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Abstract
We address the issue of compiling ML pattern matching to efficient
decisions trees. Traditionally, compilation to decision trees is op-
timized by (1) implementing decision trees as dags with maximal
sharing; (2) guiding a simple compiler with heuristics. We first de-
sign new heuristics that are inspired by necessity, a notion from
lazy pattern matching that we rephrase in terms of decision tree se-
mantics. Thereby, we simplify previous semantical frameworks and
demonstrate a direct connection between necessity and decision
tree runtime efficiency. We complete our study by experiments,
showing that optimized compilation to decision trees is competi-
tive. We also suggest some heuristics precisely.

Categories and Subject Descriptors D 3. 3 [Programming Lan-
guages]: Language Constructs and Features—Patterns

General Terms Design, Performance, Sequentiality.

Keywords Match Compilers, Decision Trees, Heuristics.

1. Introduction
Pattern matching certainly is one of the key features of functional
languages. Pattern matching is a powerful high-level construct that
allows programming by directly following case analysis. Cases to
match are expressed as “algebraic” patterns, i.e. terms. Definitions
by pattern matching are roughly similar to rewriting rules: a series
of rules is defined; and execution is performed on subject values
by finding rules who left-hand side is matched by the value. With
respect to plain term rewriting, the semantics of ML simplifies
two issues. First, matches are always attempted at the root of the
subject value. And, second, there are no ambiguities as regards the
matched rule.

All ML compilers translate the high level pattern matching
definitions into low-level tests, organized in matching automata.
Matching automata fall in two categories: decision trees and back-
tracking automata. Compilation to backtracking automata has been
introduced by Augustsson (1985). The primary advantage of the
technique is a linear guarantee for code size. However, backtrack-
ing automata may backtrack and, at the occasion, they may scan
subterms more than once. As a result, backtracking automata are
potentially inefficient at runtime. The optimizing compiler of Le
Fessant and Maranget (2001) somehow alleviates this problem.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper we study compilation to decision tree, whose
primary advantage is never testing a given subterm of the subject
value more than once (and whose primary drawback is potential
code size explosion). Our aim is to refine naive compilation to
decision trees, and to compare the output of such an optimizing
compiler with optimized backtracking automata.

Compilation to decision can be very sensitive to the testing
order of subject value subterms. The situation can be explained
by the example of an human programmer attempting to translate a
ML program into a lower-level language without pattern matching.
Let f be the following function1 defined on triples of booleans :

l e t f x y z = match x,y,z with
| _,F,T -> 1
| F,T,_ -> 2
| _,_,F -> 3
| _,_,T -> 4

Where T and F stand for true and false respectively.
Apart from preserving ML semantics (e.g f F T F should eval-

uate to 2), the game has one rule: never test x, y or z more than
once. A natural idea is to test x first, i.e to write:
l e t f x y z = i f x then f_TXX y z f_FXX y z

Where functions f_TXX and f_FXX are still defined by pattern
matching:

l e t f_TXX y z =
match y,z with
| F,T -> 1
| _,F -> 3
| _,T -> 4

l e t f_FXX y z =
match y,z with
| F,T -> 1
| T,_ -> 2
| _,F -> 3
| _,T -> 4

Compilation goes on by considering y and z, resulting in the fol-
lowing low-level f1:
l e t f1 x y z =

i f x then
i f y then

i f z then 4 e l s e 3
e l s e

i f z then 1 e l s e 3
e l s e

i f y then 2
e l s e

i f z then 1 e l s e 3

We can do a little better, by elimination of the common subexpres-
sion if z then 1 else 3 as advised by many and described pre-
cisely by Pettersson (1992).

But we can do even better, by first testing y, and x first when y
is true, resulting in the second low-level f2:
l e t f2 x y z =

1 We use OCaml syntax.
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i f y then
i f x then

i f z then 4 e l s e 3
e l s e 2

e l s e
i f z then 1 e l s e 3

Choosing the right subterm to test first is the task of match-compiler
heuristics.

In this paper we tackle the issue of producing f2 and not f1
automatically. We do so first from the point of view of theory,
by defining necessity in terms of strict matching. Necessity has
been defined in the context of lazy pattern matching: a subterm (of
subject values) being needed, when its reduction is mandatory for
the lazy semantics of matching to yield a result. Instead, we define
necessity by universal quantification over decision trees. Necessity
provides inspiration and justification for a few new heuristics which
we study experimentally.

2. Simplified source language
Most ML values can be defined as ground terms over some signa-
tures. Signatures are introduced by (algebraic) data type definitions.
We leave data types definition implicit. In other words, we assume
that constructors are defined elsewhere, and consider the values:

v ::= Values
c(v1, . . . , va) a ≥ 0

An implicit typing discipline for values is assumed. In particular,
arities are obeyed, and, given a constructor c, one knows which
signature it belongs to. In examples, we systematically omit () after
constants constructors. i.e. we write Nil, true, 0, etc.

We also consider the usual occurrences in terms. Occurrences
are sequences of integers that describe the positions of sub-terms.
More precisely an occurrence is either empty, written Λ, or is an
integer k followed by an occurrence o, written o·k. Occurrences
are paths to subterms, in the following sense:

v/Λ = v
c(v1, . . . , va)/o·k = vk/o (1 ≤ k ≤ a)

Following common practice we omit the terminal Λ of non-empty
occurrences. We assume familiarity with the standard notions over
occurrences: prefix (i.e. o1 is a prefix of o2 when v/o2 is a sub-term
of v/o1), incompatibility (i.e. o1 and o2 are incompatible when o1

is not a prefix of o2 nor o2 is a prefix of o1). We consider the
leftmost-outermost ordering over occurrences that corresponds to
the standard lexicographic ordering over sequences of integers, and
also to the standard prefix depth-first ordering over subterms.

We use the following simplified definition of patterns:

p ::= Pattern
wildcard

c(p1, . . . , pa) constructor pattern (a ≥ 0)
(p1 | p2) or-pattern

The main simplification is replacing all variables with wildcards.
In the following we shall consider pattern vectors, ~p which are
sequences of patterns (p1 · · · pn), pattern matrices P , and clause
matrices P → A:

P → A =




p1
1 · · · p1

n → a1

p2
1 · · · p2

n → a2

...
pm
1 · · · pm

n → am




By convention, vectors are of size n, matrices are of size n × m
(n is the width and m is the height). Pattern (and clause) matrices
are natural and convenient in the context of pattern matching com-
pilation. Indeed they express the simultaneous matching of several

values. In clauses, actions aj are integers. We sometime write row j
of matrix P as ~p j .

Clause matrices are an abstraction of pattern matching expres-
sions as can be found in ML programs. Simplification consists in
replacing the expressions of ML by integers, which are sufficient
to our purpose. Thereby, we avoid the complexity of describing the
full semantics of ML, still preserving a decent level of precision.

