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Abstract

The efficient evaluation of recursive views is a crucial issue in the research field of
deductive databases. Results in this area are especially relevant for systems which
will implement the new SQL:1999 standard, and hence will allow the definition of
stratifiable recursive views. In particular, transformation-based solutions to query
evaluation seem to be well-suited for extending existing relational databases as
they are easy to implement and independent of other optimization methods such
as index structures or algebraic manipulation techniques.

The application of transformation-based approaches, however, may lead to
unstratifiable recursion which requires an elaborate, and consequently very ex-
pensive evaluation of these kinds of views in general. In this thesis, we present
a solution to this problem by identifying the new class of so-called softly stratifi-
able views which allow for a more efficient evaluation than arbitrary unstratifiable
views. This subclass of unstratifiable views is especially relevant as it covers views
resulting from the rewriting of an originally stratifiable schema. We will show
that the concept soft stratification can be used in various database services such
as query evaluation and update propagation. Additionally, it can be employed
as a basic evaluation technique for the efficient computation of the general well-
founded semantics of unstratifiable schemata.

With respect to transformation-based approaches, we focus on the Magic Sets
rewriting of (function-free) stratifiable databases as this method has evolved into a
kind of standard in the field of query evaluation. The language Datalog is used as
a syntactical basis because of its simplicity which makes it particularly well-suited
for presenting transformation-based techniques. We will show that Kerisit’s weak
stratification approach for evaluating Magic Sets rewritten schemata may lead to
a set of answers which is neither sound nor complete with respect to the well-
founded model. This problem is cured by introducing the new soft consequence
operator in combination with the concept soft stratification, instead. Afterwards,
it will be shown that this approach is suited for solving the problem of existential
query evaluation, too. To this end, we develop the so-called Existential Magic
Sets rewriting which extends the Magic Sets transformation in such a way that the
computation of alternative answers with respect to (derived) existential queries
is avoided.



In case of update propagation, a novel deductive rule rewriting technique is
developed incorporating the task of update propagation as well as Magic Sets
optimizations into deductive propagation rules. To this end, Griefahn’s struc-
tured update propagation approach is extended such that the resulting rule sets
becomes less complicated and softly stratifiable. The results from both services,
i.e., query evaluation and update propagation, are then combined for develop-
ing the new soft alternating fixpoint computation approach to determining the
well-founded model of unstratifiable databases.

The algorithms and concepts presented in this thesis are developed by means
of the abstract database language Datalog. The results can be almost directly
transferred into the SQL context although additional language concepts of SQL
such as Null values, multisets and aggregate functions have not been considered
yet. However, it is our belief that the concept of soft stratification may already
provide a realistic framework for extending the expressive power of relational
database systems.
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Chapter 1

Introduction

The notion of a deductive database has emerged during the 1970s in order to de-
scribe database systems capable of inferring new knowledge using rules. Within
this research area three kinds of rule-based extensions for traditional databases
have been intensively studied: active, deductive and normative rules. Nowadays,
SQL databases widely use these extensions in form of triggers, views, and in-
tegrity constraints such that almost every commercial database system ought to
be regarded as a deductive database system.

However, rule concepts have been implemented in commercial products (such
as, e.g., Oracle or DB2) in a very limited way up to now. With respect to de-
ductive rules, for example, the definition of general recursive views in SQL is still
not possible. Recursion allows for computing the transitive closure of database
relations and in general extends the expressive power of a relational database
language such as prior SQL versions, QBE or QUEL. It plays an important role
for path computations (e.g., in geographic information systems) or for traversing
hierarchies of data (e.g., recursive bill of material queries). The implementation
of recursive views has been avoided so far due to efficiency reasons as the evalua-
tion of recursive queries poses several problems to classical database optimization
techniques. However, the importance of this concept is widely accepted by now
such that the new SQL:1999 standard has been extended by some kind of limited
(stratifiable) recursive views. As database developers for commercial SQL-based
systems try to implement the guidelines of the SQL standard as far as possible,
efficient methods for evaluating recursive views are needed which are suitable for
extending existing relational database systems.

In the field of deductive databases, a considerable amount of research has been
devoted to the efficient evaluation of recursive views. Results in this area are
usually presented in the database language Datalog and can be divided into top-
down and bottom-up approaches. While SQL is based on a mixture of both, tuple-
relational calculus and relational algebra, Datalog relies on domain-relational
calculus. Syntactically, Datalog is very similar to Prolog, but it is based on a
set-oriented bottom-up semantics in form of well-founded models. The reason for
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2 Chapter 1. Introduction

using Datalog is its syntactic simplicity which makes it well-suited for presenting
transformation-based techniques (as shown later on). However, the application
of Datalog and the ongoing discussion about the question whether top-down
or bottom-up approaches are more suited as a basic evaluation mechanism for
recursive rules, have made it difficult to see how results from the research area of
deductive databases can be used for extending the ’purely’ top-down evaluation
strategies in SQL.

Indeed, the transfer of ’bottom-up’ approaches from a Datalog context to the
SQL world is obviously possible in principle, though intricate in detail (cf. [MP94,
Pie01]). With respect to the discussion about top-down and bottom-up ap-
proaches, in [Bry90b] it has been shown that both approaches are basically equiva-
lent as top-down approaches with tabulation can be simulated by bottom-up ones
and vice versa. As a matter of fact, even solutions to classical top-down problems
like query evaluation can be significantly enhanced by incorporating bottom-up
techniques, e.g., in dynamic query processing [Beh00]. On the other hand, typical
bottom-up techniques for update propagation can be improved by incorporating
top-down methods which has been shown in [Gri97] (cf. also Chapter 5). Thus, it
can be concluded that the results in the area of deductive databases can provide
relevant solutions to the problem of evaluating recursive views in SQL-based sys-
tems as well. In this thesis, we will substantiate this by providing solutions to the
problem of query evaluation and update propagation with respect to recursively
defined views. To this end, the new soft stratification approach is developed
in Datalog for an efficient evaluation of transformation-based solutions to these
problems which is well-suited for being transferred into the SQL context.

Transformation-based Approaches

Several proposals to the efficient evaluation of recursion in the database context
have been made. The reason for developing this kind of specialized methods is
that known algorithms from graph theory like Warshall’s transitive closure or
Dijkstra’s shortest path algorithm are not appropriate for being directly imple-
mented in a database system. This is due to the fact that evaluation techniques
in databases ought to allow for a parallel computation of facts in a set-oriented
way. In addition, they should be independent of other optimization techniques
such as index structures or algebraic manipulation techniques which have led to
the wide acceptance of relational database systems. Transformation-based ap-
proaches satisfy these requirements and additionally are particularly well-suited
for extending existing relational database techniques.

The basic idea is to automatically transform a given database schema into a
new one such that the evaluation of the rewritten schema simultaneously solves
a certain database task with respect to the original schema. Extensive research
into such rewriting techniques originated from the Magic Sets approach [BR86]
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for query evaluation with respect to recursively defined relations. Since then,
many similar as well as analogous approaches have been presented dealing with
various kinds of database tasks such as update propagation, integrity checking,
and view updating. As an example for the Magic Sets approach, consider the
following Datalog rules for defining the relation path as the transitive closure of
a base relation edge

path(X, Y) ← edge(X, Y)
path(X, Y) ← edge(X, Z) ∧ path(Z, Y)

and the query ?− path(1, Y), asking for all nodes reachable from node 1. Accor-
ding to the Magic Sets approach these rules are transformed into:

path(X, Y) ← m pathbf(X) ∧ edge(X, Y)
path(X, Y) ← m pathbf(X) ∧ edge(X, Z) ∧ path(Z, Y)
m pathbf(Z) ← m pathbf(X) ∧ edge(X, Z).

The evaluation of the rewritten rules together with the transliterated query in
form of a so-called magic seed fact m pathbf(1) leads to the derivation of all
possible answers with respect to the original query while avoiding the generation
of irrelevant facts.

It is obvious that this kind of transformation-based approaches is well-suited
for extending database systems as new algorithmic ideas are solely incorporated
into the transformation process, leaving the actual database engine with its own
optimizations techniques unchanged. In fact, rewriting techniques allow for im-
plementing various database functionalities on the basis of one common infer-
ence mechanism. However, the application of transformation-based approaches
with respect to stratifiable views may lead to unstratifiable recursion within the
rewritten schemata which requires an elaborate, and consequently very expensive
inference mechanism in general. This is the case for the kind of recursive views
proposed by the new SQL:1999 standard too, as they cover the class of stratifiable
views.

Goals

Transformation-based approaches can be used for extending existing relational
databases but may require a very expensive inference mechanism, e.g. the alter-
nating fixpoint operator by Van Gelder [vG89], if applied to an originally strat-
ifiable schema. The Magic Sets method for query evaluation represents such a
rewriting approach which may result in an unstratifiable rule set. As this method
has evolved into a kind of standard in the field of query processing with respect
to recursively defined views, a solution to this problem is needed which avoids
the costly application of too general evaluation techniques like the alternating
fixpoint.
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Goal 1: Developing a new inference mechanism which is well-suited for
implementing query evaluation based on the Magic Sets approach.

Query optimization represents a typical top-down problem which plays an
important role in other database services as well. For instance, in [Gri97] it has
been shown that such optimization techniques can be also used for improving
bottom-up evaluation methods to update propagation which led to the so-called
structured update propagation approach. However, the applied transformation
technique may again (as for Magic Sets) lead to unstratifiable rules such that
structured update propagation is partly based on computing alternating fixpoints,
too. Hence, we aim at developing a new transformation technique which allows
the application of the same inference mechanism as for the efficient evaluation of
Magic Sets transformed rules.

Goal 2: Improving the efficiency of update propagation in stratified
databases on the basis of the Magic Sets approach.

Up till now, we have solely considered a certain subclass of unstratifiable rules
which resulted from the transformation of originally stratifiable ones. However,
in [Kol91] it has been shown that general unstratifiable rules are more expressive
than stratifiable ones and that there are interesting queries which cannot be
formulated by means of stratifiable rules. Thus, although the SQL:1999 standard
does not include unstratifiable recursion yet, it seems to be worthwhile to consider
this most general class of recursive views as well.

Several approaches to computing the well-founded model of arbitrary, i.e., pos-
sibly unstratifiable, deductive databases have been made among which the alter-
nating fixpoint by Van Gelder [vG89] has become the most established one. This
iterative method computes overestimations of facts considered to be definitely
false in order to successively derive definitely true facts. However, in each itera-
tion round superfluous calculations with respect to definitely true and definitely
false facts are performed when applying the alternating fixpoint to unstratified
relations. Hence, our last goal is to identify and eliminate these redundancies by
using our results from the discussions above.

Goal 3: Improving efficiency of the alternating fixpoint approach for
computing the well-founded model of general deductive databases.

Altogether, the main objective of this thesis is to improve existing transfor-
mation-based methods and to develop new ones for evaluating stratifiable as well
as unstratifiable recursion. The results ought to provide a realistic framework of
efficient evaluation techniques for extending existing relational database systems.
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Figure 1.1: Architecture of a transformation-based deductive DBS

Approach

In order to realize the above goals, optimizations like Magic Sets or tasks like
update propagation are incorporated into the deductive rules by means of suitable
rule transformations such that all facts representing the result of the respective
task will be automatically generated by an appropriate inference mechanism.
For evaluating such rewritten and consequently possibly unstratifiable rule sets
we propose the concept of soft stratification together with the soft consequence
operator [Beh03] as a new efficient inference mechanism. This mechanism avoids
any redundant generation of facts when evaluating unstratifiable rules by taking
into account the specific reason for unstratifiability, i.e., the application of a
transformation-based approach to an originally stratified rule set.

Figure 1.1 graphically illustrates our proposed architecture of a deductive data-
base which uses transformation-based techniques for realizing its functionalities.
To this end, an external schema consisting of user-defined deductive rules is dis-
tinguished from an internal one which results from the rewriting of the external
schema in order to generate specialized rules with respect to a certain database
task. The (temporary) internal schema together with corresponding auxiliary
seed facts (e.g. propagation seeds when performing update propagation) are then
applied to the inference component by which the DBMS of the considered re-
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lational database system has been extended. The inference component is based
on the soft stratification approach and derives all facts which are relevant for
generating the result facts of the required service.

The considered inference component is based on soft stratification in order to
handle stratifiable as well as a certain subclass of unstratifiable recursion. The soft
stratification approach represents a fixpoint-based evaluation mechanism which
is well-suited for extending existing relational DBMS components as it poses as
little restrictions as possible to the evaluation of (transformed) views. We will
show that our proposed rule transformations with respect to query evaluation and
update propagation always lead to softly stratifiable rules such that this inference
mechanism represents the appropriate evaluation technique. In addition, it can
be used as a basic component for the efficient implementation of even more gen-
eral inference mechanisms like the alternating fixpoint in order to handle general
unstratifiable recursion, too.

Results

The main result of this thesis is a uniform approach to handling recursion in
stratifiable databases on the basis of query evaluation and update propagation
which is based on the soft stratification method. This approach is used to improve
the alternating fixpoint method for evaluating general unstratifiable recursion as
well. According to our goals established above, we have in particular obtained
the following individual results:

Result 1: We introduce a new bottom-up query evaluation method
for stratified deductive databases based on the Magic Sets approach.
We show that the application of the alternative weak stratification
approach by Kerisit and Pugin [KP88] may lead to a set of answers
which is neither sound nor complete with respect to the well-founded
model of magic rewritten rules. This problem is cured by introducing
the new concepts soft stratification and soft consequence operator
instead.

Result 2: On the basis of the soft stratification approach, a new
solution to the problem of optimizing existential queries is presented.
To this end, the so-called Existential Magic Sets rewriting is developed
as an extension of the Magic Sets approach. The evaluation of such
rewritten rules by using the soft stratification method partly avoids
the redundant computations of alternative answer facts with respect
to (derived) existential queries.

Result 3: We introduce a new transformation-based approach to
update propagation in stratifiable deductive databases which com-
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bines the advantages of bottom-up and top-down propagation meth-
ods. Our soft update propagation method is based on a variant of
the so-called Magic Updates transformation which itself is part of
the structured update propagation approach proposed by Griefahn
in [Gri97]. However, as the rewritten rules are potentially unstrat-
ifiable, this approach is based on the alternating fixpoint computa-
tion leading to an inefficient evaluation because the specific reason for
unstratifiability is not taken into account. Therefore, we propose a
less complex Magic Updates transformation resulting in a set of rules
which is not only smaller but may in addition be efficiently evaluated
using the soft stratification approach. Thus, less joins have to be
performed and less facts are generated in comparison to the related
structured update propagation approach.

Result 4: We present a new bottom-up algorithm for computing the
well-founded model of general deductive databases. The drawback of
repeated computation of facts from which Van Gelder’s alternating
fixpoint procedure is suffering is avoided by using the soft stratifica-
tion as well as the soft update propagation approach. The resulting
soft alternating fixpoint computation represents a generalization of
the differential fixpoint computation well-known for stratifiable de-
ductive databases.

Note that Result 1 has been already published in [Beh03], while parts of Re-
sult 4 have been presented in [Beh01]. All proposed transformation-based ap-
proaches have been developed in the context of Datalog. Soundness and com-
pleteness of the proposed methods have been shown with respect to an agreed
declarative semantics of Datalog in form of well-founded models. With respect
to complexity results, the most important properties of the methods discussed in
this thesis are the number of generated facts and the number of iteration rounds
needed for computing these facts. However, the improvement of efficiency by
using our proposed methods will not be justified with new (lower) complexity
bounds. This is due to the fact that for finite Herbrand universes and fixed rule
sets, any of the discussed approaches requires time polynomial in the size of the
Herbrand universe (cf. Section 2.1.2). Therefore, the improved efficiency will be
shown by examples and by the following structural argument.

In general, for evaluating an unstratifiable negative literal it is not possible
to determine all true conclusions and afterwards simply applying the negation as
failure-principle [Cla78] for determining all true negative conclusions with respect
to this literal. Instead, existing methods needed to overestimate the sets of true
positive as well as true negative conclusions in order to successively derive the
facts considered to be definitely true. Our proposed inference mechanism based
on soft stratification, however, avoids any overestimations of facts such that less
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facts are generated and a smaller number of iteration rounds is needed in the
average case. Since in the worst case our proposed methods perform at most
the same computations as the original approaches and are generally more flexible
when applying further optimizations like algebraic manipulations, the claim of
improved efficiency is justified.

Outline of the Thesis

Chapter 2 provides a collection of concepts in order to clarify the basis from which
the investigations of this dissertation emerge. It introduces all relevant notions
related to deductive databases as well as an update language allowing for the
modification of extensional relations. Additionally, a model-based semantics for
the different classes of semi-positive, stratifiable and general deductive databases
is presented in a non-constructive way.

Based on this classification scheme, Chapter 3 provides constructive meth-
ods for computing the semantics of a deductive database by means of fixpoint
computations. To this end, we recall the known differential fixpoint, the iter-
ated fixpoint, as well as the alternating fixpoint computation for determining the
semantics of semi-positive, stratifiable, and general databases, respectively. In
order to formalize the derivation of facts in this context, we define different con-
sequence operators based on the immediate consequence operator by van Emden
and Kowalski [vEK76]. Among them, the soft consequence operator is introduced
which serves as the basic evaluation mechanism for softly stratifiable rules and
related transformation-based approaches proposed in subsequent chapters. It is
shown that this operator can already be used for implementing the differential
and iterated fixpoint computation for evaluating stratifiable recursion.

In Chapter 4 we consider the problem of query processing in stratifiable data-
bases on the basis of the Magic Sets approach. This chapter can be divided into
two parts: The aim of the first part is to provide a new inference mechanism for
evaluating Magic Sets transformed rules. The second part then deals with the
problem of existential query evaluation in this context.

First, we discuss the weak stratification approach by Kerisit and Pugin [KP88]
as a potential evaluation technique for magic rewritten rules. We show that this
method may lead to answers which are neither sound nor complete with respect
to the total well-founded model of magic rules. As a solution to this problem,
the new concept of soft stratification is introduced which, together with the soft
consequence operator, provides the bottom-up inference method for evaluating
this subclass of unstratifiable views. In a subsequent discussion, the efficiency of
this approach is compared to other fixpoint query evaluation techniques.

In the second part, an improvement of the Magic Set approach is presented
which incorporates the optimized evaluation of existential queries. To this end,
the Existential Magic Sets transformation is introduced which allows for the speci-
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fication of a subset of existential (derived) queries occurring during the evaluation
of a Magic Sets rewritten rule set. It is shown that the evaluation of Existential
Magic Sets rewritten rules using the soft consequence operator partly avoids the
redundant computations of alternative answer facts with respect to such existen-
tial queries.

Chapter 5 shows how deductive rule rewriting can be used for implementing
update propagation in stratifiable databases. To this end, we recall known trans-
formation techniques for generating deductive propagation rules specifying the
true changes in which the old database state differs from the new one after a
base update has been applied. Afterwards, we adopt the idea of structured up-
date propagation by incorporating Magic Sets optimizations into the proposed
update propagation rules. To this end, a modified Magic Updates transforma-
tion [Gri97, Man94] is presented which always yields softly stratifiable rules such
that the soft stratification approach can be used for their efficient evaluation.
This in turn represents a solution to stratification problems occurring in related
approaches like the structure update propagation method because the costly ap-
plication of too general inference mechanisms can be avoided. The proposed
Magic Updates transformation together with the soft stratification evaluation
technique then represents our soft update propagation approach. After compar-
ing it to the related structured update propagation method, its application to
integrity checking and materialized view maintenance is briefly discussed.

Chapter 6 is concerned with optimizing the alternating fixpoint computation
by using the results presented in previous chapters. After introducing the doubled
program approach to implementing the alternating fixpoint, the general positive
impacts of using update propagation rules for evaluating doubled programs is
discussed. Subsequently, with the sequential consequence operator a simplified
version of the soft consequence operator is presented for evaluating Magic Updates
transformed rules in doubled programs. This chapter concludes with a comparison
of our proposed soft alternating fixpoint method to the related approaches for the
efficient evaluation of residual programs.

Related Work

In the sequel we will outline the global context of the work in this dissertation. To
this end, we give a brief overview of related sub-areas of deductive rule research
by referring to selected publications.

First, we describe related work on query evaluation and on existential query
optimization with respect to stratified relations. Then we refer to publications
dealing with update propagation in stratifiable deductive databases. Finally, we
will provide a brief overview of methods for computing the well-founded semantics
of general, i.e., possibly unstratifiable, databases.
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Note that the following expositions aim at illustrating research that is pursued
in the respective areas. Therefore, we will not particularly discuss the sources
from which our own investigations emerge. Such publications are investigated in
more detail in the chapters where they are referenced.

Query Evaluation

Query processing represents a problem which can be efficiently solved only by a
top-down evaluation strategy. This is due to the fact that constants occurring
in a query with respect to a derived relation need to be pushed down as far as
possible to the underlying base relations in order to keep intermediate results
small. As already mentioned above, however, it is possible to simulate a top-
down evaluation strategy by a bottom-up inference mechanism. Therefore, we
distinguish proposals to query evaluation in deductive databases with respect to
the kind of inference mechanism they are based upon.

Top-down methods perform query evaluation in goal directed manner such
that computation is naturally limited to relevant parts of the database only.
Clark’s SLDNF resolution [Cla78] represents one of the earliest top-down method
which has the advantage of a goal-directed evaluation and an efficient stack-based
memory management. Since SLDNF cannot guarantee termination in presence of
recursion, and additionally may perform a lot of repeated computations of iden-
tical sub-goals, several extensions of SLD(NF) resolution with memoing have
been proposed, including extension tables [DW86], OLDT resolution [TS86],
QSQ [Vie88] and QRGT [Ull89] . The main idea is to keep a global table of
sub-goals and their answers which have been computed. If a sub-goal is identical
to or subsumed by a previous one, it is solved by solely using the answers already
computed for the previous sub-goal. These techniques have been generalized to
stratifiable recursion in [KT88, SI88]. The disadvantage of these ’pure’ top-down
solutions is that an expensive ’logic’ control is needed in order to provide com-
pleteness and soundness in presence of recursion.

Bottom-up approaches avoid this drawback by simulating a top-down eval-
uation strategy using transformed deductive rules on the basis of a very sim-
ple materialization process. The most important transformation-based query
evaluation methods result from the seminal proposals of the Magic Sets ap-
proach [BR86, BMSU86] and the related Alexander Method [RLK86] which have
been independently developed. Based on these two approaches, several propos-
als have been made aiming at refinement and extension of the original methods.
These include Generalized Magic Sets [BR91], Magic Templates [Ram91], Gener-
alized Supplementary Magic Sets [BR91], Magic Counting [SZ87b], Generalized
Magic Counting [BR91], Generalized Supplementary Magic Counting [BR91],
Magic Conditions [MFPR96], Minimagic Sets [SZ87a], Envelopes [Sag90], SLD-
Magic [Bra96] and Alexander Templates [Sek89].
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In [KP88, BPRM91, Che93, KSS95, Mor93] the applicability of Magic Sets
to stratifiable or even unstratifiable deductive databases is investigated. The
weak stratification approach by Kerisit and Pugin [KP88] represents a fixpoint-
based solution and is closely related to our proposed soft stratification method.
However, the weak stratification method is neither complete nor sound as shown
in Section 4.2.2. In contrast, the structured bottom-up method by Balbin et
al. [BPRM91] represents a correct solution to evaluating Magic Sets rewritten
rules in stratified databases. It uses a function for evaluating negative literals
which recursively performs local fixpoint computations over the relevant portion
of the Magic Sets transformed rules. The evaluation basically coincides with the
one performed by the soft stratification approach. However, the disadvantage of
their solution is that the nested fixpoint computations make it difficult or even
impossible to employ further rule optimization techniques.

Existential Query Optimization

An existential query is a query which contains no free variables such that the
generation of one answer fact is sufficient while all other derivations of the same
fact are not needed and ought to be avoided. The problem of optimizing (derived)
existential queries, however, has received little attention in the database commu-
nity up till now, and there exists no general solution yet. The first approach by
Ramakrishnan et al. [RBK88] suggested a solution based on pushing projections
into recursive rules. However, in principle this cannot solve the general problem
as the question of finding an equivalent schema with a different arrangement of
projections is undecidable. Another branch of research has focussed on existential
queries within a Magic Sets-transformed rule set, e.g. [NRSU89, Aze97, Beh00].
Naughton et al. [NRSU89] propose an optimization of the Magic Sets transforma-
tion such that the arity of the recursive answer predicates in the transformed rules
is reduced. In [Aze97, Beh00] subsumption effects between magic sub-queries are
used to avoid redundant computations. As an example, the query ?− path(1, Y)
subsumes the existential query ?− path(1, 4) such that the evaluation of the lat-
ter can be stopped after generating the corresponding sub-query fact m pathbf(1)
with respect to the first query. However, these methods still do not represent
a complete solution to existential query optimization because it is necessary to
find more general sub-queries in order to avoid the redundant computation of
existential queries.

Update Propagation

Methods for update propagation have been mainly studied in the context of
Datalog (e.g. [Dec86, KSS87, LST87, BDM88, Küc91, Oli91, BMM91, UO92,
GMS93, CW94, Man94, UO94, TO95, LL96, MT99, MT00]), relational algebra
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(e.g. [QW91, Man94, GL95, CGL+96, CKL+97, BDD+98, DS00, SBLC00]), and
SQL (e.g. [CW90, CW91]). Methods in Datalog can be divided into approaches
based on a top-down or bottom-up evaluation strategy. A top-down evaluation
for integrity checking is proposed by Olivé in [Oli91] where SLDNF resolution is
used as basic inference mechanism. However, SLDNF resolution cannot guarantee
termination for recursively defined predicates, and its tuple-oriented evaluation
technique is not well-suited for the database context. Bottom-up methods ei-
ther provide no goal-directed rule evaluation with respect to induced updates
(e.g. [Küc91]) or suffer from stratification problems arising when transforming
an original stratifiable schema (e.g. [Gri97, Man94]). Hence, for the latter ap-
proaches (for an overview cf. [Gri97]) the expensive application of more general
evaluation techniques like the alternating fixpoint [vG93] is needed.

In general, approaches formulated in relational algebra or SQL are not capa-
ble of handling (non-linear) recursion, the latter usually based on transformed
views or specialized triggers. Transformed SQL-views directly correspond to our
proposed soft update propagation method for the non-recursive case. The appli-
cation of triggers (e.g. production rules even for recursive relations in [CW94]),
however, does not allow for the reuse of intermediate results obtained by query-
ing the derivability and effectiveness tests. In [GL95] an algebraic approach to
view maintenance is presented which is capable of handling duplicates but can-
not be applied to general recursive views. For recursive views, [GMS93] proposes
the ”Delete and Rederive”-method which avoids the costly test of alternative
derivations when computing induced deletions. However, this approach needs to
compute overestimations of the tuples to be deleted, and additional pretests are
necessary to check whether a view is affected by a given update [LS93].

The importance of integrating Magic Sets with traditional relational optimiza-
tions has been discussed already in [MP94]. The structured propagation method
in [Gri97] represents a bottom-up approach for computing Magic Sets transformed
propagation rules. However, as these rules are potentially unstratifiable, this ap-
proach is based on the alternating fixpoint computation [vG93] leading to an
inefficient evaluation.

Computing the Well-founded Semantics

The well-founded semantics has been introduced by Van Gelder et al. in [vGRS88,
vGRS91]. In contrast to the stable model semantics (which can yield more than
one model or no model at all), the well-founded semantics always yields a unique
model but is in general non-normal, i.e., there may be undefined atoms.

Approaches to the computation of well-founded models can be divided into
methods using the alternating fixpoint (e.g. [vG93, KSS91, KSS95, SNV95]) and
into those based on the residual program method (e.g. [Bry89, DK89, BD95,
BZF96]). In [KSS91, KSS95], Kemp et al. propose a transformation-based ap-
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proach to the efficient implementation of the alternating fixpoint based on the
so-called doubled program rewriting. This approach will be discussed in more
detail in Chapter 6 where we propose further improvements leading to our soft
alternating fixpoint method.

The alternative residual program approach is based on so-called conditional
facts, i.e., facts depending on a set of ’delayed’ negative literals. They might be
seen as ground rules solely consisting of negative body literals making negative
dependencies within a deductive rule set explicit. Methods for efficiently evalu-
ating residual programs have been suggested in [BZF96, BZF97, BDFZ01] where
the authors propose a delayed generation and reduction of certain conditional
facts. At the end of Chapter 6, we will show that the same optimization effects
can be achieved in a much simpler way by our soft alternating fixpoint approach
which additionally fits well with database context.





Chapter 2

Deductive Databases

This chapter introduces basic concepts of deductive databases. Section 2.1 is
devoted to facts and rules. Queries and static integrity constraints are considered
in Section 2.2 and 2.3, respectively, whereas Section 2.4 is concerned with updates.
The syntax of each concept, based on the well-known database language Datalog,
is presented first while the underlying semantics is considered afterwards. Note
that the presentation of these concepts is partly based on [CGH94] and [Gri97].

2.1 Facts and Rules

Throughout this thesis, we assume that deductive databases consist of facts, de-
ductive rules, and integrity constraints. In principle, every database model and
every declarative query language can be used for formulating these concepts. We
use Datalog as a syntactical basis, as this language has evolved into a kind of stan-
dard in the field of deductive databases. In contrast to SQL:1999 views, Datalog
rules are mainly used because of their syntactic simplicity which makes them es-
pecially suited for transformation-based techniques. Another reason for the wide
acceptance of Datalog is that it is based on an agreed declarative semantics in
form of well-founded models.

2.1.1 Syntax

The syntax of Datalog is based on function-free Horn clauses. In the following we
assume that a fixed alphabet is given including all symbols which may be used
for constructing database clauses and update statements. Apart from connectives
and punctuation symbols, we distinguish a universe of constants U = {a, b, c, . . .},
a set of variables {X,Y, Z, . . .} and a set of predicate symbols {p, q, r, . . .}. Each
predicate symbol (or relation symbol) is associated with a certain arity n ≥ 0
and defines an n-ary relation over U.

15
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Definition 2.1 (Datalog Term) A Datalog term is either a constant or a vari-
able (i.e., we restrict ourselves to function-free terms).

Definition 2.2 (Atomic Datalog Formula) Let p be an n-ary predicate sym-
bol and ti (i = 1, . . . , n and n ≥ 0) Datalog terms, then

p(t1, . . . , tn)

(or simply p(�t)) is denoted atomic formula or atom. If n = 0, we write p instead
of p(). An atom p(t1, . . . , tn) is ground, if every term ti is a constant.

In the following, atoms will also be used for representing queries, and ground
atoms are used for representing integrity constraints.

Definition 2.3 (Datalog Formula) A Datalog formula is either

1. the propositional constant true,

2. an atomic formula (or positive literal) A,

3. a negated atomic formula (or negative literal) ¬A, or

4. a conjunction L1∧. . .∧Ln of literals where n ≥ 1. A conjunction L1∧. . .∧Ln

may also be considered as a set {L1, . . . , Ln}.

If L is a literal (positive or negative), we use pred(L) to refer to the predicate
symbol occurring in L.

In this thesis we exclusively deal with allowed (safe or range-restricted) facts,
updates and rules, respectively. Several different definitions of allowedness have
appeared in the literature [Nic82, Ull85, Cla78]. The following notions are used to
define allowedness equivalent to Clark’s original definition [Cla78] as this concept
will be refined later when query evaluation is considered.

Definition 2.4 (Variable Occurrences) For a formula W, the set of all vari-
ables occurring in W is denoted vars(W). If vars(W)= Ø, the formula W is
called ground. By vars

− we denote all variables solely occurring within negative
literals, whereas vars+ denotes variables occurring in at least one positive literal.
For any atom A and any conjunction of literals W ≡ L1 ∧ . . . ∧ Ln (n ≥ 1) we
define:

- vars
−(A) := Ø and vars

+(A) := vars(A),

- vars
−(¬A) := vars(A) and vars

+(¬A) := Ø,

- vars
−(W ) :=

�
i=1,...,n

vars
−(Li) \

�
i=1,...,n

vars
+(Li), and

vars
+(W ) :=

�
i=1,...,n

vars
+(Li).
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The following notion of a database clause is used to formally introduce the notions
fact and deductive rule subsequently.

Definition 2.5 (Database Clause, Fact, Rule) A database clause is an ex-
pression of the form

A ← W

where A is an atom and W is a formula. The atom A is called head and the
formula W body of the database clause. If W ≡ true, then the body and the
implication arrow can be omitted and A is called a fact. Otherwise, the clause is
called a deductive rule.

If A is the head of a given database clause C ≡ A ← W , pred(C) denotes the
predicate symbol of A. For a set of clauses C, pred(C) is defined as

�
c∈C pred(c).

As already mentioned above, the concept allowedness plays an important role
in the context of deductive databases. A database clause is allowed if all variables
occurring in the rule’s head do also occur in at least one positive literal of the
rule’s body. In addition, there must be no variable solely occurring in negative
body literals.

Definition 2.6 (Allowed Database Clause) A database clause A ← W is
called allowed, if the following conditions hold:

vars(A) ⊆ vars
+(W ) and vars

−(W ) = Ø.

Note that this definition requires (allowed) facts to be ground. In the following
we will always assume a database clause (fact or deductive rule) to be allowed
(safe).

Definition 2.7 (Deductive Database) A deductive database D is a tuple
�F ,R� where F is a finite set of facts, and R is a finite set of deductive rules
such that pred(F) ∩ pred(R) = Ø. Within a deductive database D = �F ,R�, a
predicate symbol p is called derived (view predicate), if p ∈ pred(R). The pred-
icate p is called extensional (or base predicate), if p ∈ pred(F). Furthermore,
pred(D) := pred(F)∪· pred(R) denotes the set of all predicate symbols occurring
in D.

For simplicity of exposition, and without loss of generality, we assume that a
predicate is either base or derived, but not both, and that constants do neither
occur in rule heads nor in body literals referring to a derived relation. Both
conditions can be easily achieved by rewriting a given database.

