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Abstract
This paper presents the most exhaustive study of syn-
chronization to date. We span multiple layers, from
hardware cache-coherence protocols up to high-level
concurrent software. We do so on different types of
architectures, from single-socket – uniform and non-
uniform – to multi-socket – directory and broadcast-
based – many-cores. We draw a set of observations that,
roughly speaking, imply that scalability of synchroniza-
tion is mainly a property of the hardware.

1 Introduction
Scaling software systems to many-core architectures is
one of the most important challenges in computing to-
day. A major impediment to scalability is synchroniza-
tion. From the Greek “syn”, i.e., with, and “khronos”,
i.e., time, synchronization denotes the act of coordinat-
ing the timeline of a set of processes. Synchronization
basically translates into cores slowing each other, some-
times affecting performance to the point of annihilating
the overall purpose of increasing their number [3, 21].

A synchronization scheme is said to scale if its per-
formance does not degrade as the number of cores in-
creases. Ideally, acquiring a lock should for example
take the same time regardless of the number of cores
sharing that lock. In the last few decades, a large body
of work has been devoted to the design, implemen-
tation, evaluation, and application of synchronization
schemes [1, 4, 6, 7, 10, 11, 14, 15, 26–29, 38–40, 43–
45]. Yet, the designer of a concurrent system still has
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Figure 1: Analysis method.

little indication, a priori, of whether a given synchro-
nization scheme will scale on a given modern many-core
architecture and, a posteriori, about exactly why a given
scheme did, or did not, scale.

One of the reasons for this state of affairs is that there
are no results on modern architectures connecting the
low-level details of the underlying hardware, e.g., the
cache-coherence protocol, with synchronization at the
software level. Recent work that evaluated the scal-
ability of synchronization on modern hardware, e.g.,
[11, 26], was typically put in a specific application and
architecture context, making the evaluation hard to gen-
eralize. In most cases, when scalability issues are faced,
it is not clear if they are due to the underlying hardware,
to the synchronization algorithm itself, to its usage of
specific atomic operations, to the application context, or
to the workload.

Of course, getting the complete picture of how syn-
chronization schemes behave, in every single context, is
very difficult. Nevertheless, in an attempt to shed some
light on such a picture, we present the most exhaustive
study of synchronization on many-cores to date. Our
analysis seeks completeness in two directions (Figure 1).

1. We consider multiple synchronization layers, from
basic many-core hardware up to complex con-
current software. First, we dissect the laten-
cies of cache-coherence protocols. Then, we
study the performance of various atomic opera-
tions, e.g., compare-and-swap, test-and-set, fetch-
and-increment. Next, we proceed with locking and
message passing techniques. Finally, we examine
a concurrent hash table, an in-memory key-value
store, and a software transactional memory.
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2. We vary a set of important architectural at-
tributes to better understand their effect on syn-
chronization. We explore both single-socket
(chip multi-processor) and multi-socket (multi-
processor) many-cores. In the former category, we
consider uniform (e.g., Sun Niagara 2) and non-
uniform (e.g, Tilera TILE-Gx36) designs. In the
latter category, we consider platforms that imple-
ment coherence based on a directory (e.g., AMD
Opteron) or broadcast (e.g., Intel Xeon).

Our set of experiments, of what we believe constitute
the most commonly used synchronization schemes and
hardware architectures today, induces the following set
of observations.

Crossing sockets is a killer. The latency of perform-
ing any operation on a cache line, e.g., a store or a
compare-and-swap, simply does not scale across sock-
ets. Our results indicate an increase from 2 to 7.5 times
compared to intra-socket latencies, even under no con-
tention. These differences amplify with contention at
all synchronization layers and suggest that cross-socket
sharing should be avoided.

Sharing within a socket is necessary but not suffi-
cient. If threads are not explicitly placed on the same
socket, the operating system might try to load balance
them across sockets, inducing expensive communica-
tion. But, surprisingly, even with explicit placement
within the same socket, an incomplete cache directory,
combined with a non-inclusive last-level cache (LLC),
might still induce cross-socket communication. On the
Opteron for instance, this phenomenon entails a 3-fold
increase compared to the actual intra-socket latencies.
We discuss one way to alleviate this problem by circum-
venting certain access patterns.

Intra-socket (non-)uniformity does matter. Within a
socket, the fact that the distance from the cores to the
LLC is the same, or differs among cores, even only
slightly, impacts the scalability of synchronization. For
instance, under high contention, the Niagara (uniform)
enables approximately 1.7 times higher scalability than
the Tilera (non-uniform) for all locking schemes. The
developer of a concurrent system should thus be aware
that highly contended data pose a higher threat in the
presence of even the slightest non-uniformity, e.g., non-
uniformity inside a socket.

Loads and stores can be as expensive as atomic op-
erations. In the context of synchronization, where
memory operations are often accompanied with mem-
ory fences, loads and stores are generally not signifi-
cantly cheaper than atomic operations with higher con-
sensus numbers [19]. Even without fences, on data that
are not locally cached, a compare-and-swap is roughly
only 1.35 (on the Opteron) and 1.15 (on the Xeon) times

more expensive than a load.

Message passing shines when contention is very high.
Structuring an application with message passing reduces
sharing and proves beneficial when a large number of
threads contend for a few data. However, under low con-
tention and/or a small number of cores, locks perform
better on higher-layer concurrent testbeds, e.g., a hash
table and a software transactional memory, even when
message passing is provided in hardware (e.g., Tilera).
This suggests the exclusive use of message passing for
optimizing certain highly contended parts of a system.

Every locking scheme has its fifteen minutes of fame.
None of the nine locking schemes we consider consis-
tently outperforms any other one, on all target architec-
tures or workloads. Strictly speaking, to seek optimality,
a lock algorithm should thus be selected based on the
hardware platform and the expected workload.

Simple locks are powerful. Overall, an efficient im-
plementation of a ticket lock is the best performing syn-
chronization scheme in most low contention workloads.
Even under rather high contention, the ticket lock per-
forms comparably to more complex locks, in particular
within a socket. Consequently, given their small mem-
ory footprint, ticket locks should be preferred, unless it
is sure that a specific lock will be very highly contended.

A high-level ramification of many of these observa-
tions is that the scalability of synchronization appears,
first and above all, to be a property of the hardware,
in the following sense. Basically, in order to be able
to scale, synchronization should better be confined to a
single socket, ideally a uniform one. On certain plat-
forms (e.g., Opteron), this is simply impossible. Within
a socket, sophisticated synchronization schemes are gen-
erally not worthwhile. Even if, strictly speaking, no size
fits all, a proper implementation of a simple ticket lock
seems enough.

