
Propositions as Types ∗

Philip Wadler
University of Edinburgh
wadler@inf.ed.ac.uk

Powerful insights arise from linking two fields of study previ-
ously thought separate. Examples include Descartes’s coordinates,
which links geometry to algebra, Planck’s Quantum Theory, which
links particles to waves, and Shannon’s Information Theory, which
links thermodynamics to communication. Such a synthesis is of-
fered by the principle of Propositions as Types, which links logic to
computation. At first sight it appears to be a simple coincidence—
almost a pun—but it turns out to be remarkably robust, inspiring the
design of automated proof assistants and programming languages,
and continuing to influence the forefronts of computing.

Propositions as Types is a notion with many names and many
origins. It is closely related to the BHK Interpretation, a view of
logic developed by the intuitionists Brouwer, Heyting, and Kol-
mogorov in the 1930s. It is often referred to as the Curry-Howard
Isomorphism, referring to a correspondence observed by Curry in
1934 and refined by Howard in 1969 (though not published until
1980, in a Festschrift dedicated to Curry). Others draw attention
to significant contributions from de Bruijn’s Automath and Martin-
Löf’s Type Theory in the 1970s. Many variant names appear in the
literature, including Formulae as Types, Curry-Howard-de Bruijn
Correspondence, Brouwer’s Dictum, and others.

Propositions as Types is a notion with depth. It describes a
correspondence between a given logic and a given programming
language. At the surface, it says that for each proposition in the
logic there is a corresponding type in the programming language—
and vice versa. Thus we have

propositions as types.

It goes deeper, in that for each proof of a given proposition, there
is a program of the corresponding type—and vice versa. Thus we
also have

proofs as programs.

And it goes deeper still, in that for each way to simplify a proof
there is a corresponding way to evaluate a program—and vice
versa. Thus we further have

simplification of proofs as evaluation of programs.

Hence, we have not merely a shallow bijection between proposi-
tions and types, but a true isomorphism preserving the deep struc-
ture of proofs and programs, simplification and evaluation.

Propositions as Types is a notion with breadth. It applies to a
range of logics including propositional, predicate, second-order,
intuitionistic, classical, modal, and linear. It underpins the foun-
dations of functional programming, explaining features including
functions, records, variants, parametric polymorphism, data ab-
straction, continuations, linear types, and session types. It has in-
spired automated proof assistants and programming languages in-

∗ Version V10, 29 November 2014. Submitted for publication. Apologies
for the use of numerical citations, which are required by the venue; I
normally use author-year. Copyright Philip Wadler c©2014.

cluding Agda, Automath, Coq, Epigram, F#, F?, Haskell, LF, ML,
NuPRL, Scala, Singularity, and Trellys.

Propositions as Types is a notion with mystery. Why should it
be the case that intuitionistic natural deduction, as developed by
Gentzen in the 1930s, and simply-typed lambda calculus, as devel-
oped by Church around the same time for an unrelated purpose,
should be discovered thirty years later to be essentially identical?
And why should it be the case that the same correspondence arises
again and again? The logician Hindley and the computer scientist
Milner independently developed the same type system, now dubbed
Hindley-Milner. The logician Girard and the computer scientist
Reynolds independently developed the same calculus, now dubbed
Girard-Reynolds. Curry-Howard is a double-barrelled name that
ensures the existence of other double-barrelled names. Those of us
that design and use programming languages may often feel they
are arbitrary, but Propositions as Types assures us some aspects of
programming are absolute.

An online appendix contains this paper in full with additional
details and references, plus a historic note provided by William
Howard. (The version you are reading is the online appendix.)

This paper serves as a brief introduction to Propositions as
Types. For those interested to learn more, textbook treatments are
available [23, 59, 56].

1. Church, and the theory of computation
The origins of logic lie with Aristotle and the stoics in classi-
cal Greece, Ockham and the scholastics in the middle ages, and
Leibniz’s vision of a calculus ratiocinator at the dawn of the en-
lightenment. Our interest in the subject lies with formal logic,
which emerged from the contributions of Boole, De Morgan, Frege,
Peirce, Peano, and others in the 19th century.

As the 20th century dawned, Whitehead and Russell’s Principia
Mathematica [66] demonstrated that formal logic could express a
large part of mathematics. Inspired by this vision, Hilbert and his
colleagues at Göttingen became the leading proponents of formal
logic, aiming to put it on a firm foundation.

One goal of Hilbert’s Program was to solve the Entschei-
dungsproblem (decision problem), that is, to develop an “effec-
tively calculable” procedure to determine the truth or falsity of any
statement. The problem presupposes completeness: that for any
statement, either it or its negation possesses a proof. In his ad-
dress to the 1930 Mathematical Congress in Königsberg, Hilbert
affirmed his belief in this principle, concluding “Wir müssen wis-
sen, wir werden wissen” (“We must know, we will know”), words
later engraved on his tombstone. Perhaps a tombstone is an ap-
propriate place for those words, given that any basis for Hilbert’s
optimism had been undermined the day before, when at the self-
same conference Gödel [24] announced his proof that arithmetic is
incomplete.

While the goal was to satisfy Hilbert’s program, no precise def-
inition of “effectively calculable” was required. It would be clear
whether a given procedure was effective or not, like Justice Stew-

art’s characterisation of obscenity, “I know it when I see it”. But
to show the Entscheidungsproblem undecidable required a formal
definition of “effectively calculable”.

One can find allusions to the concept of algorithm in the work
of Euclid and, eponymously, al-Khwarizmi, but the concept was
only formalised in the 20th century, and then simultaneously re-
ceived three independent definitions by logicians. Like buses: you
wait two thousand years for a definition of “effectively calculable”,
and then three come along at once. The three were lambda calcu-
lus, published 1936 by Alonzo Church [9], recursive functions, pro-
posed by Gödel at lectures in Princeton in 1934 and published 1936
by Stephen Kleene [35], and Turing machines, published 1937 by
Alan Turing [60].

Lambda calculus was introduced by Church at Princeton, and
further developed by his students Rosser and Kleene. At this time,
Princeton rivalled Göttingen as a centre for the study of logic. The
Institute for Advanced Study was co-located with the mathematics
department in Fine Hall. In 1933, Einstein and von Neumann joined
the Institute, and Gödel arrived for a visit.

Logicians have long been concerned with the idea of function.
Lambda calculus provides a concise notation for functions, includ-
ing “first-class” functions that may appear as arguments or results
of other functions. It is remarkably compact, containing only three
constructs: variables, function abstraction, and function applica-
tion. Church [7] at first introduced lambda calculus as a way to de-
fine notations for logical formulas (almost like a macro language)
in a new presentation of logic. All forms of bound variable could
be subsumed to lambda binding. (For instance, instead of ∃x.A[x],
Church wrote Σ(λx.A[x]).) However, it was later discovered by
Kleene and Rosser [38] that Church’s system was inconsistent. By
this time, Church and his students had realised that the system was
of independent interest. Church had foreseen this possibility in his
first paper on the subject, where he wrote “There may, indeed, be
other applications of the system than its use as a logic.”

Church discovered a way of encoding numbers as terms of
lambda calculus. The number n is represented by a function that
accepts a function f and a value x, and applies the function to the
value n times. (For instance, three is λf. λx. f(f(f(x))).) With
this representation, it is easy to encode lambda terms that can add or
multiply, but it was not clear how to encode the predecessor func-
tion, which finds the number one less than a given number. One
day in the dentist’s office, Kleene suddenly saw how to define pre-
decessor [34]. When Kleene brought the result to his supervisor,
Church confided that he had nearly convinced himself that repre-
senting predecessor in lambda calculus was impossible. Once this
hurdle was overcome, Church and his students soon became con-
vinced that any “effectively calculable” function of numbers could
be represented by a term in the lambda calculus.

Church proposed λ-definability as the definition of “effec-
tively calculable”, what we now know as Church’s Thesis, and
demonstrated that there was a problem whose solution was not λ-
definable, that of determining whether a given λ-term has a normal
form, what we now know as the Halting Problem [9]. A year later,
he demonstrated there was no λ-definable solution to the Entschei-
dungsproblem [8].

In 1933, Gödel arrived for a visit at Princeton. He was un-
convinced by Church’s contention that every effectively calcula-
ble function was λ-definable. Church responded by offering that
if Gödel would propose a different definition, then Church would
“undertake to prove it was included in λ-definability”. In a series of
lectures at Princeton in 1934, based on a suggestion of Herbrand,
Gödel proposed what came to be known as “general recursive func-
tions” as his candidate for effective calculability. Kleene took notes
and published the definition [35]. Church and his students soon de-
termined that the two definitions are equivalent: every general re-

cursive function is λ-definable, and vice-versa. The proof was out-
lined by Church [8] and published in detail by Kleene [36]. Rather
than mollifying Gödel, this result caused him to doubt that his own
definition was correct! Things stood at an impasse.

Meanwhile, at Cambridge, Alan Turing, a student of Max New-
man, independently formulated his own notion of “effectively cal-
culable” in the form of what we now call a Turing Machine, and
used this to show the Entscheidungsproblem undecidable. Before
the paper was published, Newman was dismayed to discover that
Turing had been scooped by Church. However, Turing’s approach
was sufficiently different from Church’s to merit independent pub-
lication. Turing hastily added an appendix sketching the equiva-
lence of λ-definability to his machines, and his paper [60] appeared
in print a year after Church’s, when Turing was 23. Newman ar-
ranged for Turing to travel to Princeton, where he completed a doc-
torate under Church’s supervision.