2.1 Semantics of ML matching
Generally speaking, value v is an instance of pattern p, written
p ¹ v, when there exists a substitution σ, such that σ(p) = v.
In the case of linear patterns, the above mentioned instance relation
is equivalent to the following inductive definition:

¹ v
(p1 | p2) ¹ v iff p1 ¹ v or p2 ¹ v

c(p1, . . . , pa) ¹ c(v1, . . . , va) iff (p1 · · · pa) ¹ (v1 · · · va)
(p1 · · · pa) ¹ (v1 · · · va) iff, pour tout i, pi ¹ vi

One can note that the last line above defines the instance relation
for vectors.

We also give an explicit definition of the relation “value v is not
an instance of pattern p”, written p # v:

(p1 | p2) # v iff p1 # v and p2 # v
c(p1, . . . , pa) # c(v1, . . . , va) iff (p1 · · · pa) # (v1 · · · va)

(p1 · · · pa) # (v1 · · · va) iff there exists i, pi # vi

c(p1, . . . , pa) # c′(v1, . . . , va′) with c 6= c′

For the values and patterns that we have considered so far, relation #
is the negation of ¹. However this will not remain true, and we
rather adopt a non-ambiguous notation.

DEFINITION 1 (ML matching). Let P be a pattern matrix matrix
of width n and height m. Let ~v be a value vector of size n. Let j be
a clause index (1 ≤ j ≤ m).

Row j of P filters ~v in the ML sense, when the following two
propositions hold:

1. Vector ~v is an instance of ~p j . (written ~p j ¹ ~v ).
2. For all j′, 1 ≤ j′ < j, vector ~v is not an instance of ~p j′

(written ~p j′ # ~v ).

Furthermore, if we complete P into a clause matrix P → A,
and that row j of P filters ~v , we write:

Match[~v , P → A]
def
= aj

2.2 Matrix decomposition
The compilation process transforms clause matrices by the means
of two basic “decomposition” operations, defined in Figure 1.
The first operation is specialization by a constructor c, writ-
ten S(c, P → A), (left of Figure 1) and the second operation
computes a default matrix, written D(P → A) (right of Figure 1).
Both transformations apply to the rows of P → A, taking order
into account, and yield the rows of the new matrices.

Specialization by constructor c retains the rows whose first pat-
tern pj

1 admits all values c(v1, . . . , va) as instances. For instance,
given the following clause matrix:

P → A
def
=

(
[] → 1

[] → 2
:: :: → 3

)
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Pattern pj
1 Row(s) of S(c, P → A)

c(q1, . . . , qa) q1 · · · qa pj
2 · · · pj

n → aj

c′(q1, . . . , qa′) (c′ 6= c) No row

· · · pj
2 · · · pj

n → aj

(q1 | q2)

(
S(c, (q1 pj

2 · · · pj
n → aj))

S(c, (q2 pj
2 · · · pj

n → aj))

)

Row pj
1 Row(s) of D(P )

c(q1, . . . , qa) No row

pj
2 · · · pj

n → aj

(q1 | q2)

(
D(q1 pj

2 · · · pj
n → aj)

D(q2 pj
2 · · · pj

n → aj)

)

Figure 1. Matrix decomposition

we have:

S((::), P → A) =

(
[] → 2
:: → 3

)

S([], P → A) =

(
→ 1

[] → 2

)

It is to be noticed that row number 2 of P → A finds its way into
both specialized matrices. This is so because its first pattern is a
wildcard.

The default matrix retains the rows of P whose first pattern pj
1

admits all values c′(v1, . . . , va) as instances, where constructor c′

is not present in the first column of P . Let us define:

Q → B
def
=

(
[] → 1

[] → 2
→ 3

)

Then we have:

D(Q → B) =

(
[] → 2

→ 3

)

3. Target language
Decision trees are the following terms:

A ::= Decision trees
Leaf(k) success (k is an action, an integer)
Fail failure
Switcho(L) multi-way test (o is an occurence)
Swapi(A) stack swap (i is an integer)

Decision tree structure is clearly visible, with multi-way tests being
Switcho(L), and leaves being Leaf(k) and Fail. The additional
nodes Swapi(A) are here for controlling the evaluation of decision
trees. They are are not part of tree structure strictly speaking.

Switch clause lists (L above) are non-empty lists of pairs made
of a constructor and of a decision trees, written c:A. The list may
end with an optional default case:

L ::= c1:A1; · · · ; cz:Az; [*:A]?

Throughout the paper, we shall assume well formed switches in the
following sense:

1. Constructors ck belong to the same signature, and are pairwise
distinct.

2. The default clause is present, if and only if the set { c1, . . . , cz }
is not a complete signature.

For the sake of precise proofs, we give a semantics for evalu-
ating decision trees (Figure 2). Decisions trees are evaluated with
respect to a stack of values. The stack initially holds the subject

value. Evaluation is expressed by judgments ~v ` A ↪→ k read-
ing: evaluating tree A w.r.t. stack ~v yields the action k. Evaluation
is over at tree leaves (rule MATCH). The heart of the evaluation is
the evaluation of switch nodes, described by the two rules SWITCH-
CONSTR and SWITCHDEFAULT. Clause selection is performed by
the auxiliary rules FOUND, DEFAULT and CONT. These rules ex-
press nothing more than search in an association list. Since switches
are well-formed, the search always succeeds. It is to be noticed that
switches always examine the value on top of the stack, i.e. value v1.
It is also to be noticed that the occurrence o in Switcho(L) serves
no purpose during evaluation. The two rules SWITCHCONSTR
and SWITCHDEFAULT differ significantly as regards what is made
of the arguments of v1, they are either pushed or ignored, in all
cases the value examined is popped from the stack. Decision trees
feature a node that performs an operation of the stack: Swapi(A)
(rule SWAP). The trick allows the examination of any value vi from
the stack, by the combination Swapi(Switcho(L)).

Finally, since there is no rule to evaluate Fail nodes, match
failures and all other errors (such as induced by ill-formed stacks)
are not distinguished by the semantics. Namely, our simple setting
spares the burden of giving precise semantics to errors.

4. Compilation scheme
The compilation scheme distinguishes constructor patterns and
wildcards. To take or-patterns into account we define generalized
constructor patterns.

q ::= Generalize constructor pattern
c(p1, . . . , pa) (pk’s are any patterns)
(q | p) (p is any pattern)

In other words a generalized constructor pattern is either a construc-
tor pattern or a or-pattern whose leftmost alternative is a constructor
pattern.

In all the following developments, ( | p) will behave exactly
as does. Hence, to alleviate notations a bit, we assume that a
preprocessing phase normalizes patterns, so that any pattern is
either a generalized constructor pattern or a wildcard.

Compilation scheme CC is described as a non-deterministic
function that takes two arguments, a vector of occurrences ~o , and
a clause matrix. The occurrences of ~o define the fringe, that is, the
subterms of the subject value that need to be checked against the
patterns of P to decide matching. The fringe ~o is the compile-time
counterpart of the stack ~v used during evaluation. More precisely
we have vi = v/oi, where v is the subject value.

Compilation is defined by cases as follows.