Example 2.1 As an example consider the following allowed deductive rules for
defining the derived relations path and one way:
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one way(X) ← path(X, Y) ∧ ¬path(Y, X)
path(X, Y) ← edge(X, Y)
path(X, Y) ← edge(X, Z) ∧ path(Z, Y)

Relation path is the transitive closure of edge. Relation one way is the first
projection of facts in edge which do not participate in cycles within the transitive
closure path.

Although the main focus of this thesis lies on stratifiable databases, we will
also refer to other classes of deductive databases or rule sets, respectively. The
classification of databases is purely syntactic and depends on the use of negation
within the rules considered. It is defined by means of dependencies between
predicates in a given rule set.

Definition 2.8 (Predicate Dependency Graph) Let D = �F ,R� be a de-
ductive database and pred(D) the set of all predicate symbols in D. The pred-
icate dependency graph of D is the labelled directed graph GD = �V, E� where
V = pred(D) and E is a set of labelled edges. With p, q ∈ pred(D), the set of
rules containing positive dependencies R+

p,q
is defined as

R+
p,q

:= {A ← W ∈ R | pred(A) = p and
W contains a positive literal L with pred(L) = q}

and the set of rules containing negative dependencies R−
p,q

is defined as

R−
p,q

:= {A ← W ∈ R | pred(A) = p and
W contains a negative literal L with pred(L) = q}.

E contains a negative edge (q, p, neg) with p, q ∈ pred(D) iff R−
p,q
�= Ø and, E

contains a positive edge (q, p, pos) iff R+
p,q
�= Ø and (q, p, neg) /∈ E.

Definition 2.9 (Predicate Dependencies) Let D be a deductive database and
p and q predicate symbols occurring in D, i.e., p, q ∈ pred(D). We say that

1. p depends on q (p ��� q) iff the predicate dependency graph GD of D contains
a path from q to p of length n ≥ 1,

2. p depends negatively on q (p
−��� q) iff p ��� q and there is a path from q to

p that includes at least one negative edge,

3. p depends positively on q (p
+��� q) iff p ��� q and p depends not negatively

on q,

4. p and q are mutually dependent on each other (p ≈ q) iff p ��� q and
q ��� p.
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With p ∈ pred(D) and depR(p) = {q ∈ pred(D) | p ��� q }, we denote the
set of rules by which relation p is defined as defR(p) = {r ∈ R | pred(r) ∈
depR(p) ∪ {p} }.

As an example consider again the deductive rules from Example 2.1. The
dependency graph contains no positively labelled edge from path to one way be-
cause of the negative dependency between these relations. The corresponding
dependency graph then is as follows:

edge

path

one_way

pos

pos

neg

In the following we introduce various database classes which are relevant for sub-
sequent discussions. In positive databases, the usage of negation is disallowed,
while in semi-positive databases negative references are permitted to extensional
relations only. In stratifiable databases, derived relations may be negatively ref-
erenced as well, but recursion through negative predicate occurrences is not al-
lowed. A database is hierarchical, if its predicate dependency graph does not
contain cycles, i.e., there are no recursive rules in the database.

Definition 2.10 (Database Classes) Let R be a deductive rule set and RelR
the set of all predicate symbols occurring in R. Then R is called

1. positive iff there are no predicate symbols p, q ∈ RelR such that p
−��� q.

2. semi-positive iff there are no predicate symbols p, q ∈ RelR such that p
−��� q

and q ∈ pred(R).

3. hierarchical iff there is no predicate symbol p ∈ RelR such that p ≈ p.

4. stratifiable, iff there is no predicate symbol p ∈ RelR such that p
−��� p.

A deductive database D = �F ,R� is called positive, semi-positive, hierarchical, or
stratifiable if R is positive, semi-positive, hierarchical, or stratifiable, respectively.

In the literature, the notions stratifiable database and stratified database are
often used as synonyms. In this work, however, we will distinguish between these
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two notions. In the following a database is called stratifiable if the rule set may be
partitioned into rule sets such that none of them contains a negative dependency.
In contrast to this, a stratifiable database is denoted stratified only if a particular
stratification is given.

The reason for this distinction is that we will extend the concept stratifica-
tion to general (possibly unstratifiable) databases and use the notion layering
instead. In contrast to the concept stratification, a layering allows databases to
be partitioned in such a way that individual layers may also contain negative
dependencies. These layers are then called unstratified even though they may be
stratifiable as well.

Definition 2.11 (Layering) Let R be a deductive rule set. A layering λ on R

is a mapping from the set of all predicate symbols RelR occurring in R to the set
of non-negative integers IN such that for all predicate symbols p, q ∈ RelR the
following holds:

p ∈ RelR \ pred(R) ⇐⇒ λ(p) = 0
p ∈ pred(R) ⇐⇒ λ(p) ≥ 1
p ��� q =⇒ λ(p) ≥ λ(q).

In addition, λ defines a partition R1 ∪· . . . ∪· Rn of R such that for each predicate
symbol p ∈ pred(R) all rules r referencing p in their heads, i.e., pred(r) = p,
are included in Rλ(p).

A stratification is a special layering which induces a partition of a given rule set
such that all positive derivations of relations can be determined before a negative
literal with respect to one of those relations is evaluated.

Definition 2.12 (Stratification) Let R be a deductive rule set. A layering λ
on R is called stratification on R iff in addition to the layering conditions for all
predicates p, q ∈ pred(R):

p
−��� q =⇒ λ(p) > λ(q).

If a is a stratification, R is called stratified with respect to λ, and each layer is
called a stratum.

Obviously, a rule set R is stratifiable iff a stratification of R exists. Apart from
generally classifying a given deductive rule set R, it is possible to further dis-
tinguish subsets of R according to the different way negation is applied in the
rules of R. This classification plays an important role as it allows for further
optimizations when the rule set is evaluated.

Definition 2.13 (Deductive Rule Classes) Let R be a deductive rule set and
λ a layering on R partitioning the rule set R into subsets R1, . . . ,Rm. Then the
deductive rules of each partition Ri are further divided into the rule classes R◦

i
,

R
×
i
, and R∗

i
.
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1. The class R◦
i

comprises all hierarchical rules from Ri, that is, all rules
defining relations which may reference relations of lower layers only:

R◦
i

:= { r | r ≡ A ← W ∈ Ri such that
for all literals L in W: λ(L) < i}.

2. The class R×
i

comprises all stratified rules from Ri which positively refer to
at least one relation of the same layer but negatively reference relations of
lower layers only:

R
×
i

:= { r | r ≡ A ← W ∈ Ri such that
there exists a positive literal L in W where λ(L) = i,
and for all negative literals L in W: λ(L) < i}.

3. The class R∗
i

comprises all unstratifiable rules from Ri which include at
least one negative reference to a relation of the same layer:

R∗
i

:= { r | r ≡ A ← W ∈ Ri such that
there exists a negative literal L in W where λ(L) = i}.

If R is a semi-positive rule set and the rule classes are established with respect
to the minimal layering on R resulting in the partition R = R1, the rule class
R◦

1 includes all rules referencing base relations only while R×
1 comprises all other

rules, and R∗
1 is empty.

2.1.2 Semantics

In this section we present a model-based semantics for deductive databases in
a non-constructive way. At the beginning we briefly review the notions of Her-
brand base and Herbrand model, as these concepts form a basis of the following
expositions. For a more detailed presentation we refer to [Llo87] and [Apt90].

Definition 2.14 (Herbrand Base) Let D be a deductive database. The Her-
brand base HD of D is the set of all ground atoms that can be constructed from
the predicate symbols and constants occurring in D.

As we consider finite sets of deductive rules with function-free literals only, the
Herbrand bases will always be finite.

Definition 2.15 (Herbrand Interpretation, Model) Let D = �F ,R� be a
deductive database and HD the Herbrand base of D. Any subset I of HD is a
Herbrand interpretation of D. I is a Herbrand model of D if I is a model of
F ∪R, i.e., ∀f ∈ F ∪R : I |= f . A Herbrand model of D is the least Herbrand
model of D if it is included in every Herbrand Model of D, and it is called minimal
if none of its subsets is a Herbrand model of D.
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A deductive database is syntactically given by a set of facts and a set of rules
which we call the explicit state of the database. In contrast to this we define the
implicit state of a database to be the set of all positive and negative conclusions
that can be derived from the explicit state.

Definition 2.16 (Implicit Database State) Let D = �F ,R� be a deductive
database. The implicit database state MD of D is defined as the well-founded
model [vGRS91] for F ∪R:

MD = I+ ∪· ¬ · I−

where I+, I− ⊆ HD are sets of ground atoms. The set I+ represents the true
portion of the well-founded model while ¬ · I− comprises all true negative con-
clusions, i.e., I− includes all false atoms and ¬ · I− includes all atoms in I− in
negated form. The set of undefined atoms is implicitly given by HD \ (I+ ∪· I−)
comprising all ground atoms of the Herbrand base which are neither true nor
false.

According to the definition above, the implicit state of a database partitions the
Herbrand base into the set of true conclusions, the set of negative conclusions,
and the set of undefined atoms. However, for databases having a total well-
founded model, as guaranteed for stratifiable ones, the set of undefined atoms is
known to be empty, and the set of false atoms can be derived from the set of true
conclusions. In this case, the implicit state can be solely represented by the set
of true conclusions (while the Herbrand base is implicitly given), i.e.,

MD = I+∪· ¬ · I+

where I+ denotes the complement of I+ with respect to the Herbrand base, i.e.,
HD\I

+. Based on these considerations the implicit state of a stratifiable database
may also be represented by the set of true atoms only, i.e., MD = I+. With
respect to an arbitrary well-founded model MD, we will use M+

D for referring to
the true portion of it, i.e., M+

D = I+ with I+∪· ¬ · I− = MD. In addition, we
will employ the following equivalences.

Lemma 2.1

1. Let D = �F ,R� be a stratifiable database. Then the well-founded model
MD of D coincides with the perfect model 1 of D.

2. Let D = �F ,R� be a positive or semi-positive database. Then the well-
founded model MD of D coincides with the least Herbrand model of D.

1For a definition of perfect models we refer to Section 3.2 where we recall a constructive
method for determining the perfect model of a stratifiable database by means of iterated fixpoint
computation [ABW88]. Note that perfect models are defined in [Prz88] in a more general form.
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Proof :

1. cf. [vGRS91].

2. For a semi-positive database there exists only one minimal Herbrand model
which is identical with its least Herbrand model. As each perfect model is
a minimal Herbrand model [ABW88] the proposition follows.

✷

This model-based semantics is not well-suited for computing the implicit state of a
given database as it defines the semantics in a non-constructive way. Therefore,
in Chapter 3 we will present the fixpoint semantics for the different classes of
deductive databases in order to provide constructive methods for computing the
corresponding well-founded models. Nevertheless, the introduced model-based
semantics represent the theoretical basis of propositions and proofs in subsequent
sections.

2.2 Queries

A database language can usually be divided into data definition language (DDL)
and data manipulation language (DML), the latter one including the data query
language (DQL). A query is to be formulated by means of the data query language
specifying a new temporary relation which does not belong to the actual database.
In Datalog, a query is given by an atom referencing an existing base or derived
relation. More complex queries may require additional rules to be added to the
database schema. In this way, Datalog’s DQL represents a query language which
is relationally complete when built-in predicates are included as well.

2.2.1 Syntax

Each query represents a subset of an existing extensional or intensional relation
of a given database.

Definition 2.17 (Database Query) Let D = �F ,R� be a deductive database.
A database query with respect to D is an expression of the form

?− A

where A is an atom referencing a relation in D, i.e., pred(A) ∈ pred(D).

As rules for defining an atomic query are part of the database schema, they are
assumed to be safe. Therefore, it is not necessary to additionally define safe
queries as this property is already provided. Note that this restricted view of
queries is assumed only for the sake of simplicity of exposition and does not
restrict the expressiveness of the query language considered. In the following
section we will introduce the semantics of queries using the former introduced
semantics of deductive databases.
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2.2.2 Semantics

The semantics of a query is defined by means of its answer set which comprises
all true conclusions matching the query.

Definition 2.18 (Answer Set) Let D be a deductive database, Q a query with
respect to D and MD the well-founded model of D. The answer set of Q, denoted
by ans(Q,D), is defined as

ans(Q,D) := {L | L ≡ Qσ, σ is a ground substitution
for all variables in Q and L ∈MD}.

Note that a boolean query is represented by a ground atom and is evaluated
to true if the corresponding answer set contains this ground atom. Otherwise,
the answer set is empty. Boolean queries form the basis for integrity constraints
which will be considered in the following section.

2.3 Integrity Constraints

In a database context, static and dynamic constraints are distinguished. A static
integrity constraint induces a boolean condition which has to be satisfied in ev-
ery consistent database state whereas dynamic constraints induce restrictions on
database state transitions. In the following we will solely consider static con-
straints which may reference base as well as derived relations.

2.3.1 Syntax

Integrity constraints are represented by means of ground atoms which have to
be derivable in every state of a database. Similar to queries, we assume more
complex integrity constraints to be formulated by means of ground atoms which
reference derived relations whose corresponding defining rules are added to the
database schema. However, these rules are not part of a constraint definition but
are considered as ’regular’ deductive rules.

Definition 2.19 (Integrity Constraint) Let D = �F ,R� be a deductive data-
base. An integrity constraint c with respect to D is a ground atom such that
pred(c) ∈ pred(D).

Given a nonempty set of integrity constraints C with respect to a deductive
database D, we will use the triple �F ,R, C� to specify D in the following. In
the next section the semantics of integrity constraints is introduced by means of
consistent database states.
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2.3.2 Semantics

In a consistent database state every static integrity constraint must be satisfied;
that is, every ground atom specified as an integrity constraint must be derivable.

Definition 2.20 (Consistent Database State) Let D = �F ,R, C� be a de-
ductive database with constraints and MD the well-founded model of �F ,R�. D
is called consistent iff C ⊆MD. Otherwise D is called inconsistent.

In the context of integrity constraints, the semantics of a deductive database is
defined if and only if all constraints are satisfied.

Definition 2.21 (Semantics of Deductive Databases with Constraints)
Let D = �F ,R, C� be a stratifiable deductive database with constraints and MD
the well-founded model of �F ,R�. If D is consistent, then MD is the semantics
of D. Otherwise the semantics of D is undefined.

Example 2.2 The following stratifiable rules, constraints and facts represent a
consistent deductive database D = �F ,R, C�:

R:
ic1 ← path(X, Y)
ic2 ← ¬aux

aux← edge(X, X)
one way(X) ← path(X, Y) ∧ ¬path(Y, X)
path(X, Y) ← edge(X, Y)
path(X, Y) ← edge(X, Z) ∧ path(Z, Y)

C:
ic1, ic2

F :
edge(1,2), edge(1,4), edge(2,3)

Apart from the rules of the previous Example 2.1 for defining the relations path

and one way, this example contains further rules for defining the derived rela-
tions ic1 and ic2 which are used for specifying corresponding integrity constraints.
Constraint ic1 requires that in every consistent database state at least one path-
tuple exists. Constraint ic2 is used to prevent cycles in edge. The semantics
of D is given by its total well-founded model MD = F ∪ {path(1, 2), path(1, 4),
path(2, 3), path(1, 3)} ∪ {one way(1), one way(2)} ∪ {ic1, ic2}.

Integrity constraints are invariant against state modifications caused by update
operations. The following section defines an update language well going with
deductive databases as defined above.
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2.4 Updates

In this section we introduce the syntax and semantics of modifications on exten-
sional as well as intensional relations of a given deductive database. We refrain
from presenting a concrete update language but rather concentrate on the re-
sulting sets of update primitives specifying insertions and deletions of individual
facts. In principle, every set-oriented update language can be used that allows
for specification of modifications of this kind. After introducing the syntax of
our update primitives, we define the semantics of an update in a set-oriented way
which fits with the semantics of deductive databases introduced above. We will
use the notion Update to denote the ’true’ changes caused by a transaction only;
that is, we restrict the set of facts to be updated to the minimal set of updates
where compensation effects (given by an insertion and deletion of the same fact or
the insertion of facts which already exist in the database) are already considered.
Therefore, updates may be seen as the effect of an applied transaction.

Definition 2.22 (Update) Let D = �F ,R� be a stratifiable deductive database.
An update uD is a pair �u+

D
, u−

D
� where u+

D
and u−

D
are sets of base facts with

pred(u+
D
∪ u−

D
) ⊆ pred(F), u+

D
∩ u−

D
= Ø, u+

D
∩ F = Ø and u−

D
⊆ F . The

atoms u+
D

represent facts to be inserted into D, whereas u−
D

contains the facts to
be deleted from D.

We will use the notion induced update to refer to the entire set of facts in which
the new state of the database differs from the old state after an update of base
tables has been applied.

Definition 2.23 (Induced Update) Let D be a stratifiable database, MD the
semantics of D and uD an update. Then uD leads to an induced update uD→D�

from D to D� which is a pair �u+
D→D� , u−D→D�� of sets of ground atoms such that

u+
D→D� = M

+
D�\M

+
D

and u−
D→D� = M

+
D
\M

+
D�. The atoms u+

D→D� represent the
induced insertions, whereas u−

D→D� consists of the induced deletions.

The computation of the induced updates of derived relations resulting from an
explicitly performed update of the extensional fact base is called update propaga-
tion and will be considered in more detail in Section 5. As each induced update
uD→D� contains the ’net’ difference between old and new database state, it is
possible to compute the old state from the new one, and vice versa. However, for
computing the other state of a database efficiently, it is necessary to refer to the
specific changes of relations occurring in D. We will use the notion delta relation
to access induced insertions or deletions explicitly.

Definition 2.24 (Delta Relation) Let D be a stratifiable database and uD an
update. For each predicate symbol p ∈ pred(D), a pair of delta relations �∆+

p, ∆−p�
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is defined for representing the insertions and deletions induced on p by the update
uD. The delta relations defined for a predicate p have the same arity and type as
p, i.e., if p is extensional respectively derived, then ∆+

p and ∆−p are extensional
respectively derived as well.

In general, update propagation methods analyze the deductive rules of a given
database in order to systematically determine such delta relations which provide
a focus on the specific changes of relations after an update has been applied.





Chapter 3

Model Computation

This chapter deals with computing the well-founded model, i.e., the implicit state,
of a deductive database by means of fixpoint computations. We will use the
fixpoint semantics of deductive databases which provide constructive methods
for determining the semantics of a deductive rule set with respect to a given
database. In this denotational semantics approach, a deductive rule denotes
a fact-generating function instead of a logical formula. In order to formalize
the derivation of facts in this context we define different consequence opera-
tors based on the immediate consequence operator introduced by van Emden
and Kowalski [vEK76]. Among them, the soft consequence operator [Beh03]
from Section 3.2.2 represents the most important one in this thesis because it
serves as the basic evaluation mechanism for softly stratifiable rules and related
transformation-based techniques proposed in subsequent chapters.

All consequence operators presented in the following were originally introduced
for providing a fixpoint-based characterization of the semantics of different deduc-
tive database classes, namely semi-positive, stratifiable, and general databases.
Section 3.1.1 is concerned with determining the implicit state of semi-positive
databases using a transformation-based approach to the well-known differential
fixpoint computation. Section 3.2.1 then deals with stratifiable databases and
shows how the soft consequence operator can be used for implementing the it-
erated fixpoint computation. Finally, Section 3.3.2 investigates arbitrary, i.e.,
possibly unstratifiable, databases. It presents the approach proposed by Kemp,
Srivasta, and Stuckey in [KSS91, KSS95] for implementing the alternating fixpoint
computation introduced by Van Gelder in [vG89]. In Section 6.2 we will further
enhance their method by avoiding its drawback of repeated computations. In
our approach, such recomputation is prevented by incorporating update propa-
gation and soft stratification leading to an incremental algorithm which extends
the differential evaluation techniques for stratifiable databases.

The individual fixpoint computations are not defined in isolation, but are based
upon each other. In the following, they will serve as basic evaluation methods for
computing the semantics of the three different database classes. However, they

29
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do not represent realistic database engines as many classical techniques for query
optimization in relational systems, e.g. algebraic manipulation, have not been
considered. In addition, further methods for optimizing recursive rule evaluation,
e.g. [BR86, Han88, RBK88, NRSU89, KRS90, RSS94, LTD95, NRSU95, VM96,
SMK97, Cha98], orthogonal to the overall fixpoint computation processes have
been omitted as well. Therefore, it is important for the quality of the proposed
fixpoint computation methods to pose as few restrictions as possible to the appli-
cation of rule sets in each iteration round. The original definition of stratifiable
rules [ABW88, vG88, Naq86] is an example of a too restrictive way of handling
rules with negation as dependencies between predicates and not between rules
are considered. It is, however, often sufficient to delay the application of rules
which actually have negated derived body literals only and not the entire set of
rules that define a relation (cf. also [RSS94, IN88]). Fixpoint computations de-
fined in a most general manner then can be used for extending existing relational
systems allowing the correct evaluation of recursive views as proposed in the
new SQL:1999 standard and still being most flexible in the underlying relational
optimization phase.

3.1 Differential Fixpoint Computation

The implicit state of a deductive database is generally defined as its well-founded
model, which in case of semi-positive databases coincides with the least Herbrand
model. Differential fixpoint computation or rather semi-naive materialization is
an approach to efficiently computing the least Herbrand model of semi-positive
databases which has been commonly accepted as ’the method of choice in the
deductive database literature’ [NR91]. This is in particular caused by the fact
that this approach forms an essential component of iterated (cf. Section 3.2) as
well as alternating fixpoint computation (cf. Section 3.3).

In Section 3.1.1 we present the theoretical foundations of the fixpoint semantics
by means of consequence operators. Section 3.1.2 then gives an example showing
the general course of differential fixpoint computation. Afterwards we discuss
various approaches to implementing differential fixpoint computations.

3.1.1 Computing the Least Herbrand Model

In order to formalize the derivation of facts in this denotational semantics ap-
proach we recall the immediate consequence operator adopting the presentation
in [Man03]. Note that this consequence operator is based on the derivation
operator introduced by van Emden and Kowalski [vEK76].
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Definition 3.1 (Immediate Consequence Operator) Let R be a set of de-
ductive rules and f an arbitrary set of facts.

1. Given a rule r ≡ H ← A1∧ . . .∧An∧¬B1∧ . . .∧¬Bm ∈ R with n > 0 and
m ≥ 0, the consequence operator T defines the set of all facts which can be
derived by a single application of r with respect to f :

T [r](f) := { Hσ | σ is a ground substitution,
∀ 1 ≤ i ≤ n: Aiσ ∈ f and ∀ 1 ≤ j ≤ m: Biσ /∈ f}.

2. The consequence operator TR defines the set of all facts derivable by the
simultaneous application of all rules contained in R:

TR(f) :=
�

r∈R T [r](f).

3. The immediate consequence operator T �

R accumulates the set of input facts
and the set of derivable facts:

T �

R(f) := TR(f) ∪ f .

The consequence operator T defines the set of all facts which can be derived by a
single application of a deductive rule. Negative literals are evaluated according to
the negation as failure-principle [Cla78] which itself is based on the closed world
assumption [Rei78]. The simultaneous application of a set of deductive rules is
defined by the operator TR. During the evaluation, the newly derived facts of
any T [ri]-application are not visible to other T [rj]-computations. Therefore any
rules depending on derived relations may necessitate further TR-applications. As
the intermediate results of these applications must be kept in the course of the
overall derivation process, the operator T �

R accumulates its input facts and the
set of derivable facts.

As the immediate consequence operator T �

R is monotonic for semi-positive
databases, its least fixpoint lfp(T �

R,F) exists [vEK76], where lfp(T �

R,F) denotes
the least fixpoint of operator T �

R containing the set of facts F .

Lemma 3.1 Let D = �F ,R� be a positive or semi-positive database. The positive
portion of the total well-founded model MD of �F ,R� coincides with the least
fixpoint of T �

R, i.e.,

MD = lfp(T �

R,F)∪· ¬ · lfp(T �

R,F).

Proof : eg. [Llo87, p. 37-38]. ✷

Lemma 3.1 points out the way towards an iterative set-oriented bottom-up im-
plementation for materializing the well-founded model of semi-positive databases.
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In such a realization the immediate consequence operator is iteratively applied
to the database facts until all positive conclusions have been inferred. The dis-
advantage of this naive procedure, however, is that in each iteration round all
positive conclusions of preceding iteration rounds are repeatedly derived. This
well-known drawback is avoided in the semi-naive materialization strategy which
will be discussed in the following section.

3.1.2 Semi-naive Materialization

The semi-naive materialization approach is based on the idea that new facts can
only be derived, if at least one of the literals in a rule’s body refers to a fact which
has been newly inferred in the preceding iteration round. We will only present an
informal description of the global course of differential fixpoint computation. For
a more technical presentation we refer to publications like [Ban86, Ull89, CGT90,
CGH94].

The global course of differential fixpoint computation can usually be divided
into two phases. In the first one, this approach computes all facts which can be
directly derived from base facts; that is, all hierarchical rules solely referring to
extensional relations are applied once. Afterwards, in an iterative phase all further
facts are incrementally computed starting from the initially obtained derivations.
In each iteration round, the evaluation of at least one derived body literal is
restricted to the set of new facts which have been obtained in the preceding
iteration round. This guarantees that each derivation relies on at least one new
fact, and thus has not been computed before.

For storing newly derived facts of an iteration round we use a delta relation
∆p for every derived predicate p1. Delta relations contain all facts which have
been newly derived for a corresponding derived relation in the preceding iteration
round. In a transformation-based approach, these relations may be defined by
means of delta rules which can be derived from the original rule set.

Definition 3.2 (Delta Rules) Let R be a semi-positive rule set. The differen-
tial fixpoint transformation maps R to a set of delta rules R∆ which are defined
as follows:

1. For each deductive rule r ≡ p(�x) ← L1 ∧ . . . ∧ Ln ∈ R which contains no
derived body literal a derived delta rule of the form

∆p(�x) ← L1 ∧ . . . ∧ Ln ∧ ¬p(�x)

is in Rd

∆, where ∆p represents the delta relation of pred(p(�x)).

1Note that the notion delta relation will also be used in the context of update propagation
in Chapter 5 but with a quite different meaning. However, it will be always clear from the
context which kind of delta relation is meant.
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Algorithm 1 : Differential fixpoint computation

Initialization Phase:

∆f := TRd
∆
(F);

f := TRb
∆
(∆f) ∪ F ;

Iteration Phase:

repeat
∆f := TRd

∆
(f ∪∆f);

f := TRb
∆
(∆f) ∪ f ;

until ∆f = Ø;

2. For each deductive rule r ≡ p(�x) ← L1 ∧ . . . ∧ Ln ∈ R and for each derived
body literal Li ≡ q(�y) (1 ≤ i ≤ n) a derived delta rule of the form

∆p(�x) ← L1 ∧ . . . ∧ Li−1 ∧∆q(�y) ∧ Li+1 ∧ . . . ∧ Ln ∧ ¬p(�x)

is in Rd

∆, where ∆p and ∆q represent the delta relation of pred(p(�x)) and
pred(Li), respectively.

3. For each n-ary derived relation p with pred(p) ∈ pred(R) a basic delta rule
of the form

p(x1, . . . , xn) ← ∆p(x1, . . . , xn)

is in Rb

∆, where ∆p represents the delta relation of p and {x1, . . . , xn} are
distinct variables.

4. No other rules are in R∆ := Rd

∆ ∪· R
b

∆.

The application of the delta rules R∆ according to the Algorithm 1 presented
above corresponds to a semi-naive materialization of the original rule set R. In
this scheme, f denotes the intermediate state of the database comprising all facts
which have been computed in previous iteration rounds. In contrast to this, the
set ∆f comprises the extensions of all delta relations consisting of all facts which
have been newly inferred in the preceding iteration round.

In the initialization phase, all hierarchical rules in Rd

∆ which solely refer to
base relations are applied leading to the first delta facts of derived relations.
Afterwards, these derived relations are initialized with these delta facts as well,
using the basic delta rules Rb

∆. Their application leads to a first ’inflation’ of
the fact base F which is stored in the set f . During the iteration phase, all
rules in Rd

∆ are applied which refer to a non-empty delta relation in their rule
body. The added negated head literal in the bodies of these derived delta rules
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ensures that only new facts are stored in the corresponding delta relations. Note
that the consistent application of the non-cumulative TR(f)-operator leads to
an overriding of previously obtained delta facts. Therefore, it is necessary to
retain previously computed facts in f during the next step when delta facts are
’copied’ to derived relations by applying the basic delta rules Rb

∆. These steps
are iterated until no more facts can be inferred, i.e., until all delta relations are
empty. Afterwards, the database will be entirely materialized.

As an example consider the following (slightly modified) deductive database
D = �F ,R� which defines a derived relation path as the transitive closure of the
extensional relation edge:

R:
path(X, Y) ← edge(X, Y)
path(X, Y) ← path(X, Z) ∧ path(Z, Y)

F :
edge(1,2), edge(2,3), edge(3,4)

The differential fixpoint transformation of R would yield the following delta rules
R∆ = Rb

∆∪· R
d

∆:

Rb

∆:
path(X, Y) ←∆path(X, Y)

Rd

∆:
∆path(X, Y) ← edge(X, Y) ∧ ¬path(X, Y)
∆path(X, Y) ←∆path(X, Z) ∧ path(Z, Y) ∧ ¬path(X, Y)
∆path(X, Y) ← path(X, Z)∧∆path(Z, Y) ∧ ¬path(X, Y)

The application of these rules using the scheme in Algorithm 1 induces the fol-
lowing sequence of sets:

∆f := {∆path(1, 2), ∆path(2, 3), ∆path(3, 4)}
f := {path(1, 2), path(2, 3), path(3, 4)} ∪ F

�
initialization phase

∆f := {∆path(1, 3), ∆path(2, 4)}
f := {path(1, 3), path(2, 4)} ∪ f

∆f := {∆path(1, 4)}
f := {path(1, 4)} ∪ f

∆f := Ø
f := Ø ∪ f






iteration phase

The result in f coincides with the true portion M
+
D of the total well-founded

model of D = �F ,R�, i.e., f = lfp(T �

R,F). During the materialization process
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the recomputation of path-facts obtained in previous iteration rounds is avoided.
On the other hand, during the iteration phase all delta facts are computed twice
which is basically caused by the redundant storage of newly derived facts in delta
relations as well as in derived relations. This effect can be avoided by storing
newly derived facts of the i-th iteration round in delta relations only while the
corresponding derived relations still contain the facts of the previous (i-1) iteration
rounds. In this case, however, the derived delta rules must be inferred from the
original rule set by substituting not only a single derived body literal but any
subset of derived body literals by a corresponding delta relation. This would lead
to an exponential number of derived delta rules. In addition, this approach still
leaves room for redundancy but can be further refined such that no derivations
are considered twice during the course of the iteration process [BR87, RSS94]
realizing the so-called non-repetition property.

The transformation-based approach to differential fixpoint computation of
semi-positive databases forms a basis for further transformation-based approaches
capable of handling more general rule classes. In the following section stratifiable
rule sets are considered which are in particular interesting for systems allowing
the definition of recursive views according to SQL:1999.

3.2 Iterated Fixpoint Computation

Differential fixpoint computation as considered in the previous section correctly
determines the least Herbrand model of a semi-positive database. If in addition
we allow stratified negation with respect to derived relations, the approach has
to be extended such that negative literals are correctly handled according to the
negation as failure principle. This leads to a fixpoint computation process which
is iteratively applied to each stratum of the given rule set.

In Section 3.2.1 we recall the theoretical foundations of iterated fixpoint com-
putation based on the immediate consequence operator introduced above. In
Section 3.2.2 an alternative approach is presented based on the soft consequence
operator which itself represents a variant of Kerisit’s weak consequence opera-
tor [KP88]. This approach covers even more general rule classes, i.e., weakly and
softly stratifiable rules.

3.2.1 Computing the Perfect Model

The well-founded model of a stratifiable database coincides with its perfect model,
for which a constructive definition has been given, e.g., in [Apt90]. The perfect
model of a stratifiable database in turn can be determined by means of iterated
fixpoint computation [ABW88]. The basic idea of this computation method is to
postpone the evaluation of negative literals until all possible positive conclusions
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have been made. Afterwards, negative literals can be evaluated according to the
negation as failure principle.

Definition 3.3 (Iterated Fixpoint) Let D = �F ,R� be a stratifiable deductive
database and λ a stratification on D. The partition R1 ∪· . . . ∪· Rn of R defined
by λ induces a sequence of least Herbrand models F0, . . . ,Fn as follows:

F0 := F

Fi := lfp(T �

Ri
,Fi−1) with 1 ≤ i ≤ n.

The iterated fixpoint IFD of D is defined as IFD := Fn.

Lemma 3.2 Let D = �F ,R� be a stratifiable deductive database, λ a stratifica-
tion on D, R1 ∪· . . . ∪· Rn the partition of R induced by λ and IFD the iterated
fixpoint of D. Then the positive portion of the total well-founded model MD of
D coincides with the iterated fixpoint, i.e.,

MD = IFD ∪· ¬ · IFD.

Proof : This proposition follows from the fact that the well-founded model of a
stratifiable database D is identical with the perfect model of D (cf. [vGRS91])
whose positive portion coincides with the iterated fixpoint of D (cf. [Prz88]).

✷

The iterated fixpoint is obtained by subsequently ’materializing’ the strata of a
given stratification from bottom to top. As each stratum negatively refers to
already materialized strata only, each pair �Fi−1,Ri� with 1 ≤ i ≤ n corresponds
to a semi-positive database. Thus, differential fixpoint computation as considered
in Section 3.1.1 is applicable to each individual stratum for computing the corres-
ponding sequence of intermediate least fixpoints.

3.2.2 The Soft Consequence Operator

In this section, an alternative approach to computing the perfect model is pre-
sented which is based on the soft consequence operator [Beh03], a variant of
the weak consequence operator introduced by Kerisit and Pugin in [KP88]. The
weak consequence operator and the concept of weak stratification are part of
the Alexander method for query evaluation in stratifiable databases [RLK86] and
form a basis for our soft stratification approach for transformation-based methods
in subsequent sections (cf. Chapter 4). In this section, however, we concentrate
on the application and suitability of the soft consequence operator for material-
izing stratifiable databases only.

