
A Survey of Functional Reactive Programming
Concepts, Implementations, Optimizations, and Applications

Edward Amsden
Rochester Institute of Technology

eca7215@cs.rit.edu

Abstract
Functional Reactive Programming (FRP) provides a conceptual
framework for implementing reactive systems. It is a relatively re-
cent model of programming, but has already been explored, im-
plemented, and optimized in several useful ways. We survey the
literature on FRP, its implementation, optimization, and uses, and
present ideas for further research, along with some examples.

Categories and Subject Descriptors []

General Terms Programming Languages, Functional Program-
ming, Functional Reactive Programming

Keywords Programming, Functional, Denotational, Reactive,
Time

1. Introduction
Functional Reactive Programming (FRP) is a method of modeling
reactive (i.e. time-varying and responding to external stimuli) be-
havior in purely functional languages. It first appeared as a method
of structuring a composable library for animation [7]. The model
presented was already very general, and research quickly began to
focus on precise definitions of the semantics as well as optimized
implementations.

FRP permits the modeling of systems that must respond to input
over time in a simple and declarative manner. It has been used in the
construction of an animation library, an arcade-style video game, a
modular sound synthesis library, and a robotics library. Possible
further applications include general signal processing applications,
GUI toolkits, simulators, and almost any embedded application. A
program in an FRP language generally corresponds quite closely to
a mathematical model of the system being implemented.

The goal of FRP implementations is to enable:

• Safe programming: Programs should have as much correctness
checking as possible done by the compiler.

• Efficient programming: Since most FRP programs will be ex-
pected to respond in real-time, efficient operation and aggres-
sive optimization are necessary.

• Composability: Building off of a functional framework, FRP
permits programs to be built from smaller programs piecewise,
rather than creating monolithic, problem-specific codebases.

Submitted for Independent Study in Functional Reactive Programming, Spring 2010-
2011. Estimated hours: Average of 6 hours per week reading, for a total of 54
(no reading scheduled for 10th week), 15 for writing and editing, 12 for meetings,
scheduled and unscheduled. Estimate total: 81 hours.

The primary concepts of FRP are signals or behaviors (time-
varying values) and events (collections of instantaneous values,
or time-value pairs). Every instance of FRP conceptually includes
both, though they may not be first-class values, and one may be
defined in terms of the other.

FRP achieves reactivity by providing constructs for specifying
how signals or behaviors change in response to events. This may be
the primary way of specifying and implementing behaviors (as in
EFRP [21] and Frappé [5]) or behaviors may be semantic functions
of time which are replaced on event occurrences (this is the model
in most other implementations).

Several semantic models and variations on these models have
been explored, and implementations of these models have usually
been proposed alongside them. Several optimization techniques
for these implementations have also been explored, both as static
transformations and dynamic reconfigurations. Most of the opti-
mizations are specific to a particular implementation, though one
(Causal Commutative Arrows [14]) depends more on the semantic
framework and less on the specifics of the underlying implementa-
tions.

2. Semantics
Much of the difficult work on FRP has been in the definition of suit-
able semantics. Three distinct semantic frameworks have emerged,
each utilizing many of the same concepts, but with important dif-
ferences. The main differences involve the treatment of signals and
the representation of events.

Semantic definitions are necessary to permit reasoning about
how to form FRP programs. At such a high level of abstraction,
there is not a simple and obvious correspondence between the com-
putations the computer does and the computation the programmer
wishes to express. Thus it is important that the programmer have
an exacting definition of what computation is expressed by which
construct in an FRP library.

In Classic FRP (Section 2.1), signals (generally called behav-
iors) and events are first class values which are directly manipulated
by various language constructs. Signal function semantics (Section
2.2) include the concept of signals, but do not include them as first
class values or reactive constructs. Rather, functions on signals are
manipulated and made reactive. Events are represented as a special
case of signals, and manipulated with specialized signal functions.
N-ary FRP (Section 2.3) abstracts further to signal vector functions,
removing the ambiguity between an n-arity signal function and a
1-arity signal function on an n-tuple signal, and providing a mech-
anism to reintroduce events as a separate entity from signals [18].

2.1 Classic FRP
The original FRP semantics were outlined as a model for Fran [7]
and later given a formal denotative semantics [19]. Later papers [8,

-- Behavior (Function on time)
data Behavior a

-- Occurrence
newtype Occ a = Occ (Time, a)

-- Event
type Event a = [Occ a]

-- Lifting
lift0 :: a -> Behavior a
lift1 :: (a -> b) -> Behavior a -> Behavior b
lift2 :: (a -> b -> c) -> Behavior a -> Behavior b -> Behavior c
...

