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Abstract—Marching along the DARPA SyNAPSE roadmap,
IBM unveils a trilogy of innovations towards the TrueNorth
cognitive computing system inspired by the brain’s function
and efficiency. The sequential programming paradigm of the
von Neumann architecture is wholly unsuited for TrueNorth.
Therefore, as our main contribution, we develop a new program-
ming paradigm that permits construction of complex cognitive
algorithms and applications while being efficient for TrueNorth
and effective for programmer productivity. The programming
paradigm consists of (a) an abstraction for a TrueNorth program,
named Corelet, for representing a network of neurosynaptic
cores that encapsulates all details except external inputs and
outputs; (b) an object-oriented Corelet Language for creating,
composing, and decomposing corelets; (c) a Corelet Library that
acts as an ever-growing repository of reusable corelets from
which programmers compose new corelets; and (d) an end-to-
end Corelet Laboratory that is a programming environment which
integrates with the TrueNorth architectural simulator, Compass,
to support all aspects of the programming cycle from design,
through development, debugging, and up to deployment. The
new paradigm seamlessly scales from a handful of synapses and
neurons to networks of neurosynaptic cores of progressively in-
creasing size and complexity. The utility of the new programming
paradigm is underscored by the fact that we have designed and
implemented more than 100 algorithms as corelets for TrueNorth
in a very short time span.

I. INTRODUCTION

A. Context

To usher in a new era of cognitive computing [1], we are
developing TrueNorth (Fig. 1), a non-von Neumann, modu-
lar, parallel, distributed, event-driven, scalable architecture—
inspired by the function, low power, and compact vol-
ume of the organic brain. TrueNorth is a versatile sub-
strate for integrating spatio-temporal, real-time cognitive algo-
rithms for multi-modal, sub-symbolic, sensor-actuator systems.
TrueNorth comprises of a scalable network of configurable
neurosynaptic cores. Each core brings memory (“synapses”),
processors (“neurons”), and communication (“axons”) in close
proximity, wherein inter-core communication is carried by all-
or-none spike events, sent over a message-passing network.

Recently, we have achieved a number of milestones: first, a
demonstration of 256-neuron, 64k/256k-synapse neurosynaptic
cores in 45nm silicon [2], [4] that were featured on the
cover of Scientific American in December 2011; second, a
demonstration of multiple real-time applications [5]; third,
Compass, a simulator of the TrueNorth architecture, which
simulated over 2 billion neurosynaptic cores exceeding 1014

synapses [3], [6]; and, fourth, a visualization of the long-
distance connectivity of the Macaque brain [7]—mapped to

TrueNorth architecture—that was featured on the covers of
Science [8] and Communications of the ACM [1].

We unveil a series of interlocking innovations in a set
of three papers. In this paper, we present a programming
paradigm for hierarchically composing and configuring cog-
nitive systems that is effective for the programmer and ef-
ficient for the TrueNorth architecture. In two companion
papers [9][10] we introduce a versatile and efficient digital
spiking neuron model that is a building block of the TrueNorth
architecture, as well as a set of algorithms and applications
that demonstrate the potential of the TrueNorth architecture
and value of the programming paradigm.

B. Motivation

Turing-completeness bounds the computational expressive-
ness of programmed systems. ENIAC (circa 1946), the first
electronic digital, programmable, Turing-complete machine,
was the inspiration behind the formulation of the von Neumann
architecture [11]. Driven by dual and often conflicting objec-
tives of machine and programmer efficiency, the programming
paradigm has evolved from machine code, to assembly lan-
guage, to high-level languages. High-level languages prevalent
today trace their genesis to FORTRAN [12]. As noted by
Backus et al. [13], “The fundamental unit of a program is the
basic block; a basic block is a stretch of program which has
a single entry point and a single exit point.” This implies that
a program for a von Neumann architecture is fundamentally a
linear or sequential construct.

Like von Neumann machines, TrueNorth is Turing-
complete [9]. However, they are complementary in that each
is efficient for different classes of computation. A TrueNorth
program is a complete specification of a network of neurosy-
naptic cores, and all external inputs and outputs to the network,
including the specification of the physiological properties (neu-
ron parameters, synaptic weights) and the anatomy (inter- and
intra-core connectivity). The job of a TrueNorth programmer
is to translate a desired computation into a specification that
efficiently executes on TrueNorth, namely, a completely speci-
fied network of neurosynaptic cores, its inputs, and its outputs.
In this context, the linear programming paradigm of the von
Neumann architecture is not ideal for TrueNorth programs.
Therefore, we set out to develop an entirely new programming
paradigm that can permit construction of complex cognitive
algorithms and applications while being efficient for TrueNorth
and effective for programmer productivity.
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Fig. 1. TrueNorth is a brain-inspired chip architecture built from an
interconnected network of lightweight neurosynaptic cores [2], [3]. TrueNorth
implements “gray matter” short-range connections with an intra-core crossbar
memory and “white matter” long-range connections through an inter-core
spike-based message-passing network. TrueNorth is fully programmable in
terms of both the “physiology” and “anatomy” of the chip, that is, neuron
parameters, synaptic crossbar, and inter-core neuron-axon connectivity allow
for a wide range of structures, dynamics, and behaviors. Inset: The TrueNorth
neurosynaptic core has 256 axons, a 256�256 synapse crossbar, and 256
neurons. Information flows from axons to neurons gated by binary synapses,
where each axon fans out, in parallel, to all neurons thus achieving a 256-fold
reduction in communication volume compared to a point-to-point approach.
A conceptual description of the core’s operation follows. To support multi-
valued synapses, axons are assigned types which index a synaptic weight for
each neuron. Network operation is governed by a discrete time step. In a time
step, if the synapse value for a particular axon-neuron pair is non-zero and
the axon is active, then the neuron updates its state by the synaptic weight
corresponding to the axon type. Next, each neuron applies a leak, and any
neuron whose state exceeds its threshold fires a spike. Within a core, PRNG
(pseudorandom number generator) can add noise to the spike thresholds and
stochastically gate synaptic and leak updates for probabilistic computation;
Buffer holds incoming spikes for delayed delivery; and Network sends spikes
from neurons to axons.