1. If matrix P has no rows (i.e. n = m = 0) then matching always
fails, since there is no row to match.

CC(~∅, ∅ → A)
def
= Fail
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Rules for decision trees

(MATCH)
~v ` Leaf(k) ↪→ k

(SWAP)
(vi · · · v1 · · · vn) ` A ↪→ k

(v1 · · · vi · · · vn) ` Swapi(A) ↪→ k

(SWITCHCONSTR)
c ` L ↪→ c:A (w1 · · · wa v2 · · · vn) ` A ↪→ k

(c(a1, . . . , aw) v2 · · · vn) ` Switcho(L) ↪→ k

(SWITCHDEFAULT)
c ` L ↪→ *:A (v2 · · · vn) ` A ↪→ k

(c(w1, . . . , wa) v2 · · · vn) ` Switcho(L) ↪→ k

Auxiliary rules for switch clause selection

(FOUND)
c ` c:A;L ↪→ c:A

(DEFAULT)
c ` *:A ↪→ *:A

(CONT)
c 6= c′ c ` L ↪→ c/*:A

c ` c′:A;L ↪→ c/*:A

Figure 2. Semantics of decision trees

2. If the first row of P exists and is made of wildcards, then
matching always succeeds and yields the first action.

CC(~o ,




· · · → a1

p2
1 p2

2 · · · p2
n → a2

...
pm
1 pm

2 · · · pm
n → am


)

def
= Leaf(a1)

In particular, this case applies when there are rows (m > 0) and
no columns (n = 0).

3. In all other cases, matrix P have rows (m > 0) and columns
(n > 0) and there exists at least one column of which at least
one pattern is not a wildcard. We select one such column i.

(a) Let us first consider the case when i is 1. We define Σ1 the
set of the head constructors of the patterns in column 1.

Σ1 = ∪1≤j≤mH(pj
1)

H( )
def
= ∅ H(c(. . .))

def
={ c }

H((q1 | q2))
def
= H(q1) ∪H(q2)

Let c1, c2, . . . , cz be the elements of Σ1. By hypothesis, Σ1

is not empty (z ≥ 1). For each constructors ck from Σ1,
we perform the following inductive call that yields decision
tree Ak:

Ak
def
= CC((o1·1 · · · o1·a o2 · · · on),S(ck, P → A))

The notation a above stands for the arity of ck. Notice that
o1 disappears from the occurrence vector, being replaced
by the occurrences o1·1, . . . o1·a. The decision treesAk are
regrouped into a clause list L:

L def
= c1:A1 · · · cz:Az

If Σ1 is not a complete signature, an additional recursive
call is performed on the default matrix. The switch clause is
completed accordingly:

AD def
= CC((o2 · · · on),D(P → A))

L def
= c1:A1 · · · cz:Az*:AD

Finally compilation yields a switch that tests occurrence o1:

CC(~o , P → A)
def
= Switcho1(L)

(b) If i > 1 then we swap columns 1 and 1 both in ~o in P ,
yielding ~o ′ and Q′ respectively. We then compute A′ =
CC(~o ′, P ′ → A) as above, yielding decision tree A′, and
we define:

CC(~o , P → A)
def
= Swapi(A′)

Notice that the “function” CC is non-deterministic because of
the unspecified choice of i.

Compilation to decision tree is a simple algorithm, inductive step 3
above selects a column i (i.e. an occurrence oi from the subject
value), the head constructor of v/oi is examined and compilation
goes on, considering all possible constructors.

One crucial property of decision trees is that no subterm v/o
is examined more than once. The property is made trivial by our
decision tree semantics — evaluation of a switch pops the examined
value. It should also be observed that if the components oi of ~o are
pairwise incompatible, then the property still holds for recursive
calls.

We have already remarked that the occurrence o that decorates
a switch node Switcho(L) plays no part during evaluation. We can
now further remark that occurrences oi are not necessary to define
the compilation scheme CC. Hence, we often omit occurrences,
writing CC(P → A) and Switch(L). At the moment occurrences
are here to give extra intuition on decision trees: they tell which
subterm of the subject value is examined by a given Switcho(L)
node.

We define a “naive” compilation by the trivial choice function
that selects the first column of P . Formally, this requires extending
recursive step 3 a bit, by allowing set Σ1 to be empty. In that
case, only the default matrix is considered and Switcho1(*:AD)
reduces toAD . Alternatively, one may also consider a naive choice
function that selects the column index i such that oi is minimal
for the leftmost-outermost ordering on occurrences, amongst the
occurrences ok such that at least one pattern pj

k is not a wildcard.
It is not difficult to see, although tedious to prove, that both naive
compilers produce the same decision trees.

A real pattern matching compiler can be written by following
compilation scheme CC. There are differences though. First, the
real compiler targets a language more complex than simple deci-
sions trees. More precisely, the occurrence vector ~o is replaced by
a variable vector ~x and the target language has explicit local bind-
ings in place of a simple stack. Furthermore, real multi-way tests
are more flexible: they operate on any variable (not only on top of
stack). Second, decision trees produced by the real compiler are im-
plemented as dags with maximal sharing — see Pettersson (1992)
for a detailed account of this technique.
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In spite of these differences, our simplified decision trees offer a
good approximation of actual matching automata, especially if we
represent them as pictures, while omitting Swapi(A) nodes.

5. Correctness
The main interest for having defined decision tree semantics will
appear later, while considering semantical properties more subtle
than simple correctness. Nevertheless, we state a correctness result
for scheme CC, although the result is rather obvious, if not trivial.

The following lemma reveals the semantical intention of ma-
trix decomposition (cf. Section 2.2). For instance, specialization
S(c, P → A) expresses exactly what remains to be matched, once
it is known that v1 admits c as a head constructor.

LEMMA 1 (Key properties of matrix decompositions). Let P →
A be a clause matrix.

1. For any constructor c, the following equivalence holds:

Match[(c(w1, . . . , wa) v2 · · · vn), P → A] = k
m

Match[(w1 · · · wa v2 · · · vn),S(c, P → A)] = k

Where w1, . . . wa and v2, . . . , vn are any values of appropriate
types.

2. Let now be c a constructor which does not appear as a head
constructor of the patterns of the first column of P (i.e. c 6∈ Σ1).
For all values w1, . . . , wa, v2, . . . , vn of appropriate types, we
have the equivalence:

Match[(c(w1, . . . , wa) v2 · · · vn), P → A] = k
m

Match[(v2 · · · vn),D(P → A)] = k

Proof: Mechanical application of definitions. Q.E.D.

PROPOSITION 1. Let P → A be a clause matrix. Then we have:

1. If for some value vector ~v , we have Match[~v , P → A] = k,
then for all decision trees A = CC(P → A), we have ~v `
A ↪→ k.

2. If for some value vector ~v and decision tree A = CC(P → A)
we have ~v ` A ↪→ k, then we have Match[~v , P → A] = k.

Proof: Consequence of the previous lemma and by induction over
A construction. Q.E.D.

It is to be noticed that the non-determinism of CC has no semantical
impact: whatever column choices are, the produced decision trees
have the same semantics, i.e. they faithfully implement ML match-
ing.

6. Examples
Let us consider a very commonly found pattern matching expres-
sion, which any match compiler should probably compile opti-
mally.

