
Viewstamped Replication: A New Primary Copy Method to
Support Highly-Available Distributed Systems

Brian M. Oki
Barbara H. Liskov

Massachusetts institute of Technology
Laboratory for Computer Science

Cambridge, MA 02139

Abstract

One of the potential benefits of distributed systems is their use in
providing highly-available services that are likely to be usable when
needed. Availabilay is achieved through replication. By having inore
than one copy of information, a service continues to be usable even
when some copies are inaccessible, for example, because of a crash
of the computer where a copy was stored. This paper presents a
new replication algorithm that has desirable performance properties.
Our approach is based on the primary copy technique.
Computations run at a primary. which notifies its backups of what it
has done. If the primary crashes, the backups are reorganized, and
one of the backups becomes the new primary. Our method works in
a general network with both node crashes and partitions. Replication
causes little delay in user computations and little information is lost in
a reorganization; we use a special kind of timestamp called a
viewstamp to detect lost information.

1 Introduction
One of the potential benefits of distributed systems is their use in

providing highly-available services, that is, services that are likely to
be up and accessible when needed. Availability is essential to many
computer-based services; for example, in airline reservation systems
the failure of a single computer can prevent ticket sales for a
considerable time, causing a loss of revenue and passenger
goodwill.

Availability is achieved through replication. By having more than
one copy of important information, the service continues to be usable
even when some copies are inaccessible, for example, because of a
crash of the computer where a copy was stored. Various replication
algorithms have been proposed to achieve availability
[2, 4, 9, 11, 12, 16, 21,351. This paper presents a new replication
algorithm that has desirable performance properties.

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contract NO001 4-83-K-01 25, and in
parl by the National Science Foundation under granl DCR-8503662.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

0 1988 ACM O-89791-277-2/88/0007/0008 $1.50

Our algorithm runs on a system consisting of nodes connected by
a communication network. Nodes are independent computers that
communicate with each other only by sending messages over the
network. Although both nodes and the netwolrk may fail, we assume
these failures are not byzantine [24]. Nodes can crash, but we
assume they are faiistop processors (341. The network may bse,
delay, and duplicate messages, or delver messages out of order.
Link failures may cause the network to parlition into subnetworks that
are unable to communicate with each other. We assume that nodes
eventually recover from crashes and partitions are eventually
repaired.

Our replication method assumes a model of computation in which
a distributed program consists of modu/es, each of which resides at
a single node of the network. Each module contains within it both
data objects and code that manipulates the objects; modules can
recover from crashes with some of their state intact. No other
module can access the data objects of another module directly.
instead, each module provides procedures that can b8 used to
access its objects; modules communicate by means of remote
pfoceduf8 calls. Modules that make calls (are called clients; the
called module is a server.

Modules are the unit of replication in our method. Ideally,
programmers would write programs without concern for availability in
some (distributed) programming language that supports our model of
computation. The language implementation thlen uses our technique
to replicate individual modules automatically; ithe resulting programs
are highly available.

We assume that computations run as atomic transactions [14].
Our method guarantees the one-copy serializability correctness
criterion [3, 331: the concurrent execution of transactions on
replicated data is equivalent to a serial execution on non-replicated
data.

Our approach is based on the primary o~py technique [t, 361.
which works roughly as follows. One replica is designated the
primary; the others are backups. The primary is responsible for the
processing of transactions that use its objects; it notifies the backups
of what it has done. When a replica crashes or is separated from the
others by a partition. or when a replica recovers from a crash or a
parfition is repaired, the replicas are reorganized and a new primary
is selected if necessary. We refer to this reorganization as a view
change (131. Once the view change is complete, the (new) primary
can continue with transaction processing.

The primary copy technique as originally proposed worked only if
node failures were distinguishable from network failures; in general
such a distinction cannot be made and our method does not require
it. In addition, our method exhibits useful performance properties.
Transactions encounter little delay in interacting with the replicas, yet
little information is lost in a view change. Remote procedure calls to

8

access or modify objects are executed entirely at the primary, which
notifies the backups in background mode. If a view change
happens, the effects of a call may or may not survive into the new
view. If they do survive, the transaction can commit; otherwise, it
must abort. We use a special kind of timestamp called a viewsramp
to distinguish the two situations.

We begin in the next section with an overview of our method.
Sections 3 and 4 describe the two parts of the method, transaction
processing and view changes. Section 5 discusses how our method
compares with other replication techniques. We conclude in Section
6 with a summary of what we have accomplished.

2 Overview of our Method
The method replicates individual modules to obtain module

groups. A module group consists of several copies of the module,
called cohods, which behave as a single, logical entity; the program
can indicate the number of cohorts when the group is created. The
set of cohorts is the group’s configuration. Each cohort has a unique
name called an mid; the group as a whole bears a unique groupid.
We expect a small number of cohorts per group, on the order of
three or five.

One cohort is designated as the primary; it executes procedure
calls, and participates in two-phase commit.

The remaining cohorts are backups, which are essentially passive
and merely receive state information from the primary.

Failures and recoveries are masked when they are noticed. Over
time the communication capability within a group may change as
cohorts or communication links fail and recover. To reflect this
changing situation, each cohort runs in a view. A view is a set of
cohorts that are (or were) capable of communicating with each other,
together with an indication of which cohort is the primary; it is a
subset of the configur&ion and must contain a majority of group
members.

A group switches to a new view by executing a view change
protocol; our protocol is a simpfiffcation and modification of the virtual
partitions protocol [12]. Each view is identified by a unique viewid;
we guarantee that viewids are totally ordered. The view change
protocol generates a new view and viewid. If a majority of cohorts
accept the new view, cohorts switch to the new, active view;
otherwise, they remain in their old views, but the views become
inactive. Transactions are processed only in active views.

Views and viewids reflect the current communication patterns, but
not the information about committed and active transactions that
have run at the group. This additional information is obtained by
using fimestamps. Timestamps are unique within a view and form a
total order: they are generated by the primary and are easy to
produce, for example, by incrementing a local counter. The primary
generates a new timestamp each time it needs to communicate
information to its backups; we refer to each such occurrence as an
event. Examples of events are the completion of processing of a
remote calf or of a prepare or commit message. Each event is
assigned a unique timestamp, and later events receive later
timestamps. Instead of checkpointing events directly to the backups,
the primary maintains a communication buffer (similar to a fifo
queue) to which it writes event records. An event record identifies
the type of the event, and contains other relevant information about
the event. Information in the buffer is sent to the backups in
timestamp order. The buffer implementation provides reliable
delivery of event records to all backups in the primary’s view; if it fails
to defiver a message, then a crash or communication failure has
occurred that will cause a view change.