Turing’s most significant difference from Church was not in
logic or mathematics but in philosophy. Whereas Church merely
presented the definition of λ-definability and baldly claimed that it
corresponded to effective calculability, Turing undertook an anal-
ysis of the capabilities of a “computer”—at this time, the term re-
ferred to a human performing a computation assisted by paper and
pencil. Turing argued that the number of symbols must be finite (for
if infinite, some symbols would be arbitrarily close to each other
and undistinguishable), that the number of states of mind must be
finite (for the same reason), and that the number of symbols under
consideration at one moment must be bounded (“We cannot tell at a
glance whether 9999999999999999 and 999999999999999 are the
same”). Later, Gandy [18] would point out that Turing’s argument
amounts to a theorem asserting that any computation a human with
paper and pencil can perform can also be performed by a Turing
Machine. It was Turing’s argument that finally convinced Gödel;
since λ-definability, recursive functions, and Turing machines had
been proved equivalent, he now accepted that all three defined “ef-
fectively calculable”.

As mentioned, Church’s first use of lambda calculus was to en-
code formulas of logic, but this had to be abandoned because it led
to inconsistency. The failure arose for a reason related to Russell’s
paradox, namely that the system allowed a predicate to act on itself,
and so Church adapted a solution similar to Russell’s, that of clas-
sifying terms according to types. Church’s simply-typed lambda
calculus ruled out self-application, permitting lambda calculus to
support a consistent logical formulation [10].

Whereas self-application in Russell’s logic leads to paradox,
self-application in Church’s untyped lambda calculus leads to
non-terminating computations. Conversely, Church’s simply-typed
lambda calculus guarantees every term has a normal form, that is,
corresponds to a computation that halts.

The two applications of lambda calculus, to represent computa-
tion and to represent logic, are in a sense mutually exclusive. If a
notion of computation is powerful enough to represent any effec-
tively calculable procedure, then that notion is not powerful enough
to solve its own Halting Problem: there is no effectively calcula-
ble procedure to determine whether a given effectively calculable
procedure terminates. However, the consistency of Church’s logic
based on simply-typed lambda calculus depends on every term hav-
ing a normal form.

Untyped lambda calculus or typed lambda calculus with a con-
struct for general recursion (sometimes called a fixpoint operator)
permits the definition of any effectively computable function, but
have a Halting Problem that is unsolvable. Typed lambda calculi
without a construct for general recursion have a Halting Problem
that is trivial—every program halts!—but cannot define some ef-
fectively computable functions. Both kinds of calculus have their
uses, depending on the intended application.

As well as fundamental contributions to programming lan-
guages, Church also made early contributions to hardware veri-
fication and model checking, as described by Vardi [62].

2. Gentzen, and the theory of proof
A second goal of Hilbert’s program was to establish the consistency
of various logics. If a logic is inconsistent, then it can derive any
formula, rendering it useless.

In 1935, at the age of 25, Gerhard Gentzen [20] introduced not
one but two new formulations of logic, natural deduction and se-
quent calculus, which became established as the two major systems
for formulating a logic, and remain so to this day. He showed how
to normalise proofs to ensure they were not “roundabout”, yielding
a new proof of the consistency of Hilbert’s system. And, to top it
off, to match the use of the symbol ∃ for the existential quantifi-
cation introduced by Peano, Gentzen introduced the symbol ∀ to
denote universal quantification. He wrote implication as A⊃B (if
A holds thenB holds), conjunction asA&B (bothA andB hold),
and disjunction as A ∨B (at least one of A or B holds).

Gentzen’s insight was that proof rules should come in pairs, a
feature not present in earlier systems such as Hilbert’s. In natural
deduction, these are introduction and elimination pairs. An intro-
duction rule specifies under what circumstances one may assert a
formula with a logical connective (for instance, to prove A ⊃ B,
one may assume A and then must prove B), while the correspond-
ing elimination rule shows how to use that logical connective (for
instance, from a proof of A ⊃ B and a proof of A one may de-
duce B, a property dubbed modus ponens in the middle ages). As
Gentzen notes, “The introductions represent, as it were, the ‘defini-
tions’ of the symbols concerned, and the eliminations are no more,
in the final analysis, than the consequences of these definitions.”

A consequence of this insight was that any proof could be
normalised to one that is not “roundabout”, where “no concepts
enter into the proof other than those contained in the final result”.
For example, in a normalised proof of the formula A&B, the only
formulas that may appear are itself and its subformulas, A and B,
and the subformulas of A and B themselves. No other formula,
such as (B & A) ⊃ (A & B) or A ∨ B, may appear; this is
called the Subformula Principle. An immediate consequence was
consistency. It is a contradiction to prove false, written f. The only
way to derive a contradiction is to prove, say, both A ⊃ f and A
for some formula A. But given such a proof, one could normalise
it to one containing only subformulas of its conclusion, f. But f
has no subformulas! It is like the old saw, “What part of no don’t
you understand?” Logicians became interested in normalisation of
proofs because of its role in establishing consistency.

Gentzen preferred the system of Natural Deduction because it
was, in his view, more natural. He introduced Sequent Calculus
mainly as a technical device for proving the Subformula Principle,
though it has independent interest.

Sequent Calculus has two key properties. First, every proof in
Natural Deduction can be converted to a proof in Sequent Calculus,
and conversely, so the two systems are equivalent. Second, unlike
Natural Deduction, every rule save one has the property that its hy-
potheses only involve subformulas of those that appear in its con-
clusion. The one exception, the Cut rule, can always be removed by
a process called Cut Elimination. Hence every proof had an equiv-
alent normal form satisfying the Subformula Principle. Gentzen’s
main interest in Sequent Calculus was to prove the Subformula
Principle, although Sequent Calculus has features of independent
interest, such as providing a more symmetric presentation of clas-
sical logic, and today researchers often use formulations closer to
Sequent Calculus than to Natural Deduction.

It is an irony that Gentzen was required to introduce Sequent
Calculus in order to prove the Subformula Principle for Natural

Deduction. He needed a roundabout proof to show the absence of
roundabout proofs! Later, in 1965, Prawitz showed how to prove
the Subformula Principle directly, by introducing a way to simplify
Natural Deduction proofs; and this set the ground for Howard’s
work described in the next section.

3. Propositions as Types
In 1934, Curry observed a curious fact, relating a theory of func-
tions to a theory of implication [13]. Every type of a function
(A → B) could be read as a proposition (A ⊃ B), and under this
reading the type of any given function would always correspond to
a provable proposition. Conversely, for every provable proposition
there was a function with the corresponding type. Subsequently,
Curry and Feys [14] extended the correspondence from not merely
types and propositions to also include term and proofs, and to hint
at the relation between evaluation of terms and simplification of
proofs.

In 1969, Howard circulated a xeroxed manuscript [32]. It was
not published until 1980, where it appeared in a Festschrift dedi-
cated to Curry. Motivated by Curry’s observation, Howard pointed
out that there is a similar correspondence between natural deduc-
tion, on the one hand, and simply-typed lambda calculus, on the
other, and he made explicit the third and deepest level of the cor-
respondence as described in the introduction, that simplification of
proofs corresponds to evaluation of programs. Howard showed the
correspondence extends to the other logical connectives, conjunc-
tion and disjunction, by extending his lambda calculus with con-
structs that represent pairs and disjoint sums. Just as proof rules
come in introduction and elimination pairs, so do typing rules: in-
troduction rules correspond to ways to define or construct a value
of the given type, and elimination rules correspond to ways to use
or deconstruct values of the given type.

We can describe Howard’s observation as follows:

• Conjunction A & B corresponds to Cartesian product A × B,
that is, a record with two fields, also known as a pair. A proof
of the propositionA&B consists of a proof ofA and a proof of
B. Similarly, a value of type A× B consists of a value of type
A and a value of type B.

• Disjunction A ∨ B corresponds to a disjoint sum A + B, that
is, a variant with two alternatives. A proof of the proposition
A∨B consists of either a proof of A or a proof of B, including
an indication of which of the two has been proved. Similarly, a
value of type A + B consists of either a value of type A or a
value of type B, including an indication of whether this is a left
or right summand.

• Implication A ⊃ B corresponds to function space A → B. A
proof of the proposition A ⊃ B consists of a procedure that
given a proof of A yields a proof of B. Similarly, a value of
type A→ B consists of a function that when applied to a value
of type A returns a value of type B.

This reading of proofs goes back to the intuitionists, and is often
called the BHK interpretation, named for Brouwer, Heyting, and
Kolmogorov. Brouwer founded intuitionism [28], and Heyting [29]
and Kolmogorov [39] formalised intuitionistic logic, and developed
the interpretation above, in the 1920s and 1930s. Realisability,
introduced by Kleene [37] in the 1940s, is based on a similar
interpretation.

Given the intuitionistic reading of proofs, it hardly seems sur-
prising that intuitionistic natural deduction and lambda calculus
should correspond so closely. But it wasn’t until Howard that the
correspondence was laid out clearly, in a way that allowed working
logicians and computer scientists to put it to use.