The soft consequence operator is a modified version of the immediate conse-
quence operator proposed for determining the semantics of softly stratified rule
sets which will be introduced in Section 4.2.2. The basic idea is to integrate the
iteration over the given ’strata’ into the consequence operator itself.
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Definition 3.4 (Soft Consequence Operator) Let D = �F ,R� be a deduc-
tive database and P = P1 ∪· . . . ∪· Pn an arbitrary partition of R. The soft con-
sequence operator T s

P is a mapping on sets of ground atoms and is defined for
I ⊆ HD as follows:

T s

P(I) :=






I if there is no j ∈ {1, . . . , n} such that T �

Pj
(I) � I

T �

Pi
(I) with i := min{j | T �

Pj
(I) � I}, otherwise.

As the soft consequence operator is monotonic, its least fixpoint exists and is
given by lfp (T s

P ,F). Although the operator T s

P is intended for handling softly
stratified rules, it is defined for an arbitrary partition of the input rule set making
it applicable to various kinds of stratification concepts. The following lemma
shows that T s

P can be already used for determining the semantics of stratified
deductive databases.

Lemma 3.3 Let D = �F ,R� be a stratifiable deductive database and λ a strat-
ification of R inducing the partition P of R. The positive portion of the total
well-founded model MD of �F ,R� is identical with the least fixpoint of T s

P , i.e.,

MD = lfp(T s

P ,F)∪· ¬ · lfp(T s

P ,F).

Proof : The proposition of the lemma is shown by induction on the number of
components in the partition P induced by the stratification λ on R. Let M+

D

denote the true portion of the total well-founded model MD of D in the following.

Suppose that l = 1: All negative literals in P1 solely refer to base relations.
Hence, the true portion of the well-founded model of the semi-positive rule set
P1 for an arbitrary fact base X is given by

M
+
�P1,X� = lfp (T �

P1
, X)

=def T �

P1
(T �

P1
(. . . T �

P1
(X) . . .)

=def lfp (T s

P1
, X)

This holds in particular for the fact base X = F .

Suppose that l > 1: Assuming

lfp (T s

P1∪· ...∪· Pl−1
, X) = M

+
�P1∪· ...∪· Pl−1,X�

holds for any fact base X, we have to show that

lfp (T s

P1∪· ...∪· Pl
, X) = M

+
�P1∪· ...∪· Pl,X�.

As the partition P = P1∪· . . . ∪· Pl is induced by the stratification λ of R the
following condition must hold:



38 Chapter 3. Model Computation

pred(Pl) ∩ pred(P1∪· . . . ∪· Pl−1) = Ø.

According to definition 3.4 the soft consequence operator T s

P always selects the
first component of P for evaluation which leads to a derivation of new facts. As-
suming a correct evaluation of components P1, . . . , Pl−1, only the stratum Pl may
lead to new derivations. Because of the condition above these newly computed
facts cannot lead to new derivations in a subsequent iteration round if applied to
T �

Pi
with 1 ≤ i ≤ l− 1. Since all negative literals in Pl reference relations in lower

strata only, we have

lfp (T s

P1∪· ...∪· Pl
, X) = T �

Pl
(T �

Pl
(. . . T �

Pl
(M+

�P1∪· ...∪· Pl−1,X�) . . .)

= lfp (T �

Pl
,M+

�P1∪· ...∪· Pl−1,X�)

= M
+
�P1∪· ...∪· Pl,X�

which holds in particular for the fact base X = F . ✷

The proof of Lemma 3.3 shows that in case of stratified rules R the least fix-
point computation of T s

R coincides with the iterated fixpoint computation of R.
Thus, differential fixpoint computation as considered in Section 3.1.1 is applic-
able. However, the soft consequence operator is more general, thus allowing the
application of partitioned rules P1∪· . . . ∪· Pn for which the condition

pred(Pi) ∩ pred(Pj) = Ø

with i �= j does not necessarily hold. In this case newly derived facts may
allow further derivations in lower partition sets. Therefore, for computing the
least fixpoint of T s

P it is necessary to start every iteration round with the lowest
partition set again. Differential fixpoint computation, however, becomes much
more complicated since every delta relation must be locally considered for every
partition set. Nevertheless, these partitions of rules in connection with the soft
consequence operator play an important role in query evaluation and in the soft
stratification approach which will be discussed in subsequent sections.

In order to increase efficiency of query evaluation the application of control
expressions has been proposed, e.g. in [RSS94]. Such control expressions allow
to describe any sequential application order of a set of deductive rules. Although
these expressions were originally discussed for semi-positive databases only, the
following example shows that rule ordering may as well be useful for an iterated
fixpoint computation:

R1 : p(X, Y, Y) ← p(X, Y, X)
R2 : p(X, Y, X) ← p(X, Z, X) ∧ p(Z, Y, X) ∧ ¬r(Y)
R3 : p(X, Y, X) ← e(X, Y) ∧ a(Y)

R4 : q(X) ← e(X, Y) ∧ a(Y)
R5 : r(Y) ← a(Y)
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Relation p negatively depends on the derived relation r and contains the tran-
sitive closure of the extensional relation e in the first two positions. The third
parameter of p is used to record all values in e. Suppose these rules are par-
titioned using a given stratification and subsequently applied to an underlying
relational database. Before the derived relations are materialized, several opti-
mization steps are executed, e.g. algebraic simplification is performed intended
to improve the cost of rule evaluation independent of the actual data or physical
structure of the data.

A partition P induced by a stratification which separates the evaluation of
the derived relations p and r could be P = P1∪· P2 with P1 = {R4, R5} and
P2 = {R1, R2, R3}. In a semi-naive bottom-up evaluation of P2, however, it
might be more efficient to apply R1 only once after R2, R3 have been evaluated
completely in order to avoid the repeated application of R1 for each newly inferred
p-fact. Additionally, the common subexpression in the rule body of R3 and R4

could be more efficiently processed if both rules were placed in the same partition
component. Thus, the partition P � = P1∪· P2∪· P3 with P1 = {R3, R4, R5}, P2 =
{R2} and P3 = {R1} seems to be more suitable for evaluation in spite of not
being directly induced by the given stratification. Only necessary dependencies
between rules ought to be considered resulting in a partial ordering of the rule set
rather than a mapping from the relations into strata. This shift from predicate
dependencies to rule dependencies seems to be more adequate when actually
computing the iterated fixpoint and already points to the basic idea of the soft
stratification approach.

In contrast to stratifiable databases, the well-founded model of an unstratifi-
able rule set is not necessarily a total model such that a fixpoint-based computa-
tion of positive conclusions only is not sufficient. Instead at least two of the three
sets of positive, negative and undefined conclusions have to be determined while
the third set again can be implicitly derived by complementing the two computed
sets of conclusions with respect to the given Herbrand base. A possible approach
for computing the well-founded model of general deductive databases is the alter-
nating fixpoint computation by Van Gelder [vG89, vG93]. It will be presented in
the following section while an efficient transformation-based approach to general
well-founded model computation will be discussed in Chapter 6.

3.3 Alternating Fixpoint Computation

In this section we discuss how the three valued well-founded model of arbitrary,
i.e., possibly unstratifiable, deductive databases can be determined by means
of fixpoint computations. The reason for dealing with this most general class
of databases is twofold: On the one hand, it is known from [Kol91] that un-
stratifiable (function-free) databases are strictly more expressive than stratifiable
ones and that there are actually interesting queries not expressible by stratifiable
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databases. On the other hand, unstratifiable rule sets may result from rewriting
techniques which transform an originally stratifiable rule set into a new rule set
which might be more suited for performing certain database tasks. A well-known
example is the Magic Sets transformation for query evaluation which may result
in unstratifiable rules if applied to an originally stratifiable rule set.

As far as the Magic Sets approach is concerned, however, our soft stratification
approach for Magic Sets transformed rules (cf. Chapter 4) avoids the expensive
computation of the well-founded model for arbitrarily unstratifiable databases
using the soft consequence operator. Additionally, all further transformation-
based approaches presented in subsequent sections of this thesis result in softly
stratifiable rules and thus allow the application of the soft stratification approach
which is more efficient than general well-founded model computation.

Despite of these results, it is nevertheless reasonable to provide a general mech-
anism for computing the well-founded model of arbitrary databases. Such a com-
ponent is most flexible as it can be exploited for any deductive database service
requiring the materialization of a rewritten database. In fact, it subsumes even
approaches where Magic Sets is applied to a certain class of unstratifiable rules
on which this transformation is still known to be sound [KSS95].

Bottom-up approaches to the computation of well-founded models for arbi-
trary databases have been proposed in [KSS91, KSS95, SNV95, Bry89, BZF96]
whereas other related approaches like [Ros90, LR92, RSS92] restrict the con-
sidered database class in the one or the other way. The approach by Kemp,
Srivasta, and Stuckey in [KSS91, KSS95] is a direct implementation of the al-
ternating fixpoint semantics by Van Gelder [vG89, vG93]. This method is es-
sentially composed of least Herbrand model computations which are arranged
in an appropriate order. Thus the transformation-based approach to semi-naive
evaluation presented above may be used for their computation. The goal of this
section is to present the alternating fixpoint computation on the basis of the
work in [KSS91, KSS95]. In Chapter 6 we enhance this method further by pro-
viding a transformation-based approach to alternating fixpoint materialization
on the basis of soft stratification, update propagation [Beh01], and soft update
propagation.

For the sake of completeness, Section 3.3.1 starts by generally explaining how
the well-founded model of deductive databases can be computed. We provide
an example for introducing the alternating fixpoint computation according to
the definition given in [vG93]. This approach has the advantage that all rele-
vant derivation steps are made with respect to explicitly given sets of positive
and negative conclusions providing an intuitive understanding of the alternating
computation processes. However, as this approach utilizes negative conclusions,
it is not particularly suitable for a direct implementation. Therefore, we finish
this section by presenting a slightly modified formulation which is solely based on
positive facts leaving negative conclusions implicit. In Section 3.3.2 we describe
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the approach of [KSS91, KSS95] which is based on the reformulated alternating
fixpoint definition.

3.3.1 Introduction to AFP Computation

The basic idea of alternating fixpoint computation [vG89, vG93] is to repeatedly
compute fixpoints of the given database, each time evaluating negative literals
with respect to the complement of the previously obtained fixpoint. Assuming
a fixed semantics for negative literals, even unstratifiable databases are reduced
to semi-positive ones, such that two-valued fixpoint semantics is applicable. The
subsequently performed fixpoint computations alternately yield underestimates
and overestimates of the set of actually true negative conclusions. The compo-
sition, however, of two such fixpoint computations is monotonic. Starting from
an empty set of negative literals, the set of negative conclusions is constructed
monotonically.

In order to work on negative conclusions, the stable consequence operator
�TR,N (I+) is used which computes the set of all positive conclusions derivable
from R using the input set of positive literals in I+ and the fixed set of negative
literals N . During an application of �TR,N , a negative literal ¬A is considered true
if ¬A is present in N . Based on this operator we define the alternating fixpoint
model �MD according to the characterization given in [vG89] where the author
additionally proved it to be equivalent to the well-founded model MD of D.

Definition 3.5 (VG Alternating Fixpoint Model) Let D = �F ,R� be a de-
ductive database, I+, I− ⊆ HD sets of ground atoms, N the negated set of atoms
in I−, i.e., N = ¬ · I− and [[R]]I+ the set of all ground instances of rules in R

with respect to the set I+. Then we define

1. the stable consequence operator �TR,N as

�TR,N (I+) := {H |∃r ∈ [[R]]I+ : r ≡ H ← A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm

such that Ai ∈ I
+ for all positive literals Ai

and ¬Bj ∈ N for all negative literals Bj},

2. the stability consequence transformations SD, �SD as

SD(N ) := lfp(�TR,N ,F), and

�SD(N ) := ¬ · SD(N ),

where given a set of negative conclusions N the transformation SD(N ) re-
turns a set of positive conclusions while �SD(N ) yields a set of negative
conclusions,
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3. and the VG Alternating Fixpoint Model �MD as

�MD := SD(lfp(�S2
D, Ø))∪· lfp(�S2

D, Ø)

where �S2
D denotes the nested application of the stability consequence trans-

formation �SD, i.e., �S2
D(N ) = �SD(�SD(N )).

In the following we describe the course of computing the alternating fixpoint using
the following sample database.

Example 3.1 Consider the following unstratifiable deductive database D = �R,F�
consisting of the rule

e(X) ← succ(X,Y) ∧ ¬e(Y)

and the facts

succ(0,1),succ(1,2),succ(2,3),succ(3,4),succ(4,5).

The deductive rule defines the ’even’ numbers between 0 and 5. From the results
in [Kol91] it can be inferred that the intended meaning of this database is not
expressible by any (function-free) stratifiable database [Ros90]. The implicit state
of D, or its three-valued well-founded model, is given by MD = I

+
D ∪· ¬ · I

−
D where

the set of true positive conclusions I+
D consists of the fact base F as well as the de-

rived facts {e(0), e(2), e(4)}. The set of true negative conclusions ¬·I−D comprises
the negations of all non-existing succ-facts as well as {¬e(1),¬e(3),¬e(5)}.

At the beginning of the alternating fixpoint computation we assume all nega-
tive literals to be false, i.e., N = Ø. Consequently, facts can only be derived from
rules which contain no negative body literals. As we consider one negative rule
in the given example only, the first fixpoint coincides with the given fact base

lfp (�TR,Ø,F)=F (=DT 1)

where the least fixpoint of the operator �TR,N gives the set of all positive con-
clusions derivable from D and the fixed set of negative literals N . This first
application of �TR,N with respect to an overestimation of the set of true negative
conclusions leads to the set DT 1 ⊆ I

+
D including only facts which are ”definitely

true”. However, for all ground atoms of the Herbrand base of D which are not
included in DT 1 it is not yet known whether they are true, false, or undefined.
These are e(0), e(1), e(2), e(3), e(4), and e(5) as well as all succ-facts which
are not in F . In the next step we assume all these atoms to be false and hence
the respective negated literals included in the conjugate of DT 1, i.e., ¬ ·DT 1 =
N0 ∪ {¬e(0),¬e(1),¬e(2),¬e(3),¬e(4),¬e(5)} where N0 contains all succ-facts
not in F , to be true. Under these conditions the resulting fixpoint is given by
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lfp (�TR,N0∪¬·{e(0),e(1),e(2),e(3),e(4),e(5)},F)= F ∪ {e(0), . . . , e(3), e(4)} (=NDF 1)

which is a superset of I+
D , since the evaluation of negative literals is based on an

overestimation of the set of true negative conclusions. Therefore, the set NDF 1

may comprise facts which are no true positive conclusions. However, all facts not
included (for e this is e(5)) are known to be definitely false, as they could not be
derived under the most general overestimation of the set of negative conclusions.
The identifier NDF is used to indicate that the set NDF i contains facts which
are ”not known to be definitely false” at the current computation step.

During the next fixpoint computation all definitely true facts are determined
which can be derived from the given database and the (now known) definitely
true negative literal ¬e(5).

lfp (�TR,N0∪¬·{e(5)},F) = F ∪ {e(4)} (=DT 2)

The set DT 2 again includes true positive conclusions only, as it is guaranteed
that only negative literals known to be definitely true may have induced further
derivations. The subsequent applications produce the following sequence:

lfp (�TR,N0∪¬·{e(0),e(1),e(2),e(3),e(5)},F)= F ∪ {e(0), e(1), e(2), e(4)} (=NDF 2)

lfp (�TR,N0∪¬·{e(3),e(5)},F) = F ∪ {e(2), e(4)} (=DT 3)

lfp (�TR,N0∪¬·{e(0),e(1),e(3),e(5)},F) = F ∪ {e(0), e(2), e(4)} (=NDF 3)

lfp (�TR,N0∪¬·{e(1),e(3),e(5)},F) = F ∪ {e(0), e(2), e(4)} (=DT 4)

lfp (�TR,N0∪¬·{e(1),e(3),e(5)},F) = F ∪ {e(0), e(2), e(4)} (=NDF 4)

lfp (�TR,N0∪¬·{e(1),e(3),e(5)},F) = F ∪ {e(0), e(2), e(4)} (=DT 5)

The calculation alternates between the computation of subsets of definitely true
facts (DT i) and the computation of supersets of not definitely false facts (NDF i)
using subsets of definitely false and supersets of not definitely true facts in N ,
respectively. The composition of two steps is monotonic, i.e., the set of true facts
as well as the set of definitely false facts is monotonically increasing. A fixpoint
has been reached when the set of definitely false facts does not change anymore,
i.e., until ¬ ·NDF i = ¬ ·NDF i−1. In the example the VG Alternating Fixpoint
Model is then given by

�MD = DT 5∪· ¬ ·NDF 4

with the set of true conclusions DT 5=F∪{e(0), e(2), e(4)}, the set of true negative
conclusions ¬ · NDF 4={¬e(1),¬e(3),¬e(5),¬succ(1, 1), . . .} and the empty set
of undefined facts.

A graphical representation of the general course of alternating fixpoint com-
putation is presented in Figure 3.1 showing that the computation runs in two
alternating phases. During the first phase subsets of definitely true facts (DT i)
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Figure 3.1: Alternating fixpoint computation

are calculated from subsets of definitely false facts (DF i = NDF i). In contrast to
this, the second phase determines supersets of definitely true facts (NDF i) from
supersets of false facts, i.e., those not known to be definitely true (NDT i = DT i).
The composition of two phases is monotonic, i.e., the sets of true facts (DT i) as
well as those of definitely false facts (DF i) are monotonically increasing. When
these sets do not change anymore a fixpoint is reached which partitions the given
Herbrand Base HD into the set of definitely true facts I+

D = DT n+1, the set
of definitely false facts I−D = DF n (= NDF n), and the set of undefined atoms
I?
D = NDF n \DT n+1.

3.3.2 Computing the Well-founded Model

The alternating fixpoint semantics as proposed by Van Gelder [vG93] is not par-
ticularly well-suited for direct implementation, as it works on negative conclusions
(i.e., definitely false facts as well as not definitely true facts). Instead, it would be
preferable to deal with positive facts only, since these can be more easily repre-
sented in and retrieved from a database. Therefore we will reformulate alternating
fixpoint computation as proposed by Van Gelder such that it deals with positive
conclusions only. Such a reformulation has been presented in [KSS95] where the
sets of definitely true facts and not definitely false facts are explicitly stored and
only the complement of the latter is used to refer to true negative conclusions
implicitly.

Definition 3.6 (KSS Alternating Fixpoint Model) Let D = �F ,R� be a
deductive database, I+, I− ⊆ HD sets of ground atoms, and [[R]]I+ the set of all
ground instances of rules in R with respect to the set I+. Then we define
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1. the eventual consequence operator �TR�I−� as

�TR�I−�(I+) := {H | ∃r ∈ [[R]]I+ : r ≡ H ← L1 ∧ . . . ∧ Ln

such that Li ∈ I
+ for all positive literals Li

and L /∈ I− for all negative literals Lj ≡ ¬L},

2. the eventual consequence transformation �SD as

�SD(I−) := lfp(�TR�I−�,F),

3. and the KSS Alternating Fixpoint Model �MD as

�MD := lfp (�S2
D, Ø)∪· ¬ · �S2

D(lfp (�S2
D, Ø)) ,

where �S2
D denotes the nested application of the eventual consequence trans-

formation, i.e., �S2
D(I−) = �SD(�SD(I−)).

The following theorem shows that both forms of alternating fixpoint computation
correctly yield the well-founded model MD of a given database D.

Theorem 3.1 Let D = �F ,R� be a deductive database. The KSS Alternating

Fixpoint Model �MD of D is identical with the VG Alternating Fixpoint Model �MD
of D which itself coincides with well-founded model MD of D.

Proof : cf. [Gri97, p. 108-109]. ✷

In contrast to the stable consequence operator �TR∪N used in the example above,
the eventual consequence operator �TR�I−� operates on positive atoms only. It
evaluates negative literals ¬A by checking whether A is not in I− rather than
by testing whether ¬A is in a set of negative literals. Therefore, the eventual
consequence operator �TR�I−� only implicitly refers to the conjugate of I− when
evaluating a negative literal. It is obvious that for any database D and any sets
of ground atoms I+, I− ⊆ HD both operators obtain the same result:

�TR�I−�(I+) = �TR,¬·I−(I+).

In addition, the least fixpoint of �S2
D is a set of true positive conclusions rather

than a set of true negative conclusions as given by the least fixpoint of �S2
D in the

alternating fixpoint approach defined by Van Gelder.
The computation of the KSS Alternating Fixpoint Model starts with an empty

set of positive conclusions (implying that all negative literals are assumed to
be true) rather than with an empty set of negative conclusions (implying that
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Algorithm 2 : Alternating fixpoint computation

i := 0;
DT 0 := Ø;

repeat

i := i + 1;
NDF i := lfp(�TR�DT i−1�,F);
DT i := lfp(�TR�NDF i�,F);

until DT i = DT i−1;

DT := DT i;
NDF := NDF i;

all negative literals are assumed to be false). In this way, the first application
of �SD(I−) obtains a superset of the set of true positive conclusions, i.e., not
definitely false facts (NDF) and the second a subset of the set of definitely true
facts (DT). Hence the order of fixpoint computations is exchanged with respect
to the original definition of Van Gelder which starts with computing a subset of
the definitely true facts.

In the following we will introduce the algorithm presented in [KSS91] for com-
puting the well-founded model of a deductive database. The reason for presenting
this approach is twofold: On the one hand, this algorithm serves as a basis for
the doubled programm approach which will be discussed in Section 6.1. On the
other hand, we will show how to improve the efficiency of this approach by incor-
porating update propagation and soft stratification in Section 6.2. We begin by
describing the general course of alternating fixpoint computation as introduced
in Definition 3.6 using the simple iteration scheme presented in Algorithm 2 and
go on by refining this scheme.

The scheme in Algorithm 2 organizes alternating fixpoint computation as fol-
lows: At the beginning, the set DT 0 is initialized with the empty set of true pos-
itive conclusions. Afterwards, in each round of the iteration phase the eventual
consequence transformation �S2

D is implemented by first computing not definitely
false facts and then definitely true facts, each time employing the previously ob-
tained fixpoint for evaluating negative literals. The iteration is continued until
the set of definitely true facts does not change anymore. The well-founded model
MD is then given by MD = DT ∪· ¬ ·NDF . In contrast to the original definition
of Van Gelder, another fixpoint computation for obtaining the final set of not
definitely false facts is not performed because the identity of DT i and DT i−1

implies that the sets NDF i and NDF i+1 are equal as well.

Up till now we have considered alternating fixpoint computation for non-
layered rule sets only. However, efficiency can be significantly increased if the
rule set can be partitioned into layers in an appropriate way. Firstly, evaluating
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Algorithm 3 : Iterated alternating fixpoint computation

NDF0 := F ;
DT0 := F ;

for each layer l = 1, . . . ,m of R do
i := 0;
DT 0

l
:= lfp(�TR◦

l ∪R
×
l
�NDFl−1�, DTl−1);

repeat

i := i + 1;
NDF i

l
:= lfp(�TRl

�DT i−1
l
�, NDFl−1 ∪DT i−1

l
);

DT i

l
:= lfp(�TR×

l ∪R
∗
l
�NDF i

l
�, DT i−1

l
);

until DT i

l
= DT i−1

l
;

NDFl := NDF i

l
;

DTl := DT i

l
;

end for
DT := DTm;
NDF := NDFm;

rules in a certain order may avoid redundant derivations. In addition, the iden-
tification of different rule classes within each layer of the original unstratifiable
rule set completely excludes certain rules from evaluation. When evaluating the
alternating fixpoint in layers, we have to take into account that there are already
sets of definitely true and not definitely false facts computed for predicates of
lower layers. As for iterated fixpoint computation, these sets form the basis of
calculations in higher layers.

When computing not definitely false facts, positive literals referring to pred-
icates of lower strata are evaluated with respect to not definitely false facts
NDFl−1 already derived during materialization of layers up to l−1, and negative
literals with respect to the current set of definitely true facts DT i−1

l
which al-

ready includes all definitely true facts DTl−1 computed in lower layers. In contrast
to this, determining definitely true facts requires positive literals to be checked
against definitely true facts DT i−1

l
computed so far, and negative ones against

the current set of not definitely false facts NDF i

l
. Note that the set DTl−1 is

entirely included in the sets DT i−1
l−1 for i > 0 while the set NDFl−1 represents a

superset of the sets NDF i

l
for i > 0. Hence, we obtain the scheme in Algorithm 3

of iterated alternating fixpoint computation.

The iteration scheme of Algorithm 3 still includes further improvements in
comparison to the original scheme of Algorithm 2. In Algorithm 2 the compu-
tations of DT- and NDF-facts starts with the assumption that no atom is true.
However, it is preferable to initialize DT0 and NDF0 with the base facts F which
are known to be unconditionally true and a subset of the final sets of definitely
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true facts DT as well as not definitely false facts NDF . In addition, it is advan-
tageous to initialize the definitely true facts of each layer DT 0

l
with all facts that

can be derived while assuming that all negative literals of the current layer are
false. This can be achieved by restricting the given rule set to all those rules not
including any unstratified negation and computing the fixpoint

DT 0
l

:= lfp(�TR◦
l ∪R

×
l
�NDFl−1�, DTl−1).

As the set of definitely true facts is monotonically increasing, it is not necessary
to recompute all facts which have been obtained in previous iteration rounds.
Instead, we can start with the previously computed DT i−1

l
set when determining

the i-th set of definitely true facts DT i

l
. In addition, we can ignore all rules in R◦

l

as they cannot produce any facts not yet included in DT i−1
l

. Thus, the set DT i

l

can be calculated by the following expression:

DT i

l
:= lfp(�TR×

l ∪R
∗
l
�NDF i

l
�, DT i−1

l
).

It is not possible to apply the same technique for not definitely false facts as
these sets are decreasing in each round. However, each set of not definitely false
facts forms a superset of the definitely true facts obtained in the previous iteration
round. Thus, we can compute not definitely false facts starting from those already
known to be true, i.e.,

NDF i := lfp(�TRl
�DT i−1

l
�, NDFl−1 ∪DT i−1

l
).

This time we have to keep the explicit reference to NDFl−1 as this set is possibly
not entirely covered by DT i−1

l
. For the same reason we cannot omit the rules in

R◦, as they may still lead to new consequences not contained in DT i−1
l

. The iter-
ation scheme in Algorithm 3 basically yields the approach presented in [KSS91].
However, we will not present the entire algorithm in this place, as we will still
propose another improvement in Chapter 6.



Chapter 4

Query Evaluation

In Chapter 3, fixpoint algorithms have been introduced, each of them suitable for
materializing the implicit state of a certain class of databases only. In this chapter,
we will concentrate on stratifiable databases. We will show how the corresponding
algorithms can be employed for query evaluation. Stratifiable databases represent
the most important database class from a practical point of view as their view
concept directly corresponds to those views permitted by SQL:1999.

The most simple approach to answering a query against a stratifiable deductive
database would be to determine the corresponding well-founded model by means
of iterated fixpoint computation and to select respective answer tuples after rule
processing has terminated. This kind of bottom-up computation of answers can
naturally employ the existing optimization techniques developed for relational
databases. However, proceeding this naive way has the well-known disadvantage
that most facts produced during the course of materialization are not relevant for
answering the given query. Top-down methods on the other hand perform query
evaluation in a goal-directed manner such that materialization is very naturally
limited to relevant parts of the given database, only. However, a pure top-down
approach, as proposed for example by methods like OLDT resolution [TS86],
QSQ [Vie88] or QRGT [Ull89], has the disadvantage that particularly in presence
of recursion an expensive ’logic’ control is needed in order to provide completeness
and soundness. Therefore, various rewriting techniques for query evaluation in
deductive databases have been proposed which combine the advantages of top-
down and bottom-up approaches. The basic idea is to rewrite deductive rules
with respect to a given query such that bottom-up materialization is performed
in a goal-directed way cutting down the number of irrelevant facts generated.

The extensive research on such rewriting techniques originated from the
seminal proposals of the Magic Sets approach [BR86] and the Alexander Method
[RLK86]. Since then, many proposals have been made aiming at a refinement of
the original methods. Among others, there are Generalized Magic Sets [BR91],
Magic Templates [Ram91], Generalized Supplementary Magic Sets [BR91], Magic
Counting [SZ87b], Generalized Magic Counting [BR91], Generalized Supplemen-

49
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tary Magic Counting [BR91], Magic Conditions [MFPR96], Minimagic Sets
[SZ87a], Envelopes [Sag90], SLDMagic [Bra96] and Alexander Templates [Sek89].
Further publications, e.g. [BPRM91, Che93, KSS95, Mor93] investigate the appli-
cability of Magic Sets to stratifiable or even unstratifiable databases. In [Bry90b]
it has been shown that query evaluation via Magic Sets is basically equivalent to
methods like OLDT resolution and QSQ. This shows the expressiveness of a de-
ductive rule rewriting technique like the Magic Sets approach in comparison with
other strategies which dynamically perform all optimizations during the course
of evaluation.

In the following we will focus on Magic Sets, as this approach has been accepted
as a kind of standard in the field. As the Magic Set rewriting of stratifiable
rules may lead to unstratifiable rule sets, we propose a bottom-up evaluation
method based on the weak consequence operator [KP88] in order to compute
the total well-founded model of magic rules. We show that its application in
combination with the concept weak stratification, however, may lead to a set of
answers which is neither sound nor complete with respect to the well-founded
model. This problem is cured by introducing the new concept soft stratification
instead [Beh03]. The overall result of this chapter then is a bottom-up evaluation
method for efficiently materializing the implicit state of this class of unstratifiable
rules. In subsequent chapters it will be shown that this class of deductive rules
plays an important role for transformation-based update propagation and view
updating methods as well.

4.1 Magic Sets

We refrain from presenting the Magic Sets approach in detail as introduced
in [BR91] or [Ram91], but rather present a simplified version of the Magic Tem-
plates algorithm [Ram91] originally proposed by Naughton and Ramakrishnan
in [NR91]. Magic Sets rewriting is a two-step transformation in which the first
phase consists of constructing an adorned rule set [Ull85], while the second phase
consists of the actual Magic Sets rewriting. In Section 4.1.1, it will be shown how
the adorned rule set can be derived from the original database with respect to
the binding pattern of a given query and a choice of sideways information passing
(sip) strategies [Ram91]. Section 4.1.2 presents the second phase of Magic Sets
where the adorned rules are rewritten such that bottom-up materialization of the
resulting database implements a top-down evaluation of the original query on the
original database. For this purpose, each adorned rule is extended by a magic
literal restricting the evaluation of the rule to the given binding in the adornment
of the rule’s head.
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4.1.1 The Adorned Database

The first step of the Magic Sets transformation is to determine the adorned rule
set. Within an adorned rule set the predicate symbol of each derived literal is
associated with an adornment, which is a string consisting of the symbols ’b’
and ’f’ representing bound and free argument positions when the literal is to be
evaluated.

Definition 4.1 (Adorned Literal) Let R be a deductive rule set and
p(t1, . . . , tn) a derived literal appearing in a rule in R. Then the adorned literal
of p(t1, . . . , tn) is defined as

pad(t1, . . . , tn)

where the adornment ad is a string consisting of the symbols a1 . . . an which is de-
fined as follows: if ti is bound to a constant when p(t1, . . . , tn) is due to evaluation
then ai :=� b�, otherwise ai :=� f � for unbound attributes.

The adorned version of the deductive rules is constructed with respect to an
adorned query and a selected sip strategy which basically determines for each
rule the order in which the body literals are to be evaluated. As an example
consider the following rule set

p(X, Y) ← e(X, Y) e(X, Y) ← b(X, Y)
p(X, Y) ← e(X, Z) ∧ p(Z, Y) e(X, Y) ← c(X, Y)

and the query ? − p(1, Y ) asking for all nodes reachable from node 1. The con-
struction of the adorned rule set starts with determining the adornment of the
query:

?− pbf (1, Y ).

In the next step, all deductive rules are selected whose heads unify with the
original query and the derived literals in their bodies are considered as sub-goals
to be solved. A chosen sip strategy determines the order in which these sub-
goals are to be evaluated and which bindings are passed on to the next sub-goal.
The evaluation of a sub-goal is performed in the same way as for the original
query, starting with the determination of the corresponding adorned literal and
the deductive rules whose heads unify with the current sub-goal. Assuming a
left-to-right sip strategy for all rules, the adorned rule set with respect to the
above example and the adorned query pbf (1, Y ) is as follows:

pbf(X, Y) ← ebf(X, Y) ebf(X, Y) ← b(X, Y)
pbf(X, Y) ← ebf(X, Z) ∧ pbf(Z, Y) ebf(X, Y) ← c(X, Y)
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In the course of a top-down evaluation of the query pbf (1, Y ), each derived literal
would be called with the binding pattern encoded in its adornment when rule
bodies are evaluated from left-to-right. In case a derived literal for a given sip
strategy is called with different binding patterns, the adorned rule set contains
variants of the rules for the respective predicate, each of them adorned with a
different binding pattern. Note that in the example above we have considered a
full sip strategy in which all bindings are passed on to the next sub-goal. It is,
however, also possible to consider so-called partial sip strategies which pass on a
subset of generated bindings only or no bindings at all. These strategies allow for
avoiding redundant computations by taking subsumption effects into account.

The adornment phase is an essential prerequisite for the second phase and
already has a strong influence on the overall performance of the Magic Sets ap-
proach. Therefore, several optimizations have been proposed in order to either
minimize the number of adorned rules or to improve information flow depicted
in the adorned rule set. One possible optimization for minimizing the number
of adorned rules is to require the input set to satisfy the unique binding prop-
erty [Ram91]. This means that during the top-down analysis according to the
selected sip strategy no predicate would be called with different binding patterns
avoiding the duplication of rules as mentioned above. For improving information
flow Ullman proposed to rectify the input rule set in order to handle variable-
to-variable bindings [Ull89]. For the following discussion, however, we will not
consider these optimization techniques any further as they can be applied inde-
pendently.

