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Abstract—Today’s scientific simulations require a significant
reduction of the data size because of extremely large volumes of
data they produce and the limitation of storage bandwidth and
space. If the compression is set to reach a high compression ratio,
however, the reconstructed data are often distorted too much to
tolerate. In this paper, we explore a new compression strategy
that can effectively control the data distortion when significantly
reducing the data size. The contribution is threefold. (1) We
propose an adaptive compression framework to select either our
improved Lorenzo prediction method or our optimized linear
regression method dynamically in different regions of the dataset.
(2) We explore how to select them accurately based on the data
features in each block to obtain the best compression quality. (3)
We analyze the effectiveness of our solution in details using four
real-world scientific datasets with 100+ fields. Evaluation results
confirm that our new adaptive solution can significantly improve
the rate distortion for the lossy compression with fairly high
compression ratios. The compression ratio of our compressor is
1.5X∼8X as high as that of two other leading lossy compressors
(SZ and ZFP) with the same PSNR, in the high-compression
cases. Parallel experiments with 8,192 cores and 24 TB of data
shows that our solution obtains 1.5X dumping performance and
1.72X loading performance compared with the second-best lossy
compressor, respectively.

I. INTRODUCTION

An efficient data compressor is increasingly critical to to-
day’s scientific research because of the extremely large volume
of data produced by high performance computing (HPC)
simulations. Such big data are generally stored in a parallel
file system (PFS), with limited storage space and limited I/O
bandwidth to access. Some climate studies, for example, need
to run large ensembles of 1 km×1 km simulations, with each
instance simulating 15 years of climate in 24 h of computing
time. Every 16 seconds, 260 TB of data will be generated
across the ensemble, when estimating even one ensemble
member per simulated day [1]. Based on our communication
with researchers working on extreme-scale HPC simulations,
they expect to see a compression ratio up to dozens of times or
even 100:1, meaning that the bit-rate (i.e., the number of bits
used to represent one data point on average after compression)
should be no greater than 2 and best less than 1.

Although considerably reducing the data size can definitely
improve I/O performance significantly as well as the post-

analysis efficiency, the decompressed data may suffer from
significant distortion compared with the original dataset. If
the compression ratio reaches 64:1 (that is, the bit-rate is
about 0.5 bit per 32 bit data point), the precision of the
decompressed data will degrade significantly in general, even
using the best existing lossy compressors such as SZ [2], ZFP
[3], and FPZIP [4]. This will cause a huge distortion in the
visualization (shown in Section III). The question addressed
in this paper is, can we significantly improve the precision of
the decompressed data for the lossy compression with a fairly
low bit-rate compared to state-of-the-art lossy compressors?

Designing an efficient error-bounded lossy compressor that
can significantly reduce the data size with a relatively high
resolution of decompressed data is very challenging. We
explain this point based on the two most effective lossy com-
pressors [5]: SZ and ZFP. SZ and ZFP adopt largely different
compression models: respectively, a data prediction model and
an orthogonal transform model. In the data prediction model
[2], each data value needs to be predicted by using its adjacent
data points in multidimensional space according to the order of
scanning data points. Moreover, the data used in the prediction
during the compression have to be the decompressed values, in
order to guarantee that the error bound is respected during the
decompression, which is a strict limitation to the design of SZ
[2]. Such a limitation may significantly degrade the prediction
accuracy, especially for the lossy compression with a relatively
large error bound, leading to limited compression quality. On
the other hand, in the orthogonal transform-based compressor
such as ZFP [3], the entire dataset has to be split into many
small blocks (e.g., 4x4x4 for 3D data), each of which will
be transformed to another decorrelated domain individually
based on a fixed coefficient matrix. Relatively large error
bound setting will introduce significant loss to the coefficients,
leading to the over-distortion of decompressed data in turn.

In this paper, we propose an adaptive lossy compression
framework in terms of the data prediction compression model
that can obtain a stable, high compression quality when the
error bound is set to a large value for reaching a high com-
pression ratio. Specifically, our contributions are as follows:
• We propose an adaptive lossy compression framework

that is more effective in compressing the scientific



datasets with relatively large error bounds. In particular,
we split the whole dataset into multiple non-overlapped
blocks, and select the best-fit prediction method based on
their data features.

• We develop new prediction methods that are particularly
effective for the lossy compression with relatively large
error bounds. On the one hand, we develop a hybrid
Lorenzo prediction method by combining the classic
Lorenzo predictor [6] and the densest mean-value based
data approximation method (also called mean-integrated
Lorenzo prediction). On the other hand, we develop a
linear regression method that can obtain much higher
prediction accuracy in this case since the design is beyond
the limitation that the decompressed values have to be
used in the prediction.

• We explore how to select adaptively and efficiently the
best-fit prediction method based on the data features
across blocks during the compression. We also propose
two optimization strategies that can further improve the
prediction accuracy and quantization efficiency.

• We evaluate our proposed compression method compared
with six other state-of-the-art lossy compressors, based on
four well-known large datasets produced by real-world
large-scale HPC simulations with a total of 104 fields.
Evaluation results demonstrate that the compression ratio
of our compressor is 1.5X∼8X as high as that of the
two best lossy compressors (SZ and ZFP) with the
same PSNR, respectively, in the high compression ratio
cases. Parallel experiments with 8,192 cores and 24 TB
of data shows that our solution obtains 1.5X dumping
performance and 1.72X loading performance compared
with the second-best lossy compressor, respectively.

The rest of the paper is organized as follows. In Section II,
we discuss the related work. In Section III, we formulate the
research problem. In Section IV, we provide an overview of
the design on our new compression framework. In Section V,
we present the mean-integrated Lorenzo prediction method.
In Section VI, we describe the regression-based prediction
method in details. In Section VIII, we present the evaluation
results on real-world simulation data with 100+ fields. Finally,
we conclude with a vision of future work in Section IX.

