
LISP AND SYMBOLIC COMPUTATION: An International Journal, 4, 223-242, 1991
© 1991 Kluwer Academic Publishers - Manufactured in The Netherlands

Organizing Programs Without Classes*

DAVID UNGAR†

CRAIG CHAMBERS
BAY-WEI CHANG
URS HÖLZLE (self@self.stanford.edu)

Computer Systems Laboratory, Stanford University, Stanford, California 94305

Abstract. All organizational functions carried out by classes can be accomplished in a simple and
natural way by object inheritance in classless languages, with no need for special mechanisms. A
single model—dividing types into prototypes and traits—supports sharing of behavior and extending
or replacing representations. A natural extension, dynamic object inheritance, can model behavioral
modes. Object inheritance can also be used to provide structured name spaces for well-known objects.
Classless languages can even express “class-based” encapsulation. These stylized uses of object
inheritance become instantly recognizable idioms, and extend the repertory of organizing principles
to cover a wider range of programs.

1 Introduction

Recently, several researchers have proposed object models based on prototypes
and delegation instead of classes and static inheritance [2, 9, 11, 14, 15, 18]. These
proposals have concentrated on explaining how prototype-based languages allow
more flexible arrangements of objects. Although such flexibility is certainly desir-
able, many have felt that large prototype-based systems would be very difficult to
manage because of the lack of organizational structure normally provided by
classes.

Organizing a large object-oriented system requires several capabilities. Foremost
among these is the ability to share implementation and state among the instances
of a data type and among related data types. The ability to define strict interfaces
to data types that hide and protect implementation is also useful when organizing

*This work has been generously supported by National Science Foundation Presidential Young
Investigator Grant # CCR-8657631, and by Sun Microsystems, IBM, Apple Computer, Cray Labora-
tories, Tandem Computers, NCR, Texas Instruments, and DEC.

†Author’s present address: Sun Microsystems, 2500 Garcia Avenue, Mountain View, CA 94043.

224 UNGAR, CHAMBERS, CHANG, AND HÖLZLE

large systems. Finally, the ability to use global names to refer to data types and to
categorize large name spaces into structured parts for easier browsing are important
for managing the huge number of objects that exist in a large object-oriented
system.

In this paper we argue that programs in languages without classes are able to
accomplish these tasks just as well as programs in class-based languages. In partic-
ular, we show that:

• all organizational functions carried out by classes can be accomplished in a
very natural and simple way by classless languages,

• these organizational functions can be expressed using objects and inheritance,
with no need for special mechanisms or an extralingual layer of data structures,

• the additional flexibility of prototype-based languages is a natural extension of
the possibilities provided by class-based systems, and finally,

• exploiting this additional flexibility need not lead to unstructured programs.
The ideas presented here are based on the lessons we learned as we found ways

to organize code in SELF, a dynamically-typed prototype-based language [3, 4, 10,
18]. Accordingly, we will illustrate the ideas using examples in SELF, but the ideas
could be applied as well to other classless languages providing similar inheritance
models.

2 Sharing

Programming in an object-oriented language largely revolves around specifying
sharing relationships: what code is shared among the instances of a data type and
what code is shared among similar data types.

2.1 Intra-T ype Sharing: Classes and Traits Objects

The principal activity in object-based programming is defining new data types.
To define a simple data type, the programmer needs to specify the state and
behavior that are specific to each instance of the data type and the state and
behavior that are common to (shared by) all instances of the type. For example, one
way to define a simple polygon data type is to specify that each polygon instance
contains a list of vertices and that all polygons share an operation to draw them-
selves.

In a typical class-based language, the class object defines a set of methods and
(class) variables that are shared by all instances of the class, and a set of (instance)
variables that are specific to each instance. For example, the polygon data type
could be implemented by a class Polygon that defines a draw method and spec-
ifies that its instances have a single instance variable named vertices; the
Polygon metaclass would contain a new method to create new polygon instances

ORGANIZING PROGRAMS WITHOUT CLASSES 225

(see Figure 1a). To initialize a new instance’s list of vertices, the Polygon class
could define a wrapper method named vertices: that just assigned its argument
to the vertices instance variable. This wrapper method is required in languages
like Smalltalk-801 [7] that limit access to an object’s instance variables to the
object itself.

In a classless language, the polygon data type is defined similarly. A prototypical
polygon object is created as the first instance of the polygon type (see Figure 1b).
This object contains three slots: an assignable data slot named vertices, the
corresponding vertices: assignment slot,2 and a constant parent slot3 pointing
to another object that contains a draw method and a copy method. The

1Smalltalk-80 is a trademark of ParcPlace Systems, Inc.
2Data slots in SELF may be assignable or constant. Data slots are assignable by virtue of being

associated with an assignment slot that changes the data slot’s contents when invoked. The assign-
ment slot’s name is constructed by appending a colon to the data slot’s name.

