
Programming Glenn Manacher
Techniques Editor

Efficient
String Matching:
An Aid to
Bibliographic Search
Alfred V. Aho and Margaret J. Corasick
Bell Laboratories

This paper describes a simple, efficient algorithm to
locate all occurrences of any of a finite number of key-
words in a string of text. The algorithm consists of con-
structing a finite state pattern matching machine from the
keywords and then using the pattern matching machine
to process the text string in a single pass. Construction
of the pattern matching machine takes time proportional
to the sum of the lengths of the keywords. The number
of state transitions made by the pattern matching
machine in processing the text string is independent of
the number of keywords. The algorithm has been used to
improve the speed of a library bibliographic search pro-
gram by a factor of 5 to 10.

Keywords and Phrases: keywords and phrases, string
pattern matching, bibliographic search, information re-
trieval, text-editing, finite state machines, computational
complexity.

CR Categories: 3.74, 3.71, 5.22, 5.25

Copyright © 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted, provided that ACM's copyright notice is
given and that reference is made to this publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

Authors' present addresses: A. V. Aho, Bell Laboratories,
Murray Hill, N.J. 07974. M. J. Corasick, The MITRE Corporation,
Bedford, Mass. 01730.

333

1. Introduction

In many information retrieval and text-editing appli-
cations it is necessary to be able to locate quickly some or
all occurrences of user-specified patterns of words and
phrases in text. This paper describes a simple, efficient
algorithm to locate all occurrences of any of a finite
number of keywords and phrases in an arbitrary text
string.

The approach should be familiar to those acquainted
with finite automata. The algorithm consists of two parts.
In the first part we construct from the set of keywords a
finite state pattern matching machine; in the second part
we apply the text string as input to the pattern matching
machine. The machine signals whenever it has found a
match for a keyword.

Using finite state machines in pattern matching appli-
cations is not new [4, 8, 17], but their use seems to be
frequently shunned by programmers. Part of the reason
for this reluctance on the part of programmers may be
due to the complexity of programming the conventional
algorithms for constructing finite automata from regular
expressions [3, 10, 15], particularly if state minimization
techniques are needed [2, 14]. This paper shows that an
efficient finite state pattern matching machine can be
constructed quickly and simply from a restricted class of
regular expressions, namely those consisting of finite sets
of keywords. Our approach combines the ideas in the
Knuth-Morris-Prat t algorithm [13] with those of finite
state machines.

Perhaps the most interesting aspect of this paper is
the amount of improvement the finite state algorithm
gives over more conventional approaches. We used the
finite state pattern matching algorithm in a library biblio-
graphic search program. The purpose of the program is
to allow a bibliographer to find in a citation index all titles
satisfying some Boolean function of keywords and
phrases. The search program was first implemented with
a straightforward string matching algorithm. Replacing
this algorithm with the finite state approach resulted in a
program whose running time was a fifth to a tenth of the
original program on typical inputs.

2. A Pattern Matching Machine

This section describes a finite state string pattern
matching machine that locates keywords in a text string.
The next section describes the algorithms to construct
such a machine from a given finite set of keywords.

In this paper a string is simply a finite sequence of
symbols. Let K = {Yl,Y2 Yk} be a finite set of
strings which we shall call keywords and let x be an arbi-
trary string which we shall call the text string. Our prob-
lem is to locate and identify all substrings of x which are
keywords in K. Substrings may overlap with one another.

A pattern matching machine for K is a program which
takes as input the text string x and produces as output
the locations in x at which keywords of K appear as sub-
strings. The pattern matching machine consists of a set
of states. Each state is represented by a number. The
machine processes the text string x by successively read-
ing the symbols in x, making state transitions and occa-

Communications June 1975
of Volume 18
the ACM Number 6

sionally emitting output. The behavior of the pattern
matching machine is dictated by three functions: a goto
function g, a failure function f, and an output function
output.

Figure 1 shows the functions used by a pattern
matching machine for the set of keywords {he, she, his,
hers}.

Fig. 1. Pattern matching machine.

(a) Goto function.

i

f (i)

1 2 3 4 5 6 7 8 9
0 0 0 1 2 0 3 0 3

(b) FailureNnction.

i ou tpu t (i)

2 {he}
5 {she, he}
7 {his}
9 {hers}

(c) Output function.