C. Contributions

As stated earlier, a TrueNorth program is a complete
specification of a network of neurosynaptic cores, along with
its external inputs and outputs. As the size of the network
increases, to completely specify such a network while being
consistent with TrueNorth architecture becomes increasingly
difficult for the programmer. To help combat the complexity,
we propose a divide-and-conquer approach whereby a large
network of neurosynaptic cores is constructed by interconnect-
ing a set of smaller networks of neurosynaptic cores, where
each of the smaller networks, in turn, could be constructed
by interconnecting a set of even smaller networks, and so on,
until we reach a network consisting of a single neurosynaptic
core, which is the fundamental, non-divisible building block.

To this end, as our fundamental contribution, we develop
a new programming paradigm that consists of (a) a corelet,
namely an abstraction that represents a TrueNorth program that
only exposes external inputs and outputs while encapsulating
all other details of the network of neurosynaptic cores; (b)
an object-oriented Corelet Language for creating, composing,
and decomposing corelets; (c) a Corelet Library that acts as
an ever-growing repository of reusable corelets from which
to compose new corelets; and (d) an end-to-end Corelet
Laboratory that is a programming environment that integrates
with the TrueNorth architectural simulator, called Compass [3],
and supports all aspects of the programming cycle from design,
through development, debugging, and into deployment.

Corelets, Composition, and Decomposition (Sec. II): A
corelet (Fig. 2) is an abstraction of a network of neurosynaptic
cores that encapsulates all intra-network connectivity and all
intra-core physiology and only exposes external inputs to
and external outputs from the network. We group inputs and
outputs into connectors. A corelet user has access only to input
and output connectors.

Given a set of corelets, composition is an operation for
creating a new corelet. For ease of exposition, we refer to
the constituent corelets as sub-corelets. Fig. 2(d)-(f) illustrates
three key steps of composition: (a) interconnect some of the
outputs of the sub-corelets to some of the inputs of the sub-
corelets; (b) encapsulate all intra-corelet connectivity; and
(c) expose only external inputs to and external outputs from
the corelet. The process of composition can be hierarchically
repeated to create progressively more complex corelets. There-
fore, it is possible to think of any corelet as a tree of sub-
corelets, where the leaves of the tree constitute individual
neurosynaptic cores.

The corelet abstraction is designed to boost programmer
productivity, but cannot be directly implemented on TrueNorth.
Given a corelet, decomposition (Fig. 3) is the logical inverse of
composition, that is, it is an operation for removing the nested
tree structure and for removing all layers of encapsulation to
produce a network of neurosynaptic cores that can be imple-
mented on the TrueNorth architecture, either in simulation or
hardware.

Corelet Language (Sec. III): The fundamental symbols of
the language are the neuron, neurosynaptic core, and corelet.
The connectors constitute the grammar for composing these
symbols into TrueNorth programs. Together, the symbols and
the grammar are both necessary and sufficient for expressing
any TrueNorth program. We implement these primitives in
object-oriented methodology.

Corelet Library (Sec. IV): The library is a repository of
consistent, verified, parameterized, scalable and composable
functional primitives. To boost programmer productivity, we
have designed and implemented a repository of more than 100
corelets in less than one year. Every time a new corelet is writ-
ten, either from scratch or by composition, it can be added back
to the library, which keeps growing in a self-reinforcing way.
Further, by virtue of composability, the expressive capability
of the library grows exponentially as some power, ¡ 1, of its
size.

Corelet Laboratory (Sec. V): Eventually, a corelet must
be decomposed and implemented on TrueNorth, either in
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Fig. 2. Panels (a), (b), and (c) illustrate construction of a seed corelet while panels (d), (e), and (f) illustrate construction of a corelet via composition of
two sub-corelets. (a) Create recurrent connections, by connecting a set of neurons on the core with a set of axons on the core. Configure the synaptic crossbar
to connect axons to neurons. A neuron is a source of spikes and an axon is a destination of spikes. (b) Unconnected axons, that receive spikes from outside the
core, are grouped into an enumerated list known as an input connector. Unconnected neurons, that send spikes outside the core, are grouped into an enumerated
list known as an output connector. (c) The seed corelet encapsulates the intra-core neuron-axon connectivity, synaptic crossbar, and neuron parameters while
exposing the input and output connectors. The corelet developer sees all corelet internals, but a corelet user only sees the exposed external interfaces. (d) Create
connections between sub-corelets by interconnecting a set of output connector pins to a set of input connector pins. (e) Unconnected input connector pins,
that receive spikes from outside the composed corelet, are grouped into a new input connector. Unconnected output connector pins, that send spikes outside of
the composed corelet, are grouped into a new output connector. (f) The composed corelet encapsulates the sub-corelets and the internal connectivity between
sub-corelets, while exposing the new input and output connectors. The developer of the composed corelet sees all the internals of the composed corelet but not
the internals of the sub-corelets due to encapsulation. However, a user of the the composed corelet only sees the exposed external interfaces.

hardware or simulation, and interact with the environment via
event-driven, spiking sources (for example, sensors) and desti-
nations (for example, actuators) that connect to it. To facilitate
this process, the Corelet Laboratory provides a complete end-
to-end framework.