3Parent slots are indicated in SELF syntax by asterisks following the slot name. Parent slots in the
figures of this paper are therefore indicated with asterisks.

Polygon class

a polygonclass
vertices “list of points”

verticesinstance variables
“draw on some display”methods draw

draw
copy

“draw on some display”
“return a copy of the receiver”

polygon traits

parent*
vertices “list of points”

prototypical
polygon

vertices: ←

Figure 1a. Data types in a class-based language.

instance

Figure 1b. Data types in a classless language.

Data Type = Prototype + Traits

226 UNGAR, CHAMBERS, CHANG, AND HÖLZLE

vertices slot in this prototype is initialized to a convenient default list of
vertices (e.g., a list of three points defining a triangle), making it usable as is and
thus serving as a programming example.

New polygons are created by sending the copy message to an existing polygon
(such as the prototypical polygon), which first clones (shallow-copies) the receiver
polygon and then copies the internal vertex list. Since the prototype’s slots contain
default values, clones of the prototype are automatically initialized with these
values as well. In particular, the same parent object is shared by each new polygon,
providing the common behavior for all polygons in the system. We call these
shared parent objects traits objects. Traits objects in a classless language provide
the same sharing capability as classes, and just as in a class-based language,
making changes to the behavior of all instances of a type is simple since the
common behavior is factored out into a single shared object.

In general, data types may be defined in a classless language by dividing the defi-
nition of the type into two objects: the prototypical instance of the type and the
shared traits object. The prototype defines the instance-specific aspects of the type,
such as the representation of the type, while the traits object defines common
aspects of all instances of the type. No special language features need to be added
to support traits objects—a traits object is a regular object shared by all instances
of the type using normal object inheritance. Since traits objects are regular objects,
they may contain assignable data slots which are then shared by all instances of the
data type, providing the equivalent of class variables.

Classless languages actually gain some descriptive power over class-based
languages by dividing the implementation of a data type into two separate objects.
If the data type is a concrete type (i.e. if instances of the data type will be created),
then both the traits object and the initial prototype object are defined. If, however,
the type is abstract, existing simply to define reusable behavior shared by other
types, then no prototypical instance need be defined. Alternately, if there is only
ever one instance of a particular data type, such as with unique objects like nil,
true, and false, then the traits object need not be separated from the object at
all. Traditional class-based languages implicitly specify both the shared behavior
and the format of the class’ instances; without extra language mechanisms they
cannot distinguish between concrete, abstract, and singleton data types, with a
corresponding loss of descriptive and organizational power.

2.2 Inter -Type Sharing: Subclasses and Refinements

Object-oriented languages with inheritance support differential programming,
allowing new data types to be defined as differences from existing data types. The
implementor of a new data type may specify that the type is equivalent to a combi-
nation of existing types, possibly with some additions and/or changes. For
example, a filled polygon type might be identical to the polygon type, except that

ORGANIZING PROGRAMS WITHOUT CLASSES 227

drawing filled polygons is different from drawing unfilled polygons, and a filled
polygon instance needs extra state to hold its fill pattern.

In typical class-based languages, a class may be defined as a subclass of other
classes. The methods of the new class are the union of the methods of the super-
classes, possibly with some methods added or changed, and the instance variables
of the new class are the union of the instance variables of the superclasses, possibly
with some instance variables added. For example, filled polygons could be imple-
mented by a FilledPolygon class that is a subclass of the Polygon class (see
Figure 2a). The FilledPolygon class overrides the draw method, and speci-
fies an additional instance variable named fillPattern that all Filled-
Polygon instances will have; the vertices instance variable is automatically
provided since FilledPolygon is a subclass of Polygon. To initialize a new
instance’s fill pattern, the FilledPolygon class could define a wrapper method
named fillPattern: that assigned its argument to the fillPattern
instance variable.

Filled polygons are defined similarly in a language without classes. A new filled
polygon traits object is created as a refinement (child) of the existing polygon traits
object (see Figure 2b). This traits object defines its own draw method. To complete
the definition of the new data type, a prototypical filledPolygon object is
created that inherits from the filled polygon traits object. This object could contain
both a vertices data slot and a fillPattern data slot, plus their corre-
sponding assignment slots. (We will revise this representation to avoid unnecessary
repetition of the vertices data slot in the next subsection.)