Another way of improving the quality of the adornment phase is given by the
choice of sip strategy. Sip strategies can be generally divided into static and dy-
namic strategies [Beh00]. Static strategies determine the order in which the body
literals are to be evaluated using a criterion that does not change during the sub-
sequent rule evaluation, e.g. a left-to-right strategy. On the contrary, dynamic
strategies use conditions which may change during the evaluation of Magic Sets
transformed rules, e.g. relation size or selectivity of a join. Dynamic sip strate-
gies form a basis of dynamic query evaluation and usually lead to a more complex
evaluation process of magic rules than static strategies. In the following, however,
we will concentrate on static sip strategies and especially on stratification prob-
lems which may arise if static strategies are applied to an originally stratifiable
rule set. Note that the Magic Sets transformation is sound and complete with
respect to the described answer set, if the intermediately obtained adorned rules
are adorned allowed and the adornment rewriting is performed with respect to
an adorned allowed sip strategy [BPRM91]. An adorned rule is called adorned
allowed, if every variable appears in a positive body literal or a bound position
of the binding pattern of the head. An allowed sip strategy requires addition-
ally that the order in which body literals are to be evaluated still preserves the
range-restriction property of negative literals. In the following we assume that
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the adorned rules have been rewritten with respect to a static, adorned allowed
sip strategy and satisfy the adorned allowedness property.

4.1.2 Magic Templates

During the second phase of the Magic Sets transformation the adorned rules are
rewritten such that bottom-up materialization of the resulting database simu-
lates a top-down evaluation of the original query on the original database. For
this purpose, each adorned rule is extended with a magic literal restricting the
evaluation of the rule to the given binding in the adornment of the rule’s head.
The magic predicates are defined by rules computing all values that would be
passed in the sequence of body literals according to the sip strategy. The initial
values corresponding to the query are given by the so-called magic seed. Before
we present the Magic Sets rewriting more precisely, the next definitions specify
how magic literals are constructed and how the seed is derived from the query.

Definition 4.2 (Magic Literal) Let A ≡ pad(�x) be a positive adorned literal
with adornment ad and bd(�x) the sequence of variables within �x indicated as
bound in the adornment ad. Then the magic literal of A is defined by

magic(A) := m pad(bd(�x)).

If A ≡ ¬pad(�x) is a negative literal, then the magic literal of A is defined as
magic(A) := m pad(bd(�x)).

Definition 4.3 (Seed/Seed Rule) Let Q ≡ pad(�c) be a query with adornment
ad and bd(�c) the sequence of constants in �c indicated as bound in the adornment
ad. Then the seed of Q is defined by

seed(Q) := m s pad(bd(�c))

and the corresponding seed rule is defined by

seed_rule(Q) := m pad(�x) ← m s pad(�x)

where �x is a vector of distinct variables x1, . . . , xn and n is the length of the
sequence bd(�x).

In order to simplify the definition of the Magic Sets transformation we assume
that the body literals have already been ordered from left to right according to
the selected sip strategy.

Definition 4.4 (Magic Rules) Let R be a stratifiable deductive rule set, Q ≡

pad(�c) an adorned query with p ∈ pred(R), and RQ the adorned rule set of R
with respect to the query Q. The Magic Sets rewriting of RQ yields the magic
rules ms(RQ) defined as the smallest set satisfying the following conditions:
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1. For each deductive rule A ← L1∧ . . .∧Ln ∈ R
Q an answer rule of the form

A ← magic(A) ∧ L1 ∧ . . . ∧ Ln

is in ms(RQ).

2. For each deductive rule A ← L1 ∧ . . . ∧ Ln ∈ RQ and each derived body
literal Li (1 ≤ i ≤ n) a sub-query rule of the form

magic(Li) ← magic(A) ∧ L1 ∧ . . . ∧ Li−1

is in ms(RQ).

Note that the definition of Magic Rules solely depends on the predicate p and
adornment ad of a given query pad(�c) but not on the constants within �c.

Definition 4.5 (Magic DB Transformation) Let D = �F ,R� be a strati-
fiable deductive database, Q ≡ pad(�c) an adorned query with p ∈ pred(R),
and ms(RQ) the magic rule set of R with respect to the query Q. The Magic
DB transformation of D with respect to Q then yields the deductive database
Dm = �F ∪ {seed(Q)}, ms(RQ)∪ {seed_rule(Q)}�.

Note that this definition of Magic Sets slightly differs from the one in [Ram91] as
we add the additional magic seed rule to ms(RQ) in order to keep the condition
pred(F) ∩ pred(R) = Ø in Definition 2.7 of deductive databases satisfied. For
our example above, the Magic DB transformation then yields the deductive rule
set

pbf(X, Y) ← m pbf(X) ∧ e(X, Y)
pbf(X, Y) ← m pbf(X) ∧ e(X, Z) ∧ pbf(Z, Y)
ebf(X, Y) ← m ebf(X) ∧ b(X, Y)
ebf(X, Y) ← m ebf(X) ∧ c(X, Y)

m pbf(Z) ← m pbf(X) ∧ e(X, Z)
m pbf(X) ← m s pbf(X)
m ebf(X) ← m pbf(X)

as well as the magic seed fact m s pbf(1). The following theorem recalls the
correctness of Magic Sets rewriting according to a given query Q by arguing that
the answer set of Q with respect to the original database is equivalent to the
answer set of the adorned query with respect to the magic rewritten database1.

1For further details about the concept of answer equivalence we refer to [BPRM91, BNR+87,
Mah88, Sag88, KK88].
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Theorem 4.1 Let D be a stratifiable database, Q a query to D, Dm the database
resulting from Magic DB transformation applied to D with respect to Q, and
ans(MD, Q) the answer set of Q defined as ans(MD, Q) := {L | L ≡ Qσ, σ is
a ground substitution for all variables in Q and L ∈MD}. Then the answer set
of Q with respect to D is equivalent to the answer set of the adorned query with
respect to the rewritten database. Hence, if Q ≡ p(�c), then

p(�c)σ ∈ ans(MD, Q) ⇐⇒ pad(�c)σ ∈ ans(MDm , Qa)

where σ is a ground substitution for the variables in Q and Qa ≡ pad(�c) is the
adorned query.

Proof : See [KSS95, Ram91]. ✷

In [KSS95] it has been shown that the Magic Sets transformation is sound and
complete with respect to the answer set for stratifiable databases. However,
the resulting rule set may be no more stratifiable and more general approaches
than iterated fixpoint computation are needed. For determining the well-founded
model [vGRS91] of general logic programs, the alternating fixpoint computation
by Van Gelder [vG89, vG93] or the conditional fixpoint by Bry [Bry89] could be
used. The application of these methods, however, is not really efficient as they
may compute many irrelevant facts during the course of a fixpoint computation.
This is caused by the fact that these methods do not take the specific reason for
the unstratifiability of the transformed rule sets into account.

Therefore, other methods have been proposed in order to compute the seman-
tics of unstratifiable databases resulting from a Magic Sets transformation explic-
itly. The structured bottom-up method proposed by Balbin et al. in [BMR88,
BPRM91] realizes a bottom-up materialization process for the rewritten database
which is suspended each time a negative literal ¬ A is queried with respect to
a set of particular bindings. Then the query ? − A is evaluated by invoking
an appropriate function call which actually performs an intermediate magic sets
process initiated by corresponding magic seeds derived from the given bindings.
Note that this function has to be recursive as the evaluation of the query ? − A
itself may depend on the evaluation of other negative literals in deeper layers.
Afterwards, the global process is continued and the answers for ?−A are used to
evaluate the negative literal ¬ A. The structured bottom-up method is complete
and sound but because of its complexity difficult to implement. In addition, an
implementation of this fixpoint approach may also be inefficient, as it poses prob-
lems to the subsequent algebraic optimization phase in ’real’ database systems
because of the entwined evaluation process.

Another fixpoint-based method for evaluating magic rules is the weak strati-
fication approach by Kerisit and Pugin in [KP88] which is part of the Alexander
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method for query evaluation [RLK86]. The Alexander method (like Magic Sets)
is a transformation-based approach to query evaluation as well and basically coin-
cides with the Generalized Supplementary Magic Sets approach in [BR91]. Weak
stratification as part of the Alexander method has been proposed for evaluating
unstratifiable rules which resulted from the rewriting of an originally stratifiable
rule set. In [KP88] the authors additionally claim that this method is also appli-
cable to Magic Sets transformed rules because of the similarities between these
rewriting techniques. Because of the efficiency and simplicity of the weak strati-
fication approach we will concentrate on this method in the sequel.

4.2 Evaluating Magic Sets Transformed Rules

In this section, the weak stratification method for evaluating Magic Sets trans-
formed rules proposed by Kerisit and Pugin in [KP88] is discussed in more detail.
This approach uses the weak consequence operator and a more general strati-
fication concept, the so-called weak stratification, in order to evaluate negative
literals correctly. It is shown, however, that the weak stratification approach
may lead to a set of answers which is neither sound nor complete with respect to
the well-founded model of magic rules. Therefore, we introduce the new concept
soft stratification which combined with the soft consequence operator from Sec-
tion 3.2.2 provides a sound and complete evaluation method for determining the
well-founded semantics of a Magic Sets transformed database.

In Section 4.2.1 the concepts weak stratification and weak consequence oper-
ator are recalled. Afterwards, we show in Section 4.2.2 by means of a counter
example the erroneous derivations of this method and introduce the soft strat-
ification approach instead. After proving the correctness of this approach, we
present a comparison to other methods in Section 4.2.3 showing the efficiency of
our approach.

4.2.1 The Weak Stratification Approach

The definition of stratification requires two conditions with respect to positive
and negative dependencies between predicates to be satisfied. The concept of
weak stratification [KP88] relaxes these conditions by considering negative de-
pendencies between predicates only.

Definition 4.6 (Weak Stratification) Let D be a deductive database. A weak
stratification λω on D is a mapping from the set of all predicate symbols RelD in
D to the set of positive integers IN such that for all predicate symbols p, q ∈ RelD :

p depends negatively on q =⇒ λω(p) > λω(q)
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A weak stratification induces a weak partition P = Pos∪· N1 ∪· . . . ∪· Nn of R such
that the following holds:

1. If A ← W ⊆ R is a positive rule (i.e., a rule with no negative body literals),
then the rule A ← W is in the set Pos.

2. If A ← W ⊆ R is a negative rule (i.e., a rule with at least one negative
body literal) and λω(A) = i, then the rule A ← W is in the set Ni.

In [KP88] it has been shown that every rule set resulting from the Magic Sets
transformation of a stratifiable rule set can be weakly stratified. For materi-
alizing weakly stratified databases, the authors propose a modified immediate
consequence operator which we call weak consequence operator in the following.

Definition 4.7 (Weak Consequence Operator) Let D = �F ,R� be a de-
ductive database and λω a weak stratification of R inducing the weak partition
P = P0 ∪· . . . ∪· Pn of R with P0 = Pos and Pi = Ni for 1 ≤ i ≤ n. The weak
consequence operator T ω

P is a mapping on sets of ground atoms and is defined for
I ⊆ HD as follows:

T ω

P (I) :=






I if there is no j ∈ {1, . . . , n} such that T �

Pj
(I) � I

T �

Pi
(I) with i := min{j | T �

Pj
(I) � I}, otherwise.

In contrast to the soft consequence operator introduced in Section 3.2.2, this
operator is defined for weakly stratified rule sets only and distinguishes between
positive and negative rules in the sets Pos and Ni for 1 ≤ i ≤ n, respectively.
The general evaluation process, however, coincides with the evaluation induced
by the soft consequence operator.

As the weak consequence operator is monotonic, its least fixpoint exists and
is given by lfp (T ω

P ,F). It is obvious that the application of T ω

P can lead to more
positive conclusions than there are within the set of positive conclusions of the
corresponding well-founded model. In [KP88] the authors claim, however, that at
least the answer relation with respect to a given query is correctly determined by
means of lfp (T ω

P ,F). We will show in the following section that this is not always
true and present a refined version of the concept weak stratification in order to
determine the complete well-founded model correctly using the soft consequence
operator instead.

4.2.2 The Soft Stratification Approach

In general it is possible to find several distinct weak stratifications for a given rule
set. However, not every chosen weak stratification may lead to correct derivations
of facts with respect to the well-founded model if the weak consequence operator
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is applied. For illustrating this problem consider the following example of a
stratifiable deductive database D = �F ,R�

R: p(X) ← b(X, Y, Z) ∧ ¬q(X) ∧ ¬q(Y) ∧ ¬q(Z)
q(X) ← d(X)

F : b(1, 2, 3) d(2) d(3)

and the query Q ≡ p(1). A weak partition P = Pos∪· N1 of the Magic Sets
transformed rule set ms(RQ)∪· {rule seed(Q)} could be as follows:

Pos:

qb(X) ← m qb(X) ∧ d(X)
m pb(X) ← m s pb(X)
m qb(X) ← m pb(X) ∧ b(X, Y, Z)

N1:

pb(X) ← m pb(X) ∧ b(X, Y, Z) ∧ ¬qb(X) ∧ ¬qb(Y) ∧ ¬qb(Z)
m qb(Y) ← m pb(X) ∧ b(X, Y, Z) ∧ ¬qb(X)
m qb(Z) ← m pb(X) ∧ b(X, Y, Z) ∧ ¬qb(X) ∧ ¬qb(Y)

The magic seed is given by m s pb(1). Evaluating these rules using T ω

P would
yield {m pb(1)}, {m qb(1)}, {pb(1), m qb(2), m qb(3)} and {qb(2), qb(3)}. With
respect to the corresponding well-founded model MDm := {m pb(1), m qb(1),
m qb(2), q(2)} ∪ F ∪ {m s pb(1)} of Dm, the facts m qb(3) and qb(3) are erro-
neous derivations. Additionally, the incorrect answer fact pb(1) is derived which
is clearly wrong as no p-fact is included in the iterated fixpoint of the original
database. The erroneous derivations are due to the fact that only negative de-
pendencies are considered in weak partitions but no positive ones. It is necessary,
however, to consider also those positive dependencies which ensure that all nec-
essary derivations of query and answer facts have been made before a rule with
a corresponding negative literal is evaluated.

A possible solution to this problem is to choose a weak partition in such a
way that all rules on which a negative literal positively or negatively depends lie
in deeper layers. Consider, for instance, the negative literal ¬qb(Y ) in the rule
for defining relation p. This literal also appears in the rule for defining m qb(Z)
which ought to be applied after the rules

Pos ∪ {m qb(Y) ← m pb(X) ∧ b(X, Y, Z) ∧ ¬qb(X)}

have been considered in deeper layers by T ω

P in order to provide all necessary an-
swer and sub-query facts. Additionally, for evaluating the negative literal ¬qb(Z)
in the rule defining p, the rule
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m qb(Z) ← m pb(X) ∧ b(X, Y, Z) ∧ ¬qb(X) ∧ ¬qb(Y)

must have been considered already in deeper layers. The following definition
formalizes the dependency between literals and rules in a Magic Sets transformed
rule set.

Definition 4.8 (Required Rules) Let R be a set of stratifiable deductive rules,
Q an adorned query, RQ the adorned rule set of R with respect to Q
and ms(RQ) the corresponding magic set transformed rules. For each rule
Ri ≡ A ← magic(B), Li,1, . . . Li,li ∈ ms(RQ) (i = 1, ..., |ms(RQ)|) and each de-
rived body literal Li,j (j ∈ {1, . . . , li}) the set of required rules req(Li,j) is defined
as the smallest set satisfying the following conditions:

1. For each derived body literal Li,k (1 ≤ k ≤ j) a sub-query rule of the form

magic(Li,k) ← magic(B) ∧ Li,1 ∧ . . . Li,k−1

is in req(Li,j).

2. For each derived body literal Li,k (1 ≤ k ≤ j) the magic transformed rules
ms(defRQ(pred(Li,k)) are in req(Li,j).

As an example consider again the deductive database discussed above and its
adorned rule set RQ

pb(X) ← b(X, Y, Z) ∧ ¬qb(X) ∧ ¬qb(Y) ∧ ¬qb(Z)
qb(X) ← d(X)

with respect to the query Q ≡ p(1). Suppose the resulting magic sub-query rule

m qb(Z) ← m pb(X) ∧ b(X, Y, Z) ∧ ¬qb(X) ∧ ¬qb(Y)

for defining m qb(Z) has been numbered R4. The set of required rules for the
body literal L4,3 ≡ ¬qb(Y ) within this rule then is given by

req(L4,3) := { m qb(X) ← m pb(X) ∧ b(X, Y, Z),
m qb(Y) ← m pb(X) ∧ b(X, Y, Z) ∧ ¬qb(X),
qb(X) ← m qb(X) ∧ d(X) }

while the latter rule results from the magic set transformation
ms(defRQ(pred(L4,2)) of literal L4,2 ≡ ¬qb(X) and from the magic set trans-
formation ms(defRQ(pred(L4,3)), respectively.

We will now introduce the notion soft stratification to denote a weak stratifi-
cation which also takes the sets of required rules for negative literals into account.
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Definition 4.9 (Soft Stratification) Let R be a stratifiable deductive rule set
and ms(RQ) the corresponding set of Magic Set transformed rules with respect to
a given query Q. A soft stratification λs on ms(RQ) is a mapping from the set
of rules ms(RQ) to the set of positive integers IN , such that for all negative rules
Rneg ∈ ms(RQ) and all negative literals L of Rneg

R� ∈ ms(RQ) and R� ∈ req(L) =⇒ λs(Rneg) > λs(R�).

In a soft stratification, positive as well as negative dependencies are considered,
leading to a stronger condition in comparison to weak stratification on the sub-
sequent rule partitioning. Stratification problems introduced by the Magic Sets
transformation, however, are avoided because dependencies between rules and not
between predicates (as in the original condition of stratification) are considered.
However, only necessary dependencies between rules are considered in order to
be most flexible in the relational reoptimization phase. For materializing softly
stratified databases, we may now use the soft consequence operator and apply it
to a partition of a Magic Sets transformed rule set which satisfy the condition of
soft stratification.

As an example consider the following partition P = P1∪· P2∪· P3∪· P4 of the
Magic Sets transformed rule set ms(RQ) ∪· {rule_seed(Q)}

P1:

m pb(X) ← m s pb(X)
m qb(X) ← m pb(X) ∧ d(X)
qb(X) ← m qb(X) ∧ d(X)

P2:

m qb(Y) ← m pb(X) ∧ b(X, Y, Z) ∧ ¬qb(X)

P3:

m qb(Z) ← m pb(X) ∧ b(X, Y, Z) ∧ ¬qb(X) ∧ ¬qb(Y)

P4:

pb(X) ← m pb(X) ∧ b(X, Y, Z) ∧ ¬qb(X) ∧ ¬qb(Y) ∧ ¬qb(Z)

which satisfies the partial ordering induced by a soft stratification. The deter-
mination of lfp (T s

P ,F ∪ {m s pb(1)}) with F = {b(1, 2, 3), d(2), d(3)} using the
given soft partition P then correctly yields the well-founded model MDm :=
{m pb(1),m qb(1)} ∪ {m qb(2)} ∪ {q(2)} ∪ F ∪ {m s pb(1)} of Dm.
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The following proposition shows that if the Magic Sets transformation is ap-
plied to an originally stratifiable rule set, the rewritten rules will always be softly
stratifiable.

Proposition 4.10 Let D = �F ,R� be a stratifiable deductive database and ms(RQ)
the corresponding set of Magic Sets transformed rules with respect to a given query
Q. Then a soft stratification of ms(RQ) exists.

Proof: Suppose there is no soft stratification of the magic set transformed rules
ms(RQ). Then there must be two rules R1 ∈ ms(RQ) with a negative body literal
L1 and R2 ∈ ms(RQ) with a negative body literal L2 such that R2 ∈ req(L1) and
R1 ∈ req(L2). Without loss of generality we can assume R1 and R2 to be answer
rules because for every sub-query rule R� ∈ ms(RQ) with a derived body literal
L� there exists a corresponding answer rule R�� ∈ ms(RQ) with a derived body
literal L�� such that req(L��) = req(L�).
Therefore, R2 must be in the set ms(defRQ(pred(L1)) and its corresponding
adorned rule RQ

2 must be in defRQ(pred(L1). As L1 is a negative literal in
R1, RQ

2 then must depend negatively on RQ

1 . Analogously, you can show that the
adorned rule RQ

1 must depend negatively on RQ

2 . Thus, the adorned rule set RQ

must be unstratifiable and subsequently R, which contradicts the prerequisites
of the proposition.

✷

The following theorem shows the correctness of the soft stratification approach.
To this end, we prove that the true portion of the well-founded model of a magic
rewritten databaseM+

Dm withDm = �F∪{seed(Q)}, ms(RQ)∪ {seed_rule(Q)} �
coincides with the least fixpoint of T s

P with respect to a soft partition P of the
magic rewritten rules which contains the fact base F ∪ {seed(Q)} completely.

Theorem 4.2 Let D = �F ,R� be a stratifiable deductive database, ms(RQ) the
corresponding set of Magic Sets transformed rules with respect to a given query
Q, and λs a soft stratification on ms(RQ) ∪ {seed_rule(Q)} inducing the soft
partition P = P1 ∪· . . . ∪· Pn. Evaluating these rules using the soft consequence
operator T s

P yields the well-founded model MDm of Dm = �F ∪ {seed(Q)},
ms(RQ)∪ {seed_rule(Q)} �. Thus, for MDm = M

+
Dm ∪· ¬ ·M

+
Dm the following

holds:

lfp (T s

P ,F ∪ {seed(Q)}) = M
+
Dm.

Proof: The theorem is shown by induction on the number l of components in
the partition P induced by λs on ms(RQ) ∪ {seed_rule(Q)}. Without loss of
generality we can assume that seed_rule(Q) ∈ P1 because no other rule may
derive facts unless this rule has been fired first. The application of T s

P then starts



62 Chapter 4. Query Evaluation

again with the first component P1 of partition P.

Suppose that l = 1: All negative literals in P1 have empty sets of required rules
as they refer to base relations only. Hence, the true portion of the well-founded
model of the semi-positive rule set P1 for an arbitrary fact base X is given by

M
+
�P1,X� = lfp (T �

P1
, X)

=def T �

P1
(T �

P1
(. . . T �

P1
(X) . . .)

=def lfp (T s

P1
, X)

This holds in particular for the fact base X = F ∪ {seed(Q)}.

Suppose that l > 1: Assuming

lfp (T s

P1∪· ...∪· Pl−1
, X) = M

+
�P1∪· ...∪· Pl−1,X�

holds for any fact base X, we have to show that

lfp (T s

P1∪· ...∪· Pl
, X) = M

+
�P1∪· ...∪· Pl,X�.

According to Definition 3.4 the least fixpoint computation of T s

P1∪· ...∪· Pl
with

respect to the fact base F ∪ {seed(Q)} corresponds to the following sequence of
separate fixpoint computations

F1 := T �

Pl
[lfp (T s

P1∪· ...∪· Pl−1
,F ∪ {seed(Q)})]

F2 := T �

Pl
[lfp (T s

P1∪· ...∪· Pl−1
, F1})]

. . .
Fm := T �

Pl
[lfp (T s

P1∪· ...∪· Pl−1
, Fm−1})],

performed until no more new facts can be derived; that is Fm = Fm+1. Using
the induction hypothesis, the fixpoint computations of partition P1∪· . . . ∪· Pl−1

with respect to the different base facts Fi (1 ≤ i ≤ m) are correct and therefore
coincide with the corresponding well-founded models. Thus, we have

F1 := T �

Pl
(M+

�P1∪· ...∪· Pl−1,F∪{seed(Q)}�)

F2 := T �

Pl
(M+

�P1∪· ...∪· Pl−1,F1�
)

. . .
Fm := T �

Pl
(M+

�P1∪· ...∪· Pl−1,Fm−1�
).

Let us suppose that lfp (T s

P1∪· ...∪· Pl
,F∪{seed(Q)}) ⊆M

+
�P1∪· ...∪· Pl,F∪{seed(Q)}�

does not hold. Then there must be a fact f ≡ p(�c) and a set of base facts Fj with
j ∈ {1, . . . ,m} such that f ∈ Fj and f /∈M

+
�P1∪· ...∪· Pl,F∪{seed(Q)}�. As the com-

putations of the well-founded models with respect to partition P1∪· . . . ∪· Pl−1 are
correct, there must be a rule R ∈ Pl with pred(f) = pred(R) such that the appli-
cation of R leads to the erroneous derivation of f . On the one hand, any negative
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literal in the body of R is evaluated correctly because its corresponding req-set is
complete (see [KSS95, Ram91]) and consists of rules only located in components
P1 . . .Pl−1 (because of the soft stratification property) whose corresponding well-
founded model is determined correctly according to the induction hypothesis. On
the other hand, any positive literal is also evaluated correctly, as there is only one
application of T �

Pl
and therefore every substitution must have come from the pre-

viously determined true portion of the well-founded model M+
�P1∪· ...∪· Pl−1,Fj−1�

.

But then it can be concluded that the erroneous derivation f may only be due
to an erroneous fact base Fj−1. Analogously, it can be followed that F1 must
have been an erroneous fact base and because of the correct application of T �

Pl

the true portion of the well-founded model M+
�P1∪· ...∪· Pl−1,F∪{seed(Q)}� must have

been incorrect which is a contradiction to the induction hypothesis.

Let us suppose that lfp (T s

P1∪· ...∪· Pl
,F∪{seed(Q)})⊇M

+
�P1∪· ...∪· Pl,F∪{seed(Q)}�

does not hold. Then there must be a fact f ≡ p(�c) such that f /∈ Fm and
f ∈ M

+
�P1∪· ...∪· Pl,F∪{seed(Q)}�. As the computations of the well-founded models

with respect to partition P1∪· . . . ∪· Pl−1 are correct, there must be a rule R ∈ Pl

with pred(f) = pred(R) such that the final application of T �

Pl
with respect

to M
+
�P1∪· ...∪· Pl−1,Fm−1�

does not derive f (which must be erroneous because of

Fm = Fm+1). Analogously to the previous case, we can assume that all positive
as well as all negative literals within the body of R are correctly evaluated over
M

+
�P1∪· ...∪· Pl−1,Fm−1�

. Therefore, the previously determined fact base Fm−1 can-

not be correct. Analogously it can be followed again that the computation of F1

must have been erroneous and subsequently the true portion of the well-founded
model M+

�P1∪· ...∪· Pl−1,F∪{seed(Q)}� must have been incorrect. This again contra-

dicts our induction hypothesis.

Thus, we conclude lfp (T s

P1∪· ...∪· Pl
,F∪{seed(Q)}) =M

+
�P1∪· ...∪· Pl,F∪{seed(Q)}�.

✷

From Proposition 4.10 and Theorem 4.2 follows that the concepts soft strati-
fication and soft consequence operator together provide a sound and complete
evaluation method for determining the well-founded semantics of a Magic Sets
transformed database. This simple approach is easy to implement on top of an
existing relational database system and allows for further (algebraic) optimiza-
tions in contrast to the structured query evaluation method by Balbin et al., for
example. In the following section we argue that the soft stratification approach
represents indeed a more efficient query evaluation method in comparison to the
alternative bottom-up approaches mentioned above.
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4.2.3 Comparison to Other Approaches

In this section we compare the soft stratification method to other fixpoint-based
query evaluation methods by means of an example. When considering the qual-
ity of query evaluation methods in this context, we usually take the number of
derived facts as well as the number of iteration rounds as cost measurements
into account. We refrain from presenting a formal complexity analysis as all
discussed methods require costs polynomial in the size of the corresponding Her-
brand universe. Nevertheless, the soft stratification approach always performs
asymptotically better.

For illustrating this, let us consider the following example of a stratifiable
database D = �R,F� with

R : F :

i(X) ← ¬s(X) ∧ j(X, Y) ∧ i(Y) k(8), k(9)
i(X) ← k(X) j(6, 4), j(7, 4), j(4, 8)
s(X) ← b(X, Y) ∧ s(Y) g(3), g(5)
s(X) ← g(X) b(1, 2), b(2, 3), b(4, 5).

and the query Q ≡ i(6). After applying Magic Sets, the transformed rules are

ib(X) ← m ib(X) ∧ ¬sb(X) ∧ j(X, Y) ∧ ib(Y)
ib(X) ← m ib(X) ∧ k(X)
sb(X) ← m sb(X) ∧ b(X, Y) ∧ sb(Y)
sb(X) ← m sb(X) ∧ g(X)

m ib(X) ← m s ib(X)
m ib(Y) ← m ib(X) ∧ ¬sb(X) ∧ j(X, Y)
m sb(X) ← m ib(X)
m sb(Y) ← m sb(X) ∧ b(X, Y).

The following negative cycle can be found in the corresponding dependency graph:

sb

neg

−→ m ib
pos

−→ m sb

pos

−→ sb

For computing the well-founded model of the Magic Set transformed database
Dm := �F ∪ {seed(Q)}, ms(RQ) ∪ {seed rule(Q)}� we compare the alternat-
ing fixpoint computation by Van Gelder [vG89] and the structured bottom-up
method by Balbin et al. [BPRM91] with our approach. First let us trace the
alternating fixpoint computation using Algorithm 2 from Section 3.3.2. We begin
with initializing the set of definitely true facts DT 0 with the empty set DT 0 = Ø.
Afterwards the largest overestimation of positive conclusions is computed with
respect to the empty set of true positive conclusions DT 0 implying that all nega-
tive literals are assumed to be true. The least fixpoint of �TR then yields the first
set of not definitely false facts
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NDF 1 := F ∪ {seed(Q)}
∪ {m ib(4), m ib(6), m ib(8)}
∪ {ib(4), ib(6), ib(8)}
∪ {m sb(4), m sb(5), m sb(6), m sb(8)}
∪ {sb(4), sb(5)}.

The first set of true negative conclusions DF 1 is implicitly given by complement-
ing NDF 1, e.g.:

DF 1 := ¬ · (HDm \NDF 1)

The subsequent computation of definitely true facts DT 1 is performed by employ-
ing the previously obtained set of not definitely false facts NDF 1 for evaluating
negative literals using the negation as failure principle

DT 1 := F ∪ {seed(Q)}
∪ {m ib(4), m ib(6)}
∪ {m sb(4), m sb(5), m sb(6)}
∪ {sb(4), sb(5)}.

As the sets DT 0 and DT 1 are not equal, the iteration continues producing the
following sets of positive conclusions

NDF 2 := DT 1

DT 2 := DT 1.

As no more true positive conclusions can be derived, a fixpoint has been reached.
The alternating fixpoint M+

Dm = F ∪ {seed(Q)} ∪ {m ib(4), m ib(6), m sb(4),
m sb(5),m sb(6), sb(4), sb(5)} coincides with the positive portion of the corre-

sponding total well-founded model MDm such that MDm = M
+
Dm ∪· ¬ ·M

+
Dm .

Let us compare this result with the application of the soft consequence opera-
tor. The set of required rules for the body literal ¬sb(X) within the answer rule
for defining ib is

req(¬sb(X)) := { m sb(X) ← m ib(X),
sb(X) ← m sb(X) ∧ b(X, Y) ∧ sb(Y),
sb(X) ← m sb(X) ∧ g(X),
m sb(Y) ← m sb(X) ∧ b(X, Y) }

which coincides with the required rule set of the corresponding negative body
literal within the sub-query rule for defining m ib. The following partition P =
P1∪· P2∪· P3 of the Magic Sets transformed rule set ms(RQ)∪· {rule seed(Q)}
satisfies the condition of soft stratification:



66 Chapter 4. Query Evaluation

P1:

m sb(X) ← m ib(X)
sb(X) ← m sb(X) ∧ b(X, Y) ∧ sb(Y)
sb(X) ← m sb(X) ∧ g(X)
m sb(Y) ← m sb(X) ∧ b(X, Y)

P2:

ib(X) ← m ib(X) ∧ ¬sb(X) ∧ j(X, Y) ∧ ib(Y)
m ib(Y) ← m ib(X) ∧ ¬sb(X) ∧ j(X, Y)

P3:

m ib(X) ← m s ib(X)
ib(X) ← m ib(X) ∧ k(X)

The computation of lfp (T s

P ,F) induces the following sequence of sets:

F1 := F ∪ {seed(Q)}
F2 := T �

P3
(F1) = F1 ∪ {m ib(6)}

F3 := T �

P1
(F2) = F2 ∪ {m sb(6)}

F4 := T �

P2
(F3) = F3 ∪ {m ib(4)}

F5 := T �

P1
(F4) = F4 ∪ {m sb(4)}

F6 := T �

P1
(F5) = F5 ∪ {m sb(5)}

F7 := T �

P1
(F6) = F6 ∪ {sb(5)}

F8 := T �

P1
(F7) = F7 ∪ {sb(4)}

F9 = F8

This result coincides with the alternating fixpoint determined above. However,
as this computation is strictly monotonic, any overestimations are avoided. That
is, in contrast to the alternating fixpoint computation, the facts m ib(8),m sb(8),
ib(4), ib(6), ib(8) are not derived. In addition, it is possible to apply a semi-
naive evaluation method in order to avoid the recomputation of certain facts. A
possible drawback of our approach could be the expensive search for the next
partition set to be applied which might require testing all ’lower’ partitions. This
can be partly avoided by providing additional information on literal dependencies
in order to avoid the consideration of partition sets which cannot be affected by
newly derived facts.

The structured bottom-up method by Balbin et al. [BPRM91] uses a function
eval/2 for evaluating the Magic Set transformed rule set. Every time a negative
literal is considered, the function eval/2 is recursively called for performing a
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local fixpoint computation over the relevant portion of the Magic Set transformed
rules. The nested fixpoint computations terminate as soon as no more facts can
be added to the global database state Me. In our example, the evaluation process
starts with Me := F ∪ {m ib(6)} and the function call eval(ib,Me). The overall
evaluation process then looks as follows:

eval(ib,F ∪ {m ib(6)})
Me := Me ∪ F ∪ {m ib(6)}

eval(sb, {m sb(6)})
Me := Me ∪ {m sb(6)}
. . .
Me := Me ∪Ø

eval(sb, {m sb(6)})
Me := Me ∪ {m sb(6)}
. . .
Me := Me ∪Ø

Me := Me ∪ {m ib(4)}






I

eval(sb, {m sb(4)})
Me := Me ∪ {m sb(4)}
. . .
Me := Me ∪ {m sb(5), sb(4), sb(5)}

eval(sb, {m sb(4)})
Me := Me ∪ {m sb(4)}
. . .
Me := Me ∪ {m sb(5), sb(4), sb(5)}

Me := Me ∪Ø






II

While evaluating the top level function call, two iteration rounds I and II can be
identified, each performing a separate fixpoint computation for the two ’negative’
queries against sb. Note that the evaluation basically coincides with the one
induced by the soft stratification approach. This means that for each negative
derived literal the corresponding separate ’negative’ query evaluation is performed
in the same order as in the soft stratification approach. Nevertheless, as each
negative (derived) literal causes a separate function call, many facts are repeatedly
computed in the example above. In addition, this separation of context makes
it difficult or even impossible to apply further rule optimization techniques as
proposed, e.g., in [NRSU95, Ros91, RS91, Sud92, LMSS95, LS92, LS95, SMK97,
GSSS91, SSS90, Beh00]. Therefore, the soft stratification approach performs at
least as good as the structured query evaluation method, but because of the
deficiencies mentioned above asymptotically better in the general case.