Howard’s paper divides into two halves. The first half explains a
correspondence between two well-understood concepts, the propo-
sitional connectives &,∨,⊃ on the one hand and the computational
types ×, +, → on the other hand. The second half extends this
analogy, and for well-understood concepts from logic proposes new
concepts for types that correspond to them. In particular, Howard
proposes that the predicate quantifiers ∀ and ∃ corresponds to new
types that we now call dependent types.

With the introduction of dependent types, every proof in predi-
cate logic can be represented by a term of a suitable typed lambda
calculus. Mathematicians and computer scientists proposed numer-
ous systems based on this concept, including de Bruijn’s Automath
[17], Martin-Löf’s type theory [43], Bates and Constable’s PRL
and nuPRL [3], and Coquand and Huet’s Calculus of Constructions
[11], which developed into the Coq proof assistant.

Applications include CompCert, a certified compiler for the C
programming language verified in Coq [41]; a computer-checked
proof of the four-colour theorem also verified in Coq [25]; parts of
the Ensemble distributed system verified in NuPRL [27, 40]; and
twenty thousand lines of browser plug-ins verified in F? [57].

de Bruijn’s work was independent of Howard’s, but Howard
directly inspired Martin Löf and all the other work listed above.
Howard was (justly!) proud of his paper, citing it as one of the two
great achievements of his career [55].

4. Intuitionistic logic
In Gilbert and Sullivan’s The Gondoliers, Casilda is told that as an
infant she was married to the heir of the King of Batavia, but that
due to a mix-up no one knows which of two individuals, Marco or
Giuseppe, is the heir. Alarmed, she wails “Then do you mean to say
that I am married to one of two gondoliers, but it is impossible to
say which?” To which the response is “Without any doubt of any
kind whatever.”

Logic comes in many varieties, and one distinction is between
classical and intuitionistic. Intuitionists, concerned by cavalier as-
sumptions made by some logicians about the nature of infinity, in-
sist upon a constructionist notion of truth. In particular, they insist
that a proof of A∨B must show which of A or B holds, and hence
they would reject the claim that Casilda is married to Marco or
Giuseppe until one of the two was identified as her husband. Per-
haps Gilbert and Sullivan anticipated intuitionism, for their story’s
outcome is that the heir turns out to be a third individual, Luiz, with
whom Casilda is, conveniently, already in love.

Intuitionists also reject the law of the excluded middle, which
asserts A ∨ ¬A for every A, since the law gives no clue as to
which of A or ¬A holds. Heyting formalised a variant of Hilbert’s
classical logic that captures the intuitionistic notion of provability.
In particular, the law of the excluded middle is provable in Hilbert’s
logic, but not in Heyting’s. Further, if the law of the excluded
middle is added as an axiom to Heyting’s logic, then it becomes
equivalent to Hilbert’s. Kolmogorov showed the two logics were
closely related: he gave a double-negation translation, such that a
formula is provable in classical logic if and only if its translation is
provable in intuitionistic logic.

Propositions as Types was first formulated for intuitionistic
logic. It is a perfect fit, because in the intuitionist interpretation
the formula A ∨ B is provable exactly when one exhibits either a
proof ofA or a proof ofB, so the type corresponding to disjunction
is a disjoint sum.

5. Other logics, other computation
The principle of Propositions as Types would be remarkable even
if it applied only to one variant of logic and one variant of compu-

tation. How much more remarkable, then, that it applies to a wide
variety of logics and of computation.

Quantification over propositional variables in second-order
logic corresponds to type abstraction in second-order lambda calcu-
lus. For this reason, the second-order lambda calculus was discov-
ered twice, once by the logician Jean-Yves Girard [21] and once
by the computer scientist John Reynolds [53]. And for the same
reason, a similar system that supports principle type inference was
also discovered twice, once by the logician Roger Hindley [30] and
once by the computer scientist Robin Milner [45]. Building on the
correspondence, John Mitchell and Gordon Plotkin [46] observed
that existential quantification in second-order logic corresponds
precisely to data abstraction, an idea that now underpins much re-
search in the semantics of programming languages. The design of
generic types in Java and C# draws directly upon Girard-Reynolds,
while the type systems of functional languages including ML and
Haskell are based upon Hindley-Milner. Philosophers might argue
as to whether mathematical systems are ‘discovered’ or ‘devised’,
but the same system arising in two different contexts argues that
here the correct word is ‘discovered’.

Two major variants of logic are intuitionistic and classical.
Howard’s original paper observed a correspondence with intu-
itionistic logic. Not until two decades later was the correspon-
dence extended to also apply to classical logic, when Tim Griffin
[26] observed that Peirce’s Law in classical logic provides a type
for the call/cc operator of Scheme. Chet Murthy [49] went on to
note that Kolmogorov and Gödel’s double-negation translation,
widely used to relate intuitionistic and classical logic, corresponds
to the continuation-passing style transformation widely used both
by semanticists and implementers of lambda calculus. Parigot [50],
Curien and Herbelin [12], and Wadler [64] introduced various com-
putational calculi motivated by correspondences to classical logic.

Modal logic permits propositions to be labelled as ‘necessarily
true’ or ‘possibly true’. Clarence Lewis introduced modal logic
in 1910, and his 1938 textbook [42] describes five variants, S1–
S5. Some claim that each of these variants has an interpretation
as a form of computation via Propositions as Types, and a down
payment on this claim is given by an interpretation of S4 as staged
computation due to Davies and Pfenning [16], and of S5 as spatially
distributed computation due to Murphy et al [48].

Eugenio Moggi [47] introduced monads as a technique to ex-
plain the semantics of important features of programming lan-
guages such as state, exceptions, and input-output. Monads became
widely adopted in the functional language Haskell, and later mi-
grated into other languages, including Clojure, Scala, F#, and C#.
Benton, Bierman, and de Paiva [4] observed that monads corre-
spond to yet another modal logic, differing from all of S1–S5.

Temporal logic admits distinction between modalities such as
‘holds now’, ‘will hold eventually’, and ‘will hold in the next time
step’. Temporal logic was first formalised by Arthur Prior in his
1957 text [52], and came to play a major role in the specification
and verification of computing systems, beginning with the work of
Amir Pnueli [51]. Interpretations of temporal logics via Proposi-
tions as Types include an application to partial evaluation due to
Davies [15], and an application to functional reactive programming
due to Jeffery [33].

In classical, intuitionistic, and modal logic, any hypothesis can
be used an arbitrary number of times—zero, once, or many. Linear
logic, introduced in 1987 by Girard [22], requires that each hy-
pothesis is used exactly once. Linear logic is ‘resource conscious’
in that facts may be used up and superseded by other facts, suiting
it for reasoning about a world where situations change. From its
inception, linear logic was suspected to apply to problems of im-
portance to computer scientists, and its first publication was not in
Annals of Mathematics but in Theoretical Computer Science. Com-

putational aspects of linear logic are discussed by Abramsky [1]
and Wadler [63], among many others, and applications to quantum
computing are surveyed by Gay [19]. Most recently, Session Types,
a way of describing communication protocols introduced by Honda
[31], have been related to intuitionistic linear logic by Caires and
Pfenning [5], and to classical linear logic by Wadler [65].

One key to the correspondence between logic and computation
is the study of category theory. Both simply-typed lambda calculus
and intuitionistic natural deduction correspond to the notion of a
cartesian closed category [54]. Many extensions of this idea arise,
including an exciting strand of work linking categories, computa-
tion, linear logic, and quantum physics [2].

Vladimir Voevodsky, a winner of the Fields Medal, excited
much interest with his recent work on Homotopy Type Theory
(HoTT) and Univalent Foundations, which links topology to Propo-
sitions as Types. A Special Year devoted to the subject and hosted
by the Institute for Advanced Studies at Princeton, Church’s home,
led to the publication last year of The HoTT Book, which indeed
was hotly awaited, and authored by over 50 mathematicians and
computer scientists ranging from Aczel to Zeilenberg.

Propositions as Types remains a topic of active research.

6. Natural deduction
We now turn to a more formal development, presenting a fragment
of natural deduction and a fragment of typed lambda calculus in a
style that makes clear the connection between the two.

We begin with the details of natural deduction as defined by
Gentzen [20]. The proof rules are shown in Figure 1. To simplify
our discussion, we consider just two of the connectives of natural
deduction. We writeA andB as placeholders standing for arbitrary
formulas. Conjunction is written A& B and implication is written
A⊃B.

We represent proofs by trees, where each node of the tree is
an instance of a proof rule. Each proof rule consists of zero or
more formulas written above a line, called the premises, and a
single formula written below the line, called the conclusion. The
interpretation of a rule is that when all the premises hold, then the
conclusion follows.

The proof rules come in pairs, with rules to introduce and to
eliminate each connective, labelled -I and -E respectively. As we
read the rules from top to bottom, introduction and elimination
rules do what they say on the tin: the first introduces a formula
for the connective, which appears in the conclusion but not in the
premises; the second eliminates a formula for the connective, which
appears in a premise but not in the conclusion. An introduction rule
describes under what conditions we say the connective holds—
how to define the connective. An elimination rule describes what
we may conclude when the connective holds—how to use the
connective.