In general, a new data type in a classless language may be defined in terms of
existing data types simply by refining the traits objects implementing the existing
data types with a new traits object that is a child of the existing traits objects. Object
inheritance is used to specify the refinement relationships, without needing extra
language features.

2.3 Representation Sharing: Instance Variable Extension and Data Parents

When defining a data type as an extension of some pre-existing data types,
frequently the instance-specific information of the existing data type should be
combined with some extra information particular to the new data type, to construct
the instance-specific information of the new data type. For example, a filled
polygon instance needs both the polygon information (the list of vertices) plus the
new filled-polygon-specific information (the fill pattern). Ideally, the new data type
wouldn’t need to repeat the instance-specific information it inherits from the
existing data types, but instead share the information; this would enhance the
malleability of the resulting system, since changing one data type’s representation
causes all data types that inherit from the changed data type to be updated automat-
ically.

228 UNGAR, CHAMBERS, CHANG, AND HÖLZLE

Polygon class

FilledPolygon class

a polygon
instance

a filled polygon
instance

class
vertices “list of points”

fillPattern “fill pattern”

class
vertices “list of points”

verticesinstance variables
“draw on some display”methods

“draw and fill on some display”methods

superclass
fillPatterninstance variables

“assign fillPattern variable”
draw
fillPattern:

parent*
vertices “list of points”
vertices: ←
fillPattern “fill pattern”

parent*
vertices “list of points”

draw
copy

“draw on some display”
“return a copy of the receiver”

polygon traits

prototypical
polygon

parent*
draw “draw and fill on some display”

filled polygon traits

prototypical

Figure 2a. Differential programming in a class-based language:
subclassing, with implicit representation extension.

draw

filled polygon

Differential Programming = Refining Traits Objects

Figure 2b. Differential programming in a classless language.

fillPattern: ←

vertices: ←

ORGANIZING PROGRAMS WITHOUT CLASSES 229

Class-based languages do this well. When a subclass is defined, it automatically
inherits the instance variable lists from its superclasses; any instance variables
specified in the subclass are interpreted as extensions of the superclasses’ instance
variables. This feature is illustrated by the FilledPolygon example class that
extends the instance variables of the Polygon superclass with a fillPattern
instance variable (see Figure 2a).

In a classless language with multiple inheritance we can provide similar func-
tionality using data parents. Instead of manually repeating the data slot declara-
tions of the prototypes of the parent data types, as was done in the implementation
of filled polygons in Figure 2b, the new prototype may share the representation of
its parent data types by inheriting from them. Thus, a better way to implement filled
polygons is to define the filledPolygon prototype as a child of both the
filledPolygon traits object and the polygon prototype object (see Figure 3).
A new copy method is defined in the filledPolygon traits object to copy both
the receiver filled polygon and the data parent polygon object, so that each instance

parent*
vertices “list of points”

draw
copy

“draw on some display”
“return a copy of the receiver”

polygon traits

prototypical
polygon

vertices: ←

parent*
draw “draw and fill on some display”

filled polygon traits

prototypical
filled polygon

←

copy “copy data parent, too”

dataParent*

traitsParent*
dataParent:

fillPattern
fillPattern:

“fill pattern”
←

Representation Extension = Data Parents

Figure 3. Representation extension in a classless language.

230 UNGAR, CHAMBERS, CHANG, AND HÖLZLE

of the filled polygon data type is implemented with two objects, one containing the
instance’s fill pattern and another containing its list of vertices.

Data parents explicitly implement the representation extension mechanism
implicit in traditional class-based languages. Since the data parent objects are
parents, data slots defined in the data parent are transparently accessed as if they
were defined in the receiver object without defining explicit forwarding methods.
By relying only on the ability to inherit state and to initialize a new object’s parents
to computed values, no special language mechanisms are needed to concatenate
representations.

A problem with class-based representation extension surfaces in languages with
multiple inheritance. If two superclasses define instance variables with the same
name, does the subclass contain two different instance variables or are the super-
classes’ instance variables merged into one shared instance variable in the
subclass? For some programming situations, it may be correct to keep two different
instance variables; for other situations, it may be necessary to share a single
instance variable. Different class-based languages that support multiple inheritance
answer this difficult question differently; some languages, like C++ [16, 17],
provide the programmer the option of doing either, at some cost in extra language
complexity.

Classless languages don’t face this dilemma.Since the prototypical instance of
the data type is defined explicitly, the programmer has complete control over each
type’s representation. If the new type should contain only one version of the data
slot, then the prototype just contains that one data slot. If several versions need to
be maintained, one per parent data type, then data parents may be used to keep the
versions of data slots with the same name.4

2.4 Beyond Representation Sharing

Class-based languages automatically extend the representation of a subclass to
include its superclasses’ instance variables. However, this automatic extension
may not always be desired. For example, an application might want to define a rect-
angle data type as a subtype of the polygon data type. The representation of the
rectangle might be four numbers (instead of a list of four vertices), and the draw
routine could be optimized for this special case.