68 Chapter 4. Query Evaluation

a

1

b

2

c d y. . .

9. . . 10 100. . .

Figure 4.1: Connections represented by relation edge/2.

Of course, for finite Herbrand universes and fixed rule sets any of the above
mentioned approaches requires time polynomial in the size of the Herbrand uni-
verse. The actual efficiency therefore strongly depends on the chosen implemen-
tation and the applied optimization techniques. The discussion above, however,
already indicates some principle problems of the alternative approaches in com-
parison to our proposed method.

We will now turn our attention to an orthogonal optimization problem by
means of existential query optimization. This problem is particularly interesting
in the context of softly stratifiable rules as every negative derived literal leads to
a set of existential queries.

4.3 Existential Query Optimization

Interestingly, the problem of optimizing the evaluation of existential queries has
drawn little attention in the deductive database literature up till now, e.g. [RBK88,
NRSU89, Aze97, Beh00], and there exists no general solution yet. In this sec-
tion, however, we will present a transformation-based approach which solves this
problem at least for a certain class of existential queries. Basically, an existential
query is a query which contains no free variables at the time of its evaluation,
i.e., all variables occurring in the query literal are bound to certain constants or
the query literal is a 0-ary predicate. For answering an existential query in a set-
oriented language like Datalog it is sufficient to find just one appropriate answer
fact while all other possible derivations of the same answer fact are not needed
and ought to be avoided. As an example, let us consider the following positive
database D = �F ,R� with R consisting of the well-known transitive closure rules
for defining the derived relation path/2

R:
p(X, Y) ← e(X, Y)
p(X, Y) ← e(X, Z) ∧ p(Z, Y)

F :
e(a,1), e(1,2), e(2,3), ...e(99,100), e(9,d)

e(a,b), e(b,c), e(c,d), ..., e(x,y)
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and the query Q ≡ p(a, d) asking for a path between the nodes a and d. A
graphical illustration of the facts F is presented in Figure 4.1. Apparently there
are two different derivation paths for the fact p(a, d) such that the query can be
successfully answered. The Magic DB transformation yields the deductive rule
set Rm := ms(RQ)∪· {m pbb(X, Y) ← m s pbb(X, Y)} with

ms(RQ):

pbb(X, Y) ← m pbb(X, Y) ∧ e(X, Y)
pbb(X, Y) ← m pbb(X, Y) ∧ e(X, Z) ∧ pbb(Z, Y)
m pbb(Z, Y)← m pbb(X, Y) ∧ e(X, Z)

as well as the magic seed fact m s pbb(a, d). Let us consider the partition P :=
P1∪· P2 of Rm with P1 consisting of all answer rules in Rm, while P2 comprises all
sub-query rules occurring in Rm including the seed rule. Separating answer and
sub-query rules in this way allows for computing answer facts as early as possible.
From Lemma 3.3 follows that the soft consequence operator can be applied for
computing the well-founded model of the Magic DB transformed database Dm =
�F ∪ {m s pbb(a, d)},Rm�. The computation of lfp(T s

P ,F ∪ {m s pbb(a, d)}) then
induces the following sequence of sets:

F1 := F ∪ {m s pbb(a, d)}
F2 := T �

P2
(F1) = F1 ∪ {m pbb(a, d)}

F3 := T �

P2
(F2) = F2 ∪ {m pbb(1, d), m pbb(b, d)}

F4 := T �

P2
(F3) = F3 ∪ {m pbb(2, d), m pbb(c, d)}

F5 := T �

P1
(F4) = F4 ∪ {pbb(c, d)}

F6 := T �

P1
(F5) = F5 ∪ {pbb(b, d)}

F7 := T �

P1
(F6) = F6 ∪ {pbb(a, d)}

F8 := T �

P2
(F7) = F7 ∪ {m pbb(3, d), m pbb(d, d)}

. . .
F105 := T �

P2
(F104) = F104 ∪ {m pbb(100, d)}

F106 := F105.

The evaluation stops after computing the last fact set F106, which means visiting
all nodes in the graph corresponding to relation e by generating corresponding
sub-query facts. The total well-founded model of the Magic DB transformed
database Dm = �F ∪ {m s pbb(a, d)},Rm� is given by MDm = M

+
Dm ∪· ¬ · M

+
Dm

with

M
+
Dm = {m pbb(X, d) | X ∈ UDm}∪·

{pbb(X, d) | X ∈ {a, b, c, 1, 2, 3, 4, 5, 6, 7, 8, 9}}∪·
{m s pbb(a, d)}∪· F
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while UDm denotes the set of all constants occurring in Dm, i.e., UDm is the
Herbrand universe of Dm. It is obvious, however, that the computation could
already have been stopped with the computation of F7 after generating the answer
fact pbb(a, d). We therefore propose to slightly modify the Magic Sets transformed
rules by incorporating a criterion for restricting the sub-query generation to those
facts which are really necessary for answering an existential query. Consider again
the above example but with the following modified magic rules

pbb(X, Y) ← m pbb(X, Y, U, V) ∧ e(X, Y)
pbb(X, Y) ← m pbb(X, Y, U, V) ∧ e(X, Z) ∧ pbb(Z, Y)
m pbb(Z, Y, U, V)← m pbb(X, Y, U, V) ∧ e(X, Z) ∧ ¬pbb(U, V)
m pbb(X, Y, X, Y)← m s pbb(X, Y).

Within the derived sub-queries represented by magic literals, two additional pa-
rameters are used for storing the information about the top-query Q. Adding the
negative answer literal ¬pbb(U, V) to the third sub-query rule allows the genera-
tion of new sub-queries only as long as the top-query has not been successfully
answered. Evaluating these rules using the soft consequence operator together
with a similar partition as proposed above then induces the following sequence
of sets:

F1 := F ∪ {m s pbb(a, d)}
F2 := T �

P2
(F1) = F1 ∪ {m pbb(a, d, a, d)}

F3 := T �

P2
(F2) = F2 ∪ {m pbb(1, d, a, d), m pbb(b, d, a, d)}

F4 := T �

P2
(F3) = F3 ∪ {m pbb(2, d, a, d), m pbb(c, d, a, d)}

F5 := T �

P1
(F4) = F4 ∪ {pbb(c, d)}

F6 := T �

P1
(F5) = F5 ∪ {pbb(b, d)}

F7 := T �

P1
(F6) = F6 ∪ {pbb(a, d)}

F8 := F7.

The computation indeed shows the desired behavior as the existential query evalu-
ation process is restricted to the generation of relevant (sub-)queries and answers,
only. Note that the evaluation of the modified magic rules does not yield their
corresponding well-founded model in which all answer facts are undefined. How-
ever, it is easy to see that applying the modified magic rules in the way described
above represents an approach which is at least complete and sound with respect
to the original existential query.

Instead of a single top-query Q, this shortened computation would also work
for a set of existential queries stored in the binary seed relation m s pbb. This ob-
servation is important since we want to provide a solution to optimizing derived
existential queries as well. As an example consider the two queries Q1 ≡ p(d, y)
and Q2 ≡ p(9, y) which may be stored in the seed relation for initiating the query
evaluation process. Using again the modified magic rules for evaluating these
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queries would also avoid the generation of unnecessary sub-query facts, i.e., in
this case the facts m pbb(32, y, 9, y), m pbb(33, y, 9, y), . . . m pbb(100, y, 9, y) are not
computed, after successfully deriving the answer fact pbb(9, y). However, this
example already indicates one of the deficiencies of this approach as required
derived sub-query facts are possibly duplicated. For instance, the original sub-
query fact m pbb(e, y) is now represented twice by the facts m pbb(e, y, d, y) and
m pbb(e, y, 9, y) according to the two top-queries Q1 ≡ p(d, y) and Q2 ≡ p(9, y).

Before we discuss the optimization of derived existential queries in more de-
tail, we will formally define the optimized magic rules for a set of existential
(top-)queries by means of the existential magic sets rewriting. Similar to the pre-
sentation of Magic Templates in Section 4.1.2 we begin by specifying how magic
literals are constructed and how the seed is derived from a set of queries in this
context.

Definition 4.11 (Existential Magic Literal) Let Qs be a set of existential
queries with respect to a derived relation q, A ≡ pad(�x) be a positive literal with
adornment ad and bd(�x) the sequence of variables within �x indicated as bound in
the adornment ad. Then the existential magic literal of A is defined as

exist_magic(A,Qs) := m pad(bd(�x), �y).

where �y is a vector of distinct variables y1, . . . , yn and n is the arity of q. If
A ≡ ¬pad(�x) is a negative literal, then the magic literal of A is defined as
exist_magic(A,Qs) := m pad(bd(�x), �y).

Definition 4.12 (Existential Seed/Seed Rule) Let Qs = {qad(�c1), qad(�c2), . . .}
be a set of existential queries with respect to a derived relation q. Then the set of
existential seeds for Qs is defined as

exist_seed(Qs) := {m s qad(�c) | qad(�c) ∈ Qs}

and the corresponding existential seed rule is defined as

exist_seed_rule(Qs) := m qad(�x, �x) ← m s qad(�x)

where �x is a vector of distinct variables x1, . . . , xn and n is the arity of q.

Using the two definitions above, we can now specify the modified magic rules
optimized with respect to a given set of existential (top-)queries.

Definition 4.13 (Existential Magic Rules) Let R be a stratifiable deductive
rule set, Qs a set of existential queries with respect to a derived relation q ∈
pred(R), and RQs the adorned rule set of R with respect to Qs. The Existen-
tial Magic Sets rewriting of RQs yields the magic rules ems(RQs) defined as the
smallest set satisfying the following conditions:



72 Chapter 4. Query Evaluation

1. For each deductive rule A ← L1 ∧ . . . ∧ Ln ∈ RQs an answer rule of the
form

A ← exist_magic(A,Qs) ∧ L1 ∧ . . . ∧ Ln

is in ems(RQs).

2. For each deductive rule A ← L1 ∧ . . . ∧ Ln ∈ RQs and each derived body
literal Li (1 ≤ i ≤ n) a sub-query rule of the form

exist_magic(Li, Qs) ← exist_magic(A,Qs) ∧ L1 ∧ . . . ∧ Li−1 ∧ ¬qad(�y)

is in ems(RQs) where qad(�y) is an adorned q literal and �y is a vector of
variables which are used in exist_magic(Li, Qs) wit respect to the set Qs
as well.

The following lemma shows the correctness of the existential magic sets rewriting
according to a given set of existential queries.

Lemma 4.1 Let D = �F ,R� be a stratifiable database, Qs a set of existential
queries with respect to a derived relation q ∈ pred(R), and ems(RQs) the ex-
istential magic rules of R with respect to Qs. Then the rule set ems(RQs) ∪
exist seed rule(Qs) is always softly stratifiable and a soft partition P in which
all answer rules are assigned to a smaller component of P than the sub-query
rules derived from them always exists. Additionally, evaluating lfp(T s

P , F ∪

exist seed(Qs)) using the soft consequence operator T s

P always yields the cor-
rect answer set with respect to Qs.

Since it is immediate that the propositions of this lemma are true we refrain from
presenting a formal proof of their correctness. Instead, we turn our attention to
derived existential queries and show how the results from above can be used for
optimizing them as well. As an example, let us consider the following additional
rules for defining a relation r

r(X, Y) ← p(X, Y)
r(X, Y) ← p(Y, X)

and an existential query Q ≡ r(c1, c2) with some constants c1 and c2. The cor-
responding (top-)query is given by the magic fact m rbb(c1, c2) inducing the two
existential derived queries m pbb(c1, c2) and m pbb(c2, c1). However, applying the
same technique as presented above for optimizing their evaluation leads to the
following problem: As soon as one of them is successfully answered leading to
an answer to the top-query, the evaluation of the other sub-query ought to be
terminated. Instead, our approach fully evaluates the two optimized sub-queries
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although one successful computation would suffice. A straightforward solution to
this problem would be to allow the generation of sub-queries only as long as none
of the existential queries from which they have been derived has been answered.
In our example, this would lead to the following sub-query rules:

m rbb(X, Y, X, Y) ← m s rbb(X, Y)
m pbb(X, Y, X, Y, X, Y) ← m rbb(X, Y, X, Y) ∧ ¬rbb(X, Y)
m pbb(Y, X, Y, X, X, Y) ← m rbb(X, Y, X, Y) ∧ ¬rbb(X, Y)
m pbb(Z, X, O, P, U, V) ← m pbb(X, Y, O, P, U, V) ∧ ebb(X, Z) ∧ ¬pbb(O, P) ∧ ¬rbb(U, V)

Within the derived sub-queries for relation p, four additional parameters are used,
the first two for storing the information about the existential queries against p,
i.e., represented by the facts m pbb(c1, c2) and m pbb(c2, c1), and the second two
arguments for storing the information about the existential query with respect to
r, i.e., represented by the magic fact m rbb(c1, c2). Again it is quite obvious that
an evaluation using the soft consequence operator as proposed above would be
well-optimized with respect to the three existential queries. In general, however,
adding new parameters and new negative answer literals in this way can really
”blow-up” the rule set such that its evaluation becomes more expensive despite
of existential query optimization effects. Therefore, we suggest to optimize only
certain derived existential queries using the existential magic sets rewriting in-
dependent of other existential queries. We propose to solely optimize existential
derived queries with respect to recursive or negatively referenced relations as this
promises to be most effective. In our example, this would lead to the optimization
of the derived existential queries with respect to the recursive relation p, resulting
in the following sub-query rules

m rbb(X, Y) ← m s rbb(X, Y)
m pbb(X, Y, X, Y) ← m rbb(X, Y)
m pbb(Y, X, Y, X) ← m rbb(X, Y)
m pbb(Z, X, O, P) ← m pbb(X, Y, O, P) ∧ ebb(X, Z) ∧ ¬pbb(O, P)

where the existential (top-)query m rbb(c1, c2) is not considered for optimization.
Note that the existential magic sets rewriting of the rules for defining relation
p is done with respect to the ’abstract’ queries represented by the two magic
sub-query rules

m pbb(X, Y) ← m rbb(X, Y)
m pbb(Y, X) ← m rbb(X, Y)

in the original Magic Sets transformed rule set. However, these rules together
with the corresponding answer rules are replaced by the existential magic rules.
The correctness of the existential magic sets rewriting with respect to a certain
subset of (derived) queries directly follows from Lemma 4.1.
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4.4 Discussion

The Magic Set rewriting technique seems to be the most promising approach to
evaluating database queries for database systems with a powerful view concept.
This is in particular the case for systems which will implement the new SQL:1999
standard, and hence will allow the definition of stratifiable recursive views. The
attractiveness of this method lies in its generality and efficiency. Additionally,
in [GM92, MFPR90, MP94] it has been shown that the Magic Set method can
improve the performance of nonrecursive queries as well. Thus, the Magic Set
transformation and an appropriate fixpoint-based evaluation mechanism seem
to be well-suited for being implemented on top of a (non)recursive relational
database system in order to extend its functionality.

In this chapter we have introduced a new fixpoint-based evaluation method for
computing the well-founded model of Magic Set transformed deductive databases.
The main focus was to provide a simple method which allows for further refine-
ment during a subsequent relational optimization phase and is at least as efficient
as comparable fixpoint-based approaches. Therefore, it is a crucial point that the
concept soft stratification restricts the evaluation of Magic Set transformed rules
as little as necessary in order to be most flexible for the application of additional
(orthogonal) rule optimization techniques. As an example we have shown how
the incorporation of existential query optimization techniques may further en-
hance the evaluation of softly stratifiable rules. We will return to this issue in
Section 5.2.3 as it represents an important optimization in the context of update
propagation as well.

Soft stratification can serve as a basic evaluation mechanism applicable to
other transformation-based approaches in deductive databases as well, e.g., soft
update propagation in Chapter 5, efficient computation of general logic programs
in Chapter 6 or methods for view updating. Although this approach plays an
important role throughout this work, certain aspects are left undiscussed as they
are beyond the scope of this thesis. These include, e.g., the applicability of the
soft consequence operator in case of general unstratifiable deductive databases
which do not result from a Magic Set transformation but are always guaranteed
to have a two-valued well-founded model. Other questions concerning an efficient
implementation would be how to incorporate a semi-naive evaluation technique
and how efficient this approach performs for special classes of databases, e.g.,
linear ones [NRSU89], illustrating its advantages in more detail. Finally, in the
SQL context it is necessary to consider this approach under bag semantics.



Chapter 5

Soft Update Propagation

In the field of deductive databases, a considerable amount of research has been
devoted to the efficient computation of induced changes by means of update prop-
agation. This technique has been mainly studied in order to provide methods
for efficient incremental view maintenance and integrity checking in stratifiable
databases. Additionally, update propagation methods based on bottom-up mate-
rialization seem to be particularly well-suited for updating distributed databases
(e.g. [LMSS95]) or in the context of WWW applications for signaling changes of
data sources to mediators (e.g. [GSUW94]).

The aim of update propagation is the computation of implicit changes of de-
rived relations in a deductive database resulting from an explicitly performed
update of its extensional fact base. As in most cases an update will affect only
a small portion of the database, it is rarely reasonable to compute the induced
changes by comparing the entire old and new database state. Instead, the im-
plicit modifications should be iteratively computed by propagating the individual
updates through the possibly affected rules and computing their consequences.

Within the last two decades, plenty of update propagation methods have been
proposed, and the list [Dec86, LST87, BDM88, SK88, DW89, MB88, GL90,
Wüt90, CW91, Oli91, VBK91, Küc91, GMS93, Man94, GL95, GM95, Gri97,
BKR+99, LR01, Pie01] is still not exhaustive. Although all these approaches
essentially apply the same propagation techniques, they mainly differ in the way
they are implemented and in the granularity of the computed induced updates.
With respect to implementation, authors either propose propagation algorithms
of their own or the application of deductive or active propagation rules. The dif-
ferent granularities considered result from integrity checking methods in which the
propagation of induced changes may be simplified with respect to integrity rules.
As this restricts the range of applications of update propagation, we will consider
the smallest granularity of updates, so called true updates [Gri97], only. True
updates correspond to real database changes excluding redundant or even false
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induced updates. Moreover, we will use deductive propagation rules1 allowing
the bottom-up computation of induced true updates by means of fixpoint-based
evaluation methods as proposed in Chapter 3.

Generally, for computing true updates, evaluations on both the old and new
database state are necessary. In [Oli91], Olivé introduces the Internal Events
Method which performs update propagation on one state only and derives the
other state from the given one as well as the induced updates by means of de-
ductive transition rules. A major advantage of such state simulation is that the
underlying database system need not provide a mechanism allowing deduction
on two different states. Similar transition rules have also been used by Bry et al.
in [BDM88] and by Griefahn in [Gri97]. Propagation rules and transition rules
together represent the update propagation rules which specify induced updates
with respect to an extensional update and a given database state. In the con-
text of pure bottom-up materialization, the benefit of these update propagation
rules is that the evaluation of their rule bodies can be restricted to the values of
the currently propagated update such that the entire propagation process is very
naturally limited to the actually affected derived relations.

On the other hand, similar bottom-up approaches require to materialize the
simulated state of derived relations completely in order to determine true updates.
By contrast, if update propagation were based on a pure top-down approach, as
proposed by Olivé [Oli91] and Küchenhoff [Küc91], the simulation of the opposite
state can be easily restricted to the relevant part by querying the relevant portion
of the database only. A pure top-down approach, however, has the disadvantage
that the induced changes can only be determined by querying all existing derived
relations, although most of them will probably not be affected by the update.

The structured update propagation method in [Gri97] combines the advan-
tages of top-down and bottom-up propagation by applying the Magic rewriting
to the update propagation rules mentioned above leading to potentially unstratifi-
able magic propagation rules. Therefore, structured update propagation is based
on the alternating fixpoint computation [vG93] in order to determine the well-
founded model of the possibly unstratifiable magic propagation rules correctly.
The application of the alternating fixpoint computation, however, is not really
efficient as the specific reason for unstratifiability (namely the application of the
magic sets transformation to a stratified rule set) is not taken into account. For
this reason, we will propose different update propagation rules which allow a more
efficient evaluation based on the soft stratification approach from Chapter 4. The
overall result of this chapter then is the soft update propagation approach for ef-
ficiently computing induced true updates.

Section 5.1 deals with the generation of update propagation rules which allow
the incremental computation of true updates. Section 5.2 presents the soft update

1Deductive propagation rules have been used in [VBK91, Küc91, Oli91, UO92, Man94, Gri97]
as well.
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propagation approach. In Section 5.3 its application to incremental maintenance
of materialized views and integrity checking is described. Section 5.4 concludes
this chapter with a discussion of our proposed update propagation method.

5.1 Incremental Update Propagation

In Section 2.4 we introduced the notions update uD = �u+
D
, u−

D
� and induced

update uD→D� = �u+
D→D� , u−D→D�� with respect to a given deductive database D for

specifying modifications of extensional relations inD and the overall modifications
of D, respectively. The following lemma summarizes the most essential properties
of true induced updates.

Lemma 5.1 (Properties of Induced Updates) Let D be a stratifiable deduc-
tive database, MD the semantics of D, uD an update and uD→D� = �u+

D→D� , u−D→D��

the corresponding true induced update. As uD→D� represents the exact difference
between the two database states, the sets of induced insertions and deletions are
disjoint and both the new and old database state can be constructed from the other
one, respectively, and the true induced update sets:

u+
D→D� ∩· u−

D→D� = Ø
M

+
D� = (M+

D \ u−
D→D�)∪· u+

D→D�

M
+
D = (M+

D� \ u+
D→D�)∪· u−

D→D�

Proof : The properties immediately follow from Definitions 2.22 and 2.23. ✷

The task of update propagation is to constructively determine the overall effect
of the update uD→D� . This is achieved by determining a set of delta facts for
every affected relation which may be stored in corresponding delta relations (cf.
Definition 2.24). In the following, we develop deductive rules for defining such
delta relations by providing transformations for deriving propagation rules in
Section 5.1.1 and transition rules in Section 5.1.2 from a given base update and
database.

5.1.1 Propagation Rules for True Updates

In this section we develop propagation rules for defining delta relations which
represent the changes of the original relations induced by a certain base update.
Delta relations reflect the original database schema in such a way that the explic-
itly performed base updates are represented by extensional delta relations while
derived updates are described by rule-defined ones. For efficiency reasons we
allow to reference delta relations in the body of propagation rules as well such
that their evaluation is restricted to already computed induced updates. In order
to abstract from negative and positive occurrences of atoms in rule bodies, we
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use the superscripts ”+” and ”−” for indicating what kind of delta relation is to
be used. For a positive literal A ≡ p(t1, . . . , tn) we define A+ ≡ ∆+p(t1, . . . , tn)
and A− ≡ ∆−p(t1, . . . , tn). For a negative literal L ≡ ¬A, we use L+ := A− and
L− := A+.

In the sequel, we call a delta relation ∆+p positive while ∆−p is denoted negative.
Additionally, a literal L which references a delta relation is called delta literal. If
pred(L) = ∆+p, then L is called a positive delta literal, and if pred(L) = ∆−p it
is denoted a negative delta literal .

For computing the derived delta relations, the explicit changes caused by a
base update have to be represented by the extensional delta relations. Thus,
quite similar to query seeds used in the Magic Sets method, we generate a set of
delta facts called propagation seeds for an explicitly performed base update.

Definition 5.1 (Propagation Seeds) Let D be a stratifiable deductive database
and uD = �u+

D
, u−

D
� a base update. The set of propagation seeds prop seeds(uD)

with respect to uD is

prop seeds(uD) := { ∆πp(c1, . . . , cn) | p(c1, . . . , cn) ∈ uπ

D
and π ∈ {+,−}}.

The extensional delta relations represent the starting point from which induced
updates are to be computed. An update propagation method can only be efficient
if most derived facts eventually rely on at least one fact in an extensional delta
relation.

Before defining propagation rules, we still have to introduce one more notion.
As already mentioned above, within the propagation rules references to both
the old and new database state are necessary. We will use corresponding meta
predicates old and new for these references in the bodies of propagation rules, and
assume that evaluations on both states are correctly performed by the underlying
database system. When transition rules for state simulation are considered in
Section 5.1.2, we no longer assume these predicates to be meta predicates but
mappings which syntactically transform the predicate symbols of the literals they
are applied to. We can now introduce incremental propagation rules for true
updates as proposed in [Gri97]. Since an induced insertion or induced deletion
can be simply represented by the difference between the two consecutive database
states, the propagation rules may be defined as follows:

Definition 5.2 (Propagation Rules) Let R be a stratifiable deductive rule set.
The set of propagation rules for true updates with respect to R is denoted ϕ(R)
and is defined as follows:

1. For each rule A ← L1 ∧ . . .∧Ln ∈ R and each body literal Li (i = 1, . . . , n)
two propagation rules of the form

A+ ← L+
i
∧ new(L1 ∧ . . . ∧ Li−1 ∧ Li+1 ∧ . . . ∧ Ln) ∧ old ¬A

A− ← L−
i
∧ old(L1 ∧ . . . ∧ Li−1 ∧ Li+1 ∧ . . . ∧ Ln) ∧ new ¬A



5.1 Incremental Update Propagation 79

are in ϕ(R). The literals new Lj and old Lj (j = 1, . . . , i− 1, i + 1, . . . , n)
are called side literals of L+

i
and L−

i
, respectively.

2. No other rules are in ϕ(R).

The propagation rules basically perform a comparison of the old and new database
state while providing a focus on individual updates by applying the delta literals
Lπ

i
with π ∈ {+,−}. Each propagation rule body may be divided into two parts:

1. The derivability test (Lπ

i
∧ {new|old} (L1 ∧ . . . ∧ Li−1 ∧ Li+1 ∧ . . . ∧ Ln))

is performed in order to determine whether A is derivable in the new or
old state, respectively. Basically, it is responsible for calculating potential
updates [Gri97].

2. The effectiveness test2 ({new | old}(¬A)) checks whether the fact obtained
by the derivability test is not derivable in the opposite state. Hence, it
checks whether the potential updates obtained by the derivability test are
effective.

Semantically, however, two other tasks can be identified depending on the data-
base state a literal refers to. The safeness test (new-derivations) takes care that
only safe updates are derived while the trueness test (old-derivations) takes care
that only true updates are propagated by checking whether a safe update is
not redundant with respect to the old database. For more details on different
granularities of updates and their relation to deducible tests we refer to [Gri97].

As the derivability test for defining a delta relation pred(Aπ) refers to one delta
literal L+

i
or L−

i
respectively, a fact for relation pred(A) is considered potentially

inserted if an update adds a derivation path for it and possibly deleted if it
removes one. In contrast to the derivability test, the effectiveness test solely
refers to the derived relation pred(A) ensuring that the fact inserted (respectively
deleted) is not derivable in the old (respectively new) state. In general, this test
cannot be further specialized, as it is needed to detect alternative derivations
caused by other rules defining the respective relation.

The obtained propagation rules and seeds can be added to the original database
yielding a safe and stratifiable database which is called augmented database in
the following3. The safeness of propagation rules immediately follows from the
safeness of the original rules. The only negative literal newly introduced corre-
sponds to the head of the transformed rule, so that the respective variables are
guaranteed to be bound by the remaining positive body literals. Furthermore,
the propagation rules cannot jeopardize stratifiability, as delta relations are al-
ways positively referenced and hence cannot participate in any cycle involving
negation.

2The effectiveness test is called derivability test in [VBK91] and redundancy test in [Küc91].
3The notion augmented database has been coined in [Oli91]
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Example 5.1 Let us consider again the rules from example 2.1 for defining the
derived relations path and one way:

1. one way(X) ← path(X, Y) ∧ ¬path(Y, X)
2. path(X, Y) ← edge(X, Y)
3. path(X, Y) ← edge(X, Z) ∧ path(Z, Y)

The corresponding propagation rules are as follows (In the sequel, the relation
symbols will be abbreviated by their first letter.):

1. ∆+
o(X) ← ∆+

p(X, Y)∧ new ¬ p(Y, X)∧ old ¬o(X)
∆+

o(X) ← ∆−p(Y, X)∧ new p(X, Y)∧ old ¬o(X)
∆−o(X) ← ∆−p(X, Y)∧ old ¬ p(Y, X)∧ new ¬o(X)
∆−o(X) ← ∆+

p(Y, X)∧ old p(X, Y)∧ new ¬o(X)

2. ∆+
p(X, Y) ← ∆+

e(X, Y) ∧ old ¬p(X, Y)
∆−p(X, Y) ← ∆−e(X, Y) ∧ new ¬p(X, Y)

3. ∆+
p(X, Y) ← ∆+

e(X, Z)∧ new p(Z, Y)∧ old ¬p(X, Y)
∆+

p(X, Y) ← ∆+
p(Z, Y)∧ new e(X, Z)∧ old ¬p(X, Y)

∆−p(X, Y) ← ∆−e(X, Z)∧ old p(Z, Y)∧ new ¬p(X, Y)
∆−p(X, Y) ← ∆−p(Z, Y)∧ old e(X, Z)∧ new ¬p(X, Y)

Note that the upper indices π of the delta literal ∆π
p(Y, X) in the propagation rules

for defining ∆π
o(X) are inverted as p is negatively referenced by the corresponding

literal in the original rule.

Each propagation rule in Example 5.1 includes one delta literal for restricting
the evaluation to the changes induced by the respective body literal. Thus, we
obtain one propagation rule for each possible update (i.e., insertion or deletion)
of each body literal. For each original rule 2n propagation rules are generated
if n is the number of body literals. However, quite similar to the delta rules for
differential fixpoint computation (cf. Section 3.1) it is possible to substitute not
only a single body literal but any subset of them by a corresponding delta literal.
This approach can provide a much better focus on propagated updates but would
lead to an exponential number of propagation rules in the augmented database.

Another deficiency of the propagation rules from the example above is that a
bottom-up materialization, as discussed in Chapter 3, will nevertheless determine
both the new as well as the old state of the relations path and one way completely.
The reason is that the supposed evaluation over the two consecutive database
states is performed using deductive rules which are not specialized with respect
to the particular updates that are propagated. If propagation was based on a top-
down evaluation technique, this problem would not occur. Then the bindings of
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delta literals could be easily passed to the remaining literals in the rule bodies such
that their evaluation is restricted to the affected part of the database only. This
obvious weakness of propagation rules in view of a bottom-up materialization
is cured by incorporating Magic Sets optimizations as proposed in Griefahn’s
structured update propagation approach [Gri97].

The following proposition shows that if propagation rules are generated accord-
ing to Definition 5.2, the delta relations will correctly represent the correspond-
ing induced update. Note that the proof of Proposition 5.3 is basically adopted
from [Gri97], but it is included in order to make this chapter self-contained.

Proposition 5.3 (Correctness of Propagation Rules) Let D = �F ,R� be a
stratifiable database, uD an update and uD→D� = �u+

D→D� , u−D→D�� the correspond-
ing induced update from D to D�. Let Dp = �F ∪ prop seeds(uD), R∪ ϕ(R)� be
the augmented deductive database of D. Then the delta relations defined by the
propagation rules ϕ(R) correctly represent the induced update uD→D�. Hence, for
each relation p ∈ pred(D) the following conditions hold:

∆+p(�t ) ∈MDp ⇐⇒ p(�t ) ∈ u+
D→D�

∆−p(�t ) ∈MDp ⇐⇒ p(�t ) ∈ u−
D→D� .

Proof : The proposition is shown by induction on the depth of proof trees4 for A
(respectively A+) with respect to D� (respectively Da). Additionally, the proof is
solely performed for insertions, as the corresponding result for deletions can be
shown by analogy. We assume that the meta predicates old and new are correctly
evaluated with respect to the database states MD and MD� , respectively.

1) We show by induction on the depth d of proof trees with respect to D� that
the implication A ∈ u+

D→D� ⇒ A+ ∈MDp holds. Suppose that A ∈ u+
D→D� .

Then there exists a proof tree for A with respect to D�, but none with re-
spect to D.

Suppose that d = 0: In this case, A refers to an extensional relation and
hence A ∈ u+

D. From Definition 5.1 follows that A+ ∈ prop seeds(uD)
⊆MDp .

Suppose that d > 0: We assume that the implication holds for all atoms
in u+

D→D� having a proof tree with respect to D� of depth less than d. As
d > 0, A has children L1σ, . . . , Lnσ and A ≡ Bσ is derived via

R ≡ B ← L1 ∧ . . . ∧ Ln

4A proof tree for a ground literal L is a tree of ground literals where each internal node L� ≡
A� has children Liσ (if there exists a ground instance Rσ of a rule R ≡ A ← L1 ∧ . . .∧Ln ∈ R

such that A� ≡ Aσ) or is a leaf (if A� ∈ F).
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where σ is a ground substitution for all variables in R. As no proof tree
exists for A with respect to D, at least one of the Liσ is not derivable in
D. If Liσ is a positive literal, then Liσ ∈ u+

D→D� . As Liσ has a proof tree
of depth < d with respect to D�, L+

i
σ ∈ MDp follows from the induction

hypothesis. If Liσ ≡ ¬Ciσ is a negative literal, then Ciσ ∈ u−
D→D� . It can

be shown by induction on the depth of proof trees with respect to D that
then L+

i
σ ≡ C−

i
σ ∈MDp holds, but this part of the proof is omitted since

it can be performed by analogy to the proof for deletions. From these two
cases follows that L+

i
σ ∈MDp . According to Definition 5.2, for each body

literal of R a positive propagation rule is generated such that the rule

B+ ← L+
i
∧ new(L1 ∧ . . . ∧ Ln) ∧ old¬B

is in ϕ(R). As evaluations over new and old are correct, it follows that
A+ ≡ B+σ is derivable in Dp, i.e., A+ ∈MDp .