EXAMPLE 1. The classical merge of two lists:

l e t rec merge = match xs,ys with
| [],_ -> ys
| _,[] -> xs
| x::rx,y::ry -> . . .

xs

1

2

3

[]

ys

(::) []

(::)

Figure 3. Compilation of list-merge, left-to-right

Focusing on pattern matching compilation, we only consider the
following “occurrence” vector2 and clause matrix.

~o = (xs ys) P → A =

(
[] → 1

[] → 2
:: :: → 3

)

The compiler now has to choose a column to perform matrix de-
composition. That is, the resulting decision tree will either exam-
ine xs first or ys first.

Let us first consider examining xs. We have Σ1 = { ::, [] },
a complete signature. We need not consider the default matrix, and
we get:

CC((xs ys), P → A) = Switchxs((::):A1; []:A2)

Where:
A1 = CC((xs·1 xs·2 ys),S((::), P → A))

A2 = CC(ys,S([], P → A))

The rest of compilation is deterministic. Let us consider for in-
stance A1. We have (section 2.2):

S((::), P → A) =

(
[] → 2
:: → 3

)

Only the third column has non-wildcards, hence we get (by compi-
lation step 3, then 2)

A1 = Swap3(Switchys((::):Leaf(3); []:Leaf(2)))

Computing A2 is performed by a direct application of step 2:

S([], P → A) =

(
→ 1

[] → 2

)
A2 = Leaf(1)

The resulting decision tree is best described as the picture of Fig-
ure 3. We now consider examining ys first. That is, we swap the
two columns of ~o and P , yielding the new arguments:

~o ′ = (ys xs) P ′ → A =

(
[] → 1

[] → 2
:: :: → 3

)

Specialized matrices are as follows:

S(::, P ′ → A) =

(
[] → 1
:: → 3

)

S([], P ′ → A) =

(
[] → 1

→ 2

)

Finally, compilation yields the decision tree of Figure 4. Notice that
the leaf “1” is pictured as shared, reflecting implementation with
maximal sharing. The pictures clearly suggest that the left-to-right
decision tree is better than the right-to-left one, in two important
aspects.

2 In examples, root occurrences are replaced by names, formally we can
define xs to be occurrence 1 and ys to be occurrence 2.
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ys 1

xs[]

xs

(::)

[]

2*

[]

3

(::)

Figure 4. Compilation of list-merge, right-to-left

xs

fail

ys

*

ys.2

(::)
*

2
[]

*

xs.2

(::) *

1
[]

Figure 5. Decision tree as a dag with maximal sharing

1. The first decision tree is smaller. A simple measure of decision
tree size is the number of internal nodes, that is, the number of
switches.

2. The first decision tree is more efficient: if xs is the empty
list [], then the tree of Figure 3 reaches action 1 by performing
one test only, while the tree of Figure 4 always performs two
tests.

In this simple case, all decision trees are available and can be com-
pared. A compiler cannot rely over such a post-mortem analysis,
which can be extremely expensive. Instead, a compilation heuris-
tic will select a column in P at every critical step 3, based upon
properties of matrix P . Such properties should be simple, relatively
cheap to compute and have a positive impact on the quality of the
produced decision tree.

Before we investigate heuristics any further, let us consider an
example that illustrates the implementation of decision trees by
dags with maximal sharing.

EXAMPLE 2. Consider the following matching expression where
[_] is OCaml pattern for “a list of one element” (i.e. _::[]).

match xs,ys with [_],_ -> 1 | _,[_] -> 2

Naive compilation of the example yields the decision tree that is
depicted as a dag with maximal sharing in Figure 5. The dag of Fig-
ure 5 has 2+2 = 2 switch nodes, where a plain tree implementation
has 2+2×2 = 6 switch nodes. Now consider a simple generaliza-
tion: a “diagonal” pattern matrix, of size n × n with pi

i =[_] and
pj

i = for i 6= j. It is not difficult to see that the dag representation
of the naive decision tree has 2n switch nodes, where the plain tree
representation has 2n−2 switch nodes. Or-pattern compilation also
benefits from maximal sharing. Let us consider for instance the n-
tuple pattern (1|2),. . .,(1|2), of which compilation produces a
tree with 2n−1 switches and a dag with 2n switches. One may also
remark that, for a clause matrix of one row, of which some patterns
are or-patterns, maximal sharing makes column choice indifferent.
While, without maximal sharing, or-patterns should better be ex-
panded last. As a conclusion, maximal sharing is a simple idea that
may yield important savings in code size.

Finally, here is a more a realistic example, where maximal
sharing does not help.

EXAMPLE 3. This example is extracted from a bytecode machine
for PCF (Plotkin 1977) (or mini-ML). Transitions of the machine

depend upon the values of three items: accumulator a, stack s and
code c. The heart of a ML function that implements the machine
consists in the following pattern matching expression:

l e t rec run a s e c = match a,s,c with
| _,_,Ldi i::c -> 1
| _,_,Push::c -> 2
| Int n2,Val (Int n1)::s,IOp op::c -> 3
| Int 0,_,Test (c2,_)::c -> 4
| Int _,_,Test (_,c3)::c -> 5
| _,_,Extend::c -> 6
| _,_,Search k::c -> 7
| _,_,Pushenv::c -> 8
| _,Env e::s,Popenv::c -> 9
| _,_,Mkclos cc::c -> 10
| _,_,Mkclosrec cc::c -> 11
| Clo (cc,ce),Val v::s,Apply::c -> 12
| a,(Code c::Env e::s),[] -> 13
| a,[],[] -> 14

Compiling the example naively yields the decision tree of Fig-
ure 6. There is no sharing, except at leaves. For the sake of clar-
ity, all leaves are omitted, except Leaf(4). There are 56 switches
in the decision tree of Figure 6. As to runtime efficiency, all paths
to Leaf(4), are emphasized, showing that it takes between 5 and 8
tests to reach action 4. Figure 7 gives another decision tree, which
we constructed by systematic exploration of column choices. The
size of the resulting tree (17 switches) is thus guaranteed to be min-
imal (as a tree not as a dag with maximal sharing). The tree of Fig-
ure 7 is also more efficient at runtime: it takes only 4 tests for it to
reach action 4.

It is in fact not difficult to produce the minimal tree by local
column choices only: the first initial choice should be of examin-
ing c, then and a second choice should be of examining c.1 when
c is a non-empty list. In both cases, the right choice can be made
by selecting a column i such that no pattern pj

i is a wildcard for
1 ≤ j ≤ m. In the rest of the paper we generalize the idea, and
then experimentally check its validity.

7. Necessity
Figures 3 and 4 give all the possible decision trees that result from
compiling example 1. Now, let us examine the paths from root to
leaves. In both tress, all paths to Leaf(2) and Leaf(3) traverse two
switch nodes. By contrast, the paths to Leaf(1) traverse one switch
node in the tree of Figure 3 and two switch nodes in the tree of
Figure 4. We can argue that the first tree is better because it has
shorter paths. Furthermore, we remark that xs is tested by all paths
to Leaf(1), while ys is not.