Most class-based languages cannot define such a Rectangle class as a
subclass of the Polygon class because the Rectangle class would be extended
automatically with the Polygon class’ vertices instance variable. To fix this
problem, an additional AbstractPolygon class (with no instance variables)
must be defined as the common superclass of both Polygon and Rectangle;
the behavior common to all polygons would then be moved from the concrete

4SELF includes a message lookup rule (the sender path tiebreaker rule) that automatically disam-
biguates internal accesses to these data slots.

ORGANIZING PROGRAMS WITHOUT CLASSES 231

Polygon class to the AbstractPolygon class (see Figure 4a). But this then
creates another problem: the code for abstract polygons can no longer access the
vertices instance variable, even for Polygon instances. Only instances of
Polygon and its subclasses know about the vertices instance variable. One
possible solution would be to define wrapper methods to access the Polygon
class’ vertices instance variable from within the AbstractPolygon class;
the Rectangle class would define a method to construct a list of vertices from
its four numeric instance variables.

To avoid any problems with altering the representation of a class in a subclass,
only leaf classes should be concrete and define instance variables. All other non-
leaf classes should be abstract, defining no instance variables, and their code should
be written to invoke wrapper methods instead of explicit variable accesses. This
programming style would support reuse of code while still allowing the represen-
tation of a subclass to be different from the representation of a superclass. But it
would sacrifice the ability to share representation information by concatenating the
instance variables of a class’ ancestors, and it would require the definition and use
of wrapper methods to access the instance variables. Thus, programs would be
more awkward to write and modify.

Prototype-based languages can change the representation of refinements easily.
In the rectangle example, the prototypical rectangle object contains four data
slots and a parent slot pointing to the rectangle traits object, but doesn’t include any
data parent slots (see Figure 4b). By not including a data parent to the prototypical
polygon object, the implementation is explicitly deciding not to base the repre-
sentation of rectangles on the representation of polygons.

The rectangle traits object overrides the polygon traits object’s draw method
with one that is tuned to drawing rectangles using the representation specific to
rectangles. To preserve compatibility with polygons, the rectangle traits object
defines a vertices method to construct a list of vertices from the four numbers
that define a rectangle. This is particularly convenient in SELF since a vertices
message sent in a method in the polygon traits object would either access the
vertices data slot of a polygon receiver or invoke the vertices method of a
rectangle receiver, with no extra wrapper methods needed for the vertices data
slot or modifications to the invoking methods. This convenience is afforded by
SELF’s uniform use of messages to access both state and behavior, and could be
adopted by other classless and class-based languages to achieve similar flexibility.
Trellis/Owl [12, 13], a class-based language, also accesses instance variables using
messages and is able to change the representation of a subclass by overriding the
instance variables inherited from its superclasses with methods defined in the
subclass.

An implementation of a data type in a classless language can specify whether to
extend the parent types’ representations when forming the new type’s representa-
tion by either including data parents that refer to some of the parent types’ repre-

232 UNGAR, CHAMBERS, CHANG, AND HÖLZLE

Polygon class

Rectangle class

a polygon

a rectangle

AbstractPolygon class

“access vertices variable”methods

superclass
verticesinst vars

“assign vertices variable”
vertices
vertices:

class
vertices “list of points”

“optimized draw”methods

superclass
top, left, right, bottominstance variables

“construct a list from inst vars”
draw
vertices

class
top “top coord”
left “left coord”

right “right coord”
bottom “bottom coord”

methods “access vertices variable”vertices

instance

instance

Figure 4a. Representation modification in a class-based language.

sentations (as in the filled polygon example) or not (as in the rectangle example).
Both are natural and structured programming styles fostered by classless
languages. Class-based languages typically have a much more difficult time
handling cases that differ from strict representation extension. As mentioned
above, Trellis/Owl is one notable exception. Languages with powerful metaclass
facilities, such as CLOS [1], are able to define metaclasses for subclasses that do
not inherit the instance variables of their superclasses, but this solution is much
more complex and probably more verbose than the simple solution in classless
languages.