II. RELATED WORK

The I/O bottleneck has become one of the most serious is-
sues for the overall execution performance of today’s extreme-
scale HPC scientific simulations. The recent I/O performance
study [8] shows that the parallel I/O performance may only
reach several GB/s on an optimized storage system facilitated
with Luster and GPFS. As such, data compression is critical
to significantly reduce I/O bottleneck for extreme-scale simu-
lations.

Lossless compressors such as Gzip [9], FPC [10], FPZIP
[4], BlosC [11] and other lossless compressors [12] cannot
significantly reduce the floating point data size because of the
largely random nature of the ending mantissa bits. Specifically,

the lossless compression ratios are generally around 2:1 or
even lower, according to the recent study [13].

Traditional lossy compressors (such as [14], [15]) do not
respect a specific error bound set by users, such that the
decompressed data may not be available for scientific analysis.

Error-controlled lossy compression techniques [2], [3], [16]
have been considered the best trade-off solution compared
with lossless compression, but it still suffers from limited
performance gain, especially in situations with terabytes or
even petabypes of data to process because of the limited
compression ratios. Tao et al. [17] reported that it took about
2,300 seconds to write 1.8 TB of cosmology simulation data
on a parallel file system when running 1,024 processes, and
the total I/O processing time was up to 500 seconds using the
best lossy compressor with a compression ratio of 3.6:1. Their
work also concluded that the total I/O performance depends
mainly on the compression ratio because of the bounded I/O
bandwidth of the PFS. That is, further reducing the data size
significantly will definitely improve the total performance.

The existing lossy compressors, however, cannot keep high
fidelity on the reconstructed data after the significant reduc-
tion of data size with a fairly high compression ratio (i.e.
40:1 or higher). The studies [18] of lossy compression of
climate simulation data within a large ensemble shows that
the compression ratio needs to be around 8:1∼10:1 in order
to get an indistinguishable visualization of reconstructed data
compared with the original data. Lu et al. [5] demonstrated
that in a case study of fusion blob detection, the fusion
blobs cannot be detected at all when the compression ratio
increases up to 30:1 for ZFP or 100:1 for SZ because of over
distorted visualization of the data. More examples of the over
distortion of lossy compression data in high-ratio compression
cases are presented in Section VIII of this paper. To control
the distortion of the data in this situation, we develop an
adaptive compression framework and explore more effective
data prediction strategies. Evaluation results using four real-
world HPC simulations with 100+ fields show that our solution
outperforms the second-best lossy compressor significantly,
from the perspective of both rate distortion and visualization.

III. PROBLEM FORMULATION

In this paper, we target a critical, challenging research issue:
how to reduce the distortion of data during an error-bounded
lossy compression with a fairly high compression ratio. On
the one hand, the decompressed dataset must respect a strict
error bound (denoted by ε) on each data point compared
with the original dataset. Not only do we need to guarantee
the maximum error bounded within an specified error bound,
but we also need to maximize the peak single-to-noise ratio
(PSNR) for the lossy compression of scientific data. PSNR
is a commonly used indicator to assess the distortion of data
during the lossy compression. It is defined as follows:

psnr = 20 · log10((dmax − dmin)/rmse) (1)
where N refers to the number of data points, rmse =√

1
N

∑N
i=1(di − d′i)2; di and d′i refer to the original and



(a) original raw data (b) our sol. (PSNR=56, SSIM=0.9855)

(c) SZ (PSNR=34.7, SSIM=0.7349) (d) ZFP (PSNR=35, SSIM=0.7004)

Fig. 1. Data Distortion of NYX(velocity x:slice 100) with CR=156:1

decompressed data values, respectively; dmax and dmin refer
to the max and min values, respectively. The larger the
PSNR, the lower the mean squared error of the reconstructed
data versus original data, meaning higher overall precision of
reconstructed data and thus more accurate post-analysis.

Because of the diverse value changes in different regions
of a dataset, the reconstructed data would be distorded signif-
icantly from the original values after the lossy compression
with a high compression ratio such as 100:1. In Fig. 1(a), (c)
and (d), we can observe that the visualization using slice 50 of
the 3D dataset velocity x is largely distorted by two existing
state-of-the-art lossy compressors, SZ and ZFP, with a high
compression ratio up to 156:1. In particular, the decompressed
data under SZ has an artifact issue (i.e., the large difference
in the bottom), as shown in Fig. 1(c); ZFP simply flushes
local regions to a single color, making the reconstructed data
unavailable for user’s post-analysis. As shown in Fig. 1(b), the
decompressed data under our new solution will lead to very
high visual quality with the same compression ratio.

In summary, our objective is to maximize the PSNR during
error-bounded lossy compression with a high compression
ratio such as 100:1. A satisfactory lossy compressor must
conform to the following four conditions/criteria.

1) It should respect a specified maximum error: the differ-
ence between the reconstructed data and original data
must be bounded strictly for each data point from user
specified limits.

2) With the maximum error controlled, PSNR must also be
as high as possible, such that the overall distortion of the
data is controlled well for guaranteeing effective post-
analysis and high visualization quality.

3) The developed compressor should not degrade the com-
pression quality in the cases demanding high precision
(with relatively low compression ratios).

4) The new compression technique must have low computa-
tion cost, leading to comparable compression/decompres-
sion rate with the existing state-of-the-art compressors
such as SZ and ZFP.

IV. DESIGN OVERVIEW

In the following, we first present an overview of our
adaptive lossy compression framework and then describe the
compression techniques in detail.