We use timestamps as an inexpensive way of determining what

information survives a view change. Because a timestamp is
meaningful only within a view, we introduce viewstamps. A
viewstamp is simply a timestamp concatenated with the viewid of the
view In which the timestamp was generated; we refer to the parts of
viewstamp Y as v.id and v.ts. Each cohort maintains a history.
consisting of a sequence of viewstamps. each with a different viewfd.
We guarantee that for each viewstamp v in its history, the cohort’s
state reflects event e from view v.id iff e’s timestamp is less than or
equal to v.ts.

The correctness of our algorithm depends on the interaction of
transaction processing and the view change algorithm. Transaction
processing guarantees that transactions are serialized properly. In
addition, it guarantees that a transaction can commit only if all its
events are known to at least a majority of cohorts. The view change
algorithm guarantees that events known to a majority of cohorts
survive into subsequent views. Thus, events of committed
transactions will survive view changes. Not all events survive view
changes, however; for example, the processing of a particular
remote calf may be lost. We use the hisfory plus some information
that arrives in the prepare message to ensure that the transaction
will be forced to abort in such a case. On the other hand, if the
history and the information in the prepare message indicate that all
the events associated with the transaction survived the view change,
the transaction can commit.

In the next two sections we describe our technique. First, we
describe transaction processing and then the view change algorithm.

3 Running Transactions
Our system runs transactions in a manner similar to a system

without replication. There are two main differences: we use
viewstamps to determine whether a transaction can commit, and
instead of writing Information to stable storage [25] during two-phase
commit, the primary sends it to the backups using the
communication buffer discussed above.

The part of a cohort’sstate that affects transaction processing is
summarized in Figure 1. Each cohort has a status; if it is “active,” it
can participate in transaction processing, and otherwise it is involved
in a view change. We say that a cohort is active if its status is
“active”; otherwise it is inactive. The g&ate consists of all objects
that constitute the group state. Each object has a unique name
(relative to the group) and a current value, and also whatever
information is needed to implement synchronization and recovery. In

status: status % cohort is active or doing a view change
gstate: (object) % objects in the group state
mygroupid: int % the name of the module group
cur-viewid: viewid % the current viewid
cur-view: view % the current view
history: [viewstamp] % indicates events known to cohort
timestamp: int % the timestamp generator
buffer: [event-record] % the communication buffer

where

Status = oneof[active, view-manager, underling: null]
object - cuid: int, base: T, lockers: (lock-info)>
lock-info = clocker: aM, info: oneofjread: null, write: TJ>
viewid = <cnt: int, mid: int>
view = <primary: int, backups: (int},
viewstamp = <id: viewid. ts: int>

Flgure 1: Partial State of a Cohort: () denotes a set, [1 denotes
a sequence, oneof means a tagged union wilh component
tags and types as indicated, and CX= denotes a record, with

component names and types as indicated.

9

the remainder of this paper, we assume that transactions
synchronized by means of strict P-phase locking [18] with read and
write locks. Each object has a base version of some type T; different
objects can be of different types, but we ignore these differences in
the paper. A transaction modifies a tentaUve version, which is
discarded if the transaction aborts and becomes the base version if it
commits. Thus, in addition to its name and base version, an object
contains a set of lockers that identifies transactions holding locks on
the objects, the kinds of locks held, and any tentative versions
created for them.

The primary uses the buffer to communicate information about
events to the backups; the implementation of the buffer guarantees
reliable delivery of event records to all backups in timestamp order.
We distinguish between writing and forcing information to the buffer;
a similar distinction is made in transaction systems that use stable
storage. Writing means that the information will be delivered to the
backups at a convenient time; this is accomplished by calling the add
operation on the buffer. Add takes an event record as an argument.
It atomically assigns the event a timestamp (advancing the
timestamp and updating the history in the process) and adds the
event record to the buffer; it returns the event’s viewstamp. There
may be concurrent execution within a module, so the implementation
of add must serialize the use of the buffer and ensure that event
records are recorded in the buffer in timesramp order.

The farce-to operation is used to force the buffer. Since
sometimes it is not necessary to force the entire buffer, the operation
takes a viewstamp v as an argument. If the viewstamp is not for the
current view it returns immediately; othenvise it waits until a
sub-major&y of backups know about all events in the current view
with timestamps less than or equal to V.&Z.’ A sub-majority is one
less than a majority of the configuration; if a sub-majority of backups
knows about an event, then a majority of the cohorts in the
configuration knows about that event. As mentioned earlier, if a
majority of cohorts knows some information, the view change
algorithm guarantees that the information will be known in all
subsequent views.

Running transactions requires the collaboration of both clients and
servers. Clients create transactions, make any remote calls they
contain, and act as coordinators of two-phase commit. Servers
process remote calls and participate in two-phase cammft; in
processing a call, a server may make further calls.

We assume the system provides a highly-available location server
that maps Qroupids to configurations; various implementations are
discussed in [15, 20, 22, 311. * To find a server it has not used
before, a cohort fetches the configuration from the location server
and communicates with members of the configuration to determine
the current primary and viewid. It stores this information in a local
cache.

Below we discuss the work done by active primaries of clients and
servers, other processing at cohorts, and processing of query
messages. We assume that both clients and servers are replicated;
we discuss an alternative to replicating clients in Section 3.5. Our
discussion assumes that transactions are one-level; we discuss
nested transactions in Section 3.6.

‘Force-to delays its caller, but other work, including adding and
forcing the buffer, can still go on at the cohott in other processes. If
communication with some backups is impossible, the calf of force-to
will be abandoned, and the cohort will switch to running the view
change algorithm.

*Note that the location server defines the limits of availability: no
module group can be more available than it is.

3.1 Actlve Prlmarles of Clients
Recall that we intend to use viewstamps to determine whether a

transaction can commit. Each time a server finishes processing a
remote call on behalf of a transaction, sit assigns the call a
viewstamp. Information about these viewstamps is collected as the
transaction runs in a data structure called the ,oset, which is a set of

cgroupid: int, vs: viewstamp>

pairs. The pser contains an entry for every call made by the
transaction; a pair cQ, v, indicates that group g ran a call for the
transaction and as ;igned it viewstamp v.

The processing at the client’s primary is summarized in Fiiure 2.
When a transaction is created, it receives a unique transaction
identifier aid and an empty pset. (We make the aid unique across
view changes by including mygrcupid and cur-viewid in it.) To make
a remote call, the system looks up the primary and viewid for the
group in its cache, initializing the cache if necessary, and then sends
the call message to the primary. The message contains the viewid
from the cache, a unique call id (to prevent duplicate processing of a
single call), and information about the call itself (the procedure name
and the arguments).

There are three possible results of such a message. The first, and
most likely, is a reply message for the call. The reply message
contains a pset that records cgruupid, viewslamp pairs for this call

Starting a transactlon:

Create the transaction aid and an empty pset.