The value of the new paradigm to the programmer is:
freedom from thinking in terms of low-level hardware prim-
itives; availability of tools to design at the functional level;
ability to use a divide-and-conquer strategy in the process of
creating and verifying individual modules separately; a new
way of thinking in terms of simple modular blocks and their
hierarchical composition, rather than having to deal with an
unmanageably large network of neurosynaptic cores directly;
guaranteed implementability on TrueNorth; ability to verify
correctness, consistency, and completeness; ability to reuse
code and components; ease of large-scale collaboration; ability
to configure more neurosynaptic cores per line of code and
unit of time; access to an end-to-end environment for creating,
compiling, executing, and debugging; and the ability to use
the same conceptual metaphor across functional blocks that

Fig. 3. Example of corelet decomposition. Assuming that “Corelet A” and
“Corelet B” in panel (d) of Fig. 2 are both instances of the “Corelet” in panel
(c) of Fig. 2, the composed corelet shown in panel (f) of Fig. 2 is decomposed
by progressively removing all layers of encapsulation to produce a network
of neurosynaptic cores along with its external inputs and outputs, resulting in
a TrueNorth program. The program can be executed on TrueNorth hardware
as well as simulated using Compass [3].

range from a handful of synapses and neurons to networks
of neurosynaptic cores with progressively increasing size and
complexity.



II. CORELET DEFINITION

A. Seed Corelet

A seed corelet is a TrueNorth program consisting of a
single neurosynaptic core that exposes only inputs and outputs
to the core while encapsulating all other details, including neu-
ron parameters, synaptic weights, and intra-core connectivity.
The corelet programmer specifies both the internal details and
external interfaces, while the corelet user uses only external
interfaces. Panels (a), (b), and (c) of Fig. 2 show an example
of seed corelet construction.

A neuron is a source of spikes, and an axon is a spike
destination. For axons that receive inputs from neurons within
the same seed corelet, the corelet programmer can unambigu-
ously specify and pair these axons/neurons together during
corelet development. For axons that receive inputs from outside
their seed corelet, the source neuron is unknown to the corelet
programmer at development time. These axons are grouped
into an enumerated list known as an input connector. The
sources of these axons will be specified only later, when a
user instantiates and connects this corelet.

Similarly, for neurons that send outputs to axons within the
same seed corelet, the corelet programmer can unambiguously
specify and pair these axons/neurons together during corelet
development. For neurons that send output outside this seed
corelet, the destination is unknown to the corelet programmer
at development time. These neurons are grouped into an enu-
merated list known as an output connector. The destinations
of these neurons will be specified only later, when a user
instantiates and connects this corelet.

B. Corelet

As mentioned earlier, we can compose a set of corelets
into a new corelet. Through this process, the original corelets
become the sub-corelets of the newly composed corelet. For
all sub-corelets, their output connectors are spike sources and
their input connectors are spike destinations.

Composition is illustrated in panels (d), (e), and (f) of
Fig. 2. First, we create connections between sub-corelets,
connecting some of the source and destination pins. Second,
some of the sub-corelet’s input pins that were not connected are
grouped into the composed corelet’s input connector, and some
of the sub-corelet’s output pins that were not connected are
grouped into the composed corelet’s output connector. The new
corelet’s connectors are exposed, but the sub-corelets and their
local connectivity are encapsulated by the composed corelet.
In general, corelets can be composed from both neurosynaptic
cores and sub-corelets.

Decomposition is the logical inverse of composition. It
operates on a composed corelet, removing the hierarchical
structure layer by layer until a flat network of cores is obtained,
which in turn can be expressed as a TrueNorth Program and
written into a model file. Composition and decomposition are
described in detail later in Section III-E.

III. CORELET LANGUAGE

Why Object-Oriented Methodology?

From the perspective of a language designer, object-
oriented programming (OOP) is the ideal method for imple-
menting corelets for at least three reasons.

First, by definition, a corelet encapsulates all the details of
a TrueNorth program except for external inputs and outputs.
Encapsulation is also a fundamental feature of OOP. Therefore,
corelet encapsulation can be guaranteed by defining a corelet
class and then instantiating corelets as objects from this class.

Second, all corelets must use similar data structures and
operations, and must be accessed by users in similar ways. This
similarity can be achieved by another fundamental feature of
OOP, inheritance, which allows the underlying data structures
and operations to be defined once for an abstract class and
then passed down to abstract subclasses derived from it, as
well as to object instances of the class.

Third, we need to invoke operations such as “decompose”
(to translate them into a TrueNorth program) and “verify” (to
ensure that they are correct and consistent with respect to
TrueNorth) on all corelets. Each operation is named homoge-
neously across mutiple corelets, but can be heterogeneously
defined for different corelets. These operations can be im-
plemented by polymorphism - another fundamental feature of
OOP.

Therefore, defining a corelet as a class in an OOP frame-
work grants us encapsulation, inheritance, and polymorphism;
and dramatically improves the design, structure, modularity,
correctness, consistency, compactness, and reusability of code.
Starting from a base corelet class, different corelets can be
written as sub-classes, and different concrete corelets would
be object instances of these classes1. We have implemented
the Corelet Language using MATLAB OOP, which has the
additional advantage of being a compact language for matrix
and vector expressions and computations.

