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Abstract
Programming interactive systems by means of the observer
pattern is hard and error-prone yet is still the implementa-
tion standard in many production environments. We present
an approach to gradually deprecate observers in favor of re-
active programming abstractions. Several library layers help
programmers to smoothly migrate existing code from call-
backs to a more declarative programming model. Our cen-
tral high-level API layer embeds an extensible higher-order
data-flow DSL into our host language. This embedding is
enabled by a continuation passing style transformation.
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1. Introduction
Over the past decades, we have seen a continuously increas-
ing demand in interactive applications, fueled by an ever
growing number of non-expert computer users and increas-
ingly multimedia capable hardware. In contrast to traditional
batch mode programs, interactive applications require a con-
siderable amount of engineering to deal with continuous user
input and output. Yet, our programming models for user in-
terfaces and other kinds of continuous state interactions have
not changed much. The predominant approach to deal with
state changes in production software is still the observer pat-
tern [25]. We hence have to ask: is it actually worth bother-
ing?

For an answer on the status quo in production systems,
we quote an Adobe presentation from 2008 [43]:

• 1/3 of the code in Adobe’s desktop applications is de-
voted to event handling logic

• 1/2 of the bugs reported during a product cycle exist in
this code

Our thesis is that these numbers are bad for two reasons.
First, we claim that we can reduce event handling code
by at least a factor of 3 once we replace publishers and
observers with more appropriate abstractions. Second, the
same abstractions should help us to reduce the bug ratio in
user interface code to bring it at least on par with the rest of

the application code. In fact, we believe that event handling
code on average should be one of the least error-prone parts
of an application.

But we need to be careful when we are talking about
event handling code or logic. With these terms, we actually
mean code that deals with a variety of related concepts such
as continuous data synchronization, reacting to user actions,
programming with futures and promises [33] and any blend
of these. Event handling is merely a common means to
implement those matters, and the usual abstractions that are
employed in event handling code are callbacks such as in the
observer pattern.

To illustrate the precise problems of the observer pattern,
we start with a simple and ubiquitous example: mouse drag-
ging. The following example traces the movements of the
mouse during a drag operation in a path object and displays
it on the screen. To keep things simple, we use Scala closures
as observers.

var path: Path = null
val moveObserver = { (event: MouseEvent) =>
path.lineTo(event.position)
draw(path)

}
control.addMouseDownObserver { event =>
path = new Path(event.position)
control.addMouseMoveObserver(moveObserver)

}

control.addMouseUpObserver { event =>
control.removeMouseMoveObserver(moveObserver)
path.close()
draw(path)

}

The above example, and as we will argue the observer
pattern as defined in [25] in general, violates an impressive
line-up of important software engineering principles:

Side-effects Observers promote side-effects. Since observers
are stateless, we often need several of them to simulate
a state machine as in the drag example. We have to save
the state where it is accessible to all involved observers
such as in the variable path above.



Encapsulation As the state variable path escapes the scope
of the observers, the observer pattern breaks encapsula-
tion.

Composability Multiple observers form a loose collection
of objects that deal with a single concern (or multiple,
see next point). Since multiple observers are installed at
different points at different times, we can’t, for instance,
easily dispose them altogether.

Separation of concerns The above observers not only trace
the mouse path but also call a drawing command, or
more generally, include two different concerns in the
same code location. It is often preferable to separate the
concerns of constructing the path and displaying it, e.g.,
as in the model-view-controller (MVC) [30] pattern.

Scalablity We could achieve a separation of concerns in our
example by creating a class for paths that itself publishes
events when the path changes. Unfortunately, there is no
guarantee for data consistency in the observer pattern.
Let us suppose we would create another event publishing
object that depends on changes in our original path, e.g.,
a rectangle that represents the bounds of our path. Also
consider an observer listening to changes in both the
path and its bounds in order to draw a framed path. This
observer would manually need to determine whether the
bounds are already updated and, if not, defer the drawing
operation. Otherwise the user could observe a frame on
the screen that has the wrong size (a glitch).

Uniformity Different methods to install different observers
decrease code uniformity.

Abstraction There is a low level of abstraction in the ex-
ample. It relies on a heavyweight interface of a control
class that provides more than just specific methods to in-
stall mouse event observers. Therefore, we cannot ab-
stract over the precise event sources. For instance, we
could let the user abort a drag operation by hitting the es-
cape key or use a different pointer device such as a touch
screen or graphics tablet.

Resource management An observer’s life-time needs to be
managed by clients. Because of performance reasons,
we want to observe mouse move events only during a
drag operation. Therefore, we need to explicitly install
and uninstall the mouse move observer and we need to
remember the point of installation (control above).

Semantic distance Ultimately, the example is hard to un-
derstand because the control flow is inverted which re-
sults in too much boilerplate code that increases the se-
mantic distance between the programmers intention and
the actual code.

Mouse dragging, which already comes in large varieties,
is just an example of the more general set of input ges-
ture recognition. If we further generalize this to event se-
quence recognition with (bounded or unbounded) loops, all

the problems we mentioned above still remain. Many ex-
amples in user interface programming are therefore equally
hard to implement with observers, such as selecting a set of
items, stepping through a series of dialogs, editing and mark-
ing text – essentially every operation where the user goes
through a number of steps.

1.1 Contributions and Overview
Our contributions are:

• We show how to integrate composable reactive program-
ming abstractions into a statically typed programming
language that solve the problems of the observer pat-
tern. To our knowledge, Scala.React is the first system
that provides several API layers allowing programmers
to stepwise port observer-based code to a data-flow pro-
gramming model.

• We demonstrate how an embedded, extensible data-flow
language provides the central foundation for a compos-
able variant of observers. It further allows us to easily
express first-class events and time-varying values whose
precise behavior change over time.

• The embedded data-flow language can make use of the
whole range of expressions from our host language with-
out explicit lifting. We show how this can be achieved by
the use of delimited continuations in the implementation
of our reactive programming DSL.

In the following, we start with the status quo of handling
events with callbacks and gradually introduce and extract
abstractions that eventually address all of the observer pat-
tern issues we identified above. Ultimately, we will arrive
at a state where we make efficient use of object-oriented,
functional, and data-flow programming principles. Our ab-
stractions fit nicely into an extensible inheritance hierarchy,
promote the use of immutable data and let clients react to
multiple event sources without inversion of control.

2. A general interface for composable events
The first step to simplify event logic in an application is
to come up with a general event interface so that all event
handling code can work with a uniform interface. A second
aspect to this is reusability: if we can hide event propaga-
tion and observer handling behind a general interface, clients
can easily publish events for their own data structures. Now,
designing such a general interface is an easy task. We in-
troduce a class EventSource[A], which represents generic
event sources. We can use an event source to raise or emit
events at any time. Type parameter A denotes the type an
event from a given source can have. Here is how we create
an event source of integers and raise a number of events:

val es = new EventSource[Int]
es raise 1
es raise 2



We provide method observe which accepts a closure to react
to events. The following prints all events from our event
source to the console.

observe(es) { x =>
println("Receiving " + x)

}

Sometimes, we want to get a handle of observers, e.g. to
uninstall and dispose them prematurely. Therefore, method
observe actually returns an observer that can be disposed
with a single method call:

val ob = observe(es) { x =>
println("Receiving " + x)

}
...
ob.dispose()

Note, that there is no need to remember the event source to
uninstall the observer. To put the above together, we can now
create a button control that emits events when somebody
clicks it. We can use an event source of integers with an
event denoting whether the user performed a single click,
or a double click, and so on:

class Button(label: String) {
val clicks: Events[Int] = new EventSource[Int] {
// call "this raise x" for each system event

}
}

Member clicks is publicly an instance of trait Events that
extracts the immutable interface of EventSource:

abstract class Events[+A] {
def subscribe(ob: Observer): Unit
def message(ob: Observer): Option[A]

}
class EventSource[A] extends Events[A] {
def emit(ev: A): Unit
...

