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I describe how search engines sell ad space using an auction. I an-
alyze advertiser behavior in this context using elementary price theory
and derive a simple way to estimate the producer surplus generated by
online search advertising. It appears that the estimated value of online
advertising tends to be between 2 and 2.3 times advertising expenditures.
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The ad auctions used by major search engines all have a similar structure. Advertisers
enter ad text, keywords and bids into the system. When a user sends a query to the
search engine, the system finds a set of ads with keywords that match the query and
determines which ads to show and where to show them.

When the search results and ads are displayed, the user may click on an ad for further
information. In this case, the advertiser pays the search engine an amount determined
by the bids of the other competing advertisers.

The expected revenue received by the search engine is the price per click times the
expected number of clicks. In general, the search engine would like to sell the most promi-
nent positions—those most likely to receive clicks—to those ads that have the highest
expected revenue. To accomplish this, the ads are ranked by bid times expected click-
through rates and those ads with the highest expected revenue are shown in the most
prominent positions.

It is natural to suppose that users who have positive experiences from ad clicks will
increase their propensity to click on ads in the future, and those with negative experiences
will tend to decrease their propensity to click in the future. Hence search engines may
also consider various measures of “ad quality” in their choice of which ads to display.

I. Auction rules

How do search engines determine which ads are shown, where they are shown, and how
much they pay per click? We start with some notation. Let a = 1, . . . , A index advertisers
and s = 1, . . . , S index slots. Let (va, ba, pa) be the value, bid, and price per click of
advertiser a for a particular keyword. We assume that the expected clickthrough rate
of advertiser a in slot s (zas) can be written as the product of an ad-specific effect (ea)
and a position-specific effect (xs), so we write zas = eaxs. Other formulas for predicting
clicks could be used, but this one leads to particularly simple results.

Here are the rules of the Generalized Second Price Auction used by the major search
engines. (1) Each advertiser a chooses a bid ba. (2) The advertisers are ordered by bid
times predicted clickthrough rate (baea). (3) The price that advertiser a pays for a click
is the minimum necessary to retain its position. (4) If there are fewer bidders than slots,
the last bidder pays a reserve price r.
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Consider a specific auction and identify the advertisers with their slot position. Neglect-
ing ties for the sake of exposition, the rules of the auction imply b1e1 > b2e2 > . . . > bmem

where m less than or equal to the number of possible slots. The price paid by advertiser
in slot s is the minimum necessary to retain its position so pses = bs+1es+1 which implies
so ps = bs+1es+1/es. The price paid per click by the last advertiser is the reserve price if
m < S or determined by the bid of the first omitted advertiser if m = S.

II. Equilibrium revenue

We assume that advertisers are interested in maximizing surplus: the value of clicks they
receive minus the cost of those clicks. In order to simplify the algebra, we will assume
that the advertisers have the same ad quality, so ea ≡ 1 for all advertisers.

In equilibrium, the advertiser in slot s + 1 doesn’t want to move up to slot s, so
(vs+1 − ps+1)xs+1 ≥ (vs+1 − ps)xs. Rearranging, we have

(1) psxs ≥ ps+1xs+1 + vs+1(xs − xs+1).

This inequality shows that the cost of slot s must be at least as large as the cost of slot
s + 1 plus the value of the incremental clicks attributable to the higher position. It is
advertiser s + 1’s value for those clicks that is relevant since that is the bid that the
advertiser in slot s must beat.

The price of the last ad shown on the page is either the reserve price or the bid of
the first omitted ad. Denoting this price by pm we solve the recursion in inequality (1)
repeatedly to get the inequalities

p1x1 ≥ v2(x1 − x2) + v3(x2 − x3) + v4(x3 − x4) + · · ·+ pmxm

p2x2 ≥ + v3(x2 − x3) + v4(x3 − x4) + · · ·+ pmxm

p3x3 ≥ + v4(x3 − x4) + · · ·+ pmxm

Summing, we have an upper bound on total revenue:∑
s

psxs ≥ v2(x1 − x2) + 2v3(x2 − x3) + . . .+ (m− 1)pmxm.

In the same way, in equilibrium each advertiser prefers its slot to the slot above it, which
yields a lower bound on total revenue∑

s

psxs ≤ v1(x1 − x2) + 2v2(x2 − x3) + . . .+ (m− 1)pmxm.