In summary, our main contribution is the most ex-
haustive study of synchronization to date. Results of
this study can be used to help predict the cost of a syn-
chronization scheme, explain its behavior, design bet-
ter schemes, as well as possibly improve future hard-
ware design. SSYNC, the cross-platform synchroniza-
tion suite we built to perform the study is, we believe,
a contribution of independent interest. SSYNC abstracts
various lock algorithms behind a common interface: it
not only includes most state-of-the-art algorithms, but
also provides platform specific optimizations with sub-
stantial performance improvements. SSYNC also con-
tains a library that abstracts message passing on vari-
ous platforms, and a set of microbenchmarks for mea-
suring the latencies of the cache-coherence protocols,
the locks, and the message passing. In addition, we
provide implementations of a portable software transac-
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Name Opteron Xeon Niagara Tilera
System AMD Magny Cours Intel Westmere-EX SUN SPARC-T5120 Tilera TILE-Gx36

Processors 4× AMD Opteron 6172 8× Intel Xeon E7-8867L SUN UltraSPARC-T2 TILE-Gx CPU
# Cores 48 80 (no hyper-threading) 8 (64 hardware threads) 36

Core clock 2.1 GHz 2.13 GHz 1.2 GHz 1.2 GHz
L1 Cache 64/64 KiB I/D 32/32 KiB I/D 16/8 KiB I/D 32/32 KiB I/D
L2 Cache 512 KiB 256 KiB 256 KiB

Last-level Cache 2×6 MiB (shared per die) 30 MiB (shared) 4 MiB (shared) 9 MiB Distributed
Interconnect 6.4 GT/s HyperTransport

(HT) 3.0
6.4 GT/s QuickPath
Interconnect (QPI)

Niagara2 Crossbar Tilera iMesh

Memory 128 GiB DDR3-1333 192 GiB Sync DDR3-1067 32 GiB FB-DIMM-400 16 GiB DDR3-800
#Channels / #Nodes 4 per socket / 8 4 per socket / 8 8 / 1 4 / 2

OS Ubuntu 12.04.2 / 3.4.2 Red Hat EL 6.3 / 2.6.32 Solaris 10 u7 Tilera EL 6.3 / 2.6.40

Table 1: The hardware and the OS characteristics of the target platforms.

tional memory, a concurrent hash table, and a key-value
store (Memcached [30]), all built using the libraries of
SSYNC. SSYNC is available at:

http://lpd.epfl.ch/site/ssync
The rest of the paper is organized as follows. We re-

call in Section 2 some background notions and present
in Section 3 our target platforms. We describe SSYNC in
Section 4. We present our analyses of synchronization
from the hardware and software perspectives, in Sec-
tions 5 and 6, respectively. We discuss related work in
Section 7. In Section 8, we summarize our contributions,
discuss some experimental results that we omit from the
paper because of space limitations, and highlight some
opportunities for future work.

2 Background and Context
Hardware-based Synchronization. Cache coherence
is the hardware protocol responsible for maintaining the
consistency of data in the caches. The cache-coherence
protocol implements the two fundamental operations of
an architecture: load (read) and store (write). In addition
to these two operations, other, more sophisticated opera-
tions, i.e., atomic, are typically also provided: compare-
and-swap, fetch-and-increment, etc.

Most contemporary processors use the MESI [37]
cache-coherence protocol, or a variant of it. MESI sup-
ports the following states for a cache line: Modified: the
data are stale in the memory and no other cache has a
copy of this line; Exclusive: the data are up-to-date in
the memory and no other cache has a copy of this line;
Shared: the data are up-to-date in the memory and other
caches might have copies of the line; Invalid: the data
are invalid.

Coherence is usually implemented by either snooping
or using a directory. By snooping, the individual caches
monitor any traffic on the addresses they hold in order to
ensure coherence. A directory keeps approximate or pre-
cise information of which caches hold copies of a mem-
ory location. An operation has to consult the directory,
enforce coherence, and then update the directory.
Software-based Synchronization. The most popular
software abstractions are locks, used to ensure mutual

exclusion. Locks can be implemented using various
techniques. The simplest are spin locks [4, 20], in which
processes spin on a common memory location until they
acquire the lock. Spin locks are generally considered
to scale poorly because they involve high contention on
a single cache line [4], an issue which is addressed by
queue locks [29, 43]. To acquire a queue lock, a thread
adds an entry to a queue and spins until the previous
holder hands the lock. Hierarchical locks [14, 27] are
tailored to today’s non-uniform architectures by using
node-local data structures and minimizing accesses to
remote data. Whereas the aforementioned locks employ
busy-waiting techniques, other implementations are co-
operative. For example, in case of contention, the com-
monly used Pthread Mutex adds the core to a wait queue
and is then suspended until it can acquire the lock.

An alternative to locks we consider in our study is
to partition the system resources between processes. In
this view, synchronization is achieved through message
passing, which is either provided by the hardware or im-
plemented in software [5]. Software implementations
are generally built over cache-coherence protocols and
impose a single-writer and a single-reader for the used
cache lines.

3 Target Platforms
This section describes the four platforms considered in
our experiments. Each is representative of a specific type
of many-core architecture. We consider two large-scale
multi-socket multi-cores, henceforth called the multi-
sockets1, and two large-scale chip multi-processors
(CMPs), henceforth called the single-sockets. The multi-
sockets are a 4-socket AMD Opteron (Opteron) and an
8-socket Intel Xeon (Xeon), whereas the CMPs are an
8-core Sun Niagara 2 (Niagara) and a 36-core Tilera
TILE-Gx36 (Tilera). The characteristics of the four plat-
forms are detailed in Table 1.

All platforms have a single die per socket, aside from
the Opteron, that has two. Given that these two dies are
actually organized in a 2-socket topology, we use the
term socket to refer to a single die for simplicity.

1We also test a 2-socket Intel Xeon and a 2-socket AMD Opteron.
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3.1 Multi-socket – Directory-based:
Opteron

The 48-core AMD Opteron contains four multi-chip
modules (MCMs). Each MCM has two 6-core dies with
independent memory controllers. Hence, the system
comprises, overall, eight memory nodes. The topology
of the system is depicted in Figure 2(a). The maximum
distance between two dies is two hops. The dies of an
MCM are situated at a 1-hop distance, but they share
more bandwidth than two dies of different MCMs.

The caches of the Opteron are write-back and non-
inclusive [13]. Nevertheless, the hierarchy is not strictly
exclusive; on an LLC hit the data are pulled in the L1
but may or may not be removed from the LLC (decided
by the hardware [2]). The Opteron uses the MOESI
protocol for cache coherence. The ‘O’ stands for the
owned state, which indicates that this cache line has been
modified (by the owner) but there might be more shared
copies on other cores. This state allows a core to load
a modified line of another core without the need to in-
validate the modified line. The modified cache line sim-
ply changes to owned and the new core receives the line
in shared state. Cache coherence is implemented with
a broadcast-based protocol, assisted by what is called
the HyperTransport Assist (also known as the probe fil-
ter) [13]. The probe filter is, essentially, a directory re-
siding in the LLC2. An entry in the directory holds the
owner of the cache line, which can be used to directly
probe or invalidate the copy in the local caches of the
owner core.