One state (usually 0) is designated as a s tar t state. In
Figure 1 the states are 0, 1 ,9 . The goto function g
maps a pair consisting of a state and an input symbol into
a state or the message f a i l . The directed graph in Figure
l(a) represents the goto function. For example, the edge
labeled h from 0 to 1 indicates that g(0, h) = 1. The
absence of an arrow indicates f a i l Thus, g(1, tr) = f a i l

for all input symbols tr that are not e or i. All our pat-
tern matching machines have the property that
g (0, ~r) # f a i l for all input symbols tr. We shall see that
this property of the goto function on state 0 ensures that
one input symbol will be processed by the machine in
every machine cycle.

The failure function f maps a state into a state. The
failure function is consulted whenever the goto function
reports f a i l Certain states are designated as output states
which indicate that a set of keywords has been found.
The output function formalizes this concept by associat-
ing a set of keywords (possibly empty) with every state.

An operat ing cycle of a pattern matching machine is
defined as follows. Let s be the current state of the
machine and a the current symbol of the input string x.

1. If g(s , a) = s', the machine makes a goto transi-

tion. It enters state s ' and the next symbol of x becomes
the current input symbol. In addition, if

334

o u t p u t (s ') # empty, then the machine emits the set
o u t p u t (s ') along with the position of the current input
symbol. The operating cycle is now complete.

2. If g(s , a) = fa i l , the machine consults the failure
function f and is said to make a f a i l u r e transition. If
f (s) = s" the machine repeats the cycle with s ' as the
current state and a as the current input symbol.

Initially, the current state of the machine is the start
state and the first symbol of the text string is the current
input symbol. The machine then processes the text
string by making one operating cycle on each symbol of
the text string.

For example, consider the behavior of the machine M
that uses the functions in Figure 1 to process the text
string "ushers." Figure 2 indicates the state transitions
made by M in processing the text string.

Fig. 2. Sequence of state transitions.

u s h e r s
0 0 3 4 5 8 9

2

Consider the operating cycle when M is in state 4 and
the current input symbol is e. Since g(4, e) = 5, the
machine enters state 5, advances to the next input sym-
bol and emits o u t p u t (5) , indicating that it has found the
keywords "she" and "he" at the end of position four in the
text string.

In state 5 on input symbol r, the machine makes two
state transitions in its operating cycle. Since
g(5, r) = f a i l M enters state 2 = f (5) . Then since
g(2, r) -- 8, M enters state 8 and advances to the next
input symbol. No output is generated in this operating
cycle.

The following algorithm summarizes the behavior of a
pattern matching machine.

Algorithm I. Pattern matching machine.
Input. A text string x = a I a 2 - - • a n where each a i is an input

symbol and a pattern matching machine M with goto func-
tion g, failure function f, and output function output, as
described above.

Output. Locations at which keywords occur in x.
Method.

begin
state ~ 0
for i ~ 1 until n do

begin
while g (state, a i) = fa i l do state ~ f (s ta t e)
state ~ g (state, a i)
if output (state) ;~ empty then

begin
print i
print output (state)

end
end

end

Each pass through the for-loop represents one operating cy-
cle of the machine.

Communications June 1975
of Volume 18
the ACM Number 6

Algorithm 1 is patterned after the Knuth-Morris-Prat t
algorithm for finding one keyword in a text string [13]
and can be viewed as an extension of the "tr ie" search
discussed in [11]. Hopcroft and Karp (unpublished) have
suggested a scheme similar to Algorithm 1 for finding the
first occurrence of any of a finite set of keywords in a
text string [13]. Section 6 of this paper discusses a deter-
ministic finite automaton version of Algorithm 1 that
avoids all failure transitions.

3. Construction of Goto, Failure, and Output Functions

We say that the three functions g, f, and output are
valid for a set of keywords if with these functions Algo-
rithm 1 indicates that keyword y ends at position i of text
string x if and only if x = uyv and the length of uy is i.

We shall now show how to construct valid goto,
failure and output functions from a set of keywords.
There are two parts to the construction. In the first part
we determine the states and the goto function. In the
second part we compute the failure function. The com-
putation of the output function is begun in the first part
of the construction and completed in the second part.

To construct the goto function, we shall construct a
goto graph. We begin with a graph consisting of one ver-
tex which represents the state 0. We then enter each
keyword y into the graph, by adding a directed path to
the graph that begins at the start state. New vertices and
edges are added to the graph so that there will be, starting
at the start state, a path in the graph that spells out the
keyword y. The keyword y is added to the output func-
tion of the state at which the path terminates. We add
new edges to the graph only when necessary.

