A is also ground since A = P . Thus
the set of ground variables is {A,P, Q, X}. We can use this information to refine
the abstract substitution by removing the sets {A}, {P}, and {Q} from the Sharing

component, A from the Repeat component and P and Q from the Free component.
The updated abstract substitution is:
Free = {R,S, T}

Repeat = {Z}

Sharing = {∅, {Y }, {Y, B}, {Y, Z}, {R}, {T}, {S}}

The remaining unification equations are {Y = f(R, 2), Z = f(T, S)}. ✷

We have considered the effect of grounding variables through head unification. What is left
is the approximation of the effect of the remaining equations on the abstract substitution. This
is done by the function propagate frs, which is discussed next.

4.4 propagate frs

The main part of the abstract unification algorithm, propagate frs, updates the current ab-
stract substitution by safely approximating the effects of each equation generated by head–goal
unification in the empty environment.

Definition 17
propagate frs : ASub× Subst → ASub

propagate frs(�F,R, S �, θ) =
if θ = {} then �F,R, S �

else

11



let (Vi = Ti) ∈ θ

θ
� = θ \ {Vi = Ti}

A = relevant(Vi, S), B = relevant(Ti, S)
B
� = if Vi ∈ R then B

∗ else B fi
A
� = if (vars (Ti) ∩R �= ∅ ∨ ∃Xj s.t. multioccurs(Xj , Ti))

then A
∗ else A fi

S
� = (S \ (A ∪B)) ∪ pairwise union of A

�
and B

�

R
� = R ∪ (if Vi ∈ R then

�
relevant(Ti, S) else ∅ fi)

R
�� = R

� ∪ (if (relevant(Ti, S) ∩R �= ∅ ∨ ∃Xj s.t. multioccurs(Xj , Ti))
then

�
relevant(Vi, S) else ∅ fi)

R
��� = R

�� ∪ relevant((
�
{X ∩ Y | X ∈ A

�
, Y ∈ B

�}), S)
F
� = Free \ (if Vi �∈ F then relevant(S�

, Ti) else ∅ fi)
F
�� = F

� \ (if (Ti �∈ Var ∨ Ti �∈ F
�) then relevant(S�

, Vi) else ∅ fi)
in propagate frs((F ��

, R
���

, S
�), θ�)

fi
✷

An outline of a proof of correctness of abstract unify is given in the Appendix.
To propagate information about sharing, repeating, and freeness for an equation, we begin

with the Sharing component. After the unification defined by the equation vi = ti, any variables
relevant to the current value of vi may share with any variable relevant to the current value of ti.
Assume that vi and ti do not have repeating variable sub-terms according to the current abstract
substitution. We compute the pairwise union of each possible pair of sets of variables from
relevant(vi, Sharing) and relevant(ti, Sharing) and add these to Sharing (since this information
supersedes the old relevant sets, they are removed).

Next we consider how repeated variables impacts sharing. The effect of an equation vi = ti

depends on whether or not vi (or a variable in ti) is already bound to some term which has one
or more repeated variable occurrences. This leads to four possibilities, depicted in Figure 1. A
broken edge from vi to ti represents the fact that the equation unifies the two terms. A solid
edge from vi to itself indicates that vi may have a repeated variable occurrence in the current
substitution; similarly a solid edge from a node ti to itself means the term ti has one or more
variables that occur more than once in the term. For both types of nodes, the variables we
are concerned with are those that occur in the term and the variables it may be aliased to,
i.e. the relevant variables as defined by the current Sharing. In the figure, the set (X1, . . . , Xn)
associated with a variable node are all the variables in relevant(vi,Sharing), and the variables
Y1, . . . , Yk are the variables in relevant(ti,Sharing).