3.2 Multi-socket – Broadcast-based: Xeon
The 80-core Intel Xeon consists of eight sockets of 10-
cores. These form a twisted hypercube, as depicted in
Figure 2(b), maximizing the distance between two nodes
to two hops. The Xeon uses inclusive caches [23], i.e.,
every new cache-line fill occurs in all the three levels
of the hierarchy. The LLC is write-back; the data are
written to the memory only upon an eviction of a mod-
ified line due to space or coherence. Within a socket,
the Xeon implements coherence by snooping. Across
sockets, it broadcasts snoop requests to the other sock-
ets. Within the socket, the LLC keeps track of which
cores might have a copy of a cache line. Additionally,

2Typically, the probe filter occupies 1MiB of the LLC.

(a) AMD Opteron (b) Intel Xeon

Figure 2: The system topologies.

the Xeon extends the MESI protocol with the forward
state [22]. This state is a special form of the shared state
and indicates the only cache that will respond to a load
request for that line (thus reducing bandwidth usage).

3.3 Single-socket – Uniform: Niagara
The Sun Niagara 2 is a single-die processor that incor-
porates 8 cores. It is based on the chip multi-threading
architecture; it provides 8 hardware threads per core, to-
taling 64 hardware threads. Each L1 cache is shared
among the 8 hardware threads of a core and is write-
through to the LLC. The 8 cores communicate with the
shared LLC through a crossbar [36], which means that
each core is equidistant from the LLC (uniform). The
cache-coherence implementation is directory-based and
uses duplicate tags [32], i.e., the LLC cache holds a di-
rectory of all the L1 lines.

3.4 Single-socket – Non-uniform: Tilera
The Tilera TILE-Gx36 [41] is a 36-core chip multi-
processor. The cores, also called tiles, are allocated on
a 2-dimensional mesh and are connected with Tilera’s
iMesh on-chip network. iMesh handles the coherence
of the data and also provides hardware message passing
to the applications. The Tilera implements the Dynamic
Distributed Cache technology [41]. All L2 caches are
accessible by every core on the chip, thus, the L2s are
used as a 9 MiB coherent LLC. The hardware uses a dis-
tributed directory to implement coherence. Each cache
line has a home tile, i.e., the actual L2 cache where the
data reside if cached by the distributed LLC. Consider,
for example, the case of core x loading an address homed
on tile y. If the data are not cached in the local L1 and
L2 caches of x, a request for the data is sent to the L2
cache of y, which plays the role of the LLC for this ad-
dress. Clearly, the latency of accessing the LLC depends
on the distance between x and y, hence the Tilera is a
non-uniform cache architecture.

4 SSYNC
SSYNC is our cross-platform synchronization suite;
it works on x86 64, SPARC, and Tilera processors.
SSYNC contains libslock, a library that abstracts lock
algorithms behind a common interface and libssmp,
a library with fine-tuned implementations of message
passing for each of the four platforms. SSYNC also in-
cludes microbenchmarks for measuring the latencies of
the cache coherence, the locks, and the message pass-
ing, as well as ssht, i.e., a cache efficient hash table
and TM2C, i.e., a highly portable transactional memory.

4.1 Libraries
libslock. This library contains a common interface and
optimized implementations of a number of widely used
locks. libslock includes three spin locks, namely
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the test-and-set lock, the test-and-test-and-set lock with
exponential back-off [4, 20], and the ticket lock [29].
The queue locks are the MCS lock [29] and the CLH
lock [43]. We also employ an array-based lock [20].
libslock also contains hierarchical locks, such as the
hierarchical CLH lock [27] and the hierarchical ticket
lock (hticket) [14]3. Finally, libslock abstracts the
Pthread Mutex interface. libslock also contains
a cross-platform interface for atomic instructions and
other architecture dependent operations, such as fences,
thread and memory placement functions.
libssmp. libssmp is our implementation of message
passing over cache coherence4 (similar to the one in Bar-
relfish [6]). It uses cache line-sized buffers (messages)
in order to complete message transmissions with single
cache-line transfers. Each buffer is one-directional and
includes a byte flag to designate whether the buffer is
empty or contains a message. For client-server commu-
nication, libssmp implements functions for receiving
from any other, or from a specific subset of the threads.
Even though the design of libssmp is identical on all
platforms, we leverage the results of Section 5 to tailor
libssmp to the specifics of each platform individually.

4.2 Microbenchmarks
ccbench. ccbench is a tool for measuring the cost of
operations on a cache line, depending on the line’s MESI
state and placement in the system. ccbench brings
the cache line in the desired state and then accesses it
from either a local or a remote core. ccbench supports
30 cases, such as store on modified and test-and-set on
shared lines.
stress tests. SSYNC provides tests for the primitives in
libslock and libssmp. These tests can be used to
measure the primitives’ latency or throughput under var-
ious conditions, e.g., number and placement of threads,
level of contention.

4.3 Concurrent Software
Hash Table (ssht). ssht is a concurrent hash table that
exports three operations: put, get, and remove. It is
designed to place the data as efficiently as possible in the
caches in order to (i) allow for efficient prefetching and
(ii) avoid false sharing. ssht can be configured to use
any of the locks of libslock or the message passing
of libssmp.
Transactional Memory (TM2C). TM2C [16] is a
message passing-based software transactional memory
system for many-cores. TM2C is implemented using
libssmp. TM2C also has a shared memory version
built with the spin locks of libslock.

3In fact, based on the results of Section 5 and without being aware
of [14], we designed and implemented the hticket algorithm.

4On the Tilera, it is an interface to the hardware message passing.

5 Hardware-Level Analysis
In this section, we report on the latencies incurred by the
hardware cache-coherence protocols and discuss how to
reduce them in certain cases. These latencies constitute
a good estimation of the cost of sharing a cache line in
a many-core platform and have a significant impact on
the scalability of any synchronization scheme. We use
ccbench to measure basic operations such as load and
store, as well as compare-and-swap (CAS), fetch-and-
increment (FAI), test-and-set (TAS), and swap (SWAP).

5.1 Local Accesses
Table 3 contains the latencies for accessing the local
caches of a core. In the context of synchronization,
the values for the LLCs are worth highlighting. On the
Xeon, the 44 cycles is the local latency to the LLC, but
also corresponds to the fastest communication between
two cores on the same socket. The LLC plays the same
role for the single-socket platforms, however, it is di-
rectly accessible by all the cores of the system. On the
Opteron, the non-inclusive LLC holds both data and the
cache directory, so the 40 cycles is the latency to both.
However, the LLC is filled with data only upon an evic-
tion from the L2, hence the access to the directory is
more relevant to synchronization.

5.2 Remote Accesses
Table 2 contains the latencies to load, store, or perform
an atomic operation on a cache line based on its previ-
ous state and location. Notice that the accesses to an
invalid line are accesses to the main memory. In the fol-
lowing, we discuss all cache-coherence states, except for
the invalid. We do not explicitly measure the effects of
the forward state of the Xeon: there is no direct way to
bring a cache line to this state. Its effects are included in
the load from shared case.
Loads. On the Opteron, a load has basically the same
latency regardless of the previous state of the line; es-
sentially, the steps taken by the cache-coherence pro-
tocol are always the same. Interestingly, although the
two dies of an MCM are tightly coupled, the benefits
are rather small. The latencies between two dies in an
MCM and two dies that are simply directly connected
differ by roughly 12 cycles. One extra hop adds an ad-
ditional overhead of 80 cycles. Overall, an access over
two hops is approximately 3 times more expensive than
an access within a die.