The key idea of our adaptive solution is splitting the entire
dataset into multiple non-overlapped equal-sized blocks in
multidimensional space and selecting the best-fit data predic-
tion method dynamically for each block based on its data
feature. Algorithm 1 presents the pseudo-code of the entire
design. The basic idea is to select in each block the best-
fit prediction method, from among the three data prediction
approaches: classic Lorenzo predictor [6], mean-integrated
Lorenzo predictor, and linear regression-based predictor. The
first one was already adopted by some existing compressors
such as SZ and FPZIP, while the other two are proposed as
a critical contribution in this paper, because they can improve
the lossy compression quality significantly.
Algorithm 1 ADAPTIVE ERROR-BOUNDED COMPRESSOR
Input: user-specified error bound ε
Output: compressed data stream in form of bytes
1: Estimate the densest position (denoted as v0) and calculate the frequency

(denoted p1) of the densest error-bound-based interval surrounding it;
2: Calculate the densest frequency of classic Lorenzo predictor (denoted p2);
3: if (p1>p2) then
4: µ←

∑
|di−v0|≤ε di

‖{di||di−v0|≤ε }‖ ; /*Compute mean value of densest interval*/
5: `-PREDICTOR ← mean-integrated Lorenzo predictor;
6: else
7: `-PREDICTOR ← classic Lorenzo predictor;
8: end if
9: for (each block in the multi-dimensional space) do

10: Calculate regression coefficients; /*4 coefficients/block in 3d dataset*/
11: end for
12: Calculate statistics of all coefficients for compression of coefficients later;
13: for (each block in the multi-dimensional space) do
14: Create a sampling set (denoted SM ) with M sampled data points;
15: Compute cost values Ereg-predictor and E`-PREDICTOR based on SM ;
16: if (Ereg-predictor < E`-PREDICTOR) then
17: Execute regression-based prediction and quantization;
18: else
19: Execute `-PREDICTOR and quantization;
20: end if
21: end for
22: Construct Huffman tree according to the quantization array;
23: Encode/compress quantization array by Huffman tree;
24: Compress regression coefficients;

We describe our algorithm in the following text. At the
beginning (line 1), the algorithm searches for the densest
interval based on the error-bound ε and calculates its data
frequency (denoted by p1), in order to estimate the prediction
ability of the mean-integrated Lorenzo predictor. This part
involves three steps: (1)

√
N data points will be sampled

uniformly in space; (2) the mean value of the sampled data
points is calculated and a set of consecutive intervals (each
with 2ε in length) will be constructed surrounding the mean
value; (3) we then calculate the number of data points in
the consecutive intervals and select the one with the highest



frequency of data points as the densest interval, whose center
is called the densest position (denoted as v0). Here

√
N is

chosen by heuristics because it already exhibits good accuracy.
On line 2, the algorithm checks the prediction ability of the
classic Lorenzo predictor, by calculating the data frequency
(denoted p2) of its error-bound based prediction interval (i.e.,
[pred value−ε , pred value+ε], where pred value refers to
the predicted value), based on 1% of uniformly sampled
data points. The number of sampled data points (i.e., 1%)
is a heuristic setting, which is similar to the configuration of
SZ. Based on the sampled data points, we select the best-fit
Lorenzo predictor (denoted as `-PREDICTOR) according to our
estimated prediction ability of the two predictors (line 3-8). If
the best-fit predictor is the mean-integrated Lorenzo predictor,
we need to calculate the mean value of the densest interval
(line 4), which will be used later.

After determining the best-fit Lorenzo predictor, the al-
gorithm calculates the linear regression coefficients for each
block (lines 9-11), as well as the statistics (such as the
value range of the coefficients), which will be used in the
compression of the coefficients later (Section VI-B).

The most critical stage is scanning the entire dataset and per-
forming the best-fit prediction and linear-scaling quantization
in each block (lines 13-21). In each block, M data points (1/8
data points for 2D dataset and 1/9 for 3D dataset) are sampled
uniformly in space, in order to select the best-fit prediction
method as accurately as possible. The sampling method will
be further detailed in Section VI-A. Then, the algorithm
determines which prediction method (either regression-based
predictor or `-PREDICTOR) should be used in the current
block in terms of their estimated overall prediction errors
(denoted by Ereg-predictor and E`-PREDICTOR respectively). How
to estimate the prediction errors for the two predictors will be
detailed in Section VII-B.

Our algorithm then compresses the quantization array con-
structed in the prediction stage by Huffman encoding (lines
22-23). It also compresses the regression coefficients for the
blocks selecting the regression-based prediction methods, by
IEEE 754 binary analysis (detailed in Section VI-B).

The time complexity of the algorithm is O(N), because
the algorithm is composed of three parts, whose time com-
plexities are no greater than O(N). Specifically, the first part
estimates densest frequency (lines 1-2) with a time complexity
of O(

√
N); the second part calculates regression coefficients

(lines 9-11) that costs O(N) in total (for details, see Lemma
1 to be presented later); and the last part performs predic-
tion+quantization (lines 13-21), which also costs O(N) since
each data point will be scanned only once.

V. MEAN-INTEGRATED LORENZO PREDICTOR

In this section, we develop a new, efficient predictor in terms
of the classic Lorenzo predictor [6]. Fig. 2(a) illustrates the
classic Lorenzo prediction method in a 3D dataset. Specifi-
cally, it predicts the current data point based on the following
formula for a 3D dataset:
f
(L)
111 = f ′000 + f ′011 + f ′101 + f ′110 − f ′001 − f ′010 − f ′100 (2)

where f (L) and f ′ refer to the predicted value and decom-
pressed value, respectively. {111} is the current data point
to deal with, and the other seven data points are adjacent
to it on a unit cube which have been processed. f (L)111 is the
predicted value for the data point {111} and the decompressed
value f ′111 can be obtained by applying the linear-scaling
quantization on the difference between f (L)111 and the origin data
value at {111}. The compressor will continue this procedure
data point by data point until all the data are processed.

x

y
z

Current data point

f111
(L)

'f000
'f100

'f110

'f011

'f001

'f010

'f101

(a) Classic Lorenzo predictor (b) Data approximation by mean value

Fig. 2. Illustration of mean-integrated Lorenzo predictor

The classic Lorenzo predictor has a significant defect: many
predicted values would be uniformly skewed from the original
values if the error bound is relatively large in the lossy com-
pression, leading to an unexpected artifact issue as illustrated
in Fig. 1(c). Our developed mean-integrated Lorenzo predictor
can solve this issue well.