}

We can now implement a quit button as follows:

object Application extends Observing {
...
val quitButton = new Button("quit")
observe(quitButton.clicks) { x => System.exit() }

}

A consequence from our event streams being first-class
values is that we can abstract over them. Our application
from above observes button click events directly. Instead,
it could observe any given event stream, may it be button
clicks, menu selections, or a stream emitting error condi-
tions. What if, however, we want to quit on events from
multiple sources? We could add the same observer to all of
those streams, but that would be quite some duplication:

val quitButton = new Button("quit")
val quitMenu = new MenuItem("quit")

val fatalExceptions = new EventSource[Exception]
observe(quitButton.clicks) { x => System.exit() }
observe(quitMenu.clicks) { x => System.exit() }
observe(fatalExceptions) { x => System.exit() }

Now that we have a first-class event abstraction we need
composition features! To improve on the example above,
we merge multiple event streams into a single one here.
For that purpose, we introduce a merging operator in class
Events[A] with the following signature:

def merge[B>:A](that: Events[B]): Events[B]

This method creates a new event stream that emits all events
from the receiver and the given stream1. We say that the
newly created event stream depends on the arguments of
the merge operator; together they form a part of a larger de-
pendency graph as we will see shortly. The reactive frame-
work automatically ensures that events are properly propa-
gated from the arguments (the dependencies) to the resulting
stream (the dependent).

We can now write a general application trait which can be
reused by any UI application:

trait UIApplication extends Observing {
...
val quit: Events[Any]
observe(quit) { x =>
... // clean up, display dialog, etc
System.exit()

}
}

object MyApp extends UIApplication {
...
val quit = (quitButton.clicks

merge quitMenu.clicks
merge fatalExceptions)

}

Notice that method merge is parametric on the event type
of the argument stream. The type parameter B is bound to be
a base type of A, denoted by B>:A. It means we can merge
any two streams for which the can infer a common base type
B. This enables us to safely declare trait Events[+A] to be
covariant in its event type, indicated by the plus sign in front
of the A. As a result we can merge events of unrelated types
such as quitButton.clicks which raises events of type Int
and quitMenu.clicks and fatalExceptions, which raise
events of types, say, Unit and Exception. The compiler
simply infers the least upper bounds of those types, which
in this case, is Any, the base type of all Scala values.

In order to log a reason why the application should quit,
we need to converge on a common event type for all involved

1 There is a minor issue here: both streams could raise events at the same
time. In that case, the left stream (the receiver) wins. We could introduce
a more general merge operator that would emit both events but it would
have the more complicated type def merge[B](that: Events[B]):
Events[Option[A], Option[B]] and would be harder to use. Note that
we will discuss the notion of simultaneous events below in more detail.



streams, e.g., String. We can extract quit messages from
each of the merged event streams with the help of the map

combinator which is defined in trait Events:

def map[B](f: A => B): Events[B]

It returns a stream of results which raises at the same time
as the original stream but each event applied to the given
function. We can now implement quit as follows:

val quit =
(quitButton.clicks.map(x => "Ok")

merge quitMenu.clicks.map(x => "Ok")
merge fatalExceptions.map(x => x.getMessage))

There are many more useful combinators in class Events
that have their origin in functional reactive programming
(FRP) [13, 21, 48]. A somewhat Scala specific convenience
combinator is

def collect[B](p: PartialFunction[A, B]): Events[B]

which maps and filters at the same time. The resulting event
stream raises those events from the original stream applied
to the given partial function p for which p is defined.

The map and filter combinators can both be imple-
mented in terms of collect:

def map[B](f: A => B): Events[B] =
collect { case x => f(x) }

def filter(p: A => Boolean): Events[A] =
collect { case x if p(x) => x }

3. Reactors: composable observers without
inversion of control

Using our new event abstraction, we can now define a class
Control that exposes mouse events as event streams. Our
initial mouse dragging example becomes:

var path: Path = null
var moveObserver = null
observe(control.mouseDown) { event =>
path = new Path(event.position)
moveObserver =
observe(control.mouseMoves) { event =>
path.lineTo(event.position)
draw(path)

}
}
observe(control.mouseUp) { event =>
moveObserver.dispose()
path.close()
draw(path)

}

Since we have a uniform observe mechanism and first-
class events, we can abstract over the events involved in a
drag operation. We could, for example, wrap the above in a
function with the following signature:

def installDragController(start: Events[Positional],
move: Events[Positional], end: Events[Positional])

and let mouse events extend the Positional interface with
a position member. Now, we could let users perform drag
operations with a different pointer device and start or abort
with key commands. For example:

def installDragController(pen.down, pen.moves,
pen.up merge escapeKeyDown.map(x => pen.position.now))

Yet, the most important issue that makes the above code
hard to understand still remains: its control flow is inverted.
Ideally, we would want to directly encode a state machine
which can be described informally as follows:

1. Start a new path, once the mouse button is pressed

2. Until the mouse is released, log all mouse moves as lines
in the path

3. Once the mouse button is released, close the path

In order to be able to turn the above steps into code that
is conceptually similar, we need to find a way to let clients
pull values from event streams without blocking the current
thread. In Scala.React, we can achieve this with a reactor
and the next operator which is part of an embedded data-
flow language. The following creates a reactor that imple-
ments our running example without inversion of control.

Reactor.once { self =>
// step 1:
val path = new Path((self next mouseDown).position)
// step 2:
self loopUntil mouseUp {
val m = self next mouseMove
path.lineTo(m.position)
draw(path)

}
// step 3:
path.close()
draw(path)

}

Object Reactor defines the two methods

def once(body: Reactor=>Unit): Reactor
def loop(body: Reactor=>Unit): Reactor

that clients can use to create a reactor that executes its body
once or repeatedly. The actual body of a reactor is given as
an argument to these methods. Formally, a body is a function
that accepts the reactor under construction as an argument
(a self reference similar to Java’s and Scala’s built-in this)
and evaluates to Unit, i.e., we are interested in the side-
effects of the body, not the result it evaluates to. The body
uses the given self reference to express an embedded data-
flow program. Class Reactor contains two core data-flow
methods:

def next[A](e: Events[A]): A
def delay: Unit

Method next simply suspends the current reactor until the
given event stream emits a value. Once the stream raises



an event e, it evaluates to e and continues the reactor’s
execution. Method delay suspends the current reactor and
continues after all pending messages have been propagated
by the reactive framework.

In the above example, we first create a new path and then
wait for the next mouse down event to add a line to the path
with the current mouse position. This covers step 1 from our
informal description. Step 2 is covered by the following loop
which uses method

def loopUntil[A](e: Events[A])(body: =>Unit): A

which can be expressed in terms of next and other combina-
tors we will encounter further below. The loop iterates until
mouseUp has raised an event during an iteration step. Above,
we simply drop the result and close the path in step 3.

4. Signals: Time-varying values
In the previous section, we saw how we can move logic from
observers into the event dependency graph and thus into
the framework to increase composability and reduce boil-
erplate code. Thereby we have dealt with problems that we
could naturally model as events such as mouse clicks, but-
ton clicks, menu selections, and exceptions. A large body
of problems in interactive applications, however, deals with
synchronizing data that changes over time. Consider the but-
ton from above which could have a time-varying label. We
represent time-varying values by instances of trait Signal:

class Button(label: Signal[String])

Trait Signal is the continuous counterpart of trait Events
and contains a mutable subclass:

abstract class Signal[+A]
class Var[A](init: A) extends Signal[A] {
def update(newValue: A): Unit = ...

}

Again, the base class (Signal) is covariant on its type pa-
rameter denoting the type of values a signal can hold.