ORGANIZING PROGRAMS WITHOUT CLASSES 233

2.5 Dynamic Behavior Changes:
Changing An Instance’s Class and Dynamic Inheritance

Sometimes the behavior of an instance of a data type can be divided into several
different “modes” of behavior or implementation, with the state of the instance
determining the mode of behavior. For example, a boxed polygon (using straight
lines) has very different drawing methods than a smoothed polygon (using splines).
In many situations, the distinction in “behavior” may be completely internal to the
implementation of the data type, reflecting different ways of representing the
instance depending on the current and past states of the object. A self-reorganizing
collection might use radically different representations depending on recent access
patterns, such as whether insertion has been more or less frequent than indexing,
even though the external interface to the collection remains unchanged.

One common way of capturing different behavioral modes is to include a flag
instance variable defining the behavior mode, and testing the flag at the beginning

vertices “construct a list from coords”

100
←

parent*
vertices “list of points”

draw
copy

“draw on some display”
“return a copy of the receiver”

polygon traits

prototypical
polygon

Representation Modification = No Data Parents

vertices: ← parent*
draw “draw rectangle efficiently”

rectangle traits

prototypical
rectangle

0
←

50
←

0
←

parent*

right
right:

left
left:

bottom
bottom:

top
top:

Figure 4b. Representation modification in a classless language.

234 UNGAR, CHAMBERS, CHANG, AND HÖLZLE

of each method that depends on the behavior mode. This obscures the code for each
behavior mode, merging all behavior modes into shared methods that are sprinkled
with if-tests and case-statements. This code is analogous to programs simulating
object-oriented method dispatching: if-tests and case-statements are used to deter-
mine the type of the receiver of a “message.” Not surprisingly, flag tests for
behavior modes suffer from the same problems as flag tests for receiver types: it is
hard to add new behavior modes without modifying lots of code, it is error-prone
to write, and it is difficult to understand a particular mode since its code is inter-
mixed with code for other behavior modes.

A better way of implementing behavior modes is to define each mode as its own
special subtype of the general data type, and use method dispatching and inherit-
ance to eliminate the flag tests. For example, the collection data type could be
refined into an empty collection data type and a non-empty collection data type,
using inheritance to relate the three types [8]. However, the behavior mode of an
instance may change as its state changes: an empty collection becomes non-empty
if an element is added to it. This would correspond in a class-based language to
changing an object’s class dynamically, and in a prototype-based language to
changing an object’s parent dynamically.

Most class-based languages do not allow an object to change its class, and those
that do face hard problems. Since the class of an object implicitly specifies its
representation, what happens to an object that changes its class to one that specifies
a different representation? An object could be restricted to change its class only to
those that have identical representations, but this wouldn’t allow different behavior
modes to have different representations.

Classless languages, on the other hand, can be naturally extended to handle
dynamically-changing behavior modes by allowing an object’s parents to change
at run-time; an object can inherit from different behavior mode traits objects
depending on its state. If the representations of the behavior modes differ, data
parents can be used for behavior-mode-specific data slots; changing the behavior
mode would then require changing both the traits parent and the data parent (or
simply having the behavior mode data parent inherit directly from the behavior
mode traits object and changing just the data parent). In SELF this dynamic inher-
itance comes for free with the basic object model. Since any data slot may be a
parent slot, and any data slot may have a corresponding assignment slot, any parent
slot may be assignable; an object’s parents are changed simply by assigning to
them.

In the polygon example, the boxed draw method would be the same as the draw
method defined before in the polygon traits object; the smooth draw method
would treat the vertices of the polygon as the spline’s control points. The
polygon prototype’s parent slot would be assignable and alternate between the
boxed polygon traits object and the smooth polygon traits object (see Figure 5).

ORGANIZING PROGRAMS WITHOUT CLASSES 235

Behavior modes are naturally implemented in classless languages by using
dynamic inheritance to choose from a small set of parents. This style of program-
ming does not compromise the structure of the system; on the contrary, it can make
the structure and organization of the system clearer by separating out the various
modes of behavior. In contrast, the close coupling between a class and its
representation prevent class-based languages from being extended naturally to
handle behavior modes.

3 Encapsulation

Languages with user-defined data types usually provide a means for a data type
to hide some of its attributes from other types. This encapsulation may be used to
specify an external interface to an abstraction that should be unaffected by internal
implementation changes or improvements, isolating the dependencies between a
data type and its clients. Encapsulation may also be used to protect the local state
of an implementation of a data type from external alterations that might violate an
implementation invariant. Encapsulation thus can improve the structure and orga-
nization of the system as a whole by identifying public interfaces that should

parent

vertices “list of points”

copy “return a copy of the receiver”

polygon traits

prototypical
polygon

vertices: ←
parent: ←

parent
draw “draw boxed polygon”

parent

smooth

draw “draw smooth polygon”

polygon traits
boxed

polygon traits

 or

Multiple Behavior Modes = Dynamic Inheritance

Figure 5. Multiple behavior modes in a classless language.