The results in Table 2 represent the best-case scenario

Opteron Xeon Niagara Tilera
L1 3 5 3 2
L2 15 11 11

LLC 40 44 24 45
RAM 136 355 176 118

Table 3: Local caches and memory latencies (cycles).
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System Opteron Xeon Niagara Tilera
PPPPPPState

Hops same same one two same one two same other one max
die MCM hop hops die hop hops core core hop hops

loads
Modified 81 161 172 252 109 289 400 3 24 45 65
Owned 83 163 175 254 - - - - - - -

Exclusive 83 163 175 253 92 273 383 3 24 45 65
Shared 83 164 176 254 44 223 334 3 24 45 65
Invalid 136 237 247 327 355 492 601 176 176 118 162

stores
Modified 83 172 191 273 115 320 431 24 24 57 77
Owned 244 255 286 291 - - - - - - -

Exclusive 83 171 191 271 115 315 425 24 24 57 77
Shared 246 255 286 296 116 318 428 24 24 86 106

atomic operations: CAS (C), FAI (F), TAS (T), SWAP (S)
Operation all all all all all all all C/F/T/S C/F/T/S C/F/T/S C/F/T/S
Modified 110 197 216 296 120 324 430 71/108/64/95 66/99/55/90 77/51/70/63 98/71/89/84
Shared 272 283 312 332 113 312 423 76/99/67/93 66/99/55/90 124/82/121/95 142/102/141/115

Table 2: Latencies (cycles) of the cache coherence to load/store/CAS/FAI/TAS/SWAP a cache line depending on
the MESI state and the distance. The values are the average of 10000 repetitions with < 3% standard deviation.

for the Opteron: at least one of the involved cores resides
on the memory node of the directory. If the directory is
remote to both cores, the latencies increase proportion-
ally to the distance. In the worst case, where two cores
are on different nodes, both 2-hops away from the direc-
tory, the latencies are 312 cycles. Even worse, even if
both cores reside on the same node, they still have to ac-
cess the remote directory, wasting any locality benefits.

In contrast, the Xeon does not have the locality is-
sues of the Opteron. If the data are present within the
socket, a load can be completed locally due to the inclu-
sive LLC. Loading from the shared state is particularly
interesting, because the LLC can directly serve the data
without needing to probe the local caches of the previous
holder (unlike the modified and exclusive states). How-
ever, the overhead of going off-socket on the Xeon is
very high. For instance, loading from the shared state
is 7.5 times more expensive over two hops than loading
within the socket.

Unlike the large variability of the multi-sockets, the
results are more stable on the single-sockets. On the Ni-
agara, a load costs either an L1 or an L2 access, depend-
ing on whether the two threads reside on the same core.
On the Tilera, the LLC is distributed, hence the laten-
cies depend on the distance of the requesting core from
the home tile of the cache line. The cost for two adja-
cent cores is 45 cycles, whereas for the two most remote
cores5, it is 20 cycles higher (2 cycles per hop).
Stores. On the Opteron, both loads and stores on a mod-
ified or an exclusive cache line have similar latencies (no
write-back to memory). However, a store on a shared
line is different6. Every store on a shared or owned
cache line incurs a broadcast invalidation to all nodes.
This happens because the cache directory is incomplete

510 hops distance on the 6-by-6 2-dimensional mesh of the Tilera.
6For the store on shared test, we place two different sharers on the

indicated distance from a third core that performs the store.

(it does not keep track of the sharers) and does not in any
way detect whether sharing is limited within the node7.
Therefore, even if all sharers reside on the same node,
a store needs to pay the overhead of a broadcast, thus
increasing the cost from around 83 to 244 cycles. Ob-
viously, the problem is aggravated if the directory is not
local to any of the cores involved in the store. Finally,
the scenario of storing on a cache line shared by all 48
cores costs 296 cycles.

Again, the Xeon has the advantage of being able to
locally complete an operation that involves solely cores
of a single node. In general, stores behave similarly re-
gardless of the previous state of the cache line. Finally,
storing on a cache line shared by all 80 cores on the Xeon
costs 445 cycles.

Similarly to a load, the results for a store exhibit much
lower variability on the single-sockets. A store on the
Niagara has essentially the latency of the L2, regardless
of the previous state of the cache line and the number of
sharers. On the Tilera, stores on a shared line are a bit
more expensive due to the invalidation of the cache lines
of the sharers. The cost of a store reaches a maximum of
200 cycles when all 36 cores share that line.

Atomic Operations. On the multi-sockets, CAS, TAS,
FAI, and SWAP have essentially the same latencies.
These latencies are similar to a store followed by a
memory barrier. On the single-sockets, some operations
clearly have different hardware implementations. For in-
stance, on the Tilera, the FAI operation is faster than the
others. Another interesting point is the latencies for per-
forming an operation when the line is shared by all the
cores of the system. On all platforms, the latencies fol-
low the exact same trends as a store in the same scenario.

7On the Xeon, the inclusive LLC is able to detect if there is sharing
solely within the socket.
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Implications. The latencies of cache coherence re-
veal some important issues that should be addressed in
order to implement efficient synchronization. Cross-
socket communication is 2 to 7.5 times more expensive
than intra-socket communication. The problem on the
broadcast-based design of Xeon is larger than on the
Opteron. However, within the socket, the inclusive LLC
of the Xeon provides strong locality, which in turn trans-
lates into efficient intra-socket synchronization. In terms
of locality, the incomplete directory of the Opteron is
problematic in two ways. First, a read-write pattern of
sharing will cause stores on owned and shared cache
lines to exhibit the latency of a cross-socket operation,
even if all sharers reside on the same socket. We thus
expect intra-socket synchronization to behave similarly
to the cross-socket. Second, the location of the directory
is crucial: if the cores that use some memory are remote
to the directory, they pay the remote access overhead.
To achieve good synchronization performance, the data
have to originate from the local memory node (or to be
migrated to the local one). Overall, an Opteron MCM
should be treated as a two-node platform.

The single-sockets exhibit quite a different behavior:
they both use their LLCs for sharing. The latencies (to
the LLC) on the Niagara are uniform, i.e., they are af-
fected by neither the distance nor the number of the in-
volved cores. We expect this uniformity to translate to
synchronization that is not prone to contention. The non-
uniform Tilera is affected both by the distance and the
number of involved cores, therefore we expect scalabil-
ity to be affected by contention. Regarding the atomic
operations, both single-sockets have faster implementa-
tions for some of the operations (see Table 2). These
should be preferred to achieve the best performance.