The language is composed of four main classes and their
associated methods. The classes are the neuron, neurosynaptic
core, connector, and corelet. While the implementation uses
a number of innovative data structures and optimizations, in
what follows we present only the most essential ideas for the
sake of brevity and for ease of exposition.

A. The Neuron Class

Per the neuron model in [9], the Neuron class contains
all of the properties of the TrueNorth neuron model, such
as initial membrane potential, thresholds, leaks, and reset
modes. The neuron’s get() and set() methods, used for
setting and retrieving these properties, ensure that all values
are compatible with TrueNorth. For convenience, we provide
default values for a set of commonly used neuron behaviors.

1At this point, it is noteworthy to make a distinction between two different
trees. The hierarchical composition of corelets from sub-corelets must not be
confused with the hierarchy of corelet classes. The former is a tree of corelet
objects, formed in the computer memory when the corelet code is executed.
Each corelet object keeps handles (references, like pointers) to its sub-corelets,
hence forming a tree. The later is a tree of code, with a child class inheriting
properties and methods from their parent class, which comprises the Corelet
Library.
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Fig. 4. The three connectivity patterns between connectors and cores are illustrated, with arrows indicating the flow of spikes. These three connectivity patterns,
when combined, allow to create any network of TrueNorth neurosynaptic cores. (a) Connecting the destination side of some pins in two connectors to some
input axons on a core. (b) Connecting the source side of some pins in two connectors to some output neurons on a core. (c) Connecting the destination side of
connector C1 to the source side of connector C2 (written in Corelet Language as C1.busTo(C2,P), where the permutation vector P may be omitted when
equal to the identity permutation).

B. The Core Class

The core class models the TrueNorth neurosynaptic core.
The essential properties of the core class include: a vector
of 256 axons that stores the axon types; a vector of 256
neuron objects, instantiated from the neuron class; a vector
of 256 target axonal destinations, one per neuron; and a
256 � 256 matrix, representing the binary connections in the
synaptic crossbar. In addition to the usual get() and set()
methods, we provide methods to ensure that all values are
compatible with TrueNorth. We also provide methods for
assigning connectivity between neuron-axon pairs.

C. The Connector Class

Each corelet assigns a unique local identifier to each of its
constituent neurosynaptic cores and sub-corelets. Each axon
and each neuron on a core is assigned a unique identifier
with respect to the core. Similarly, each external output of
a corelet and each external input to a corelet is assigned a
unique identifier with respect to the corelet.

We identify the ath axon on a core, named core, as a
destination address by writing ra, cores and we identify the
nth neuron on core as a source address by writing rn, cores.
Similarly, we write the destination address of the ath external
input on corelet C as ra,Cs and the source address of the nth

external output on corelet C as rn,Cs.

Suppose we have a set of neurosynaptic cores and corelets.
A pin is either an external input or an external output of a
core or a corelet; it holds a source address and a desitination
address, as well as a true or false state for each address
that indicates if its value has been specified. Before the
composition process, the pin’s source and destination addresses
are not known. Therefore, we mark an uninitialized pin that
corresponds to the pth input or output of core or corelet
C as prp, Cs, rp, Csq, and set the pin’s state to (false,false).
Starting with this uninitialized state, via the composition
process, each pin attains a final state such that its source and
destination addresses are completely specified, for example
prn,C1s, ra,C2sq, and its state is (true, true).

To connect an uninitialized pin that corresponds to the pth

external input of a core or a corelet C to the ath input of core
or corelet C2, we update the pin’s value to prp, Cs, ra,C2sq
and its state to (false, true). Specifically, we update the pin’s
destination address and destination state. Similarly, to connect
an uninitialized pin that corresponds to the pth external output
of a core or a corelet C to nth input of core or corelet C1,
we update its value as prn,C1s, rp, Csq and its state as (true,
false). Specifically, we update the pin’s source address and
source state.

Given an output pin p of the form prn,C1s, rp, C2sq and
state as (true, false), meaning that its destination address is
unknown, and an input pin 1 of the form prq, C3s, ra,C4sq and
state (false, true), meaning that its source address is unknown,
the process of pairing them involves updating the states as
follows: We update the value of pin p as prn,C1s, rq, C3sq and
the value of pin q as prp, C2s, ra,C4sq. Then we update the
states of both pins to (true, true).

To summarize, whenever a pin is connected to a destina-
tion, its destination address and state are updated. Similarly,
whenever a pin is connected to a source, its source address and
state are updated. When a pin connects to another pin, these
operations happen in tandem on both the pins.

The properties of the connector class consist of an ordered
list of pins, where each pin has a tuple of two addresses and
a state as defined above. The connector class offers several
connectivity methods for connecting cores to connectors as
well as for connecting connectors to other connectors, as
shown in Fig. 4.

The inter-connectivity between neurosynaptic cores can be
thought of as a bipartite graph between neurons and axons.
With N neurons and axons, there are N ! possible connectivity
patterns. Direct specification of such complex neuron-axon
wiring does not scale and is highly error-prone. In this context,
the connector is an extremely powerful primitive that provides
a semantic representation of connectivity.
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Fig. 5. A corelet is an abstraction of a network of neurosynaptic cores. The
corelet has an input connector and an output connector. Each connector has a
public side and an encapsulated private side. The figure also shows pins on
each connector. On the private side, pins of the input connector connect to
input axons within the network of neurosynaptic cores, and pins of the output
connector connect to output neurons in the network of neurosynaptic cores.

