
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

Spartan: A Distributed Array Framework
with Smart Tiling

Chien-Chin Huang, New York University; Qi Chen, Peking University; Zhaoguo Wang
and Russell Power, New York University; Jorge Ortiz, IBM T.J. Watson Research Center;

Jinyang Li, New York University; Zhen Xiao, Peking University

https://www.usenix.org/conference/atc15/technical-session/presentation/huang-chien-chin

USENIX Association 2015 USENIX Annual Technical Conference 1

Spartan: A Distributed Array Framework with Smart Tiling

Chien-Chin Huang†, Qi Chen*, Zhaoguo Wang†, Russell Power†, Jorge Ortiz‡

Jinyang Li†, Zhen Xiao*

†New York University, *Peking University, ‡IBM T.J. Watson Research Center

Abstract

Application programmers in domains like machine learning,

scientific computing, and computational biology are accus-

tomed to using powerful, high productivity array languages

such as MatLab, R and NumPy. Distributed array frameworks

aim to scale array programs across machines. However, max-

imizing the locality of access to distributed arrays is an un-

solved problem; such locality is critical for high performance.

This paper presents Spartan, a distributed array framework that

automatically determines how to best partition (aka “tile”) n-

dimensional arrays and to co-locate data with computation to

maximize locality. Spartan combines a lazy-evaluation based,

optimizing frontend with a distributed tiled array backend. Cen-

tral to Spartan’s design is a small number of carefully chosen

parallel high-level operators, which form the expression graph

captured by Spartan’s frontend during runtime. These operators

simplify the programming of distributed applications. More im-

portantly, their well-defined semantics allow Spartan’s runtime

to calculate the costs of different tiling strategies and pick the

best one for evaluating the entire expression graph.

Using Spartan, we have implemented 12 applications from

a variety of domains including machine learning and scien-

tific computing. Our evaluations show that Spartan’s automatic

tiling mechanism leads to good and scalable performance while

eliminating the need for manual tiling.

1 Introduction

High productivity array-languages, such as MAT-

LAB [42], NumPy [51] and R [63], are the dominant

toolkit for application programmers in areas like ma-

chine learning, scientific computing and computational

finance. To help array programs scale across machines,

there have been many proposals from both the HPC and

the systems communities to develop a distributed array

framework (discussed in §6). However, despite these ef-

forts, an easy-to-use, high-performance distributed array

framework has remained elusive. When distributing ar-

ray programs, the open challenge is how to maximize

the locality of access to array data spread out across

the memory of many machines. To improve locality, one

needs to both partition arrays smartly and co-locate com-

putation with data. We refer to this as the “tiling” prob-

lem. Tiling is crucial for performance; programs that op-

timize for locality can be an order of magnitude faster

than those that don’t.

Existing distributed array frameworks do not ade-

quately address the tiling problem. Most systems rely

on users to manually specify array partitioning; exam-

ples include Pydron [46], Presto [64], MadLINQ [56],

Global Arrays [20] and Petsc [9]. Although SciDB [62]

can automatically choose a good chunk size to optimize

loading arrays from disk, it still relies on a user-defined

tiling strategy. Manual tiling can achieve good locality,

but makes the resulting system much more tedious and

complex to use than their single-machine counterpart.

Ideally, a distributed array framework should support au-

tomatic tiling with minimal user input to achieve both

ease-of-use and high performance.

This paper presents Spartan distributed array frame-

work with smart tiling. Spartan provides the popular

Numpy [51] array abstractions while achieving scal-

able high performance across machines. The key in-

novation of Spartan is its automatic tiling mechanism:

when distributing an n-dimensional array across ma-

chines, the runtime of Spartan can automatically decide

which axis(es) to cut each array along and to co-locate

computation with data.

A major design of Spartan is the five high-level paral-

lel operators, including map, fold, filter, scan and join -

update. These high-level operators capture the parallel

patterns of most array programs and we use them to dis-

tribute a myriad of built-in array functions as well as user

programs. The semantics of these high-level operators

lead to well-defined cost profiles. The cost profile of an

operator gives an estimate of the communication cost for

each potential tiling strategy (row-wised, column-wised,

etc.) for its inputs. Therefore, it provides crucial infor-

mation to enable the runtime to perform automatic tiling.

As an example, the map operator applies a user-defined

function element-wise to several input arrays with the

same shape. Thus, this operator achieves the best locality

(and zero communication cost) if all its input arrays are

partitioned in the same way. Otherwise, the cost equals

to the size of those input arrays with different tiling.

At runtime, Spartan splits program execution into a

1

2 2015 USENIX Annual Technical Conference USENIX Association

series of frontend and backend steps. On the client ma-

chine, the frontend first turns a user program into an ex-

pression graph of high-level operators via lazy evalua-

tion. It then runs a greedy search algorithm to find a good

tiling for each node in the expression graph to reduce the

overall communication cost. Finally, the frontend gives

the tiled expression graph to the backend for execution.

The backend creates distributed arrays according to the

assigned tiling and evaluates each operator by schedul-

ing parallel tasks among a collection of workers.

Spartan’s automatic tiling is not without limitations.

First, Spartan only aims to minimize network communi-

cation and does not consider other performance limiting

factors such as how tiling impacts each machine’s cache

locality. Second, the default cost profile for join update

is not precise in some circumstances and require addi-

tional hints from users. While this imposes additional

work from users, we have found the efforts to be reason-

ably low in practice. Third, the greedy search algorithm

does not guarantee optimal tiling because the underlying

optimization problem is NP-complete.

We have built Spartan to provide similar user inter-

faces as NumPy. It currently implements 50+ common

Numpy functions. We have developed 12 applications

on top of Spartan. All of them are simple to write using

builtins or Spartan’s high-level operators. Evaluations on

a local cluster and the Amazon EC2 show that Spar-

tan tiling algorithm can automatically find good tiling

for arrays and achieve good scalability. Compared to an

existing in-memory distributed array framework, Presto,

Spartan applications achieve a speedup of 1.7×.

2 Automatic Tiling Overview

The Setup. The Spartan system is comprised of many

worker machines in a high speed cluster. Spartan parti-

tions each global array into several tiles (sub-arrays) and

distributes each one to a potentially different worker. We

refer to the partitioning strategy as tiling. There are sev-

eral ways to “tile” an array. For example, Fig. 1 shows

the three tiling choices for a 2D array (aka matrix).

In Spartan, an array is created by loading data from

an external storage or as a result of some computation.

Spartan decides the tiling choice for the array at its cre-

ation time. What is a good tiling choice? We consider the

best tiling as one that incurs the minimum communica-

tion cost when the array is used in a computation – work-

ers fetch and write as few remote tiles as possible. In this

section, we examine what affects good tiling and give an

overview of Spartan’s approach to automatic tiling.

2.1 What Affects Good Tiling?

Several factors affect the tiling choice for an array. These

include how the computation accesses the array, the run-

time information of the array and how the array is used

row-wised tiling column-wised tiling block tiling

Figure 1: Three tiling methods for 2-dimensional arrays.

(a)

(b)

read

n

k

k

m m

n.

Worker P

=1 2 P 1 2

1
2

Pread
update

 P

 n

k

k

m m

n.

Worker P

=
1
2

read read
update

1
2

P
1 2 P

P

Figure 2: Two ways to implement matrix multiplication

X·Y=Z, aka dot operation. Gray areas denote data read or

updated by a single worker. In (a), each worker reads the en-

tirety of Y across the network and performs local writes. Its

per-worker communication cost is k ∗ m. In (b), each worker

performs local fetches and sends updates of size n∗m over the

network. The per-worker communication cost is n ∗m.

across the program. Below, we illustrate how each of the

factors affects tiling using concrete examples.

1) The access pattern of an array. Array computation

tends to read or update an array along some particular

axis. This access information is crucial for determining

a good tiling. Fig. 2(a) shows the access pattern of a

common implementation of matrix multiplication (aka

dot). When computing X ·Y = Z, this implementation

launches p parallel tasks each of which reads X row-wise

and reads the entirety of Y . The task then performs a lo-

cal dot and sends the result row-size to create Z. Conse-

quently, it is best to tile both X and Z row-wise (it does

not matter how Y is tiled). Other ways of tiling incur ex-

tra communication cost for fetching X and updating Z.

2) The shape and size of an array. The access pattern

of an array often depends on the array’s shape and size.

Therefore, such runtime information affects the array’s

tiling choice. In addition to Fig. 2(a), there exists an alter-

native implementation of dot, shown as Fig. 2(b). In this

alternative implementation, each of the p parallel tasks

reads X column-wise and Y row-wise to perform a lo-

cal matrix multiplication and update the entirety of Z.