4.1 Signal Expressions
The principal instrument to compose signals are not combi-
nator methods, as for event streams, but signal expressions.
Here is an example how one can build the sum of two integer
signals:

val a = new Var(1)
val b = new Var(2)
val sum = Signal{ a()+b() }
observe(sum) { x => println(x) }
a()= 7
b()= 35

The above code will print 9 and 42. The Signal function
invoked on the third line takes an expression (the signal
expression) that continuously evaluates to the new signal’s
value. Signals that are refered to through the function call

syntax such as a() and b() above are precisely those signals
that the new signal will depend on. It is possible to obtain the
current value of a signal without creating any dependenices
by calling Signal.now. A call to now is valid inside as well
as outside of a signal expression. To illustrate the difference
between now and the function call syntax, consider the fol-
lowing snippet:

val b0 = b.now
val sum1 = Signal{ a()+b0 }
val sum2 = Signal{ a()+b.now }
val sum3 = Signal{ a()+b() }

All three sum signals depend on a, but only the last
one also depends on b as mentioned above. Signal sum1 is
different from sum2. Whenever sum2’s expression is about
to be reevaluated, the current value of b is obtained anew,
while b0 in sum1 is a constant.

Signals are primarily used to create variable dependencies
as seen above. There is not much more to it. Clients can build
signals of any immutable data structure and any side-effect
free operations inside signal expressions.

Here is how the public signal interface looks like:

trait Signal[+A] {
def apply(): A
def now: A
def changes: Events[A]

}

The apply method allows us to use the function call syn-
tax on signals. Every expression of the form e() is rewritten
to e.apply() by the Scala compiler. This piece of syntactic
sugar is part of the language to support first-class functions
in a uniform way. Method changes gives us an event view
on a signal, i.e., the resulting event raises the current value
of the signal whenever it changes.

4.2 Constants
Constant signals are represented by a subclass of Signal[A]:

class Val[+A](value: A) extends Signal[+A]

We provide an implicit conversion from plain Scala values
to Vals that allows us to use plain Scala values as constant
signals:

implicit def coerceVal[A](v: A): Val[A] = new Val(v)

We can now write:

val b = new Button("Quit")

The last line is expanded by the compiler to

val b = new Button(Val("Quit"))

5. Data-flow Reactives
As a next step to improve our dragging example, we will
separate the construction of the path from the drawing op-
erations. We achieve this by using an extension of the data-



flow language we know from reactors. Instead of performing
side-effects, we build a data-flow signal:

val path: Signal[Path] =
Val(new Path) once { self =>
import self._

val down = next(mouseDown)
emit(previous.moveTo(down.position))
loopUntil(mouseUp) {
val m = next(mouseMove)
emit(previous.lineTo(m.position))

}
emit(previous.close)

}

Methods once and loop, as we know them from reactors
are similarly defined for signals. Instead of creating a reac-
tor, they create a new signal and are called on a signal that
delivers the initial values for the new signal. In the example
above, we create a signal that starts with an empty path and
then proceeds once through the given data-flow body. Argu-
ment self refers to the signal under construction and is of
type DataflowSignal[Path] which extends Signal[Path]

and defines a set of data-flow methods in addition to those
available for reactors. To keep things short, we first import
all members from our self reference which lets us drop the
self prefixes. We replaced all path mutations and draw-
ing calls by calls to data-flow method emit, which changes
the resulting path signal immediately. We refer to method
previous in DataflowSignal in order to obtain the previ-
ous value of our path signal and modify its segments. We are
using an immutable Path class above. Methods lineTo and
close do not mutate the existing instance, but return a new
path instance which extends or closes the previous one.

We can now implement the drawing operation in a simple
external observer:

observe(path)(draw)

5.1 A data-flow language
We have now two variants of a data-flow language, one for
reactors and one for signals. In order to keep languages
consistent and extract common functionality, we can factor
our existing abstractions into a class hierarchy as follows.

trait Reactive[+Msg, +Now] {
def current(dep: Dependant): Now
def message(dep: Dependant): Option[Msg]
def now: Now = current(Dependent.Nil)
def msg: Msg = message(Dependent.Nil)

}
trait Signal[+A] extends Reactive[A,A]
trait Events[+A] extends Reactive[A,Unit]

Classes Signal and Events share a common base trait
Reactive. We will therefore collectively refer to them as
reactives in the following. Trait Reactive declares two type
parameters: one for the message type an instance emits and
one for the values it holds. For now, we have subclass signal

which emits its value as change messages, and therefore its
message and value types are identical. Subclass Event only
emits messages and never holds any value. Its value type is
hence Unit. Subclasses of trait Reactive need to implement
two methods which obtain the reactive’s current message or
value and create dependencies in a single turn.

In order to build a data-flow reactive using the loop and
once combinators, we implicitly convert a reactive to an
intermediate class that provides those combinators2:

implicit def eventsToDataflow[A](e: Events[A]) =
new EventsToDataflow(e)

implicit def signalToDataflow[A](s: Signal[A]) =
new SignalToDataflow(s)

These intermediate classes are defined as follows:

trait ReactiveToDataflow[M, N,
R <: Reactive[M,N],
DR <: DataflowReactive[M,N,R]]
extends Reactive[M, N] {

protected def init: R

def loop(body: DR => Unit): R
def once(body: DR => Unit): R

}

class EventsToDataflow[A](initial: Events[A])
extends Events[A]
with ReactiveToDataflow[A, Unit, Events[A],

DataflowEvents[A]]

class SignalToDataflow[A](initial: Signal[A])
extends Signal[A]
with ReactiveToDataflow[A, A, Signal[A],

DataflowSignal[A]]

Trait ReactiveToDataflow extends Reactive and pro-
vides two additional type parameters to fix the precise type
of reactives we are creating. The type related details of this
design are out of the scope of this paper. It is a result from
our experience we gathered during the redesign of Scala’s
collection library which is thoroughly described in [41].

The base type for data-flow reactives defines the data-
flow language for reactives and is specified as follows:

trait DataflowReactive[M, N, R <: Reactive[M,N]]
extends Reactive[M, N] {

def emit(m: M): Unit
def switchTo(r: R): Unit
def delay: Unit

def next[B](r: Reactive[B,_]): B
def nextVal[B](r: Reactive[_,B]): B

}

2 This is similar to extension methods in LINQ [46] but kept outside of
trait Reactive for a different reason: to fix the concrete type of data-flow
reactives loop and once create while still allowing covariant Msg and Now
type parameters.



next Waits for the next message from the given reactive r.
It immediately returns, if r is currently emitting.

nextVal Waits for the next change in the given reactive r.
It immediately returns, if r is currently changing, i.e., if
next(r) would immediately return.

delay Suspends the current data-flow reactive and contin-
ues its execution the next propagation cycle.

emit Emits the given message m if m makes sense for the
current data-flow reactive and its current value. The cur-
rent value of the reactive is changed such that it reflects
the changed content. The evaluation of the reactive con-
tinues the next propagation cycle.

switchTo Switches the behavior of the current data-flow
reactive to the given reactive r. Immediately emits a
message that reflects the difference between the previous
value of the current reactive and r. Emits all messages
from r until the next call to emit or switchTo. The
evaluation of the reactive continues the next propagation
cycle.

Note that the following data-flow signal

0 once { self =>
self switchTo sig
self emit 1

}

first holds the current value of sig and then, in the next
propagation cycle, switches to 1. It is equivalent to signal

sig once { self =>
self emit 1

}

Since reactors share a subset of the above data-flow lan-
guage, we can extract this subset into a common base trait
for Reactor and DataflowReactive:

trait DataflowBase {
def next[B](r: Reactive[B, _]): B
def delay: Unit

}

Note that only instances of classes that immediately specify
their base class’s parameters are visible to common library
users. Therefore, they generally do not see any of the more
complicated types above.