D. The Corelet Class

The properties of the corelet class constitute sub-corelets,
neurons, cores, input connectors, and output connectors. While
all properties of a corelet are private, the source address of
its input connector and the destination addresses of its output
connector are public. To facilitate composition, the corelet
class offers methods for: (a) recursively creating constituent
sub-corelet objects; (b) creating neuron types; (c) creating con-
stituent core objects; (d) creating input and output connectors;
and (e) interconnecting the connectors, cores, and sub-corelets
within the corelet. Since corelets can be composed hierarchi-
cally, several of the corelet methods are built to recursively
traverse corelet trees and operate on them. Finally, the corelet
class offers a method for decomposition that recursively travels
the corelet object tree to remove all layers of abstractions
and produce a TrueNorth program. Corelet composition and
decomposition are illustrated in Fig. 6. As described later in
Sec. V, we use the decomposition method to output a model
file in a JSON mark-up language. The file is then used to run
the TrueNorth program on the Compass Simulator.

The key design criteria is to ensure that all TrueNorth
programs are expressible in the corelet language, and, con-
versely, any corelet that the language allows is TrueNorth
compatible. In other words, the language should be complete
and consistent with respect to the TrueNorth architecture. To
this end, we have identified a set of invariants: (a) a corelet
has all its constituent cores, neurons, and synaptic crossbars
fully specified and configured. (b) a corelet has all its cores,
sub-corelets and connectors fully connected; (c) each neuron
in a corelet is either assigned with a destination address of an
axon, is defined as disconnected, or is connected to a pin in an
output connector; (d) each axon in a corelet is either connected
to a source neuron, is defined as disconnected, or is connected
to a pin in an input connector. Given the recursive nature of a
corelet, all these invariants are recursively and hierarchically
asserted and enforced throughout.

E. Composition and Decomposition

The connectivity within the corelet and its sub-corelets is
constructed in two phases by the process of composition and
decomposition. The process of composition creates a doubly
linked path between each source neuron in the system and
its corresponding destination axon — while following and
preserving corelet encapsulation. The process of decompo-
sition (a logical inverse of composition) removes all layers
of indirection along the path one by one and eventually
replaces the entire path with a direct link between the source
neuron and its target axon. This process creates a TrueNorth
program, expressed in terms of a directly connected network
of neurosynaptic cores without any encapsulation. The two
processes are illustrated in Fig. 6, using an example that we
will fully develop in Sec. V.

The recursive process of composition takes place during
the recursive corelet construction process. As seen in the
figure, it creates a doubly linked path between the source
neuron rn1, core1s and the destination axon ra2, core2s which
can be described by the list of pins along the path, namely
rn1, core1sñórp1, C1sñórp2, C2sñórp3, C3sñórp4, C4sñóra2, core2s.
Note that each pin along the list is linked to the pin on
its left and the pin on its right, therefore creating a doubly
linked path, while traversing through multiple corelets and
preserving encapsulation. It can be seen that within a corelet,
due to encapsulation, only its sub-corelets can connect with
one another. At the end of the composition process, all
source neurons are connected via paths to their corresponding
destination axons.

The recursive process of decomposition traverses the com-
posed corelets, processing from the bottom up (depth-first
order), removing one pin from the path at a time. Starting
to operate in Corelet L, it removes rp1, C1s from the path
by connecting rn1, core1s to rp1, C1s and passing its cores
to its parent, Corelet LSM. As a result, the path becomes
rn1, core1sñórp2, C2sñórp3, C3sñórp4, C4sñóra2, core2s, and the
encapsulation of Corelet L is removed. This process continues
until all the cores are passed to Corelet MCR and the remaining
path is the direct connection rn1, core1sñóra2, core2s.

IV. CORELET LIBRARY

The Corelet Library is the foundation from which new
systems and new corelets are composed (Fig. 7). It contains
all the corelets that are available, and continuously grows as
more corelets are developed. Any corelet from the library can
be used for building a new system, and the new system itself
can then be added back into the library in the form of a new
corelet, thereby growing and enriching the library in a bottom-
up fashion. In less than a year since we started to use the
Corelets Language, the team has developed more than 100
corelets.

All corelets are sub-classes of the corelet base class, so
the Corelet Library is also a tree of sub-classes. A general-
purpose corelet, such as a linear filter corelet, can then have
sub-classes such as a Gabor filter corelet, non-linear filters, and
recursive IIR filters. In our companion paper, we describe in
detail several applications that use this hierarchical approach
to build functional systems [10].
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S (S not shown for clarity). Corelet L, when created, connects output neuron
rn1, core1s to pin rp1, C1s. Next, Corelet LSM connects connector C1 to
C2, thereby connecting rp1, C1s and rp2, C2s. Similarly, Corelet C, when
constructed, connects rp4, C4s to input axon ra2, core2s. Next, Corelet SC
connects rp4, C4s with rp3, C3s. Finally, after both Corelets LSM and SC
are constructed and composed, Corelet MCR connects connector C2 with
connector C3, thereby connecting rp2, C2s with rp3, C3s and completing
the doubly linked path between neuron rn1, core1s and axon ra2, core2s,
captured by the four pins in the four connectors along the path. The consequent
recursive decomposition process traverses the corelets in the same order. At
each corelet, it removes its own pin from the path by directly connecting the
pin referenced by its source address with the pin referenced by its destination
address, hence reducing the path length by one. When the decomposition
process completes, all connector pins are removed from the path and source
neuron rn1, core1s is connected directly to its destination axon ra2, core2s,
as part of the TrueNorth program.