Maklng a remote call:
1. Look up the server in th$ cache, updating the cache if

necessary. Send the call message to the primary; the
message contains the unique call id and also the
viewid obtained from the cache.

2. If a repfy message arrives, add the elements of the
pset in the reply message to the tran!;action’s pset.
User code at the client can now continue running.

3. If there is no reply, abort the transaction: send abort
messages to the participants (determiined from the
pset), and add an <“aborted”, aid> record to the buffer.

4. If the reply indicates that the view has charged, update
the cache, if possible, and QO to sfep 1. If a more
recent view cannot be discovered, atlorl the
transaction as described above.

Coordinator for two-phase Commit:
1. Send prepare messages containing tlhe aid and pset to

the participants, which can be determined from the
pset.

2. If all participants agree to commit, release any local
locks held by the transaction and install its tentative
versions, add a <“committing”, plist, aid:. record to the
buffer, where the plist is a list of non-read-only
participants, and then do a force-fo(new-vs), where
new-vs is the viewstamp returned by the call on the
addoperation. Send commif messages to the
participants; when all of them acknowledge the
commit, add a <“done*, aid> record to the buffer.

3. If there is no answer after repeated tries, update the
cache, if possible, and retry the prepare. If a more
recent view cannot be discovered, or if any participant
refuses to prepare, discard any local locks and
versions held by the transaction and send aborf
messages to the participants. Add an -?‘aborted”. aid>
record to the buffer.

Flgure 2: Processing at the Active Primary of a Client.

10

and any further remote calls made in processing it. The pairs in the
reply’s pset are added to the transaction’s psef.

compatible(ps, g, vh) =
Q p E ps (p.groupid = g 3

V v E vh (p.vs.id = v.id ti p.vs.ts i v.ts))
The second possibility is no reply at all (after a sufficient number

of probes). In this case, we abort the transaction; we also attempt to
update the cache, so that the next use of the server will not cause an
abort. The transaction must abort because we cannot know whether
the call message would be a duplicate if we sent it to a new primary.
The message might be a new one, or it might be a duplicate for a Call
that ran before the view change or was running when the view
change happened. In the first case, we need to do the call; in the
second case, we must not redo it. To resolve this uncertainty, we
aborf the transaction.

The lhird possibility is a reply indicating that the view has
changed. In this case, we update the cache and retry the call. We
assume the message delivery system maintains some connection
information that enables it to not deliver duplicate messages even in
the case when the module crashes and recovers between deliveries.
If duplicate messages are possible, we must abort the transaction In
this case too.

When the transaction commits, the client’s primary acts as the
coordinator of the two-phase commit protocol [19]. It determines
who the participants are from the psef. It sends the pset in the
prepare messages to allow each participant to determine whether it
knows all events of the preparing transaction.

If all participants agree to prepare, the coordinator adds a
“committing” record to its buffer and forces the entire buffer to the
backups. This ensures that the commit wilt be known across a view
change of the coordinator. The “committing” record lists only the
participants where the transaction holds write locks, since only these
must take part in phase two; the reply from a participant indicates
whether or not it is read-only. Then the coordinator sends commit
messages, and, when all are acknowledged, adds a “done” record to
the buffer. Note that user code can continue running as soon as the
“committing” record has been forced to the backups.

If the transaction aborts, or if any participant refuses the prepare,
the coordinator sends abort messages to the participants and adds
an “aborted” record to the buffer. This record is not really needed
because a view change at the coordinator that leads to a new
primary will cause any of the group’s transactions to aboti
automatically. (To avoid such aborts would require some kind of
checkpoint mechanism [f7j.) However, the record is useful for query
processing as discussed in Section 3.4.

3.2 Active Primaries of Servers
Servers process remote calls and act as participants in two-phase

commit. Each time a call completes, the primary assigns it a
viewstamp, and returns this information in the reply message. The
primary can agree to prepare only if it knows about all remote calls
its group has done on behalf of the preparing transaction. It uses its
history and the pset in the prepare message to determine this.

Processing at the primary of the server is summarized in Figure 3.
When the primary receives a call message, tt rejects the call if the
call’s viewid is not equal to cur-viewid. Otherwise, it creates an
empty pset and runs the call, possibly making further nested calls as
described above. When the call completes, it adds a “completed-
call” record to the buffer; this record identifies each atomic object that
was read or written in processing the call, together with the type of
lock obtained and the tentative version if any. Then it adds a pair for
this call to the call’s pset and returns the psetin the reply message.

When the primary receives a prepare message, it checks whether
it knows about all calls made by the transaction to its group by calling
wmpafi&fe@sef, mygroupid, history):

If the pser is not compatible with the hisfory, it refuses the prepare.
Otherwise, it computes the viewstamp of the most recent
“completed-call” event by calling vs-max(pset, mygmup~~:

vs_max(ps, 9) = p.vs s.t.
p E ps & p.groupid = g & V p’ E ps (p’.groupid = g

3 p’.vs.id < p.vs.id v (p’.vs.id = p.vs.id & p’.vs.ts 5 p.vs.ts))

It uses this viewstamp to force the buffer to ensure that all
“completed-call” events are known to at least a sub-majority of
backups and then sends an acceptance to the coordinator.

When it receives a commit message, the primary forces a
“committed” record to the buffer and then sends an acknowledgment
to the coordinator. If it receives an abort message, it adds an
“aborted” record to the buffer.

3.3 Other Processing at Cohorts
Cohorts that are not active primaries reject messages sent to them

by other module groups, except for queries as discussed in the next
section. The response to the re jetted message COntainS information
about the current viewid and primary if the cohort knows them (for
example, if it is a backup in an active view).

Processing a call:
1. If the viewid in the call message is not equal to the

primary’s cur-viewid, send back a rejection message
containing the new viewid and view.

2. Create an empty pset. Then run the call. If it makes
any nested calls, process them as described in Figure
2.

3. When the call finishes, add a &ompleted-call”, object-
list, aid> record to the buffer; the object-list lists all
objects used by the remote call, together with the type
of lock acquired and the tentative version if any. Add a
emygroupid, new-vs> pair to the pset, where new-vs
is the viewstamp returned by the call on the add
operation of the buffer, and send back a reply message
containing the pset.

Processing a Prepare Message:
1. If wmpati&le(pset, history, mygroupid), perform a

forceJo(vs-max(psef, mygroupid)), release read locks
held by the transaction, and then reply prepared. In
the reply message, indicate whether the transaction
held only read locks at this participant. If the
transaction is read-only, add a <“committed”, aid>
record to the buffer.