We have already considered case (a). Consider case (b) in the figure. Some Yi has a repeated
subterm, as indicated by the solid arc. The equation vi = ti implies that some of the variables
X1, . . . , Xn may now depend on each other as the result of the repeated variable somewhere
in ti. To handle this case, we compute the closure under union of relevant(vi,Sharing) and
add the pairwise union of this set and relevant(ti,Sharing) to Sharing. Case (c) is symmetric
to case (b), the only difference being that the repeated variable is one of the Xi and the set
to close under union and add to Sharing is relevant(ti,Sharing). Finally, in case (d), since
there may be repeated variable subterms in vi and ti, both the sets relevant(vi,Sharing) and
relevant(ti,Sharing) are closed under union and their pairwise union is added to Sharing. As an
example of case (c), consider equation Z = f(T, S) of Example 5. Since Z may have a repeated

12



Vi

(X1, . . . , Xn)
Vi

(X1, . . . , Xn)
Vi

(X1, . . . , Xn)
Vi

(X1, . . . , Xn)

Ti
(Y1, . . . , Yk)

Ti
(Y1, . . . , Yk)

Ti
(Y1, . . . , Yk)

Ti
(Y1, . . . , Yk)

(a) (b) (c) (d)

Figure 1: Sharing, Freeness and Repeatedness Propagation

variable occurrence, T and S may be brought to share. This is accounted for by taking the
closure under union of {{T}, {S}} = {{T}, {S}, {T, S}}.

When updating Repeat for an equation vi = ti, we note that if vi may be bound a term
which has repeated variable subterms, then ti now also has repeated variable subterms. Since
we do not know which of the variables of vi repeat, and since we are deriving potential repeat-
edness information, we have to conclude that any subterm of ti may also have repeated variable
subterms. Returning again to the equation Z = f(T, S) and the case where we know Z has
repeated variable subterms, we conservatively conclude that T and S may also be bound to
terms with repeated variable subterms and add them to Repeat.

Even when neither vi nor ti has a repeated variable subterm, the equation vi = ti may cause
two previously distinct variable subterms to become aliased. Consider the equation P = R,
given substitution {P �→ (T,U), Q �→ (T,U), R �→ (U,N)} and the sharing component of its
abstraction {{P,Q}, {P,R}, {R}}. Two previously distinct components T and U in the value of
P are now aliased to each other and P , Q, and R will now have a repeated variable occurrence.
Such cases can arise only when there is at least one variable (U in this situation) that occurs
through both vi and ti. We must conclude that vi, all the variables in ti, and variables that
share with them may be bound to a term with repeated variable subterms.

Finally, to propagate freeness information, we need to remove variables from Free that are
unified with ground terms or are unified with other variables that are not free.

5 Comparison to Other Approaches

To compare the precision and efficiency of our abstract domain with others, we designed and
implemented a domain-independent abstract interpreter which accepts as parameters an abstract
domain and its operations. We analyzed five different programs with our domain (SR), the
domain of Jacobs and Langen (JL), and the domain of Jones and Sondergaard (JS). The five
programs were

• Grammar: Generates and recognizes a very small set of English sentences (15 clauses).

13



No of Pairs of Analysis Times, in secs
Shared Variables using SICStus Prolog 0.7

Program SR JS JL SR JS JL
Grammar 6 6 6 0.9 5.3 0.9
Bid 0 0 5 4.3 5.6 4.5
Deriv 0 0 0 21.1 25.8 20.2
Read 23 29 42 47.6 123.9 47.6
RdTok 37 41 60 129.1 568.8 415.8

Table 1: Precision and Efficiency of 3 systems. Analysis Times on a HP 9000/835.

• Bid: Computes the opening bid for a bridge hand (51 clauses).

• Deriv: Performs symbolic differentiation and simplifies the derivative (61 clauses).

• Read: Warren and O’Keefe’s public domain Prolog parser (87 clauses).

• Rdtok: O’Keefe’s public domain tokenizer for Prolog (54 clauses).

Table 1 shows the results of our experiment. The precision of an analysis is measured in
terms of the number of pairs of program variables reported to be shared by a method. Since
the analyses are aimed at deriving potential sharing, an analysis is more precise when it derives
a smaller set of such variables, i.e. it reports only those variables that do in fact share. Our
analyzer, SR, found the smallest number of pairs of sharing variables in all cases. JS was a close
second, and JL was not as precise as the other two. In the case of two widely used practical
programs, the number of pairs of sharing variables derived by JL was larger by about 82% and
62% than that of SR and 45% and 46% larger than those of JS.