5.3 Enforcing Locality
A store to a shared or owned cache line on the Opteron
induces an unnecessary broadcast of invalidations, even
if all the involved cores reside on the same node (see Ta-
ble 2). This results in a 3-fold increase of the latency
of the store operation. In fact, to avoid this issue, we
propose to explicitly maintain the cache line to the mod-
ified state. This can be easily achieved by calling the
prefetchw x86 instruction before any load reference
to that line. Of course, this optimization should be used
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Figure 3: Latency of acquire and release using differ-
ent implementations of a ticket lock on the Opteron.

with care because it disallows two cores to simultane-
ously hold a copy of the line.

To illustrate the potential of this optimization, we en-
gineer an efficient implementation of a ticket lock. A
ticket lock consists of two counters: the next and the
current. To acquire the lock, a thread atomically fetches
and increases the next counter, i.e., it obtains a ticket.
If the ticket equals the current, the thread has acquired
the lock, otherwise, it spins until this becomes true. To
release the lock, the thread increases the value of the
current counter.

A particularly appealing characteristic of the ticket
lock is the fact that the ticket, subtracted by the current
counter, is the number of threads queued before the cur-
rent thread. Accordingly, it is intuitive to spin with a
back-off proportional to the number of threads queued in
front [29]. We use this back-off technique with and with-
out the prefetchw optimization and compare the re-
sults with a non-optimized implementation of the ticket
lock. Figure 3 depicts the latencies for acquiring and im-
mediately releasing a single lock. Obviously, the non-
optimized version scales terribly, delivering a latency
of 720K cycles on 48 cores. In contrast, the versions
with the proportional back-off scale significantly better.
The prefetchw gives an extra performance boost, per-
forming up to 2 times better on 48 cores.

SSYNC uses the aforementioned optimization wher-
ever possible. For example, the message passing imple-
mentation on the Opteron with this technique is up to 2.5
times faster than without it.

5.4 Stressing Atomic Operations
In this test, we stress the atomic operations. Each thread
repeatedly tries to perform an atomic operation on a sin-
gle shared location. For FAI, SWAP, and CAS FAI these
calls are always eventually successful, i.e., they write
to the target memory, whereas for TAS and CAS they
are not. CAS FAI implements a FAI operation based on
CAS. This enables us to highlight both the costs of spin-
ning until the CAS is successful and the benefits of hav-
ing a FAI instruction supported by the hardware. After
completing a call, the thread pauses for a sufficient num-
ber of cycles to prevent the same thread from completing
consecutive operations locally (long runs [31])8.

On the multi-sockets, we allocate threads on the same
socket and continue on the next socket once all cores
of the previous one have been used. On the Niagara, we
divide the threads evenly among the eight physical cores.
On all platforms, we ensure that each thread allocates its
local data from the local memory node. We repeat each
experiment five times and show the average value.

8The delay is proportional to the maximum latency across the in-
volved cores and does not affect the total throughput in a way other
than the intended.
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Figure 4: Throughput of different atomic operations on a single memory location.

Figure 4 shows the results of this experiment. The
multi-sockets exhibit a very steep decrease in the
throughput once the location is accessed by more than
one core. The latency of the operations increases from
approximately 20 to 120 cycles. In contrast, the single-
sockets generally show an increase in the throughput on
the first few cores. This can be attributed to the cost
of the local parts of the benchmark (e.g., a while loop)
that consume time comparable to the latency of the op-
erations. For more than six cores, however, the results
stabilize (with a few exceptions).

Both the Opteron and the Xeon exhibit a stable
throughput close to 20 Mops/s within a socket, which
drops once there are cores on a second socket. Not sur-
prisingly (see Table 2), the drop on the Xeon is larger
than on the Opteron. The throughput on these platforms
is dictated by the cache-coherence latencies, given that
an atomic operation actually brings the data in its local
cache. In contrast, on the single-sockets the throughput
converges to a maximum value and exhibits no subse-
quent decrease. Some further interesting points worth
highlighting are as follows. First, the Niagara (SPARC
architecture) does not provide an atomic increment or
swap instruction. Their implementations are based on
CAS, therefore the behavior of FAI and CAS FAI are
practically identical. SWAP shows some fluctuations on
the Niagara, which we believe are caused by the schedul-
ing of the hardware threads. However, SPARC pro-
vides a hardware TAS implementation that proves to be
highly efficient. Likewise, the FAI implementation on
the Tilera slightly outperforms the other operations.
Implications. Both multi-sockets have a very fast
single-thread performance, that drops on two or more
cores and decreases further when there is cross-socket
communication. Contrarily, both single-sockets have a
lower single-thread throughput, but scale to a maximum
value, that is subsequently maintained regardless of the
number of cores. This behavior indicates that globally
stressing a cache line with atomic operations will in-
troduce performance bottlenecks on the multi-sockets,
while being somewhat less of a problem on the single-

sockets. Finally, a system designer should take advan-
tage of the best performing atomic operations available
on each platform, like the TAS on the Niagara.

6 Software-Level Analysis
This section describes the software-oriented part of this
study. We start by analyzing the behavior of locks under
different levels of contention and continue with message
passing. We use the same methodology as in Section 5.4.
In addition, the globally shared data are allocated from
the first participating memory node. We finally report on
our findings on higher-level concurrent software.

6.1 Locks
We evaluate the locks in SSYNC under various degrees
of contention on our platforms.

6.1.1 Uncontested Locking
In this experiment we measure the latency to acquire a
lock based on the location of the previous holder. Al-
though in a number of cases acquiring a lock does in-
volve contention, a large portion of acquisitions in ap-
plications are uncontested, hence they have a similar be-
havior to this experiment.

Initially, we place a single thread that repeatedly ac-
quires and releases the lock. We then add a second
thread, as close as possible to the first one, and pin it
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Figure 6: Uncontested lock acquisition latency based
on the location of the previous owner of the lock.
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Figure 5: Throughput of different lock algorithms using a single lock.

further in subsequent runs. Figure 6 contains the laten-
cies of the different locks when the previous holder is at
various distances. Latencies suffer important increases
on the multi-sockets as the second thread moves further
from the first. In general, acquisitions that need to trans-
fer data across sockets have a high cost. Remote acquisi-
tions can be up to 12.5 and 11 times more expensive than
local ones on the Opteron and the Xeon respectively. In
contrast, due to the shared and distributed LLCs, the Ni-
agara and the Tilera suffer no and slight performance de-
crease, respectively, as the location of the second thread
changes. The latencies of the locks are in accordance
with the cache-coherence latencies presented in Table 2.

Moreover, the differences in the latencies are signifi-
cantly larger between locks on the multi-sockets than on
the single-sockets, making the choice of the lock algo-
rithm in an uncontested scenario paramount to perfor-
mance. More precisely, while spin locks closely follow
the cache-coherence latencies, more complex locks gen-
erally introduce some additional overhead.
Implications. Using a lock, even if no contention is in-
volved, is up to one order of magnitude more expensive
when crossing sockets. The 350-450 cycles on a multi-
socket, and the roughly 200 cycles on a single-socket,
are not negligible, especially if the critical sections are
short. Moreover, the penalties induced when crossing
sockets in terms of latency tend to be higher for com-
plex locks than for simple locks. Therefore, regardless
of the platform, simple locks should be preferred, when
contention is very low.