A path in a decision tree is an ordinary path from root to leaf.
When a path traverses a node Switcho(L) we say that the path tests
the occurrence o.

DEFINITION 2 (Necessity). Let P be a pattern matrix. Let ~o be
the conventional occurrence vector, s.t. oi = i, and let A be
the conventional action vector, s.t. aj = j. Column i is needed
for row j when all paths to leaf Leaf(j) in all decision trees
CC(~o , P → A) test occurrence i. If column i is needed for all
rows j, 1 ≤ j ≤ m, column i is needed (for matching by P ).

Necessity-based heuristics will favor needed columns over non-
needed ones, based upon the simple idea to perform immediately
work that need to be performed anyway. From this idea, we expect
decision trees with shorter paths. Additionally, we may expect that
decision trees with shorter paths also are smaller. In the list-merge
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example the following matrix summarizes necessity information:

N =

( •
• •
• •

)

Where nj
i = •, if and only if column i is needed for row j. It is

intuitively clear (and we shall prove it), that if pj
i is a constructor

pattern, then nj
i = •. However, this is not a necessary condition

since we also have p2
1 = and n2

1 = •. It is worth observing that,
here, column 1 is needed, and that by selecting it we produce a
decision tree with optimal path lengths (and optimal size).

More generally we can make the following two remarks:

1. If we discover a needed column at every critical compilation
step 3 and follow it, then compilation will produce a decision
tree with optimal path length.

2. Let a column made of constructor patterns only be a strongly
needed column. If at every critical compilation step 3, we dis-
cover a strongly needed column and follow it, then the resulting
decision tree will possess no more switch nodes than the num-
ber of constructors in the original patterns.

Remark (1) is a corollary of Definition 2, while remark (2) fol-
lows from the definition of matrix decomposition (Section 2.2). Of
course, the remarks are not sufficient when several or no needed
columns exist. In any case, necessity looks an interesting basis for
designing heuristics.

The rest of this section explains how to compute necessity from
matrix P .

7.1 Computing necessity
The first step in our program is to relate the absence of a switch
node on a given occurrence to decision tree evaluation. To that aim,
we slightly extend our semantics of pattern matching. We define
a supplementary value  (reading “crash”), and consider extended
value vectors ~v of which exactly one component is  . That is, there
exists an index ω, with vω =  and vi 6=  for i 6= ω.

The semantics of decision tree evaluation (Fig. 2) is left un-
changed. As a result, if top of stack v1 is  then the evaluation of
Switcho1(L) is blocked. We rather express the inverse situation:

LEMMA 2. Let P → A be a clause matrix with at least one column
(n > 0, m > 0). Let ~o be a vector of pairwise incompatible
occurrences. Let finally A = CC(~o , P → A) be a decision tree.
Then we have the equivalence: there exist an extended vector ~v
with vω =  and an action k such that ~v ` A ↪→ k, if and only
if A possesses a path to Leaf(k) that does not test oω

Proof: By induction on the construction of A.

1. The case m = n = 0 is excluded by hypothesis.
2. If the first row of P consists of wildcards, then we have A =

Leaf(a1). Then observe, on the one hand, that for any (ex-
tended) value vector ~v , we have ~v ` A ↪→ a1 (rule MATCH,
Fig 2); while, on the other hand, the only path to Leaf(a1) is
empty and thus does not traverse any Switchoω (· · ·) node.

3. A is produced by induction. There are two subcases.
(a) If A is Switcho1(L). We first prove implication. That is,

we assume the existence of an extended vector ~v , with
vω =  and ~v ` A ↪→ k. Then, by the semantics of
decision trees (rule SWITCHCONSTR or SWITCHDEFAULT
from Fig. 2), we have ω 6= 1 and there exists a decision tree
A′ from the clause list L and a value vector ~v ′, such that
~v ′ ` A′ ↪→ k. By construction of A, the decision tree
A′ is CC(~o ′, Q → B), where Q → B is a decomposition
(defined in Section 2.2) of P → A. From ω 6= 1, vector ~v ′

is an extended vector, that is there exists an unique index ω′,
with v′ω′ =  — more precisely, either ω′ = a+ω−1 when
Q → B is the specialization S(c, P → A), or ω′ = ω − 1
when Q → B is the default matrix. In both cases, again
by construction of A, we further have o′ω′ = oω and the
components of ~o ′ are pairwise incompatible occurrences
as the components of ~o are. By applying induction to A′,
there exists a path in A′ that reaches Leaf(k) and that does
not test o′ω′ = oω . We can conclude, since o1 and oω are
incompatible and thus are a fortiori different.
Conversely, let us assume the existence of a path in A that
reaches Leaf(k) and that does not test oω . Then, we must
have ω 6= 1, since A starts by testing o1. The path goes on
in some of A child, written A′ = CC(~o ′, Q → B), as we
already have defined above — in particular there exists ω′,
with o′ω′ = oω . By induction there exists ~v ′ (whose size
n′ is the width of Q), with v′ω′ =  and ~v ′ ` A′ ↪→ k.
We then construct ~v with vω =  and ~v ` A ↪→ k
and thus conclude. Exact ~v depends on the nature of Q →
B. If Q → B is the specialization S(c, P → A), we
define ~v as (c(v′1, . . . , v

′
a) v′a+1 · · · v′n′). Here we have

ω = ω′ − a + 1, noticing that we have ω′ > a (from
o′ω′ = oω). Otherwise, Q → B is the default matrix and
there exists a constructor c that does not appear in L. Then,
we construct ~v = (c(w1, . . . , wa) v′1 · · · v′n′), where
w1, . . . , wa are any values of the appropriate types. Here
we have ω = ω′ + 1.

(b) IfA is Swapi(A′) whereA′ is Switchoi(L) = CC(~o ′, Q →
A), the arguments ~o ′ and Q being ~o and P with columns 1
and i swapped. We can conclude by induction, having
first observed that assuming either the existence of ~v with
vω =  and ~v ` A ↪→ k, or the existence of a path that
does not test oω both imply i 6= ω.

Q.E.D.

The second step of our technique to compute necessity is to re-
late decision tree evaluation and matching for extended values. By
contrast with decision tree semantics, which we left unchanged, we
slightly alter matching semantics. The instance relation ¹ is ex-
tended by adding the following two rules to the rules of section 2.1:

¹  
(p1 | p2) ¹  iff p1 ¹  

Clearly, we have p ¹  , if and only if p is not a generalized con-
structor pattern, that is, given our convention of simplifying ( | p)
as in a preprocessing phase, if and only if p is a wildcard. The
two rules above are the only extensions performed, in particular
p #  never holds, whatever pattern p is. It is then routine to extend
definition 1 of ML matching and also lemma 1 (key properties of
decompositions).

We now alter the correctness statement of compilation (Propo-
sition 1) so as to handle extended values.

LEMMA 3. Let P → A be a clause matrix. The following two
implication hold:

1. If there exists an extended value vector ~v such that Match[~v , P →
A] = k, then there exists a decision tree A = CC(P → A)
such that ~v ` A ↪→ k.