The final Z is created by aggregating updates from all p

tasks. Consequently, it is best to tile X column-wise and

Y row-wise.

2

USENIX Association 2015 USENIX Annual Technical Conference 3

Whether to use Fig. 2(a) or Fig. 2(b) to compute X ·

Y = Z is a runtime choice that depends on the array

shapes. Suppose X is an n× k matrix and Y is a k ×m

matrix. Fig. 2(a) has a per task communication cost of

k ∗m. This is because each task needs to fetch the entire

Y across the network and can be scheduled to co-locate

with the tile of X that it intends to read. By contrast,

Fig. 2(b) has a per task communication cost of n ∗ m.

This is because each task needs to send its update of Z

over the network and can be scheduled to co-locate with

the tiles of X and Y that it intends to read. Therefore, the

best tiling choice depends on the shape of X . If n > k,

the cost of Fig. 2(a) is lower and the system computes

dot using (a) whose preferred tiling for X is column-

wise. If n < k, the cost of Fig. 2(b) is lower and the

system computes dot using (b) whose preferred tiling

for X is row-wise.

1 func ALS(A):

2 ’’’

3 Alternating Least Squares

4 Input: A is a n*k user-movie rating matrix.

5 Output: U and M are factor matrices.

6 ’’’

7 for i from 1 to max_iter

8 U = CalculateUsersFactor(A, M)

9 M = CalculateMoviesFactor(A, U)

10 endfor

11 return U, M

Figure 3: Pseudocode of Alternating Least Squares.

3) How an array is used throughout the program.

An array can be read by multiple expressions. If these

expressions access the array differently, we can reduce

communication cost by creating multiple tilings for the

array. In order to learn of an array’s usage, the system

cannot simply handle one expression at a time, but must

“look ahead” in execution when determining an array’s

tiling. Consider the Alternating Least Squares (ALS)

computation shown in Fig. 3. ALS solves the collabo-

rative filtering problem by decomposing the given user-

item rating matrix. Consider a movie recommendation

system under ALS that makes use of two parameters:

users and movies. In each iteration, ALS calculates the

factor for each user, based on the rating matrix, A, and

a movie factor matrix (line 5 in Fig. 3). Then, it calcu-

lates the factor for each movie based on the rating matrix,

A, and users factor matrix (line 6 in Fig. 3). Thus, ALS

needs to access A along both row (users) and column

(movies) in one single iteration. If the system decides

on A’s tiling by line 8 only, it would tile A row-wise.

Later, at line 9, the system incurs communication cost

when reading A column-wise. This is far from optimal.

If we unroll the for loop and look at all the expressions

together, we can see that A is accessed by two expres-

sions several times (max iterations). Thus, the best tiling

is to duplicate A and tile one along row and another along

Tile1

array-language
frontend

operator based
expression graph

Worker 1

Tile2

Worker 2

Tile 3

Worker 3

{client
machine

distributed execution
backend

distributed
arrays

capture array expressions
transform to operators

tiling
optimization

Figure 4: The layered design of Spartan. The frontend builds

an expression graph and optimizes it. The backend executes

the optimized graph on a cluster of machines. Each worker (3

workers in this figure) owns a portion of the global array.

column.

2.2 Our Approach and Spartan Overview

Like NumPy and other popular array languages, users

write applications in Spartan using a large number of

built-in functions and array primitives (e.g. +,*,dot,

mean, etc.). Spartan implements its built-in functions us-

ing a small number of high-level parallel operators. The

high-level operators encapsulate common parallel pat-

terns and can efficiently express most types of computa-

tion. Users may also directly program using these high-

level operators if their computation cannot be expressed

by existing builtins.

Spartan uses a layered approach which splits the exe-

cution into frontend and backend steps, shown in Fig. 4.

The frontend, running on a client machine, captures user

code and turns it into an expression graph whose nodes

correspond to the high-level operators. Next, the frontend

runs a tiling optimizer to determine good tiling for each

node in the expression graph. Finally, the frontend sends

the tiled expression graph to the backend. The backend

provides high performance distributed implementations

of high-level operators. For each operator, it schedules a

collection of tasks running on many compute machines.

The tasks create, fetch and update distributed in-memory

arrays based on the tiling hint determined by the opti-

mizer.

Spartan’s high-level operators and its layered design

help collect the necessary information for automatic

tiling. First, by expressing various types of computation

in a small set of high-level operators, the data access

pattern is made explicit for analysis (§2.1 (1)). Second,

the frontend dynamically captures the expression graph

with runtime information about the shape of input and in-

termediate arrays (§2.1 (2)). Third, the expression graph

represents a large execution context, thereby allowing the

frontend to understand how an array is used by multiple

3

4 2015 USENIX Annual Technical Conference USENIX Association

expressions. This is crucial for good tiling (§2.1 (3)).

3 Smart Tiling with High-level Operators

This section describes the design of Spartan, focusing on

those parts crucial for automatic tiling. Specifically, we

discuss high-level operators (§3.1), how Spartan’s fron-

tend turns an array program into a series of expression

graphs (§3.2), the basic tiling algorithm (§3.3) and addi-

tional optimizations (§3.4).

3.1 High-level Operators

A high-level operator in Spartan is a parallel computation

that can be parameterized by some user-defined function
1. The operators are “functional” in nature: they take ar-

rays or views of arrays as input and generate a new one

without modifying existing arrays in place. Spartan sup-

ports views of arrays like NumPy. A view is an inter-

face that allows users to manipulate arrays (e.g., swap-

ping axes, slicing) without copying data. When reading

a tile of a view, Spartan translates the shape and location

from the view to those of the underlying array to fetch

data.

High-level operators are crucial to Spartan’s smart

tiling, but what operators should we use? There are

two considerations in choosing them. First, each oper-

ator should capture a general parallel pattern that can be

used to implement many builtins. Second, each opera-

tor should have restricted semantics that correspond to a

well-defined cost profile for different ways of tiling its

input and output. This enables the captured expression

graph to be analyzed to identify good tiling choices.

Spartan’s current collection of five high-level opera-

tors is the result of many design iterations based on our

experience of building various applications and builtins.

Below, we describe each operator in turn and also discuss

its (communication) cost w.r.t. different tiling choices.

• D=map(fmap, S1, S2, . . .) applies function fmap

in parallel tile-wise over input arrays, S1, S2, . . .,

and generates output array D with the same shape.

The total cost is zero if all inputs have the same

tiling. Otherwise, the cost is the total size of all in-

put arrays whose tiling differs from S1.

As an example usage of map, Fig. 5(line 4–7)

shows the implementation of Spartan’s built-in ar-

ray addition function which simply uses map with

fmap as Numpy’s addition function.

• D=filter(fpred, S) creates a view of S that excludes

elements that do not satisfy the given predicate

fpred. Alternatively, filter can take a boolean array

in place of fpred. Since filter creates a view without

copying actual data, the cost is zero.

1The user-defined function must be free of side-effects and deter-

ministic.

• D=fold(faccum, S, axis) aggregates input array

S using the commutative and associate function

faccum along the axis dimension. For example, if

S is a m × n matrix, then folding it along axis=0

creates a vector of n elements. Spartan performs the

underlying folding in parallel using up to m tasks.

The cost of fold is zero if S is tiled along the axis

dimension, otherwise, the cost is S.size.

• D=scan(faccum, S, axis) computes cumulative

aggregates using faccum over the axis dimension

of S. Unlike fold, its output D has the same shape

as the input. The cost profile of scan is the same as

fold.

• D=join update(fjoin, faccum, S1, S2, . . . , axis1,

axis2, . . . , output shape) is more complex than

previous operators. This operator treats each input

array Si as a group of tiles along the axisi,

The shapes of the input arrays must satisfy the

requirement that they have the same number of

tiles along their respective axisi. Spartan joins

each tile among different groups and applies fjoin
in parallel. Function fjoin generates some update

to be written to output D at a specified location.

Multiple workers running fjoin may concurrently

update to the same location of D; such conflicts are

automatically resolved by applying faccum.

As an example of join update, consider the matrix

multiplication implementation in Fig. 2(b), where

S1 is a n × k matrix and S2 is a k × m matrix.

Fig. 5 (lines 20–22) uses join update which divides

S1 into k column vectors and S2 into k row vec-

tors. The fjoin (aka dot_udf) is called in parallel

for each column vector of S1 joined with the corre-

sponding row vector of S2. It performs a local dot

product of the joined column and row to generate

an n×m output tile. All updates are aggregated to-

gether using the addition accumulator to create the

final output.

A special case of join update is when some input

array Si has axisi = −1. In this case, the entire

array Si will be joined with each tile of other input

arrays. Fig. 5 (lines 23-25) uses this special case of

join update to realize the alternative matrix imple-

mentation of Fig. 2(a).