6.1.2 Lock Algorithm Behavior
We study the behavior of locks under extreme and very
low contention. On the one hand, highly contended
locks are often the main scalability bottleneck. On the
other hand, a large number of systems use locking strate-
gies, such as fine-grained locks, that induce low con-
tention. Therefore, good performance in these two sce-
narios is essential. We measure the total throughput of
lock acquisitions that can be performed using each of
the locks. Each thread acquires a random lock, reads

and writes one corresponding cache line of data, and re-
leases the lock. Similarly to the atomic operations stress
test (Section 5.4) in the extreme contention experiment
(one lock), a thread pauses after it releases the lock, in
order to ensure that the release becomes visible to the
other cores before retrying to acquire the lock. Given
the uniform structure of the platforms, we do not use hi-
erarchical locks on the single-socket machines.

Extreme contention. The results of the maximum con-
tention experiment (one lock) are depicted in Figure 5.
As we described in Section 5, the Xeon exhibits very
strong locality within a socket. Accordingly, the hierar-
chical locks, i.e., hticket and HCLH, perform the best by
taking advantage of that. Although there is a very big
drop from one to two cores on the multi-sockets, within
the socket both the Opteron and the Xeon manage to
keep a rather stable performance. However, once a sec-
ond socket is involved the throughput decreases again.

Not surprisingly, the CLH and the MCS locks are the
most resilient to contention. They both guarantee that a
single thread is spinning on each cache line and use the
globally shared data only to enqueue for acquiring the
lock. The ticket lock proves to be the best spin lock
on this workload. Overall, the throughput on two or
more cores on the multi-sockets is an order of magni-
tude lower than the single-core performance. In contrast,
the single-sockets maintain a comparable performance
on multiple cores.

Very low contention. The very low contention results
(512 locks) are shown in Figure 7. Once again, one
can observe the strong intra-socket locality of the Xeon.
In general, simple locks match or even outperform the
more complex queue locks. While on the Xeon the dif-
ferences between locks become insignificant for a large
number of cores, it is generally the ticket lock that per-
forms the best on the Opteron, the Niagara, and the
Tilera. On a low-contention scenario it is thus difficult
to justify the memory requirements that complex lock
algorithms have. It should be noted that, aside from the
acquisitions and releases, the load and the store on the
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Figure 8: Throughput and scalability of locks depending on the number of locks. The “X : Y” labels on top of
each bar indicate the best-performing lock (Y) and the scalability over the single-thread execution (X).

protected data also contribute to the lack of scalability of
multi-sockets, for the reasons pointed out in Section 5.
Implications. None of the locks is consistently the
best on all platforms. Moreover, no lock is consis-
tently the best within a platform. While complex locks
are generally the best under extreme contention, sim-
ple locks perform better under low contention. Under
high contention, hierarchical locks should be used on
multi-sockets with strong intra-socket locality, such as
the Xeon. The Opteron, due to the previously discussed
locality issues, and the single-sockets favor queue locks.
In case of low contention, simple locks are better than
complex implementations within a socket. Under ex-
treme contention, while not as good as more complex
locks, a ticket lock can avoid performance collapse
within a socket. On the Xeon, the best performance is
achieved when all threads run on the same socket, both
for high and for low contention. Therefore, synchroniza-
tion between sockets should be limited to the absolute
minimum on such platforms. Finally, we observe that
when each core is dedicated to a single thread there is
no scenario in which Pthread Mutexes perform the best.
Mutexes are however useful when threads contend for a
core. Therefore, unless multiple threads run on the same
core, alternative implementations should be preferred.

6.1.3 Cross-Platform Lock Behavior
In this experiment, we compare lock behavior under var-
ious degrees of contention across architectures. In order

to have a straightforward cross-platform comparison, we
run the tests on up to 36 cores. Having already explored
the lock behavior of different algorithms, we only report
the highest throughput achieved by any of the locks on
each platform. We vary the contention by running ex-
periments with 4, 16, 32, and 128 locks, thus examining
high, intermediate, and low degrees of contention.

The results are shown in Figure 8. In all cases, the
differences between the single and multi-sockets are no-
ticeable. Under high contention, single-sockets pre-
vent performance collapse from one thread to two or
more, whereas in the lower contention cases these plat-
forms scale well. As noted in Section 5, stores and
atomic operations are affected by contention on the
Tilera, resulting in slightly less scalability than on the
Niagara: on high contention workloads, the uniformity
of the Niagara delivers up to 1.7 times more scalabil-
ity than the Tilera, i.e., the rate at which performance
increases. In contrast, multi-sockets exhibit a signifi-
cantly lower throughput for high contention, when com-
pared to single-thread performance. Multi-sockets pro-
vide limited scalability even on the low contention sce-
narios. The direct cause of this contrasting behavior
is the higher latencies for the cache-coherence transi-
tions on multi-sockets, as well as the differences in the
throughput of the atomic operations. It is worth noticing
that the Xeon scales well when all the threads are within
a socket. Performance, however, severely degrades even
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Figure 9: One-to-one communication latencies of
message passing depending on the distance between
the two cores.

with one thread on a remote socket. In contrast, the
Opteron shows poor scalability regardless of the number
of threads. The reason for this difference is the limited
locality of the Opteron we discussed in Section 5.
Implications. There is a significant difference in scal-
ability trends between multi and single-sockets across
various degrees of contention. Moreover, even a small
degree of non-uniformity can have an impact on scala-
bility. As contention drops, simple locks should be used
in order to achieve high throughput on all architectures.
Overall, we argue that synchronization intensive systems
should favor platforms that provide locality, i.e., they can
prevent cross-socket communication.

6.2 Message Passing
We evaluate the message passing implementations of
SSYNC. To capture the most prominent communication
patterns of a message passing application we evaluate
both one-to-one and client-server communication. The
size of a message is 64 bytes (a cache line).
One-to-One Communication. Figure 9 depicts the la-
tencies of two cores that exchange one-way and round-
trip messages. As expected, the Tilera’s hardware mes-
sage passing performs the best. Not surprisingly, a one-
way message over cache coherence costs roughly twice
the latency of transferring a cache line. Once a core x
receives a message, it brings the receive buffer (i.e., a
cache line) to its local caches. Consequently, the second
core y has to fetch the buffer (first cache-line transfer) in
order to write a new message. Afterwards, x has to re-
fetch the buffer (second transfer) to get the message. Ac-
cordingly, the round-trip case takes approximately four
times the cost of a cache-line transfer. The reasoning is
exactly the same with one-way messages, but applies to
both ways: send and then receive.
Client-Server Communication. Figure 10 depicts the
one-way and round-trip throughput for a client-server
pattern with a single server. Again, the hardware mes-
sage passing of the Tilera performs the best. With 35
clients, one server delivers up to 16 Mops/s (round-trip)
on the Tilera (less on the other platforms). In this bench-
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Figure 10: Total throughput of client-server commu-
nication.

mark, the server does not perform any computation be-
tween messages, therefore the 16 Mops constitutes an
upper bound on the performance of a single server. It
is interesting to note that if we reduce the size of the
message to a single word, the throughput on the Tilera is
27 Mops/s for round-trip and more than 100 Mops/s for
one-way messages, respectively.