The corelets currently in the Corelet Library include scalar
functions, algebraic, logical, and temporal functions, splitters,
aggregators, multiplexers, linear filters, kernel convolution
(1D, 2D and 3D data), finite-state machines, non-linear filters,
recursive spatio-temporal filters, motion detection, optical flow,
saliency detectors and attention circuits, color segmentation, a
Discrete Fourier Transform, linear and non-linear classifiers, a
Restricted Boltzmann Machine, a Liquid State Machine, and
more. The corelet abstraction and unified interfaces enable
developers to easily replace a library corelet with an alternative
implementation without disrupting the rest of the system.

V. CORELET LABORATORY

Now that we have all the pieces together, we present an
end-to-end Corelet Laboratory, the programming environment
that integrates with the TrueNorth architectural simulator,
Compass [3], and supports all aspects of the corelet program-
ming cycle from design, through development, debugging, and
into deployment, as shown in Fig. 7.

A. Sample Application: Music Composer Recognition

We now illustrate the Corelet Laboratory using a concrete
application. Given a musical score by Bach or Beethoven, con-
sider the problem of identifying the music piece’s composer.
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Fig. 7. The Corelet Laboratory. We depict the complete development cycle
with all the tools. The Corelet Library is a hierarchical library of all corelets
created by developers. The Corelet development process typically involves
creating and inheriting from the Corelet Library, composing sub-corelets
together into new corelets, and submitting the new corelet into the library
after verification. The new corelet then becomes available for use by other
applications, thus allowing composition. A concrete application is created by
instantiating objects from the created corelet class. The instantiated object
is then decomposed into a network model file that represents a TrueNorth
program. This, in turn, is used to setup the Compass simulator. The external
input and output connectors are used, respectively, to create input and output
map files that show where sensory input should be targeted and from where
the output is to be received. During execution, the simulator receives sensor
transduced input spikes and generates output spikes that can be used to
interpret classification, drive actuators, or create visualizations.

We adopt the approach of using a liquid state machine [14]
in conjunction with a hierarchical classifier. In this paper, our
focus is not so much the application itself but the programming
paradigm used to create it. The reader interested in more details
about the application can consult the companion paper [10].

The corelet developed for the application, named Corelet
MCR, is illustrated in Fig. 8. The figure illustrates how the
hierarchical nature of corelets, corelet composition, encapsu-
lation, modularity, and code reusability are useful in creating
complex cognitive systems.

B. Corelet Composition and Decomposition

The code for constructing the Corelet MCR is illustrated
in Listing 1. Notice that the creation of its sub-corelet uses
two recursive corelet instantiation calls, with parameters being
passed to the sub-corelets in a top-down order from the parent
corelet to the children. Connectivity is handled after these calls
are completed, in a bottom-up order (first the sub-corelets are
interconnected, then the parent). Recursive corelet constructor
calls apply heterogeneously to all corelet classes. The Corelet
MCR constructor does not create any cores or neurons, rather
these are created by its sub-corelets. Observe that the developer
of the Corelet MCR does not need to worry about either the
construction or the connectivity within its constituent Corelet
LSM and Corelet SC.
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Fig. 8. A corelet diagram of the Music Composer Recognition system,
provided here as a Corelet Language “Hello World” example. The application
is written as a corelet class: MCR. It is hierarchically composed of two sub-
corelets; a parametric Liquid State Machine (LSM) corelet and a Stackable
Classifier (SC) corelet. The Corelet LSM has, in turn, two sub-corelets:
Corelets Liquid and Splitter. Likewise, the Corelet SC is composed of a
hierarchical classifier.

C. Creation of TrueNorth Program

The Corelet Laboratory provides functionality to instan-
tiate, compose, and execute TrueNorth programs with the
TrueNorth simulator, Compass. The pseudocode required to
instantiate the Corelet MCR (shown in Fig. 8) as app and
run it is illustrated in Listing 2. First, the corelet is created by
invoking its constructor (Line 2). The external input and output
interfaces of app are declared in Lines 3-4. The corelet is
verified (Line 5) to ensure that its model is complete and valid
for the TrueNorth architecture. When the verification stage is
successful, the network model file is created by the modelGen
method via decomposition (Line 6), generating a model file in
JSON format, describing the network of neurosynaptic cores,
that is, a TrueNorth program.

D. Input and Output Map Files

Input and Output maps define the external interfaces of
the TrueNorth program by providing look-up tables of the
destination axons and the source neurons connected to External
input and output connectors. External input axons can be fed
by sensory input, and external output from neurons can send
spikes to actuators, or other devices. Lines 7-8 in Listing 2
show how the Corelet Laboratory enables generation of input
and output map files for app. When app is built, its input
and output serve as the external interfaces to the system. These
connectors are set as external connectors, and are saved as the
input and output map files of the network.