2. Otherwise, send a message to the coordinator refusing
the prepare and abort the transaction: discard its locks
and versions and add an c”abort”. aid> event record to
the buffer.

PrOceSSlng a Commit Message:
1. Release locks and install versions held by the

transaction. Add a c’%ommitted”, aid> record to the
buffer, do a force-to(new-vs), where new-vs is the
VieWStamp return by add, and send a done message to
the coordinator.

Processing an Abort Message:
1. Discard locks and versions held by the aborted

tranSaCtiOn and add an <“aborted”, aid> record to the
buffer.

Figure 3: Processing at the Active Primary of a Server,

11

Active backups receive messages containing information from the
communication buffer. They process event records in timestamp
order, updating the state accordingly. The backup can simply store

the records, or it can perform them, for example, by setting locks and
Creating versions for a “completed-call” record. There is a tradeoff
here between the amount of processing at the backups, and how

much work is needed during a view change before a backup can
become a primary. Perhaps a good compromise is to store
“completed-call” records (as part of the gs&fe) until the “committed”
or “aborted” record for the call’s transaction is received; at this point
records for a committed transaction would be processed, while those
for an aborted transaction would be discarded.

3.4 Queries
Our implementation does not guarantee that all messages about

transaction events arrive where they might be needed. For example,
if the transaction aborts, we send abort messages to the participants,
but do not guarantee they will arrive. Instead, a cohort that needs to
know whether an abort occurred sends a query to another cohofi
that might know. For example, the primary of the participant can
send a query to the primary of the coordinator.

To speed up the processing of queries, we allow any cohort to
respond to a query whenever it knows the answer. For example, a
cohort that is not a primary may know about the abort of a
transaction because B received the “aborted” event record from the
primary.

3.5 Replicated Clients
The algorithms above assumed that both the client and the server

are replicated. It is good to replicate servers, since they do work on
behalf of many clients. Replicating a client that is not a server,
however, may not be worthwhile.

If the client is not replicated, it is still desirable for the coordinator
to be highly available, since this can reduce the “window of
vulnerability” [30] in two-phase commit. This can be accomplished
by providing a replicated “coordinator-server.” The client
communicates with such a server when it starts a transaction, and
when t commits or aborts the transaction. The coordinator-server
carries out two-phase commit as described above on the client’s
behalf. It also responds to queries about the outcome of the
transaction; its groupid is part of the transaction’s aid, so that
participants know who it is. In answering a query about a transaction
that appears to still be active, tt would check wtth the client, but if no
reply is forthcoming, it can abort the transaction unilaterally.

3.6 Nested Transactlons
The protocol discussed above is quite permisstve about when a

transaction can prepare, but much less permissive when a client
sends a message to a cohort that does not respond. A lack of
response causes the entire transaction to abort. Such an abort can
cause lots of work to be lost.

Obviously, there are ways to reduce the number of situations in
which the abort happens. For example, we couM force a special
“start call” record to the backups before making a nested remote call.
It would be safe to run the call at the new primary lf there were no
such record, since even if the call ran before the view change, its
effects were bcal lo this group and therefore have been undone by
the view change. Atternatively, the client could do a probe before
making the call to determine the current primary. However, neither
of these techniques is satisfactory, since they delay normal
processing.

A better approach is to use nested transactions [lo, 28.301.
Nested transactions have two desirable properties. First, they allow

concurrency within a transaction in a way that allows the concurrent
activities to be serialized. Second, they provide a checkpointing
mechanism: if some part of a transaction cannot complete, we can
avoid aborting the entire transaction by running that part as a
subactiin.

Checkpointing is what allows us to minimize the effects of view
changes. If the call is made as a subaction, we need not abort the
entire transaction if there is no reply. Instead. we can abort just the
subaction, and then do the call again as a new subaction. An
algorithm for our ,nethod in a system with nested transactions is
described in[32]: lt is based on the implementation of nested
transactions in Argus (26, 281.

Subactions are an economical way to cope with view changes.
They are not expensive to implement [27j; they are much cheaper
than either of the alternatives for avoiding aborts sketched above.
Furthermore, we need to abort and redo a call subaction Only when
the view changes; thus we do extra work only when the problem
arises.

3.7 Dlscusslon
There is a one-to-one correspondence between event records and

information written to stable storage by a coniventional transaction
system and therefore our system works because a conventional one
does. The “completed-call” records are equivalent to the data
records that must be forced to stable storage before preparing, and
the “commit” and “abort” records are the same as their stable
storage counterparts. The only difference is our treatment of
prepares, since we have no prepare record. In a conventional
system, the prepare record tells the participant #after a crash whether
a transaction that ran there before a crash is ablle to commit. We do
not need the prepare record because we use the primary’s history
and the psef in the prepare message to determine what to do.

Even when a transaction only has read locks, we must force the
“completed-call” records to the backups when preparing to ensure
that read locks are held across a view change. A view change may
have happened without this primary being aware of it. and there may
be a new primary already processing user requests in the other view.
Furthermore, the preparing transaction’s read-locks may not be
known in the new view, so the new primary may allow other
transactions to obtain conflicting locks. Forcing the buffer
guarantees that the prepare can succeed only if the transaction’s
locks survived the view change. Without the force, the prepare could
succeed at the old primary even though the locks did not survive. fn
essence, not doing the force is equivalent to not sending the prepare
message to a read-only participant; such prepare messages are
needed to prevent violations of two-phase locking.

We believe that our method will perform better than a non-
replicated system. Remote calls in our system run only at the
primary and need not involve the backups and therefore their
performance is the same as in a non-replicated system. We expect
that pfepafe messages are usually processed entirely at the primary
because the needed “completed-call” event records for remote calls
of the preparing transaction will already be stored at a sub-majority
of cohorts; otherwise, the primary must watt while the relevant part of
the buffer is forced to the backups. Careful engineering is needed
here to provide both speedy delivery and small numbers of
messages. Committing a transaction requires forcing the
“committed” record to the coordinators backups; the remainder of
the protocol can run in background. For both preparing and
committing, our method will be faster than using non-replicated
clients and sewers if communication is faster than writing to stable
storage, which is often the case provided that the number of backups
is small.

12

4 Changing Views
Transaction processing depends upon forcing information to

backups so that a majority of cohorts know about particular events.
The job of the view change algorithm is to ensure that events known
to a majority of cohorts survive into subsequent views. It does this
by ensuring that every view contains at least a majority of cohorts
and by starting up the new view in the latest possible state.

If every view has at least a majority of cohorts, then it contains at
least one cohort that knows about any event that was forced to a
majority of cohorts. Thus we need only make sure that the state of
the new view includes what that cohort knows. This is done using
viewstamps: the state of the cohort with the highest viewstamp for
the previous view is used to initialize the state in the new view. This
scheme works because event records are sent to the backups in
timestamp order, and therefore a cohort with a later viewstamp for
some view knows everything known to a cohort with an earlier
viewstamp for that view.