2. If for some extended value vector ~v and decision tree A =
CC(P → A) we have ~v ` A ↪→ k, then we also have
Match[~v , P → A] = k.

Proof: Proposition 1 above differs significantly from the corre-
sponding Proposition 1-1, since existential quantification replaces
universal quantification. In other words, if an extended value
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matches some row in P , then all decision trees may not be correct,
but there is at least one so. We prove proposition 1 by induction
over the structure of P .

1. The case m = n = 0 is impossible, since then P has no row at
all, and hence no row that can filter values.

2. If the first row of P consists in wildcards. Then A must
be Leaf(a1) and is appropriate.

3. Otherwise, by hypothesis there exists an extended vector ~v
(vω =  ) that matches some row of P in the ML sense. We
first show the existence of a column index i, such that i 6= ω and
that one of the patterns in column i is a generalized constructor
pattern. There are two cases to consider.
(a) If ~v matches the first row of P , then, ~p 1 ¹ ~v . Because, we

are in the “otherwise” case, there exists a column index i
such p1

i is not a wildcard. By the extended definition of ¹
we have i 6= ω.

(b) If ~v matches some row of P other than the first row, then,
by definition of ML matching, we have ~p 1 # ~v . Thus, by
definition of # on vectors, there exists a column index i, such
that p1

i # vi. Since p #  never holds, we have vi 6=  (and
thus i 6= ω). Furthermore, p1

i is a generalized constructor
pattern, since , for any value w, (q1 | q2) # w implies q1 # v;
and that # w never holds.

Now that we have found i such that p1
i is not a wildcard, com-

pilation can go on by decomposition along column i. Addition-
ally, we know (from vi 6=  ) that there exists a constructor c,
with v1 = c(w1, . . . , wa).
(a) If i equals 1. Then, there are then two subcases, depending

on whether c is the head constructor of one of the patterns in
the first column of P or not (i.e. c ∈ Σ1 or not). Let us first
assume c ∈ Σ1 Then, by lemma 1-1, we construct ~v ′ =
(w1 · · · wa v2 · · · vn), such that Match[~v ′,S(c, P →
A)] = k. Notice that ~v ′ is an extended value vector. Hence,
by induction, there exists a decision tree A′ with ~v ′ `
A′ ↪→ k. It remains to compile the other decompositions
of P in any manner, to regroup them in a clause list L and to
define A = Switch(L). The case where c 6∈ Σ1 is similar,
considering ~v ′ = (v2 · · · vn) and the default matrix.

(b) If i differs from 1. We first swap columns 1 and i in both ~v
and P . Then, we can reason as above.

We omit the proof of proposition 2., which is by induction over the
structure of P , using lemma 1 in the other direction. Q.E.D.

Finally, one easily relates matching of extended values and
matching of ordinary values.

LEMMA 4. Let P be a pattern matrix with rows and columns
(m > 0, n > 0). Let ~v be an extended vector (vω =  ), then
row j of P filters ~v , if and only if:

1. Pattern pj
ω is not a generalized constructor pattern.

2. And row j of matrix P/ω filters (v1 · · · vω−1 vω+1 · · · vn),
where P/ω is P with column ω deleted:

P/ω =




p1
1 · · ·p1

ω−1 p1
ω+1· · ·p1

n

p2
1 · · ·p2

ω−1 p2
ω+1· · ·p2

n

...
pm
1 · · ·pm

ω−1 pm
ω+1· · ·pm

n




Proof: Corollary of Definition 1 (ML matching). Q.E.D.

Finally, we reduce necessity to usefulness. By “usefulness” we
here mean the usual usefulness diagnosed by ML compilers.

PROPOSITION 2. Let P be a pattern matrix. Let i be a column in-
dex and j be a row index. Then, column i is needed for row j, if

and only if one of the following two (mutually exclusive) proposi-
tions hold:

1. Pattern pj
i is a generalized constructor pattern.

2. Or, pattern pj
i is a wildcard, and row j of matrix P/i is useless3.

Proof: Corollary of the previous three lemmas. Q.E.D.

Consider again the example of list merge:

P → A =

(
[] → 1

[] → 2
:: :: → 3

)

From the decision trees of Figures 3 and 4 we found that column 1
is needed for row 2. The same result follows by examination of the
matrix P/1:

P/1 =

(
[]
::

)

Obviously, the second row of P/1 is useless, because of the ini-
tial wildcard. One could also have considered matrix P directly,
remarking that no extended value vector ~v = ( v2) matches the
second row of P , because ([] ) # ( v2) implies [] #  , which
is impossible.

Here is a slightly more subtle example.

EXAMPLE 4. Let P be the following occurrence vector and pattern
matrix.

~o = (x y) P =

(
true 1
false 2

)
N =

( • •
• •

•

)

N is the necessity matrix.

The first two rows of N are easy, because all the corresponding
patterns in P are constructor patterns. To compute the third row
of N it suffices to consider the following matrices:

P/1 =

(
1
2

)
P/2 =

(
true
false

)

The third row of P/1 is useful, since it filters value 3 for instance;
while the third row of P/2 is useless, since { true, false } is a
complete signature. Hence the necessity results for the third row:
column x is not needed, while column y is. These results are
confirmed by examining the paths to Leaf(3) in the two decision
trees of Figure 8. One may argue that the second tree is better, since
action 3 is reached without testing x when y differs from 1 and 2.

As regards the computation of usefulness. It should probably
first be said that the usefulness problem is NP-complete (Sekar
et al. 1995). Nevertheless, our algorithm (Maranget 2007) for com-
puting usefulness has been present in the OCaml compiler for
years, and has proved efficient enough for input met in practice.
The algorithm is inspired by compilation to decision trees, but is
much more efficient, in particular as regards space consumption
and in situations where a default matrix is present.

8. Heuristics
8.1 Heuristic definitions
We first recall the heuristics selected by Scott and Ramsey (2000),
which we adapt to our setting by considering generalized con-
structor patterns in place of constructor patterns. We identify each
heuristics by a single letter (f, d, etc.) Each heuristic can be defined
as a score function, (also written f, d, etc.) from column indices

3 “redundant”, in the terminology of Milner et al. (1990).
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to integers, with the heuristics selecting columns that maximize the
score function. As regards the inventors and justifications of heuris-
tics we refer to Scott and Ramsey (2000), except for the first row
heuristic below, which we understand differently.

First row f Heuristic f favors columns i such that pattern p1
i is a

generalized constructor pattern. In other words the score func-
tion is f(i) = 1 in the first case, and f(i) = 0 in the second
case.
Heuristic f is based upon the idea that the first pattern row
has much impact on the final decision tree. More specifically,
if p1

i is a wildcard and that column i is selected for compi-
lation, then there will be an action a1 in all decompositions,
and this clause will always be useful, since it is in first posi-
tion. As a result, every child of the emitted switch includes at
least one Leaf(a1) leaf and a path to it. Selecting i such that
p1

i is a constructor pattern results in the more favorable situa-
tion where only one child includes Leaf(a1) leaves. In Baudinet
and MacQueen (1985) the first row heuristic is described in a
more complex way and called the “relevance” heuristic. From
close reading of their descriptions, we believe our simpler pre-
sentation to yield the same choices of columns, except, perhaps,
for the marginal case of signatures of size 1 (e.g. pairs).