-- Reactivity, one of:
until :: Behavior a -> Event (Behavior a) -> Behavior a

switcher :: Behavior a -> Event (Behavior a) -> Behavior a

Figure 1. Types and combinators for Classic FRP

-- Functor
instancesem Functor Behavior where
fmap = lift1

-- Applicative Functor
instancesem Applicative Behavior where

pure = lift
(<*>) = lift2 ($)

Figure 2. Semantic instances of Haskell typeclasses for behaviors

instancesem Monad Event where
return x = [(−∞, x)]
occs (join ee) = foldr merge [] . map (uncurry delayOccs) (occs ee)

-- Makes each occurrence time at least the given time
delayOccs :: Time -> Event -> Event

Figure 3. Monad instance for events (simplified) [8].

18] refer to this model as ”Classic FRP”; we continue this conven-
tion.

Classic FRP takes behaviors and events as first class values.
Events are considered to be improving lists of occurrences1, while
behaviors are modeled semantically as functions of time [7].2 Re-
activity is modeled by combinators which take an initial behav-
ior and an event whose occurrence values are new behaviors. The
resulting behavior acts as the first behavior up to the first occur-
rence, and thereafter acts as the behavior encapsulated in the oc-
currence [7, 8, 19]. This combinator is variously called ”until” [19],
”switcher” [8], or some variant of those names, but the behavior is
essentially the same (Figure 1).

1 An improving value is one in which more of the value becomes available
as the computation proceeds. An occurrence is a value paired with a time.
2 This model for behaviors is inefficient for direct implementation, since it
provides no way of discarding unneeded information about past times, but
it is useful semantically.

The semantic definitions of behaviors given in most Classic FRP
are very similar. Behaviors have lifting functions liftn, which lift
functions of arity n to functions of the same arity on behaviors
(lift0 or just lift creates a constant-valued behavior), and an at
function which given a behavior and time produces the value of the
behavior at that time.

The implementers of Fran gave a formal semantics for Classic
FRP.3 An attempt was soon made at a correctness proof for the
semantics of FRP [19]. This set of proofs introduced the notion
of uniform convergence, which amounts to the limit of the result
of the sampled implementation as the sampling interval goes to 0
being equal to the result of the semantic function.

The description of the Reactive implementation of Classic FRP
provides semantic instances of functors and applicative functors

3 The term FRP does not appear in the Fran paper, but seems to have come
into common usage shortly thereafter, as it appears that every subsequent
paper on the topic does refer to FRP.

-- Behavior
newtype Behavior a = Behavior (TimeStep -> (a, Behavior a))

-- Event (Same as semantic type)
data Event a

Figure 4. Sample implementation types for Classic FRP

for behaviors. These instances generalize to the standard semantic
functions stated above, as given in Figure 2. A monad instance is
also definable, but not considered useful. Semantic instances are
also provides for events. Event is a monoid, with the identity being
the never-occurring event and the operation being the merge4 of the
occurrence lists of both events. Events also form a functor, mapping
a function over occurrence values without modifying occurrence
times. Defining an applicative functor instance from the monad
instance (below) would result in every value occurrence-function
occurrence pair producing an occurrence in the event resulting from
application. This is not considered useful. Finally, events form a
monad instance (Figure 3). This permits a comfortable way to write
transformations on events, since the sequencing operator will carry
occurrence times along with transformed values [8].

2.2 Signal Functions
Signal functions were introduced as a means of avoiding time and
space leaks (see below) and simplifying the use of external inputs
as signals [16]. They are most often given as an instance of the
Arrow framework [11], which provides a structured generalization
of functions.

A signal function is a reactive construct which takes input and
produces output, rather than simply producing output. Thus, a sig-
nal function conceptually corresponds to a behavior which carries a
function. In signal function semantics, behaviors and events are not
first class values [16]. Rather, signal functions are built into a reac-
tive framework which is then given input and sampled. Reactivity is
also defined at the signal function level. Rather than signals switch-
ing on events, signal functions switch on events. So rather than
composing behavior values and having an implementation frame-
work sample the resulting behavior, signal functions are composed
and an evaluator provides input as it samples output.

Signal functions have not been given the formal semantic treat-
ment provided for Classic FRP. It is helpful, however, to consider
signal functions as they are usually implemented: A signal function
is a function from a time step and input sample to an output sample
and continuation (new signal function) for the next time step.

Signal functions allow us to dispense with a large class of time
and space leaks. In Classic FRP semantics, a behavior defines its
value at every point in time and thus we can depend on past,
present, and future values for our present value. In a signal function,
the only way to preserve any past time information is to explicitly
include it by having the continuation close over the values to be
preserved. Since a signal function can be defined only in terms of
its input and certain primitives (such as time), a signal function
cannot evaluate another signal function at an arbitrary time. These
restrictions make it much more difficult to produce time leaks
within signal function programs.

Other advantages and disadvantages to this approach will be
discussed in Section 3 on implementation.