The view change algorithm requires some information to be
recorded in the cohort state. This information is summarized in
Figure 4, which shows the complete cohort state. Most of this state
is volatile and will be lost in a crash; the ramifications of such
crashes are discussed in Section 4.2. The exceptions are mymid,
configuration, and mygroupid, which are stored on stable storage
when the cohort is first created, and cur-viewid, which is stored at
the end of a view change. When a cohort recovers from a crash, it
initializes up-to-dale to be false, indicating that its gsfate is not up to
date, and initializes max-wiewid to cur viewid. Then it initializes
status to be “view-manager; this causesft to start a view change as
discussed below.

Cohorts send periodic “I’m Alive” messages to other cohorts in the
configuration. If a cohort notices that it is not communicating with
some other cohort in its view, or if ft notices that it is communicating
with a cohort that it could not communicate with previously, or if ft
has just recovered from a crash, ft initiates a view change. It is the
manager Of this protocol; the other, cohorts are the underlings.

An overview of the algorithm run by a cohort is shown in Figure 5.
The figure shows what the cohort does in each of its three states,
“active,” “view-manager,” and “underling.” In the “active” state, the
cohotl waits for messages to arrive; the receive statement selects
an atbiirary waiting message for delivery to the program, and
dispatches to the arm that matches the name of that message. If the

status: status
gstate: (object)
up-to-date: bool
configuration: [int)
mymid: int
mygroupid: int
cur-viewid: viewid
cur-view: view
history: [viewstamp]
max-viewid: viewid
timestamp: int
buffer: [event-recordj

% cohort is active or doing a view change
% objects in the group’s state
% true if gstate is meaningful
% modules in the configuration
% name of this module
% name of the group
% current viewid
% current view
% indicates events known to cohort
% highest viewid seen so far
% the timestamp generator
% the communication buffer

where

view = status = oneoflactive, view-manager, underling: null]
object = euid: int, base: T, lockers: (lock-info}>
lock-info - clocker: aid, info: oneof[read: null, wrtte: Tj>
viewid - <cnt: int. mid: inb
view = cprimaty: int, backups: (in+-
viewstamp = cid: viewid, ts: inb

cohort receives a “change” message, this means that the exchange
of “I’m alive” messages indicates the need for a view change; it
becomes the view manager by changing its StatUS to
“view manager.” If it receives an invitation to join a view, and if the
new view’s viewid is greater than any it has seen so far, it accepts
the view and becomes an underling by changing its status to
“underling.” The procedure do-accept records the new viewid in
max-viewid and sends an acceptance message. There are two
kinds of acceptance messages, “normal” ones, and *crashed” ones.
If the cohort is up to date (i.e., up-to-date = true), it SendS an
acceptance containing its current viewstamp and an indication of
whether it is the primary in the current view. Otherwise, it sends a
“crash-accept” response; this response contains only its viewid, and
means that it has forgotten its gstate.

If it is a view manager, the cohorl sends invitations to join the new
view to all other cohorts, and waits for responses. The procedure
make_invifations creates a new viewid by pairing mymid with a
number greater than max-viewid.cnf and stores it in max-viewid.
Notice that the new viewid will be different from any produced by
another cohort. Then it sends invitations containing max-viewid to
the other cohorts, records its own response (“crashed” or “normal”),
and collects the other responses. If an invitation with a higher viewid
arrives, it signals invited, returning the new viewid and the mid of the
inviter. In this case, the view manager accepts the invitation and

while true do
tagcaee status

tag active:
receive % accept a message

when change: status := view=manager
when invite (vid: viewid, m: mid):

If vid < max viewid then conllnue end % ignore the msg
do-accept(vid, m)
status := underling

others: % transaction messages handled here
end % receive

tag view-manager:
responses := make-invitations()

except when invited (vid: viewid, m: mid):
do-accept(vid, m)
status := underling
continue % continue at next iteration
end except

v: view := form-view(responses)
except when cannot: continue end % wait and then try again

If v.primafy = mymid
then start-view(v)

status :- active
else send init-view(max-viewid. v) to v.primary

status := underling
end % if

tag underling:
await-view()

except
when timeout:

status := view-manager
continue

when Invited (vid: viewid, m: mid):
do-accept(vid, m)
continue

when becomegrimary(v: view): start-view(v)
end % except

status := active

end % tagcase
end % while

Flgure 4: State of a Cohort. Figure 5: The View Change Algorithm.

becomes an underling. Otherwise, when all cohorts accept the
invitation or a timeout expires, make-invitations returns the
responses. In this case, the view manager attempts to form a new
view (the details are discussed below). If the attempt fails,
(form_view signals cannor), the cohort attempts another view
formation later. If the attempt succeeds, and if the view manager is
not the new primary, it sends an “init-view” message to the new
primary, and becomes an underling. Otherwise it starts the new
view: it updates cur-view and cur-viewid, stores zero in timestamp
and appends <cur-viewid, (h to the history, and writes cur-viewidto
stable storage. Then it initializes the buffer to contain a single
“newview” event record; this record contains cur-view, history, and
gstate. Finally, it becomes active.

View formation can succeed only if two conditions are satisfied: at
least a majority of cohorts must have accepted the invitation, and at
least one of them must know all forced information from previous
views. The latter condition may not be true if some acceptances are
of the “crashed” variety. For example, suppose there are three
cohorts, A, 8 and C, and that view vl = <primary: A, backups: IS,
C+. Suppose that A committed a transaction, forcing its event
records to f? but not C, then A crashed and recovered, and then a
partition occurred that separated 6 from A and C. In this case we
cannot form a new view until the partition is repaired because A hes
lost information and there are forced events that C does not know.

The correct rule for view fofination is: a majority of cohorts have
accepted and

1. a majority of cohorts accepted normally, or

2. crash-viewid -Z normal-viewid, or

3. crash-viewid = normal-viewid and the primary of view
normal-viewid has done a normal acceptance of the
invitation.

Here crash-viewid is the largest viewid returned in a “crashed
acceptance, and normalviewid is the largest viewstamp returned in
a “normal” acceptance. Condition (1) says we can ignore crashed
acceptances if we have enough normal ones; condition (2) says we
can ignore crashed acceptances if they are from old views; and
condition (3) says we can ignore a crashed acceptance if we have
information from the primary of its view, because the primary always
knows at least as much as any backup.

If the view can be formed, the cohort returning the largest
viewstamp (in a “normal” acceptance) is selected as the new
primary; the old primary of that view is selected if possible, since this
causes minimal disruption in the system.