5.2 Reactive combinators as data-flow programs
Our first reactive composition feature above where event
stream and signal combinators. There are two related ques-
tions now. Do we have a sufficient set of reactive combi-
nators to address all arising event handling problems (con-
veniently)? To be honest, we do not know and there is no
substantial empirical data available on how FRP combina-
tors are used. What if a client hence feels the need to im-
plement additional combinators? He has to know about the
inner workings of reactive event propagation and how data

inside the dependency graph is kept coherent. Another rea-
son why reactive combinators can be tricky to implement
is because they are implemented with an observer based
approach suffering from inversion of control. In summary,
clients extending Scala.React would see all the awkward de-
tails we actually wanted to shield from clients. Luckily, our
data-flow language proves to be a convenient tool to imple-
ment reactive combinators! Here is how we can implement
some combinators in class Events[A] that are not trivially
implemented in terms of other combinators. We have seen
collect already:

def collect[B](p: PartialFunction[A, B]) =
Events.loop[B] { self =>
val x = self next outer
if (p isDefinedAt x) self emit p(x)
else self.delay

}

Combinator hold creates a signal that continuously holds
the previous value that the event stream raised:

def hold(init: A): Signal[A] =
Val(init) loop { self =>
self emit (self next this)

}

Combinator switch creates a signal that behaves like the
first given signal until this stream raises an event. From that
point on, it switches to the second given signal:

def switch[A](before: Signal[A],
after: =>Signal[A]): Signal[A] =

before once { self =>
self next this
self switchTo after

}

Combinator take creates a stream that raises the first n
events from this stream and then remains silent.

def take(n: Int) = Events.once[A] { self =>
var x = 0
while(x < n) {
self emit (self next outer)
x += 1

}
}

The use of Events.once ensures that the resulting event
stream does not take part in event propagation anymore,
once it has raised n events. A drop combinator can be im-
plemented in a similar fashion.

The merge combinator is the only axiomatic combinator
which is not implemented in terms of a data-flow reactive.
Alternatively, we could provide a fork and join data-flow
expression. In our experience so far, use cases that would
justify its existence did not arise.

Trait Signal[A] contains two flatten combinators which
are defined for signals of events and signals of signals. They
return a signal or event that continuously behaves like the



signal or event that is currently held by the outer signal. They
can be implemented as follows:

def flattenEvents[B]
(implicit witness: A => Events[B]) =
Events.loop[B] {
self switchTo witness(self next this)

}

def flatten[B](implicit witness: A => Signal[B]) =
witness(this.now) loop { self =>
self switchTo witness(self next this)

}

These can be generalized into a single generic combinator.
Flattening a signal of reactives makes sense for any subclass
of Reactive, not just Signal or Events.

def flatten[M, N, R <: Reactive[M,N],
DR <: DataflowReactive[M,N,R]]

(implicit c: A =>
R with ReactiveToDataflow[M,N,R,DR]): R =

c(now) loop { self =>
self switchTo c(self next this)

}

The implicit parameter is used to convert a current signal
value to a ReactiveToDataflow in order to construct a data-
flow reactive. This enables us to flatten a signal of any
subtype R of Reactive to an instance of R that behaves like
the reactive that is currently held by the signal. We will later
see how to meaningfully extend trait Reactive.

5.3 Combinators versus data-flow operations
As an alternative to a data-flow formulation of the dragging
problem, we can write it in a purely combinator-based style.
A similar example can be found in [35], which we adopt to
Scala.React in the following.

val moves = mouseDown map { md =>
mouseMove map (mm => new Drag(mm))

}
val drops = mouseUp map { mu =>
Events.Now(new Drop(mu))

}
val drags = (moves merge drops).flatten

Above, we use our previously defined flatten combinator
to switch between different event streams. For this reason,
flatten is sometimes called switch. In fact, our switch

combinator from above is a simple form of flatten.
The above example is actually an instance of a more gen-

eral problem: event partitioning. Event partitioning deals
with the task of constructing event streams that depend on
different streams at different time periods. Above, our re-
sulting drags stream loops over three partitions.

1. It remains silent until the next mouse down event.

2. Between mouse down and mouse up events, it depends
on mouse move events,

3. After the mouse up event, it raises a final drop event.

One way to deal with event partitioning is to build a
higher order event stream as above and switch between dif-
ferent event streams with the flatten combinator. Useful
instruments in our combinator toolbox are nesting map appli-
cations to create higher-order event streams and the asym-
metric merge combinator to switch between (overlapping)
event streams.

Our data-flow formulation of the same problem is equiv-
alent but avoids dealing with higher order event streams.
Whereas the higher order event stream defines the state tran-
sition of a state machine as a nested data structure, a data-
flow program describes it as a flat program source.

Combinators and data-flow reactives can naturally com-
plement each other. For instance, the implementation of
data-flow method loopUntil in trait DataflowBase is a
data-flow program which reuses the switch combinator:

def loopUntil[A](es: Events[A])(body: =>Unit): A = {
val x = es switch (None, Some(es.msg.get))
while(x.now == None) {
body

}
x.now.get

}

5.4 Recursion
Dataflow reactive can be used to define recursive signals and
events. Consider the following signal:

val counter = 0 loop { self =>
self emit (self.now + 1)

}

This signal is ill-defined and will throw an exception because
we are referring to the current value of the signal while
evaluating its current value! We therefore define method
previous in DataflowSignal, which let us access the old
value of the signal under construction:

val counter = 0 loop { self =>
self emit (self.previous + 1)

}

This signal is well-defined because emit statements intro-
duce a delay. Otherwise the resulting signal would loop for-
ever. Therefore, delays introduced by emit and switchTo

have a safety aspect to them in that they prevent loops from
looping infinitively. Note that the above signal in fact in-
spects the behavior of the reactive scheduler: it counts prop-
agation cycles starting with the current one. We could, e.g.,
use it to implement a frame rate signal that updates its value
every second:

val frameRate = Val(0) loop { self =>
val c0 = counter.now
self next Clock.inSeconds(1)
self emit (counter.now-c0)

}



5.5 Extending the reactive hierarchy
So far we have dealt with signals and event streams as the
only concrete type of reactives. The Reactive base interface
is general enough to support a variety of subclasses. Exam-
ples are futures that eventually evaluate to some result. They
emit exactly one message, the result of type A and have a
continuous value of Option[A]:

trait Future[+A] extends Reactive[A,Option[A]]

The implementation of data-flow method loopUntil we
have seen above can be slightly simplified. The switch com-
binator that creates the guard for the internal while loop

val x = es switch (None, Some(es.msg.get))

can be replaced by a future

val x = Future.fromEvent(es)

with the rest of the implementation unchanged.
Another example are incremental updates. We can think

of a reactive text document or list that emit deltas to their
previously held elements:

trait Document[+A]
extends Reactive[DocDelta, String]

trait RList[+A]
extends Reactive[ListDelta[A], List[A]]

Certain operations, such as concatenation of documents and
mapping list elements can be optimized for incrementally
changing reactives. Getting back to our dragging example,
we can define a reactive path class that emits additional
segments for each call to lineTo and alike. Path deltas can
be represented by an abstract data type encoded as Scala case
classes:

sealed class PathDelta
case class MoveTo(x: Int, y: Int) extends PathDelta
case class LineTo(x: Int, y: Int) extends PathDelta
case object Close extends PathDelta

The actual reactive subclass would then hold values of the
immutable path we used above and emit PathDelta in-
stances:

class RPath extends Reactive[PathDelta, Path]

We further provide an implicit conversion from RPath to
an RPathToDataflow instance that can create RPaths using
the data-flow language provided by DataflowReactive.

class DataflowRPath(init: RPath) extends RPath
with DataflowReactive[PathDelta, Path,

RPath, DataflowRPath]
implicit def rpath2dataflowrpath(r: RPath) =
new DataflowRPath(r)

We can build an RPath as follows:

val path: RPath = (new RPath) once { self =>
val down = self next mouseDown
self emit MoveTo(down.position)

val up = self loopUntil mouseUp {
val m = self next mouseMove
self emit LineTo(m.position)

}
self emit Close

}

Alternatively, we could implement lineTo and close as
data-flow methods in DataflowRPath and use them instead
of emitting messages directly:

def lineTo(x: Int, y: Int) = emit(LineTo(x,y))
def close(x: Int, y: Int) = emit(Close)

6. Implementation
Scala.React proceeds in propagation cycles. The system is
either in a propagation cycle or, if there are no pending
changes to any reactive, idle. Its model of time is thus a
discrete one. Every propagation cycle has two phases: first,
all reactives are synchronized so that observers, which are
run in the second phase, cannot observe inconsistent data.
During a propagation cycle, the reactive world is paused, i.e.,
no new changes are applied and no source reactive emits new
events or changes values. Consider the following reactor:

Reactor.once {
val es: Events[Device] = connectDevice()
(self next es).initialize()

}

If event stream es would be able to emit events before the
reactor calls next, we could miss to initialize some con-
nected device. Pausing the reactive world during a propa-
gation cycle and queueing all incoming external events to be
processed in a later cycle prevents this from happening.