Our method is the most efficient, taking less time to analyze all but one program. Con-
trary to popular belief that more precise analyses are necessarily less practical, the improved
precision of our analysis actually contributes to faster execution. JS, although almost as pre-
cise as ours, is two to three times slower in the case of Read and about five times slower in
the case of Rdtok and Grammar. This is mainly due to the transitive closures computed by
JS when approximating unification. Computing transitive closures is a central part of Jones
and Sondergaard’s technique for propagating sharing and cannot be avoided. In our domain,
the operation closure under union has a higher worst case time complexity (exponential in the
number of elements in the set, as opposed to O(n3) for transitive closure) but it is avoided most
of the time because of the expressiveness of our abstract domain and the matching precision of
our abstract domain operations. The fact that Jacobs and Langen’s analysis was less precise
than ours is also reflected in the analysis times. JL is slower by three and a half times in the
case of Rdtok where its precision is the lowest.

The analysis times of our abstract interpreter compare favorably with those reported in the
literature For example, the MA

3 and Ms interpreters required 60.2 seconds using Quintus Prolog-
2.2 on a Sun3/50 to analyze Read [20], whereas ours took 47.6 seconds using SICStus 0.7 on a
somewhat faster HP9000/835 system. There is, however, a point worth noting. Our abstract
interpreter, written in Prolog, interprets the program to be analyzed. The WAM (Warren
Abstract Machine) code of our abstract interpreter is itself interpreted by the WAM emulator
of SICStus Prolog. Hence, our analyzer pays the overhead of double interpretation. The Ms

interpreter transforms the programs to be analyzed into new programs [20] which get executed

14



directly by the underlying Prolog system and thus avoids the overheads. Despite the overhead,
our abstract interpreter’s analysis times are comparable.

6 Conclusions

The feasibility of data flow analysis of logic programs based on abstract interpretation has been
well established. In this paper we showed that it is possible to define more informative and
efficient analyses through the use of more precise information in the abstract domain. Although
the worst case behavior of our algorithm is exponential in the number of shared variables, the
observed behavior on practical programs is very efficient.

References

[1] Bruynooghe, M. A Framework for the Abstract Interpretation of Logic Programs. Tech.
Rep. CW62, Department of Computer Science, Katholieke Universiteit Leuven, October
1987.

[2] Codish, M., and Yardeni, E. Derivation and safety of an abstract unification algorithm
for groundness and aliasing analysis. In Proceedings of the Eighth International Conference

on Logic Programming (1991).

[3] Conery, J. S. Parallel Execution of Logic Programs. Kluwer Academic Publishers, Boston,
MA, 1987.

[4] Debray, S. K. Static analysis of parallel logic programs. In 1988 Joint Conference on

Logic Programming (1988), pp. 711–733.

[5] Debray, S. K. Static inference of modes and data dependencies. ACM Transactions of

Programming Languages and Systems 11, 3 (July 1989), 418–450.

[6] Debray, S. K., and Warren, D. S. Automatic mode inference for prolog programs. In
Proceedings of the 1986 Symposium on Logic Programming (1986).

[7] Hecht, M. S. Flow Analysis of Computer Programs. Programming Language Series.
North-Holland, New York, 1977.

[8] Hermenegildo, M. An Abstract Machine Based Execution Model for Computer Archi-

tecture Design and Efficient Implementation of Logic Programs in Parallel. PhD thesis,
University of Texas at Austin, August 1986.

[9] J-L. Lassez, M.J. Maher, K. M. Unification Revisited. Morgan Kaufmann Publishers,
Inc, 1988, ch. 15, pp. 587–626.

[10] Jacobs, D., and Langen, A. Accurate and efficient approximation of variable aliasing in
logic programs. In Proceedings of the North American Conference on Logic Programming

(1989), pp. 154–165.

[11] Jones, N., and Mycroft, A. Data flow analysis of applicative programs using minimal
function graphs. In Proceedings of 13th POPL (1986), ACM.