A cohort in the underling state Calls await_view to wait to find out
what happened to the new view. If no message arrives within some
interval, await_view signals timeout and the cohort becomes the view
manager and attempts to form another view. If an invitation for a
higher viewid arrives, await_view signals invited, and the cohort
accepts the invitation. If an “init-view” message containing a viewid
equal to maw_viewid arrives, await_view signals becomegrimary;
the cohort initializes itself to be a primary as discussed above, and
becomes active. If a “newview” record for a view with viewid equal
to max-viewid arrives from the buffer, await-view inftializes the
cohort state before returning: it initializes cur-view, wr-viewid,
hisfory and gstate from the information in the message, writes
cur-viewid to stable storage, sets up-lo-date to true (to indicate that
it now has information in gsnte), and returns normally. Then the
cohoR becomes active.

4.1 Discussion
When failures or recoveries are detected by the system, the view

change protocol runs in each affected module group. The protocol
requires relatively little message-passing in the simple case of no
additional failures and no concurrent view managers. One round of

messages is all that is needed when the manager is also the primary
in the last active view; otherwise, one round plus one message is
needed.

The system performs correctly even if there are several active
primaries. This situation could arise when them is a panlion and the
old primary is slow to notice the need for a view change and
continues to respond to client requests even after the new view is
formed. The old primary will not be able to prepare and commit user
transactions, however, since it Cannot force their effects to the
backups.

If the same cohort is the primary both befo,re and after the view
change, then no user work is lost in the change. Otherwise, we
guarantee the following: Transactions that prepared in the okl view
will be able to commit, and those that committed will still be
committed. Transactions that had not yet prepared before the
change may be able to prepare afterwards, depending on whether
the completion events of the remote calls are known in the new view.
Aborts of transactions may have been forgotten, but delivery of abort
messages is not guaranteed in any case: recovery from lost
messages is done by using queries (see Section 3.4). To minimize
disruption while a view change is happening, or when there is no
active view, queries can be answered by any cohort that knows the
answer.

The algorithm is tolerant to several cohorts simultaneously acting
as managers; the one that chooses the higher viewid will ultimately
succeed. Having several managers will slow things down, since
there will be more message traffic, but the slow down will be slight.
Furthermore, we can avoid concurrent managers to some extent by
various policies. For example, the cohorts could be ordered, and a
cohort would become a manager only if all higher-priority cohorts
appear to be inaccessible.

However, the algofhm is not tolerant of lost messages and slow
responses. For example, suppose a manager waits only until it
hears from a sub-majority even though there are other cohorts that
could respond. This would result in those other cohorts being
excluded from the new view, which in turn will mean another round of
view changing will occur shortly. If that next view change also
excludes some potential members, that will lead to another view
change, and so on.

To avoid such a situation, a manager should use a fairly long
timeout while it waits to hear from all cohorts8 that the “I’m alive”
messages indicate should reply. Similarly, an underling should use a
fairly long timeout before it becomes a manager. In addition, it is
worthwhile to mask lost messages by sending duplicates, so that a
lost message won’t trigger another view change.

A final point is that not all view changes descrfbed above really
need to be done. One special case is wheln an active primary
notices that it cannot communicate wfth a backup, but it still has a
sub-majority of other backups. In this case, the primary can
unilaterally exclude the inaccessible backup from the view. Similarly,
an acttte primary can unilaterally add a backup to its view. View
changes are really needed only when the primary is lost, or when a
current active view loses enough members that it is no longer a
majority. In the latter case, we need not do a view change either; we
make the primary inactive since this stops it from working on
transactions when it wilt not be able to commit them.

4.2 Stable Storage
In our algorithm we assumed that most of a cohort’s state was

volatile. Such an assumption means that if a majority of cohorts are
crashed “simultaneously,” we may lose information about the module
group’s state. Here we view a cohort as crashed if either it is really
crashed, or if it has recovered from a crash, but its up-to-dare

variable is false. Note that a catastrophe does not cause a group to
enter a new view missing some needed information. Rather, it
causes the algorithm to never again form a new view.

Whether it is worthwhile to worry about catastrophes depends on
the likelihood of occurrence and the importance of the information in
the group state. The considerations here are similar to decisions
about when it is necessary to store information in stable storage in a
nonreplicated system, except that replication makes the probability of
catastrophe smaller to begin with. .

If protection against catastrophes is desired, there are various
techniques that could be tried. For example, we might use stable
storage only at the primary or we might supply each cohort with a
universal power supply and have them write information to
nonvolatile storage in the background.

5 Related Work
In this section we discuss the relationship of our approach to other

work on replication and view changes.

The best known replication technique is voting [16,21]. With
voting, write operations are usually performed at all Cohorts, and
reads are performed at only one cohort, but in general writes can be
performed at a majority of cohorts and reads at enough cohorts that
each read will intersect each write at at least one cohort. The write
ail/read one choice is preferred when reads are much more common
than writes.

Our method is faster than voting for write operations since we
require fewer messages. Also, we avoid the deadlocks that can
arise if messages for concurrent updates arrive at the cohorts in
different orders. Our method will also be faster for read operations if
these take place at several cohorts. If reads take place at just one
cohorl, voting may outperform our method because reading can
occur at any cohort, while reading in our scheme must happen at the
primary, which could become a performance bottleneck. On the
other hand, the real source of a bottlenedc is a node, not a cohort,
and we can organize our system so that primaries of different groups
usually run on different nodes. Furthermore, the system can be
Configured to place primaries at more powerful nodes most of the
time. This organization Could lead to better performance than voting.

Voting allows operations to continue running as long as the
needed number of cohorts are up and accessible. However, when
writes must happen at all Cohorts, the lost of a single cohort can
cause writes to become unavailable. The virtual partitions
pro~ocol[l2, 131 was invented to solve this problem. Our view
change protocol is a simplification and modification of this protocol
and has better performance. The virtual partitions protocol requires
three phases. The first round establishes the new view, the second
informs the cohorts of the new view, and in the third, the Cohorts all
communicate with one another to find out the current state. We
avoid extra work by using viewstamps in phase 1 (the first round) to
determine what each cohort knows. Our technique can be used in
conjunction with voting when writes are done at all members of a
view. Just as we use viewstamps, in such a system timestamps
assigned when transactions commit could be used to determine
which replica has the most information about transaction Commits
(the timestamps would not contain information about the state of
active transactions). Systems in which writes only go to a majority
are more difficult to optimize in this way since there is usually no
cohort whose state Contains at least as much information as the
state of any other cohort.

Virtual partitions force transactions that were active across a view
change to abort. For example, a transaction that did a remote call in
the old view will not be able to prepare in the new view. We use
viewstamps to avoid the abort and we rely on the fact that knowledge

15

of later events implies knowledge of earlier ones. A total order on
viewstamps would be costly to implement with voting, since there iS
no single place (like our primary) to generate the viewstamp. it might
be possible to use multipart viewstamps (23, 291, however. This is a
matter for future research.