2.3 N-ary FRP
N-ary FRP [18] is an improvement on signal functions where, con-
ceptually, signal functions are not functions from signal to signal,

4 Merge is the familiar sorting operation, comparing by occurrence time.

but rather signal vector to signal vector. A signal vector is a con-
ceptual group of signals. This avoids the ambiguity present in signal
function semantics, where a tuple of signals and a signal carrying a
tuple are indistinguishable. Signal vectors distinguish them by pro-
viding a separate construct for multiple signals. This then permits
signal descriptors to be used to tag signals as continuous or dis-
crete5 , removing the ambiguities of event signals and permitting
routing to be expressed at the signal function level rather than by
lifting pure functions.

3. Implementation
3.1 Classic FRP
Classic FRP has been implemented in several different languages
using several techniques. The original implementation made use of
the monotonic nature of time sampling to discard information about
past times in behaviors. A behavior was represented as a function
from time to a value at that time, and a continuation (new behav-
ior) with information for previous times discarded. This gives the
ability to remove space leaks where behaviors accumulate infor-
mation about past times that will not be used again, and time leaks
where event-dependent behaviors must search an event list starting
from time 0, to find the last event prior to the sampling time [7].
(Events are represented as simple lazy lists of occurrences.) Thus
the definitions for the implementation might be as in Figure 4.

In Frappé [5] (implemented in Java), FrTime [4] (implemented
in Scheme), RT-FRP [20], and EFRP [21] (both implemented as
non-embedded languages), evaluation is driven by incoming events
rather than the sampling of outputs. Rather than directly repre-
senting functions from time, behaviors represent computation trees
which are recomputed on incoming events, with the resulting value
pushed as output. Behaviors are thus represented as a dependency
graph with references from dependencies to dependents. Integra-
tion (where implemented) is accomplished by having an evenly
spaced time event source to update the time behavior.

The Reactive implementation introduces a normal form known
as reactive normal form, in which every behavior is of the form
b ‘switcher‘ e where b being a non-reactive behavior and all be-
haviors in the occurrences of the event e are also in reactive normal
form. In this case, the reactive expression is only evaluated on event
occurrences, with each resulting behavior spawning a thread which
samples the behavior at successive time values. The implementa-
tion does include a representation of constant behaviors which are
sampled only once [8].

3.2 Signal Functions
Signal functions are implemented as functions from a time step
and input value to an output value and continuation (new signal
function). Unlike behaviors, however, which use the continuation
nature to explicitly eliminate information such as event occurrences
which are no longer needed, signal functions use continuations

5 Continuous signals are defined at every point in time, while discrete
signals are defined at countably many points in time. This corresponds to
behaviors and events.

to explicitly store state which will be required at the next time
step [16].

The continuation-based representation is not exposed to the li-
brary user, but rather is used to implement primitives and combina-
tors. General combinators from the arrow framework such as com-
position, splitting, and parallelization6 [11] must be recursively de-
fined to combine continuations of the combined signal functions
and to distribute the time step input appropriately. Lifting of pure
functions is done by creating a signal function which ignores time
step input and returns itself as a continuation.

Integration, time, and other stateful primitives are accomplished
by returning a recursively defined closure over the state as the
continuation. For instance, the time signal function (which ignores
the input and returns the ”local” time or time since the signal
function was switched into the network) closes over the sum of
time steps up to the given point and returns as an output value that
sum plus the input time step.

Switching is accomplished by simply returning the switched-
into signal function as the continuation. This allows an important
degree of flexibility in switching. A normal switch will evaluate
the new signal function at the time interval of the event occurrence,
returning its output and continuation. A decoupled switch, how-
ever, evaluates the old signal function at the moment of switch-
ing, merely returning the new signal function as a continuation.
Since signal functions permit signal feedback, it is important to pro-
vide ways to make such feedback loops well-founded, that is, loops
should not depend on the current time feedback to produce the cur-
rent time output. Using a decoupled switch as the signal function
and switching events as feedback is one method of ensuring the
well-foundedness of these feedback loops.

One important characteristic of signal functions is that it is
much more obvious how to provide input from arbitrary sources
during evaluation. In Classic FRP, input behaviors must be pro-
vided by the library implementer and generally rely on ”shortcuts”
such as Haskell’s unsafePerformIO or unsafeInterleaveIO func-
tions. Newer experimental implementations which do not rely on
such shortcuts fail to observe sharing, that is, behaviors must be
re-sampled each time they are evaluated. There is also no enforce-
ment of synchronicity between input and output sampling, and thus
no guarantee that a behavior will have a value available for a partic-
ular time when it is sampled at that time, even if time is monotoni-
cally increasing. Since signal functions have explicit inputs, there is
a great deal of flexibility in defining those inputs. In signal function
evaluation, a time step is computed along with input to the signal
function, and output for that time step is observed in the same eval-
uation step. Yampa [16], for instance, has an IO evaluation loop
which permits the user to define an arbitrary IO action to fetch the
input sample and time step at each cycle.