For example, suppose {he, she, his, hers} is the set of
keywords. Adding the first keyword to the graph, we ob-
tain:

The path from state 0 to state 2 spells out the keyword
"he" ; we associate the output "he" with state 2. Adding
the second keyword " she , " we obtain the graph:

The output " she" is associated with state 5. Adding the
keyword "his," we obtain the following graph. Notice
that when we add the keyword "his" there is already an
edge labeled h from state 0 to state 1, so we do not need
to add another edge labeled h from state 0 to state 1. The
output "his" is associated with state 7.

(

Adding the last keyword "hers ," we obtain:

The output "hers" is associated with state 9. Here we
have been able to use the existing edge labeled h from
state 0 to 1 and the existing edge labeled e from state 1 to
2.

Up to this point the graph is a rooted directed tree.
To complete the construction of the goto function we add
a loop from state 0 to state 0 on all input symbols other
than h or s. We obtain the directed graph shown in Fig-
ure l(a). This graph represents the goto function.

The failure function is constructed from the goto
function. Let us define the depth of a state s in the goto
graph as the length of the shortest path from the start
state to s. Thus in Figure 1 (a), the start state is of depth
0, states 1 and 3 are of depth 1, states 2, 4, and 6 are of
depth 2, and so on.

We shall compute the failure function for all states of
depth 1, then for all states of depth 2, and so on, until the
failure function has been computed for all states (except
state 0 for which the failure function is not defined). The
algorithm to compute the failure function f at a state is
conceptually quite simple. We make f (s) - - 0 for all
states s of depth 1. Now suppose f has been computed
for all states of depth less than d. The failure function
for the states of depth d is computed from the failure
function for the states of depth less than d. The states of
depth d can be determined from the nonfail values of the
goto function of the states of depth d - 1.

Specifically, to compute the failure function for the
states of depth d, we consider each state r of depth d - -1
and perform the following actions.

1. l f g (r , a) = fa i l f o r all a, do nothing.

2. Otherwise, for each symbol a such that
g(r, a) -- s, do the following:

335 Communications June 1975
of Volume 18
the ACM Number 6

(a) Set s t a t e = f (r) .

(b) Execute the statement s t a t e ' - f (s t a t e) zero or
more times, until a value for s t a t e is obtained
such that g (s t a t e , a) # f a i l . (Note that since
g (O , a) # f a i l for all a, such a state will always
be found.)

(c) S e t f (s) - -g(s ta te , a) .

For example, to compute the failure function from
Figure l(a), we would first set f (1) = f (3) = 0 since 1
and 3 are the states of depth 1. We then compute the
failure function for 2, 6, and 4, the states of depth 2. To
compute f (2) , we set s t a t e = f (1) = 0; and since g(0, e)
= 0, we find that f (2) = 0. To compute f (6) , we set
s t a t e = f (1) = 0; and since g(0, i) = 0, we find that f (6)
= 0. To compute f (4) , we set s t a t e = f (3) = 0; and
since g(0, h) = 1, we find that f (4) = 1. Continuing in
this fashion, we obtain the failure function shown in Fig-
ure 1 (b).

During the computation of the failure function we
also update the output function. When we determine
f (s) = s ' , we merge the outputs of state s with the out-
puts of state s'.

For example, from Figure l(a) we determine
f (5) = 2. At this point we merge the output set of state
2, namely {he}, with the output set of state 5 to derive
the new output set {he, she}. The final nonempty output
sets are shown in Figure 1 (c).

The algorithms to construct the goto, failure and out-
put functions from K are summarized below.

Algorithm 2. Construction of the goto function.
Input. Set of keywords K = {Yl, Y2 Yk}.
Output. Goto function g and a partially computed output func-

tion output.
Method. We assume ou tpu t (s) is empty when state s is first

created, and g(s , a) = fa i l if a is undefined or if g(s , a) has
not yet been defined. The procedure en te r (y) inserts into
the goto graph a path that spells out y.

begin
newstate .-- 0

for i ~ 1 until k do enter(y i)
for all asuch that g(O, a) = f a i l d o g(O, a) ~ 0

end

procedure en ter (a 1 a 2 • • • a m):
begin

state ~ 0; j *- 1
while g (state, aj) # f a i l do

begin
state ~ g (state, a))
j , - - j + l

end
for p '-- j until m do

begin
newstate * - newstate + 1
g (state, ap) *-- newstate
state ~ newstate

end
outpu t (s ta te) ~ { a I a 2 . . . a m}

end

The following algorithm, whose inner loop is similar to
Algorithm 1, computes the failure function.