The cost of join update consists of two parts, 1) the

cost to read the input arrays. 2) the cost of updating

the output array. If an input array Si is partitioned

along axisi, the input cost for Si is zero, otherwise,

the cost is Si.size. Since the size and shape of out-

put array created by fjoin is unknown to Spartan, it

assumes a default update cost, D.size.

In addition to the five high-level operators, Spartan

also provides several primitives to create distributed ar-

rays or views of arrays.

4

USENIX Association 2015 USENIX Annual Technical Conference 5

• D=newarray(shape, init method) creates a dis-

tributed array with a given shape. The array can be

initialized in several ways, 1) by loading data from

an external storage, 2) by some computation, e.g.

random, zeros.

• D=slice(S, region) creates a view over a specified

region in array S. The region descriptor specifies

the start and end of the sliced region along each di-

mension.

• D=swapaxis(S, axis1, axis2) creates a view of ar-

ray S by swapping the axes axis1 and axis2. The

commonly used built-in transpose function is im-

plemented using this operator. The output view D

has a different tiling from S. For example, if S is a

column-tiled matrix, then D = swapaxis(S, 0, 1)
is effectively a row-tiled matrix.

There is no cost for newarray, newarray and swa-

paxis (the cost of newarray reading from an external

storage is unrelated to tiling).

1 import numpy

2 import spartan

3

4 # Spartan’s parallel implementation of

5 # element-wise array addition

6 def add(a, b):

7 return spartan.map(a, b, f_map=numpy.add)

8

9 # User-defined f_join function

10 def dot_udf(input_tiles):

11 output_loc = spartan.location(0,0)

12 output_data = numpy.dot(input_tiles[0],

13 input_tiles[1])

14 return output_loc, output_data

15

16 # Spartan’s parallel implementation of

17 # matrix multiplication

18 def dot(a, b):

19 if a.shape[0] <= a.shape[1]:

20 return spartan.join_update(S=(a, b),

21 axes=(1, 0), f_join=dot_udf,

22 shape=..., f_accum=numpy.add)

23 else:

24 return spartan.join_update(S=(a, b),

25 axes=(0, -1),..)

Figure 5: Implementations of add and dot in Spartan.

Based on the high-level operators, Spartan supports

50+ Numpy builtins. Fig. 5 shows two implementations

of Spartan’s builtins, add and dot.

Although Spartan’s map and fold resemble the “map”

and “reduce” primitives in the MapReduce world [21, 1,

67, 29], they are more restrictive. Spartan only allows

fmap to write a tile in the same location of the output ar-

ray as its input tile location and not some arbitrary loca-

tion. Similarly, fold can only reduce along some axis as

opposed to over arbitrary keys in a key value collection.

Such restriction is necessary for them to have a well-

defined cost profile.

3.2 Expression Graph Capture

During a user program’s execution, Spartan’s frontend

captures array expressions via lazy evaluation and turns

(X) (Y)
newarray(X) newarray(Y)

map(+) join_update
(dot)

map(-)

(+)

(-)

(dot)

(a) (b)

Figure 7: The expression graph and its corresponding tiling

graph for Z = X + Y −X · Y .

them into a series of expression graphs [15, 4]. In an ex-

pression graph, each node corresponds to a high-level op-

erator and an edge from one node to another shows the

data dependency between them. Fig. 7(a) shows an ex-

ample expression graph. Expression graphs are acyclic

because Spartan’s high-level operators create immutable

arrays.

The frontend stops growing an expression graph only

when forced: this occurs in a few situations: (1) when a

variable is used to determine the control flow, (2) when

a variable is used for program output, (3) when a user

explicitly requests evaluation. The use of lazy evaluation

leads to an implicit form of loop unrolling: as long as

there is no data dependent control flow, expression graph

will continue growing until pre-configured limits.

3.3 Graph-based Tiling Optimizer

Spartan supports “rectangular” tiles: an n-dimensional

array can be partitioned along any one dimension (e.g.

row-wise, column-wise), or partitioned along two or

more dimensions (e.g. block-wise tiling). Some existing

work [28] explored other possible shapes that are more

efficient for its applications.

Given an expression graph of high-level operators, the

goal of the tiling optimizer is to choose a tiling for each

operator node to minimize the overall cost. This opti-

mization problem is NP-Complete (See appendix §A). It

is also not practical to find the best tiling via brute force

since the expression graph can be very large. Therefore,

we propose a graph-based approximation algorithm to

identify a good tiling quickly.

The algorithm works in two stages. First, it constructs

a tiling graph based on the expression graph and the cost

profile of each operator. Next, it uses a greedy strategy to

search for a low cost tiling combination.

1) Constructing the tiling graph. The goal of the tiling

graph is to expose the tiling choices and cost in the

expression graph. For each operator in the expression

graph, the optimizer transforms it into a node group, i.e.

5

6 2015 USENIX Annual Technical Conference USENIX Association

}
}

Read
Cost

Update
Cost

Input arrays generated
by other operators} {

D = map(‘+’, S1, S2) D = join_update(‘dot’, S=(S1, S2), axes=(1, 0), output_shape=shape))

(a) (b)

0 0 0 0S1.size

S1.size S2.siz
e 0 0

00

shape * p shape * p

S1.size S2.size

n1:

n2:n1:

n2:

a2:a1:

S1 S2 S1 S2

row
tiling

column
tiling

Figure 6: Two examples of building the tiling graph. (a) A plus expression, (S1 + S2), implemented by map operator (b) A dot

expression, dot(S1, S2), implemented by join update operator.

a cluster of several tiling nodes, each representing a spe-

cific choice to tile the operator’s output or intermediate

steps. The weight of each edge that connects two tiling

nodes represents the underlying cost if the two operators

are tiled according to the tiling nodes.

Fig. 6 shows how a map operator, corresponding to

D = S1 + S2, is transformed. To keep the figure simple,

we assume that all arrays are two dimensional with two

tiling choices: row-based or column-based. And all dot-

ted lines represent zero edge weights. As Fig. 6 shows,

the map operator becomes two nodes in the tiling graph,

each representing a different way to tile its output D.

Similarly, each of the map operator’s input arrays S1 and

S2 (which are likely outputs from the previous operators)

also correspond to two nodes. For map, there is a well-

defined way to label the weights among nodes, as illus-

trated in Fig. 6. For example, if S2 is tiled column-wise

and D is tiled row-wise, the weight between the corre-

sponding two nodes is S2.size because workers have to

read S2 across the network to perform the map. fold and

scan are treated similarly as map, but with edge weights

labeled according to their own tiling cost profiles.

Next, we discuss the transformation of join update.

For this operator, we use some intermediate tiling nodes

(a1, a2 . . . in Fig. 6(b)) to represent the reading cost dur-

ing the join. A placeholder node is used to represent the

join stage. We use another set of tiling nodes (n1, n2 in

Fig. 6(b)) to capture the update cost to the output array.

Unfortunately, Spartan can not know the precise update

cost of join update without executing the user-defined

fjoin function. Thus, we provide a default update cost

according to the common update cost pattern observed

in the applications implemented by join update. If join -

update is performed within a loop, the optimizer can ad-

just the edge cost of the tiling graph according to the ac-

tual cost observed during the previous execution of the

join update.

Fig. 6(b) shows the tiling graph used for the ma-

trix multiplication function implemented in join update.

This implementation corresponds to the data access pat-

tern shown in Fig. 2(b). As shown in Fig. 5, the join axes

for the first and second arrays are column and row re-

spectively. The edge weight for Si is 0 if it matches the

join axis and is Si.size otherwise. The cost is Si.size is

because each worker needs to update the entirety of the

result matrix. The edge weights for n1 and n2 are both

p ∗ output shape.

Fig. 7 gives an example showing a specific array ex-

ecution (Z = X + Y − X · Y)) and its corresponding

expression graph and tiling graph. We omitted the details

of other edge weights to keep the graph readable.

2) Searching for a good tiling. Deciding a tiling choice

for an operator corresponds to picking one node among

the corresponding node group in the underlying tiling

graph and different combinations of tiling nodes pose

different costs. As a result, the next step for the tiling

optimizer is to analyze the tiling graph and find a com-

bination of tiling choices that minimizes the overall cost.

The tiling optimizer adopts a greedy search algorithm.

The heuristic is to decide the tiling for the node group

with the maximum connectivity first. Here, connectiv-

ity of a node group is the number of its adjacent node

groups. When deciding a tiling for a node group X , the

algorithm chooses the one resulting in the minimum cost

for X . Why does this heuristic work? The cost of a tiling

for an operator depends on the tiling choices of its ad-

jacent operators. Thus, an operator with more adjacent

operators has a higher impact on overall cost. Conse-

quently, the algorithm should first minimize the cost of

node groups with higher connectivity2.