6.1 Non-strict Implementation
Our first prototypes implemented a "mark and validate on
demand" change propagation mechanism. When receiving
external events, a reactive source would invalidate itself and
notify their dependents which in turn would recursively do
the same. In order to avoid glitches, we first finish invalidat-
ing dependents until we start reevaluating them, i.e., a single
message propagation cycle has two consecutive phases.

Unfortunately this approach is not very scalable. Al-
though it generally restricts message propagation to a frac-
tion of the dependency graph, every invalidated reactive
source always invalidates the transitive closure of its depen-
dents. This is not always necessary, though. Non-injective
signal expressions can be very common. Consider the fol-
lowing signals, for example:

val sum = Signal { x() * y() }
val coord = Signal { p().x }
val status = Signal {
if(x() > 10000) "danger" else "ok"

}



If x and y are integer signals and one holds the value 0,
changing the other does not change the value of signal sum.
Member access is another case: if signal p holds points with
x and y coordinates, changing p’s value does not automati-
cally change the value of coord. Depending of the depth of a
dependency graph and the location of non-injective expres-
sions, the above propagation scheme can become very ineffi-
cient. For an example that conveys the big picture and that is
not some pathological case, consider a tree structure such as
a control hierarchy or a document object model (DOM) in a
GUI application. It is relatively common to propagate some
data from the root to the leafs and possibly back again. An
example are visual attributes such as CSS styles that controls
or DOM nodes inherit from their parent. In the following
example, we aggregate several style attributes into an im-
mutable Pen class. The bounds of a tree node that displays
geometric shapes depends on its parent pen’s line width at-
tribute.

class Pen(color: Color,
lineWidth: Int,
cap: CapStyle)

trait GeometryNode extends Node {
def shape: Signal[Shape]
val bounds = Signal {
f(shape.bounds, parent().pen().lineWidth)

}
}

trait Group extends Node {
val bounds =
children.foldLeft(Rectangle.Nil) { (a,b) =>
(a union b).bounds

}
}

We can now build a deep dependency graph with a long path
from the root’s Pen attribute down to the bounds attributes
of each geometry node and up again for the bounds of each
group node. Changing the pen of the root node will trigger
a bounds calculation for most of the tree, no matter whether
the line width attribute of the new pen is different from the
old.

6.2 Push-driven Implementation
Our current implementation overcomes the inefficiencies of
our first implementation with a purely push-based propaga-
tion approach. In order to prevent reactives from observing
inconsistent data (also called glitches) during and between
propagation cycles, we keep the dependency graph topolog-
ically sorted. To do so, we assign each reactive a level in
the dependency graph. All source reactives have a level of
0, and every dependent reactive has the level of its highest
dependency plus 1.

A propagation cycle proceeds as follows.

1. Enter all modified/emitting reactives into a priority queue
with the priorities being the reactives’ levels.

2. While the queue is not empty, take the reactive on the
lowest level and validate its value and message. The
reactive decides whether it propagates a message to its
dependents. If it does so, its dependents are added to the
priority queue as well.

The last step solves our propagation capping problem from
above. A signal which evaluates to the same value as before,
e.g., would not propagate a change message during the cur-
rent cycle.

For a dependency graph with a fixed topology, i.e., where
the level of reactives never change, this simple algorithm
is sufficient to avoid data inconsistencies. We do, however,
need to deal with conditionals, branches, and loops in signal
expressions and in particular data-flow reactives that can
drop previous dependencies and establish new ones from one
propagation cycle to the next.

6.2.1 Dynamic Dependencies
Consider the following example:

val x = Var(2) // level 0
val y = Cache { f(x()) } // level 1
val z = Cache { g(y()) } // level 2
val result =
Signal { if(x()==2) y() else z() } // level 2 or 3

Depending on the current value of signal x, signal result
can have a topological level of 2 or 3. The most efficient so-
lution would be to always assign to a signal a level that is
higher than all levels of its potential dependencies – with-
out evaluating the signal expression. Unfortunately, the dy-
namics of reactive dependencies is at odds with itself at this
time. In general, we can neither statically determine all pos-
sible dependencies nor all possible levels of an expression
signal. Therefore, we cannot know the level of an invalid sig-
nal before we actually evaluate its current value. The previ-
ously known level of a reactive merely serves as a reference
value in the invalidation phase. If the level turns out greater
than the previous one, we abort the current evaluation by
throwing an exception, assign a higher level to the affected
signal and reschedule it for validation on a higher level in
the same propagation cycle. Because of this potential for
redundant computation, programmers are advised to move
expensive computations until after referencing a reactive’s
dynamic dependencies. Fortunately though, many combina-
tors have enough information to predict the precise level of
the resulting reactive and will thus never abort during eval-
uation. Moreover, signals and data-flow reactives typically
"warm up" during their first iteration and do not need to be
aborted in future propagation cycles.

Note that aborting the evaluation of a reactive is only
safe because we disallow side-effects in signal expressions
and reactive combinator arguments. Reactors, however, are



allowed to perform side-effects, as this is their main pur-
pose. This fact prevents us from aborting and rescheduling
them, otherwise we could perform some side-effects more
than once per propagation cycle. Luckily, our solution is
straightforward. Since reactors do not have dependents, we
can assign to them an infinite level (practically this means
Int.MaxValue in Scala), i.e., observers can never even at-
tempt to access inconsistent data since they are executed af-
ter all reactives have been validated.

6.2.2 Cycles
We must be careful not to run into cycles when computing
the topological ordering of reactives. Consider the follow-
ing recursive, but non-cyclic and hence well-defined signal
definitions:

val c = Var(true)
val x = Signal { if(c()) 1 else y() }
val y = Signal { if(c()) x() else 1 }

Whenever signal c changes its value, a naïve implemen-
tation could lift signals x and y alternatively one level higher
than the other, eventually resulting in an infinite loop or an
arithmetic overflow3. Ideally, though, signals x and y would
alternate between levels 1 and 2. A simple solution could be
to reset the level of each reactive to zero prior to each propa-
gation cycle. We would loose the warming up effect we dis-
cussed above, however. Reactives with multiple dependen-
cies could consequently become very expensive, since their
level would need to be recomputed every time their value is
about to change. A slightly more elaborate implementation
can avoid this inefficiency. In the middle of a propagation
cycle, we actually have a cyclic dependency. For instance,
when c changes from true to false, x is evaluated before
y and lifted above y. Now x has y as a dependency and vice
versa. We can efficiently detect such a cycle when y is en-
tered into the invalidation queue with a level lower than x and
perform a level reset only for the involved reactives. Luckily,
situations like the above are very uncommon in our experi-
ence.