One can think of the advertiser values as being drawn from a distribution. If there are
S slots, the ads that are shown are those with the S largest values out of the set of
ads available. If there are many advertisers competing for a small number of slots, the
upper and lower bounds will be close together, so this simple calculation will essentially
determine the auction revenue.

III. VCG Auctions

An alternative auction model that has been suggested is the Vickrey-Clarke-Groves
(VCG) mechanism. In this mechanism, each advertiser reports a value ra and each
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pays the cost that it imposes on the other advertisers, using the values reported by the
other agents.

Suppose, for example that there are 3 slots and 4 advertisers. When advertiser 1 is
present, the other three advertisers receive reported values r2x2 + r3x3. (Since advertiser
4 is not shown, it receives zero.) If advertiser 1 is absent, the other three advertisers
would each move up a position, so their reported value would be r2x1 + r3x2 + r4x3. The
difference between these two amounts is r2(x1 − x2) + r3(x2 − x3) + r4x4, so this is the
required payment by advertiser 1.

It can be shown that the dominant strategy equilibrium in the VCG auction is for each
advertiser to report its true value, so advertiser 1’s payment becomes v2(x1−x2)+v3(x2−
x3) + v4x4. Note that this is the same as the lower bound of the equilibrium payments
described above. The same calculations go through for the other bidders, so we see that
the revenue for the VCG auction is the same as the lower bound of the price equilibrium
described above. This is, in fact, a special case of the more general two-sided matching
market studied by Gabrielle Demange and David Gale (1985) and Gabrielle Demange,
David Gale and Marilda Sotomayor (1986). See also Alvin Roth and Marilda Sotomayor
(1990) for a unified description of work in this area.

It might appear that the VCG auction requires knowledge of the expected number of
clicks in each position. However, this is not the case. Consider the following algorithm:
each time there is a click on position 1, charge advertiser 1 r2, and each time there is a
click on position s > 1 pay advertiser 1 rs − rs+1. In the 3-advertiser example we are
considering, the net payment made by advertiser 1 will be r2x1−(r2−r3)x2−(r3−r4)x3.
This is simply a regrouping of the terms in the VCG payment expression. The argument
readily extends to the other advertisers.1

A more detailed analysis of the General Second Price and VCG auctions is available in
Benjamin Edelman, Michael Ostrovsky and Michael Schwartz (2007) and Hal R. Varian
(2007) which also fills in some details in the above arguments that were omitted for
expositional purposes.

IV. Bidding behavior

The model examined above assumes that an advertiser can choose its bid on an auction-
by-auction basis. In reality, advertisers choose a single bid that will apply to many
auctions. Let us suppose that there is some reasonably stable relationship between an
advertiser’s bid and the number of clicks that it receives during some time period, which
we will summarize by ba = Ba(xa). (Note the change in notation: in the previous section
xs denoted the number of clicks in position s in a given auction; here xa denotes the
number of clicks received by advertiser a in a given time period.)

We also define the cost function ca(xa), which is the cost that advertiser a must pay to
receive xa clicks during a given time period. Of course both the bid function and the cost
function depend on the interaction with the other advertisers in the ad auction described
above, but we take that behavior as fixed.

In this framework, the advertiser’s surplus takes the form vaxa − ca(xa). We call this
expression “surplus” rather than “profit” since profit would generally include fixed costs.
Of course, surplus maximization is equivalent to profit-maximization, at least as long as
profit is non-negative.

Given a cost curve, the advertiser finds its profit-maximizing number of clicks, which is
the point where the value equals marginal cost, just as in conventional price theory. Given
the optimal number of clicks, we can determine the average cost per click. The advertiser

1One problem with this algorithm is that it is vulnerable to clickfraud since an advertiser benefits
from clicks on lower positions.
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can then use the bid function to determine the bid that yields this desired number of
clicks. So once an advertiser knows the cost-per-click and bid per-click function, it can
determine its optimal behavior. At the present time, an advertiser can only determine
these relationships by experimentation.