Fig. 8 shows the pseudo code for the tiling algorithm.

Given a tiling graph G, the algorithm processes node

groups in the order of edge connectivity (Line 19–20).

For each node group (x in Line 20), the algorithm calcu-

lates the cost of each tiling node and chooses the tiling

2Another natural heuristic is to search the node group with largest

array size first. Unfortunately, this algorithm does not perform well ac-

cording to our experiments.

6

USENIX Association 2015 USENIX Annual Technical Conference 7

node with the minimum cost (Line 23–29). After decid-

ing the good tiling (x.chosenT iling in Line 30) for node

group x, the algorithm removes all edges connected to all

other tiling nodes (Line 32). This implies that the algo-

rithm can’t freely choose tiling for adjacent node groups

of x any more – it must consider the chosen tiling of x.

FindCost obtains the cost of a tiling node (T in Line

1) by calculating the sum of the minimum edge weight

between each adjacent node group and T (Line 4–14).

If the adjacent node group is a view operator such as

swapaxis, its tiling node will be decided by T . To get

accurate cost affected by T , the algorithm should also

consider the adjacent node groups for its view operators.

As a result, FindCost recursively finds the cost of the

view node group (Line 5–6). The result corresponds to

the best possible cost for tiling node T .

The complexity of the tiling algorithm is O(E ∗ N)
where E is the number of edges in the tiling graph and

N is the number of node groups. It is not guaranteed to

find the optimal tiling. However, we find that the greedy

strategy works well in practice (§5).

1 func FindCost(NodeGroup G, TileNode T)

2 # Find the cost for tiling node T of G

3 cost = 0

4 foreach NodeGroup g in G.connectedGroups():

5 if IsView(g, G):

6 cost += FindCost(g, g.viewTileNode(T))

7 else:

8 edgeCost = INFINITY

9 foreach Edge e in g <-> T

10 edgeCost = min(edgeCost, e.cost)

11 endfor

12 cost += edgeCost

13 endif

14 endfor

15 return cost

16

17 func FindTiling(TilingGraph G)

18 # Find good tiling for every operator in G.

19 GroupList = SortGroupByConnectivity(G)

20 foreach NodeGroup x in GroupList

21 minCost = INFINITY

22 goodTiling = NONE

23 foreach TileNode y in x

24 cost = FindCost(x, y)

25 if cost < minCost:

26 minCost = cost

27 goodTiling = y

28 endif

29 endfor

30 x.chosenTiling = goodTiling

31 # Other Group can only connect to goodTiling.

32 x.removeAllConnectedEdgesExcept(goodTiling)

33 endfor

34 return G

Figure 8: The maximum connectivity group first algorithm to

find good tiling based on the tiling graph.

3.4 Additional Tiling Optimizations

Duplication of arrays. As the ALS example in Fig 3

shows, some arrays may be accessed along different axes

several times. To reduce communication, Spartan sup-

ports duplication of arrays and tiles each replica along

different dimensions. To support duplication in the tiling

optimizer, we add a “duplication tile“ node to each node

group in the underlying tiling graph. As duplication of

arrays increases memory consumption. Spartan allows

users to specify the memory budget for duplicating ar-

rays to limit memory usage. Whenever the optimizer

chooses to “duplicate tile“ which causes an operator’s

output to be duplicated, it deducts from the memory

budget. The optimizer will not choose duplication tiling

without enough memory budget.

Sparse arrays. Dense arrays and sparse arrays are dif-

ferent in several aspects. First, the size of a sparse array

can’t be known based on the shape. Smart tiling estimates

the size by sampling before constructing the tiling graph.

Second, the non-zero elements distribution of intermedi-

ate arrays may be different from those of the input ar-

rays. Smart tiling addresses this problem by adjusting

edge weights after executing operators. This technique

is the same as how Spartan improves its initial imprecise

cost estimate of join update with successive execution.

Finally, the distribution of a sparse array can be skewed.

Smart tiling can use fine-grained tiles to help backend to

perform work stealing [55].

4 Implementation

Since NumPy is wildly popular in machine learning and

scientific computing, our implementation goal is to repli-

cate the “feel” of NumPy as much as possible. Our

prototype currently supports 50+ most commonly used

Numpy builtins.

The Spartan frontend, written in Python, captures ex-

pression graph and performs tiling optimization (§3). The

Spartan backend, consists of one designated master and

many worker processes on a cluster of machines. Below,

we provide more details on the major backend compo-

nents:

Execution engine. The backend provides efficient im-

plementations of all high-level operators. Given an ex-

pression graph, the master is responsible for coordinat-

ing the execution of one node (a high-level operator) at a

time. To execute a node, the master first creates an output

array with the given tiling hint and then schedules a set

of tasks to run user-defined parameter functions in paral-

lel according to the data locality. Locality here means the

task is executed on the worker that stores its input source

tile. If the node corresponds to a join update, scan or

fold, the backend also associates a user-defined accumu-

lator function with the output array to aggregate updates

from multiple workers.

User-defined parameter functions are written in

Python NumPy and process one tile instead of one

element at a time. Like MatLab, NumPy relies on

high performance C-based linear algebra libraries like

BLAS [35] or LAPACK [6]. As a result, the local exe-

cution of parameter functions in each worker is efficient.

7

8 2015 USENIX Annual Technical Conference USENIX Association

Distributed, tiled arrays. Each distributed array is

partitioned into a set of tiles according to its tiling hint

and stored in workers’ memory. To create an array, the

master assigns each of its tile to a worker (e.g. in a round-

robin fashion) and distributes the tile-to-worker mapping

to all workers so everybody can access remote tiles with-

out consulting the master. If two arrays of the same shape

have identical hints, the master ensures that tiles corre-

sponding to the same region in both arrays are co-located

in the memory of the same worker.

Fault tolerance. To recover from worker failure in the

middle of a long computation, the backend checkpoints

in-memory arrays to durable storage. Our implementa-

tion currently adopts the simplest design: after finishing

an entire operator, the master periodically instructs all

workers to save their tiles and also saves its own state.

5 Evaluation

In this section, we measured the performance of our

smart tiling algorithm. We also evaluated the scalability

of applications and compared against other open-source

distributed array frameworks.

5.1 Experimental setup

We evaluated the performance of Spartan on both our

local cluster as well as Amazon EC2. The local cluster

is a heterogeneous setup consisting of eleven machines:

6 machines have 8-core AMD Opterons with 16GB of

RAM, and 5 machines have 4-core Intel Xeons with

8GB of RAM. The machines are connected by gigabit

Ethernet. For the EC2 experiments, we use 128 spot in-

stances of the older generation m2.xlarge. Each of these

instances has 17.1GB memory and 2 virtual CPUs. The

network performance is rated as “moderate”, which is

approximately 300Mbps according to our measurements.

Unless otherwise mentioned, we ran multiple worker

processes on each machine, one associated with each

CPU core. We use 12 applications as our benchmarks.

They include algorithms from machine learning, data

mining and computational finance.

5.2 Tiling

Smart Tiling Evaluation for Applications: We com-

pared the running time of applications with the tiling

generated by smart tiling against the best tiling – the

tiling that incurs the minimum communication cost. The

best tiling can be pre-calculated by using a brute-force

algorithm to traverse the expression graph and search the

minimum communication cost among all possible tiling

choices. The experiment runs on 128 EC2 instances. Fig.

9 only shows 10 applications because the computational

finance ones operate on one-dimensional arrays which

can only be tiled along one axis. For applications which

are not perfectly scalable such as ALS and Cholesky, we

Figure 9: Running time comparison between smart tiling and

the best tiling for 10 applications.

set the sample sizes up to 10 million. For others, the sam-

ple sizes are up to 1 billion due to the memory limitation.

These applications show various kinds of tiling pat-

terns. First, many applications contain expressions or op-

erators that require runtime shape and axis information to

best tile matrices, e.g. dot and join update. Smart tiling

analyzes the runtime information and gives the best tiling

for the applications such as row-wise tiling for Regres-

sion and block tiling for Cholesky decomposition. Sec-

ond, some program flows pass the intermediate matrices

to expressions that change the view of tiling, e.g. swa-

paxis. Smart tiling identifies the best tiling through the

global view of computation. Example applications in-

clude SSVD and PCA. Finally, some applications, like

ALS, access matrices along different axes several times.

As described in §2.1, the best tiling for these applications

is duplication tiling.

Fig. 9 shows that Spartan’s smart tiling is able to give

the best tiling and improve the performance for all appli-

cations. Note that the application running time of the best

tiling and Spartan’s smart tiling are not the same; some-

times Spartan’s smart tiling even outperforms the best

tiling. The difference is caused by the instability of Ama-

zon EC2. Spartan’s optimizer makes the same choices as

the best tiling for all applications.