2) We show by induction on the depth d of proof trees with respect to Dp that
the implication A+ ∈MDp ⇒ A ∈ u+

D→D� holds. Suppose that A+ ∈MDp .
Then there must be a proof tree for A+ with respect to Dp, whose depth
shall be denoted d.

Suppose that d = 0: In this case, A+ refers to an extensional delta relation
and A ∈ u+

D ⊆ u+
D→D� directly follows from Definition 5.1 of propagation

seeds.

Suppose that d > 0: We assume that the implication holds for all delta
facts which represent induced insertions having a proof tree with respect
to Dp the depth of which is less than d. As d > 0, A+ has children L+

i
σ,

newL1σ, . . ., newLi−1σ, newLi+1σ, . . . , newLnσ, old¬Bσ and A+ ≡ B+σ is
derived via the propagation rule

B+ ← L+
i
∧ new(L1 ∧ . . . ∧ Ln) ∧old¬B.

The child L+
i
σ of A+ has a proof tree with respect to Dp of depth < d. If

L+
i
σ is a positive delta literal, then L+

i
σ ∈ MDp and from the induction

hypothesis follows that L+
i
σ ∈ u+

D→D� . If L+
i
σC−

i
σ is a negative delta literal,

then C−
i
σ ∈MDp and it can be shown by induction on the depth of proof

trees with respect to Dp that Ciσ ∈ u−
D→D� . (This part of the proof is

omitted for the same reasons as above.) This shows that Liσ ∈ MD� . As
the side literals new(L1 ∧ . . .∧Li−1 ∧Li+1 ∧ . . . Ln) are correctly evaluated,
it additionally follows that

MD� |= (L1 ∧ . . . Li−1∧ Li+1 ∧ . . . ∧ Ln)σ
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and thus Bσ ∈MD� due to B ← L1 ∧ . . .∧Ln ∈ R
�. The effectiveness test

proves that Bσ /∈MD which finally shows that A ≡ Bσ ∈ u+
D→D� .

✷

The propagation rules can be determined at schema definition time and don’t
have to be recompiled each time a new base update is applied. The presented
transformation-based approach allows the specification of propagation rules for
true updates only, though it can be extended to describe the modifications in-
duced by a certain base update at an arbitrary granularity, as proposed in [Gri97,
MK88] for example. The consideration of different granularities allows for cutting
down the cost of propagation as long as accurate results are not required.

For propagating true updates the truth value of the updated facts in the old
as well as in the new state is essential and is determined by the derivability and
effectiveness test. However, the propagation rules can be further enhanced by
dropping the effectiveness test or by either refining or even omitting the deriv-
ability test in some cases. As an example, consider a derived relation which is
defined without an implicit union or projection. In this case, no multiple deriva-
tions of facts are possible, and thus the effectiveness test in the corresponding
propagation rules can be completely omitted. In the sequel, however, we will not
consider these specialized propagation rules any further as these optimizations
are orthogonal to the following discussion. We will now turn our attention to the
rule based simulation of database states by means of transition rules.

5.1.2 Transition Rules for True Updates

Generally, for computing true updates references to both the old and new database
state are necessary. Up to now, we have considered propagation rules containing
explicit references to both states, and their correct evaluation was assumed to
be guaranteed by the underlying database system. The purpose of this section
is to investigate the possibility of dropping the explicit references to one of the
states by deriving it from the other one and the given updates. The benefit of
such a state simulation is that the database system is not required to store both
states explicitly but may work on one state only. The deductive rules defining the
simulated state will be called transition rules according to the naming in [Oli91].

Although both directions are possible, we will concentrate on a somehow pes-
simistic approach, the simulation of the new state while the old one is actually
given. The following discussion, however, can be easily transferred to the case of
simulating the old state. In principle, transition rules can be differentiated by the
way how far induced updates are considered for simulating the other database
state. We start with the definition of naive transition rules which derive the new
state from the physically present old fact base and the explicitly given updates.
The disadvantage of these transition rules is, however, that each derivation with
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respect to the new state has to go back to the extensional delta relations and
hence makes no use of the implicit updates already derived during the course of
propagation. In the Internal Events Method [Oli91] as well as in [Man94] it has
been proposed to improve state simulation by employing not only the extensional
delta relations but the derived ones as well. However, the union of the original, the
propagation and this kind of transition rules is not stratifiable, if the database
includes recursively defined relations, and may even not represent the true in-
duced update anymore under the well-founded semantics [Gri97]. In [Gri97] such
stratification problems are avoided by introducing so-called incremental transi-
tion rules containing references to certain derived updates only. Naive as well
as incremental transition rules can be applied to the update propagation meth-
ods presented in subsequent sections. As both kinds of transition rules allow a
complete and sound propagation of updates having a distinct influence on the
efficiency of the underlying propagation process.

We start by considering the simulation of the new state by means of naive
transition rules. To this end, we assume that the base updates are not yet physi-
cally performed on the database but are only represented in the extensional delta
relations. From Lemma 5.1 we know that the new state can be computed from
the old one and the true induced update uD→D� = �u+

D→D� , u−D→D��:

M
+
D� = (M+

D \ u−
D→D�)∪· u+

D→D� .

This equation directly leads to an equivalence on the level of tuples

new A ⇐⇒ (old A ∧ ¬(A−)) ∨ A+.

which holds if the referenced delta relations correctly describe the induced update
uD→D� . Note that we assume the precedence of the superscripts ”+” and ”−” to
be higher than the one of ¬. Thus, we can omit the brackets in ¬(A−) and simply
write ¬A−.

According to Definition 5.1 the delta relations of the propagation seeds cor-
rectly correspond to the base update. Thus, using the equivalence above the
deductive rules for inferring the new state of extensional relations can be easily
derived. For instance, for the extensional relation edge/2 of our Example 5.1 the
new state is specified by the rules

new e(X, Y) ← old e(X, Y) ∧ ¬∆−e(X, Y)
new e(X, Y) ← ∆+

e(X, Y),

where the first rule specifies the unchanged portion of edge and the second one the
facts that are added. In the following, such rules will be denoted direct transition
rules according to the naming in [Gri97] as they directly define the new state of
a relation by means of its old state and its own delta relations.
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From the new states of extensional relations we can successively infer the new
states of derived relations using the dependencies given by the original rule set.
To this end, the original rules are duplicated and a new mapping is applied to all
predicate symbols occurring in the new rules. For instance, the rules

new o(X) ← new p(X, Y) ∧ ¬new p(Y, X)
new p(X, Y) ← new e(X, Y)
new p(X, Y) ← new e(X, Z) ∧ new p(Z, Y)

specify the new state of the relations path/2 and one way/2. As transition rules
of this structure solely infer the new state of a derived relation from the new
states of the underlying relations, they will be denoted indirect transition rules.
Again this denotation has been adopted from [Gri97].

In order to provide a homogeneous view on the propagation rules presented
in Section 5.1.1 and the transition rules introduced in the sequel, we stick to the
usage of new and old literals. However, we no longer assume them to be meta
predicates but mappings which syntactically transform the relation symbols of
literals they are applied to. As we consider the simulation of the new state
only, the old mapping is assumed to be the identity on literals such that their
evaluation is performed with respect to the original relations. As derivations
on the new state are to be done with respect to the relations specified by the
transition rules, the new mapping actually replaces the predicate symbols by
corresponding new ones. Note that the application of ¬ and the mappings new

respectively old are orthogonal, i.e., new¬A ≡ ¬new A and old¬A ≡ ¬old A.
Hence, the negative referenced path literal new¬p(Y, X) from the example above
may be replaced by ¬new p(Y, X).

We will now define naive transition rules using direct transition rules for ex-
tensional relations and indirect ones for derived relations as proposed above.

Definition 5.4 (Naive Transition Rules) Let D = �F ,R� be a stratifiable
deductive database. Then the set of naive transition rules for true updates and
new state simulation with respect to R is denoted τn(R) and is defined as follows:

1. For each n-ary extensional predicate symbol p ∈ pred(F), the direct transi-
tion rules

new A ← old A ∧ ¬A−

new A ← A+

are in τn(R) where A ≡ p(x1, . . . , xn), and the xi (i = 1, . . . , n) are distinct
variables.

2. For each rule A ← L1∧ . . .∧Ln ∈ R, an indirect transition rule of the form
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new A ← new (L1 ∧ . . . ∧ Ln)

is in τn(R).

3. No other rules are in τn(R).

It is obvious that if R is stratifiable, the rule set R∪· ϕ(R)∪· τn(R) must be
stratifiable as well. The following proposition shows that if a deductive database
D = �F ,R� is augmented with the naive transition rules τn(R) constructed from
R, the propagation rules ϕ(R) as well as the propagation seeds prop seeds(uD)
with respect to a base update uD, then the transition rules correctly define the new
database state, and the delta relations correctly represent the induced update.

Proposition 5.5 (Correctness of Naive Transition Rules) Let D = �F ,R�
be a stratifiable database, uD an update and uD→D� = �u+

D→D� , u−D→D�� the cor-
responding induced update from D to D�. Let Dp = �F ∪ prop seeds(uD),
R ∪ ϕ(R) ∪ τn(R)� be the augmented deductive database of D. Then Dp cor-
rectly represents the implicit state of D�, i.e., for all atoms A ∈ HD�

A ∈MD� ⇐⇒ new A ∈MDp,

and all delta relations defined by the propagation rules ϕ(R) correctly represent
the induced update uD→D�, i.e., for A ≡ p(�t ):

∆+p(�t ) ∈MDp ⇐⇒ p(�t ) ∈ u+
D→D�

∆−p(�t ) ∈MDp ⇐⇒ p(�t ) ∈ u−
D→D� .

Proof : The correctness of the new state simulation follows from the fact that the
propagation seeds truly represent the given base update and that the new state
of the extensional relations in D is correctly simulated using the properties from
Lemma 5.1. As the remaining transition rules are a copy of the original rules in R
with the predicate symbols consistently replaced by new ones, their evaluation is
based on the correctly simulated new states of the extensional relations in D and
hence, must be correct as well. Thus, for a database D∗ = �F ∪ prop seeds(uD),
R ∪ τn(R)� and all atoms A ∈ HD� the following holds:

A ∈MD� ⇐⇒ new A ∈MD∗ .

The correctness of delta relations follows from the fact that the propagation rules
ϕ(R) soundly represent the induced update (Proposition 5.3). Thus, the rule sets
ϕ(R) and R ∪ τn(R) correctly represent the induced update and the new state,
respectively.

The only question left is whether the evaluation of the entire rule set, i.e.,
the union of all rules R ∪ ϕ(R) ∪ τn(R), still remains correct. This follows
from the fact that every derived relation is solely defined by one of the three
rule sets, i.e., pred(R) ∩ pred(ϕ(R)) = Ø, pred(R) ∩ pred(τn(R)) = Ø and
pred(τn(R)) ∩ pred(ϕ(R)) = Ø, and that the union is still stratifiable such that
the following holds:
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M�MD∗ ,R∪ϕ(R)� = M�F∪prop seeds(uD),R∪ϕ(R)∪τn(R)�.

Thus, the evaluation of the rule sets ϕ(R) and R ∪ τn(R) remains correct if the
union of the entire rule set R ∪ ϕ(R) ∪ τn(R) is considered.

✷

Although it seems to be obvious to simulate the new database state by means
of naive transition rules, only base updates are used and thus, induced updates
computed by the propagation rules ϕ(R) cannot enhance the evaluation of tran-
sition rules. Adding direct transition rules to the set τn(R), however, may lead
to an unstratifiable rule set which may even not represent the induced update in
any case anymore. Therefore, in [Gri97] it has been proposed to consider only a
certain combination of indirect and direct transition rules such that the resulting
rule set remains stratifiable. The basic idea is to consider direct and indirect
transition rules for all derived predicates while indirect rules do not solely de-
pend on other indirect rules anymore but may also contain references to direct
transition rules as long as the entire rule set remains stratifiable. Hence, the new
state of a derived relation is defined by two different kinds of transition rules,
each of them dedicated to a specific task. Direct transition rules are used for
computing induced insertions while indirect rules are employed for computing
induced deletions. Transition rules of this structure preserve stratifiability and
will be denoted incremental transition rules in the following.

Definition 5.6 (Incremental Transition Rules) Let D = �F ,R� be a strat-
ifiable deductive database. Then the set of incremental transition rules for true
updates and new state simulation with respect to R is denoted τi(R) and is defined
as follows:

1. For each n-ary predicate symbol p ∈ pred(F ∪· R), the direct transition rules

new
d A ← old A ∧ ¬A−

new
d A ← A+

are in τi(R) where A ≡ p(x1, . . . , xn), and the xi (i = 1, . . . , n) are distinct
variables.

2. For each rule A ← L1∧ . . .∧Ln ∈ R, an indirect transition rule of the form

new
i A ← ν1L1 ∧ . . . ∧ νnLn

is in τi(R) where

νi :=

�
new

i if pred(Li) ≈ pred(A)
new

d otherwise

for i = 1, . . . , n.
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3. No other rules are in τi(R).

The new
i state relation will be applied in the effectiveness test of negative prop-

agation rules, and the new
d state relations in the derivability test of negative

propagation rules. In positive propagation rules the new
d state relations are used

in both, the derivability and effectiveness test. Under this assumption the follow-
ing proposition holds:

Proposition 5.7 (Correctness of Incremental Transition Rules) Let D =
�F ,R� be a stratifiable database, uD an update and uD→D� = �u+

D→D� , u−D→D�� the
corresponding induced update from D to D�. Let Dp = �F ∪ prop seeds(uD),
R ∪ ϕ(R) ∪ τi(R)� be the augmented deductive database of D and the mapping
new used in ϕ(R) defined by

new L :=






new
iL if new L occurs in the effectiveness test of a

negative propagation rule

new
dL otherwise.

Then Dp correctly represents the implicit state of D�, i.e., for all atoms A ∈ HD�

A ∈MD� ⇐⇒ new A ∈MDp,

and all delta relations defined by the propagation rules ϕ(R) correctly represent
the induced update uD→D�, i.e., for A ≡ p(�t ):

∆+p(�t ) ∈MDp ⇐⇒ p(�t ) ∈ u+
D→D�

∆−p(�t ) ∈MDp ⇐⇒ p(�t ) ∈ u−
D→D� .

Proof : cf. [Gri97, p. 179-180]. ✷

For illustrating the definitions above, consider again the deductive rules from
Example 5.1 for defining the relations path/2 and one way/2. Let the mappings
new

i, newd and old for a literal A ≡ r(t1, . . . , tn) be defined as follows:

new
iA := rnew

i
(t1, . . . , tn) new

i¬A := ¬newiA
new

dA := rnew
d
(t1, . . . , tn) new

d¬A := ¬newdA
old A := A old¬A := ¬old A

The corresponding propagation rules ϕ(R) will be
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1. ∆+
o(X) ← ∆+

p(X, Y) ∧ ¬ p
newd(Y, X) ∧ ¬o(X)

∆+
o(X) ← ∆−p(Y, X) ∧ p

newd(X, Y) ∧ ¬o(X)
∆−o(X) ← ∆−p(X, Y) ∧ ¬ p(Y, X) ∧ ¬onew

i
(X)

∆−o(X) ← ∆+
p(Y, X) ∧ p(X, Y) ∧ ¬onew

i
(X)

2. ∆+
p(X, Y) ← ∆+

e(X, Y) ∧ ¬p(X, Y)
∆−p(X, Y) ← ∆−e(X, Y) ∧ ¬pnew

i
(X, Y)

3. ∆+
p(X, Y) ← ∆+

e(X, Z) ∧ p
newd(Z, Y) ∧ ¬p(X, Y)

∆+
p(X, Y) ← ∆+

p(Z, Y) ∧ e
newd(X, Z) ∧ ¬p(X, Y)

∆−p(X, Y) ← ∆−e(X, Z) ∧ p(Z, Y) ∧ ¬pnew
i
(X, Y)

∆−p(X, Y) ← ∆−p(Z, Y) ∧ e(X, Z) ∧ ¬pnew
i
(X, Y)

while the incremental transition rules τi(R) are given by

1.onew
i
(X) ← p

newd(X, Y) ∧ ¬ p
newd(Y, X)

o
newd(X) ← o(X) ∧ ¬ ∆−o(X)

o
newd(X) ← ∆+

o(X)

2.pnew
i
(X, Y) ← e

newd(X, Y)
p
newi(X, Y) ← e

newd(X, Z) ∧ p
newi(Z, Y)

p
newd(X, Y) ← p(X, Y) ∧ ¬ ∆−p(X, Y)

p
newd(X, Y) ← ∆+

p(X, Y)

3.enew
d
(X, Y) ← e(X, Y) ∧ ¬ ∆−e(X, Y)

e
newd(X, Y) ← ∆+

e(X, Y).

Similar to propagation rules, transition rules can be determined at schema de-
finition time as well and don’t have to be recompiled each time a new update is
applied. Since we work on the old database state, the mapping old(A) simply
yields A. The effectiveness test makes sure that only true updates are computed
by the propagation rules; that is, only insertions are derived with respect to facts
which were not derivable in the old database state while only those deletions
are derived with respect to facts which were derivable in the old database state.
Although the application of delta literals indeed restricts the computation of
induced updates, the side literals and effectiveness test within the propagation
rules as well as the transition rules of this example require the entire new and old
state of relation e, p and o to be derived. In addition, when employing incremental
transition rules, the situation becomes even worse as the simulated new state of
a relation has to be materialized twice (via new

d and new
i) if evaluated using a
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pure bottom-up approach.
In order to avoid this drawback, in [Gri97] the evaluation of transition rules is

limited by using the Magic Set method. The reason for the application of Magic
Sets is twofold: On the one hand, this method is used to restrict the evaluation
to those old and new state facts only which are really needed for satisfying the
effectiveness and derivability test of a propagated update. On the other hand, if
incremental transition rules are used, the top-down evaluation simulated by Magic
Sets basically divides the derivation of relevant new state facts into those facts
derivable using direct transition rules and those derivable by indirect transition
rules. Thus, despite of using two kinds of transition rules, no new state fact is
redundantly derived twice by direct and indirect transition rules.

In the following section we will show how the Magic Set rewriting can be used
for enhancing the update propagation rules introduced above. Since the con-
sidered update propagation rules are stratifiable, the resulting Magic Updates
rules must be softly stratifiable and thus, may be evaluated using the soft strati-
fication method from Chapter 4. This approach for computing true updates will
be denoted soft update propagation.

5.2 Update Propagation via Soft Stratification

In Section 5.1 we already pointed out the obvious inefficiency of update prop-
agation, if performed by a pure bottom-up materialization of the augmented
database. In fact, simply applying iterated fixpoint computation to an augmented
database as proposed in Section 3.2 implies that at least all derived relations which
are relevant for showing the effectiveness of derived delta facts in propagation and
transition rules will be entirely computed. Thus, the implicit state of both, the
old and new database state of these relations will be materialized, although in
most cases only a small portion of each are relevant for computing the induced
changes. The only benefit of incremental propagation rules is that the evaluation
of their bodies is restricted to the values of the currently propagated updates
and thus can be completely avoided if delta relations are empty. In a pure top-
down procedure, on the other hand, the values of the propagated updates can be
passed to the side literals and effectiveness tests automatically restricting their
evaluation to the relevant part of the database. However, a pure top-down ap-
proach must query all existing delta relations in order to check whether they are
affected by an induced update, although for most of them this will not be the case.

In this section we develop an update propagation approach which combines the
advantages of the two strategies discussed above. In this way, update propagation
is automatically limited to the affected delta relations and the evaluation of side
literals and effectiveness tests is restricted to the updates currently propagated.
We will use the Magic Sets approach for incorporating a top-down evaluation
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strategy by considering the currently propagated updates in the dynamic body
literals as abstract queries on the remainder of the respective propagation rule
bodies. Evaluating these queries (in the following called propagation queries) has
the advantage that the respective state relations will only be partially materi-
alized. Moreover, later evaluations of propagation queries can benefit from the
state facts already derived in previous iteration rounds.

5.2.1 Soft Update Propagation by Example

Before formally presenting the soft update propagation approach, we will illus-
trate the main ideas by means of an example.

Example 5.2 Let us consider the following stratifiable deductive database D =
�F ,R� with R consisting again of the well-known transitive closure rules for
defining the derived relation path/2:

R:
p(X, Y) ← e(X, Y)
p(X, Y) ← e(X, Z) ∧ p(Z, Y)

F :
e(1,2), e(1,4), e(3,4)

e(10,11), e(11,12), ..., e(98,99), e(99,10),e(99,100)

The positive portion M+
Dm of the corresponding total well-founded model MDm =

M
+
Dm ∪· ¬ ·M

+
Dm consists of 8193 p-facts, i.e., |M+

Dm| = 8193 + |e| = 8287 facts.

For maintaining readability we restrict our attention to the propagation of true
insertions. In addition, we assume the new state to be simulated by means of
naive transition rules although incremental transition rules could be applied as
well. Let the mappings new and old for a literal A ≡ r(t1, . . . , tn) be defined as
new A := rnew(t1, . . . , tn) and old A := A. The corresponding propagation rules
ϕ(R) are then given by

∆+
p(X, Y)← ∆+

e(X, Y)∧ ¬p(X, Y)
∆+

p(X, Y)← ∆+
e(X, Z) ∧ p

new(Z, Y)∧¬p(X, Y)
∆+

p(X, Y)← ∆+
p(Z, Y) ∧ e

new(X, Z)∧¬p(X, Y)

while the naive transition rules τn(R) are

p
new(X, Y)← e

new(X, Y)
p
new(X, Y)← e

new(X, Z) ∧ p
new(Z, Y)

e
new(X, Y)← e(X, Y) ∧ ¬∆−e(X, Y)

e
new(X, Y)← ∆+

e(X, Y).
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Let uD be an update consisting of the new edge fact e(2, 3) to be inserted into
D, i.e., u+

D = {e(2, 3)}. The resulting augmented database Dp is Dp = �F ∪

{∆+
e(2, 3)},R ∪ ϕ(R) ∪ τn(R)�. Computing the induced update by evaluating

the stratifiable database Dp leads to the generation of 95 new state facts for
relation e, 8193 old state facts for p and 8193+3 new state facts for p. The entire
number of generated facts is 16487 for computing the three induced insertions
∆+

p(1, 3), ∆+
p(2, 3), and ∆+

p(2, 4) with respect to relation p.

We will now apply the Magic Sets rewriting with respect to the abstract
(propagation) queries Qu represented by the predicates ∆+

e(X, Y), ∆+
e(X, Z) and

∆+
p(Z, Y) in the propagation rule bodies. In order to emphasize the analogy to

the Magic Sets approach this transformation is denoted Magic Updates rewriting.
Let Rp = R ∪ ϕ(R) ∪ τn(R) be the set of update rules used in the augmented
database Dp and R

p

Qu the adorned rule set of Rp with respect to the abstract
propagation queries Qu. The rule set resulting from the application of the Magic
Updates rewriting will be denoted mu(Rp

Qu) and consists of the following answer
rules for our example

∆+
p(X, Y)← ∆+

e(X, Y)∧ ¬pbb(X, Y)
∆+

p(X, Y)← ∆+
e(X, Z)∧ p

new
bf (Z, Y)∧¬pbb(X, Y)

∆+
p(X, Y)← ∆+

p(Z, Y)∧ e
new
fb (X, Z)∧¬pbb(X, Y)

p
new
bf (X, Y) ← m p

new
bf (X)∧ e

new
bf (X, Y)

p
new
bf (X, Y) ← m p

new
bf (X)∧ e

new
bf (X, Z)∧ p

new
bf (Z, Y)

e
new
bf (X, Y)← m e

new
bf (X)∧ e(X, Y) ∧¬∆−e(X, Y)

e
new
bf (X, Y)← m e

new
bf (X)∧ ∆+

e(X, Y)
e
new
fb (X, Y)← m e

new
fb (Y)∧ e(X, Y) ∧¬∆−e(X, Y)

e
new
fb (X, Y)← m e

new
fb (Y)∧ ∆+

e(X, Y)

pbb(X, Y)← m pbb(X, Y)∧ e(X, Y)
pbb(X, Y)← m pbb(X, Y)∧ e(X, Z)∧ pbb(Z, Y)

as well as the following sub-query rules

m p
new
bf (Z)← ∆+

e(X, Z)
m p

new
bf (Z)← m p

new
bf (X) ∧ e

new
bf (X, Z)

m e
new
fb (Z)← ∆+

p(Z, Y)

m e
new
bf (X)← m p

new
bf (X)
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p
new
bf e

new
bf e

new
fb pbb m p

new
bf m e

new
bf m e

new
fb m pbb

p
new
bf (3, 4) e

new
bf (3, 4) e

new
fb (1, 2) pbb(1, 4) m p

new
bf (3) m e

new
bf (3) m e

new
fb (1) m pbb(1, 3)

m p
new
bf (4) m e

new
bf (4) m e

new
fb (2) m pbb(1, 4)

m pbb(2, 3)
m pbb(2, 4)
m pbb(4, 3)
m pbb(4, 4)

Table 5.1: Generated state relation facts using soft update propagation

m pbb(X, Y)← ∆+
e(X, Y)

m pbb(X, Y)← ∆+
e(X, Z) ∧ p

new
bf (Z, Y)

m pbb(X, Y)← ∆+
p(Z, Y) ∧ e

new
fb (X, Z)

m pbb(Z, Y)← m pbb(X, Y) ∧ e(X, Z).

Quite similar to the Magic sets approach, the Magic Updates rewriting may result
in an unstratifiable rule set. This is also the case for the rule set of our example
where the following negative cycle can be found in the corresponding dependency
graph of mu(Rp

Qu):

∆+
p

pos

−→ m pbb
pos

−→ pbb
neg

−→ ∆+
p

We will show, however, that the resulting rule set must be at least softly strati-
fiable such that the soft consequence operator could be used for determining the
corresponding well-founded model. Computing the induced update by evaluat-
ing Dmp = �F ∪ {∆+

e(2, 3)}, mu(Rp
Qu)� leads to the generation of two new state

facts for relation e, one old state fact and one new state fact for p. The entire
number of generated facts is 19 in contrast to 16487 for computing the three
induced insertions with respect to relation p. Table 5.1 summarizes the gener-
ated state relation facts with respect to the corresponding answer and sub-query
rules in mu(Rp

Qu). The reason for the small number of facts is that only relevant
state relation facts are derived. In the example above, this excludes the set of
edge facts {e(10, 11), e(11, 12), . . . , e(98, 99), e(99, 10), e(99, 100)} and the cor-
responding p-facts as they are not affected by the insertion ∆+

e(2, 3) and thus,
do not have to be considered during the update propagation process.

Although this example already shows the advantages of applying the Magic
Sets transformation to the propagation rules from Section 5.1, the application of a
rule set resulting from the Magic Updates rewriting does not necessarily improve
the performance of the update propagation process. This is due to the fact that
there are cases where the relevant part of a database represented by Magic Sets
transformed rules together with the necessary sub-queries exceeds the amount of
derivable facts using the original rule set. However, these cases are ’theoretically’
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constructed examples. In general, the Magic Sets approach indeed leads to a
well-optimized rule evaluation, and so does the Magic Updates approach.

Note that we have covered so far the application of naive transition rules
only, although incremental transition rules could have been used in the sample
database as well. The advantage of incremental transition rules is that at least
the computation of induced insertions is partially based on previously derived
induced deletions and insertions by using direct transition rules (via new

d). In-
duced deletions, however, are based on indirect transition rules (via new

i) which
almost correspond to naive transition rules and thus, make no use of induced
updates already computed in previous iteration rounds. The application of the
Magic Sets rewriting now restricts the new state relations defined by indirect and
direct transition rules to those portions which are relevant for computing induced
deletions and induced insertions, respectively. The only remaining disadvantage
when applying incremental transition rules then is the consideration of two dif-
ferent relations new

i and new
d for simulating the new state of a relation which

are not necessarily disjoint in spite of using Magic Sets. Thus, additional joins
have to be performed and identical new state facts could be derived by the two
rule sets, separately.

We will now formally introduce the Magic Updates rewriting and prove it to
be always softly stratifiable. Afterwards we present a comparison to the related
structured update propagation approach by Griefahn in [Gri97] and argue that
soft stratification indeed represents an efficient update propagation method for
stratifiable deductive databases.

5.2.2 The Soft Update Propagation Approach

In this section we formally introduce the soft update propagation approach. To
this end, we define the Magic Updates rewriting which, applied to an augmented
rule set, results in a set of propagation rules that contains references to relevant
portions of state relations only. After proving its correctness, it is shown that
the resulting rule set is softly stratifiable and that its evaluation using the soft
consequence operator from Section 3.2.2 yields the induced updates defined by
the underlying augmented database.

Definition 5.8 (Magic Updates Rewriting) Let R be a stratifiable rule set,
Rp = R ∪ ϕ(R) ∪ τ(R) an augmented rule set of R, and Qu the set of abstract
propagation queries given by all delta literals occurring in rule bodies of propaga-
tion rules in ϕ(R). The Magic Updates rewriting of Rp yields the magic rule set
mu(Rp

Qu) := Ru

P
∪· Ru

Q
∪· Ru

M
where Ru

P
, Ru

Q
and Ru

M
are defined as follows:

1. From ϕ(R) we derive the two deductive rule sets Ru

P
and Ru

Q
: For each

propagation rule Aπ ← ∆π́
e ∧ L1 ∧ . . . ∧ Ln ∈ ϕ(R) with ∆π́

e ∈ Qu is a
dynamic literal and π, π́ ∈ {+,−}, an adorned answer rule of the form
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Aπ ← ∆π́
e ∧ L1

ad1
∧ . . . ∧ Ln

adn

is in Ru

P
where each non-dynamic body literal Li (1 ≤ i ≤ n) is replaced

by the corresponding adorned literal Li

adi
while assuming the body literals

∆π́
e∧L1∧. . .∧Li−1 have been evaluated in advance. Note that the adornment

of each non-derived literal consists of the empty string. For each derived
adorned body literal Li

adi
(1 ≤ i ≤ n) a sub-query rule of the form

magic(Li

adi
) ← ∆π́

e ∧ L1
ad1
∧ . . . ∧ Li−1

adi−1

is in Ru

Q
.

No other rules are in Ru

P
and Ru

Q
.

2. From the set Rstate := R∪· τ(R) we derive the rule set Ru

M
: For each

relation symbol magic(Lad) ∈ pred(Ru

Q
) the corresponding Magic Set trans-

formed rule set ms(RQ

state) is in Ru

M
where Q ≡ Lad represents an adorned

query with pred(L) ∈ pred(Rstate) and R
Q

state is the adorned rule set of
Rstate with respect to Q.

3. No other rules are in Ru

M
.

The following Theorem 5.1 shows that a rule set resulting from the Magic Updates
rewriting is always softly stratifiable and correctly represents the induced updates
defined by the underlying augmented database.

Theorem 5.1 Let D = �F ,R� be a stratifiable database, uD an update, uD→D� =
�u+

D→D� , u−D→D�� the corresponding induced update from D to D�, Qu the set of all
abstract queries in ϕ(R), and Rp = R∪ϕ(R)∪τ(R) an augmented rule set of R.
Let mu(Rp

Qu) be the result of applying Magic Updates rewriting to Rp and Dmp =
�F ∪ prop seeds(uD), mu(Rp

Qu)� the corresponding augmented deductive database
of D. Then Dmp is softly stratifiable and all delta relations in Dmp defined by the
propagation rules ϕ(R) correctly represent the induced update uD→D�, i.e., for all
atoms A ∈ HD� with A ≡ p(�t ):

∆+p(�t ) ∈MDmp ⇐⇒ p(�t ) ∈ u+
D→D�

∆−p(�t ) ∈MDmp ⇐⇒ p(�t ) ∈ u−
D→D� .