236 UNGAR, CHAMBERS, CHANG, AND HÖLZLE

remain unaffected by implementation changes and allowing an implementation to
preserve its internal invariants.

Existing encapsulation models are based on either objects or types. In languages
with object-based encapsulation, such as the Smalltalk, Trellis/Owl, and Eiffel, the
only accessible private members are the receiver’s. In languages with type-based
encapsulation, such as C++, the private members of any instance of the type are
accessible from methods defined in the type.5 Type-based encapsulation is signifi-
cantly more flexible, supporting binary methods that need access to the private data
of their arguments and initialization methods that need access to initialize the
private state of newly created objects. With only receiver-based encapsulation,
these situations require that initialization methods and wrapper methods be in the
external public interface to the type, largely defeating the purpose of encapsulation
in the first place.

Since classless languages have no explicit classes or types, it would appear that
type-based encapsulation would be impossible to support, severely weakening any
encapsulation provided by the language. Perhaps surprisingly, SELF’s visibility
rules do support a form of type-based encapsulation [5]. A method may access the
private slots of any of its descendants or ancestors, so that a method defined in a
traits object may access the private slots of all “instances” of the trait (i.e. clones of
prototypes inheriting from the traits object), just as methods defined in a C++ class
may access the private members of all instances of the class and its subclasses. In
effect, the traits object itself defines a “type,” with all descendant objects consid-
ered members of the type.

For example, in the polygon example before, the polygon prototype object’s
vertices: slot could be declared to be a private slot. This would prevent outside
objects from modifying a polygon’s list of vertices, but would allow the copy
method defined in the polygon traits object to send the vertices: method to
the new copied polygon object, since that new object is a descendant of the
polygon traits object. Similarly, the assignment slots for rectangle objects could
also be marked private to prevent unwanted external modification.

Both class-based and prototype-based languages may provide features for encap-
sulation, even for type-based encapsulation. These features are more dependent on
the individual languages than whether the language includes classes or not.

4 Naming and Categorizing

Any system must be structured so that programs can name well-known objects
and data types and so that programmers can find objects and types. Objects and

5Eiffel includes selective export clauses that allow object-based encapsulation to be extended to
type-based encapsulation for particular members.

ORGANIZING PROGRAMS WITHOUT CLASSES 237

object inheritance support these tasks without explicit support from classes or
extralingual environment structures.

4.1 Naming Objects: Global Variables and Name Spaces

Programs need to refer to well-known objects from many different places in the
system. For example, a data type may need to be referenced from many places in
order to create new instances of the type or to define subtypes. Most class-based
languages associate a unique name with each class which may be uttered anywhere
in the program to refer to the class; normal instance objects have no explicit names.
In a classless language, prototypes and traits objects need to be globally accessible
(to clone new objects and to define new refining traits objects), but since these
objects are implemented by regular objects, they have no internal names.

In classless languages normal object inheritance may be used to define name
space objects whose sole function is to provide names for well-known objects. The
name of an object in a name space is simply the name of the slot that refers to the
object. Any object that inherits the name space object may refer to well-known
objects defined by the name space by sending a message to itself that accesses the
appropriate slot of the name space object.6 The scope of a name space is the set of
objects that inherit from it. The designers of Eiffel encourage a similar strategy to
handle shared, possibly global constants, although different language mechanisms
are used to handle other global names like class names.

6In SELF, this approach is just as concise as global variables because state (e.g. well-known
objects) may be accessed using messages without defining wrapper functions, and because messages
sent to self are written with the self keyword omitted. Thus polygon is really a message sent to self
that accesses data; this is just as concise as a global variable access.

lobby

globals*
prototypes*
traits

globals

nil
true
false

prototypes
polygon
rectangle
list

traits
polygon
rectangle
list
integer
boolean

lobby

normal reference

parent reference

Figure 6. Name spaces are used for global references.

238 UNGAR, CHAMBERS, CHANG, AND HÖLZLE

Figure 6 illustrates name spaces with part of the inheritance graph in the SELF
system. The lobby object is the “root” of the inheritance graph, since most objects
inherit from it and expressions typed in at the SELF prompt are evaluated with the
lobby as self. The prototypes parent object is therefore inherited by most
objects and so provides succinct names for the prototypes of the standard data
types. The traits object contains slots naming the traits objects in the system,
typically using the same name as the name for the data type’s prototypical instance.
For example, the expression polygon names the polygon prototype, and the
expression traits polygon names the polygon traits object. In the first case,
since the prototypes name space object is inherited via the lobby, polygon yields
the contents of the polygon slot in that name space object; in the second case,
sending traits to the lobby gives the traits name space object, and sending
polygon to that object gives the polygon traits object.