A bad tiling can result in huge network transmission.

For instance, if the tiling of the input arrays for logistic

regression is partitioning along the smaller dimension,

workers need to remotely fetch the matrix which is more

than 512GB in the evaluation (4GB network transmis-

sion per instance in one iteration which result in approx-

imately an extra 110 seconds in our environment). An-

other interesting example is ALS. Simply row-wise or

column-wise tiling can result in 40% performance degra-

dation compared to duplication tiling. Moreover, the run-

ning speed of smart tiling is fast. For example, the brute-

force algorithm needs more than 500 seconds to analyze

a 14-operators ALS while Spartan’s smart tiling derives

the same result in 0.06 seconds.

8

USENIX Association 2015 USENIX Annual Technical Conference 9

Figure 12: Fixed input size, varying number of workers. Normalized running time is calculated by dividing 8 worker running time

on local cluster.

Figure 10: Network transmission cost comparison between

smart tiling and the best tiling for 100 randomly generated pro-

grams. Sorted by network transmission for readability only (ar-

ray sizes are randomly chosen from a set and there is no relation

between experiment index and network transmission).

1 def sub_optimal_case_pattern(SIZE):

2 A = expr.rand((SIZE, SIZE))

3 B = expr.rand((SIZE, SIZE))

4 C = A + B

5 D = expr.transpose(A) + expr.transpose(B)

6 E = C + D

Figure 11: An example that smart tiling gives sub-optimal

tiling.

Smart Tiling Evaluation for Randomly Generated

Programs: Although smart tiling gives the best tiling for

applications we implemented, there is no guarantee that

smart tiling performs well for various kinds of applica-

tions. Therefore, we examined the performance of smart

tiling for randomly generated programs. Each array di-

mension is randomly chosen from 128K to 512K. These

programs contain various numbers and types of opera-

tors Spartan has supported. The number of operators per

program ranges from 2 to 15.

Fig. 10 shows the network transmission cost of 100

randomly generated programs with the tiling given by

smart tiling and the best tiling. The result shows that

Spartan’s smart tiling can give the best tiling for most

programs. It is also fast compared to the brute-force al-

gorithm. For all programs, smart tiling needs less than

0.1 seconds while the brute-force algorithm spends 1900

seconds when the program contains 15 operators.

Fig. 11 shows the pattern residing in those programs

that smart tiling gives sub-optimal tiling. The best tiling

for Fig. 11 is to tile D column-wise and other operators

row-wise. However, smart tiling inspects the tiling cost

for C first and then for D because of the maximum con-

nectivity. It finds that row-wise tiling costs zero for both

operators. Therefore, smart tiling partitions both C and

D row-wise and thus gives sub-optimal tiling due to the

conflict views (caused by transpose) of C and D.

Although smart tiling cannot give the best tiling for

these programs, this sub-optimal case rarely happens.

Smart tiling produces a conflict view only when a pro-

gram exhibits two patterns simultaneously: 1) Two oper-

ators have different views of tiling from the same input

arrays. 2) Both operators have more connectivity than

their input arrays. As Fig. 10 shows, only 5 out of 100

random generated programs satisfy both requirements.

For three of them, the best tiling needs zero network

transmission while the smart tiling needs around 0.01 GB

network transmission. The number is not large because

these expressions include fold which reduces the size of

matrices. For the other two instances, the best tiling re-

quires 1.3 GB but the smart tiling consumes 1.9GB and

2.6GB respectively.

5.3 Scaling

We evaluated the scalability of all applications in two

ways. First, the applications use fixed-size inputs and run

across a varying number of workers. Second, the appli-

cations use inputs whose sizes are scaled linearly with

the number of workers. All results are normalized by the

8 workers baseline cluster size to show the relative sav-

ings (comparing with 1 worker is not fair because there

is no communication for only 1 worker). All inputs are

synthetic data.

9

10 2015 USENIX Annual Technical Conference USENIX Association

Figure 13: Scaling input size on local cluster.

Figure 14: Scaling input size on 128 instances EC2.

Fixed input size. Fig. 12 shows the running time of 12

applications on the local cluster. The number of workers

used in the experiments increases from 8 to 64. The dot-

ted lines corresponding to 1

2
, 1

4
or 1

8
ratio represent the

ideal scaling for 16, 32, and 64 workers.

The evaluation shows that the running time of many

applications achieves perfect scaling. Some of them do

not scale well due to the inefficiencies of the underly-

ing algorithms. CG has many dependent folds that re-

duce to one value on one worker. Cholesky also has many

dependent steps: the parallelism available in each step

grows and shrinks, thus Cholesky cannot always utilize

all workers.

Scaling input size. Fig. 13 shows the performance for

16 and 64 workers. Ideal scaling corresponds to a flat line

of 1.0.To examine the scalability on a larger-scale sys-

tem, we ran the experiment on EC2. Fig. 14 illustrates

the experiment running up to 256 workers. The result is

similar to that of Fig. 13 except for ALS. There are three

matrices in ALS, rating matrix, sample matrix and item

matrix. While Spartan’s smart tiling can reduce the read-

ing cost of rating matrix by duplication, ALS still needs

to randomly fetch sample matrix and item matrix in each

iteration and results in large communication. Thus, ALS

is not scalable for large-scale datasets.

Running Time (seconds) Sample Size

Spartan 523.95s 1 billion

Presto 882.47s 1 billion

SciDB 2573.83s 10 million

Figure 15: K-Means performance comparison with Presto and

SciDB on 128 instances EC2. The dataset for Spartan and

Presto contains 1 billion points, 50 dimensions and 128 cen-

ters. The dataset for SciDB contains 10 million points.

5.4 Comparison with other systems

We compared the performance of Spartan’s k-means with

the implementation of Presto (also called Distributed R)

and SciDB. The synthetic dataset contains 1 billion sam-

ples with 50 dimensions and 128 centers for Presto and

Spartan while only 10 million samples for SciDB.

Fig. 15 shows that the performance of Spartan is 1.7x

faster than Presto. Though both Spartan and Presto par-

tition the arrays row-wise which is the best tiling, Presto

requires users to explicitly assign the tiling while Spar-

tan needs no user hints. Thus, the performance difference

of Spartan and Presto comes from the backend library

and implementation. We have verified this by running k-

means only on a single worker.

Unlike Spartan and Presto, SciDB is not an in-memory

distributed system and thus has much slower perfor-

mance. The basic partition unit in SciDB is a chunk. It

is important for SciDB to select the correct chunk size to

reduce disk I/O. However, in Spartan, we focus on how

to reduce the network communication.

6 Related Work

There is much prior work in the area of distributed array

framework design and optimization.

Compiler-assisted data distribution. Prior work in

this space proposes static, compile-time techniques for

analysis. The first set of techniques focuses on parti-

tioning [28] and the latter set on data co-location [33,

53, 45]. Prior work also has examined nested loops

with affine array subscript patterns, using different struc-

tures (vector [28], matrix [58] or reference [30]) to

model memory access patterns or polyhedral model [40]

to perform localization analysis. Since static analysis

deals poorly with ambiguities in source code [7], recent

work proposes profile-guided methods [18] and memory-

tracing [52] to capture memory access patterns. Simpler

approaches focus on examining stencil code [52, 24, 26,

32, 25]. Spartan simplifies analysis significantly since

high-level operator access patterns are well-defined.

Access patterns can be used to find a distribution of

data that minimizes communication cost [28, 57, 10, 22,

27]. All approaches construct a weighted graph that cap-

tures possible layouts. Although searching the optimal

solution is NP-Complete [31, 34, 36, 37], heuristics per-

10

USENIX Association 2015 USENIX Annual Technical Conference 11

form well in practice [37, 53]. Spartan adopts the idea

of constructing a weighted graph. However, unlike prior

work that requires language-specific compile-tile analy-

sis, Spartan’s high-level operators with know tiling costs

provide enough information to analysis.

Parallel vector languages. ZPL [38], SISAL [43],

NESL [13] and MatLab*P [17] share a common goal

with Spartan. These languages expose distributed arrays

and vector primitives and some provide a few core opera-

tors for parallel operations. Unlike Spartan, ZPL does not

allow arbitrary indexing of distributed arrays and does

not allow parallelization of indexable arrays. NESL re-

lies on a PRAM model which assumes that a shared, dis-

tributed region of memory can be accessed with low la-

tency. Spartan makes no such assumption. SISAL pro-

vides an explicit tiled model for arrays [23], however

does not consider tiling strategies.

Distributed programming frameworks. Most dis-

tributed frameworks target primitives for key-value

collections (e.g. MapReduce [21], Dryad [29], Pic-

colo [55], Spark [67], Ciel [48], Dandelion [59] and Na-

iad [47]). Some provide graph-centric primitives (e.g.