15



[12] Jones, N., and Sondergaard, H. A semantics based framework for the abstract inter-
pretation of prolog. In Abstract Interpretation of Declarative Languages, S. Abramsky and
C. Hankin, Eds. Ellis Horwood Limited, 1987, ch. 6, pp. 123–142.

[13] Lloyd, J. W. Foundations of Logic Programming, first ed. Springer-Verlag, Berlin, 1984.

[14] Manilla, H., and Ukkonen, E. Flow analysis of prolog programs. In 4th IEEE Sympo-

sium on Logic Programming (september 1987), IEEE Computer Society.

[15] Marriott, K., and Sondergaard, H. Bottom-up dataflow analysis of normal logic
programs. In 5th International Conference on Logic Programming (August 1988).

[16] Mellish, C. S. Abstract interpretation of prolog programs. In Third International Con-

ference on Logic Programming (july 1986), pp. 463–475.

[17] Muthukumar, K., and Hermenegildo, M. Combined determination of sharing and
freeness of program variables through abstract interpretation. In Proceedings of the Eighth

International Conference on Logic Programming (1991).

[18] Sondergaard, H. An application of abstract interpretation of logic programs: Occur
check reduction. In Proccedings of European Symposium on Programming (1986), Springer-
Verlag.

[19] Sundararajan, R. An introduction to abstract interpretation of logic programs. Tech.
Rep. CIS-TR 91-05, Dept of Computer and Information Science, University of Oregon,
Eugene, Oregon, U.S.A. 97403, 1991.

[20] Warren, D. H. D., Hermenegildo, M., and Debray, S. K. On the practicality of
global flow analysis of logic programs. In 1988 Joint Conference on Logic Programming

(1988), pp. 684–699.

[21] Winsborough, W. Automatic, Transparent Paralellization of Logic Programs at Compile

Time. PhD thesis, Dept. of Computer Science, University of Wisconsin-Madison, Sept.
1988.

16



Appendix A: Correctness

The correctness of our analysis can be established by proving the correctness and monotonicity
of the entry substitution and success substitution functions and the following main theorem
about abstract unify.

Theorem 1
{mgu(hθ, gσ)} ⊆ γ(abstract unify(g, h, α(θ) ∪ α(σ))) where dom(θ) ∩ dom(σ) = ∅

✷

The condition dom(θ) ∩ dom(σ) = ∅ reflects the fact that the clause head h and the goal g are
renamed apart before unification. To prove the above, it is enough show that

α({mgu(hθ, gσ)}) � α(γ(abstract unify(g, h, α(θ) ∪ α(σ))))

with the same proviso that dom(θ) ∩ dom(σ) = ∅. From our definitions of α and γ it can be
shown that α(γ(A)) = A, which simplifies the above equation to

α({mgu(hθ, gσ)}) � abstract unify(g, h, α(θ) ∪ α(σ))

The above condition can be stated in terms of the component domains and their partial
orderings, as follows (LHS and RHS mean the left and right hand sides of the above equation):

LHS↓Free ⊇ RHS↓Free

LHS↓Repeat ⊆ RHS↓Repeat

LHS↓Sharing ⊆ RHS↓Sharing

The following outline supports the above three conditions.

1. For any θ, ground variables(θ) ∩ Free(θ) = ∅ and ground variables(θ) ∩ Repeat(θ) = ∅

and ground variables(θ) ∩ vars(Sharing(θ)) = ∅ from the definitions of Free, Repeat and
Sharing.

2. For any θ, it can be proved from the definition of the function shared that the set of
variables dom(θ) \ vars(shared(θ)) are mapped to ground terms by θ.

3. Steps three and four of abstract unify correctly derive the set of definitely ground variables.

4. Conclude from the above steps [1-3] that propagate frs is called with a correct refinement
of the abstract substitution and the mgu.

5. The proof of correctness of the function propagate frs is (i) by induction on the number
of equations in the mgu of the goal and the head and (ii) by induction on the structure
of terms. We discussed the conservative derivation of potential sharing among and the
repeatedness of variables based on the structure of terms (Figure 1) and the repeated
occurrences of their variables.

17