The introduction rule for conjunction, &-I, states that if formula
A holds and formula B holds, then the formula A & B must hold
as well. There are two elimination rules for conjunction. The first,
&-E1, states that if the formula A & B holds, then the formula A
must hold as well. The second, &-E2, concludes B rather than A.

The introduction rule for implication, ⊃-I, states that if from
the assumption that formulaA holds we may derive the formulaB,
then we may conclude that the formula A⊃B holds and discharge
the assumption. To indicate that A is used as an assumption zero,
once, or many times in the proof of B, we write A in brackets and
tether it to B via ellipses. A proof is complete only when every
assumption in it has been discharged by a corresponding use of
⊃-I, which is indicated by writing the same name (here x) as a
superscript on each instance of the discharged assumption and on
the discharging rule. The elimination rule for implication, ⊃-E,
states that if formula A ⊃ B holds and if formula A holds, then

A B
&-I

A&B

A&B
&-E1

A

A&B
&-E2

B

[A]x

···
B

⊃-Ix
A⊃B

A⊃B A
⊃-E

B

Figure 1. Gerhard Gentzen (1935) — Natural Deduction

[B &A]z

&-E2

A

[B &A]z

&-E1

B
&-I

A&B
⊃-Iz

(B &A)⊃ (A&B)

Figure 2. A proof

···
A

···
B

&-I
A&B

&-E1 =⇒

···
A

A

[A]x

···
B

⊃-Ix
A⊃B

···
A
⊃-E =⇒

···
A···
B

B

Figure 3. Simplifying proofs

[B &A]z

&-E2

A

[B &A]z

&-E1

B
&-I

A&B
⊃-Iz

(B &A)⊃ (A&B)

B A
&-I

B &A
⊃-E

A&Bw­
B A

&-I
B &A

&-E2

A

B A
&-I

B &A
&-E1

B
&-I

A&Bw­
A B

&-I
A&B

Figure 4. Simplifying a proof

we may conclude formula B holds as well; as mentioned earlier,
this rule also goes by the name modus ponens.

Critical readers will observe that we use similar language to de-
scribe rules (‘when-then’) and formulas (‘implies’). The same idea
applies at two levels, the meta level (rules) and the object level (for-
mulas), and in two notations, using a line with premises above and
conclusion below for implication at the meta level, and the symbol
⊃ with premise to the left and conclusion to the right at the ob-
ject level. It is almost as if to understand implication one must first
understand implication! This Zeno’s paradox of logic was wryly
observed by Lewis Carroll [6], and the phenomenon was deeply in-
vestigated by Martin Löf [44]. We need not let it disturb us; every-
one possesses a good informal understanding of implication, which
may act as a foundation for its formal description.

A proof of the formula

(B &A)⊃ (A&B).

is shown in Figure 2. In other words, ifB andA hold thenA andB
hold. This may seem so obvious as to be hardly deserving of proof!
However, the formulasB⊃A andA⊃B have meanings that differ,
and we need some formal way to conclude that the formulasB&A
andA&B have meanings that are the same. This is what our proof
shows, and it is reassuring that it can be constructed from the rules
we posit.

The proof reads as follows. From B & A we conclude A, by
&-E2, and from B&A we also conclude B, by &-E1. From A and
B we concludeA&B, by &-I. That is, from the assumptionB&A
(used twice) we conclude A & B. We discharge the assumption
and conclude (B & A) ⊃ (A & B) by ⊃-I, linking the discharged
assumptions to the discharging rule by writing z as a superscript on
each.

Some proofs are unnecessarily roundabout. Rules for simpli-
fying proofs appear in Figure 3, and an example of such a proof
appears in Figure 4. Let’s focus on the example first.

The top of Figure 4 shows a larger proof built from the proof
in Figure 2. The larger proof assumes as premises two formulas, B
and A, and concludes with the formula A & B. However, rather
than concluding it directly we derive the result in a roundabout
way, in order to illustrate an instance of ⊃-E, modus ponens. The
proof reads as follows. On the left is the proof given previously,
concluding in (B&A)⊃ (A&B). On the right, from B and A we
conclude B &A by &-I. Combining these yields A&B by ⊃-E.

We may simplify the proof by applying the rewrite rules of
Figure 3. These rules specify how to simplify a proof when an
introduction rule is immediately followed by the corresponding
elimination rule. Each rule shows two proofs connected by an
arrow, indicating that the redex (the proof on the left) may be
rewritten, or simplified, to yield the reduct (the proof on the right).
Rewrites always take a valid proof to another valid proof.

For &, the redex consists of a proof of A and a proof of B,
which combine to yield A & B by &-I, which in turn yields A by
&-E1. The reduct consists simply of the proof of A, discarding the
unneeded proof ofB. There is a similar rule, not shown, to simplify
an occurrence of &-I followed by &-E2.

For ⊃, the redex consists of a proof of B from assumption A,
which yields A ⊃ B by ⊃-I, and a proof of A, which combine to
yield B by ⊃-E. The reduct consists of the same proof of B, but
now with every occurrence of the assumption A replaced by the
given proof of A. The assumption A may be used zero, once, or
many times in the proof of B in the redex, so the proof of A may
be copied zero, once, or many times in the proof ofB in the reduct.
For this reason, the reduct may be larger than the redex, but it will
be simpler in the sense that it has removed an unnecessary detour
via the subproof of A⊃B.

We can think of the assumption of A in ⊃-I as a debt which
is discharged by the proof of A provided in ⊃-E. The proof in the
redex accumulates debt and pays it off later; while the proof in the
reduct pays directly each time the assumption is used. Proof debt
differs from monetary debt in that there is no interest, and the same
proof may be duplicated freely as many times as needed to pay off
an assumption, the very property which money, by being hard to
counterfeit, is designed to avoid!

Figure 4 demonstrates use of these rules to simplify a proof.
The first proof contains an instance of ⊃-I followed by ⊃-E, and is
simplified by replacing each of the two assumptions of B & A on
the left by a copy of the proof of B & A on the right. The result is
the second proof, which as a result of the replacement now contains
an instance of &-I followed by &-E2, and another instance of &-I
followed by &-E1. Simplifying each of these yields the third proof,
which derives A& B directly from the assumptions A and B, and
can be simplified no further.

It is not hard to see that proofs in normal form satisfy the Sub-
formula Principle: every formula of such a proof must be a sub-
formula of one of its undischarged assumptions or of its conclu-
sion. The proof in Figure 2 and the final proof of Figure 4 both sat-
isfy this property, while the first proof of Figure 4 does not, since
(B &A)⊃ (A&B) is not a subformula of A&B.

7. Lambda calculus
We now turn our attention to the simply-typed lambda calculus of
Church [10]. The type rules are shown in Figure 5. To simplify
our discussion, we take both products and functions as primitive
types; Church’s original calculus contained only function types,
with products as a derived construction. We now write A and B
as placeholders for arbitrary types, and L, M , N as placeholder
for arbitrary terms. Product types are written A × B and function
types are written A → B. Now instead of formulas, our premises
and conclusions are judgments of the form

M : A

indicating that term M has type A.
Like proofs, we represent type derivations by trees, where each

node of the tree is an instance of a type rule. Each type rule consists
of zero or more judgments written above a line, called the premises,
and a single judgment written below the line, called the conclusion.
The interpretation of a rule is that when all the premises hold, then
the conclusion follows.

Like proof rules, type rules come in pairs. An introduction rule
describes how to define or construct a term of the given type, while
an elimination rule describes how to use or deconstruct a term of
the given type.

The introduction rule for products, ×-I, states that if term M
has type A and term N has type B, then we may form the pair
term 〈M,N〉 of product type A × B. There are two elimination
rules for products. The first, ×-E1, states that if term L has type
A × B, then we may form the term π1 L of type A, which selects
the first component of the pair. The second, ×-E2 is similar, save
that it forms the term π2 L of type B.

The introduction rule for functions, →-I, states that if given a
variable x of type A we have formed a term N of type B, then we
may form the lambda term λx.N of function type A → B. The
variable x appears free inN and bound in λx.N . Undischarged as-
sumptions correspond to free variables, while discharged assump-
tions correspond to bound variables. To indicate that the variable
x may appear zero, once, or many times in the term N , we write
x : A in brackets and tether it to N : B via ellipses. A term is
closed only when every variable in it is bound by a corresponding
λ term. The elimination rule for functions,→-E, states that given

M : A N : B
×-I

〈M,N〉 : A×B

L : A×B
×-E1

π1 L : A

L : A×B
×-E2

π2 L : B

[x : A]x

···
N : B

→-Ix
λx.N : A→ B

L : A→ B M : A
→-E

LM : B

Figure 5. Alonzo Church (1935) — Lambda Calculus

[z : B ×A]z

×-E2

π2 z : A

[z : B ×A]z

×-E1

π1 z : B
×-I

〈π2 z, π1 z〉 : A×B
→-Iz

λz. 〈π2 z, π1 z〉 : (B ×A)→ (A×B)

Figure 6. A program

···
M : A

···
N : B

×-I
〈M,N〉 : A×B

×-E1 =⇒

···
M : A

π1 〈M,N〉 : A

[x : A]x

···
N : B

→-Ix
λx.N : A→ B

···
M : A

→-E =⇒

···
M : A···

N [M/x] : B
(λx.N)M : B

Figure 7. Evaluating programs

[z : B ×A]z

×-E2

π2 z : A

[z : B ×A]z

×-E1

π1 z : B
×-I

〈π2 z, π1 z〉 : A×B
→-Iz

λz. 〈π2 z, π1 z〉 : (B ×A)→ (A×B)

y : B x : A
×-I

〈y, x〉 : B ×A
→-E

(λz. 〈π2 z, π1 z〉) 〈y, x〉 : A×Bw­
y : B x : A

×-I
〈y, x〉 : B ×A

×-E2

π2 〈y, x〉 : A

y : B x : A
×-I

〈y, x〉 : B ×A
×-E1

π1 〈y, x〉 : B
×-I

〈π2 〈y, x〉, π1 〈y, x〉〉 : A×Bw­
x : A y : B

×-I
〈x, y〉 : A×B

Figure 8. Evaluating a program

term L of type A → B and term M of type A we may form the
application term LM of type B.