The fundamental idea is approximating those data points
whose values are clustered intensively by a fixed value, if
majority of data values are clustered to a small interval with
pretty high density (called densest interval). This situation
appears in about one-third of the fields of the NYX cosmology
simulation [28] and about half the fields of the Hurricane
simulation [27]. In the dark matter density field of NYX, for
instance, 84+% of the data values are in the range of [0,1],
while the remaining data are in the range of [1,1.34×104].

Suppose we are given a dataset D = {di|i = 1, . . . , N}
such that the interval [v0−ε,v0+ε] can cover a large percentage
of data points, where ε is the compression error bound and
v0 is the densest position (as illustrated in Fig. 2(b)). If
this percentage is greater than some threshold, we will select
the mean-integrated Lorenzo predicator. In practice, we set
the threshold to the sampled prediction accuracy of classic
Lorenzo predictor (line 3 in Algorithm 1). However, the classic
Lorenzo predictor would be highly over-estimated when error
bound is relatively large because the sampling stage does not
take into account the impact of decompressed data, leading to a
serious artifact issue. In order to mitigate this issue, we let the
algorithm opt to select the mean-integrated Lorenzo predictor
directly when [v0−ε,v0+ε] can cover more than half of the
data. Now, we need to derive an optimal value to approximate
the data in this interval.

Lemma 1: The optimal value used to approximate the ma-
jority of data points should be the mean value of data in the
densest interval [v0−ε,v0+ε].

Proof: If a fixed value v is used to approximate all the
data points in this interval, the corresponding MSE can be



represented as follows:

MSE =

∫ v0+ε

v0−ε
pd(x)(x− v)2dx

where pd(x) is the probability density function. Then, the
problem becomes an optimization problem aiming to minimize
MSE. Letting the partial derivative ∂MSE

∂v = 0, we have
−2

∫ v0+ε
v0−ε pd(x)xdx + 2v

∫ v0+ε
v0−ε pd(x)dx = 0. Solving this

equation will obtain the optimal value ṽ=
∫ v0+ε
v0−ε pd(x)xdx∫ v0+ε
v0−ε pd(x)dx

. It

is the mean value of all data points in this interval (as
shown in Fig. 2(b)). This lemma also holds in discrete cases,
where the optimal approximation value ṽ can be calculated by∑

x∈[v0−ε,v0+ε] x

‖{x||x−v0|≤ε}‖ in practice, where ‖{x ||x− v0| ≤ ε}‖ is the
number of data points in the densest interval.

VI. REGRESSION-BASED PREDICTION

Although the proposed mean-integrated Lorenzo predictor
alleviates the artifact and reduces prediction errors in predict-
ing the intensively-clustered data, it does not work well on
the data following a rather uniform distribution. To address
this issue, we propose a regression-based prediction model,
which can deal with generic datasets. We adopt a linear-
regression model instead of a higher-order regression model
considering the overhead. Quadratic regression model, for
example, requires 2.5X the number of coefficients the linear-
regression model needs, with ≥3X the computation workload.

A. Derivation of Regression Coefficients

In what follows, we derive the regression coefficients from
a generic perspective in terms of a dataset with m dimensions
(n1×n2×· · ·×nm), which can be easily extended to block-
wise situations. The value at position x = (i1, . . . , im) is
denoted as f(x) = fi1...im , where ij is its index along
each dimension. We also denote f (r) as the linear regression
prediction. Then the linear regression model can be built as:

f (r)(x) = xTβ + α

where β = (β1,. . . ,βm) denotes the slope coefficient vector
and the constant α is the intercept coefficient. By redefining
x′ = (1, i1, . . . , im) and β′ = (β0=α,β1,. . . ,βm), the formula
above can be rewritten as:

f (r)(x′) = x′Tβ′

Since each data point corresponds to a position x and its value
f(x), the objective of the regression model is to minimize the
squared error (SE) between predicated and original values:

SE =
∑

x′∈{(1,i1,...,im)|0≤ij<nj}

(x′Tβ′ − fi1...im)2

This is a convex function, and its optimal can be obtained
by derivation. The derivation over each element in β′ will
result in a linear system of m unknowns. By solving the linear
system, the optimal solution can be achieved as:

β′ = (XTX)−1XT y (3)
X is the full permutation of {i1,i2,· · · ,im}, where
ij∈{0,1,· · · ,nj−1}, and y is the sequence of the correspond-
ing data values (f00...0,f00...1,· · · ,f(n1−1)(n2−1)...(nm−1)).

Since X is a {
∏

1≤i≤m ni}×(m+1) matrix, computing the
closed-form solution (3) is very expensive. However, we can
derive the solution to a simple form, significantly reducing the
computation cost. Let us take a 3D dataset as an example to
describe our method, which can be extended to datasets with
higher dimensions easily without loss of generality.

Lemma 2: The regression coefficients of a 3D dataset with
dimensions n1, n2, n3 can be calculated as:

β1 = 6
n1n2n3(n1+1) (

2Vx

n1−1 − V0)
β2 = 6

n1n2n3(n2+1) (
2Vy

n2−1 − V0)
β3 = 6

n1n2n3(n3+1) (
2Vz

n3−1 − V0)
β0 = V0

n1n2n3
− (n1−1

2 β1 +
n2−1

2 β2 +
n3−1

2 β3)

(4)

where V0 =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

fijk, Vx =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

i ∗ fijk,

Vy =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

j ∗ fijk, Vz =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

k ∗ fijk.

