
�-18 March 13, 2002

A Systolic Array for Implementing LRU Replacement
J.P. Grossman

Project Aries Technical Memo ARIES-TM-18
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA, USA

Sponsored by DARPA/AFOSR Contract Number F306029810172

Abstract

Increasing the associativity of a cache reduces both the
miss rate and the power consumption. It also makes LRU
replacement more difficult to implement. We present a
simple systolic array that can be used to implement LRU
replacement in arbitrarily associative caches.

1 Introduction

One of the important design parameters of a hardware
cache is its degree of associativity. Increasing a cache’s
associativity improves performance by reducing the miss
rate [Hennessy96] and leads to a lower power
implementation [Zhang00]. However, it also becomes
more difficult to implement a least recently used (LRU)
replacement policy. As a result, hardware designers opt
for simpler replacement strategies such as round-robin
[Clark01], even though the LRU policy is known to
provide better performance [Smith82].
 In this paper we present a simple systolic array that
can keep track of LRU information for a set of cache
lines. Since the length of the critical path is constant, the
approach can be used for N-way associative caches with
N arbitrarily large. We begin by constructing a systolic
array that can handle one cache access on every other
cycle. In section 3 we modify the design to allow a cache
access on every cycle. Finally in section 4 we show how
to accommodate multiple accesses per cycle.

2 Implementation

The central idea is to maintain a list of cache line indices
sorted from LRU to MRU (most recently used). When a
cache line is accessed its line index L is presented to the
list, and that index is rotated to the MRU position at the
end (Figure 1a). We can implement this list as a systolic
array by advancing L one node per clock cycle, along
with a single-bit “matched” signal M, indicating whether
or not the index has found a match within the array. Until
a match is found, L is advanced without any changes
being made. Once a match is found, nodes begin copying
values from their neighbours to the right. Finally, L is
deposited in the last node. This is illustrated in Figure 1b.
We can use the same design for all nodes by wiring

together the last node’s inputs, as shown in Figure 1b.
This ensures that L will be deposited because by the end
of the array we are guaranteed that M=1, so the last node
will attempt to copy a value from the right, and with the
inputs wired together this value is L. Note that we can
only present indices to the array on every other cycle. For
example, if in Figure 1b ‘2’ were presented on the cycle
immediately following ‘1’, then the value ‘1’ would
erroneously be copied into the first node instead of the
correct ‘3’.
 Figure 2 shows a hardware implementation of the
systolic array node. The forward signals are the line
index L and the match bit M; the backward signal is the
current index which is used to shift values when M=1.
The node contains two logN bit registers, one single-bit
register, a logN bit multiplexer, a logN bit comparator,
and an OR gate. No extra hardware is required to set up
the array as it can be initialized simply by setting M=1
and presenting all N line indices in N consecutive cycles

4 1 3 0 5 2 L = 3

4 1 0 5 2 3

(a) LRU list

2 1 3 0
 L = 1

2 1 3 0
1

2 3 3 0
1 L = 2

3 3 0 0
1 2

3 0 0 1
2

(b) Systolic array implementation

Figure 1: Keeping track of LRU information using
(a) an atomically updated list (b) a systolic array.

�-18 2 Systolic LRU

followed by N copies of the last index (N – 1) in the next
N consecutive cycles.

In normal operation the input M to the first node is
always 0. On a cache hit, the line index L is presented to
the array. On a cache miss, the output of the first node
gives the LRU line index; this line is replaced and the
index is fed back into the array. On a cycle with no cache
activity, the index of the most recently accessed line is
presented, which does not change the state of the array
(this technique avoids the need for a separate “valid” bit).

3 One Access per Cycle

To accommodate one cache line access per cycle, the
systolic array must be modified to behave as though it
were being clocked twice as fast. We can accomplish this
by simply removing every other set of forward registers
and modifiying the backward ‘index’ signal slightly to
obtain the new node implementation shown in Figure 3.
The index signal is taken from the input rather than the
output of the bottom register to ensure that when the
previous node attempts to copy the index value, it obtains
the value that would be stored in this register after the
node has finished processing its current inputs. This new
systolic array, which contains N/2 nodes, can be
initialized by presenting all N line indices in N
consecutive cycles with M=1.

4 Multiple Accesses per Cycle

Some modern processors allow up to four cache accesses
on a single cycle [Bradley02]. A systolic array capable of
maintaining LRU information with k > 1 accesses per
cycle is naturally more complicated, but can be
implemented as follows: Each node holds 2k indicies.
There are k forward line index signals L1, …, Lk, and we
replace the match bit M with a log(k+1) bit match
counter indicating how many of the index signals have
found their match. The comparator and OR gate used to
update M are replaced by k comparators, a k-input OR
gate, and a log(k+1) bit incrementer. Each index
register is fed by a k+1 input multiplexer taking its inputs
from that register as well as the k above it; the multiplexer
is controlled by M. Finally, a given multiplexer input
connects to an index register’s output if the register is in
the same node, otherwise it connects to the index
register’s input. This generalizes the node design
presented in Section 3; Figure 4 shows the resulting
design for k = 2.

References

[Bradley02] David Bradley, Patrick Mahoney, Blaine
Stackhouse, “The 16kB Single-Cycle Read Access Cache on
a Next-Generation 64b Itanium Microprocessor”, Proc.
ISSCC 2002, pp. 110-111.

[Clark01] Lawrence T. Clark, Eric J. Hoffman, Jay Miller,
Manish Biyani, Yuyun Liao, Stephen Strazdus, Michael
Morrow, Kimberley E. Velarde, Mark A. Yarc, “An
Embedded 32b Microprocessor Core for Low-Power and

=?

M L index

Figure 3: Modified systolic array node

=?

index0

index1

=?

M L index

Figure 2: Systolic array node

current index

=?

M L1 index1

=?

+

=?

=?

+

=?

=?

+

=?

=?

+

L2 index2

Figure 4: Systolic array node for 2 accesses per cycle

�-18 3 Systolic LRU

High-Performance Applications”, IEEE Journal of Solid-
State Circuits, Vol. 36, No. 11, November 2001, pp. 1599-
1608.

[Hennessy96] J. Hennessy, D. Patterson, Computer
Architecture: A Quantitative Approach, 2nd ed., Morgan
Kaufman, San Mateo, CA, 1996.

[Smith82] A. J. Smith, “Cache Memories”, ACM
Computing Surveys, Vol. 14, No. 3, September 1982, pp.
473-530.

[Zhang00] Michael Zhang, Krste Asanović, “Highly-
Associative Caches for Low-Power Processors”, Proc. Kool
Chips Workshop, 33rd International Symposium on
Microarchitecture, Monterey, CA, Dec. 2000.