Algorithm 3. Construction of the failure function.
Input. Goto function g and output function output from Algo-

rithm 2.
Output. Failure function fand output function output.

Method.
begin

queue ~ empty
for each a such that g(O, a) = s ;~ 0 do

begin
queue ~ queue LI {s }

f (s) ~ 0
end

while queue ~ empty do
begin

let r be the next state in queue
queue ~-- queue - {r}
for each asuch that g(r , a) = s ¢ fa i l do

begin
queue ~ queue t2 {s }

s tate ~ f (r)
while g (state, a) = f a i l do state ~ f (s t a t e)
f (s) ~ g(s ta te , a)
ou tpu t (s) ~ o u t p u t (s) U o u t p u t (f (s))

end
end

end

The first for-loop computes the states of depth 1 and enters
them in a first-in first-out list denoted by the variable queue.
The main while-loop computes the set of states of depth d
from the set of states of depth d-- 1.

The failure function produced by Algorithm 3 is not
optimal in the following sense. Consider the pattern
matching machine M o f Figure 1. We see g(4, e) = 5. If
M is in state 4 and the current input symbol a i is not an
e, then M would enter state f (4) = 1. Since M has al-
ready determined that a i ~ e , M does not then need to
consider the value of the goto function of state 1 on e.
In fact, if the keyword "his" were not present, then M
could go directly from state 4 to state 0, skipping an un-
necessary intermediate transition to state 1.

To avoid making unnecessary failure transitions we
can use f ' , a generalization of the n e x t function from [13],
in place of f in Algorithm 1. Specifically, define
f ' (1) = 0. For i > 1, define f ' (i) = f ' O r (i)) if, for all
input symbols a, g o r (i) , a) # f a i l implies g (L a) # f a i l ;

define f ' (i) = f (i) , otherwise. However, to avoid mak-
ing any failure transitions at all, we can use the deter-
ministic finite automaton version of Algorithm 1 given in
Section 6.

4. Propert i e s of A l g o r i t h m s I , 2, and 3

This section shows that the goto, failure, and output
functions constructed by Algorithms 2 and 3 from a
given set of keywords K are indeed valid for K.

We say that u is a p r e f i x and v is a s u f f i x of the string
uv. If u is not the empty string, then u is a p r o p e r prefix.
Likewise, if v is not empty, then v is a p r o p e r suffix.

336 Communications June 1975
of Volume 18
the ACM Number 6

We say that string u represents state s of a pattern
matching machine if the shortest path in the goto graph
from the start state to state s spells out u. The start state
is represented by the empty string.

Our first lemma characterizes the failure function con-
structed by Algorithm 3.

LEMMA 1. Suppose that in the goto graph state s is
represented by the string u and state t is represented by the

string v. Then, f (s) = t i f and only i f v is the longest proper
suffix o f u that is also a prefix o f some keyword.

PROOF. The proof proceeds by induction on the
length of u (or equivalently the depth of state s). By Al-
gorithm 3 f (s) = 0 for all states s of depth 1. Since each
state of depth 1 is represented by a string of length 1, the
statement of the lemma is trivially true for all strings of
length 1.

For the inductive step, assume the statement of Lem-
ma 1 is true for all strings of length less than j, j > 1.
Suppose u = a la 2 . . . aj for some j > 1, and v is the
longest proper suffix of u that is a prefix of some key-
word. Suppose u represents state s and a l a 2 . . . a j _ 1
represents state r. Let r 1, r 2, • • • , r n be the sequence of
states such that

1. r 1 = f (r) ,
2. ri+l = f (r i) for 1 ~< i < n,
3. g (r i , a j) = f a i l f o r l ~< i < n, and
4. g(rn, a j) = t ; ~ fail.

(If g (r l , a j) ~ f a i l , then r n = r 1.) The sequence
q , r 2, • • • , r n is the sequence of values assumed by the
variable state in the inner while-loop of Algorithm 3.
The statement following that while-loop makes f (s) = t.
We claim that t is represented by the longest proper
suffix of u that is a prefix of some keyword.

To prove this, suppose v i represents state r i for
1 ~< i ~< n. By the inductive hypothesis v 1 is the longest
proper suffix of a l a 2 . . . a j _ 1 that is a prefix of some
keyword; v 2 is the longest proper suffix of v 1 that is a
prefix of some keyword; v 3 is the longest proper suffix of
v 2 that is a prefix of some keyword, and so on.