Small default d Given a column index i let v(i) be the number of
wildcard patterns in column i. The score function d is defined
as −v(i).

Small branching factor b Let Σi be the set of the head construc-
tors of the patterns in column i. The score b(i) is the opposite of
the cardinal of Σi, minus one if Σi is not a complete signature.
In other words, b(i) is the opposite of the number of children
of the Switchoi(L) node that is emitted by the compiler when
it selects column i.

Arity a The score a(i) is the opposite of the sum of the arities of
the constructors of the Σi set.

Leaf edge ` The score `(i) is the number of the children of the
emitted Switchoi(L) node that are Leaf(ak) leaves. This infor-
mation can be computed naively, by first swapping columns 1
and i, then decomposing P (i.e. computing all specialized ma-

trices, and the default matrix if applicable), and finally counting
the decomposed matrices whose first rows are made of wild-
cards.

Rows r (Fewer child rule) The score function r(i) is the opposite
of the total number of rows in decomposed matrices. This infor-
mation can be computed naively, by first swapping columns 1
and i, then decomposing P , and finally counting the numbers
of rows of the resulting matrices.

We introduce three novel heuristics based upon necessity.

Needed columns n The score n(i) is the number of rows j such
that column i is needed for row j. The intention is quite clear:
locally maximize the number of tests that are really useful.

Needed prefix p The score p(i) is the larger row index j such that
column i is needed for all the rows j′, 1 ≤ j′ ≤ j. As the
previous one, this heuristics tends to favor needed columns.
However, it further considers that earlier clauses (i.e. the ones
with higher priorities) have more impact on decision tree size
and path lengths than later ones.

Constructor prefix q This heuristics derives from the previous
one, approximating “column i is needed for row j” by “pj

i is
a generalized constructor pattern”. There are two ideas here:
(1) avoid all usefulness computations; and (2) if column i is
selected, any row j such that pj

i is a wildcard is copied. Then,
the others patterns in row j may be compiled more than once,
regardless of whether column i is needed or not. Heuristic q
can also be seen as a generalization of heuristic f.
Observe that heuristic d is a similar approximation of heuris-
tic n.

It should be noticed that if matrix P has needed columns, then
heuristics n and p will select those and only those. Similarly, if
matrix P has strongly needed columns, then heuristics d and q
will select those and only those. Heuristics n and p will also favor
strongly needed columns but they will not distinguish them from
other needed columns.

8.2 Combining heuristics
By design, heuristics always select at least one column. However,
a given heuristic may select several columns, leaving ties unbro-
ken. Ties are broken first by composing heuristics. For instance,
Baudinet and MacQueen (1985) seem4 to recommend the succes-
sive application of f, b and a, which we write fba. As an example
consider a variation on matrix of example 4.

P =

(
true 1
false 2 []

::

)

Heuristic f selects columns 1 and 2, amongst those heuristic b
selects column 1. Column selection being over, there is no need
to apply heuristic a. The combination of heuristics is a simple
means to construct sophisticated heuristics from simple ones. It
should be noticed that combination order does matter, since an early
heuristic may eliminate columns that a following heuristics would
champion.

Even when combined, heuristics may not succeed in selecting
an unique column — consider a matrix with identical columns. We
thus define the following three, last-resort, “heuristics”.

Pseudo-heuristics N, L and R These select one column i amongst
many, by selecting the minimal oi in vector ~o according to
various total orderings on occurrences. Heuristic N uses the
leftmost ordering (this is naive compilation). Heuristics L and R

4 The description of Baudinet and MacQueen (1985) is a bit ambiguous.
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first select shorter occurrences, and then break ties left-to-right
or right-to-left, respectively. In other words, L and R are two
variations on breath-first ordering of the subterms of the subject
value.

Varying the last-resort heuristic permits a more accurate evaluation
of heuristics.

9. Performance
9.1 Methodology
We have written a prototype compiler that accepts pattern matrices
and compiles them with various match compilers The implemented
match compiler include compilation to decision tree, both with and
without maximal sharing and the optimizing compiler of Le Fes-
sant and Maranget (2001), which we shall adopt as a reference. The
prototype compiler targets matching automata, expressed as a sim-
plified version the first intermediate language of the OCaml com-
piler (Leroy et al. 2007). This target language features local bind-
ings, indexed memory reads, switches, and local functions. Local
functions implement maximal sharing or backtracking, depending
upon the compilation algorithm enabled. We used the prototype to
produce all the pictures in this paper, switch nodes being pictured
as internal nodes, variables binding memory read expressions be-
ing used to decorate switch nodes, local function definitions being
rendered as nodes with several ingoing edges.

The performance of matching automata is estimated as follows:

1. Code size is estimated as the total number of switches.

2. Runtime performance is estimated as average path length. Ide-
ally, average path length should be computed with respect to
some distribution of subject values that is independent of the
automaton considered. In practice, we compute average path
length by assuming that: (1) all actions are equally likely;
and (2), all constructors that can be found by a switch are
equally likely5.

To feed the prototype, we have extracted pattern matching ex-
pressions from a variety of OCaml programs, including the OCaml
compiler itself, the Coq and Why proof assistants (Coq; Filliâtre
2008), and the Cil infrastructure for C program analysis (Neculla
et al. 2007). The selected matching expressions were identified by
a modified OCaml compiler that performs match compilation by
several algorithm and signals differences in number of switch gen-
erated — more specifically we used OCaml match compiler and
naive CC without sharing.

We finally have selected 54 pattern matching expressions, at-
tempting to vary size and programming style (in particular, 35 ex-
pressions do not include or-patterns). The test of an heuristic con-
sists in compiling the 54 expressions twice, ties left by the heuristic
being broken by the pseudo-heuristics L and R. Each of these 108
compilations produces two data: automata size and average path
length. We then compute the geometric means of data, considering
ratios with respect to OCaml match compiler (base 100.0) The fi-
nal figures for testing heuristics individually are given by Table 1
that shows results rounded to the nearest integer.

Results first demonstrate that maximal sharing is mandatory for
decision tree to compete with (optimized) backtracking automata
as regards code size. Even more, with heuristics q,p and f, decision
trees win over (optimized) backtracking automata. As regards path
length, decision trees always win, with necessity heuristics p q
and n, yielding the best performance, heuristic f being quite close.
Overall, heuristic q and p are the winners, but no clear winners.

5 Except for integers, where the default clause of a switch is considered as
likely as other clauses.

For all cost measures, the pseudo heuristics that base their
choice on fringe occurrences only (i.e. N, L and R) behave poorly.
Thus, to improve performance, real heuristics that analyze matrix P
are called for. As a side note, the results also show a small bias of
our test set against left to right ordering.