V. Advertiser surplus

We can use the relationships defined above to construct a bound on the ratio of aggregate
value to aggregate cost, which we will refer to as the “surplus ratio.” Let us suppose that
advertiser a is choosing some number of clicks xa at a cost of ca and that it contemplates
changing its bid so that it receives some smaller number of clicks, x̂a, for which it would
pay a smaller cost ĉa.

We assume that the surplus at (xa, ca) exceeds that at (x̂a, ĉa). Of course, this would
be implied by global profit maximization, but that is overly strong for our results. This
assumption gives us

vaxa − ca ≥ vax̂a − ĉa.

Rearranging the inequality, we have

va ≥
ca − ĉa
xa − x̂a

.

Multiply by xa and sum to find

A∑
a=1

vaxa ≥
A∑

a=1

ca − ĉa
xa − x̂a

xa.

This expression gives us a bound on the total advertiser value. It is convenient to nor-
malize both sides by the total cost,

∑
b cb, which gives us our final expression:

value
cost

≥
A∑

a=1

ca − ĉa
xa − x̂a

xa∑
b cb

.

The geometry is shown in Figure 1. The isosurplus line through xa is described by
πa = vaxa − ca, so ca = vaxa − πa. The point (x̂a, ĉa) must lie above this line since it
has lower surplus by assumption. Hence the chord connecting (xa, ca) and (x̂a, ĉa) must
intersect the vertical axis at a point above −πa. This shows that expression (V) gives us
a lower bound on the surplus ratio.

The same logic can be used to construct an upper bound on the surplus ratio by
identifying a lower-surplus point with a larger number of clicks and cost. It is clear from
inspecting the figure that the tightness of these bounds will depend on the curvature of
the cost function. For an affine cost function, the bounds will be equal to each other and
be equal to the true surplus. For a highly convex function, the bounds will be wider.
Note that the argument for the surplus bounds is perfectly general and applies to any
competitive industry.

VI. Estimation method and results

We can observe how many clicks advertiser a is getting currently, and how much these
clicks cost. The challenge is to determine how many clicks it would receive in some
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Figure 1: Bound on surplus.

different position. Here is the algorithm I used. (1) Cut advertiser a’s bid in half. (2)
Determine what position and how much it would pay in the ad auction with this lower
bid. (3) Estimate how many clicks it would receive at this lower position.

With respect to step (1), it might seem that cutting bids in half is somewhat extreme.
However a 50 percent reduction in bids only results in a 12 percent reduction in costs,
on average. Furthermore, a small cut in bids leads to small reduction in clicks and costs,
so that ∆c/∆x can be quite noisy.

The outcome of step (2) is determined by the auction rules. Step (3) is the only
problematic calculation since it requires a predictive model of how clicks on a given ad
vary with ad position. However the assumption that the actual number of clicks is an
advertiser-specific effect times a position-specific effect makes this easy. Suppose, for
example, that moving from position 4 to position 3 tends on average to increase the
number of clicks by 20 percent. Then if we observe that a particular advertiser initially
receives 100 clicks in position 4, we would estimate that it would receive 120 clicks if it
bid enough to move to position 3.

I have carried out these calculations on a proprietary sample of ad auctions and found
that total value enjoyed by advertisers is between 2 and 2.3 times their total expenditure.
Note that this figure only reflects the value of the paid clicks; advertisers may well receive
many more valuable clicks from search results.

One can perform similar calculations grouping advertisers by vertical, country, ad con-
figuration, or a variety of other groupings. One interesting finding is that ad configura-
tions that are “fully sold”—have all the slots occupied—tend to have lower surplus than
those that are “undersold.” This is because advertisers must compete for slots in the
fully sold case, which tends to push their surplus down.

Note that the bid of an advertiser also provides a lower bound on the value of a click.
However, bids are only about 25-30 percent larger than prices, on average, so using bids
dramatically understates advertiser value.



6 THE AMERICAN ECONOMIC REVIEW JANUARY 2009

VII. Summary

There is a growing literature concerning the design of online ad auctions; see Sébastien
Lahaie, David M. Pennock, Amin Saberi and Rakesh V. Vohra (2007) for a recent survey.
These auctions have an interesting, yet simple, theoretical structure as well as significant
practical importance. As more economic transactions take place online we will likely see
other novel pricing mechanisms arise.
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