Proof: Substitute the index with the coordinate values.
The SE expression will turn out to be:
SE=

∑n1−1
i=0

∑n2−1
j=0

∑n3−1
k=0 (β0 + β1i+ β2j + β3k − fijk)2

The following linear system can be derived by getting all its
partial derivatives over the coefficients and setting them to 0:

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0


1 i j k
i i2 ij ik
j ij j2 jk
k ik jk k2


β0β1β2
β3

 =

V0

Vx

Vy

Vz


Since

∑n−1
i=0 i =

n(n−1)
2 and

∑n−1
i=0 i

2 = (2n−1)n(n−1)
6 , the

above linear system can be simplified to:
1 (n1−1)

2
(n2−1)

2
(n3−1)

2

1 (2n1−1)
3

(n2−1)
2

(n3−1)
2

1 (n1−1)
2

(2n2−1)
3

(n3−1)
2

1 (n1−1)
2

(n2−1)
2

(2n3−1)
3


β0β1β2
β3

 =


V0

n1n2n3
2Vx

n1n2n3(n1−1)
2Vy

n1n2n3(n2−1)
2Vz

n1n2n3(n3−1)


After that, Gaussian elimination can be leveraged to transfer

the linear system to the following:1
(n1−1)

2
(n2−1)

2
(n3−1)

2
0 1 0 0
0 0 1 0
0 0 0 1


β0β1β2
β3

 =


V0

n1n2n3
6

n1n2n3(n1+1)
( 2Vx
n1−1

− V0)
6

n1n2n3(n2+1)
(

2Vy

n2−1
− V0)

6
n1n2n3(n3+1)

( 2Vz
n3−1

− V0)


Then Equation (4) can be derived accordingly.

These coefficients will be used in the regression model for
predicting the data accurately. Each data point with index
(i, j, k) will be predicted as f (r)ijk = β0 + iβ1 + jβ2 + kβ3.
Then, we will compute the difference between each predicted
value f (r)ijk and its original value fijk, and perform the linear-
scaling quantization [2] to convert the floating-point values to
integer codes. The data size will be significantly reduced after
conducting Huffman encoding on the quantization codes.

B. Compressing Regression Coefficients

We adopt the block size 6×6×6 for 3D data and 12×12
data for 2D data in our implementation, since such settings
already lead to satisfying compression quality. For each block
that adopts the linear regression model, four coefficients have
to be kept in the compressed bytes together with the encoding
of regression-based predicted values in that block. If each



block is a 6×6×6 cube, the overhead of saving the four
coefficients (single-precision floating-point values) would be

4
6×6×6= 1

54 of the original data size (i.e., bit-rate=0.6). Note
that we are targeting high-compression ratios (such as 100:1),
so we have to further compress the coefficients significantly
by a lossy compression technique with controlled impact of
lossy coefficients on the prediction accuracy. We reorganize
all the coefficients into four groups and compress each group
of coefficients in a similar way by the unpredictable data
compression method used in SZ [19].

VII. ADAPTIVE SELECTION OF BEST-FIT PREDICTOR

In this section, we analyze the nature of the linear
regression-based predictor (proposed in Section VI) and
Lorenzo predictor (introduced in Section V). We also propose
a cost function (or a metric), based on which we can accurately
select the best-fit predictor via a sampling approach.

A. Analysis of Linear Regression versus Lorenzo Predictor

The two predictors are particularly suitable for various data
blocks with different data features.

For each data point to predict, the Lorenzo predictor [6]
constructs a fixed quadratic hyperplane based on its 7 adjacent
data points in a 2×2×2 cube. No coefficients need to be saved
for reconstructing the hyperplane during the decompression.
However, Lorenzo predictor must conform to a strict condition
when being used in lossy compression [2]. The prediction
performed during the compression must use the decompressed
values instead of original values; otherwise, unexpected data
loss would be accumulated during the decompression, in-
troducing significant distortion of data eventually. Using the
decompressed values to perform the Lorenzo predictor would
degrade the prediction accuracy significantly especially when
the error bound is relatively large [2], leading to limited
compression quality.

Unlike Lorenzo predictor, our linear regression-based
predictor constructs an MSE-minimized linear hyperplane
(f (r)111=β0 + β1x + β2y + β3z) with four extra coefficients to
store for each data block. Thus the block size cannot be too
small. The advantage of this predictor, however, is that it does
not depend on the decompressed values during the prediction
stage because the hyperplane will be reconstructed by the
four coefficients. In contract, linear-regression may not be as
accurate as Lorenzo predictor if the data exhibit spiky changes
in a pretty small region or the compression error bound is
relatively small, because the Lorenzo predictor corresponds
to a quadratic hyperplane. This issue inspires us to seek an
adaptive solution between the two predictors.

B. Estimate Prediction Errors and Select Best-fit Predictor

We adopt an effective, lightweight sampling method to
select the best of the two predictors. In the following, we use
the 3D dataset to explain our idea, cases with other dimensions
could be extended similarly.

In a 3D block (6×6×6), we sample 24 points that are
distributed along the diagonal lines. These points can also be

(a) Points sampled in a block (b) Decompressed noise estimation

Fig. 3. Sample points and decompressed noise estimation

regarded as on the 8 corners of the innermost 2×2×2 cube,
4×4×4 cube and 6×6×6 cube, respectively, as shown in Fig.
3(a). We denote the set of the 24 sample points by {S24}.
Then, the cost function for both regression model and the
Lorenzo predictor is defined as follows:

E′predictor =
∑

(i,j,k)∈{S24}

|f (p)ijk − fijk| (5)

where f (p)ijk refers to the predicted values (f (r)ijk , f (L)ijk ). If one
predictor is better than the other, it tends to have a lower
cost (i.e., summed error). The reason we adopt absolute error
instead of squared error in the cost function is that the squared
errors may easily over amplify the cost value if there is one
outlier, leading to skewed cost values. Formula (5) can be
used directly as the cost function (denoted Ereg-predictor in
Algorithm 1) for the regression-based predictor.