6.3 Signal expressions
The three key features that let us implement the concise
signal expression syntax we are using throughout the paper
are Java’s thread local variables [31], Scala’s call-by-name
arguments and Scala’s function call syntax. When we are
constructing the following signal

Signal { a() + b() }

we are in fact calling the method

def Signal[A](op: =>A): Signal[A]

3 Note that some languages, such as Lustre [26], simply disallow the given
example. Without a dependently typed effect system or a compiler plugin
in Scala, however, we cannot statically reject the above program, even if we
would want to.

with the argument { a() + b() }. The Scala compiler
rewrites expressions a() and b() to a.apply() and b.apply(),
which becomes important below. The arrow notation =>A

makes op a call-by-name argument that evaluates to values
of type A. This means the sum expression gets converted to a
closure and is passed to the Signal method without evaluat-
ing it. This is how we capture signal expressions. The actual
evaluation happens in the Signal.apply method which re-
turns the current value of the signal while establishing signal
dependencies. Method Signal.apply comes in different fla-
vors, but the general concept remains the same: it maintains
a thread local stack of dependent reactives that are used to
create dependency sets. A signal that caches its values is
either valid or has been invalidated in the current or a past
propagation cycle. If it is valid, it takes the topmost reactive
from the thread local stack without removing it, adds it to
its set of dependents and returns the current valid value. If
it is invalid, it additionally pushes itself onto the thread lo-
cal stack, evaluates the captured signal expression, and pops
itself from the stack before returning its current value.

We support lightweight signals that do not cache their val-
ues. They just evaluate the captured signal expression, with-
out touching the thread local stack. The stack can then be ac-
cessed by signals that are called from the signal expression.
The lightweight signal hence does not need to maintain a set
of dependents or other state.4

6.4 Data-flow Reactives
Our data-flow DSL is implemented in terms of delimited
continuations that we introduce in Scala 2.8 [44]. Trait
DataflowBase contains most of the infrastructure to imple-
ment our data-flow language in terms of continuations:

trait DataflowBase {
protected var continue =
() => reset { mayAbort { body() } }

def body(): Unit @suspendable
def next[B](r: Reactive[B,_]): B @suspendable
def nextVal[B](r: Reactive[_,B]): B @suspendable

def delay: Unit @suspendable =
shift { (k: Unit => Unit) =>
continueLater { k() }

}
}

Note that for brevity we have omitted the @suspendable

annotations before. They are hints for the Scala to ensure
that no CPS transformed code escapes a reset. Method body

is implemented by subclasses and runs the actual data-flow
program. Calls to delay, next or any extensions defined in
subclasses (such as emit and switchTo) are implemented in
terms of two helper methods:

def continueNow[A](op: (A=>Unit)=>Unit) =

4 That is why we call signals that do not cache values permeable.



shift { (k: A=>Unit) =>
continue = { () => mayAbort { op(k) } }
continue()

}

def continueLater(k: =>Unit) = {
continue = { () => k }
engine nextTurn this

}

Method continueNow accepts a function op which takes the
current continuation as an argument. A call to shift, which
is part of the Scala standard library, captures the current
continuation k, transforms it by applying op to it and stores
the result in a variable for immediate and later use. The
transformed continuation is wrapped in a call to mayAbort,
which properly aborts and reschedules the current evaluation
if the topological level of any accessed reactive is higher or
equal to the current level. Method continueLater captures
a given continuation in a variable and schedules this reactive
for the next turn.

When validated during a propagation cycle, a data-flow
reactive simply runs its current continuation saved in vari-
able continue, which initially starts executing the whole
body of the reactive.

In order to offer library clients a completely transparent
data-flow language that let them reuse any existing kind of
Scala expression, we extended our CPS transform imple-
mentation to correctly deal with loops and exceptions. We
refer to Appendix A for the details.

We could use continuations for signal expressions as well.
When discovering a level mismatch, instead of aborting and
rescheduling the entire evaluation of the signal, we would
reschedule just the continuation of the affected signal and
reuse the result of the computation until the level mismatch
was discovered, captured in the continuation closure. Un-
fortunately, this approach is rather heavyweight (though less
heavyweight than using blocking threads) on a runtime with-
out native CPS support. We therefore do not currently imple-
ment it and leave it for future work to compare the outcome
with our current implementation. We are particularly inter-
ested in how often one actually needs to abort in realistic
reactive applications, whether the performance overhead of
CPS justifies its usage in this context in contrast to the mem-
ory overhead of the closures created by our CPS transform.

6.5 Side-effects
Local side-effects are allowed in any signal expression or
reactive combinator argument such as the Events.map func-
tion argument or a data-flow body. Local in this context
refers to side-effects that do not escape the scope of the com-
binator argument such as the take combinator implementa-
tion in Section 5. We disallow non-local side-effects since
the evaluation of a reactive can abort because and retried on
a higher level in the same propagation cycle. The following

signal can therefore increase counter i twice when the level
of the given signal sig changes:

def countChanges(sig: Signal[Any]) = {
val i = 0
Signal { sig(); i += 1; i }

}

When aborting a signal evaluation, the entire signal expres-
sion is reevaluated, working with a fresh set of local vari-
ables that are not affected by previous runs. For data-flow re-
actives, however, the situation is slightly more complicated.
As they simulate state machines, we want to keep their state
from one evaluation to the next. A reevaluation should there-
fore not execute any side-effecting expression twice. We en-
sure that this is indeed the case by always capturing the cur-
rent continuation before a level mismatch can happen. Since
a level mismatch can happen only during a call to next,
switchTo, message, or now, and since these methods do not
perform side-effects that affect the state of a data-flow re-
active before a level mismatch abortion can happened, con-
tinuing with the captured continuation after an abortion en-
sures that we do not evaluate side-effecting expressions re-
dundantly.

Internal or external side-effects in reactors are not prob-
lematic, since reactors always have maximum level, i.e.,
their evaluation never aborts.

6.6 Avoiding memory leaks in low-level observers
Internally, Scala.React’s change propagation is implemented
with observers. We do expose them to clients as a very
lightweight way to react to changes in a reactive as we have
seen in Section 2. Stepping back for a moment, one might be
tempted to implement a foreach method in Events or even
Reactive and use it as follows:

class View[A](events: Events[A]) {
events foreach println

}

This can easily lead to a reference pattern as depicted in
Figure 1.

Reactive
Object

Observing

Object
Event Observer

Figure 1. Common reference pattern in the standard ob-
server scenario.

The critical reference here is the arc from the event stream
to the observer, which prevents the object on the right to
be disposed as usual. In a language that relies on runtime
garbage collection such as Scala, we generally expect ob-
jects to be disposed once we don’t hold a strong reference
to them anymore. In the above scenario, however, we have a
strong reference path from the event source to the observing
object. For every observing object that we want to dispose



before the reactive object, we would need to remember to
call an explicit disposal method that unsubscribes the ob-
serving object’s observers, otherwise the garbage collector
cannot reclaim it.

The reference pattern in Figure 2 eliminates the leak
potential.

Reactive
Object

Observing

Object
Event Observer

Figure 2. Observer reference pattern that eliminates the
memory leak potential of the standard scenario from Fig-
ure 1.

Note the weak reference from the event source to the ob-
server, depicted by a dashed arc. It eliminates any strong
reference cycles between the observing and the publishing
side. In order to prevent the observer from being reclaimed
too early, we also need a strong reference from the observing
object to the observer. It is important that we are always able
force the programmer into creating the latter strong refer-
ence, otherwise we haven’t gained much. Instead of remem-
bering that she needs to call a dispose method, she would
now need to remember to create an additional reference. For-
tunately, we can use Scala’s traits to achieve our desired ref-
erence pattern while reducing the burden of the programmer.
The following trait needs to be mixed in by objects that want
to observe events. API clients have no other possibility to
subscribe observers.5

trait Observing {
private val obRefs = new ListBuffer[Observer]()

abstract class PersistentOb extends Observer {
obRefs += this

}

protected def observe(e: Events[A])(op: A=>Unit) =
e.subscribe(new PersistentOb {
def receive() { op(e message this) }

})
}

Instead of using a foreach method, we can now write the
following:

class View[A](events: Events[A]) extends Observing {
observe(events) { x => println(x) }

}

An instance of class View will print all arriving events and
can now be automatically collected by the garbage collec-
tor, independently from the given event stream and without
manually uninstalling its observer.

5 We can directly store the first allocated persistent observer in a reference
field. Only for the less common case of multiple persistent observers per
Observing instance we do allocate a list structure to keep observer
references around. This saves a few machine words for common cases.