A different approach to replication is taken in Isis [4, 51. Isis works
only in a local area network because its view change protocol does
not tolerate partitions. In Isis, calls are sent to a single cohort. If the
called procedure is a read, the cohort acquires a read lock IOCally
and performs the operation locally. If the procedure is a write, the
cohort acquires write locks at all cohorts before doing the Call. (Write
locks are acquired using a two-phase algorithm that prevents
deadlocks in the case of concurrent writes.) Then the cohoR
performs the call. In either case, the Cohort communicates the
effects of reads3 and writes to other cohorts in background ‘mode,
and piggybacks them on reply messages. This piggybacked

information accompanies all future client messages, including calls to
other servers as well as prepare and commit messages. This
means, for example, that if the prepare message is sent to a different
cohort from the one that performed the call, the information about the
effect of the call wilt be present at the cohort doing the prepare, SO
there will be no need for that cohort to wait for the background
message to arrive, and no possibility that it would need to reject the
prepare. Unlike our pset, however, piggybacked information in Isis
cannot be discarded when transactions commit. A disadvantage of
Isis is the large amount of extra information flowing on every
message, and the difficulty in garbage collecting that information.

Our method avoids these problems at the Cost of a possible delay
at prepare time (to force the buffer) and of an occasional abort when
there is a view change. The viewstamps in our method represent the
information flowing in Isis. However, since the viewstamps only
indicate that certain events have occurred, but not what these events
are, we must sometimes wait for information about its events to
arrive in buffer messages. Also, we must sometimes abort a
transaction because information about its events is lost in a view
change.

In Cooper’s replicated remote procedure calls [9], each procedure
call is replicated and executed at every cohort of a server. This
technique has high overhead during normal system operation: il
requires lots of messages, is wasteful of computation, and requires
that programs be deterministic. The advantage of the method is that
recovery is inexpensive.

Finally, Tandem’s Nonstop systemI2, 7,8] and Ihe Auragen
system [6] are primary copy methods but there is just one backup, so
they can survive onfy a single failure. Furlhermore, the
primary/backup pair must reside at a single node (containing multiple
processors). If these constraints are acceptable, these methods are
efficient. Ours is more general.

6 Conclusions
This paper has described a new replication method for providing

high availability. The method performs well in the normal case, does
view changes efficiently, and loses little information in a view
change. We expect the performance of our method to be
comparable to that of a system in which modules are not replicated
and better than most other replication methods. At present we are
implementing our method; we will be able to run experiments about
system performance when our implementation is complete.

Our view change algorithm is highly likely not to lose work in a
view change. If a transaction’s effects are known at the new primary,

3The effect of a read is that a read lock has been acquired.

the transaction can commit. Our notion of viewstamps allows us to
determine inexpensively how much each cohort knows and whether
a transaction can be committed. Our policy of choosing the primary
of the last active view to be the new primary whenever possible
avoids losing work altogether; even remote calls that were running
before the view change can continue to run afterwards. Note that
the probability of aborts can be decreased further if desired. There is
a tradeoff here between loss of information in view changes and
speed of processing calls. For example, if “completed call” records
were forced to the backups before the call returned, there would be
no aborts due to view changes, but calls would be processed more
slowly.

Choosing the primary of the old view to be the new primary
minimizes information loss and makes the view change protocol run
quickly. On the other hand, we could modify the protocol to always
choose a particular cohort to be the primary if possible. Such a
policy matches the needs of some applications. The policy would
not cause loss of information: if the old primary is a member of the
new view, all its events will survive into the new view. However,
work in progress at the old primary would be lost in the change
(unless some additional mechanism is included); this includes
aborting transactions for which the primary is the coordinator. In
addition, a few extra messages will sometimes be needed in the view
change protocol.

We presented our algorithm in a system with one-level
transactions. However, as noted earlier, such a system can lead to
aborts in which a substantial amount of work can be lost. The
problem arises when a client gets no reply for a remote call; the
transaction must be aborted to avoid running a call more than once.
Nested transactions prevent the abort of the top level transaction,
and, furthermore, do so efficiently.

In defining our algorithm, we chose to avoid the use of stable
storage as much as possible because we were interested in
understanding the extent to which having several replicas eliminated
the need for stable storage. We found that catastrophes (loss of a
group’s state) that would not happen if events were recorded on
stable storage could sometimes occur in our system. The probability
of a catastrophe depends on the configuration, e.g., on whether the
cohort’s nodes are failure independent. The algorithm can be
modified in various ways to reduce the probability of catastrophe if it
is considered to be too high.

The use of viewstamps is an interesting compromise between loss
of work in failures and extra information. Isis represents one
extreme here: no work is lost when there is a failure but large
amounts of information must flow around the system. Other systems
have no information like viewstamps and must abort all transactions
affected by a failure.

Viewstamps may also be worthwhile in a nonreplicated System. In
such a system, records containing the effects of Calls could be
written to stable storage in background mode; the records, like event
records, would contain viewstamps. When the prepare message
arrives, it would only be necessaty to force the records; no delay
would be encountered if the records had already been Written. A
crash would not cause active transactions to abort aUtOmatiCally;
instead, queries would be sent to coordinators to determine the
outcomes. The result would be a system that is more tolerant Of
crashes (by avoiding aborts) and also faster at prepare time.

Acknowledgments

We are thankful for the helpful comments of readers of earlier
drafts of this paper, and especially to Sanjay Ghemawat, Dave
Gifford, Bob Gruber, Deborah Hwang, Elliot Kolodner, Gary Leavens,
Sharon Perl, Liuba Shrira, and Bill Weihl.

References

1. Alsberg, P. A., and Day, J. D. A Principle for Resilient Sharing of
Distributed Resources. Proc. of the 2nd International Conference on
Software Engineering, October, 1976. pp. 627-644. Also available in
unpublished form as CAC Document number 202 Center for
Advanced Computation University of Illinois, Urbana-Champaign,
Illinois 61801 by Alsberg, Benfod, Day, and Grapa.

2. Bartlett, J. F. A Nonstop Kernel. Proc. of the 8th ACM
Symposium on Operating System Principles, SIGOPS Operating
System Review, 15 5, December, 1981. pp. 22-29.

3. Bernstein, P. A., and Goodman, N. The Failure and Recovery
Problem for Replicated Databases. Second ACM ljymposium on the
Principles of Distributed Computing, August, 1983, pp. 114-122.