3.3 N-ary FRP
Implementations of N-ary FRP follow the same structure as signal
functions (Section 3.2). The semantics give rise to stronger type
safety and the possibility of optimizations of events and routing,
but these optimizations were not explored in the surveyed work.

4. Optimization
While the stated semantics of the various forms of FRP quite often
provide a tantalizingly simple implementation, such naı̈ve imple-
mentations are inefficient. Every practical implementation of FRP
includes some form of optimization intrinsically. However, further
and less obvious optimization techniques have also been demon-
strated for Classic FRP and signal functions. Most optimizations
are specific to a particular implementation technique, but the Causal

6 See Appendix A

Commutative Arrows optimization [14] (Section 4.2), while not
(yet)7 applicable to general signal functions, can optimize non-
reactive signal functions which obey a certain set of laws related
to arrow looping, regardless of the specifics of the actual imple-
mentation.

4.1 Signal Functions and GADTs
In signal function networks, a number of somewhat ad-hoc op-
timization opportunities arise. The addition of Generalized Alge-
braic Datatypes (GADTs) to the GHC compiler allowed somewhat
simple exploitation of several of these opportunities. GADTs allow
the data constructors of a particular type constructor to be given in-
dividual type signatures, thus permitting data constructors to spec-
ify arguments or constraints on arguments to the type constructor.

This definition permitted the optimization of the Yampa [16]
signal function implementation to be optimized by dynamically
combining signal functions at points of reactivity. Continuations
are no longer represented as signal functions, but rather as a GADT
marking special properties of continuations. Combined with pattern
matching, this representation permits an efficient way to recognize
optimization opportunities as continuations are composed into the
signal function network.

For instance, the data constructor for the identity signal func-
tion enforces the type restriction that the input type is identical to
the output type, thus permitting optimizations which discard the
identity function rather than composing it into the signal func-
tion expression to pass typechecking. Standard algebraic datatypes
would not permit this, as the compiler would not be able to iden-
tify from the data constructor that the types were in fact equal, and
would produce a type error. In a similar manner, constant and state-
less functions can also be eliminated either by single evaluation or
function-level (rather than signal-function level) composition [15].

A disadvantage of this optimization is the overhead required ev-
ery time a new continuation is produced (though the optimization
itself eliminates many such productions) to compose the continua-
tion into the network. Another disadvantage is the ”small combina-
torial explosion” of patterns required for more special cases and op-
timizations to be recognized. In benchmarks included with the orig-
inal description, significant speedups were demonstrated for some
applications, despite the overhead of pattern matching [15].

4.2 Causal Commutative Arrows
Causal Commutative Arrows is a generalized optimization for a
subclass of the Arrow typeclass8. If an arrow instance can be
shown to obey a small set of identities on the loop operator, and
if it includes a ”dec” operator which removes dependence on the
current input, then any expression of this arrow instance can be
statically reduced to a normal form consisting of an outer loop and
a single, pure expression. Though it would seem that the reactive
nature of full signal functions would prevent them from being a
direct instances of this class, non-reactive stream transformers are
proven to obey these identities. This static reduction then permits
the full optimizing power of the compiler to work on the pure
expression given [14].

It is not clear that an advantage would be gained by applying
a similar optimization to signal functions. In particular, the reac-
tive nature of signal functions seems to require dynamic optimiza-
tion [15]. Thus little advantage would be seen from compile-time
optimizations to a static reduction. However, it may be that the

7 It is not yet clear whether the laws and normal form required for this opti-
mization can be applied to reactive signal functions. The normal form trans-
formation would almost certainly have to be made dynamic and recursive
rather than static to handle reactivity.
8 More specifically the ArrowLoop typeclass

CCA normal form (or an extended normal form which permits the
expression of reactivity) holds intrinsic performance advantages re-
gardless of compiler optimization.

4.3 Lowering
The FrTime implementation of FRP in Scheme takes advantage of
the language-rewriting and imperative features of Scheme to con-
struct a dataflow graph where sources signal sinks when they up-
date. Since the reactivity in FrTime is implicit rather than explicit
(primitive operators in Scheme are implicitly lifted to operate on
signals), the unoptimized implementation of FrTime evaluates pure
expressions as a dataflow graph rather than as pure Scheme expres-
sions.

The key idea of lowering is that any signal may have a lowered
form. For primitive expressions, such as literals or library func-
tions, the lowered form is simply the unlifted expression. A lifted
expression which has a lowered form if all of the elements of the ex-
pression have a lowered form. Lowered expressions are cached as
they are discovered and the lifted signals given a reference to them.
This is particularly key for lambda expressions, where the lambda
may be lowered but the signal it is applied to may not be. Thus it
is important to retain the signal version of the lambda, though it is
itself internally optimized [3].