GraphLab [39] and Pregel [41]). While one can encode

arrays as key-value collections or graphs, doing so is

much less efficient than Spartan’s tile-based backend. It

is possible to implement Spartan’s backend by augment-

ing an in-memory framework, such as Spark or Piccolo.

However, we built our prototype from scratch to allow

for better integration with NumPy.

FlumeJava [15] provides programmers with a set of

high-level operators. Its operators are transformed into

MapReduce’s [21] dataflow functions. FlumeJava is tar-

geted at key-value collections instead of arrays. Flume-

Java’s operators look similar to Spartan’s, but their un-

derlying semantics are specific to key-value collections

instead of arrays. Moreover, FlumeJava does not explic-

itly optimize for data locality because it is not designed

for in-memory computation.

Relational queries are a natural layer on top of key-

value centric distributed execution frameworks, as seen

in systems like DryadLINQ [66], Shark [65], Dande-

lion [59] and Dremel [44]. Several efforts attempt to

build an array interfaces on these. MadLINQ [56] adds

support for distributed arrays and array-style computa-

tion to the dataflow model of DryadLINQ [66]. Sci-

Hadoop [14] is a plug-in for Hadoop to process array-

formatted data. Google’s R extensions [61], Presto [64]

and SparkR [3] extend the R language to support dis-

tributed arrays. Julia [2] is a newly developed dynamic

language designed for high performance and scientific

computing. Julia provides primitives for users to paral-

lel loops and distribute arrays. These extensions and lan-

guages rely on users to specify a tiling for each array,

which burdens users with making non-trivial optimiza-

tion that require deep familiarity which each operation

and its data.

Distributed array libraries. Optimized, distributed

linear algebra libraries, like LAPACK [6], ScaLA-

PACK [16], Elemental [54] Global Arrays Toolkit [49]

and Petsc [8, 9] expose APIs specifically designed for

large matrix operations. They focus on providing highly

optimized implementations of specific operations. How-

ever, their speed depends on correct partitioning of arrays

and their programming model is difficult to extend.

Global Address Spaces. Systems such as Unified Par-

allel C [19] and co-array Fortran [50] provide a global

distributed address space for sharing arrays. They can be

used to implement the backend for distributed array li-

braries. They do not directly provide a fully functional

distributed array language.

Specialized application frameworks. There are a num-

ber of frameworks specifically targeted for distributed

machine learning (e.g. MLBase [60], Apache Ma-

hout [5], and Theano [12], for GPUs). Unlike these, Spar-

tan targets a much wider audience and thus must address

the complete set of challenges, including support for a

number built-ins, minimizing the number of temporary

copies and optimizing for locality.

Array Databases and Query Languages SciDB [62]

and RasDaMan [11] are distributed databases with n-

dimensional data storage and an array query language

inspired by SQL. These represent the database commu-

nity’s answer to big numerical computation. The query

language is flexible, but as the designers of SciDB

have seen, application programmers often prefer express-

ing problems in more comprehensive array languages.

SciDB-R is an attempt to win over R programmers by

letting R scripts access data in SciDB and use SciDB to

execute some R commands. SciDB’s partition strategy

is optimized for disk utilization. In contrast, Spartan fo-

cuses on in-memory data.

7 Conclusion

Spartan is a distributed array framework that provides a

smart tiling algorithm to effectively partition distributed

arrays. A set of carefully chosen high-level operators ex-

port well-defined communication cost and simplify the

tiling process. User array code is captured by the fron-

tend and turned into an expression graph whose nodes

correspond to these high-level operators. With the ex-

pression graph, our smart tiling can estimate the com-

munication cost across expressions and find good tilings

for all the expressions.

Acknowledgments: We thank the anonymous review-

ers and our shepherd David Shue. This work is supported

in part by NSF (CSR-1065169) and a Google research

award.

11

12 2015 USENIX Annual Technical Conference USENIX Association

References

[1] Apache hadoop. http://hadoop.apache.org.

[2] Julia language. http://julialang.org.

[3] Sparkr: R frontend for spark. http://

amplab-extras.github.io/SparkR-pkg.

[4] Dataflow program graphs. IEEE Computer 15 (1982).

[5] Mahout: Scalable machine learning and data mining,

2012. http://mahout.apache.org.

[6] ANDERSON, E., BAI, Z., DONGARRA, J., GREEN-

BAUM, A., MCKENNEY, A., DU CROZ, J., HAMMER-

LING, S., DEMMEL, J., BISCHOF, C., AND SORENSEN,

D. LAPACK: A portable linear algebra library for high-

performance computers. In Proceedings of the 1990

ACM/IEEE conference on Supercomputing (1990), IEEE

Computer Society Press, pp. 2–11.

[7] ANDERSON, P. Software engineering technology the use

and limitations of static-analysis tools to improve soft-

ware quality, 2008.

[8] BALAY, S., ABHYANKAR, S., ADAMS, M. F., BROWN,

J., BRUNE, P., BUSCHELMAN, K., EIJKHOUT, V.,

GROPP, W. D., KAUSHIK, D., KNEPLEY, M. G.,

MCINNES, L. C., RUPP, K., SMITH, B. F., AND

ZHANG, H. PETSc users manual. Tech. Rep. ANL-95/11

- Revision 3.5, Argonne National Laboratory, 2014.

[9] BALAY, S., GROPP, W. D., MCINNES, L. C., AND

SMITH, B. F. Efficient management of parallelism in

object oriented numerical software libraries. In Modern

Software Tools in Scientific Computing (1997), E. Arge,

A. M. Bruaset, and H. P. Langtangen, Eds., Birkhäuser

Press, pp. 163–202.

[10] BAU, D., KODUKULA, I., KOTLYAR, V., PINGALI, K.,

AND STODGHILL, P. Solving alignment using elemen-

tary linear algebra. In Languages and Compilers for Par-

allel Computing. Springer, 1995, pp. 46–60.

[11] BAUMANN, P., DEHMEL, A., FURTADO, P., RITSCH,

R., AND WIDMANN, N. The multidimensional database

system RasDaMan. In ACM SIGMOD Record (1998),

vol. 27, ACM, pp. 575–577.

[12] BERGSTRA, J., BREULEUX, O., BASTIEN, F., LAM-

BLIN, P., PASCANU, R., DESJARDINS, G., TURIAN, J.,

WARDE-FARLEY, D., AND BENGIO, Y. Theano: a CPU

and GPU math expression compiler. In Proceedings of

the Python for Scientific Computing Conference (SciPy)

(2010).

[13] BLELLOCH, G. E. NESL: A nested data-parallel lan-

guage.(version 3.1). Tech. rep., DTIC Document, 1995.

[14] BUCK, J. B., WATKINS, N., LEFEVRE, J., IOANNIDOU,

K., MALTZAHN, C., POLYZOTIS, N., AND BRANDT, S.

Scihadoop: array-based query processing in hadoop. In

Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Anal-

ysis (2011).

[15] CHAMBERS, C., RANIWALA, A., PERRY, F., ADAMS,

S., HENRY, R. R., BRADSHAW, R., AND WEIZEN-

BAUM, N. Flumejava: Easy, efficient data-parallel

pipelines. In PLDI - ACM SIGPLAN 2010 (2010).

[16] CHOI, J., DONGARRA, J. J., POZO, R., AND WALKER,

D. W. Scalapack: A scalable linear algebra library for

distributed memory concurrent computers. In Frontiers

of Massively Parallel Computation, 1992., Fourth Sym-

posium on the (1992), IEEE, pp. 120–127.

[17] CHOY, R., EDELMAN, A., AND OF, C. M. Parallel mat-

lab: Doing it right. Proceedings of the IEEE 93 (2005),

331–341.

[18] CHU, M., RAVINDRAN, R., AND MAHLKE, S. Data

access partitioning for fine-grain parallelism on multi-

core architectures. In Microarchitecture, 2007. MICRO

2007. 40th Annual IEEE/ACM International Symposium

on (2007), IEEE, pp. 369–380.

[19] CONSORTIUM, U. UPC language specifications, v1.2.

Tech. rep., Lawrence Berkeley National Lab, 2005.

[20] DAILY, J., AND LEWIS, R. R. Using the global arrays

toolkit to reimplement numpy for distributed computa-

tion. In Proceedings of the 10th Python in Science Con-

ference (2011).

[21] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified

data processing on large clusters. In Symposium on Oper-

ating System Design and Implementation (OSDI) (2004).

[22] D’HOLLANDER, E. Partitioning and labeling of in-

dex sets in do loops with constant dependence vectors.

In 1989 International Conference on Parallel Processing,

University Park, PA (1989).