For natural deduction, we noted that there might be confusion
between implication at the meta level and the object level. For
lambda calculus the distinction is clearer, as we have implication
at the meta level (if terms above the line are well typed so are terms
below) but functions at the object level (a function has typeA→ B
because if it is passed a value of type A then it returns a value
of type B). What previously had been discharge of assumptions
(perhaps a slightly diffuse concept) becomes binding of variables
(a concept understood by most computer scientists).

The reader will by now have observed a striking similarity
between Gentzen’s rules from the preceding section and Church’s
rules from this section: ignoring the terms in Church’s rules then
they are identical, if one replaces & by × and ⊃ by →. The
colouring of the rules is chosen to highlight the similarity.

A program of type

(B ×A)→ (A×B)

is shown in Figure 6. Whereas the difference between B & A and
A&B appears a mere formality, the difference betweenB×A and
A × B is easier to appreciate: converting the latter to the former
requires swapping the elements of the pair, which is precisely the
task performed by the program corresponding to our former proof.

The program reads as follows. From variable z of type B × A
we form term π2 z of type A by ×-E2 and also term π1 z of type
B by ×-E1. From these two we form the pair 〈π2 z, π1 z〉 of type
A × B by ×-I. Finally, we bind the free variable z to form the
lambda term λz. 〈π2 z, π1 z〉 of type (B × A) → (A × B) by
→-I, connecting the bound typings to the binding rule by writing z
as a superscript on each. The function accepts a pair and swaps its
elements, exactly as described by its type.

A program may be evaluated by rewriting. Rules for evaluating
programs appear in Figure 7, and an example appears in Figure 8.
Let’s focus on the example first.

The top of Figure 8 shows a larger program built from the
program in Figure 6. The larger program has two free variables,
y of type B and x of type A, and constructs a value of type
A × B. However, rather than constructing it directly we reach
the result in a roundabout way, in order to illustrate an instance
of →-E, function application. The program reads as follows. On
the left is the program given previously, forming a function of type
(B × A) → (A × B). On the right, from B and A we form the
pair 〈y, x〉 of type B×A by×-I. Applying the function to the pair
forms a term of type A×B by→-E.

We may evaluate this program by applying the rewrite rules
of Figure 7. These rules specify how to rewrite a term when an
introduction rule is immediately followed by the corresponding
elimination rule. Each rule shows two derivations connected by
an arrow, indicating that the redex (the term on the left) may be
rewritten, or evaluated, to yield the reduct (the term on the right).
Rewrites always take a valid type derivation to another valid type
derivation, ensuring that rewrites preserve types, a property known
as subject reduction or type soundness.

For ×, the redex consists of term M of type A and term N
of type B, which combine to yield term 〈M,N〉 of type A × B
by ×-I, which in turn yields term π1 〈M,N〉 of type A by ×-E1.
The reduct consists simply of term M of type A, discarding the
unneeded term N of type B. There is a similar rule, not shown, to
rewrite an occurrence of ×-I followed by ×-E2.

For→, the redex consists of a derivation of term N of type B
from variable x of type A, which yields the lambda term λx.N of
type A→ B by→-I, and a derivation of term M of type A, which
combine to yield the application (λx.N)M of type B by →-E.
The reduct consists of the term N [M/x] that replaces each free

occurrence of the variable x in term N by term M . Further, if in
the derivation thatN has typeB we replace each assumption that x
has typeA by the derivation thatM has typeA, we get a derivation
showing thatN [M/x] has typeB. Since the variable xmay appear
zero, once, or many times in the termN , the termM may be copied
zero, once, or many times in the reduct N [M/x]. For this reason,
the reduct may be larger than the redex, but it will be simpler in
the sense that is has removed a subterm of type A → B. Thus,
discharge of assumptions corresponds to applying a function to its
argument.

Figure 8 demonstrates use of these rules to evaluate a program.
The first program contains an instance of →-I followed by →-E,
and is rewritten by replacing each of the two occurrences of z of
type B ×A on the left by a copy of the term 〈y, x〉 of type B ×A
on the right. The result is the second program, which as a result of
the replacement now contains an instance of×-I followed by×-E2,
and another instance of ×-I followed by ×-E1. Rewriting each of
these yields the third program, which derives the term 〈x, y〉 of type
A×B, and can be evaluated no further.

Hence, simplification of proofs corresponds exactly to evalua-
tion of programs, in this instance demonstrating that applying the
function to the pair indeed swaps its elements.

8. Conclusion
Proposition as Types informs our view of the universality of certain
programming languages.

The Pioneer spaceship contains a plaque designed to communi-
cate with aliens, if any should ever intercept it (see Figure 9). They
may find some parts of it easier to interpret than others. A radial di-
agram shows the distance of fourteen pulsars and the centre of the
galaxy from Sol. Aliens are likely to determine that the length of
each line is proportional to the distances to each body. Another dia-
gram shows humans in front of a silhouette of Pioneer. If Star Trek
gives an accurate conception of alien species, they may respond
“They look just like us, except they lack pubic hair.” However, if
the aliens’s perceptual system differs greatly from our own, they
may be unable to decipher these squiggles.

What would happen if we tried to communicate with aliens by
transmitting a computer program? In the movie Independence Day,
the heroes destroy the invading alien mother ship by infecting it
with a computer virus. Close inspection of the transmitted program
shows it contains curly braces—it is written in a dialect of C! It
is unlikely that alien species would program in C, and unclear that
aliens could decipher a program written in C if presented with one.

What about lambda calculus? Propositions as Types tell us that
lambda calculus is isomorphic to natural deduction. It seems diffi-
cult to conceive of alien beings that do not know the fundamentals
of logic, and we might expect the problem of deciphering a pro-
gram written in lambda calculus to be closer to the problem of un-
derstanding the radial diagram of pulsars than that of understanding
the image of a man and a woman on the Pioneer plaque.

We might be tempted to conclude that lambda calculus is uni-
versal, but first let’s ponder the suitability of the word ‘universal’.
These days the multiple worlds interpretation of quantum physics
is widely accepted. Scientists imagine that in different universes
one might encounter different fundamental constants, such as the
strength of gravity or the Planck constant. But easy as it may be to
imagine a universe where gravity differs, it is difficult to conceive
of a universe where fundamental rules of logic fail to apply. Natural
deduction, and hence lambda calculus, should not only be known
by aliens throughout our universe, but also throughout others. So
we may conclude it would be a mistake to characterise lambda cal-
culus as a universal language, because calling it universal would be
too limiting.

Figure 9. Plaque on Pioneer Spaceship

Acknowledgements. Thank you to Gershom Bazerman, Pete
Bevin, Guy Blelloch, Rintcius Blok, Ezra Cooper, Ben Darwin,
Benjamin Denckla, Peter Dybjer, Johannes Emerich, Martin Er-
wig, Yitz Gale, Mikhail Glushenkov, Gabor Greif, Vinod Grover,
Sylvain Henry, Philip Hölzenspies, William Howard, John Hughes,
Colin Lupton, Daniel Marsden, Craig McLaughlin, Tom Moertel,
Simon Peyton-Jones, Benjamin Pierce, Lee Pike, Andrés Sicard-
Ramı́rez, Scott Rostrup, Dann Toliver, Moshe Vardi, Jeremy Yal-
lop, Richard Zach, Leo Zovik, and the referees. This work was
funded under EPSRC EP/K034413/1.

Philip Wadler (wadler@inf.ed.ac.uk, @PhilipWadler) is Profes-
sor of Theoretical Computer Science in the Laboratory for Foun-
dations of Computer Science in the School of Informatics at the
University of Edinburgh, Scotland.

A. Howard on Curry-Howard
While writing this paper, I realised I was unclear on parts of the his-
tory. Below is a letter I wrote to William Howard and his response
(with corrections he provided after I asked to publish it). I believe it
is a useful historical document, and am grateful to Howard for his
permission to publish. The correspondence refers to Shell-Gellasch
[55], and references to Figures 5 and 6 in the following are to the
figures in this paper.

Here is my original request.

Subject: The Formulae-as-Types Notion of Construction
Dear Prof Howard,
My research has been greatly influenced by your own, partic-

ularly the paper cited in my subject. I am now writing a paper on
the field of work that grew out of that paper, which was solicited
for publications by the Communications of the ACM (the flagship
of the professional organisation for computer scientists). A draft of
the paper is attached.