4. Birman, K. P., Joseph, T. A., Rauchle. T., and Eil Abbadi, A.
“Implementing Fault-tolerant Distributed Objects”. /E/Z Trans. on
Sclffwaft? Engineering 11.6 (June 1985). 502-508.

5. Birman, K. P. and Joseph, T. A. “Reliable Communication in the
Presence of Failures”. ACM Trans. on Computer Systems 5, 1
(Februaty 1987), 47-76.

6. Borg, A., Baumbach, J., and Glazer, S. A Message System
Supporling Fault Tolerance. Proc. of the 9th ACM Symposium on
Operating System Principles, SIGOPS Operating System Review,
17,5, October, 1983, pp. 90-99.

7. Barr, A. J. Transaction Monitoring in Encompass: Reliable
Distributed Transaction Processing. Proc. of the Seventh
International Conference on Very Large Data Bases, September,
1981, pp. 155-165.

8. Barr, A. J. Robustness to Crash in a Distributed Database: A
Non Shared-Memory Multi-Processor Approach. F’roc. of the Tenth
International Conference on Very Large Data Bases, August, 1984,
pp. 445-453.

9. Cooper, E. C. Replicated Distributed Programs. UCBICSD
85/231, University of California, Berkeley, CA, May, 1985.

10. Davies, C. T. “Data Processing Spheres of Control”. IBM
SystemsJournal f7,2 (February78), 179-198.

Il. Eager, D. L.. and Sevcik, K. C. “Achieving Rolsustness in
Distributed Database Systems”. ACM Trans. on Database Systems
8,3 (September 1983), 354-381.

12. El Abbadi. A., Skeen, D., and Cristian, F. An Efficient, Fault-
Tolerant Protocol for Replicated Data Management. Proc. of the 4th
ACM SIGACT/SIGMOD Conference on Principles of Data Base
Systems, 1985.

13. El Abbadi, A., and Toueg, S. Maintaining Availability in
Partitioned Replicated Databases. Proc. of the 5th ACM
SIGACT/SIGMOD Conference on Principles of Data Base Svstems.
1986.

14. Eswaran, K. P., Gray, J. N., Lorfe, Ft. A., and Traiger, 1. L. “The
Notions of Consistency and Predicate Locks in a Database System”,
Comm. of the ACM i9,ll (November 1976), 624-633.

15. Fowler, R. J. Decentralized Object Finding Using Forwarding
Addresses. 85-12-1, University of Washington, Dept. of Computer
Science, Seattle, WA, December, 1985.

16. Gifford, D. K. Weighted Voting for Replicated Data. Proc. of the
7th ACM Symposium on Operating Systems Princilples, SIGOPS
Operating Systems Review, 13,5, December, 1979, pp. 150-162.

17. Gifford, D. K.;and Donahue, J. E. Coordinating Independent
Atomic Actions. Proc. of IEEE CompCon February, 1985, pp.
92-95.

18. Gray, J. N.. Lorie, R. A. Putzolu, G. F., and Traiger, I. L.
Granularity of locks and degrees of consistency in a shared data
base. In Modeling in Data Base Management Sysremss,
G. M. Nijssen, Eds., Elsevier North-Holland, New York, 1976, pp.
365-394.

16

19. Gray, J. N. Notes on Database Operating Systems. In LeCtUfe
Notes in Computer Science 60, Goos and Hartmanis, Eds., Springer-
Verlag Berlin, 1978, pp. 393-481.

20. Henderson, C. Locating Migratory Objects in an Internet. M.I.T.
Laboratory tar Computer Science, Cambridge, MA, 1983.

21. Herfihy. M. P. “A Quorum-Consensus Replication Method for
Abstract Data Types”. ACM Trans, on Compuler Systems 4, 1
(February 1986), 32-53.

22. l-twang, 0. J. Constructing a Highly-Available Location Service
for a Distributed Environment. Technical ReDort MIT/LCS/TR-410.
M.I.T. Laboratory for Computer Science, Cahbridge, MA, January;
1988.

23. Ladin, Ft.. Liskov, B.. and Shrira, L. A Technique for
Constructing Highly-Available Services. M.I.T. Laboratory for
Computer Science, Cambridge, MA, January, 1988. To be published
in Algorifhmca.

24. Lamport. L., Shostak, Ft., and Pease, M. “The Byzantine
Generals Problem”. ACM Trans. on Programming Languages and
Sysrems 4,3 (July 1982), 382-401.

25. Lampson, B. W., and Sturgis, H. E. Crash Recovery in a
Distributed Data Storage System. Xerox Research Center, Palo
Alto, Ca., 1979.

26. Liskov, B., and Scheifler, R. ‘Guardians and Actions: Linguistic
Support for Robust Distributed Programs”. ACM Trans. on
Programming Languages and Systems 5,3 (July 1963), 381404.

27. Liskov, B., Curtis, D., Johnson, P., and Scheifler, R.
Implementation of Argus. Proc. of the Eleventh ACM Symposium on
Operating Systems Principles, SIGOPS Operating Systems Review,
21,5, November, 1987, pp. 111-122.

28. Liskov, B. “Distributed Programming in Argus”. &mm. of fhe
ACM 31,3 (March 1988), 300-312.

29. Liskov, B., and Ladin, R. Highly-Available Distributed Services
and Fault-Tolerant Distributed Garbage CoLtion. Proo. of the Fifth
ACM Symposium on the Principles of Distributed Computing,
August, 1986.

30. Moss, J. E. B. Nested Transactions: An Approach to Reliable
Distributed Computing. Technical Reporl MITILCSTTR-260, M.I.T.
Laboratory for Computer Science, June, 1981.

31. Mullender, S.. and Vitanyi, P. Distributed Match-Making for
Processes in Computer Networks---Preliminary Version. Proc. of the
Fourth Symposium on the Principles of Distributed Computing, ACM,
August, 1985.

32. Oki, B. M. Viewstamped ffeplicafion for Highly-Avai&b/e
Distributed Systems. Ph.D. Th., Massachusetts Institute of
Technology, Laboratory for Computer Science, Cambridge. MA, May
1988. Forthcoming.

33. Papadimitriou, C. H. “Serializability of Concurrent Database
Updates”. J. of the ACM 24,4 (October 1979), 631-653.

34. Schneider, F. 6. Fail-Stop Processors. Digest of Papers from
Spring CompCon ‘83 26th IEEE Computer Society International
Conference, March, 1983, pp. 66-70.

35. Skeen, D., and Wright, D. D. Increasing Availability in
Partitioned Database Systems. TR 83581, Dept. of Computer
Science, Cornell University, March, 1984.

36. Stonebraker, M. “Concurrency Control and Consistency of
Multiple Copies of Data in Distributed INGRES”. /EEE Trans. on
Software Engineering 53 (May 1979), 188-194.

17