The Lorenzo predictor, however, would be overestimated
because the formula does not take into account the influence
of decompressed data, such that we have to further adjust
the cost function for the Lorenzo predictor. Without loss
of generality, we assume that the compression errors are
independent random variables following a uniform distribution
in [−ε, ε], according to the recent study on the distribution of
compression errors [13]. Then, the perturbation in the final
prediction will be a random variable e following a shifted
and scaled Irwin-Hall distribution with parameter n = 7,
which is a piecewise function. However, the expectation of the
absolute value is hard to derive. Fortunately, since the Lorenzo
predictor always adopts 7 points to predict the data, the
corresponding value can be approximated offline. We take 1M
samples from this distribution and compute the expectation of
their absolute values. The fitting curve is supposed to be a
linear curve, because the error bound is only a scale factor
for this distribution. Then, we achieved a very good fitting
curve (E(|e|) = 1.22ε) as illustrated in Fig. 3(b). The cost
(i.e., aggregated error) of the classic Lorenzo predictor can be
adjusted as follows:

E′LP =
∑

(i,j,k)∈{S24} |f
(L)
ijk − fijk + e|

≤
∑

(i,j,k)∈{S24} |f
(L)
ijk − fijk|+

∑
(i,j,k)∈{S24} |e|

≈
∑

(i,j,k)∈{S24} |f
(L)
ijk − fijk|+ 24 ∗ 1.22ε

(6)

We estimate the prediction cost by this inequality because we
opt to select the regression model considering the artifact issue
that may occur to the Lorenzo predictor in the situation with
relatively large error bounds. When the error bound is small,
this extra adjustment has little impact on the final selection.

The cost value of the mean-integrated Lorenzo predic-
tor(denoted E′mLP ) is estimated as the minimum value be-



tween the classic Lorenzo prediction error (i.e., Formula (6))
and mean prediction error, as shown below:
E′mLP ≈

∑
(i,j,k)∈{S24}

min(|f (L)ijk − fijk|+1.22ε , |µ− fijk|) (7)

where µ is calculated in line 4 of Algorithm 1.
In summary, as for the `-PREDICTOR proposed in Algorithm

1, we estimate the error cost for the classic Lorenzo predictor
and mean-integrated Lorenzo predictor by Formula (6) and
Formula (7), respectively. In each data block, we select the
final predictor with lowest cost based on their cost functions.

VIII. PERFORMANCE EVALUATION

In this section, we compare our proposed compression
method with three error-bounded compressors (SZ 1.4.13 [2],
ZFP 0.5.2 [3], and TTHRESH [20]), which are currently the
best existing generic lossy compressors for scientific data
compression [5]. We also compare our method with other lossy
compressors that are widely used in the scientific simulations,
namely VAPOR [21] (wavelet compressor), FPZIP [4] and
ISABELA [22]. We also try best to optimize the compression
quality of all the six lossy compressors from the perspective of
PSNR. For instance, we adopt the absolute error bound mode
for both SZ and ZFP in that they lead to better compression
quality than other modes in our experiments. For SZ, we
adopt one layer in the multi-dimensional prediction and the
optimized number of quantization bins based on initial 65,536
bins, which is the best setting as confirmed by the SZ devel-
opers. We also asked the developer of VAPOR to optimize the
parameters for the datasets used in our experiments.

A. Experimental Setting

We conduct our experimental evaluations on a supercom-
puter using 8,192 cores (i.e., 256 nodes, each with two Intel
Xeon E5-2695 v4 processors and 128 GB of memory, and each
processor with 16 cores). The storage system uses General
Parallel File Systems (GPFS). These file systems are located
on a raid array and served by multiple file servers. The I/O and
storage systems are typical high-end supercomputer facilities.
We use the file-per-process mode with POSIX I/O [23] on each
process for reading/writing data in parallel 1. The HPC appli-
cation data are from multiple domains including CESM-ATM
climate simulation [26], Hurricane ISABEL simulation [27],
NYX cosmology simulation [28], SCALE-LETKF weather
simulation (called S-L Sim for short) [29]. Each application
involves many simulation snapshots (or time steps). We assess
only meaningful fields with relatively large data sizes (other
fields have constant data or too small data sizes). Table I
presents all the 104 fields across these simulations. The data
sizes per snapshot are 1.2 GB, 3.2 GB, 3 GB and 2 GB for
the above four applications respectively.

We assess the compression quality based on the four criteria
proposed in Section III. Since PSNR is the most critical indica-
tor as discussed in Section III, we mainly adopt this metric to

1POSIX I/O performance is close to other parallel I/O performance such
as MPI-IO [24] when thousands of files are written/read simultaneously on
GPFS, as indicated by a recent study [25].

TABLE I
SIMULATION FIELDS USED IN THE EVALUATION

Application # Fields Dimensions Examples
CESM-ATM 79 1800×3600 CLDHGH, CLDLOW · · ·

Hurricane 13 100×500×500 CLOUDf48, Uf48 · · ·
NYX 6 512×512×512 dark matter density, v x · · ·

S-L Sim 6 98×1200×1200 U, V, W, QC · · ·

access the distortion of data. In addition, we also evaluate the
Pearson correlation and structural similarity (SSIM) index for
different compressors because they were mentioned in some
literatures [18], [30]. Pearson correlation can be computed
by ρX,Y =E(X−µX)E(Y−µY )

σXσY
, where µc and σc (c∈{X,Y })

are means and deviations of X and Y , respectively. SSIM
is considered a critical metric of lossy compression by the
climate community [30]. The higher the Pearson correlation
or SSIM, the better the compression quality.

B. Evaluation Results

We first check the maximum compression errors of our
compressor using all the 104 fields and confirm that our
compressor can respect the error bound (denoted by ε) strictly.
We present a few examples in Table II.