Thus v n is the longest proper suffix of a 1 a 2 . . . a j_ 1
such that vna j is a prefix of some keyword. Therefore
vna j is the longest proper suffix of u that is a prefix of
some keyword. Since Algorithm 3 sets f (s) = g (r n, a j)
= t, the proof is complete. []

The next lemma characterizes the output function
constructed by Algorithms 2 and 3.

LEMMA 2. The set output(s) contains y i f and only i f y
is a keyword that is a suffix o f the string representing state s.

PROOF. In Algorithm 2 whenever we add to the goto
graph a state s that is represented by a keyword y we
make output(s) = {y}. Given this initialization, we shall
show by induction on the depth of state s that output(s)
= {yl y is a keyword that is a suffix of the string
representing state s }.

This statement is certainly true for the start state
which is of depth 0. Assuming this statement is true for
all states of depth less than d, consider a state s of depth

d. Let u be the string that represents state s.
Consider a string y in output(s) . If y is added to

output(s) by Algorithm 2, then y = u and y is a keyword.
If y is added to output(s) by Algorithm 3, then y is in
outputOr(s)) . By the inductive hypothesis, y is a key-
word that is a suffix of the string representing state f (s) .
By Lemma 1, any such keyword must be a suffix of u.

Conversely, suppose y is any keyword that is a suffix
of u. Since y is a keyword, there is a state t that is
represented by y. By Algorithm 2, output(t) contains y.
Thus if y = u, then s = t and output(s) certainly contains
y. If y is a proper suffix of u, then from the inductive hy-
pothesis and Lemma 1 we know o u t p u t (f (s)) contains y.
Since Algorithm 3 considers states in order of increasing
depth, the last statement of Algorithm 3 adds
outputOC(s)) and hence y to output(s) . []

The following lemma characterizes the behavior of
Algorithm 1 on a text string x = a I a 2 • • - a n.

LEMMA 3. After the j t h operating cycle, Algorithm 1 will
be in state s i f and only i f s is represented by the longest

suffix o f a I a 2 • • • aj that is a prefix o f some keyword.

PROOF. Similar to Lemma 1. []

THEOREM 1. Algorithms 2 and 3 produce valid goto,
failure, and output functions.

PROOF. By Lemmas 2 and 3. []

5. Time Complexity of Algorithms 1, 2, and 3

We now examine the time complexity of Algorithms
1, 2, and 3. We shall show that using the goto, failure
and output functions created by Algorithms 2 and 3, the
number of state transitions made by Algorithm 1 in pro-
cessing a text string is independent of the number of
keywords. We shall also show that Algorithms 2 and 3
can be implemented to run in time that is linearly propor-
tional to the sum of the lengths of the keywords in K.

THEOREM 2. Using the goto, failure and output functions
created by Algorithms 2 and 3, Algorithm 1 makes fewer than
2n state transitions in processing a text string o f length n.

PROOF. In each operating cycle Algorithm 1 makes
zero or more failure transitions followed by exactly one
goto transition. From a state s of depth d Algorithm 1
can never make more than d failure transitions in one
operating cycle. 1 Thus the total number of failure transi-
tions must be at least one less than the total number of
goto transitions. In processing an input of length n Algo-
rithm 1 makes exactly n goto transitions. Therefore the
total number of state transitions is less than 2n. []

The actual time complexity of Algorithm 1 depends
on how expensive it is:

1. to determine g(s, a) for each state s and input
symbol a,

1 As many as d failure transitions can be made. [13] shows
that, if there is only one keyword in K, O(logd) is the maximum
number of failure transitions which can be made in one operat-
ing cycle.

337 Communications June 1975
of Volume 18
the ACM Number 6

2. to determine f (s) for each state s,
3. to determine whether output(s) is empty, and
4. to emit output(s).

We could store the goto function in a two-
dimensional array, which would allow us to determine the
value of g(s, a) in constant time for each s and a. If the
size of the input alphabet and the keyword set are large,
however, then it is far more economical to store only the
nonfail values in a linear list [1,11] for each state. Such a
representation would make the cost of determining
g(s, a) proportional to the number of nonfail values of
the goto function for state s. A reasonable compromise,
and one which we have employed, is to store the most
frequently used states (such as state 0) as direct access
tables in which the next state can be determined by
directly indexing into the table with the current input
symbol. Then for the most frequently used states we can
determine g(s, a) for each a in constant time. Less fre-
quently used states and states with few nonfail values of
the goto function can be encoded as linear lists.

Another approach would be to store the goto values
for each state in the form of a binary search tree [1, 12].

The failure function can be stored as a one-
dimensional array so that f (s) can be determined in con-
stant t ime for each s.