I would like to portray the history of the subject accurately. I
have read your interview with Shell-Gallasch, but a few questions
remain, which I hope you will be kind enough to answer.

Your paper breaks into two halves. The first describes the corre-
spondence between propositional logic and simple types, the sec-
ond introduces the correspondence between predicate logic and de-
pendent types. Did you consider the first half to be new material or
merely a reprise of what was known? To what extent do you con-
sider your work draws on or was anticipated by the work of Heyt-
ing and Kolmogorov, and Kleene’s realisability? To what extent did

your work influence the subsequent work of de Bruijn and Martin
Lof? What was the history of your mimeograph on the subject, and
why was it not published until the Curry Festschrift in 1980?

Many thanks for your consideration, not to mention for found-
ing my field! Yours, —P

And here is his response:

Dear Prof. Wadler,
As mentioned in the interview with Shell-Gellasch, my work on

propositions as types (p-a-t) originated from my correspondence
with Kreisel, who was very interested in getting a mathematical
notion (i.e., in ordinary mathematics) for Brouwer’s idea of a con-
struction (as explained by Heyting). I was not familiar with the
work of Brouwer or Heyting, let alone Kolmogorov, but, from what
Kreisel had to say, the idea was clear enough: a construction of
α→ β was to be a construction F which, acting on a construction
A of α, gives a construction B of β. So we have constructions act-
ing on constructions, rather like functionals acting on functionals.
So, as an approximation,

(1) let’s take “construction” to mean “functional”.
But what kind of functionals? In constructive mathematics, a

functional is not given as a set of ordered pairs. Rather,
(2) to give a functional is to give not only the action or process

it performs but also to give its type (domain and counterdomain).
Clearly, the type structure is going to be complicated. I set my-

self the project of finding a suitable notation for the type symbols.
So one needs a suitable type symbol for the functional F, above.
Well, just take it to be alpha itself (at this point, I was thinking of
propositional logic). Suddenly I remembered something that Curry
had talked about in the logic seminar during my time at Penn State.
If we consider typed combinators, and look at the structure of the
type symbols of the basic combinators (e.g., S, K, I), we see that
each of the type symbols corresponds to (is isomorphic to) one of
the axioms of pure implicative logic. Well! This was just what I
needed!

How do we formulate the following notion?
(3) F is a construction of phi.
Consider the case in which φ has the form α⊃β The temptation

is to define “F is a construction of α ⊃ β to mean “for all A: if
A is a construction of α, then FA is a construction of β”. Well,
that is circular, because we have used “if · · · then · · ·” to define
implication. This is what you call “Zenos paradox of logic”. I
avoided this circularity by taking (3) to mean:

(4) F is assigned the type φ according to the way F is built up;
i.e., the way in which F is constructed.

Thus F is a construction of φ by construction. Your Figure 6
illustrates precisely what I meant by this. (I did not have that
beautiful notation at the time but it conveys what I meant.)

To summarize: My basic insight consisted simultaneously of
the thoughts (2) and (4) plus the thought that Curry’s observation
provided the means to implement (2), (4). Let me say this in a
different way. The thought (2) was not new. I had had the thought
(2) for many years, ever since I had begun to study primitive
recursive functionals of finite type. What was new was the thought
(4) plus the recognition that Curry’s idea provided the way to
implement (4). I got this basic insight in the summer of 1966. Once
I saw how to do it with combinators, I wondered what it would
look like from the vewpoint of the lambda calculus, and saw, to
my delight, that this corresponded to the intuitionistic version of
Gentzen’s sequent calculus.

Incidentally, Curry’s observation concerning the types of the
basic combinators is presented in his book with Feys (Curry-Feys),
but I was unaware of this, though I had owned a copy for several
years (since 1959, when I was hired at Penn State). After working
out the details of p-a-t over a period of several months, I began

to think about writing it up, so I thought I had better see if it
is in the book. Well, it is easy enough to find if you know what
you are looking for. On looking at it, I got a shock: not only had
they extended the ideas to Gentzen’s sequent calculus, but they
had the connection between elimination of cuts from a derivation
and normalization of the corresponding lambda term. But, on a
closer look, I concluded that they had a connection but not the
connection. It turns out that I was not quite right about that either.
See my remark about their Theorem 5, below. Not that it would
have mattered much for anything I might have published: even if
they had the connection between Gentzen’s sequent calculus and
the lambda calculus, I had a far-reaching generalization (i.e., to
Heyting arithmetic).

The above is more detailed than would be required to answer
your questions, but I needed to write this out to clarify my thoughts
about the matter; so I may as well include the above, since I think it
will interest you. It answers one of your questions, “To what extent
do you consider your work draws on or was anticipated by the work
of Heyting and Kolmogorov, and Kleene’s realisability?” Namely,
my work draws on the work of Heyting and Brouwer, via Kreisel’s
explanation of that work to me. None of it was anticipated by the
work of Heyting, Kolmogorov or Kleene: they were not thinking
of functionals of finite type. Though I was familiar with Kleene’s
recursive realizability, I was not thinking about it at the time.
Admittedly, it touches on ideas about Brouwer’s constructions but
is far from capturing the notion of a construction (actually, Kleene
once made remarks to this effect, I forget where). Because of the
relation between constructions and Kleene’s recursive realizability,
there could have been some unconscious influence; but, in any case,
not a significant influence.

“Did your work influence the subsequent work of de Bruijn and
Martin Lof?” As far as I know, my work had no influence on the
work of de Bruijn. His work appears to be completely independent
of mine. I do recall that he once sent me a package of Automath
material. The project of a computer program for checking existing
proofs did not appear very interesting and I did not reply. What I
would have been interested in is a program for finding proofs of
results that had not yet been proved! Even a proof-assistant would
have been fine. Why did he send me the Automath material? I
don’t recall what year it was. Sometime in the 1970s. Whatever the
accompanying letter, it was not informative; merely something like:
”Dear Professor Howard, you may be interested in the following
material ...”. Since that time, I have seen two or three articles by
him, and I have a more favorable impression. It is good, solid work.
Obviously original. He discovered the idea of derivations as terms,
and the accompanying idea of formulae-as-types, on his own. He
uses lambda terms but, I think, only for purposes of description.
In other words, I don’t think that he has the connection between
normalization and cut-elimination, but I have not made an extensive
examination of his work. In fact, does he use a Gentzen system at
all? I just don’t know. The latter two questions would easily be
answered by anyone familiar with his work. In any case, give him
credit where credit is due. There are enough goodies for everyone!

My influence on Martin-Löf? No problem there. I met him at
the Buffalo 1968 conference and I told him my ideas. His instant
reaction was: “Now, why didn’t I think of that?” He had a visiting
appointment at UIC for the academic year 1968–1969, so we had
lots of opportunity to talk, and he started developing his own
approach to the ideas. In January 1969, mainly to make sure that we
were both clear on who had discovered what, I wrote up my own
ideas in the form of handwritten notes. By then, Xerox machines
were prevalent, so I sent a copy to Kreisel, and he gave copies to
various people, including Girard. At least, I think that is how Girard
got a copy, or maybe Martin-Löf gave him one. I like Martin-
Löf’s work. I could say more about this, but the short answer to

your question is: Martin-Löf’s work originated from mine. He has
always given me credit and we are good friends.

On further thought, I need to mention that, in that first conversa-
tion, Martin-Löf suggested that the derivations-as-terms idea would
work particularly well in connection with Prawitz’s theory of nat-
ural deduction. I thought: okay, but no big deal. Actually, at that
time, I was not familiar with Prawitz’s results (or, if at all, then
only vaguely). But it was a bigger deal than I had thought, because
Prawitz’s reductions steps for a deduction correspond direcly to re-
duction steps for the associated lambda term! Actually, for most
purposes, I like the sequent formulation of natural deduction as
given in pages 33 and 88 of Sorensen and Urzyczyn (2006). In fact,
if we add left-implication-introduction to this (let’s confine our-
selves to pure implicative logic), the resulting system P# is pretty
interesting. All occurrences of modus ponens can be eliminated,
not just those which are preceded by left-implication-introduction.
This is what I am up to in my JSL 1980 paper, “Ordinal analysis of
terms of finite type”. Also, the cut rule is easy to derive in P# (just
consider, for typed lambda terms: a well-formed term substituted
into a well-formed term results in a well-formed term); hence P# is
is a conservative extension of the system P* in Part I of my little
paper in the Curry Festschrift.

The phrase formulae-as-types was coined by Kreisel in order
that we would have a name for the subject matter in our correspon-
dence back and forth. I would assume that the phrase ”propositions
as types” was coined by Martin-Löf; at least, during our first con-
versation at the Buffalo 1968 meeting, he suggested that one could
think of a type as a proposition, according to the idea that, in intu-
itionistic mathematics, the meaning of a proposition φ is given by
the species of “all” proofs of φ. I use quotes here because we are
not talking about a set-theoretic, completed infinity.

“The second [part] introduces the correspondence between
predicate logic and dependent types.” I was not thinking about it in
that way at all. I wanted to provided an interpretation of the notion
of construction to some nontrivial part of intuitionistic mathematics
(Heyting arithmetic). Part I of the paper was just the preliminaries
for this. Actually, what you say in the pdf is consistent with this.
No need for change here.