[23] GAUDIOT, J.-L., BOHM, W., NAJJAR, W., DEBONI, T.,

FEO, J., AND MILLER, P. The sisal model of functional

programming and its implementation. In Parallel Algo-

rithms/Architecture Synthesis, 1997. Proceedings. Second

Aizu International Symposium (1997), IEEE, pp. 112–

123.

[24] HE, J., SNAVELY, A. E., VAN DER WIJNGAART, R. F.,

AND FRUMKIN, M. A. Automatic recognition of per-

formance idioms in scientific applications. In Parallel &

Distributed Processing Symposium (IPDPS), 2011 IEEE

International (2011), IEEE, pp. 118–127.

[25] HENRETTY, T., STOCK, K., POUCHET, L.-N.,

FRANCHETTI, F., RAMANUJAM, J., AND SADAYAP-

PAN, P. Data layout transformation for stencil compu-

tations on short-vector simd architectures. In Compiler

Construction (2011), Springer, pp. 225–245.

[26] HERNANDEZ, C. K. O. Open64-based regular stencil

shape recognition in hercules.

[27] HUANG, C.-H., AND SADAYAPPAN, P. Communication-

free hyperplane partitioning of nested loops. Journal of

Parallel and Distributed Computing 19, 2 (1993), 90–

102.

[28] HUDAK, D. E., AND ABRAHAM, S. G. Compiler tech-

niques for data partitioning of sequentially iterated par-

allel loops. In ACM SIGARCH Computer Architecture

News (1990), vol. 18, ACM, pp. 187–200.

12

USENIX Association 2015 USENIX Annual Technical Conference 13

[29] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND

FETTERLY, D. Dryad: Distributed data-parallel programs

from sequential building blocks. In European Conference

on Computer Systems (EuroSys) (2007).

[30] JU, Y.-J., AND DIETZ, H. Reduction of cache coherence

overhead by compiler data layout and loop transforma-

tion. In Languages and Compilers for Parallel Comput-

ing. Springer, 1992, pp. 344–358.

[31] KENNEDY, K., AND KREMER, U. Automatic data layout

for distributed-memory machines. ACM Transactions on

Programming Languages and Systems (TOPLAS) 20, 4

(1998), 869–916.

[32] KESSLER, C. W. Pattern-driven automatic paralleliza-

tion. Scientific Programming 5, 3 (1996), 251–274.

[33] KNOBE, K., LUKAS, J. D., AND STEELE JR, G. L. Data

optimization: Allocation of arrays to reduce communi-

cation on simd machines. Journal of Parallel and Dis-

tributed Computing 8, 2 (1990), 102–118.

[34] KREMER, U. Np-completeness of dynamic remapping.

In Proceedings of the Fourth Workshop on Compilers for

Parallel Computers, Delft, The Netherlands (1993).

[35] LAWSON, C. L., HANSON, R. J., KINCAID, D. R., AND

KROGH, F. T. Basic linear algebra subprograms for for-

tran usage. ACM Transactions on Mathematical Software

(TOMS) 5, 3 (1979), 308–323.

[36] LI, J., AND CHEN, M. Index domain alignment: Mini-

mizing cost of cross-referencing between distributed ar-

rays. In Frontiers of Massively Parallel Computation,

1990. Proceedings., 3rd Symposium on the (1990), IEEE,

pp. 424–433.

[37] LI, J., AND CHEN, M. The data alignment phase in com-

piling programs for distributed-memory machines. Jour-

nal of parallel and distributed computing 13, 2 (1991),

213–221.

[38] LIN, C., AND SNYDER, L. ZPL: An array sublanguage.

In Languages and Compilers for Parallel Computing.

Springer, 1994, pp. 96–114.

[39] LOW, Y., GONZALEZ, J., KYROLA, A., BICKSON, D.,

GUESTRIN, C., AND HELLERSTEIN, J. Graphlab: A new

parallel framework for machine learning. In Conference

on Uncertainty in Artificial Intelligence (UAI) (2012).

[40] LU, Q., ALIAS, C., BONDHUGULA, U., HENRETTY, T.,

KRISHNAMOORTHY, S., RAMANUJAM, J., ROUNTEV,

A., SADAYAPPAN, P., CHEN, Y., LIN, H., ET AL. Data

layout transformation for enhancing data locality on nuca

chip multiprocessors. In Parallel Architectures and Com-

pilation Techniques, 2009. PACT’09. 18th International

Conference on (2009), IEEE, pp. 348–357.

[41] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHN-

ERT, J. C., HORN, I., LEISER, N., AND CZAJKOWSKI,

G. Pregel: a system for large-scale graph processing. In

SIGMOD ’10: Proceedings of the 2010 international con-

ference on Management of data (New York, NY, USA,

2010), ACM, pp. 135–146.

[42] MATHWORKS. MATLAB software.

[43] MCGRAW, J., SKEDZIELEWSKI, S., ALLAN, S., OLD-

EHOEFT, R., GLAUERT, J., KIRKHAM, C., NOYCE, B.,

AND THOMAS, R. SISAL: streams and iteration in a sin-

gle assignment language. Language Reference Manual.

1985.

[44] MELNIK, S., GUBAREV, A., LONG, J. J., ROMER, G.,

SHIVAKUMAR, S., TOLTON, M., AND VASSILAKIS, T.

Dremel: Interactive analysis of web-scale datasets. In

VLDB (2010).

[45] MILOSAVLJEVIC, I. Z., AND JABRI, M. A. Automatic

array alignment in parallel matlab scripts. In Parallel Pro-

cessing, 1999. 13th International and 10th Symposium

on Parallel and Distributed Processing, 1999. 1999 IPP-

S/SPDP. Proceedings (1999), IEEE, pp. 285–289.

[46] MÜLLER, S. C., ALONSO, G., AMARA, A., AND CSIL-

LAGHY, A. Pydron: Semi-automatic parallelization for

multi-core and the cloud. In 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI

14) (Broomfield, CO, Oct. 2014), USENIX Association,

pp. 645–659.

[47] MURRAY, D. G., MCSHERRY, F., ISAACS, R., IS-

ARD, M., BARHAM, P., AND ABADI, M. Naiad: a

timely dataflow system. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles

(2013), ACM, pp. 439–455.

[48] MURRAY, D. G., SCHWARZKOPF, M., SMOWTON, C.,

SMITH, S., MADHAVAPEDDY, A., AND HAND, S. Ciel:

a universal execution engine for distributed data-flow

computing. NSDI.

[49] NIEPLOCHA, J., HARRISON, R. J., AND LITTLEFIELD,

R. J. Global arrays: A nonuniform memory access pro-

gramming model for high-performance computers. The

Journal of Supercomputing 10, 2 (1996), 169–189.

[50] NUMRICH, R. W., AND REID, J. Co-array fortran

for parallel programming. SIGPLAN Fortran Forum 17

(1998).

[51] OLIPHANT, T., ET AL. NumPy, a Python library for nu-

merical computations.

[52] PARK, E., KARTSAKLIS, C., JANJUSIC, T., AND CAVA-

ZOS, J. Trace-driven memory access pattern recognition

in computational kernels. In Proceedings of the Second

Workshop on Optimizing Stencil Computations (2014),

ACM, pp. 25–32.

[53] PHILIPPSEN, M. Automatic alignment of array data

and processes to reduce communication time on DMPPs,

vol. 30. ACM, 1995.

[54] POULSON, J., MARKER, B., VAN DE GEIJN, R. A.,

HAMMOND, J. R., AND ROMERO, N. A. Elemental:

A new framework for distributed memory dense matrix

computations. ACM Trans. Math. Softw. 39, 2 (feb 2013),

13:1–13:24.

[55] POWER, R., AND LI, J. Piccolo: Building fast, dis-

tributed programs with partitioned tables. In Symposium

on Operating System Design and Implementation (OSDI)

(2010), pp. 293–306.

13

14 2015 USENIX Annual Technical Conference USENIX Association

[56] QIAN, Z., CHEN, X., KANG, N., CHEN, M., YU, Y.,

MOSCIBRODA, T., AND ZHANG, Z. MadLINQ: large-

scale distributed matrix computation for the cloud. In

Proceedings of the 7th ACM european conference on

Computer Systems (2012), EuroSys ’12.

[57] RAMANUJAM, J., AND SADAYAPPAN, P. A methodol-

ogy for parallelizing programs for multicomputers and

complex memory multiprocessors. In Proceedings of the

1989 ACM/IEEE conference on Supercomputing (1989),

ACM, pp. 637–646.

[58] RAMANUJAM, J., AND SADAYAPPAN, P. Compile-time

techniques for data distribution in distributed memory

machines. Parallel and Distributed Systems, IEEE Trans-

actions on 2, 4 (1991), 472–482.