7. Related Work
Some production systems, such as Swing and other compo-
nents of the Java standard libraries, closely follow the ob-
server pattern as formalized in [25]. Others such as Qt and
C# go further and integrate uniform event abstractions as
language extensions [32, 40, 47]. F# additionally provides
first-class events that can be composed through combinators.
The Rx.Net framework can lift C# language-level events to
first-class event objects (called IObservables) and provides
FRP-like reactivity as a LINQ library [36, 46]. Its precise
semantics, e.g. whether glitches can occur, is presently un-
clear to us. Systems such as JavaFX [42], Adobe Flex [2]
or JFace Data Binding [45] provide what we categorize as
reactive data binding: a variable can be bound to an expres-
sion that evaluates to the result of that expression until it is
rebound. In general, reactive data binding systems are prag-
matic approaches that usually trade data consistency guar-
antees (glitches) and first-class reactives for a programming
model that integrates with existing APIs. Flex allows em-
bedded Actionscript [37] inside XML expressions to create
data bindings. JavaFX’s use of reactivity is tightly integrated
into the language and transparent in that ordinary object at-
tributes can be bound to expressions. Similar to Scala.React,
JFace Data Binding establishes signal dependencies through
thread local variables but Java’s lack of closures leads to a
more verbose data binding syntax. JFace is targeted towards
GUI programming and supports data validation and inte-
grates with the underlying Standard Widget Toolkit (SWT).

7.1 Functional Reactive Programming
Scala.React’s composable signals and event streams origi-
nate in functional reactive programming (FRP) which goes
back to Conal Elliot’s Fran [21]. Its concepts have since been
adopted by a variety of implementations with different pro-
gramming interfaces and evaluation models. They all have
in common that they provide a combinator-based approach
reactive programming.

Fran integrates general ideas from synchronous data-flow
languages [27] into the non-strict, pure functional language
Haskell. It takes a monadic approach and encapsulates oper-
ations over time-varying values (called behaviors in Fran)
and discrete events into data structures that are evaluated
by an interpreter loop. Most of Scala.React’s combinators
methods in Events and Signal originate from Fran. Fran’s
evaluation model is pull-based, i.e., reactives are continu-
ously sampled. An evaluation cycle hence consists of sim-
ple nested function calls. In [19], Fran-style FRP was re-
vised to fit into Haskell’s standard type classes such as Monad
and Functor. It furthermore removes inefficiencies related
to Fran’s purely pull-based evaluation. It would be very in-
teresting to find performance comparisons to Fran and other
Haskell-based systems.

Fran’s explicit notion of time and reactives and its stream-
based implementation could lead to space-time leaks in FRP



programs [20]. In order to overcome the potential of leaking
reactives, Yampa for Haskell [15, 39] provides a first class
notion of signal functions based on arrows [29], a general-
ization of monads. This leads to a programming style con-
ceptually close to designing electric circuit diagrams. Fran
and Yampa promote a purely functional, combinator-based
programming style. Yampa, like Fran, is pull-based and eval-
uates reactives in recursive function calls.

FrTime [12, 13] integrates FRP-style reactivity into the
strict, impure, dynamically typed functional language Scheme.
Scala.React’s propagation model originates in FrTime which
also uses a push-driven evaluation model utilizing a topo-
logically ordered dependency graph. Like in Scala.React,
redundant evaluation is avoided both in breadth since Fr-
Time propagates events only to dependents of invalid reac-
tives and in depth, since propagation is capped when reach-
ing non-injective signal operations and event filters. FrTime
relies on Scheme’s macro system to achieve concise signal
composition syntax with no need to adapt existing data struc-
tures and operations to FrTime. As a consequence, a binary
expression over signals (called behaviors in FrTime), e.g.,
creates a new signal. This makes the system formally very
elegant but originally could lead to large dependency graphs.
These issues have been addressed in [8], which successfully
applies deforestation-like techniques to FrTime programs.
Scala.React’s approach using thread local variables for sig-
nal expressions is similar in spirit as it avoids storing contin-
uations for each signal access.

Flapjax [35] is a library and compiler for FRP-like re-
activity for web programming in Javascript and evolved
out of FrTime. Flapjax comes with a compiler to allow
concise signal expressions. When used as a library, it re-
lies on explicit lifting of reactives and is then syntactically
more heavyweight but integrates well into JavaScript. Like
our approach, Flapjax integrates reactive programming in
an object-oriented language. In contrast to Scala, Flapjax/-
Javascript is dynamically typed, i.e., expressions which can
be statically rejected by Scala.React can lead to delayed run-
time errors in Flapjax as demonstrated in [35].

Frappé [14] is an FRP implementation for Java and uses a
mixed push-pull implementation. Similar to JFace, its syntax
is verbose because of Java’s lack of closures and generics by
the time it was written. Being based on Bean Properties it
integrates with the Java standard library and thus supports
observers.

SuperGlue [34] is a declarative object-oriented compo-
nent language that supports a signal concept similar to that
found in FRP and Scala.React. For signal connections, Su-
perGlue follows a unique approach that we find is closer
to constraint programming such as in the Kaleidoscope lan-
guage family [24] than to a combinator- or data-flow-based
approach. SuperGlue provides guarded connection rules and
rule overriding which is a simple form of Kaleidoscope’s

constraint hierarchies [7]. Its propagation model is similar
to our previous non-strict model.

7.2 Adaptive Functional Programming
Adaptive functional programming (AFP) [1] is an approach
to incremental computation in ML. It is related to FRP
and Scala.React since it also captures computation for re-
peated reevaluation in a graph. AFP has been implemented
in Haskell [9] using monads. Our CPS-based representa-
tion of data-flow programs is related to this effort and other
monadic FRP implementations because any expressible
monad has an equivalent formulation in continuation passing
style [22, 23]. The AFP dependency graph and propagation
algorithms are more elaborate than Scala.React’s. This is
mostly due to AFP’s support for computation over incre-
mentally changing data structures. In contrast, Scala.React
and FRP currently supports reactivity mostly for plain val-
ues. Our effort to fit signals, event streams, and collections
such as our reactive path structure into a standard reactive hi-
erarchy with incremental change messages tries to approach
the expressiveness of AFP.

7.3 Dataflow Programming
Our built-in data-flow language is mostly inspired by syn-
chronous data-flow languages such as Signal [5], Lus-
tre [26], and Esterel [6]. Unlike Scala.React, these languages
usually provide strong guarantees on memory and time re-
quirements and are compiled to state machines. As a trade-
off and in contrast to our system, most synchronous data-
flow languages are first-order, i.e., they distinguish between
stream processing functions, streams, and values that can
be carried over streams. Work towards a higher-order syn-
chronous data-flow language can be found in [11].

7.4 Complex Event Processing
Data-flow reactives share certain characteristics with com-
plex event processing (CEP) systems such as TelegraphCQ [10],
SASE [49], and Cayuga [18]. These systems use custom
query languages similar to SQL [17] to recognize event pat-
terns from multiple sources. Queries are usually stateful,
similar to reactors and data-flow reactives, but are not de-
signed to perform external side-effects. CEP systems are
optimized to handle large data streams efficiently while our
implementation is targeted towards general purpose event
systems where the amount of event data is comparatively
small.

7.5 Actors
Data-flow reactives and reactors share certain similarities
with actors [3, 28], which are used as concurrency abstrac-
tions. Actors usually run concurrently and communicate
with each other through message passing. Each actor has
a mailbox, from which it sequentially processes incoming
messages. Actors resemble data-flow reactives in that they
handle messages without inversion of control but do so only



from their own mailbox. Actors resemble event streams in
that they can send events but, different from event streams,
to specified actors. Actor communication is hence inher-
ently directed and push-driven. In summary, while an actor
sends messages to certain actors chosen by itself, it reacts
to incoming messages from arbitrary actors. For data-flow
reactives, the converse is true. They send messages to the
public and react to messages from sources chosen by itself.
Both actors and data-flow reactives simulate state machines,
i.e., they encapsulate internal state. The major difference is
that state transitions and data availability are synchronized
among reactives, whereas actors behave as independent units
of control.