Thus, the non-printing portion of Algorithm 1 can be
implemented to process a text string of length n in cn
steps, where c is a constant that is independent of the
number of keywords.

Let us now consider the time required to print the
output. A one-dimensional array can be used to deter-
mine whether output(s) is empty in constant t ime for
each s. The cost of printing the output in each operating
cycle is proportional to the sum of the lengths of the key-
words in output(s) where s is the state in which Algo-
rithm 1 is at the end of the operating cycle. In many ap-
plications output (s) will usually contain at most one key-
word, so the time required to print the output at each in-
put position is constant.

It is possible, however, that a large number of key-
words occur at every position of the text string. In this
case Algorithm 1 will spend a considerable amount of
time printing out the answer. In the worst case we may
have to print all keywords in K at virtually every position
of the text string. (Consider an extreme case where
K = {a,a 2,a 3 a k} and the text string is a n . Here
a i denotes the string of i a's.) Any other pattern match-
ing algorithm, however, would also have to print out the
same number of keywords at each position of the text
string so it is reasonable to compare pattern matching al-
gorithms on the basis of the time spent in recognizing
where the keywords occur.

We should contrast the performance of Algorithm 1
with a more straightforward way of locating all keywords
in K that are substrings of a given text string. One such
way would be to take in turn each keyword in K and suc-
cessively match that keyword against all character posi-
tions in the text string. The running time of this tech-
nique is at best proportional to the product of the number
of keywords in K times the length of the text string. If

there are many keywords, the performance of this algo-
rithm will be considerably worse that that of Algorithm 1.
In fact it was the time complexity of the straightforward
algorithm that prompted the development of Algorithm 1.
(The reader may wish to compare the performance of the
two algorithms when K = {a, a 2 a k} and the text
string is an.)

Finally let us consider the cost of computing the goto,
failure, and output functions using Algorithms 2 and 3.

THEOREM 3. Algorithm 2 requires time linearly propor-
tional to the sum of the lengths of the keywords.

PROOF. Straightforward. []

THEOREM 4. Algorithm 3 can be implemented to run in
time proportional to the sum of the lengths of the keywords.

PROOF. Using an argument similar to that in Theorem
2, we can show that the total number of executions of
the s ta tement state ,---f(state) made during the course of
Algorithm 3 is bounded by the sum of the lengths of the
keywords. Using linked lists to represent the output set
of a state, we can execute the s ta tement
output(s) , - o u t p u t (s) U output(f (s)) in constant time.
Note that output(s) and outputOC(s)) are disjoint when
this s ta tement is executed. Thus the total time needed to
implement Algori thm 3 is dominated by the sum of the
lengths of the keywords. []

6. Eliminating Failure Transitions

This section shows how to el iminate all failure transi-
tions from Algori thm 1 by using the next move function
of a determinist ic finite automaton in place of the goto
and failure functions.

A determinist ic finite automaton [15] consists of a
finite set of states S and a next move function 8 such that
for each state s and input symbol a, 8 (s, a) is a state in S.
That is to say, a determinist ic finite automaton makes ex-
actly one state transition on each input symbol.

By using the next move function 8 of an appropriate
deterministic finite automaton in place of the goto func-
tion in Algori thm 1, we can dispense with all failure tran-
sitions. This can be done by simply replacing the first
two statements in the for-loop of Algori thm 1 by the sin-
gle s tatement state,--- 8 (state, a i). Using 8, Algori thm 1
makes exactly one state transition per input character.

We can compute the required next move function 8
from the goto and failure functions found by Algori thms
2 and 3 using Algori thm 4. Algori thm 4 just precom-
putes the result of every sequence of possible failure
transitions. The t ime taken by Algori thm 4 is linearly
proportional to the size of the keyword set. In practice,
Algorithm 4 would be evaluated in conjunct ion with Al-
gorithm 3.

The next move function computed by Algori thm 4
from the goto and failure functions shown in Figure 1 is
tabulated in Figure 3.