[59] ROSSBACH, C. J., YU, Y., CURREY, J., MARTIN, J.-P.,

AND FETTERLY, D. Dandelion: a compiler and runtime

for heterogeneous systems. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles

(2013), ACM, pp. 49–68.

[60] SPARKS, E. R., TALWALKAR, A., SMITH, V., KOTTA-

LAMA, J., PAN, X., GONZALEZA, J., FRANKLIN, M.,

JORDANA, M., AND KRASKAB, T. MLI: An API for

distributed machine learning. In arXiv:1310.5426 (2013).

[61] STOKELY, M., ROHANI, F., AND TASSONE, E. Large-

scale parallel statistical forecasting computations in r. In

JSM Proceedings, Section on Physical and Engineering

Sciences (Alexandria, VA, 2011).

[62] STONEBRAKER, M., BROWN, P., BECLA, J., AND

ZHANG, D. Scidb: A new dbms for science and other

applications with complex analytics.

[63] TEAM, R. D. R: A language and environment for statis-

tical computing.

[64] VENKATARAMAN, S., BODZSAR, E., ROY, I., AUY-

OUNG, A., AND SCHREIBER, R. S. Presto: distributed

machine learning and graph processing with sparse matri-

ces. In Proceedings of the 8th ACM European Conference

on Computer Systems (Eurosys) (2013).

[65] XIN, R. S., ROSEN, J., ZAHARIA, M., FRANKLIN,

M. J., SHENKER, S., AND STOICA, I. Shark: Sql and

rich analytics at scale. In SIGMOD (2013).

[66] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ER-

LINGSSON, U., GUNDA, P. K., AND CURREY, J.

DryadLINQ: A system for general-purpose distributed

data-parallel computing using a high-level language. In

Symposium on Operating System Design and Implemen-

tation (OSDI) (2008).

[67] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J.,

SHENKER, S., AND STOICA, I. Spark: cluster com-

puting with working sets. In Proceedings of the 2nd

USENIX conference on Hot topics in cloud computing

(2010), pp. 10–10.

A NP-Completeness Proof

A.1 Problem Definition

To simplify the proof, we consider only newarray, map and

swapaxis operators. The general case is discussed in section

A.4. This problem contains several operators in a program and

each one can be the input of others. The first step is to build an

expression graph for this problem as shown in section 3.3. Next

is to convert the expression graph to the tiling graph. We define

a tiling graph as following:

1. A node group represents an operator and contains several

partition nodes.

2. If an operator A is an input of an operator B in the expres-

sion graph, there are some edges between node group A

and group B in the tiling graph. How node group A con-

nects to node group B depends on the type of operator

B.

3. The cost of an edge A.tilingI → B.tilingK is the net-

work transmission cost to do operator B when A is tiled

as tilingI and B is tiled as tilingK .

Figure 16 shows three operators that will be used in the

proof. There are two kinds of tilings, row and column, for each

operator. There is no input for a newarray. As for map, there

is at least one input array. The tiling nodes of an input node

group are fully connected to the tiling nodes of map. If two

tiling nodes represent the same tilings, there is no cost for the

edge between them. Otherwise, the cost is the size of the array,

N . The last operator is swapaxis. There is one input array for

swapaxis and each tiling node of the input array connects to

the tiling node of swapaxis representing the swapped tiling.

The cost for both edges are zero.

The problem is to choose a unique tiling node for each node

group without conflict and achieve the minimum overall cost

(summation of cost of all edges adjacent to two chosen tiling

nodes). Conflict means that if there are edges between node

group A and node group B, the chosen nodes must bear the

same relationship. For example, if the chosen tiling node for

the input of swapaxis means row tiling, the chosen tiling node

for swapaxis can only be column tiling to avoid conflict.

Instead of directly proving the problem, we prove the corre-

sponding verify problem which is to find out if there is a choice

with the cost less than or equal to K where K is an integer. We

denote the verify problem as TILING(K).

A.2 NP Proof

To show that TILING is in NP, we need to prove that a given

choice can be verified in polynomial time. Suppose N is the

number of node groups. Given a solution, we can verify the

solution by adding up the cost for all edges connected to each

chosen tiling node. There are at most N − 1 edges connected

to a tiling node and N chosen tiling nodes, we can get the total

cost in O(n2). Therefore, TILING(K) is in NP.

A.3 NP-Completeness Proof

To show TILING(K) is NP-Complete, we prove that

NAE−3SAT (N) can be reduced to TILING(K). NAE−

3SAT is similar to 3SAT except that each clause must have at

least one true and one false. Therefore, it rules out TTT and

FFF while 3SAT only excludes FFF .

14

USENIX Association 2015 USENIX Annual Technical Conference 15

= ||

= ||

= ||

= ||

= ||

newarray

map

swapaxis

…..

Node Group

Input Node Group

N Cost Edge

Zero Cost Edge

Figure 16: Three node groups and edge relationship with their

input(s).

Assume that there are N literals and M clauses in the given

question. M is polynomial to N . We prove that NAE −

3SAT (N) can be reduced to TILING(K) where K =
M ∗ 2.

1. Construction Function, C(I) :

(a) For C(I), True is viewed as row tiling and false

is viewed as column tiling.

(b) Each literal in NAE − 3SAT is an array in

TILING(K). A negation literal is viewed as a

swapaxis of the original array.

(c) For each clause ci = (L1∨L2∨L3), C(I) creates

six expressions:

E1 = map(swapaxis(L1, 0, 1), L2)

E2 = map(swapaxis(L1, 0, 1), L3)

E3 = map(swapaxis(L2, 0, 1), L1)

E4 = map(swapaxis(L2, 0, 1), L3)

E5 = map(swapaxis(L3, 0, 1), L1)

E6 = map(swapaxis(L3, 0, 1), L2)

For a negation literal, L, swapaxis(L) represent

the original array. For example, C(I) creates six

expressions for cj = (¬L1 ∨ L2 ∨ L3):

E1 = map(L1, L2)

E2 = map(L1, L3)

E3 = map(swapaxis(L2, 0, 1), swapaxis(L1, 0, 1))

E4 = map(swapaxis(L2, 0, 1), L3)

E5 = map(swapaxis(L3, 0, 1), swapaxis(L1, 0, 1))

E6 = map(swapaxis(L3, 0, 1), L2)

For explanation purpose, we call the six expressions

created by C(I) a clause group.

(d) After converting all clauses to clause groups, C(I)
create a cost graph according to the definition.

Without loss of generality, we assume that the array

size is 1. Therefore, the cost for an edge is either 0
or 1.

For a clause group, if three literal have the same symbols,

true or false, the minimum cost is 6. For example, if

three literals are all true or all false for ci = (L1 ∨

L2∨L3), the two inputs for each map of the clause group

must have different tilings because of swapaxis. Thus

the cost for map node group can only be 1. Since there

are six maps for a clause group, the minimum cost is 6.

For other cases, the minimum cost of a clause group is

2. For example, if L1 is the only true for ci = (L1 ∨

L2 ∨ L3), only the input tilings of maps for E4 and E6
are different. Since all maps are not referenced by other

operators, we can freely choose their tilings based only

on the input tilings. Thus the cost for this case is 2. Other

combinations are just symmetries of the above case and

have the same cost.

The time complexity for C(I) is O(N2).

2. C(B) belongs to TILING(K) if B belongs to

TILING(K) :

If S is a solution for B, every clause in S has at least one

true and one false. This implies that at least one row

tiling input and column tiling input for each clause group

of C(S). Therefore, the cost for C(S) is M ∗ 2 which is

equal to K.

3. B belongs to NAE − 3AT if C(B) belongs to

TILING(K) :

If S is a solution for C(B), there are at least one row tiling

and one column tiling for each clause group. In other

words, if one clause group has all row tiling inputs or all

column tiling inputs, the total cost for the tiling graph will

be at least 2 ∗ (M − 1) + 6 > K. As a result, no clause

group has all row tiling or column tiling input. Therefore,

S is a solution for B.

Step 2 and step 3 prove that NAE − 3SAT can be reduced

to TILING(K).

A.4 General Graph

The previous proof only considers the tiling graph with Array,

map and swapaxis. However, we argue that even though

the tiling graph contains more different operators, it is still

an NP-Complete problem to find out the solution. For any

TILING(K) which contains only the three operators, we

add some other operators and expression which are indepen-

dent from the original ones. Thus the new tiling graph con-

tains two sub tiling graphs, the original tiling graph and the

tiling graph representing the newly added operators. Moreover,

two sub tiling graphs are not connected. Thus, to solve new

TILING(K′) must first solve the TILING(K) which is

NP-Complete. Thus, we can also reduce TILING(K) to the

general graph.

15