Two additional observations are worth mentioning.
First, the Xeon performs very well within a socket, espe-
cially for one-way messages. The inclusive LLC cache
plays the role of the buffer for exchanging messages.
However, even with a single client on a remote socket,
the throughput drops from 25 to 8 Mops/s. The sec-
ond point is that as the number of cores increases, the
round-trip throughput becomes higher than the one-way
on the Xeon. We also observe this effect on the Opteron,
once the length of the local computation of the server
increases (not shown in the graph). This happens be-
cause the request-response model enables the server to
efficiently prefetch the incoming messages. On one-way
messages, the clients keep trying to send messages, sat-
urating the incoming queues of the server. This leads to
the clients busy-waiting on cache lines that already con-
tain a message. Therefore, even if the server prefetches
a message, the client will soon bring the cache line to
its own caches (or transform it to shared), making the
consequent operations of the server more expensive.
Implications. Message passing can achieve latencies
similar to transferring a cache line from one core to an-
other. This behavior is slightly affected by contention,
because each pair of cores uses individual cache lines
for communication. The previous applies both to one-to-
one and client-server communication. However, a single
server has a rather low upper bound on the throughput it
can achieve, even when not executing any computation.
In a sense, we have to trade performance for scalability.

6.3 Hash Table (ssht)
We evaluate ssht, i.e., the concurrent hash table im-
plementation of SSYNC, under low (512 buckets) and
high (12 buckets) contention, as well as short (12 ele-
ments) and long (48 elements) buckets. We use 80%
get, 10% put, and 10% remove operations, so as to
keep the size of the hash table constant. We configure
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Figure 11: Throughput and scalability of the hash table (ssht) on different configurations. The “X : Y” labels
on top of each bar indicate the best-performing lock (Y) and the scalability over the single-thread execution (X).

ssht so that each bucket is protected by a single lock,
the keys are 64 bit integers, and the payload size is 64
bytes. The trends on scalability pertain on other configu-
rations as well. Finally, we configure the message pass-
ing (mp) version to use (i) one server per three cores9

and (ii) round-trip operations, i.e., all operations block,
waiting for a response from the server. It should be noted
that dedicating some threads as servers reduces the con-
tention induced on the shared data of the application.
Figure 11 depicts the results on the four target platforms
on the aforementioned scenarios10.
Low Contention. Increasing the length of the criti-
cal sections increases the scalability of the lock-based
ssht on all platforms, except for the Tilera. The multi-
sockets benefit from the efficient prefetching of the data
of a bucket. All three systems benefit from the lower
single-thread performance, which leads to higher scala-
bility ratios. On the Tilera, the local data contend with
the shared data for the L2 cache space, reducing scalabil-
ity. On this workload, the message passing implementa-
tion is strictly slower than the lock-based ones, even on
the Tilera. It is interesting to note that the Xeon scales
slightly even outside the 10 cores of a socket, thus de-
livering the highest throughput among all platforms. Fi-
nally, the best performance in this scenario is achieved
by simple spin locks.
High Contention. The situation is radically different
for high contention. First, the message passing version
not only outperforms the lock-based ones on three out
of the four platforms (for high core counts), but it also
delivers by far the highest throughput. The hardware
threads of the Niagara do not favor client-server solu-
tions; the servers are delayed due to the sharing of the
core’s resources with other threads. However, the Ni-
agara achieves a 10-fold performance increase on 36
threads, which is the best scalability among the lock-
based versions and approaches the optimal 12-fold scal-
ability. It is worth mentioning that if we do not explicitly

9This configuration achieves the highest throughput.
10The single-thread throughput for message passing is actually a re-

sult of a one server / one client execution.

pin the threads on cores, the multi-sockets deliver 4 to 6
times lower maximum throughput on this workload.
Summary. These experiments illustrate two major
points. First, increasing the length of a critical section
can partially hide the costs of synchronization under low
contention. This, of course, assumes that the data ac-
cessed in the critical section are mostly being read (so
they can be shared) and follow a specific access pattern
(so they can be prefetched). Second, the results illustrate
how message passing can provide better scalability and
performance than locking under extreme contention.

6.4 Key-Value Store (Memcached)
Memcached (v. 1.4.15) [30] is an in-memory key-value
store, based on a hash table. The hash table has a large
number of buckets and is protected by fine-grain locks.
However, during certain rebalancing and maintenance
tasks, it dynamically switches to a global lock for short
periods of time. Since we are interested in the effect of
synchronization on performance and scalability, we re-
place the default Pthread Mutexes that protect the hash
table, as well as the global locks, with the interface pro-
vided by libslock. In order to stress Memcached,
we use the memslap tool from the libmemcached li-
brary [25] (v. 1.0.15). We deploy memslap on a re-
mote server and use its default configuration. We use
500 client threads and run a get-only and a set-only test.
Get. The get test does not cause any switches to global
locks. Due to the essentially non-existent contention, the
lock algorithm has little effect in this test. In fact, even
completely removing the locks of the hash table does not
result in any performance difference. This indicates that
there are bottlenecks other than synchronization.
Set. A write-intensive workload however stresses a
number of global locks, which introduces contention.
In the set test the differences in lock behavior translate
in a difference in the performance of the application as
well. Figure 12 shows the throughput on various plat-
forms using different locks. We do not present the re-
sults on more than 18 cores, since none of the platforms
scales further. Changing the Mutexes to ticket, MCS,
or TAS locks achieves speedups between 29% and 50%
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Figure 12: Throughput of Memcached using a set-
only test. The maximum speed-up vs. single thread
is indicated under the platform names.

on three of the four platforms11. Moreover, the cache-
coherence implementation of the Opteron proves again
problematic. Due to the periodic accesses to global
locks, the previously presented issues strongly manifest,
resulting in a maximum speedup of 3.9. On the Xeon,
the throughput increases while all threads are running
within a socket, after which it starts to decrease. Finally,
thread scheduling has an important impact on perfor-
mance. Not allocating threads to the appropriate cores
decreases performance by 20% on the multi-sockets.
Summary. Even in an application where the main lim-
itations to performance are networking and the main
memory, when contention is involved, the impact of the
cache coherence and synchronization primitives is still
important. When there is no contention and the data is
either prefetched or read from the main memory, syn-
chronization is less of an issue.