TABLE II
MAXIMUM COMPRESSION ERROR VS. ERROR BOUND

fields bound max err bound max err
Hurricane-CLOUDf48 0.1 0.099999955 0.01 0.00999998

NYX-v x 0.1 0.0999966 0.01 0.009999995
CESM-CLDHGH 0.1 0.099949 0.01 0.0099999

In what follows, we first compare the three fundamental
predictors (Lorenzo, mean-integrated Lorenzo and linear re-
gression) to showcase the importance of the adaptive design
in Fig. 4 and Fig. 5. After that, we compare the overall rate-
distortion among all the 6 lossy compressors in Fig. 6, which
is the most critical evaluation result in terms of compression
quality. We also demonstrate the difference of visual quality
across various lossy compressors with the same compression
ratios. Finally, we investigate the parallel I/O performance gain
with different execution scales using our compressor against
two other most efficient state-of-the-art compressors.

Fig. 4 demonstrates the effectiveness of our mean-integrated
Lorenzo predictor (denoted M-Lorenzo) over the original
Lorenzo predictor, using Hurricane ISABEL dataset. As shown
in Fig. 4 (a), the mean-integrated Lorenzo always leads to a
smaller bit-rate (or higher compression ratio) than the original
Lorenzo predictor does with the same level of rate distortion
(i.e., PSNR). Specifically, the mean-integrated Lorenzo predic-
tor obtains the compression ratio about 3X as high as that of
the original Lorenzo predictor, when the PSNR is around 30.
Fig. 4 (b) shows the fraction of the fields adopting the mean-
integrated Lorenzo predictor in the Hurricane datasets. We
observe that the percentage drops as bit-rate increases, due to
the fact that higher bit-rate corresponds to higher precision for
the original Lorenzo predictor, which leads to lower percentage
on choosing the mean-integrated Lorenzo predictor in turn.
Similar phenomenons can also be observed in other datasets,
which we did not show here because of the page limitation.

In Section VII-B, we derived a penalty coefficient, which is
critical to determine the best-fit predictor. In Fig. 5, we present
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Fig. 4. Effectiveness of Mean-Integrated Lorenzo Predictor using Hurricane-
ISABEL
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Fig. 5. Significance Analysis for penalty coefficient using Hurricane-ISABEL

the significance of the penalty coefficient, by comparing three
solutions (the solution with/without penalty coefficient and the
solution adopting only regression-based predictor). As shown
in Fig. 5(a), the solution with our derived penalty coefficient
outperforms the other two significantly. As illustrated in Fig.
5(b), without the penalty coefficient, the compression quality
would be degraded significantly, since a large majority (99.6%)
of blocks would select the Lorenzo predictor (see red curve in
the bottom sub-figure of Fig. 5(b)) because of over-estimation
of the Lorenzo prediction ability as discussed in Section
VII-B. We also present the percentage of blocks selecting the
regression-based predictors, demonstrating that our adaptive
solution does select different predictors for different blocks
during the compression. The percent of regression blocks
drops from 98% to 3% as the bit-rate increases, which is
consistent with the compression quality of the two methods.

In Fig. 6, we present the overall rate-distortion (PSNR
versus bit-rate (or compression ratio)) calculated using all the
fields for each application (Fig. 6 (a) is missing TTHRESH
because it cannot work on 2D dataset). It is observed that under
the same compression ratio, our solution leads to significantly
higher PSNR with than other compressors. Specifically, our so-
lution, SZ and ZFP generally exhibit better rate-distortion than
other compressors including FPZIP, VAPOR, and TTHRESH,
all of which outperform ISABELA significantly. From among
the three best compressors, the PSNR of our compressor is
10%∼100% higher than that of the other two (SZ and ZFP)
when the compression ratio is the same. This gap increases
with higher compression ratio, as shown in the four sub-
figures. In particular, as for CESM-ATM data, when the PSNR
is about 45, our compressor leads the compression ratio to
200:1, while SZ and ZFP get the compression ratio of 76:1 and
25:1 respectively. Based on the four applications, we observe
that the compression ratio of our compressor is 1.5X∼8X as
high as that of SZ and ZFP with the same PSNR, which is a
significant improvement.
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Fig. 6. Rate-distortion (PSNR versus Bit-rate or Compression Ratio)

We select three typical examples from the 104 fields across
different applications to demonstrate the visual quality of the
decompressed data with different compression ratios compared
with the original data (also known as raw data), due to the
space limitation of the paper.

As demonstrated in Section III (Fig. 1)), the decompressed
data under our solution has a better visual quality than either
SZ or ZFP does, based on the NYX (velocity x) dataset.
Correspondingly, the SSIM index of our solution (0.9855) is
higher than that of SZ (0.7349) and that of ZFP (0.7004) by
34% and 40%, respectively.

As mentioned previously, we note that some fields have very
large value ranges while most of data are clustered in a small
close-to-zero range, so the users compute the logarithm of the
data before their analysis or visualization. We compress the
log data instead of the original data since this would improve
the compression quality for all lossy compressors, as suggested
by users. As an example, we present the compression result of
dark matter density field from NYX simulation in Fig. 7. By
zooming in a small region, we can clearly see that our solution
has much higher resolution than others. This is consistent with
the SSIM measure: the SSIM index of SZ is higher than
others by 62.8% and 82.5%, respectively. By observing the
decompressed images, SZ suffers from a serious data loss as
shown in Fig. 7 (c) because many data points would be flushed
to the same values when the error bound is relatively large.
ZFP suffers from the unexpected mosaic effect because it splits
the entire dataset into pretty small blocks (4×4×4) and the
decompressed data will be flushed to the same value in each
block when the compression ratio is very high.