This optimization eliminates overhead from pure signals notify-
ing other pure signals of updates, thus permitting the Scheme com-
piler to optimize expressions and removing steps from the compu-
tation. In this way it is similar to the CCA optimization described
in Section 4.2). The GADT optimizations for signal functions (Sec-
tion 4.1 are similar in recognizing adjacent pure expressions but
operate in a more ad-hoc manner and dynamically rather than stat-
ically.

4.4 Push-Pull FRP
The Reactive implementation of Classic FRP can be considered an
optimization, since it provides a normal form which permits effi-
cient evaluation, and defines its primitives and combinators such
that resultant programs are encoded in this normal form. The reac-
tive normal form forces reactivity to be encoded at the top level of
an expression, and maintains that guarantee through the lifecycle
of a program run. This permits the framework itself to be evaluated
only on event occurrences, resultant behaviors may then be sam-
pled at increasing time values until the next event occurrence.

5. Demonstrations
Functional Reactive Programming has been demonstrated to work
in practical application settings. The original statement of FRP
was in terms of an animation library. Other demonstrations have
included simulated robotics, a rewrite of the classic arcade game
”Space Invaders”, and a modular sound synthesizer.

5.1 Robotics
Signal function based FRP has been used to implement a demon-

stration robotics framework [10]. This framework permitted the
definition of signal functions from a composite input datatype con-
taining sensor events and signals to an output datatype which con-
tained motor speeds. The implementation of the evaluator was not
discussed, as the intent was to provide a fairly comprehensive tuto-
rial on the constructs of signal functions in general and Yampa [16]
in particular.

5.2 Space Invaders
A successful demonstration of the performance of signal function
implementations was given by an implementation of the classic
game ”Space Invaders” in Yampa [6]. The description of this imple-
mentation discussed in great detail a unique feature of the Yampa

library known as ”dynamic collections”. This construct allows the
creation of a collection of signal functions to which new elements
may be dynamically added or removed. The resulting signal func-
tion appears as taking an input to a collection of outputs. A rout-
ing function defines how the input is distributed to the signal func-
tions in the collection. Using this framework, together with looping
combinators, the game was implemented in a manner analogous
to object oriented programming, where each game object was rep-
resented by a signal function, and objects could pass (continuous
and discrete) messages to each other, as well as respond to external
input.

5.3 Modular Synthesizer
Yampa has also been used to define a modular synthesizer library,
YampaSynth. Here, reactivity constructs were used to activate and
deactivate synthesizer elements in response to MIDI events. The
modular nature of Yampa corresponded directly to the modular na-
ture of synthesis, easing both the definition of elementary synthe-
sis constructs such as variable oscillators and the combination of
these constructs into a full synthesizer. Yampa’s dynamic collec-
tions framework (Section 5.2) was used to support polyphonic syn-
thesis [9].

6. Conclusions and Further Work
Functional Reactive Programming has already begun to deliver on
the promise of safe, composable and efficient reactive software.
However, many challenges and opportunities still exist. Except for
such restricted subsets of FRP as EFRP [21], FRP implementations
are still not efficient enough or predictable enough in performance
to be used effectively in domains which require latency guarantees
alongside short sampling intervals (for instance sound or dynamic
control systems). There has also yet to be an implementation which
combines statically checked safety guarantees such as termination
of sample computation [18] with optimized performance.

As noted in Section 4.2, it would be interesting to explore an
extended form of the Causal Commutative Arrow framework which
traded dynamic optimizations for the current static optimization
and permitted the expression of reactivity. One question is if any
performance benefit is gained simply by reducing to the single-
loop normal form, or whether compiler optimization is required
for a performance gain. In either case, another intriguing question
is that of the impact of JIT (Just-In-Time) compilation on such a
dynamic optimization. This question also applies to the work on
optimizations with GADTs (Section 4.1).

The approach taken by the ”lowering” optimization is an effi-
cient and simple one, but a method of applying it in a purely func-
tional setting is not obvious and would be an interesting problem.

Most FRP implementations, including all signal function imple-
mentations to date, succumb to continuous re-evaluation of event
non-occurrences due to a ”pull-based” implementation where a sys-
tem continuously resamples the FRP expression for output. The
work on Reactive (Sections 3.1 and 4.4) purports to solve this prob-
lem for Classic FRP, but extending this work to signal functions has
not yet been explored, and the simple operation of occurrence time
comparison relies on a programmer-checked and arguably difficult
to prove identity to retain referential transparency.