“Did you consider the first half to be new material or merely a
reprise of what was known?” New. But in January of last year I had
occasion to take a really hard look at the material in Curry-Feys,
pp. 313–314; and I now see that there is a much closer relationship
between my Theorem 2 in Part I and their Theorem 5, page 326,
than I had thought. The issues here are quite interesting. I can
provide a discussion if you want.

In the introduction to my little paper, I mention that Tait had
influenced me. Let me say a few words about that. In the summer of
1963 we had conversations in which he explained to me that he had
developed a theory of infinite terms in analogy to Schtte’s theory of
infinite proofs, where normalization (via lambda reductions) of an
infinite terms corresponds to cut elimination of the corresponding
proof. He did not know what to make of it. He thought of his theory
of infinite terms as a sort of pun on Schtte’s theory of infinite proofs.
But we both agreed that there must be a deep connection between
normalization of lambda terms and Gentzen’s cut elimination. We
puzzled over this during two or three of our conversations but could
not come up with an answer.

As explained in the first paragraph of this e-mail, my work
originated with a problem posed by Kreisel; so, at the start of this
work, certainly I was not thinking of those conversations with Tait.
But, as mentioned above, as soon as I got the basic insight about the
relevance of Curry’s combinators, I considered how it would work
for lambda terms. At that point, I remembered my conversations
with Tait. In other words, when I verified that

(5) cut elimination for a derivation corresponds to normalization
for the term,

the conversations with Tait were very much on my mind. Most
likely I would have noticed (5) without having had the conversa-
tions with Tait. But who knows? In any case, he deserves credit for
having noticed the correspondence between derivations and terms.
What he did not have was the associated correspondence between
propositions and types. In fact, he was not using a general enough
notion of type for this. By hindsight we can see that in his system
there is a homomorphism, not an isomorphism, from propositions
to types.

I need to say a bit more about Tait and types. Since Schütte had
extended his system of proofs to transfinite orders, Tait extended
his system of terms to transfinite type levels. I already had my own
system of primitive recursive functionals of transfinite type. In our
very first conversation, we compared out ideas on this topic. This
topic requires that one think very hard about the notion of type.
Certainly, I had already thought extensively about the notion of type
(because of (2), above) before I ever met Tait, but my conversations
with him reinforced this tendency. Thoughts about types were very
much on my mind when I began to consider (1), (2), above.

As already mentioned, the notes were handwritten and xeroxed;
no mimeographs. “Why [were they] not published until the Curry
Festschrift in 1980?” First let me mention why they got published
in the Curry Festschrift. Selden was bringing out the Festschrift
for Curry’s 80th birthday. He asked me to contribute the notes. I
said: “Sure. I’ll write up an improved version. I can now do much
better.” He replied: “No, I want the original notes. It is a historical
document.” In other words, by that time various copies had been
passed around and there were a number of references to them in
the literature. So I had them typed up and I sent them in.

Why didn’t I publish them before that? Simply because they
did not solve the original problem. That was Kreisel’s and Gödels
verdict (Kreisel had shown or described the work to Gödel). In fact,
even before communicating the work to Kreisel, I knew that I had
gotten only an approximation to the notion of construction, and that
more work had to be done. Essentially, the criticism is as follows.
In my little paper, I do not provide axioms and rules of inference
for proving statements of the form

(3) F is a construction of φ.
Remember, we have to avoid ”Zenos paradox of logic”! The

answer is that the proofs will look like what you have in Figure 6. In
other words, Figure 6 is not only a program; it is also a proof (or: it
can be reinterpreted as a proof). But Figure 6 can also be interpreted
as an explanation of how a construction (blue) is to be built up in
order to have a given type (red). In other words, figures such as
Figure 6 implements the idea (4) mentioned near the beginning of
this e-mail; i.e., F is assigned the type φ according to the way F is
built up.

I hope this tickles you; it certainly tickles me. Of course, the
rules of inference are as in Figure 5. So these simple ideas provide
the missing theory of constructions; or, at the very least, provide a
significant step in that direction.

In January 2013, I exchanged a few e-mails with Tait and Con-
stable on the history of p-a-t. This caused me to take a really careful
look at the Curry-Feys book. Here is something I found that really
made me laugh: the required theory, whose inferences are of the
form given in Figure 5 is already in Curry-Feys. Admittedly, to see
this you first have to erase all the turnstyles (`); Curry seems
to have some kind of obsession with them. In particular, erase the
turnstiles from the proof tree on page 281. The result is exactly a
proof tree of the general form given in your Figure 6. (Hint: (· · ·)X
is to be read “X has type (· · ·)”. In other words, rewrite (· · ·)X
as X : (· · ·).) What does Fbc mean, where F is boldface? Just
rewrite Fbc as b → c. You see? I am an expert. I could probably

make money writing a translation manual. In summary, the required
theory is essentially just Curry’s theory of functionality (more pre-
cisely, the appropriate variant of Curry’s theory). So, did I miss the
boat here? Might I have seen all this in 1969 if only I had had the
determination to take a hard look at Curry-Feys? I don’t know. It
may require the clarity of mind represented by the notation of Fig-
ure 5. Do you have any idea when and where this notation came
into use?

One more remark concerning my reason for not publishing.
Didn’t I feel that I had made an important breakthrough, in spite of
Kreisel’s and Gödels criticisms? On the one hand, yes. On the other
hand, I had reservations. Except for Martin-Löf, Prawitz, Tait and
Girard, very few people showed an interest in the ideas. But maybe
Martin-Löf, Prawitz, Tait and Girard should have been enough.
You say: “Certainly Howard was proud of the connection he drew,
citing it as one of the two great achievements of his career [43].”
Should we let that passage stand? Sure. The interview occurred in
the spring of 2000. By that time, I was getting lots of praise from
the computer science community. So, pride is a peculiar thing. Let
me end this on a positive note. In 1969 Prawitz was in the US and
came to UIC to give a talk. When he entered the room, he made
a beeline for me, looked me in the eye and shook my hand. The
message was: Well done! THAT made me proud.

There is more to say; but this answers your questions, I think;
so I’ll send it to avoid further delay.

Your pdf, Propositions as Types, is very readable.
Bill

A later message provided additional detail on the relation to
Curry and Feys [14].

Curry observed the striking fact that
(1) if the basic combinators are typed, then the types they re-

ceive have the same structure as various axioms of pure implicative
logic, P.

As an easy consequence of this, one gets a correspondence
between the theorems of P and the types of all combinators that
are built up from the basic combinators. To avoid circumlocutions,
let us state this in terms of the system of simple typed combinators:
there is a correspondence between the theorems of P and the types
of the typed combinators. The correspondence just mentioned is
better expressed by observing that there is a

(2) correspondence between the derivations in P and the types
of the typed combinators.

In Curry’s approach, a combinator is not given with a type;
rather, a combinator receives a type by means of the “basic theory
of functionality”, Func. Hence he gives an equivalent

(3) correspondence between the theorems of P and the theorems
of Func (plus axioms provided by (1)).

This is given in Curry-Feys, pp. 313–314. A variant of this,
which gives a correspondence between Gentzen-style derivations
and the “basic theory of functionality” adapted to lambda terms, is
then developed (pp. 315–332).

Consider Gentzen’s intuitionistic sequent calculus LJ restricted
to implication. Thus the rules characterizing LJ are: modus ponens,
left-implication-introduction and cut. The cut elimination theorem
for this system says:

(4) From a derivation of a sequent in LJ, we can get a derivation
of the same sequent in the system LJ*, where LJ* is LJ without the
cut rule.

In the Curry-Feys approach to terms and their types, it is not
hard to provide a statement equivalent to (4), so it is a bit surprising
that they do not do so—at least, not in a form that one would expect.
The closest they come to this is in the statement of Theorem 5,
page 326. Moreover, Theorem 5 has a five page proof which is
not easy to follow, whereas, from the viewpoint of typed lambda

terms, (4) is pretty obvious. Namely, if the given derivation in (4)
corresponds to a term A, then the normal form of A provides the
required cut free derivation. In other words, the result (4) follows
easily from the normalization of A.

So we have, here, a bit of a mystery. It appears to me that the
proof of Theorem 5 is mainly devoted to a proof that

(5) a typed lambda term can be normalized.
If I am right about this, then the explanation of the mystery

would be that (5) was not widely known at the time that Curry-Feys
was written (publication date: 1958).

Later, Howard elaborated on his last point above.

Concerning the question of whether (5) was widely known at
the time that Curry-Feys was written, the answer is, to my surprise:
apparently not. I just remembered that Robin Gandy, whom I knew
quite well, had published, in the Curry Festschrift, an article about
Turing’s proof of (5). (Actually, he explained the proof to me in
1978.) Gandy says on p. 454:

“The earliest published proof [of (5)] known to me is in Curry
& Fey’s book Combinatory Logic . . . ”

Gandy tells us that (5) is stated as a corollary of Theorem 9,
page 340. Theorem 9 is a monster. Maybe somebody will explain
to me, sometime, what it says. Fortunately the relevant corollary,
which is on p. 341, clearly says (5). In my struggles with Curry-
Feys, I never got to p. 341.