4.2 Organizing Names: Categories

Large flat name spaces for globals are convenient for programs, but awkward for
programmers. Many systems provide features to help organize these name spaces
into smaller categories of names that break down the name spaces into digestible
chunks. For example, the Smalltalk-80 environment [6] supports a two-level struc-
ture for browsing classes, dividing up classes into class categories.

Classless systems using name space objects can be similarly broken down into
categories by subdividing name spaces into multiple parents. For example, the

lobby

globals*
prototypes*
traits

prototypes
shapes*
collections*

collections prototypes
list
array

shapes prototypes
polygon
rectangle

traits
shapes*
collections*
system*

normal reference parent reference

Figure 7. Categorizing name spaces.

ORGANIZING PROGRAMS WITHOUT CLASSES 239

prototypes name space object could be broken down into several name space
subobjects, one for each kind of prototype. The original prototypes name space
object contains parent slots referring to the name space subobjects; the name of
each slot is the name of the category.

These composite name spaces behave just like a flat name space from the point
of view of the program referring to global objects, since the categories are parents
of the original name space object. (For example, the message polygon will still
yield the prototypical polygon, even when the name space has been broken up into
the categories as in Figure 7.) However, since the name spaces are actually struc-
tured into multiple objects, the programmer may browse them (using the facilities
available for browsing objects) and use both the slot names and the object structure
to locate objects of interest and to understand the organization of the system.
Composite name spaces may have any number of levels of structure, and need not
be balanced (some categories may be subcategorized while others are not). A
single object may be categorized in several different ways simultaneously simply
by defining slots in multiple categories that all refer to the object. This flexibility is
a natural consequence of using normal objects for categorization.

Global variables are not the only name spaces that need to be broken up for
programmers. Individual data types are a sort of name space for methods, and these
name spaces may be large enough to require their own categorization. The Small-
talk-80 environment again provides a two-level structure for organizing the
methods within a class into method categories.

For classless languages, the same techniques for organizing large name space
objects may be applied to organize large traits objects. Each traits object may refer
to parent subobjects that define some category of the slots of the traits object; the

Figure 8. Categorizing traits objects.

+

“fibonacci function”fibonacci
“factorial function”factorial

–
/

“addition”
“subtraction”
“division”

=
<
>

“equals”
“less than”
“greater than”

arithmetic*

functions*
comparing*

integer traits

parent**

240 UNGAR, CHAMBERS, CHANG, AND HÖLZLE

name of each parent slot is the name of that subobject category (see Figure 8).
Again these composite traits objects extend to any number of levels of structure.

4.3 Extensional vs. Intensional Names and Categorization

By using name space objects and message passing to access global objects, an
object’s “name” becomes the sequence of message sends needed to reach it. We call
this an extensional name, since it is derived from the structure of the system.
Languages with internal class names, on the other hand, have intensional names,
since classes are given explicit names by the programmer that may not be related
to the structure of the system. Similarly, categorizing name spaces and traits objects
using the object structure is extensional categorization, while using browser data
structures to describe the categorization of classes and methods is intensional cate-
gorization.

Extensional names have a number of advantages over intensional names:
• No extra language or environment features are needed to support extensional

names or categories.
• Extensional names have additional interpretations as expressions that evaluate

to the named object (and so may be used within a program to access the object)
and as paths to reach the named object (and so may be used in the browser to
navigate to the object).

• The data structures defining intensional names for programmers can become
inconsistent with the global variable names used by programs. For example,
the internal names for classes and the data structures used by the environment
to find a class’ subclasses can become incorrect if the global variable referring
to the class is renamed or if the inheritance hierarchy is changed without
updating the browser’s data structures. No such inconsistency can exist with
extensional names, since they are derived from the actual structure of the
system.

The only restriction associated with extensional names is that they must be legal
expressions in the language (since an object’s name must be described in the object
structure). This restriction has not been a problem in our system, and we feel that
the advantages of extensional naming over intensional naming are much more
important.

5 Conclusion

Classes are not necessary for structure since objects themselves can provide it:
traits objects provide behavior-sharing facilities for their instances and refine-
ments, encapsulation mechanisms can provide type-based encapsulation without
needing explicit types or classes, and structured name space objects provide names
for programs to use and for people to browse. Traits objects and name space objects

ORGANIZING PROGRAMS WITHOUT CLASSES 241

are no different than other objects, but their stylized use becomes an idiom that is
instantly recognizable by the programmer. Languages without classes can structure
programs as well as languages with classes.