The next move function is encoded in Figure 3 as fol-
lows. In state 0, for example, we have a transition on h
to state 1, a transition on s to state 3, and a transition on
any other symbol to state 0. In each state, the dot stands

338 Communications June 1975
of Volume 18
the ACM Number 6

Algorithm 4. Construction of a deterministic finite automaton. Fig. 3. Next move function.
Input. Goto function g from Algorithm 2 and failure function f

from Algorithm 3. input symbol next state
Output. Next move function 8. state 0: h 1
Method. s 3

begin 0

queue ~ empty state 1 : e 2
for each symbol a do i 6

begin h 1
8(0, a) ~ g(O, a) s 3

if g (0, a) ~ 0 then queue ~ queue [.) {g (0, a) } 0

end
while queue ;e empty do state 9: state 7: state 3: h 4

begin S 3
let r be the next state in queue 0

queue ~ queue - {r} state 5: state 2: r 8
for each symbol a do h 1

ifg(r, a) = s ~ fail do S 3

begin 0
queue ~ queue U {s}
8(r, a) ~ s state 6: s 7

end h 1

else 8 (r, a) ~ 8 (f (r) , a) 0

end state 4: e 5
end i 6

h 1

for any input character other than those above it. This s 3
method of encoding the next move function is more 0
economical than storing 8 as a two-dimensional array, state 8: s 9
However, the amount of memory required to store 8 in h 1
this manner is somewhat larger than the corresponding 0
representation for the goto function from which /5 was
constructed since many of the states in 8 each contain
transitions from several states of the goto function.

Using the next move function in Figure 3, Algorithm
1 with input "ushers" would make the sequence of state
transitions shown in the first line of states of Figure 2.

Using a deterministic finite automaton in Algorithm 1
can potentially reduce the number of state transitions by
50%. This amount of saving, however, would virtually
never be achieved in practice because in typical applica-
tions Algorithm 1 will spend most of its time in state 0
from which there are no failure transitions. Calculating
the expected saving is difficult, however, because mean-
ingful definitions of "average" set of keywords and "aver-
age" text string are not available.

7. An Application to Bibliographic Search

Algorithm 1 is attractive in pattern matching applica-
tions involving large numbers of keywords, since all key-
words can be simultaneously matched against the text
string in just one pass through the text string. One such
application in which this algorithm has been successfully
used arose in a library bibliographic search program
which locates in a cumulative citation index all citations
satisfying some Boolean function of keywords.

The data base used for this retrieval system is the cu-
mulated machine-readable data used for Current Technical

Papers, a fortnightly citation bulletin produced for internal

339

use by the technical libraries of Bell Laboratories. These
citations are gathered from journals, covering a broad
classification of technical interests. In the summer of
1973 there were three years of cumulated data, represent-
ing about 150,000 citations with a total length of about
107 characters.

With this search system a bibliographer can retrieve
from the data base all titles satisfying some Boolean com-
bination of keywords. For example, the bibliographer can
ask for all titles in the data base containing both the key-
words "ion" and "bombardment ." The bibliographer can
also specify whether a keyword is required to be preceded
and/or followed by a punctuation character such as space,
comma, semicolon, etc. A specification of this nature can
explicitly deny matching on keywords embedded in the
text. For example, it is often reasonable to accept the
word "ions" as a match for the substring "ion." However,
it is usually unreasonable to accept a word such as "mo-
tion" as a match on that keyword. The implementation
permits specification of acceptance with full embedding,
left embedding, right embedding, or none at all. This
provision creates no difficulty for Algorithm 1 although
the use of a class of punctuation characters in the key-
word syntax creates some states with a large number of
goto transitions. This may make the deterministic finite
automaton implementation of Algorithm 1 more space
consuming and less attractive for some applications.

An early version of this bibliographic search program

Communications June 1975
of Volume 18
the ACM Number 6

employed a direct pattern matching algorithm in which
each keyword in the search prescription was successively
matched against each title. A second version of this
search program was implemented, also in FORTRAN, in
which the only difference was the substitution of Algo-
rithms 1, 2 and 3 for the direct pattern matching scheme.
The following table shows two sample runs of the two
programs on a Honeywell 6070 computer. The first run
involved a search prescription containing 15 keywords,
the second a search prescription containing 24 keywords.

15 keywords 24 keywords

old .79 1.27

new .18 .21

CPU Time in Hours

With larger numbers of keywords the improvement in
performance became even more pronounced. The figures
tend to bear out the fact that with Algorithm 1 the cost
of a search is roughly independent of the number of key-
words. The time spent in constructing the pattern match-
ing machine and making state transitions was
insignificant compared to the time spent reading and un-
packing the text string.

8. Concluding Remarks

The pattern matching scheme described in this paper
is well suited for applications in which we are looking for
occurrences of large numbers of keywords in text strings.
Since no additional information needs to be added to the
text string, searches can be made over arbitrary files.

Some information retrieval systems compute an index
or concordance for a text file to allow searches to be con-
ducted without having to scan all of the text string [7].
In such systems making changes to the text file is expen-
sive because after each change the index to the file must
be updated. Consequently, such systems work best with
long static text files and short patterns.