Thanks Robin. Good show!
Turing’s proof is the one that just about anyone would think

of (execute redexes in a strategic order: “rightmost”–“innermost”–
lambda operators of highest type first). In contrast, Curry-Fey’s
proof, in the proof of Theorem 5, follows the style of Tait’s com-
putability method (“Intensional interpretations . . . ”) or a variant
thereof. At least, that is my impression. Someone should check this.

References
[1] S. Abramsky. Computational interpretations of linear logic.

Theoretical Computer Science, 111(1&2):3–57, 1993.

[2] J. Baez and M. Stay. Physics, topology, logic and computation:
a rosetta stone. In B. Coecke, editor, New Structures for Physics,
Lecture Notes in Physics, pages 91–166. Springer-Verlag, 2009.

[3] J. L. Bates and R. L. Constable. Proofs as programs. Transactions on
Programming Languages and Systems, 7(1):113–136, Jan. 1985.

[4] P. N. Benton, G. M. Bierman, and V. de Paiva. Computational types
from a logical perspective. Journal of Functional Programming,
8(2):177–193, 1998.

[5] L. Caires and F. Pfenning. Session types as intuitionistic linear
propositions. In CONCUR, pages 222–236, 2010.

[6] L. Carroll. What the Tortoise said to Achilles. Mind, 4(14):278–280,
April 1895.

[7] A. Church. A set of postulates for the foundation of logic. Annals of
Mathematics, 33(2):346–366, 1932.

[8] A. Church. A note on the entscheidungsproblem. Journal of Symbolic
Logic, 1:40–41, 1936. Received 15 April 1936. Correction, ibid.,
1:101–102 (1936), received 13 August 1936.

[9] A. Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58(2):345–363, April 1936.
Presented to the American Mathematical Society, 19 April 1935;
abstract in Bulletin of the American Mathematical Society, 41, May
1935.

[10] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5(2):56–68, June 1940.

[11] T. Coquand and G. P. Huet. The calculus of constructions.
Information and Computation, 76(2/3):95–120, 1988.

[12] P.-L. Curien and H. Herbelin. The duality of computation. In
International Conference on Functional Programming (ICFP), pages
233–243, 2000.

[13] H. B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Science, 20:584–590, 1934.

[14] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, 1958.

[15] R. Davies. A temporal-logic approach to binding-time analysis. In
Logic in Computer Science (LICS), pages 184–195, 1996.

[16] R. Davies and F. Pfenning. A modal analysis of staged computation.
In Principles of Programming Languages (POPL), pages 258–270,
1996.

[17] N. G. de Bruijn. The mathematical language Automath, its usage, and
some of its extensions. In Symposium on Automatic Demonstration,
volume 125 of Lecture Notes in Computer Science, pages 29–61.
Springer-Verlag, 1968.

[18] R. Gandy. The confluence of ideas in 1936. In R. Herken, editor, The
Universal Turing Machine: a Half-Century Survey, pages 51–102.
Springer, 1995.

[19] S. Gay. Quantum programming languages: survey and bibliography.
Mathematical Structures in Computer Science, 16(4):581–600, 2006.

[20] G. Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39(2–3):176–210, 405–431, 1935. Reprinted in
[58].

[21] J.-Y. Girard. Interprétation functionelle et élimination des coupures
dans l’arithmétique d’ordre supérieure, 1972. Université Paris VII,
These D’Etat.

[22] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[23] J.-Y. Girard, P. Taylor, and Y. Lafont. Proof and Types. Cambridge
University Press, 1989.

[24] K. Gödel. Über formal unterscheidbare Sätze der Principia
Mathematica und verwandter Systeme I. Monatshefte für Mathematik
und Physik, 38:173–198, 1931. Reprinted in [61].

[25] G. Gonthier. Formal proof–the four-color theorem. Notices of the
AMS, 55(11):1382–1393, 2008.

[26] T. Griffin. A formulae-as-types notion of control. In Principles of
Programming Languages (POPL), pages 47–58. ACM, Jan. 1990.

[27] M. Hayden and R. van Renesse. Optimizing layered communication
protocols. In Proceedings of the 6th International Symposium on
High Performance Distributed Computing, HPDC, pages 169–177.
IEEE Computer Society, 1997.

[28] D. E. Hesseling. Gnomes in the fog: the reception of Brouwer’s
intuitionism in the 1920s. Birkhäuser, 2003.

[29] A. Heyting. Mathematische Grundlagenforschung Intuitionismus
Bewiestheorie. Ergebnisse der Mathematik und ihren Grenagebiete.
Springer Verlag, Berlin, 1934.

[30] R. Hindley. The principal type scheme of an object in combinatory
logic. Transactions of the American Mathematical Society, 146:29–
60, Dec. 1969.

[31] K. Honda. Types for dyadic interaction. In CONCUR, pages 509–523,
1993.

[32] W. A. Howard. The formulae-as-types notion of construction. In
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus,
and Formalism, pages 479–491. Academic Press, 1980. The original
version was circulated privately in 1969.

[33] A. Jeffrey. Causality for free!: parametricity implies causality for
functional reactive programs. In Programming Languages meets
Program Verification (PLPV), pages 57–68, 2013.

[34] S. Kleene. Origins of recursive function theory. Annals of the History
of Computing, 3(1):52–67, 1981.

[35] S. C. Kleene. General recursive functions of natural numbers.
Mathematical Annalen, 112(1), December 1936. Abstract published

in Bulletin of the AMS, July 1935.

[36] S. C. Kleene. λ-definability and recursiveness. Duke Mathematical
Journal, 2:340–353, 1936.

[37] S. C. Kleene. On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic, 10:109–124, 1945.

[38] S. C. Kleene and J. B. Rosser. The inconsistency of certain formal
logics. Annals of Mathematics, 36:630–636, 1936.

[39] A. N. Kolmogorov. Zur deutung der intuitionistischen logik.
Mathematische Zeitschrift, 35:58–65, 1932.

[40] C. Kreitz. Building reliable, high-performance networks with
the nuprl proof development system. Journal of Functional
Programming, 14(1):21–68, 2004.

[41] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, 2009.

[42] C. Lewis and C. Langford. Symbolic Logic. 1938. reprinted by Dover,
1959.

[43] P. Martin-Löf. Intuitionistic type theory. Bibliopolis Naples, Italy,
1984.

[44] P. Martin-Löf. On the meaning of the logical constants and the
justification of the logical laws (Siena Lectures 1983). Nordic Journal
of Philosophical Logic, 1(1):11–60, 1996.

[45] R. Milner. A theory of type polymorphism in programming. J.
Comput. Syst. Sci., 17(3):348–375, 1978.

[46] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type.
Transactions on Programming Languages and Systems, 10(3):470–
502, July 1988.

[47] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[48] T. Murphy VII, K. Crary, R. Harper, and F. Pfenning. A symmetric
modal lambda calculus for distributed computing. In Logic in
Computer Science (LICS), pages 286–295, 2004.

[49] C. Murthy. An evaluation semantics for classical proofs. In Logic in
Computer Science (LICS), pages 96–107, 1991.

[50] M. Parigot. λµ-calculus: an algorithmic interpretation of classical
natural deduction. In Logic programming and automated reasoning,
volume 624 of Lecture Notes in Computer Science, pages 190–201.
Springer-Verlag, 1992.

[51] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57,
1977.

[52] A. Prior. Time and Modality. 1957.

[53] J. C. Reynolds. Towards a theory of type structure. In Symposium
on Programming, volume 19 of Lecture Notes in Computer Science,
pages 408–423, 1974.

[54] D. Scott. Relating theories of the λ-calculus. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism,
pages 375–402. Academic Press, 1980.

[55] A. E. Shell-Gellasch. Reflections of my advisor: Stories of
mathematics and mathematicians. The Mathematical Intelligencer,
25(1):35–41, 2003.

[56] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard
isomorphism. Elsevier, 2006.

[57] N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. In
M. M. T. Chakravarty, Z. Hu, and O. Danvy, editors, International
Conference on Functional Programming (ICFP), pages 266–278.
ACM, 2011.

[58] M. E. Szabo, editor. The collected papers of Gerhard Gentzen. North
Holland, 1969.

[59] S. Thompson. Type Theory and Functional Programming. Addison-
Wesley, 1991.

[60] A. M. Turing. On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical
Society, s2-42(1), 1937. Received 28 May 1936, read 12 November
1936.

[61] J. van Heijenoort. From Frege to Gödel: a sourcebook in mathemati-
cal logic, 1879–1931. Harvard University Press, 1967.

[62] M. Y. Vardi. From church and prior to PSL. In O. Grumberg
and H. Veith, editors, 25 Years of Model Checking—History,
Achievements, Perspectives, volume 5000 of Lecture Notes in
Computer Science, pages 150–171. Springer, 2008.

[63] P. Wadler. A taste of linear logic. In Mathematical Foundations of
Computer Science (MFCS), volume 711 of LNCS, pages 185–210.
Springer-Verlag, 1993.

[64] P. Wadler. Call-by-value is dual to call-by-name. In International
Conference on Functional Programming (ICFP), pages 189–201.
ACM, 2003.

[65] P. Wadler. Propositions as sessions. In International Conference on
Functional Programming (ICFP), pages 273–286. ACM, 2012.

[66] A. N. Whitehead and B. Russell. Principia mathematica. Cambridge
University Press, 1912.