Additionally, certain properties of traditional class-based systems conspire to
hinder some kinds of useful structures that are handled naturally by classless
systems. Since a class implicitly extends its superclasses’ representations, it is hard
to define a subclass that alters the representation defined by its superclasses. Class-
less languages define a type’s representation explicitly using prototype objects, and
so are able to implement both representation extension and representation alter-
ation naturally. Because the representation of an object in a class-based system is
so tied up with the object’s class, it is difficult to implement dynamic behavior
modes. Classless languages may use dynamic inheritance in a structured way to
implement these behavior modes as a natural extension of static inheritance.
Languages without classes can structure many programs better than languages with
classes.

References

1. Bobrow, D. G., DeMichiel, L. G., Gabriel, R. P., Keene, S. E., Kiczales, G.,
and Moon, D. A. Common Lisp Object System Specification. Published as
SIGPLAN Notices, 23, 9 (1988).

2. Borning, A. H. Classes Versus Prototypes in Object-Oriented Languages. In
Proceedings of the ACM/IEEE Fall Joint Computer Conference (1986) 36-
40.

3. Chambers, C., and Ungar, D. Customization: Optimizing Compiler Technol-
ogy for SELF, a Dynamically-Typed Object-Oriented Programming Lan-
guage. In Proceedings of the SIGPLAN ’89 Conference on Programming
Language Design and Implementation. Published as SIGPLAN Notices, 24, 7
(1989) 146-160.

4. Chambers, C., Ungar, D., and Lee, E. An Efficient Implementation of SELF,
a Dynamically-Typed Object-Oriented Language Based on Prototypes. In
OOPSLA ’89 Conference Proceedings. Published as SIGPLAN Notices, 24,
10 (1989) 49-70. Also in Lisp and Symbolic Computation, 4, 3 (1991) 243-
281.

5. Chambers, C., Ungar, D., Chang, B., and Hölzle, U. Parents are Shared Parts
of Objects: Inheritance and Encapsulation in SELF. In Lisp and Symbolic
Computation, 4, 3 (1991) 207-222.

6. Goldberg, A. Smalltalk-80: The Interactive Programming Environment. Ad-
dison-Wesley, Reading, MA (1984).

242 UNGAR, CHAMBERS, CHANG, AND HÖLZLE

7. Goldberg, A., and Robson, D. Smalltalk-80: The Language and Its Implemen-
tation. Addison-Wesley, Reading, MA (1983).

8. LaLonde, W. R. Designing Families of Data Types Using Exemplars. In ACM
Transactions on Programming Languages and Systems, 11, 2 (1989) 212-
248.

9. LaLonde, W. R., Thomas, D. A., and Pugh, J. R. An Exemplar Based Small-
talk. In OOPSLA ’86 Conference Proceedings. Published as SIGPLAN Notic-
es, 21, 11 (1986) 322-330.

10. Lee, E. Object Storage and Inheritance for SELF, a Prototype-Based Object-
Oriented Programming Language. Engineer’s thesis, Stanford University
(1988).

11. Lieberman, H. Using Prototypical Objects to Implement Shared Behavior in
Object-Oriented Systems. In OOPSLA ’86 Conference Proceedings. Pub-
lished as SIGPLAN Notices, 21, 11 (1986) 214-223.

12. Schaffert, C., Cooper, T., and Wilpolt, C. Trellis Object-Based Environment:
Language Reference Manual, Version 1.1. DEC-TR-372, Digital Equipment
Corp., Hudson, MA (1985).

13. Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C. An Introduc-
tion to Trellis/Owl. In OOPSLA ’86 Conference Proceedings. Published as
SIGPLAN Notices, 21, 11 (1986) 9-16.

14. Stein, L. A. Delegation Is Inheritance. In OOPSLA ’87 Conference Proceed-
ings. Published as SIGPLAN Notices, 22, 12 (1987) 138-146.

15. Stein, L. A., Lieberman, H., and Ungar, D. A Shared View of Sharing: The
Treaty of Orlando. In Kim, W., and Lochovosky, F., editors, Object-Oriented
Concepts, Applications, and Databases, Addison-Wesley, Reading, MA
(1988).

16. Stroustrup, B. The C++ Programming Language. Addison-Wesley, Reading,
MA (1986).

17. Stroustrup, B. The Evolution of C++: 1985 to 1987. In USENIX C++ Work-
shop Proceedings (1987) 1-21.

18. Ungar, D., and Smith, R. B. SELF: The Power of Simplicity. In OOPSLA ’87
Conference Proceedings. Published as SIGPLAN Notices, 22, 12 (1987) 227-
241. Also in Lisp and Symbolic Computation, 4, 3 (1991) 187-205.