8. Conclusion
We have demonstrated a new method backed by a set of li-
brary abstractions that allows a gradual transition from clas-
sical event handling with observers to reactive programming.
The key idea is to use a layered API that starts with ba-
sic event handling and ends in an embedded higher-order
dataflow language. In the introduction, we identified many
software engineering principles that the observer pattern vi-
olates. To summarize, our system addresses those violations
as follows:

Uniformity and abstraction We started with the introduc-
tion of first-class event streams and signals that were later
generalized to reactives. The first-class status of reactives
addresses the issue of abstraction and uniformity. Instead
of relying on heavyweight event publishing components,
our polymorphic reactives offer slim, uniform interfaces
that represent isolated concepts. Low-level observers, re-
actors and data-flow reactives work the same way, regard-
less of the precise representation of an event stream or
signal.

Encapsulation Reactors and data-flow reactives form single
objects that can process complex event patterns such as
in the dragging example without exposing external state.

Resource management Observer life-times are automati-
cally restricted by our Observing trait. Our data-flow lan-
guage ensures that internal observers are disposed when
no longer needed.

Side-effects We can restrict the scope of side effects in re-
actors and data-flow reactives because our data-flow DSL
captures the state of execution internally.

Composability Reactives can be composed in a functional
way by means of reactive combinators or in a data-flow-
oriented way by means of our data-flow DSL.

Separation of concerns Uniform reactives makes it straight-
forward to create signals and events of existing im-
mutable data-structures and factor the interaction with
external APIs into observers or reactors.

Scalablity Our message propagation algorithm ensures that
no reactive can ever see inconsistent reactive data, regard-
less of the number of reactive dependencies. Base classes
in the reactive hierarchy provide most of the implementa-
tion for a data-flow DSL that can be extended to suit the
special needs of custom data structures.

Semantic distance The semantic distance between the pro-
grammer’s intention and the resulting code is largely re-
duced by avoiding inversion of control.

We see a similar correspondence between imperative and
functional programming in Scala and data-flow and func-
tional reactive programming in Scala.React. Imperative pro-
gramming is close to the (virtual) machine model and used
to implement functional collections and combinators. Data-
flow programming in our system is a simple extension to
Scala’s imperative core and can be readily used to implement
reactive abstractions and combinators as we have shown.
Programmers can always revert to reactors and low-level ob-
servers in case a data-flow oriented or combinatorial solution
is not obvious.

Given our previously identified issues of the observer
pattern for which we are now providing a gradual path out of
the misery, we have to ask: Is the observer pattern becoming
an anti-pattern?

Scala.React is a generalization of our previous non-strict
reactive programming implementation which is used in a
commercial game engine developed by Mimesis Repub-
lic6 and can be downloaded from the author’s website at
http://lamp.epfl.ch/~imaier. It is under active de-
velopment and contains a growing number of automated
tests and examples. We will further soon make available a
prototype for a reactive GUI framework.
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A. CPS transforming loops
In [44] we have shown that first-class continuations can
be implemented efficiently on the JVM and similar man-
aged runtimes using a variant of the well-known CPS trans-
form [4]. This result is a bit surprising, since CPS trans-
forming a program replaces all method returns with function
calls in tail position and requires allocating closure records
to pass local state—a program structure very much at odds
with stack-based architectures that do not support efficient
tail calls. The way to make the CPS transform viable is to
apply it only selectively [38], driven by the type system. In
the system presented in [44], the control operators shift and
reset [16] are declared with the following signatures:

def shift[A,B,C](fun: (A => B) => C): A @cps[B,C]
def reset[A,C](ctx: =>(A @cps[A,C])): C

The type system makes sure that @cps annotations are prop-
agated outward from uses of shift. Thus, a function like

def foo(x: Int) = 2 * shift((k:Int=>Int) => k(x+1))

will have a return type of Int @cps[Int,Int].
All expressions of type A @cps[B,C] will be translated to

objects of type Shift[A,B,C], where Shift is a generalized
CPS monad:

class Shift[+A,-B,+C](val fun: (A => B) => C) {
def flatMap[A1,B1,C1<:B](f: A=>Shift[A1,B1,C1]) =
new Shift((k: A1=>B1) =>

fun((x:A) => f(x).fun(k)))
def map[A1](f: A=>A1) = ...

}

The function foo defined above can then be transformed
as follows:

def foo(x: Int) = new Shift((k:Int=>Int) =>
k(x+1)).map(2 * _)

Being a type-driven transformation, it is easy to disal-
low capturing continuations in programming constructs that
do not lend themselves to a straightforward CPS represen-
tation. One important example are imperative while-loops.
The following example shows that delimited continuations
make loops considerably more powerful:

var x = 0
while (x < 10) {
shift { k => println("+"); k(); println("-") }
x += 1

}

The code will print + when entering an iteration and - when
leaving it. In general, while loops are no longer equivalent
to directly tail-recursive functions. This is demonstrated by
CPS-transforming the code above, which exhibits indirect
recursion through several levels of function invocations:

var x = 0
def loop() = if (x < 10) {
new Shift { k => println("+"); k(); println("-") }
.flatMap { _ => x += 1; loop() }

} else {
new Shift { k => k() }

}
loop()

Generalizing this translation to

def loop() = if (<condition>) {
<body>.flatMap { _ => loop() }

} else {
new Shift { k => k() }

}
loop()

is unfortunate, however, since no while-loop that contains
CPS code can be implemented using branch instructions
anymore. On the JVM, which lacks constant-space tail-calls,
while loops with larger numbers of iterations would likely
result in stack overflow errors. For the example above this
is indeed the expected behavior, as demanded by the non



tail-recursive continuation semantics. However, many actual
uses of continuations inside while-loops might rather look
like this:

var x = 0
while (x < 1000000) {

if (x % 100000 == 0)
shift { k => println("+"); k(); println("-") }

x += 1
}

Due to the low number of actual continuations accessed
(only 10 in total), throwing a stack overflow error here would
not be acceptable.

Fortunately, we can put to work once more the initial
choice of targeting a variant of the CPS monad instead of
composing functions directly. We have glossed over the
definition of map in class Shift, which is a (rather sim-
ple) static optimization to avoid building Shift objects
that would be trivial, i.e. transforming expression x to
new Shift(k => k(x)). Regarding the above example, a
conditional with a @cps expression only in the then part will
be transformed to build exactly such a trivial Shift object in
the else part. Thus, all but 10 Shift objects will be trivial in
the example. However, the situation is more complex as for
map since whether one iteration is trivial or not depends on a
dynamic condition.

Similar in spirit to map, we can further specialize for triv-
ial Shift instances by restructuring Shift into a hierarchy
of classes:

sealed abstract class Shift[+A,-B,+C] {
def fun(f: A=>B): C
// map, flatMap declared abstract

}
case class Shift0[+A,-B](x: A) extends Shift[A,B,B]{
def flatMap[A1,B1,C1<:B](f: A=>Shift[A1,B1,C1]) =

f(x)
def map[A1](f: A=>A1) = Shift0[A1,B,B](f(x))

}
case class Shift1[+A,-B,+C](fun0: (A => B) => C)

extends Shift[A,B,C] {
def fun(f:A=>B) = fun0(f)
// map, flatMap implemented as before

}

With this modified CPS monad implementation we can
implement a more efficient translation of while-loops:

def loop() = if (<condition>) {
<body> match {
case Shift0(x) => loop()
case ctx: Shift1 => ctx.flatMap { _ => loop() }

}
} else {
Shift0[Unit,Unit]()

}
loop()

In essence, we have inlined the dynamic dispatch and the
definition of Shift0.flatMap. For the trivial case, this

makes the recursive call a direct tail-call again and the stan-
dard, intraprocedural tail-recursion optimization performed
by the Scala compiler will translate this call to a branch
instruction.