7 Related Work
Our study of synchronization is, to date, the most ex-
haustive in that it covers a wide range of schemes, span-
ning different layers, and different many-core architec-
tures. In the following, we discuss specific related work
that concerns the main layers of our study.
Leveraging Cache Coherence. The characteristics of
cache-coherence protocols on x86 multi-sockets have
been investigated by a number of studies [17, 33], whose
focus is on bandwidth limitations. The cache-coherence
latencies are measured from the point of view of load-
ing data. We extend these studies by also measuring
stores and atomic operations and analyzing the impact
on higher-level concurrent software. Molka et al. [33]
consider the effect of the AMD and Intel memory hier-
archy characteristics on various workloads from SPEC
OMPM2001 and conclude that throughput is mainly dic-
tated by memory limitations. The results are thus of
limited relevance for systems involving high contention.
Moses et al. [35] use simulations to show that increasing

11The bottleneck on the Niagara is due to network and OS issues.

non-uniformity entails a decrease in the performance of
the TTAS lock under high contention. However, the con-
clusions are limited to spin locks and one specific hard-
ware model. We generalize and quantify such observa-
tions on commonly used architectures and synchroniza-
tion schemes, while also analyzing their implications.
Scaling Locks. Mellor-Crumney et al. [29] and An-
derson [4] point out the lack of scalability with tradi-
tional spin locks. They introduce and test several al-
ternatives, such as queue locks. Their evaluation is
performed on large scale multi-processors, on which
the memory latency distribution is significantly different
than on today’s many-cores. Luchangco et. al [27] study
a NUMA-aware hierarchical CLH lock and compare its
performance with a number of well-known locks. Aside
from a Niagara processor, no other modern many-core
is used. Our analysis extends their evaluation with more
locks, more hardware platforms, and more layers.

Other studies focus on the Linux kernel [12] and con-
clude that the default ticket lock implementation causes
important performance bottlenecks in the OS on a multi-
core. Performance is improved in a number of differ-
ent scenarios by replacing the ticket locks with complex
locks. We confirm that plain spin locks do not scale
across sockets and present some optimizations that al-
leviate the issue.

Various techniques have been proposed in order to im-
prove the performance of highly contended locks, espe-
cially on multi-sockets. For example, combining [18] is
an approach in which a thread can execute critical sec-
tions on behalf of others. In particular, RCL [26] re-
places the “lock, execute, and unlock” pattern with re-
mote procedure calls to a dedicated server core. For
highly contended critical sections this approach hides
the contention behind messages and enables the server
to locally access the protected data. However, as the
RCL paper mentions, the scope of this solution is lim-
ited to high contention and a large number of cores, as
our results on message passing confirm.
Scaling Systems on Many-Cores. In order to improve
OS scalability on many-cores, a number of approaches
deviate from traditional kernel designs. The OS is typ-
ically restructured to either improve locality (e.g., Tor-
nado [15]), limit sharing (e.g., Corey [10]), or avoid
resource sharing altogether by using message passing
(e.g., Barrelfish [6], fos [45]). Boyd-Wickizer et al.
[11] aim at verifying whether these scalability issues
are indeed inherent to the Linux kernel design. The
authors show how optimizing, using various concurrent
programming techniques, removes several scalability is-
sues from both the kernel and the applications. By do-
ing so, they conclude that it is not necessary to give up
the traditional kernel structure just yet. Our study con-
firms these papers’ observation that synchronization can
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be an important bottleneck. We also go a step further:
we study the roots of the problem and observe that many
of the detected issues are in fact hardware-related and
would not necessarily manifest on different platforms.

8 Concluding Remarks
Summary. This paper dissects the cost of synchroniza-
tion and studies its scalability along different directions.
Our analysis extends from basic hardware synchroniza-
tion protocols and primitives all the way to complex
concurrent software. We also consider different repre-
sentative hardware architectures. The results of our ex-
periments and our cross-platform synchronization suite,
SSYNC, can be used to evaluate the potential for scaling
synchronization on different platforms and to develop
concurrent applications and systems.
Observations & Ramifications. Our experimentation
induces various observations about synchronization on
many-cores. The first obvious one is that crossing
sockets significantly impacts synchronization, regard-
less of the layer, e.g., cache coherence, atomic opera-
tions, locks. Synchronization scales much better within
a single socket, irrespective of the contention level. Sys-
tems with heavy sharing should reduce cross-socket syn-
chronization to the minimum. As we pointed out, this
is not always possible (e.g., on a multi-socket AMD
Opteron), for hardware can still induce cross-socket traf-
fic, even if sharing is explicitly restricted within a socket.
Message passing can be viewed as a way to reduce shar-
ing as it enforces partitioning of the shared data. How-
ever, it comes at the cost of lower performance (than
locks) on a few cores or low contention.

Another observation is that non-uniformity affects
scalability even within a single-socket many-core, i.e.,
synchronization on a Sun Niagara 2 scales better than
on a Tilera TILE-Gx36. Consequently, even on a single-
socket many-core such as the TILE-Gx36, a system
should reduce the amount of highly contended data to
avoid performance degradation (due to the hardware).

We also notice that each of the nine state-of-the-art
lock algorithms we evaluate performs the best on at least
one workload/platform combination. Nevertheless, if we
reduce the context of synchronization to a single socket
(either one socket of a multi-socket, or a single-socket
many-core), then our results indicate that spin locks
should be preferred over more complex locks. Complex
locks have a lower uncontested performance, a larger
memory footprint, and only outperform spin locks un-
der relatively high contention.

Finally, regarding hardware, we highlight the fact that
implementing multi-socket coherence using broadcast or
an incomplete directory (as on the Opteron) is not favor-
able to synchronization. One way to cope with this is
to employ a directory combined with an inclusive LLC,

both for intra-socket sharing and for detecting whether a
cache line is shared outside the socket.

Miscellaneous. Due to the lack of space, we had to omit
some rather interesting results. In particular, we con-
ducted our analysis on small-scale multi-sockets, i.e., a
2-socket AMD Opteron 2384 and a 2-socket Intel Xeon
X5660. Overall, the scalability trends on these platforms
are practically identical to the large-scale multi-sockets.
For instance, the cross-socket cache-coherence latencies
are roughly 1.6 and 2.7 higher than the intra-socket on
the 2-socket Opteron and Xeon, respectively. In addi-
tion, we did not include the results of the software trans-
actional memory. In brief, these results are in accor-
dance with the results of the hash table (Section 6.3),
both for locks and message passing. Furthermore, we
also considered the MonetDB [34] column-store. In
short, the behavior of the TPC-H benchmarks [42] on
MonetDB is similar to the get workload of Memcached
(Section 6.4): synchronization is not a bottleneck.

Limitations & Future Work. We cover what we be-
lieve to be the “standard” synchronization schemes and
many-core architectures used today. Nevertheless, we do
not study lock-free [19] techniques, an appealing way of
designing mutual exclusion-free data structures. There
is also a recent body of work focusing on serializing crit-
ical sections over message passing by sending requests
to a single server [18, 26]. It would be interesting to
extend our experiments to those schemes as well.

Moreover, since the beginning of the multi-core revo-
lution, power consumption has become increasingly im-
portant [8, 9]. It would be interesting to compare dif-
ferent platforms and synchronization schemes in terms
of performance per watt. Finally, to facilitate synchro-
nization, Intel has introduced the Transactional Synchro-
nization Extensions (TSX) [24] in its Haswell micro-
architecture. We will experiment with TSX in SSYNC.
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