The semantics of N-ary FRP have been embedded in the depen-
dently typed language Agda [18], but the surveyed literature did not
include an embedding in Haskell or another similarly general func-
tional programming language. In particular, the notion of hetero-
geneous type-level lists (used in the expression of signal vectors)
presents a hurdle to the Haskell type system. It is unknown whether
the use of a type-level list such as HList [13] would interfere with
the type inference we desire from a Haskell implementation.

-- Yampa type for rpswitch
rpswitch :: Functor col =>

(forall sf . (a -> col sf -> col (b, sf)))
-> col (SF b c)
-> SF (a, Event (col (SF b c) -> col (SF b c))) (col c)

-- Refined type for rpswitch with
-- rank-2 quantification of collection
-- type for routing function
rpswitch :: Functor col =>

(forall sf . forall col'. (Functor col') => (a -> col' sf -> col' (b, sf)))
-> col (SF b c)
-> SF (a, Event (col (SF b c) -> col (SF b c))) (col c)

Figure 5. Comparison of two possible types for rpswitch.

One interesting discovery was that the type of the rpswitch
combinator in Yampa [15], described further in the paper refer-
enced in Section 5.2, does not enforce quite what the description
insists that it does. The rank-2 type of the routing function ensures
that no new signal functions could be introduced. However, since
the collection type is still rank 1, the function may instantiate the
functor typeclass and thus manipulate the structure of the functor.
For instance, the functor could be instantiated as a list, and the rout-
ing function could then duplicate or remove elements of the list. We
explored the effects of making the type of the collection argument
to the routing function rank-2 quantified with a Functor typeclass
constraint. (Figure 5.) We verified that this does prevent changing
the structure of the collection, but did not explore in detail whether
the loss of expressiveness caused by such a change is acceptable.
Note also the great complexity of both the initial and refined type
signatures.

The concepts of FRP point to an attractive way of expressing
reactive systems. A great deal of progress has already been made
in optimizing performance. If performance problems continue to
be solved, FRP will present a simple, powerful, and generalizable
form of expressing such reactive systems.

Acknowledgments
Dr. Matthew Fluet was my advisor for this study. His insight,
questions, and explanations were invaluable to me in forming my
understanding of FRP.

The members of the haskell-cafe [1] and yampa-users [2] mail-
ing lists provided a great deal of helpful feedback as I practiced
implementing FRP libraries and programs.

The template for this document is the ACM SIGPLAN proceed-
ings template.

A. Library Primitives and Combinators for a
Signal Function Library

Figure 6 gives types for a general set of primitives and combinators
for a signal function library. The majority of the functions are
defined in the Yampa library [15]. The rpswitch function has been
retyped to enforce the hiding of the collection structure as well as
the signal function structure. The reason for this is described in
Section 6.

B. Example Programs
To assist understanding of the semantics and concepts of the two
primary expressions of FRP, we provide two sample programs.
Each implements an extremely simple version of the Karplus-
Strong plucked string sound synthesis algorithm [12]. The two

programs are not precisely equivalent. A version in Classic FRP is
given in Figure 7 and a version expressed as a signal function is
given in Figure 8.

The Karplus-Strong algorithm for plucked string synthesis is
defined as an iterative algorithm, but the idea can be extended into
FRP semantics. The idea is that a very simple feedback loop, when
given a short pulse of noise, will cause the noise to decay very
quickly into a uniform tone. This is a surprisingly accurate model
for the sound of a plucked string on a musical instrument.

The feedback look is accomplished by passing the initial input
into a delay line and then a ”low pass filter” which feeds back
into the delay line. In the original algorithm, the filtering was
accomplished by averaging adjacent samples. In these examples,
we assume the existence of a low-pass filter construct.

In both examples, the noise burst is constructed by merging the
trigger event with the result of delaying the trigger event by a fixed
amount. The non-delayed trigger event carries a behavior or signal
function which produces or passes the noise, while the delayed
event carries a constant 0 behavior or signal function. This creates
a fixed length noise burst.

It is important to note the differences in the implementation
of feedback in the two examples. In the Classic FRP example,
feedback is accomplished by recursively referring to a delayed
version of the resonator behavior. In the signal function example,
feedback is accomplished using the ”do rec” construct for arrows,
which makes use of the ”loop” construct of the ArrowLoop instance
for signal functions, since a signal function could not recursively
evaluate itself.

References
[1] Haskell-cafe mailing list ¡http://www.haskell.org/mailman/listinfo/haskell-

cafe¿.

[2] Yampa-users mailing list ¡http://mailman.cs.yale.edu/mailman/listinfo/yampa-
users¿.

[3] K. Burchett, G. H. Cooper, and S. Krishnamurthi. Lowering: A static
optimization technique for transparent functional reactivity. In In ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 71–80. ACM Press, 2007.