An interesting question from finite automata theory
is: Given a regular expression R of length r and an input
string x of length n, how quickly can one determine
whether x is in the language denoted by R? One method
for solving this problem is first to construct from R a
nondeterministic finite automaton M and then to simulate
the behavior of M on the input x. This gives an O (r n)
solution [1].

Another approach along these lines is to construct
from R a nondeterministic finite automaton M, then to
convert M into a deterministic finite automaton M' and
then to simulate the behavior of M ' on x. The only
difficulty with this approach is that M ' can have on the
order of 2r states. The simulation of M ' on the other
hand is linear in n of course. The overall complexity is
0 (2 r + n).

Using Algorithm 4 we can construct a deterministic
finite automaton directly from a regular expression R in
time that is linear in the length of R. However, the regu-

34O

lar expression is now restricted to be the form
~*0 '1 + Y2 + " ' " + Yk) E - w h e r e E is the input sym-
bol alphabet. By "concatenating" a series of determinis-
tic finite automata in tandem, we can extend this result to
regular expressions of the form E * 111 7_, * Y2 " ' " E * Ym E *

where each Yi is a regular expression of the form

Yil -k- Yt2 + " '" + Yikj"
A related open question is what new classes of regular

sets can be recognized in less than O (r n) time. Along
these lines, in [5] it is shown that regular expressions of
the form E*y7,* where y is a keyword with "don' t care"
symbols can be recognized in O (n log r log log r) time.

Acknowledgements

The authors are grateful to A. F. Ackerman, A. D.
Hall, S. C. Johnson, B. W. Kernighan, and M. D. McIlroy
for their helpful comments on the manuscript. This pa-
per was produced using the typesetting system developed
by Kernighan and Cherry [9]. The assistance of B. W.
Kernighan and M. E. Lesk in the preparation of the paper
was appreciated.

Received August 1974; revised January 1975

References

1. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading,
Mass., 1974.
2. Booth, T.U Sequential Machines and Automata Theory. Wiley,
New York, 1967.
3. Brzozowski, J.A. Derivatives of regular expressions. J. ACM
11:4 (October 1964), 481-494.
4. Bullen, R.H., Jr., and Millen, J.K. Microtext - the design of a
microprogrammed finite state search machine for full-text re-
trieval. Proc. Fall Joint Computer Conference, 1972, pp. 479-488.
5. Fischer, M.J., and Paterson, M.S. String matching and other
products. Technical Report 41, Project MAC, M.I.T., 1974.
6. Gimpel, J.A. A theory of discrete.patterns and their imple-
mentation in SNOBOL4. Comm. ACM 16:2 (February 1973),
91-100.
7. Harrison, M.C. Implementation of the substring test by hash-
ing. Comm. ACM14:12 (December 1971), 777-779.
8. Johnson, W.L., Porter, J.H., Ackley, S.I., and Ross, D.T. Au-
tomatic generation of efficient lexical processors using finite state
techniques. Comm. A C M l l : I 2 (December 1968), 805-813.
9. Kernighan, B.W., and Cherry, L.L. A system for typesetting
mathematics. Comm. ACM18:3 (March 1975), 151-156.
10. Kleene, S.C. Representation of events in nerve nets. In Au-
tomata Studies, C.E. Shannon and J. McCarthy (eds.), Princeton
University Press, 1956, pp. 3-40.
11. Knuth, D.E. Fundamental Algorithms, second edition, The
Art of Computer Programming 1, Addison-Wesley, Reading,
Mass., 1973.
12. Knuth, D.E. Sorting and Searching, The Art of Computer Pro-
graining 3, Addison-Wesley, Reading, Mass., 1973.
13. Knuth, D.E., Morris, J.H., Jr., and Pratt, V.R. Fast pattern
matching in strings. TR CS-74-440, Stanford University, Stan-
ford, California, 1974.
14. Kohavi, Z. Switching and Finite Automata Theory. McGraw-
Hill, New York, 1970.
15. McNaughton, R., and Yamada, H. Regular expressions and
state graphs for automata. IRE Trans. Electronic Computers 9:1
(1960), 39-47.
16. Rabin, M.O., and Scott, D. Finite automata and their deci-
sion problems. IBM J. Research and Development 3, (1959),
114-125.
17. Thompson, K. Regular search expression algorithm. Comm.
ACM 11:6 (June 1968), 419-422.

Communications June 1975
of Volume 18
the ACM Number 6