1

2c lassdef MCR < c o r e l e t
3% Corele t MCR( nInputs , nLayers , nClasses ,W)
4% nInputs � number of inpu t s per layer
5% nLayers � number of layer s in LSM
6% nClasses � number of Music Composers
7% W � c l a s s i f i e r weight matrix
8methods % publ ic
9function obj=MCR( nInputs , nLayers , nClasses ,W)
10obj . name=’Music Composer Recognit ion Corelet ’ ;
11% create sub�c o r e l e t s
12lsm = LSM( nInputs , nLayers ) ;
13sc = SC( nClasses ,W) ;
14obj . s u b c o r e l e t s =[ lsm , sc ] ;
15% create connectors
16obj . inp (1 )=connector ( nInputs , ’ input ’ ) ;
17obj . out (1 )=connector ( nClasses , ’ output ’ ) ;
18% connect sub�c o r e l e t s and connectors :
19obj . inp (1 ) . busTo ( lsm . inp (1 ) ) ;
20lsm . out (1 ) . busTo ( sc . inp (1 ) ) ;
21sc . out (1 ) . busTo ( obj . out (1 ) ) ;
22end % of cons t ruc tor
23end % of methods
24end % of c l a s s d e f

Listing 1. The constructor of the Corelet MCR for Music Composer
Recognition which is a sample application described in Fig. 8. The MCR
class is derived from the corelet class (Line 1). The constructor, a MATLAB
function, receives four parameters and returns a handle (reference) to the
constructed corelet object, obj. It creates its two sub-corelets, lsm and
sc, by recursively invoking their corresponding corelet constructors with
the appropriate parameters. Each sub-corelet call returns a handle to the
corelet object it created. In Line 13 the two sub-corelet handles are stored in
obj.subcorelets, making it a 1� 2 array of corelets. Next, the Corelet
MCR creates its own input and output connectors (Lines 15-16). Finally in
Lines 18-20 it composes its sub-corelets by creating the connections which
are marked by the three little arrows inside the Corelet MCR in Fig. 8. Using
the connector’s busTo() method it connects its own input connector to the
input of lsm; the output of lsm to the input of sc; and the output of sc to
its own output. The processes of composition and decomposition are further
described in Fig. 6.

E. Transduction and Simulation

When the corelet is executed, the utility function
videoToSpikes(Line 9) is called to generate an input spike
file from an indicated video file. The individual pixel gray
levels from the input video are converted to spikes. The spikes
of a pixel are mapped to a core-axon tuple, corresponding to
a specific pin of the input connector defined in the input map
file (Line 9). This process of converting data to spikes is called
transduction. The generated spikes are then stored in an input
spikes file. A raster of a typical spike file is shown in Fig. 9.

Simulation of the model file with its input spikes occurs
outside of the MATLAB environment using the Compass [3]
simulator. The simulator expects three arguments: a configura-
tion file (app.conf), a model file (app.json), and an input spike
file (v1.sfbi). It simultes the model operation with the input
spikes and produces an output spikes file.

After the simulation completes, a utility function loads the
generated spikes into an array s (Line 11), where they can be
plotted or analyzed. The read_spike_file function uses
the output map to interpret the spike addresses. Finally, the
spikes in s are visualized as a video.



1c o r e l e t i n i t ;
2app = MCR( nInputs , nLayers , nClasses ,W)
3app . inp (1 ) . s e t E x t e r n a l I n p u t ( ‘ audioIn ’ ) ;
4app . out (1 ) . se tEx te rna lOutpu t ( ‘ classOut ’ ) ;
5i f ( app . v e r i f y ( ) )
6app . modelGen ( ‘ app . json ’ ) ;
7app . wri teInputMapFile ( ‘ app iMap . bin ’ ) ;
8app . writeOutputMapFile ( ‘ app oMap . bin ’ ) ;
9videoToSpikes ( ‘ v1 . avi ’ , ‘ v1 . s fb i ’ , ‘ app iMap . bin ’ ) ;
10! compass app . conf app . j son v1 . s f b i
11s = r e a d s p i k e f i l e ( ‘ v1 . sfbo ’ , ‘ app oMap . bin ’ ) ;
12spikePlayback ( s ) ;
13e l s e
14disp ( ’ V e r i f i c a t i o n f a i l e d . ’ ) ;
15end

Listing 2. The corelet generation and running script, starting from
instantiation of the sample Corelet MCR (described in Fig. 8), verification,
generation of a network model file, I/O map files and spikes input files, running
the network with the input spikes, and reading and visualizing the output
spikes.
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Fig. 9. A spike raster of a five-layers TrueNorth test program, with each
layer composed of one seed corelet. Output spikes from the 256 neurons in
each neurosynaptic core are stacked along the y-axis. Spike time is along the
x-axis (1tick=1mSec).

VI. RELATED WORK

Mark-up languages (NeuroML[15]), simulator-independent
languages (PyNN[16], [17]), and domain-specific languages
(OptiML [18][19]) have been developed for neural modeling
and simulation in software, independent of any neurosynaptic
hardware. In contrast, the corelet software is tied to the
underlying TrueNorth hardware architecture. In this context,
the corelet programming paradigm has similarities with Hard-
ware Description Languages (VHDL and Verilog [20]) in
terms of hardware-compatibility, concurrency, encapsulation,
and composition.

Queueing Petri Net Modeling Environment[21] is a system
for modeling, simulation and analysis of processes using Petri
nets. It includes a graphical user interface for editing and
composition of hierarchical models. However, a graphical
editor might be ineffective for networks of the size and connec-
tivity complexity of typical TrueNorth programs. The recent
Connection-Set Algebra is a high level language for specifying
connectivity patterns between groups of neurons [22] by us-
ing set algebra and matrix operations to create connectivity
lists and adjacency matrices. In a similar vein, the corelet
programming paradigm employs connectors and permutations
for long-distance “white-matter” connectivity and synaptic
crossbar matrices for short-distance “gray-matter” connectivity,
and leverages MATLAB’s rich algebraic and matrix operators.

A language for expressing the inherent massive parallelism
of neural networks was presented in [23]. The network is con-
verted into an abstract internal representation and then mapped
onto multiple von-Neumann processors, which is different
from the corelet programming paradigm, where the network is
mapped to inherently parallel TrueNorth architecture. Finally,
C* [24] was developed in 1988, as an extension to C, to
build applications for the Connection Machine[25], a non von-
Neumann architecture.