9.2 Estimation of combined heuristics
We test all combinations of heuristics up to three heuristics, dis-
carding a few combinations that obviously can be. For instance, qf
and fq are equivalent to q. Overall, we test 507 combined heuris-
tics. We attempt to summarize the results by the histograms of Ta-
ble 2. The histograms show the distribution of results. For instance
there are 12 combined heuristics that produce trees with sizes in the
range 86–88. These are qb[a`], fb[ad`r], fr, and fr[abd`n]. Classi-
fying heuristics by performance ranges allows result presentation.
Moreover, one has to consider that data depend on the test set and
are only estimations of actual costs. Thus, it looks reasonable to
replace exact figures by ranges.

The results show that combining heuristics yields significant
improvements in size and little in path length. Good heuristics
are the ones whose performance are in the best ranges for both
size and path length. Unfortunately, no heuristic belongs to both
ranges 86–88 for size and 84–88 for path length. We thus extend
the acceptable size range to 86–90 and compute the intersection
with the path length range 84–86. The process yields the unique
champion heuristic pba. Intersecting size ranges 86–90 and path
length range 84–88, yields 48 heuristics: fd[br], fnr, fr, fr[abd`n],
pb, pb[ad`nqr], pd[br],pnr, pq[br], pr, pr[abd`nq], qb, qb[ad`npr],
qdr, qn[br], qp[br], qr, and qr[abd`np]. From those results, we
draw a few conclusions:

1. Good primary heuristics are f, p and q. This demonstrates the
importance of considering clause order in heuristics.
Our personal choice is q. We tend to reject f because it does
not detect strongly needed columns6. Moreover, q is easier to
compute than p and is the best heuristic when used alone.

2. If we limit choice to combinations of at most two heuristics, r is
a good complement to all primary heuristics. Heuristic b looks
sufficient to break the ties left by p and q.

3. If we limit choice to heuristics that are simple to compute, that
is if we eliminate n, p, r and `, then good choices are fdb, qb
and qb[ad]. Amongst those, qba is the only one with size in the
best range.

As a personal conclusion, our favorite heuristic is the cham-
pion pba. If one wishes to avoid usefulness computations, we view
qba as a good choice. To be fair, heuristics that are or have been
in use in the SML/NJ compiler are not far away. From our un-
derstanding of its source code, the current version of the SML/NJ
compiler uses heuristic fdb, earlier versions used fba. Heuristic fdb
is part our second choice, while fba misses it by little, with size in
the range 86–88 and path length in the range 88–90.

9.3 Relation with actual performance
We have integrated compilation to decision trees into the OCaml
compiler.

Measuring the impact of varying pattern match compilation
over actual code size and running time is a frustrating task. Con-
sider, for instance, compiling the Coq system twice, with the match
compiler of Le Fessant and Maranget (2001) and with CC guided
by heuristic qba. Then, the size of binaries are virtually the same.
Although some differences in the size of individual object files ex-
ist, those are not striking. More precisely out of 306 object file,

6 The combination fd detects strongly needed columns.
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q p f r n b a ` R d N L

Size (maximal sharing) 93 95 98 100 101 102 105 105 108 109 115 115
Size (no sharing) 122 124 129 122 126 151 161 134 135 138 150 168
Path length 86 86 87 91 86 97 94 88 89 89 91 94

Table 1. Testing individual heuristics

Size (with maximal sharing)
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Table 2. Performance of combined heuristics, distribution by steps of 2.0.

First PCF term
L qba

ocamlc/ia32 149 91
ia32 114 93
ocamlc/amd64 156 95
amd64 110 89

Second PCF term
L qba

163 95
114 93
151 96
119 96

Table 3. Running times for the PCF interpreter (user time)

243 have identical sizes, and only 5 files have sizes that differ by
5% or more. This means that we lack material to analyze the impact
of low level issues, such as how switches are compiled to machine
code. Differences in running times are even more difficult to ob-
serve.

However, we cannot exclude the possibility of programs to
which pattern matching matters. In fact we know of one such pro-
gram: an interpreter that runs the bytecode machine of example 3.
As with other programs, differences in code size are dwarfed by
non-pattern matching code. Differences in speed are observable by
interpreting small PCF terms that are easy to parse and compile, but
that run for long. We test two such terms, resulting in the ratios of
Table 3. Experiments are performed on both architectures, the PCF
intereter being compiled to bytecode (by ocamlc) and to native
code. For reference, average path length are 4.02 for the OCaml
match compiler, 6.33 for L, and 3.14 for qba (ratios: 157 for L and
78 for qba). We see that differences in speed agree with differences
in average path lengths. Moreover, running times are indeed bad if
heuristics are neglected, especially for compilation to bytecode.

10. Related work
Needed columns exactly are the directions of Laville (1988); Puel
and Suárez (1989); Maranget (1992). All these authors build over
lazy pattern semantics. They mostly focus on the correct imple-
mentation or lazy pattern matching. By building over strict pattern
matching, our present work leads more directly to heuristics design.
Strongly needed columns are the indices of Sekar et al. (1995), who

prove that selecting strongly needed columns mimimizes decision
tree breath (number of leaves) and path lengths. One may notice
that the minimization result on path lengths smoothly extends to
needed columns (a direct consequence of our definition).

Scott and Ramsey (2000) study heuristics experimentally. We
improve on this work by testing more heuristics (i.e. the necessity-
based heuristics) and also by considering or-patterns and maximal
sharing. We also differ by an important detail in methodology: Scott
and Ramsey (2000) count switch nodes and measure path lengths,
as we do, but they do so for complete ML programs by instru-
menting the SML/NJ compiler. As a result, their experiments are
more expensive than ours, and they could not conduct complete ex-
periments on combination of three heuristics. Futhermore, by our
prototype approach, we restrict the test set to matchings for which
heuristics make a difference. As a result, comparison of heuristics is
easier to perform and we are able to recommend some heuristics. Of
course, as regards the significance of our recommendations for ac-
tual compilation, we are in the same situation as Scott and Ramsey
(2000): most often, heuristics do not make such a difference. How-
ever, according to some of the tests of Scott and Ramsey (2000)
(machine instruction recognizers), heuristics do matter. It would be
particularily interesting to test the effect of necessity heuristics and
of maximal sharing on those matchings, which, unfortunately, are
not available.

11. Conclusion
Compilation to decision trees with maximal sharing, when guided
by a good column heuritistic, matches the performance of an op-
timizing compiler to backtracking automata, and can do better on
some examples. Moreover, an optimizing compiler to decision trees
is easier to implement than our own optimizing compiler for back-
tracking automata (Le Fessant and Maranget 2001). Namely, max-
imal sharing and simple heuristics (such as qba) are orthogonal ex-
tensions of the basic compilation scheme CC, so that the resulting
optimizing match compiler remains simple. In particular, maximal
sharing can be implemented by the well established technique of
hash-consing – see e.g. Filliâtre and Conchon (2006).
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Designing optimizimg match compilers that preserve more con-
strained semantics is an intersting direction for future research. In
particular, a match compiler for Haskell must preserve the termina-
tion behavior of Augustsson (1985). Another example is the com-
pilation of the active patterns of (Syme et al. 2006). To that aim,
the match compiler of Sestoft (1996) may be a valid starting point,
because its definition follows ML matching semantics very closely.
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