[4] G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a
call-by-value language. In In European Symposium on Programming,
pages 294–308, 2006.

[5] A. Courtney. Frappé: Functional reactive programming in java. In
In Proceedings of Symposium on Practical Aspects of Declarative
Languages. ACM, pages 29–44. Springer-Verlag, 2001.

[6] A. Courtney, H. Nilsson, and J. Peterson. The yampa arcade. In Pro-
ceedings of the 2003 ACM SIGPLAN workshop on Haskell, Haskell
’03, pages 7–18, New York, NY, USA, 2003. ACM. ISBN 1-

58113-758-3. doi: http://doi.acm.org/10.1145/871895.871897. URL
http://doi.acm.org/10.1145/871895.871897.

[7] C. Elliott and P. Hudak. Functional reactive animation.
SIGPLAN Not., 32:263–273, August 1997. ISSN 0362-
1340. doi: http://doi.acm.org/10.1145/258949.258973. URL
http://doi.acm.org/10.1145/258949.258973.

[8] C. M. Elliott. Push-pull functional reactive programming. In Pro-
ceedings of the 2nd ACM SIGPLAN symposium on Haskell, Haskell
’09, pages 25–36, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-508-6. doi: http://doi.acm.org/10.1145/1596638.1596643.
URL http://doi.acm.org/10.1145/1596638.1596643.

[9] G. Giorgidze and H. Nilsson. Switched-on yampa: declarative
programming of modular synthesizers. In Proceedings of the
10th international conference on Practical aspects of declarative
languages, PADL’08, pages 282–298, Berlin, Heidelberg, 2008.
Springer-Verlag. ISBN 3-540-77441-6, 978-3-540-77441-9. URL
http://portal.acm.org/citation.cfm?id=1785754.1785773.

[10] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows,
robots, and functional reactive programming. In J. Jeur-
ing and S. Jones, editors, Advanced Functional Program-
ming, volume 2638 of Lecture Notes in Computer Science,
pages 1949–1949. Springer Berlin / Heidelberg, 2003. URL
http://dx.doi.org/10.1007/978-3-540-44833-4 6.
10.1007/978-3-540-44833-4 6.

[11] J. Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, 1998.

[12] K. Karplus and A. Strong. Digital synthesis of plucked-string and
drum timbres. Computer Music Journal, 7(2):43–55, 1983.

[13] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed
heterogeneous collections. In Proceedings of the 2004 ACM
SIGPLAN workshop on Haskell, Haskell ’04, pages 96–107,
New York, NY, USA, 2004. ACM. ISBN 1-58113-850-
4. doi: http://doi.acm.org/10.1145/1017472.1017488. URL
http://doi.acm.org/10.1145/1017472.1017488.

[14] H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows and
their optimization. In Proceedings of the 14th ACM SIGPLAN in-
ternational conference on Functional programming, ICFP ’09, pages
35–46, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
332-7. doi: http://doi.acm.org/10.1145/1596550.1596559. URL
http://doi.acm.org/10.1145/1596550.1596559.

[15] H. Nilsson. Dynamic optimization for functional reactive pro-
gramming using generalized algebraic data types. In Pro-
ceedings of the tenth ACM SIGPLAN international confer-
ence on Functional programming, ICFP ’05, pages 54–65,
New York, NY, USA, 2005. ACM. ISBN 1-59593-064-
7. doi: http://doi.acm.org/10.1145/1086365.1086374. URL
http://doi.acm.org/10.1145/1086365.1086374.

[16] H. Nilsson, A. Courtney, and J. Peterson. Functional re-
active programming, continued. In Proceedings of the 2002
ACM SIGPLAN workshop on Haskell, Haskell ’02, pages 51–
64, New York, NY, USA, 2002. ACM. ISBN 1-58113-
605-6. doi: http://doi.acm.org/10.1145/581690.581695. URL
http://doi.acm.org/10.1145/581690.581695.

[17] R. Paterson. A new notation for arrows. In Proceedings of the sixth
ACM SIGPLAN international conference on Functional programming,
ICFP ’01, pages 229–240, New York, NY, USA, 2001. ACM. ISBN 1-
58113-415-0. doi: http://doi.acm.org/10.1145/507635.507664. URL
http://doi.acm.org/10.1145/507635.507664.

[18] N. Sculthorpe and H. Nilsson. Safe functional reactive programming
through dependent types. In Proceedings of the 14th ACM SIG-
PLAN international conference on Functional programming, ICFP
’09, pages 23–34, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-332-7. doi: http://doi.acm.org/10.1145/1596550.1596558.
URL http://doi.acm.org/10.1145/1596550.1596558.