Proof : The correctness of the Magic Updates rewriting with respect to an aug-
mented rule set Rp is shown by proving it to be equivalent to a specific Magic Set
transformation of Rp which is known to be sound and complete. In Chapter 4 the
Magic Sets transformation has been introduced by starting with the adornment
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phase which basically depicts information flow between literals in a database ac-
cording to a chosen sip strategy. Up till now, we have considered full sip strategies
only in which all captured variable bindings are passed to the literal considered
next. In [BPRM91] it is shown, however, that the Magic Sets approach is also
sound for so-called partial sip strategies which may pass on only a certain subset of
captured variable bindings, or even no bindings at all. Let us assume we have cho-
sen such a sip strategy which passes no bindings to dynamic literals such that their
adornments are strings solely consisting of �f � symbols representing unbounded at-
tributes. Additionally, let Rṕ = Rp∪· {h ← ∆π1p1(�x1)}∪· . . . ∪· {h ← ∆πnpn(�xn)}
be an extended augmented rule set with rules for defining an auxiliary 0-ary re-
lation h with h /∈ pred(ϕ(R)), {∆π1p1, . . . , ∆πnpn} = pred(ϕ(R)) distinct pred-
icates, and �xi (i = 1, . . . , n) vectors of pairwise distinct variables with a length
according to the arity of the corresponding predicates ∆πipi. Relation h references
all derived delta relations in ϕ(R) as they are potentially affected by a given base
update. Note that since Rp is assumed to be stratifiable, Rṕ must be stratifi-
able as well. The Magic Sets rewriting of Rṕ with respect to the query H ≡ h
using a partial sip strategy as proposed above yields the rule set ms(RH

ṕ
) which

is basically equivalent to the rule set mu(Rp

Qu) resulting from the Magic Updates
rewriting. The rule set ms(RH

ṕ
) differs from mu(Rp

Qu) by the answer rules of the
form

h ← m h, ∆π1p1ff...(�x1), . . . , h ← m h, ∆πnpnff...(�xn)

for the additional relation h, by sub-query rules of the form

m ∆π1p1ff... ← m h, . . . , m ∆πnpnff... ← m h,

by sub-query rules of the form

m ∆πipiff... ← m ∆πjpjff... with i, j ∈ {1, . . . , n},

and by the usage of m ∆πipi
ff...

literals in propagation rule bodies for defining a
corresponding delta relation ∆πipiff.... It is obvious that these rules and literals
can be removed from ms(RH

ṕ
) without changing the semantics of the derived delta

relations in ms(RH

ṕ
). The remaining rules coincide with the magic updates rules

mu(Rp

Qu). Using Propositions 5.3, 5.5 and 5.7, it can be concluded that the rule
set RH

ṕ
is stratifiable, and all delta relations defined in it correctly represent the

induced update uD→D� . Thus, the Magic Set transformed rule set ms(RH

ṕ
) must

be sound and complete as well. As the magic updates rules mu(Rp

Qu) can be
derived from ms(RH

ṕ
) in the way described above, they must correctly represent

the induced update uD→D� as well. In addition, since ms(RH

ṕ
) is softly stratifiable,

the magic updates rules mu(Rp

Qu) must be softly stratifiable, too. ✷

From Theorem 5.1 follows that the soft stratification approach from Section 4.2.2
can be applied for efficiently computing the induced changes represented by the
augmented database Dmp. For instance, the partition P := P1∪· P2 of the Magic
Updates transformed rule set mu(Rp

Qu) of our running example with
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P1:

pbb(X, Y) ← m pbb(X, Y) ∧ e(X, Y)
pbb(X, Y) ← m pbb(X, Y) ∧ e(X, Z) ∧ pbb(Z, Y)

m pbb(X, Y)← ∆+
e(X, Y)

m pbb(X, Y)← ∆+
p(Z, Y) ∧ e

new
fb (X, Z)

m pbb(X, Y)← ∆+
e(X, Z) ∧ p

new
bf (Z, Y)

m pbb(Z, Y)← m pbb(X, Y) ∧ e(X, Z).

and with partition P2 consisting of all other magic updates rules, i.e., P2 :=
mu(Rp

Qu) \ P1, satisfies the condition of soft stratification. Using the soft con-
sequence operator for determining lfp(T s

P ,F ∪ {∆+
e(2, 3)}) yields the correct

well-founded model, the state relation facts of which were already presented in
Table 5.1.

Before we compare soft update propagation with the related structured update
propagation approach by Griefahn [Gri97], we briefly consider again the problem
of optimizing existential queries from Section 4.3 for improving the evaluation of
the effectiveness test in our Magic Updates transformed propagation rules.

5.2.3 Efficient Evaluation of the Effectiveness Test

In Section 4.3 we presented an approach for optimizing (derived) existential
queries in a Magic Sets transformed rule set. The basic idea was to apply the
existential magic sets rewriting to certain existentially queried relations instead
of the original Magic Sets transformation. As this rewriting may lead to repeated
computations of facts, we proposed to solely optimize existential derived queries
with respect to recursively defined relations or negatively referenced relations.

In principle, the efficient evaluation of (derived) existential queries represents
an orthogonal optimization problem which can be considered after the Magic
Updates rewriting has been applied. However, because of the special structure of
magic updates rules, this optimization technique turns out to be very important
in this context. Therefore, we will briefly discuss the optimization effects that
can be achieved when applying the existential magic sets rewriting with respect
to the effectiveness tests in propagation rules.

Let us consider again the transitive closure rules as well as the fact base from
Example 5.2 in Section 5.2.1 and let uD be an update consisting of the new
edge fact e(98, 100) to be inserted into D, i.e., u+

D = {e(98, 100)}. Because of
the facts e(98, 99) and e(99, 100) in F it is known that no additional p-facts are
derivable after applying this update. The augmented database Dmp resulting from
the magic updates rewriting is given by Dmp = �F ∪ {∆+

e(98, 100)}, mu(Rp
Qu)�.

Computing the induced update by evaluating the softly stratifiable database Dmp

leads to the generation of 91 sub-query facts with respect to m pbb and 90 old
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state facts with respect to p despite of using magic sets. The entire number
of generated answer and sub-query facts is 183 for showing that the insertion
u+
D = {e(98, 100)} does not affect relation p.
Originally, we used the Magic Sets approach to limit the evaluation of side

literals and effectiveness tests in propagation rules to the relevant part of the
database. However, it is already clear that one successful derivation with respect
to the negative literals of the effectiveness test is sufficient to show that a poten-
tial update is ineffective. For our example this implies that after computing the
sub-query facts m pbb(98, 100) and m pbb(99, 100) together with the correspond-
ing answer facts pbb(99, 100) and pbb(98, 100) the evaluation could have been
stopped. Therefore, we propose to apply the existential magic sets rewriting with
respect to the effectiveness tests leading to the following modified answer rules
Ra in our running example:

pbb(X, Y)← m pbb(X, Y, U, V)∧ e(X, Y)
pbb(X, Y)← m pbb(X, Y, U, V)∧ e(X, Z)∧ pbb(Z, Y).

In addition, the following modified sub-query rules Rm are generated:

m pbb(X, Y, X, Y)← ∆+
e(X, Y)

m pbb(X, Y, X, Y)← ∆+
p(Z, Y) ∧ e

new
fb (X, Z)

m pbb(X, Y, X, Y)← ∆+
e(X, Z) ∧ p

new
bf (Z, Y)

m pbb(Z, Y, U, V)← m pbb(X, Y, U, V) ∧ e(X, Z)∧ ¬p(U, V).

All other rules in mu(Rp
Qu) remain unchanged. The partition P := P1∪· P2∪· P3

with P1 := Ra, P2 := Rm, and P3 consisting of all other rules in mu(Rp
Qu) sat-

isfies the condition of soft stratification and additionally separates answer and
sub-query rules with respect to relation pbb as necessary for existential query op-
timization. Using the soft consequence operator for evaluating the soft partition
P then induces the following sequence of facts:

F1 := F ∪ {∆+
e(98, 100)}

F2 := T �

P2
(F1) = F1 ∪ {m pbb(98, 100, 98, 100)}

F3 := T �

P2
(F2) = F2 ∪ {m pbb(99, 100, 98, 100)}

F4 := T �

P1
(F3) = F3 ∪ {pbb(99, 100)}

F5 := T �

P1
(F4) = F4 ∪ {pbb(98, 100)}

F6 := T �

P3
(F5) = F5 ∪ {m p

new
bf (100)}

F7 := T �

P3
(F6) = F6 ∪ {m e

new
bf (100)}

F8 := F7.

The computation with respect to the old state of relation p shows the desired
behavior and stops after successfully deriving the fact pbb(98, 100).

Although this example is rather simple, the general positive impact of exis-
tential query optimization for evaluating the effectiveness tests in propagation
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rules is evident. Since the state simulation via transition rules is usually con-
sidered to be very expensive, the optimized evaluation of effectiveness tests for
a limited evaluation of simulated state relations becomes especially important.
Therefore, the application of existential query optimization for an enhanced new
state simulation, i.e., needed for computing induced deletions, is essential as well.

5.2.4 Comparison to Structured Update Propagation

As already mentioned above, the idea of combining the advantages of bottom-up
and top-down approaches to update propagation using the Magic Sets method
has been first published in [Gri97] resulting in the structured update propagation
method. In this section, we will briefly compare soft update propagation with
this related approach by means of our running example. For finite Herbrand uni-
verses and fixed rule sets, both approaches require time polynomial in the size of
the Herbrand universe. However, since structured update propagation is based
on the alternating fixpoint computation, it can be shown again that soft update
propagation performs at least asymptotically better as any overestimation of facts
when applying the alternating fixpoint is avoided. In addition, by using the soft
consequence operator as basic evaluation technique it is possible to further sim-
plify the underlying Magic Updates transformation leading to a smaller number
of derived relations and rules. Thus, less joins have to be performed and less facts
are generated during the fixpoint evaluation process.

For illustrating the differences, let us consider again the stratifiable deductive
database D = �F ,R� from Example 5.2 with the well-known transitive closure
rules

R:
p(X, Y) ← e(X, Y)
p(X, Y) ← e(X, Z) ∧ p(Z, Y)

and the fact base F

F :
e(1,2), e(1,4), e(3,4)

e(10,11), e(11,12), ..., e(98,99), e(99,10),e(99,100)

For sake of readability we again restrict our attention to the propagation of true
insertions and to the application of naive transition rules only. In order to im-
plement structured update propagation, at first a transformation is applied to
the augmented rule set, i.e., the union of propagation rules ϕ(R), transition rules
τ(R), and original rules R. The aim of this rewriting is to clearly separate the
so-called propagation rule set and query rule set from the augmented rules, the
first responsible for deriving the delta facts, the latter used for evaluating prop-
agation queries. To this end, in each propagation rule the conjunction of side
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literals together with the effectiveness test is replaced by a new literal which is
constructed from a new predicate symbol as well as the predicate symbol the
corresponding propagation rule refers to. Each new predicate is supplied with an
adornment indicating the bound arguments. Assuming the new predicate sym-
bols to be i1 pbb, i2 pbbf, and i3 pbbf, the resulting propagation rule set RP is
as follows

RP :
∆+

p(X, Y) ← ∆+
e(X, Y) ∧ i1 pbb(X, Y)

∆+
p(X, Y) ← ∆+

e(X, Z) ∧ i2 pbbf(X, Z, Y)
∆+

p(X, Y) ← ∆+
p(Z, Y) ∧ i3 pbbf(Z, Y, X)

The substituted side literals and effectiveness tests are used to build the adorned
allowed rules

i1 pbb(X, Y) ← ¬p(X, Y)
i2 pbbf(X, Z, Y) ← p

new(Z, Y) ∧ ¬p(X, Y)
i3 pbbf(Z, Y, X) ← e

new(X, Z) ∧ ¬p(X, Y)

which are now transformed together with the original rules R as well as the tran-
sition rules τ(R) using the Magic Sets rewriting with respect to the abstract prop-
agation queries represented by the newly introduced predicates i1 pbb, i2 pbbf,
and i3 pbbf. The resulting rule set then represents the query rules RQ and consist
of the following answer rules

i1 pbb(X, Y) ← m i1 pbb(X, Y) ∧ ¬pbb(X, Y)
i2 pbbf(X, Z, Y)← m i2 pbbf(X, Z)∧ p

new
bf (Z, Y)∧¬pbb(X, Y)

i3 pbbf(Z, Y, X)← m i3 pbbf(Z, Y)∧ e
new
fb (X, Z)∧¬pbb(X, Y)

p
new
bf (X, Y)← m p

new
bf (X)∧ e

new
bf (X, Y)

p
new
bf (X, Y)← m p

new
bf (X)∧ e

new
bf (X, Z)∧ p

new
bf (Z, Y)

e
new
bf (X, Y)← m e

new
bf (X)∧ e(X, Y) ∧¬∆−e(X, Y)

e
new
bf (X, Y)← m e

new
bf (X)∧ ∆+

e(X, Y)
e
new
fb (X, Y)← m e

new
fb (Y)∧ e(X, Y) ∧¬∆−e(X, Y)

e
new
fb (X, Y)← m e

new
fb (Y)∧ ∆+

e(X, Y)

pbb(X, Y)← m pbb(X, Y)∧ e(X, Y)
pbb(X, Y)← m pbb(X, Y)∧ e(X, Z)∧ pbb(Z, Y)

as well as the following sub-query rules
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m p
new
bf (Z)← m i2 pbbf(X, Z)

m p
new
bf (Z)← m p

new
bf (X) ∧ e

new
bf (X, Z)

m e
new
fb (Z)← m i3 pbbf(Z, Y)

m e
new
bf (X)← m p

new
bf (X)

m pbb(X, Y)← m i1 pbb(X, Y)
m pbb(X, Y)← m i2 pbbf(X, Z) ∧ p

new
bf (Z, Y)

m pbb(X, Y)← m i3 pbbf(Z, Y) ∧ e
new
fb (X, Z)

m pbb(Z, Y)← m pbb(X, Y) ∧ e(X, Z)

as well as the following propagation seeds

m i1 pbb(X, Y) ← ∆+
e(X, Y)

m i2 pbbf(X, Y) ← ∆+
e(X, Y)

m i3 pbbf(X, Y) ← ∆+
e(X, Y).

In principle, this rule set coincides with the Magic Updates rewritten rules mu(Rp
Qu)

as presented in Section 5.2.1. The only difference lies in the application of the
newly introduced predicates i1 pbb, i2 pbbf, and i3 pbbf representing the condi-
tions under which a delta fact induces a new delta fact to be derived by using
the propagation rules in RP . The reason for separating the magic rewritten rules
into the propagation rules RP and the set of query rules RQ is that the complete
alternating fixpoint computation of the entire (and possibly unstratifiable) rule
set can be avoided this way. Instead, all negative cycles involving delta literals
are cut such that alternating fixpoint computation is solely needed for correctly
evaluating RQ. For evaluating RP , however, the simple computation of the least
fixpoint of T �

RP
is already sufficient. In structured update propagation the two

rule sets RQ and RP are now mutually applied each time employing the correctly
determined facts of the other rule set until no more new delta facts can be derived
with RP .

Note that the application of alternating fixpoint computation is still imper-
ative, as the Magic Sets transformed query rules may be partly unstratifiable.
Although all unstratifiable cycles in the query rules RQ of our running example
are cut, adding the following rule

no cycle(X, Y) ← e(X, Y) ∧ ¬p(Y, Y) ∧ ¬p(X, X)

for defining the relation no cycle would result in an unstratifiable query rule set.
In this case, RQ would additionally contain the query rules

m i4 no cyclebb(X, Y) ← ∆+
e(X, Y) (R1)
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p
new
bb (X, Y) ← m p

new
bb (X, Y) ∧ e

new
bf (X, Y) (R2)

p
new
bb (X, Y) ← m p

new
bb (X, Y) ∧ e

new
bf (X, Z) ∧ p

new
bb (Z, Y) (R3)

m p
new
bb (Y, Y) ← m i4 no cyclebb(X, Y) (R4)

m p
new
bb (X, X) ← m i4 no cyclebb(X, Y) ∧ ¬pnewbb (Y, Y) (R5)

for propagating true insertions with respect to no cycle, leading to the following
negative cycle in the corresponding dependency graph:

p
new
bb

neg

−→ m p
new
bb

pos

−→ p
new
bb .

Let uD be an update consisting of the new edge facts e(2, 1) and e(10, 2) to be
inserted into D, i.e., u+

D = {e(2, 1), e(10, 2)} inducing no insertions with respect to
no cycle but the fact no cycle(1, 2) to be deleted from D. During the alternating
fixpoint evaluation of the above rule set, however, the application of the rule R5

which negatively references relation pnew

bb
leads to the overestimated sub-query fact

m pnew

bb
(10, 10). This in turn results in the redundant generation of further sub-

query facts {m pnew

bb
(10, 1),m pnew

bb
(10, 2)} ∪ {m pnew

bb
(10, 11), . . . ,m pnew

bb
(10, 100)}

as well as corresponding answer facts {pnew

bb
(10, 1), pnew

bb
(10, 2)} ∪ {pnew

bb
(10, 10), . . . ,

pnew

bb
(10, 100)} which would not have been derived in the soft update propagation

approach. This is due to the fact that the softly stratifiable rules cannot de-
rive the sub-query fact m pnew

bb
(10, 10) because of the answer facts pnew

bb
(1, 1) and

pnew

bb
(2, 2) generated before, and thus, avoiding any overestimations.

It is obvious that the application of the soft consequence operator for evalua-
ting the query rules is more efficient than the application of alternating fixpoint
computation. The reason is that the former approach avoids any overestimation
of facts as already discussed in Section 4.2.3. The desire to apply the expensive
alternating fixpoint to the smallest possible rule set has led to the division of the
augmented rules into two sub-rule sets RP and RQ. The advantage is that only
definitely true facts with respect to delta literals are computed as it is known that
no not definitely false facts have to be generated during the course of alternating
fixpoint computation. A disadvantage is that new relations have to be introduced
for copying results between the rule sets RP and RQ leading to the generation
of additional facts. Another deficiency of this approach is that the alternating
evaluation of both rule sets makes relational optimization hard or even impossi-
ble. Thus, it can be concluded that soft update propagation indeed represents
an improved evaluation method in comparison to the related structured update
propagation approach.

5.3 Applications of Update Propagation

The computation of the implicit changes of derived relations caused by a base up-
date is helpful to provide a deeper understanding of a complex database schema



5.3 Applications of Update Propagation 103

and interdependencies within it. In addition, databases with a powerful trigger
component may allow the definition of triggers not only with respect to changes in
base relations but also with respect to changes in derived relations, for which the
computation of the implicit changes then becomes necessary. In the literature,
however, incremental methods to update propagation have been mainly investi-
gated for providing implementations to integrity checking (e.g. [Dec86, LST87,
DW89, KSS87, QS87, CW90, Küc91, Oli91, BMM91, LL96]) and materialized
view maintenance (e.g. [CW91, BMM91, GMS93, CW94, GL95, CGL+96, Gri97,
BDD+98, DS00, SBLC00]). As incremental update propagation represents an
essential sub-task common to integrity checking and view maintenance, prop-
agation methods for these two database services have been proposed as well,
e.g. [UO92, TO95, RSS96, CKL+97, MT00]. These two classical database tasks
obviously represent the most relevant applications for update propagation. There-
fore, we will briefly discuss in this section how soft update propagation can be
used as a basic evaluation technique for each of them.

5.3.1 Integrity Checking

The enforcement of integrity is a crucial issue, as the quality of a database es-
sentially depends on the quality in which an application is presented. Hence,
integrity constraints have to be verified each time a database is updated, i.e.,
at the end of each transaction. In case of a violation of at least one integrity
constraint, consistency can be maintained by either rolling back the transaction
or by applying further updates in order to repair the violated constraints.

Generally, static constraints are closed first order formulas describing admissi-
ble database states. In our database from Example 5.2, we may require that for
each cycle in the path relation at least one direct cycle between the underlying
edge facts exists:

∀ X p(X, X) ⇒ ∃Y e(X, Y) ∧ e(Y, X).

Practically, it is more convenient to specify integrity constraints by means of
ground atoms derivable in every database state. In our example, the same in-
tegrity constraint can be expressed using the deductive rules

ic1 ← ¬aux1

aux1 ← p(X, X) ∧ ¬aux2(X)
aux2(X) ← e(X, Y) ∧ e(Y, X).

The proper integrity constraint then is just ic1. Note that it is always possible to
transform integrity constraints into such a rule-based representation (cf. [Llo87,
CGH94]). Specifying constraints via derived or base facts has the advantage that
integrity checking is reduced to the question whether an update leads to the
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deletion of one of these ground atoms from the implicit state of a given database.
Hence, in our example a constraint violation would be indicated by the derivation
of the delta fact ∆−

ic1 during an update propagation process.

The Magic Updates rewriting presented so far is performed with respect to all
derived relations in a given database. Although the evaluation of Magic Updates
transformed propagation rules is limited to the actually affected delta relations,
it is possible to further refine the propagation rules if it is known for certain
(delta) relations that they will always be empty. For instance, integrity con-
straints as defined in Section 2.3 have to be solely checked for induced deletions if
an originally consistent database is updated. The construction used in the proof
of Theorem 5.1 already implies the possibility of further enhancing the magic
update propagation process. In the proof, an auxiliary 0-ary relation h has been
used for referencing delta relations which are possibly affected by a given base
update. If integrity constraints are taken into account, we can exclude rules for
defining h which contain references to induced insertions, as these delta relations
must be empty. In addition, it is often possible to further refine the resulting rules
using the same argumentation as above. As an example consider the propagation
rules for induced deletions with respect to the above introduced constraint ic1:

∆−
ic1 ← ∆+

aux1 ∧ ¬icnew1

∆+
aux1 ← ∆+

p(X, X) ∧¬aux
new
2 (X)∧¬aux1

∆+
aux1 ← ∆−

aux2(X)∧ p
new(X, X) ∧¬aux1

∆−
aux2(X)← ∆−

e(X, Y) ∧ e(Y, X) ∧¬auxnew2 (X)
∆−

aux2(X)← ∆−
e(Y, X) ∧ e(X, Y) ∧¬auxnew2 (X).

Assuming that the relations aux1/0 and aux2/1 are solely needed for defining the
constraint ic1, it is not necessary to consider rules for defining the delta relations
∆−

aux1/0 and ∆+
aux2/1 in the set of optimized propagation rules. This is due

to the fact that only delta facts in ∆+
aux1/0 and ∆−

aux2/1 may induce the
derivation of ∆−

ic1. Additionally, it is possible to drop the effectiveness tests in
the first three rules as no alternative derivation paths with respect to ic1 exist
and the old state relation aux1/0 will always be empty in a consistent database
state. Note that is possible to automatically enhance the transformed rule set in
the described way although the general problem of finding an optimized rule set
(which needs less rules or joins but is equivalent to the original one) is undecidable.

First approaches to incremental integrity checking have been proposed using
closed first order formulas as constraints (e.g. [Nic82, BBC80, BB82]). The basic
idea was to simplify a given constraint in such a way that the resulting conditions
directly refer to base relation updates. This simplification basically coincides with
our transformation-based approach which uses optimized propagation rules.
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In general, universally and existentially quantified formulas in conjunctive nor-
mal form have been distinguished, each of them being simplified in a different way.
The simplification of universally quantified constraints leads to specialized con-
straints which are well-optimized with respect to a given base update. This is
also the case for our example in which the resulting propagation rules provide a
focus on the relevant changes with respect to the constraint ic1. Simplifying exis-
tentially quantified formulas, however, turned out to be much more complicated
as it is not always possible to specialize them with respect to induced updates.
As an example consider the following constraint which requires that at least one
cycle in path has to exist:

∃X p(X, X).

This condition can be expressed by the following deductive rule

ic2 ← p(X, X)

which defines the integrity constraint ic2. The corresponding propagation and
transition rule for defining ∆−

ic2 are

∆−
ic2 ← ∆−

p(X, X) ∧ ¬icnew2

ic
new
2 ← p

new(X, X).

Note that it is not possible to avoid the effectiveness test in the propagation rule
because of alternative cycle facts in p. Hence, it is necessary to determine the
new state relation ic

new
2 /0 which leads to the complete materialization of pnew/2.

This is due to the fact that no bindings from the induced updates in ∆−
p/2 can

be passed to the new state relation p
new/2 when applying the Magic Updates

transformation. Thus, the complete new state of p has to be determined during
the update propagation process and the computed induced updates cannot be
used at all.

Solutions for the problem of optimizing so-called non-complacent assertions
have been already proposed in [BB82]. The authors suggest to generate pretests
which are easier to evaluate than the original integrity constraint. If a pretest
is successful, i.e., it can be evaluated to TRUE, the corresponding integrity con-
straint must be satisfied as well. If a pretest is evaluated to FALSE, the entire
integrity constraint must be checked again for a possible violation. A quite sim-
ilar optimization effect in our approach can be achieved by applying the exis-
tential query optimization technique proposed in Section 4.3 and Section 5.2.3.
As already mentioned in these sections, however, our proposed optimization of
existential queries does not represent a complete solution for the general case.
Therefore, both approaches, existential magic sets rewriting or the application
of pretests, cannot provide a complete solution to the problem of incremental
integrity checking with respect to existential constraints yet.



106 Chapter 5. Soft Update Propagation

5.3.2 Materialized Views

The motivation for materializing derived relations (or views) is to provide fast
access to frequently queried relations having such a complex definition that they
should not be recomputed for every query. Once a relation has been materialized,
this relation can be treated like a base relation and query evaluation can be further
supported by building up index structures [GM95].

However, a modification of the fact base may induce changes of derived rela-
tions such that the current materialization no longer coincides with its definition.
Hence, for each affecting base update the materialized relation has to be adapted.
As in most cases, only a small portion of the derived relation will be changed by
a base update, it is rarely expedient to entirely recompute the new state of the
relation by means of transition rules. Instead, only the particular changes repre-
sented by delta facts ought to be computed in order to incrementally maintain
the materialized relation.

Although update propagation is an essential step towards the incremental
maintenance of materialized relations, the case that such relations are referred
to during the process of update propagation has not been considered yet. As
materialized relations will only be adapted according to the result of update
propagation, they remain in their old state during the entire propagation pro-
cess. Hence, for materialized relations the new state has to be simulated only.
In case of new state simulation, this causes no problems. References to the old
state can be performed by accessing the materialized relation and the new state
can be simulated as for any other derived relation.

However, if the old state simulation is considered, for all extensional and virtual
derived relations the old state has to be simulated while for materialized relations
the new state is to be computed. References to the old state of such a relation are
again evaluated by accessing the materialized relation like any other base relation.
Evaluations on the new state, however, have to be performed via the deductive
rules originally defining the relation, as done for any other derived relation.

It can be concluded that the soft update propagation approach needs only
slight modifications when materialized views are considered due to the above
mentioned particularities with respect to state simulation. Query evaluation,
however, is performed by considering materialized views as ordinary base rela-
tions. Thus, during the application of Magic Updates rewriting as presented in
Definition 5.8 all body literals referring to the old state of a materialized relation
are considered to be non-derived literals for which no sub-query rules are gener-
ated. If the soft update propagation approach is modified in this way, the results
of the propagation process can be used for maintaining the materialized views by
simply applying the corresponding delta facts.
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5.4 Discussion

In this chapter, we have presented a new bottom-up evaluation method for com-
puting the implicit changes of derived relations resulting from explicitly performed
updates of the extensional fact base. The proposed transformation-based ap-
proach derives deductive propagation rules by means of range-restricted Datalog¬

rules which can be automatically generated from a given stratifiable database
schema. We use the Magic Sets method to combine the advantages of top-down
and bottom-up propagation approaches in order to restrict the computation of
true updates to the affected part of the database only. To do so has been first
proposed in [Gri97], where structured update propagation has been introduced as
computation method for the potentially unstratifiable magic propagation rules.
Structured update propagation is based on the alternating fixpoint computation
proposed by Van Gelder [vG93] in order to determine the well-founded model
of the possibly unstratifiable magic propagation rules correctly. The applica-
tion of the alternating fixpoint computation, however, is not really efficient as
the specific reason for unstratifiability (namely the application of the magic sets
transformation to a stratified rule set) is not taken into account. Therefore, we
propose a less complex magic updates transformation resulting in a set of rules
which is not only smaller but may in addition be efficiently evaluated using the
soft stratification approach. Thus, less joins have to be performed and less facts
are generated.

Incremental methods for update propagation have been mainly studied in the
context of Datalog (e.g. [Dec86, KSS87, LST87, BDM88, Küc91, Oli91, BMM91,
UO92, GMS93, CW94, Man94, UO94, TO95, LL96, MT99, MT00]), relational al-
gebra (e.g. [QW91, Man94, GL95, CGL+96, CKL+97, BDD+98, DS00, SBLC00]),
and SQL (e.g. [CW90, CW91]). Methods in Datalog are often based on SLDNF
resolution and thus cannot guarantee termination for recursively defined predi-
cates. In addition, a set-oriented evaluation technique is preferred in the database
context. Approaches formulated in relational algebra or SQL so far are also not
capable of handling recursion, the latter usually based on transformed views or
specialized triggers. Transformed SQL-views directly correspond to our proposed
method in the non-recursive case. The application of triggers (e.g. as proposed
by Ceri/Widom) does not allow the reuse of intermediate results obtained by
querying the derivability and effectiveness tests.

Summarizing the benefits of our approach: Soft update propagation can handle
recursion and may also propagate updates at arbitrary granularity (cf. [Gri97]).
It combines the advantages of top-down and bottom-up approaches by using a
simple set-oriented fixpoint process which is well-suited for being transferred into
the SQL context. In contrast, a pure top-down approach would need a more
elaborated control in order to implement the propagation of base updates to
recursive views. The incorporation of query evaluation via Magic Sets allows for
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reusing intermediate query results. Additionally, the fixpoint evaluation can be
easily combined with other relational optimization techniques.

The propagation rules proposed in this chapter are restricted to the propa-
gation of insertions and deletions of base facts in stratifiable databases. How-
ever, up till now, several approaches have been proposed dealing with further
kinds of updates or additional language concepts. As far as the latter are con-
cerned, update propagation in presence of built-ins and (numerical) constraints
has been discussed in [Wüt90], while views possibly containing duplicates are
considered in [CW91, GL95]. Aggregates and updates have been investigated
in [BW93, GMS93]. As for the various types of updates, methods have been
introduced for dealing with the modification of individual tuples, e.g. [CW91,
UO92], the insertion and deletion of rules (respectively view definitions) and con-
straints, e.g. [MB88, SK88], and even changes of view and constraint definitions,
e.g. [GMR95]. A taxonomy of view maintenance problems based upon the main-
tenance of materialized views is given in [GM95]. All these techniques may allow
for enhancing the propagation rules introduced in this section in order to provide
a more elaborate approach to update propagation. However, there is still the
question to be answered to which extent these techniques can be incorporated
into our proposed framework.



Chapter 6

Well-founded Model
Computation

In Chapter 2, three different database classes have been introduced resulting
from certain combinations of recursion and negation among the respective de-
ductive rules. Unstratifiable databases represent the most general class posing
no restrictions on the combination of recursion and negation at all. Based on
model theory, several proposals for a suitable semantics of unstratifiable negation
have been made. The most well-established of these are the stable model seman-
tics and the well-founded semantics, the latter being preferred by many authors
because of its unique model [vGRS91]. The reason for dealing with this most
general class is that unstratifiable rules are strictly more expressive than strat-
ifiable ones [Kol91]. Hence, a general method for computing the well-founded
model subsumes all other rule classes introduced above and can be exploited for
any deductive database service which requires the materialization of intensional
facts.

Basically, bottom-up approaches to the general computation of well-founded
models can be divided into methods using the alternating fixpoint (e.g. [vG93,
KSS95, SNV95]) and into those based on the residual program evaluation (e.g.
[Bry89, DK89, BD95, BZF96]). The advantage of the residual program approach
is that the conditional facts used provide additional information about why cer-
tain facts are considered undefined in the resulting three-valued well-founded
model. On the other hand, conditional facts and algorithms working with them
are not that well-suited for being implemented in a relational database context
(see Section 6.3). Therefore, we will concentrate on the efficient implementation
of the alternating fixpoint procedure and its well-known drawback of repeated
computations.

In Chapter 3, we already introduced alternating fixpoint computation as pro-
posed in [vG89] and based on that a slightly modified version for computing
the equivalent KSS Alternating Fixpoint Model suggested in [KSS91, KSS95].

109
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Both approaches, however, suffer from the drawback of repeated computations,
as in each iteration round most of the facts from previous iterations are redun-
dantly recomputed. Therefore, we suggest to use the results from Chapter 4 and
Chapter 5 for extending alternating fixpoint computation by applying Magic Up-
dates transformed propagation rules. The resulting approach avoids any repeated
computations [Beh01] and represents a generalization of the differential fixpoint
computation well-known for stratifiable deductive databases [BR87].

In Section 6.1 the doubled program approach is presented for computing the
KSS Alternating Fixpoint Model. In Section 6.2 we propose an enhancement
of this approach by applying update propagation. To this end, we discuss the
generally positive impact of using update propagation rules for evaluating dou-
bled programs in the first Subsection 6.2.1. Afterwards, in Subsection 6.2.2, we
introduce a simplified soft consequence operator for evaluating Magic Updates
transformed rules in doubled programs. Section 6.3 finally concludes this chapter
with a comparison of efficient approaches for evaluating residual programs.

6.1 The Doubled Program Approach

In Section 3.3.2 we argued that the alternating fixpoint approach to constructing
the well-founded model of arbitrary databases is not particularly well-suited for
being directly implemented, as it works on negative conclusions. Instead, we
introduced the algorithm presented in [KSS91] where the sets of not definitely
false facts are explicitly stored and only their complement is used to refer to true
negative conclusions implicitly. The disadvantage of this method so far is that we
have to carefully distinguish between the sets of definitely true and not definitely
false facts. As these sets need not be disjoint we cannot simply store them as
ordinary facts in the same database or relation.

Therefore, the authors proposed to introduce for each relation referencing def-
initely true facts a second relation for not definitely false facts. In order to work
on these relations, the entire database is doubled, and in each half the deductive
rules are rewritten such that negative literals reference relations of the other half.
This way, one half is employed for computing definitely true facts, and the other
one for determining not definitely false facts. However, rules from the two halves
are never applied together. In the following we will call this transformation the
doubled program rewriting.

In a first step, the entire database, i.e., all facts and rules, are duplicated.
Then in one of these copies each positive literal p(�x) is replaced by dt p(�x) and
each negative literal ¬q(�y) is replaced by ¬ndf q(�y) where dt p and ndf q are
a new predicate symbols. In the other copy all positive atoms p(�x) (occurring
in facts and rules) are replaced by ndf p(�x) and all negative atoms ¬q(�y) are
replaced by ¬dt q(�y). As an example consider again the unstratifiable database
from Example 3.1 in Chapter 3. Rewriting the single rule
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e(X) ← succ(X,Y) ∧ ¬e(Y)

for defining relation e and the sample fact base would lead to

dt_e(X) ← dt_succ(X,Y) ∧ ¬ndf_e(Y)

dt_succ(0,1)

dt_succ(1,2)

dt_succ(2,3)

dt_succ(3,4)

dt_succ(4,5).

and

ndf_e(X) ← ndf_succ(X,Y) ∧ ¬dt_e(Y)

ndf_succ(0,1)

ndf_succ(1,2)

ndf_succ(2,3)

ndf_succ(3,4)

ndf_succ(4,5).

Note that both halves of the doubled database are semi-positive if considered
separately. Determining the alternating fixpoint of the doubled database implies
to alternately compute the fixpoint of both halves, each time evaluating negative
literals with respect to the facts derived from the other half. In our example,
the relation dt e is supposed to hold definitely true facts (DT). Assuming a two-
valued semantics, ¬dt e(4) is true if dt e(4) is not included in dt e and thus is
not known to be definitely true (NDT) at the current stage. It is obvious that
this directly corresponds to the conjugate of dt e. In contrast to this, the relation
ndf e comprises the facts not known to be definitely false (NDF) and hence if
¬ndf e(4) is true then dt e(4) is known to be definitely false (DF).

