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Abstract 

Increasing the associativity of a cache reduces both the 
miss rate and the power consumption.  It also makes LRU 
replacement more difficult to implement.  We present a 
simple systolic array that can be used to implement LRU 
replacement in arbitrarily associative caches. 

1 Introduction 

One of the important design parameters of a hardware 
cache is its degree of associativity.  Increasing a cache’s 
associativity improves performance by reducing the miss 
rate [Hennessy96] and leads to a lower power 
implementation [Zhang00].  However, it also becomes 
more difficult to implement a least recently used (LRU) 
replacement policy.  As a result, hardware designers opt 
for simpler replacement strategies such as round-robin 
[Clark01], even though the LRU policy is known to 
provide better performance [Smith82]. 
 In this paper we present a simple systolic array that 
can keep track of LRU information for a set of cache 
lines.  Since the length of the critical path is constant, the 
approach can be used for N-way associative caches with 
N arbitrarily large.  We begin by constructing a systolic 
array that can handle one cache access on every other 
cycle.  In section 3 we modify the design to allow a cache 
access on every cycle.  Finally in section 4 we show how 
to accommodate multiple accesses per cycle. 

2 Implementation 

The central idea is to maintain a list of cache line indices 
sorted from LRU to MRU (most recently used).  When a 
cache line is accessed its line index L is presented to the 
list, and that index is rotated to the MRU position at the 
end (Figure 1a).  We can implement this list as a systolic 
array by advancing L one node per clock cycle, along 
with a single-bit “matched” signal M, indicating whether 
or not the index has found a match within the array.  Until 
a match is found, L is advanced without any changes 
being made.  Once a match is found, nodes begin copying 
values from their neighbours to the right.  Finally, L is 
deposited in the last node.  This is illustrated in Figure 1b.  
We can use the same design for all nodes by wiring 

together the last node’s inputs, as shown in Figure 1b.  
This ensures that L will be deposited because by the end 
of the array we are guaranteed that M=1, so the last node 
will attempt to copy a value from the right, and with the 
inputs wired together this value is L.  Note that we can 
only present indices to the array on every other cycle.  For 
example, if in Figure 1b ‘2’ were presented on the cycle 
immediately following ‘1’, then the value ‘1’ would 
erroneously be copied into the first node instead of the 
correct ‘3’. 
 Figure 2 shows a hardware implementation of the 
systolic array node.  The forward signals are the line 
index L and the match bit M; the backward signal is the 
current index which is used to shift values when M=1.  
The node contains two logN bit registers, one single-bit 
register, a logN bit multiplexer, a logN bit comparator, 
and an OR gate.  No extra hardware is required to set up 
the array as it can be initialized simply by setting M=1 
and presenting all N line indices in N consecutive cycles 
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(b)  Systolic array implementation 

Figure 1:  Keeping track of LRU information using 
(a) an atomically updated list  (b) a systolic array. 
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followed by N copies of the last index (N – 1) in the next 
N consecutive cycles. 

In normal operation the input M to the first node is 
always 0.  On a cache hit, the line index L is presented to 
the array.  On a cache miss, the output of the first node 
gives the LRU line index; this line is replaced and the 
index is fed back into the array.  On a cycle with no cache 
activity, the index of the most recently accessed line is 
presented, which does not change the state of the array 
(this technique avoids the need for a separate “valid” bit). 

3 One Access per Cycle 

To accommodate one cache line access per cycle, the 
systolic array must be modified to behave as though it 
were being clocked twice as fast.  We can accomplish this 
by simply removing every other set of forward registers 
and modifiying the backward ‘index’ signal slightly to 
obtain the new node implementation shown in Figure 3.  
The index signal is taken from the input rather than the 
output of the bottom register to ensure that when the 
previous node attempts to copy the index value, it obtains 
the value that would be stored in this register after the 
node has finished processing its current inputs.  This new 
systolic array, which contains N/2 nodes, can be 
initialized by presenting all N line indices in N 
consecutive cycles with M=1. 

4 Multiple Accesses per Cycle 

Some modern processors allow up to four cache accesses 
on a single cycle [Bradley02].  A systolic array capable of 
maintaining LRU information with k > 1 accesses per 
cycle is naturally more complicated, but can be 
implemented as follows:  Each node holds 2k indicies.  
There are k forward line index signals L1, …, Lk, and we 
replace the match bit M with a log(k+1) bit match 
counter indicating how many of the index signals have 
found their match.  The comparator and OR gate used to 
update M are replaced by k comparators, a k-input OR 
gate, and a log(k+1) bit incrementer.  Each index 
register is fed by a k+1 input multiplexer taking its inputs 
from that register as well as the k above it; the multiplexer 
is controlled by M.  Finally, a given multiplexer input 
connects to an index register’s output if the register is in 
the same node, otherwise it connects to the index 
register’s input.  This generalizes the node design 
presented in Section 3; Figure 4 shows the resulting 
design for k = 2. 
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Figure 3:  Modified systolic array node 
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Figure 2:  Systolic array node 
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Figure 4:  Systolic array node for 2 accesses per cycle 
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