Furthermore, we show the visualization result of the
CLOUDf field in Hurricane-ISABELA in Fig. 8. Similarly,
the decompressed data under our solution has a better visual
quality than does SZ or ZFP. Besides some unconspicuous
strips (artifacts) in the blue background, SZ also has some
distortion in the enlarged region. On the other hand, ZFP
has little distortion in the background, but exhibits block-wise
effects in the enlarged region. Our solution has little distortion



(a) original raw data (b) our sol. (PSNR=29,SSIM=0.6867)

(c) SZ (PSNR=24.5,SSIM=0.4218) (d) ZFP (PSNR=21.3,SSIM=0.3762)

Fig. 7. Data Distortion of NYX(dark matter:slice 100) with CR=58:1

(a) original raw data (b) our sol. (PSNR=51, SSIM=0.9966)

(c) SZ (PSNR=29.9, SSIM=0.6573) (d) ZFP (PSNR=22.5, SSIM=0.8893)

Fig. 8. Data Distortion of Hurricane(CLOUDf:slice 100) with CR=66:1
in both the background and local region, which leads to very
high overall visual quality (SSIM 0.9966).

In addition to error-bounded lossy compressors, we also
present the visual quality of the down-sampling+interpolation
method (widely used in the visualization community) in Fig.
9 for comparison. During the compression, one data point
would be sampled uniformly every 4 points for each field in
each dimension, leading to the compression ratios of 64:1.
During the decompression, tricubic interpolation [31] is used
to reconstruct the missing points. We can clearly observe
that our solution exhibits much better visual quality (see
Fig. 7 (b) vs. Fig. 9 (a); Fig. 8 (b) vs. Fig. 9 (b)), in that
the downsampling+interpolation method over-smoothened the

(a) dark matter density (CR=64:1,
PSNR=18.1,SSIM=0.4345)

(b) CLOUDf (CR=64:1,PSNR=17.7,
SSIM=0.7681)

Fig. 9. Data distortion of uniform down-sampling and tricubic interpolation
of NYX dataset with similar compression ratios

regions with diverse values (Fig. 9 (a)) and over-amplified
some boundary data points (Fig. 9 (b)).

Pearson correlation coefficient has been used to assess the
correlation between the original dataset and decompressed
dataset [18] by the community. We have validated that the
Pearson correlation coefficients under our solution are higher
than those of SZ and ZFP in a large majority of cases across all
the four applications. We here exemplify the correlation results
in Table III using only NYX data due to the space limitation.
We run three compressors and tune their compression ratios to
be 60:1∼70:1. The reason we cannot fix the compression ratio
across fields is that ZFP exhibits piece-wise compression ratios
with various error bounds. We did not use fixed-rate mode for
ZFP because it is always worse than its fixed-absolute-error
mode in our experiments with respect to the rate-distortion.

TABLE III
PEARSON CORRELATION COEFFICIENTS OF 6 FIELDS IN NYX

fields our solution SZ ZFP CR
dark matter density 0.959274616 0.939890773 0.763353467 58:1

baryon density 0.999537914 0.986076774 0.999529095 66:1
temperature 0.992798653 0.870542883 0.995984391 66:1
velocity x 0.999961851 0.996793357 0.999871972 70:1
velocity y 0.999944697 0.997787266 0.999912867 70:1
velocity z 0.999867946 0.992133964 0.999826937 63:1

We evaluate the overall data dumping/loading performance
on the NYX simulation using different lossy compressors
with the same level of data distortion. Specifically, we set
the PSNR for its fields to 60 except for dark matter density
(PSNR=30) and baryon density (PSNR=40), because such a
setting already reaches a high visual quality (as exemplified in
Fig. 1(b) and Fig. 7(b)). The evaluation is weak-scaling. Each
rank processes 3 GB data and the total data size increases
linearly with the number of cores. We assess the performance
by running different scales (2,048 cores ∼ 8,192 cores), and
each MPI rank needs to process a total of 3 GB data during
the execution. The total data size is up to 24 TB when using
8,192 cores, which may take over six hours to dump. We
present the breakdown of the data dumping performance (sum
of compression time and data writing time) and data loading
performance (sum of data reading time and decompression
time) in Fig. 10. Since the parallel performance is dominated
by the data reading/writing time (to be shown later) and
VAPOR, FPZIP and ISABELA have low compression ratios,
they exhibit much higher overall data dumping/loading time
than the other compressors. Accordingly, we do not present



their results in the figure for the purpose of clearly observing
the performance difference among the three best solutions (our
solution, SZ and ZFP).
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Fig. 10. Performance evaluation using NYX

It is observed that the overall data dumping time under
our solution takes only 29% and 67% of the time cost by
SZ and ZFP when adopting 8,192 cores, which correspond to
3.45X and 1.5X performance, respectively. The key reason is
that our compressor leads to significantly higher compression
ratios than the other two compressors when the PSNR is in
the range of [30,60], as shown in Fig. 6(c). When running
the simulation with 8,192 cores, our solution can also obtain
1.72X higher data loading performance (42% lower time cost)
than the second best solution (ZFP) does. It is a little higher in
comparison with data dumping performance (1.5X), because
of the higher decompression rate than the compression rate.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose an efficient error-bounded lossy
compressor, which adaptively selects the best-fit prediction
approach from between our improved Lorenzo predictor and
an optimized linear-regression based predictor, in terms of the
data features in different regions of the dataset. We evaluate
our solution using 100+ fields across 4 well-known HPC
simulations, by comparing to six existing state-of-the-art lossy
compressors (SZ, ZFP, TTHRESH, VAPOR, FPZIP and IS-
ABELA). Experiments demonstrate that our new compressor
can achieve up to 8x compression ratio as that of other
compressors with the same PSNR. By running the three best
lossy compressors (SZ, ZFP and our solution) using up to
8,192 cores, our solution has 1.5x dumping performance and
1.72x loading performance over the second best compressor
because of the significant reduction of data size. In the future,
we plan to further improve the compression quality in the cases
with medium compression ratios (bit-rate).
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