[19] Z. Wan and P. Hudak. Functional reactive programming from first
principles. In Proceedings of the ACM SIGPLAN 2000 confer-
ence on Programming language design and implementation, PLDI
’00, pages 242–252, New York, NY, USA, 2000. ACM. ISBN 1-

58113-199-2. doi: http://doi.acm.org/10.1145/349299.349331. URL
http://doi.acm.org/10.1145/349299.349331.

[20] Z. Wan, W. Taha, and P. Hudak. Real-time frp. In
Proceedings of the sixth ACM SIGPLAN international con-
ference on Functional programming, ICFP ’01, pages 146–
156, New York, NY, USA, 2001. ACM. ISBN 1-58113-
415-0. doi: http://doi.acm.org/10.1145/507635.507654. URL
http://doi.acm.org/10.1145/507635.507654.

[21] Z. Wan, W. Taha, and P. Hudak. Event-driven frp. In PADL: Prac-
tical Aspects of Declarative Languages, LNCS 2257, pages 155–172.
Springer, 2002.

-- Signal function type
data SF a b

-- Pure function lifting
arr :: (a -> b) -> SF a b

-- Signal Function composition
(>>>) :: SF a b -> SF b c -> SF a c

-- Parallel pass-through
first :: SF a b -> SF (a, c) (b, c)
second :: SF a b -> SF (c, a) (c, b)

-- Splitting
(&&&) :: SF a b -> SF a c -> SF a (b, c)

-- Parallel combination
(***) :: SF a b -> SF c d -> SF (a, c) (b, d)

-- Integration (by rectangle or trapezoid rule)
integral :: (VectorSpace a) => SF a a

-- Differentiation (ideally, we would have integral >>> derivative = identity
-- and derivative >>> integral = identity)
derivative :: (VectorSpace a) => SF a a

-- Delay: given an initial value and constant delay time, delay the incoming signal
-- by the given time
delay :: a -> Time -> SF a a

-- Single-event reactivity
switch SF a (b, Event c) -> (c -> SF a b) -> SF a b

-- Continuing reactivity
rswitch :: SF a b -> SF (a, Event (SF a b)) b

-- Dynamic reactivity
rpswitch :: Functor col =>

(forall sf . forall col'. (Functor col') => (a -> col' sf -> col' (b, sf)))
-> col (SF b c)
-> SF (a, Event (col (SF b c) -> col (SF b c))) (col c)

-- Convenience routing function:
-- Pairs same input with every output
broadcast :: Functor f => f sf -> a -> f (a, sf)

Figure 6. Primitive and combinator types for a signal function library.

-- Delay functions
delayE :: Time -> Event a -> Event a
delayB :: Time -> a -> Behavior a -> Behavior a

-- Switch on every occurrence, not just the first (defined recursively using switcher)
stepper :: Behavior a -> Event (Behavior a) -> Behavior a

-- Event merging (Left occurrence if conflict)
mergeL :: Event a -> Event a -> Event a

-- Event source to trigger string plucks
triggerEvt :: Event ()

-- Noise source
noise :: Behavior Double

-- Noise bursts
noiseBursts :: Behavior Double
noiseBursts = lift0 0 `stepper` (mergeL (fmap (const noise) triggerEvt)

(fmap (const \$ lift0 0) (delayE 0.005 triggerEvt)))

-- Low pass filter
lowPass :: Behavior Double -> Behavior Double

-- Resonator
resonator :: Behavior Double -> Behavior Double
resonator = lift2 (\x y -> (x + y)/2) (delayB 0.005 0 (lowPass resonator))

-- Karplus-strong string plucking
karplus :: Behavior Double
karplus = resonator noiseBursts

Figure 7. Example of Karplus-Strong string synthesis in Classic FRP

This example uses the arrow syntax now implemented in GHC [17].

-- Replaces the value in an event occurrence
tag :: b -> Event a -> Event b

-- Merge the occurrences of two events, taking the left one for simultaneous occurrences
lmerge :: Event a -> Event a -> Event a

-- Randomly generated white noise (range [0, 1])
noise :: SF a Double

-- Low-pass filter
lowPass :: SF Double Double

-- Noise burst on an incoming event
burst :: SF (Event ()) Double
burst = proc e -> do
n <- noise -< ()
let onEvt = tag identity e
let offEvtEvt = tag (after 0.005 (constant 0)) e
offEvt <- rswitch never -< ((), offEvtEvt)
let onOffEvt = lmerge offEvt onEvt
rswitch (constant 0) -< (n, onOffEvt)

-- Resonator
resonator :: SF Double Double
resonator = proc input -> do rec
let output = (input + filterOutput) / 2
delayOutput <- delay 0 0.005 -< output
filterOutput <- lowPass <- delayOutput
returnA -< output

-- Karplus-strong synthesizer:
karplus :: SF (Event ()) Double
karplus = burst >>> resonator

Figure 8. Example of Karplus-Strong string synthesis in signal function FRP