VII. CONCLUSION
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Fig. 10. A corelet is an abstraction of a TrueNorth program and is composed
hierarchically from sub-corelets (other corelets) while ensuring correctness,
consistency, and completeness with respect to the TrueNorth architecture.

The linear sequential programming paradigm developed for
von Neumann is wholly unsuited for the TrueNorth parallel
cognitive architecture. Effective tools for thinking transform
cognitively complex tasks into simpler ones at which humans
can excel [26]. This process involves choosing the appropriate
metaphors to scaffold thinking and harnessing the expressive
capacity of the language to effectively translate a desired
computation into an efficient, executable program.

Therefore, starting from first principles, in this paper,
we have defined a novel metaphor of a TrueNorth program,
namely, corelets, see, Fig. 10. Leveraging this notion, we
have developed an entirely new programming paradigm that
can permit construction of complex cognitive algorithms and
applications while being efficient for TrueNorth and effective
for programmer productivity. The paradigm consists of a
language for expressing corelets; a library of corelets; and a
laboratory for experimenting with corelets.



Philosophically, the corelet programming paradigm has
affinity with Gottlob Frege’s Principle of Compositionality
[27]:

The meaning of a complex expression is a function
of the meanings of its constituents and the way they
are combined.

The Corelet Library is a store of accumulated knowledge
and wisdom that can be repeatedly re-used. New corelets are
written and added to the library, which keeps continually grow-
ing in a self-reinforcing way. Based on the compositionality
of corelets and on our experience regarding the combinatorial
growth of the Corelet Library, we posit an empirical law for
TrueNorth’s software capability CS :

CS 9 Lλ

where L is the size of the library and λ ¡ 1 is a constant.

Here, we have focused on essential concepts underlying the
programming paradigm and presented them in their simplest
form to aid understandability. However, the Corelet Language
supports powerful primitives, such as parametric corelets that
can instantiate a rich variety of corelet objects at run-time
from a single corelet class, and meta-corelets that operate
on other corelets to compactly create extremely large and
powerful TrueNorth programs. With a view towards large-
scale TrueNorth programs, we are currently extending the
programming paradigm using MATLAB’s Parallel Computing
Toolbox.

When referring to the von Neumann bottleneck, John
Backus, in his 1972 Turing Lecture [28] said: “it is an
intellectual bottleneck that has kept us tied to word-at-a-time
thinking instead of encouraging us to think in terms of the
larger conceptual units of the task at hand.” We now live in an
instrumented world that is inundated with a tsunami of data
from sensors. Most of this data is parallel in nature and is
ideal for parallel processing by TrueNorth. However, to invent
effective algorithms and applications, we need to move away
from long, sequential von Neumann thinking to short, parallel
thinking. We believe that the corelet programming paradigm
is the right paradigm for capturing complex, parallel thinking
and for composing complex cognitive systems.
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Beiträge zum Heinz-Billing-Preis, vol. 58, pp. 43–70, 2001.

[18] A. K. Sujeeth et al., “OptiMLl: An implicitly parallel domain-specific
language for machine learning,” in Proceedings of the 28th International
Conference on Machine Learning, ICML, 2011.

[19] T. Rompf et al., “Building-blocks for performance oriented DSLs,”
arXiv preprint arXiv:1109.0778, 2011.

[20] P. Ashenden, The designer’s guide to VHDL. Morgan Kaufmann, 2008,
vol. 3.

[21] S. Kounev, C. Dutz, and A. Buchmann, “Qpme-queueing petri net
modeling environment,” in Quantitative Evaluation of Systems, 2006.
QEST 2006. Third International Conference on. IEEE, 2006, pp. 115–
116.

[22] M. Djurfeldt, “The connection-set algebra–a novel formalism for the
representation of connectivity structure in neuronal network models,”
Neuroinformatics, pp. 287–304, 2012.

[23] A. Strey, “Epsilonna specification language for the efficient parallel
simulation of neural networks,” Biological and Artificial Computation:
From Neuroscience to Technology, pp. 714–722, 1997.

[24] M. Norton, “Simulation neural networks using c*,” in Frontiers of
Massively Parallel Computation, 1988. Proceedings., 2nd Symposium
on the Frontiers of. IEEE, 1988, pp. 203–205.

[25] W. Hillis, The connection machine. MIT press, 1989.
[26] D. Norman, Things that make us smart: Defending human attributes in

the age of the machine. Perseus Books, 1993.
[27] M. Werning, W. Hinzen, and E. Machery, The Oxford Handbook of

Compositionality. OUP Oxford, 2012.
[28] J. Backus, “Can programming be liberated from the von neumann

style?: a functional style and its algebra of programs,” Communications
of the ACM, vol. 21, no. 8, pp. 613–641, 1978.

http://oreilly.com/news/graphics/prog_lang_poster.pdf
http://oreilly.com/news/graphics/prog_lang_poster.pdf

	Introduction
	Context
	Motivation
	Contributions

	Corelet Definition
	Seed Corelet
	Corelet

	Corelet Language
	The Neuron Class
	The Core Class
	The Connector Class
	The Corelet Class
	Composition and Decomposition

	Corelet Library
	Corelet Laboratory
	Sample Application: Music Composer Recognition
	Corelet Composition and Decomposition
	Creation of TrueNorth Program
	Input and Output Map Files
	Transduction and Simulation

	Related Work
	Conclusion
	References