Due to the doubling of the database, fixpoint computations for both halves
of the database will now derive facts of different relations. This has the positive
effect that all facts can be summarized in one common fact base. This further-
more implies that each individual fixpoint can be obtained by differential fixpoint
computation as considered in Section 3.1.2.

Before we introduce the algorithm for calculating the well-founded model of a
database, we improve and formally define the notion of doubled program rewrit-
ing. Note that it is not necessary to double the relations for all predicates of
the entire program. Predicates not relying on unstratified negation are known to
have a total well-founded model and their state can be uniquely represented by
the set of true facts. Hence, our example database may be transformed to
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dt_e(X) ← succ(X,Y) ∧ ¬ndf_e(Y)

ndf_e(X) ← succ(X,Y) ∧ ¬dt_e(Y)

succ(0,1)

succ(1,2)

succ(2,3)

succ(3,4)

succ(4,5)

leaving the relation succ in its original form as it does not rely on unstratified
negation. The benefit of restricting the transformation to the unstratified part of
the database is that iterated fixpoint computation can be applied as long as no
unstratified negation occurs. The following definitions ensure that the stratified
part of a database remains in its original form such that model computation for
this part coincides with iterated fixpoint computation.

Definition 6.1 (Stratified Layer/Stratified Predicate Symbol) Let D =
�F ,R� be a deductive database and λ a layering on R.

1. A layer Rl (1 ≤ l ≤ n) defined by λ on R is called stratified with respect
to λ if there exist no predicate symbols p, q ∈ pred(D) with λ(p) ≤ l such

that λ(p) = λ(q) and p
−��� q or λ(p) > λ(q) and q

−��� p. Otherwise, Rl is
called unstratified with respect to λ.

2. A predicate symbol p ∈ pred(D) is called stratified with respect to λ if λ(p)
is a stratified layer of R or λ(p) = 0. Otherwise, p is called unstratified
with respect to λ.

In the following the phrase ”with respect to λ” is omitted, as the respective lay-
ering will always be obvious. Note that Definition 6.1 does not require the given
layering to be maximal. Thus, it is possible that even stratifiable rule sets may
be partitioned in such a way that unstratified layers are contained. In the worst
case, the layering partitions the entire rule set into one layer only such that full al-
ternating fixpoint computation is required for computing the well-founded model.
However, if the layering is a stratification, the rule set consists of stratified layers
only, each of which can be evaluated by differential fixpoint computation.

In Figure 6.1 the predicate dependency graph of a stratifiable database D =
�F ,R� is presented. The layering, however, partitions the rule set into three
layers where R2 includes a negative dependency such that the layers R2 and
R3 are unstratified. Thus, full alternating fixpoint computation is required for
correctly calculating the well-founded model of them. Note that layer R3 does not
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Figure 6.1: Stratified and unstratified layers

include negative dependencies but relies on the result computed for layer R2. As
this is represented by definitely true and not definitely false facts, materialization
of R3 requires alternating fixpoint computation, too. In contrast to this, R1

may be evaluated by differential fixpoint computation, as it does not rely on any
unstratified negation.

In order to homogeneously treat stratified and unstratified predicates in the
definition of doubled program rewriting we introduce the definitely true form and
not definitely false form for both kinds of predicates. For stratified predicates,
both forms coincide with their original form.

Definition 6.2 (Definitely True Form) Let D = �F ,R� be a deductive data-
base and λ a layering on R. The injective mapping dt assigns to each literal L
with pred(L) ∈ pred(D) its definitely true form such that

1. If L ≡ p(t1, . . . , tn) is a positive literal, then

dt(L) :=

�
p(t1, . . . , tn) if p is stratified

dt p(t1, . . . , tn) if p is unstratified.

2. If L ≡ ¬p(t1, . . . , tn) is a negative literal, then

dt(L) :=

�
¬p(t1, . . . , tn) if p is stratified

¬ndf p(t1, . . . , tn) if p is unstratified.

3. The mapping dt may be applied to conjunctions and sets of literals as
follows:
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dt(L1 ∧ . . . ∧ Ln) :=
�

1≤i≤n

dt(Li)

dt({L1, . . . , Ln}) :=
�

1≤i≤n

dt(Li).

Definition 6.3 (Not Definitely False Form) Let D = �F ,R� be a deductive
database and λ a layering on R. The injective mapping ndf assigns to each literal
L with pred(L) ∈ pred(D) its not definitely false form such that

1. If L ≡ p(t1, . . . , tn) is a positive literal, then

ndf(L) :=

�
p(t1, . . . , tn) if p is stratified

ndf p(t1, . . . , tn) if p is unstratified.

2. If L ≡ ¬p(t1, . . . , tn) is a negative literal, then

ndf(L) :=

�
¬p(t1, . . . , tn) if p is stratified

¬dt p(t1, . . . , tn) if p is unstratified.

3. The mapping ndf may be applied to conjunctions and sets of literals as
follows:

ndf(L1 ∧ . . . ∧ Ln) :=
�

1≤i≤n

ndf(Li)

ndf({L1, . . . , Ln}) :=
�

1≤i≤n

ndf(Li).

Definition 6.4 (Doubled Program Rewriting) Let R be a deductive rule set
and λ a layering on R. The doubled program rewriting of R is the set of rules
Rdp := Rdt ∪· Rndf where Rdt and Rndf are stratifiable rule sets defined as follows:

Rdt := { dt(A) ← dt(W ) | A ← W ∈ R}

Rndf := {ndf(A) ← ndf(W ) | A ← W ∈ R and λ(pred(A))is unstratified}.

Before we define the first algorithm, i.e., AFP materialization, for computing
the alternating fixpoint, we still have to introduce one more notion. In order
to get access to definitely true and not definitely false facts separately after a
fixpoint computation has been applied, we introduce the notion dt- and ndf-
restriction. This is because the fact base contains both, and hence each fixpoint
may include facts belonging to the other half of the database. Applying the dt-
or ndf-restriction to a set of facts, yields the subset of DT - or NDF - facts in this
set, respectively.

Definition 6.5 (dt- and ndf-Restriction) Let D = �F ,R� be a deductive
database, Ddp = �F ,Rdp� the deductive database derived from D by applying the
doubled program rewriting to R and HDdp the Herbrand base of Ddp. For a set of
ground atoms Idp ⊆ HDdp we define:
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Algorithm 4 : AFP materialization

i := 0;
DT0 := lfp(T �

Rdt,◦∪Rdt,× ,F);

repeat

i := i + 1;
NDFi := lfp(T �

Rndf , ndf(dt−1(DTi−1)) ∪ DTi−1)|ndf;
DTi := lfp(T �

Rdt,×∪Rdt,∗ , DTi−1
∪ NDFi)|dt;

until DTi = DTi−1;

DT := DTi;
NDF := NDFi;

Idp |dt := { dt(A) | A ∈ HD and dt(A) ∈ Idp}

Idp |ndf:= { ndf(A)| A ∈ HD and ndf(A) ∈ Idp}.

The general iteration scheme of AFP materialization based on the doubled pro-
gram rewriting with respect to one layer is presented in Algorithm 4. This algo-
rithm basically coincides with the one-layered version of the iterated alternating
fixpoint computation as presented in Algorithm 3 in Section 3.3.2 and will serve
as a starting point for further improvements. Using one layer only implies that
all derived relations are considered unstratified if the input rule set R contains
at least one negative derived literal. Otherwise, the rule set for defining not def-
initely false relations is empty, i.e., Rndf = Ø, and the set for defining definitely
true relations is identical with the semi-positive input rules, i.e., Rdt = R. Note
that because of the doubled program rewriting the inner fixpoint computations
may use the simple immediate consequence operator again.

As already mentioned above, AFP materialization coincides with the scheme
of iterated alternating fixpoint computation as presented in Section 3.3.2 from a
structural point of view. The main difference can be discovered in the way the
individual fixpoints are computed. However, the results are essentially the same
if one layer is considered only. Then for the sets DTi and NDFi obtained by AFP
materialization the following equations would hold

DT i

1 = dt
−1(DTi)

NDF i

1 = ndf
−1(NDFi)

where DT i

1 and NDF i

1 represent the definitely true and the not definitely false
sets computed in Algorithm 3 with respect to layer 1. The iteration of AFP mate-
rialization terminates if the set of definitely true facts does not change anymore.
The well-founded model MD is then represented by dt

−1(DT)∪· ¬ · ndf−1(NDF).
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Due to the doubled program rewriting of the given rule set, the sets DTi and
NDFi share facts for base relations only, as these represent definitely true and
not definitely false facts at the same time. Hence, it is possible to summarize
all facts of DTi and NDFi within the same fact base. Each individual fixpoint is
then computed for a semi-positive database such that traditional fixpoint compu-
tation as considered in Section 3.1 can be applied. However, adding the facts for
evaluating negative literals to the fact base implies that they are included in each
resulting fixpoint as well. These facts have to be eliminated from the resulting
fixpoint, if they do not belong to the respective half of the database. Hence,
within the algorithm the fixpoints are restricted to either definitely true or not
definitely false facts (indicated by |dt and |ndf). In case of determining DTi this
eliminates the not definitely false facts and in case of NDFi the definitely true
facts for all unstratified predicates.

In one of the optimizations proposed for the scheme of alternating fixpoint
computation in Algorithm 2 the set DT i−1 has been employed for evaluating
negative literals while computing the set NDF i. A similar improvement has been
already incorporated in the scheme of AFP materialization. However, since the
facts included in DTi−1 refer to definitely true relations (whereas negative body
literals in Rndf refer to not definitely false relations), the set ndf(dt−1(DTi−1)) is
employed including the not definitely false form of each fact in DTi−1 as a basis
for computing NDFi.

In Section 3.3.2 it has been argued that the efficiency of Algorithm 2 can
be significantly enhanced by considering a multi-layered rule set which led to
the iterated alternating fixpoint computation presented in Algorithm 3. The
efficiency of AFP materialization can be improved in a similar way by considering
a multi-layered rule set which may consist of stratified as well as unstratified
layers. For showing how a layering of the original rule set can be also used for the
doubled program transformed rules, we introduce the notion doubled program
layering.

Definition 6.6 (Doubled Program Layering) Let D = �F ,R� be a deduc-
tive database, λ a layering on R and Rdp the doubled program rewriting of R.
The doubled program layering λdp of λ is a layering of Rdp such that for all
p ∈ pred(D) holds that λdp(dt(p)) = λdp(ndf(p)) = λ(p).

The following lemma shows that the doubled program rewriting of a stratified
layer coincides with the original layer.

Lemma 6.1 Let R be a deductive rule set, λ a layering on R, and Rdp the
doubled program rewriting of R. Then the rules of Rdp generated for a stratified
layer Rl of R are identical with Rl. If Rdp

l
denotes this rule set, the following

equations hold in particular:
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1. Rndf
l

= Ø

2. Rdt
l

= Rl

Proof : The proposition follows immediately from Definitions 6.1-6.4 and Defini-
tion 6.6, as transformations are only performed for unstratified layers. ✷

We can now define iterated AFP materialization by means of Algorithm 5 for
computing the alternating fixpoint on the basis of the doubled program rewriting
and layering. This algorithm basically coincides with iterated alternating fixpoint
computation as presented in Algorithm 3 and allows a differentiated treatment
of stratified and unstratified predicates.

From Lemma 6.1 follows that the doubled program rewriting Rdp of a strat-
ified rule set R is identical with R. However, if the rule set R is unstratified,
then there must exist an unstratified layer Rl of R which may be divided itself
into the rule classes R◦

l
, R×

l
, and R∗

l
specifying the hierarchical, the stratified,

and the unstratified rules in Rl, respectively. In this case, the computation of
definitely true facts can be refined in a similar way as proposed for the scheme of
iterated alternating fixpoint computation. During iterated AFP materialization,
not definitely false facts are explicitly computed for unstratified layers only. For
stratified predicates these facts are implicitly represented by the set of definitely
true facts. In particular, the computations performed with respect to stratified
layers coincide with traditional fixpoint computation as considered in Section 3.1.
The reason is that for stratified layers the rule sets Rndf

l
and Rdt,∗

l
are empty, so

that only the computation of DT0
l

may yield facts not already present in the fact
base. Note that the ’application’ of an empty Rndf

l
rule set is still necessary in

order to correctly compute the not definitely false facts of the stratified layer l,
i.e., NDFl := NDF1

l
with NDF1

l
= NDFl−1 ∪ ndf(dt−1(DT0

l
)). In particular, this

equation holds as the used immediate consequence operator is cumulative.

The following Theorem is adopted from [Gri97] and shows the correctness of
(iterated) AFP materialization. Note that the proof is omitted and can be found
in [Gri97] where instead of doubled program rewriting the notion well-founded
rewriting has been used and the dt prefix (for differentiating definitely true rela-
tions with respect to unstratified relations from stratified ones) is omitted.

Theorem 6.1 Let D = �F ,R� be a deductive database and λ a layering on D.
Then (iterated) AFP materialization always terminates and the sets DT and NDF
correctly represent the well-founded model of D. It holds that

MD = dt
−1(DT) ∪ ¬ · ndf−1(NDF).

Proof : cf. [Gri97, p. 118-121]. ✷
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Algorithm 5 : Iterated AFP materialization

DT0 := F ;
NDF0 := F ;

for each layer l = 1, . . . ,m of Rdp defined by λdp do
i := 0;
DT0

l
:= lfp(T �

Rdt,◦
l ∪Rdt,×

l

, DTl−1 ∪ NDFl−1)|dt;

repeat

i := i + 1;
NDFi

l
:= lfp(T �

Rndf
l

, NDFl−1 ∪ ndf(dt−1(DTi−1
l

)) ∪ DTi−1
l

)|ndf;

DTi

l
:= lfp(T �

Rdt,×
l ∪Rdt,∗

l

, DTi−1
l
∪ NDFi

l
)|dt;

until DTi

l
= DTi−1

l
;

NDFl := NDFi

l
;

DTl := DTi

l
;

end for
DT := DTm;
NDF := NDFm;

6.2 Evaluating Doubled Programs

We will now turn our attention to the problem of repeated computations in the
algorithms presented for AFP materialization. In order to simplify the following
discussion, the non-iterated version is mainly considered. At the end of this sec-
tion, the results are then transferred to improve the iterated AFP materialization
as well.

In Subsection 6.2.1 it is shown how update propagation in general can be used
for improving the AFP materialization scheme introduced above. Afterwards,
in Subsection 6.2.2 we show how a simplified version of soft update propagation
can be employed for improving AFP materialization leading to the so-called soft
alternating fixpoint approach. In the following, we will abbreviate the notion
doubled program by DP.

6.2.1 DP Materialization Using Update Propagation

A graphical representation of the general course of AFP materialization is pre-
sented in Figure 6.2 showing the minor differences in comparison to alternating
fixpoint computation as presented in Figure 3.1 in Section 3.3.1. Note that the
DT - and NDF -sets presented and the DT- and NDF-sets really computed by the
materialization algorithms can again be obtained from each other by applying
the dt and ndf mapping, respectively.
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Figure 6.2: AFP materialization.

Several optimizations have been proposed for this scheme of alternating fix-
point materialization (e.g. in [KSS91, KSS95]). However, the problem of repeated
computations of facts remained unsolved. Consider again our running example
and the corresponding results when applying the scheme in Algorithm 4. Starting
from DT0 = F , we obtain:

NDF1 := F ∪ {ndf e(0), ndf e(1), ndf e(2), ndf e(3), ndf e(4)}
DT1 := F ∪ {dt e(4)}
NDF2 := F ∪ {ndf e(0), ndf e(1), ndf e(2), ndf e(4)}
DT2 := F ∪ {dt e(2), dt e(4)}
NDF3 := F ∪ {ndf e(0), ndf e(2), ndf e(4)}
DT3 := F ∪ {dt e(0), dt e(2), dt e(4)}
NDF4 := F ∪ {ndf e(0), ndf e(2), ndf e(4)}
DT4 := F ∪ {dt e(0), dt e(2), dt e(4)}

In each phase many facts from previous iteration rounds are repeatedly com-
puted, e.g. all definitely true facts. The changes to the sets of definitely true and
not definitely false facts, however, are caused only by the changes of the other
sets computed before, respectively. Since DT-facts as well as NDF-facts represent
base facts for the other half, it seems to be useful to compute the changes of the
DT-facts and NDF-facts only. This can be achieved by means of update propa-
gation rules for true updates that explicitly refer to the given changes of the base
facts. Since the set of DT-facts monotonically increases, it is sufficient to con-
sider propagation rules for induced insertions only, whereas for the monotonically
decreasing set of NDF-facts, propagation rules for induced deletions have to be
considered only.

Suppose the delta sets ∆+
i

represent induced insertions with respect to DT-
relations and ∆−

i
represent induced deletions with respect to NDF-relations. A

graphical representation of AFP materialization based on these delta sets is pre-
sented in Figure 6.3. Note that the calculation of each delta set (except for the set



120 Chapter 6. Well-founded Model Computation

...

!
+

!
+

!
–

!
–

!
–

!
–

!+

0

1

1

2

n-1

n!
–

nn!
–

!
–

NDF NDF NDFDT DT DT
n+1nn1 1 2

NDFDT
2 3

Figure 6.3: AFP materialization using ’delta’ sets.

∆+
0 as starting point) positively depends on the complement delta set computed

in the previous iteration round.
In principle, propagation and transition rules as proposed in Chapter 5 could

be used for defining these delta sets. However, update propagation in this con-
text represents a special case as certain combinations of base and induced updates
occur, only. Therefore, specific DT- and NDF-propagation rules as well as spe-
cial DT- and NDF-transition rules are defined for computing induced insertions
according to DT-relations and induced deletions according to NDF-relations, re-
spectively.

As stated before, references to both the old as well as the new state are neces-
sary for computing true updates. As proposed in Chapter 5, we will now define
propagation and transition rules assuming that the old state is present and the
new one is simulated. For the algorithms to come, however, it turned out to be
quite useful to consider certain combinations of states in order to get a smaller
set of propagation rules. Therefore, in the following we assume the old DT-, the
new NDF- and ∆−NDF-facts to be present when propagation rules for comput-
ing insertions for DT-facts are considered, whereas the old DT-, the old NDF-
and ∆+DT-facts are present when propagation rules for deletions from the NDF
set are evaluated. According to these conditions we introduce the DT new form
and the NDF new form for specifying the new mapping in propagation rules for
∆+DT-facts and ∆−NDF-facts, respectively.

Definition 6.7 (DT New Form) Let D = �F ,R� be a deductive database, λ a
layering on R and Rdp = Rdt ∪Rndf the doubled program rewriting of R. The
mapping newdt assigns to each literal L with pred(L) ∈ pred(F ∪ Rdp) its new
DT form such that

1. If L is a positive literal, then
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newdt(L) :=






p(�x) if L ≡ p(�x) and p ∈ pred(D)
is stratified

dt pnew(�x) if L ≡ dt p(�x) and p ∈ pred(D)
is unstratified.

2. If L is a negative literal, then

newdt(L) :=






¬p(�x) if L ≡ ¬p(�x) and p ∈ pred(D)
is stratified

¬ndf p(�x) if L ≡ ¬ndf p(�x) and p ∈ pred(D)
is unstratified.

3. The mapping newdt may be applied to conjunctions of literals as follows:

newdt(L1 ∧ . . . ∧ Ln) :=
�

1≤i≤n

newdt(Li).

Definition 6.8 (NDF New Form) Let D = �F ,R� be a deductive database, λ
a layering on R and Rdp = Rdt ∪Rndf the doubled program rewriting of R. The
mapping newndf assigns to each literal L with pred(L) ∈ pred(F ∪Rdp) its new
NDF form such that

1. If L is a positive literal, then

newndf(L) :=






p(�x) if L ≡ p(�x) and p ∈ pred(D)
is stratified

ndf pnew(�x) if L ≡ ndf p(�x) and p ∈ pred(D)
is unstratified.

2. If L is a negative literal, then

newndf(L) :=






¬p(�x) if L ≡ ¬p(�x) and p ∈ pred(D)
is stratified

¬dt pnew(�x) if L ≡ ¬dt p(�x) and p ∈ pred(D)
is unstratified.

3. The mapping newndf may be applied to conjunctions of literals as follows:

newndf(L1 ∧ . . . ∧ Ln):=
�

1≤i≤n

newndf(Li).
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Note that we assume the new state of NDF relations to be present when evalu-
ating Rdt such that the application of newdt(L) with L ≡ ¬ndf p(�x) does not add
a new suffix to the relation name ndf p. In contrast to this, unstratified DT rela-
tions which are negatively referenced in Rndf are modified by the mapping newndf

such that the application of newndf(L) with L ≡ ¬dt p(�x) yields ¬dt pnew(�x).
This is because we assume the old state of definitely true relations to be present
when evaluating Rndf whereas the new one has to be simulated.

Based on the DT new form we can now define DT-propagation rules and DT-
transition rules for defining induced insertions into DT relations.

Definition 6.9 (DT-Propagation Rules) Let D = �F ,R� be a deductive data-
base, λ a layering on R and Rdp = Rdt∪Rndf the doubled program rewriting of R
where Rdt denotes the rules for defining definitely true relations and Rndf denotes
the rules for defining not definitely false relations. The set of DT-propagation
rules for true insertions with respect to Rdt is denoted ϕdt(Rdt) and is defined as
follows:

1. For each rule A ← L1 ∧ . . .∧Ln ∈ R
dt with A ≡ dt p(�x) and each negative

body literal Li ≡ ¬ndf q(�y) where p, q ∈ pred(R) are unstratified predicates,
a propagation rule of the form

A+ ← ∆−ndf q(�y) ∧ newdt(L1 ∧ . . . ∧ Li−1 ∧ Li+1 ∧ . . . ∧ Ln) ∧ ¬A

is in ϕdt(Rdt).

2. For each rule A ← L1 ∧ . . . ∧ Ln ∈ R
dt with A ≡ dt p(�x) and each positive

derived body literal Lj ≡ dt r(�z) where p, r ∈ pred(R) are unstratified
predicates, a propagation rule of the form

A+ ← L+
j
∧ newdt(L1 ∧ . . . ∧ Lj−1 ∧ Lj+1 ∧ . . . ∧ Ln) ∧ ¬A

is in ϕdt(Rdt).

3. No other rules are in ϕdt(Rdt).

In Chapter 5 we introduced the superscripts ”+” and ”−” for transforming a
literal A ≡ p(�x) to its dynamic form, i.e., A+ ≡ ∆+p(�x) and A− ≡ ∆−p(�x). We
will now use the notions + · A or − · A to refer to A+ or A−, respectively. This
concatenation may also be applied to a set of ground atoms and is simply used
to transform sets of DT-and NDF-facts into their dynamic form. Additionally,
+−1 · S and −−1 · S is used to denote the transformation of dynamic literals in
the set S back to their original form.
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Proposition 6.10 (Correctness of DT-Propagation Rules) Let D = �F ,R�
be a deductive database, λ a layering on R and Rdp = Rdt ∪ Rndf the doubled
program rewriting of R where Rdt denotes the rules for defining definitely true
relations. Let DTi and NDFi with i ≥ 1 be the sets of definitely true facts, re-
spectively the sets of not definitely false facts computed in the i-th iteration round
of AFP materialization. Then the delta relations in ϕdt(Rdt) correctly repre-
sent the state transition DTi+1

\DTi. In particular, for each unstratified relation
p ∈ pred(D) the following holds:

∆+dt p(�t ) ∈ ∆+DTi
⇐⇒ ∆+dt p(�t ) ∈ lfp(T �

ϕdt(Rdt), NDFi+1
∪ DTi

∪∆−NDFi)

where ∆+DTi := + · [DTi+1
\ DTi] and ∆−NDFi := − · [NDFi

\ NDFi+1].

Proof (Sketch): In principle, the proof of this proposition coincides with the
one performed for Proposition 5.3 in which the correctness of propagation rules
for true updates has been shown. This time, the propagation rules are used to
describe the transition from the deductive database

Di = �DTi−1
∪ NDFi,Rdt�

with MDi|dt = DTi to the deductive database

Di+1 = �DTi
∪ NDFi+1,Rdt�

with MDi+1|dt = DTi+1 due to the application of the update uDi = �Ø, u−Di� with
u−Di = NDFi

\NDFi+1. The augmented deductive database Dp with respect to Di

and uDi is given by

Dp = �DTi−1
∪ NDFi

∪ prop seeds(uDi),Rdt ∪ ϕdt(Rdt)�

with prop seeds(uDi) = ∆−NDFi. According to our proposed state simula-
tion, the augmented database Dp is slightly modified by adding the old state
of DT-relations and the new state of NDF-relations with the sets DTi respec-
tively NDFi+1 to its fact base. The resulting modified augmented database Dp

�

is given by

Dp
�
= �DTi

∪ NDFi+1
∪∆−NDFi,ϕdt(Rdt)�

where the propagation seeds are applied and the rule set Rdt for computing the
old state is omitted. The only references to the old state of Di occur in the
effectiveness tests of rules in ϕdt(Rdt) which has not been made explicit in the
definition of DT-propagation rules by using the meta predicate old. This is
because the modified augmented database Dp

�
contains with the set DTi now

the old state of DT-relations in Di completely such that the effectiveness tests
negatively refer to base relations, only, and thus, are evaluated correctly. Using
Proposition 5.3 and assuming the correct evaluation of the meta predicate newdt,
it can be followed that the condition
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dt p(�t ) ∈ u+
Di→Di+1 ⇐⇒ ∆+dt p(�t ) ∈MDp�

must hold. Using the equivalence

dt p(�t ) ∈ u+
Di→Di+1 ⇐⇒ ∆+dt p(�t ) ∈ ∆+DTi

which follows from the prerequisites of our proposition and using the equation

M�ϕdt(Rdt),DTi∪NDFi+1∪∆−NDFi� = lfp(T �

ϕdt(Rdt), NDFi+1
∪ DTi

∪∆−NDFi)

which follows from the fact that ϕdt(Rdt) is semi-positive, the correctness of the
proposition has been shown. ✷

Simulating the new state as in our approach requires the definition of transition
rules for DT-relations that are positively referenced in a rule’s body in ϕdt(Rdt).
As the set of DT-facts is monotonically increasing, we do not have to consider
deletions within the DT -transition rules. Therefore, the new state of DT-relations
is simply the union of computed insertions and (old) facts already stored in the
database.

Definition 6.11 (DT-Transition Rules) Let D = �F ,R� be a deductive data-
base, λ a layering on R and Rdp = Rdt ∪Rndf the doubled program rewriting of
R with Rdt denoting the rules for defining definitely true relations. Then the set
of DT-transition rules for new state simulation with respect to Rdt is denoted
τdt(Rdt) and is defined as follows:

1. For each n-ary derived predicate symbol dt p ∈ pred(Rdt) with p ∈ pred(R)
and p is an unstratified relation, the transition rules

dt pnew(x1, . . . , xn) ← dt p(x1, . . . , xn)
dt pnew(x1, . . . , xn) ← ∆+dt p(x1, . . . , xn),

are in τdt(Rdt) where the xi (i = 1, . . . , n) are distinct variables.

2. No other rules are in τdt(Rdt).

Proposition 6.12 (Correctness of DT-Transition Rules) Let D = �F ,R�
be a deductive database, λ a layering on R and Rdp = Rdt ∪ Rndf the doubled
program rewriting of R where Rdt denotes the rules for defining definitely true
relations. Let DTi and NDFi with i ≥ 1 be the sets of definitely true facts,
respectively the sets of not definitely false facts computed in the i-th iteration round
of AFP materialization. Then the transition rules τdt(Rdt) correctly represent the
new state of DT-relations in DTi with respect to DTi+1. In particular, for each
unstratified relation p ∈ pred(D) the following holds:
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dt p(�t ) ∈ DTi+1

⇐⇒

dt pnew(�t ) ∈ lfp(T �

ϕdt(Rdt)∪τdt(Rdt), NDFi+1
∪ DTi

∪∆−NDFi)

where ∆−NDFi := − · [NDFi
\ NDFi+1].

Proof : Correctness follows immediately from Definitions 6.7, 6.9 and 6.11 and
from Proposition 6.10. Note that for each unstratified predicate p ∈ pred(D) the
new state of the corresponding DT-relation dt pnew is to be simulated whereas
the new state of the corresponding NDF-relation ndf pnew is already given by the
set NDFi+1. The new state of stratified relations, however, coincides with their
old state. Therefore, these relations remain unchanged when applying the newdt

mapping and are correctly represented with the included set DTi, as well. ✷

Similar to the definitions above, we now define NDF-propagation rules and NDF-
transition rules for defining induced deletions from NDF-relations.

Definition 6.13 (NDF-Propagation Rules) Let D = �F ,R� be a deductive
database, λ a layering on R and Rdp = Rdt∪Rndf the doubled program rewriting
of R where Rdt denotes the rules for defining definitely true relations and Rndf

denotes the rules for defining not definitely false relations. The set of NDF-
propagation rules for true deletions with respect to Rndf is denoted ϕndf(Rndf)
and is defined as follows:

1. For each rule A ← L1∧. . .∧Ln ∈ R
ndf with A ≡ ndf p(�x) and each negative

body literal Li ≡ ¬dt q(�y) with p, q ∈ pred(R) and p,q are unstratified
predicates, a propagation rule of the form

A− ← ∆+dt q(�y) ∧ L1 ∧ . . . ∧ Li−1 ∧ Li+1 ∧ . . . ∧ Ln ∧ ¬newndf(A)

is in ϕndf(Rndf).

2. For each rule A ← L1 ∧ . . . ∧ Ln ∈ Rndf with A ≡ ndf p(�x) and each
positive derived body literal Lj ≡ ndf r(�z) with p, r ∈ pred(R) and p,r are
unstratified predicates, a propagation rule of the form

A− ← L−
j
∧ L1 ∧ . . . ∧ Lj−1 ∧ Lj+1 ∧ . . . ∧ Ln ∧ ¬newndf(A)

is in ϕndf(Rndf).

3. No other rules are in ϕndf(Rndf).
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Proposition 6.14 (Correctness of NDF-Propagation Rules) Let D =
�F ,R� be a deductive database, λ a layering on R and Rdp = Rdt ∪ Rndf the
doubled program rewriting of R where Rndf denotes the rules for defining not
definitely false relations. Let DTi and NDFi with i ≥ 1 be the sets of definitely
true facts, respectively the sets of not definitely false facts computed in the i-th
iteration round of AFP materialization. Then the delta relations in ϕndf(Rndf)
correctly represent the state transition NDFi

\ NDFi+1. In particular, for each
unstratified relation p ∈ pred(D) the following holds

∆−ndf p(�t ) ∈ ∆−NDFi

⇐⇒

∆−ndf p(�t ) ∈ lfp(T �

ϕndf(Rndf), NDFi
∪ DTi−1

∪∆+DTi−1)

where ∆−NDFi := − · [NDFi
\ NDFi+1] and ∆+DTi−1 := + · [DTi

\ DTi−1].

Proof (Sketch): The correctness of this proposition is shown by reducing it to the
case of propagating true deletions. NDF-propagation rules are used to describe
the transition from the deductive database

Di = �DTi−1
∪ ndf(dt−1(DTi−1)),Rndf�

with MDi|ndf = NDFi to the deductive database

Di+1 = �DTi
∪ ndf(dt−1(DTi)),Rndf�

with MDi+1|ndf = NDFi+1 due to the application of the update uDi = �u+
Di , Ø�

with u+
Di = DTi

\ DTi−1. The augmented deductive database Dp with respect to
Di and uDi is given by

Dp = �DTi−1
∪ ndf(dt−1(DTi−1)) ∪ prop seeds(uDi),Rndf ∪ ϕndf(Rndf)�

with prop seeds(uDi) = ∆+DTi−1. According to our proposed state simulation,
we will again modify the augmented database Dp by adding the old state of
NDF-relations in Di with the set NDFi to its fact base. The resulting modified
augmented database Dp

�
is given by

Dp
�
= �NDFi

∪ DTi−1
∪∆+DTi−1,ϕndf(Rndf)�

where the propagation seeds are applied and the rule set Rndf for computing the
old state of NDF-relations is omitted. In addition, the set ndf(dt−1(DTi−1)) is
left out since it is included in set of old NDF-relations, i.e., ndf(dt−1(DTi−1)) ⊆
NDFi. The modified augmented database Dp

�
contains with the set DTi−1 and

NDFi now the old state of DT -relations as well as NDF -relations such that the
derivability tests (except from dynamic literals for induced deletions) in NDF-
propagation rules solely refer to base relations and thus, are evaluated correctly.
Using Proposition 5.3 and assuming the correct evaluation of the meta predicate
newndf, it can be followed that the condition
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ndf p(�t ) ∈ u−Di→Di+1 ⇐⇒ ∆−ndf p(�t ) ∈MDp�

must hold. Using the equivalence

ndf p(�t ) ∈ u−Di→Di+1 ⇐⇒ ∆−ndf p(�t ) ∈ ∆−NDFi

which follows from the prerequisites of our proposition and using the equation

M�ϕndf(Rndf),NDFi∪DTi−1∪∆+DTi−1� = lfp(T �

ϕndf(Rndf), NDFi
∪ DTi−1

∪∆+DTi−1)

which follows from the fact that ϕndf(Rndf) is semi-positive, the correctness of
the proposition has been shown. ✷

As the effectiveness test of NDF-propagation rules refers to the new state of not
definitely false relations, we have to consider again transition rules for new state
simulation.

Definition 6.15 (NDF-Transition Rules) Let D = �F ,R� be a deductive
database, λ a layering on R and Rdp = Rdt ∪Rndf the doubled program rewrit-
ing of R where Rdt denotes the rules for defining definitely true relations and
Rndf denotes the rules for defining not definitely false relations. Then the set
of NDF-transition rules for new state simulation with respect to Rndf is denoted
τndf(Rndf) and is defined as follows:

1. For each rule A ← L1∧ . . .∧Ln ∈ R
ndf with A ≡ ndf p(�x) and p ∈ pred(R)

is an unstratified predicate, a transition rule of the form

newndf(A) ← newndf(L1, . . . Ln)

is in τndf(Rndf).

2. For each negative literal L ≡ ¬dt p(x1, . . . , xn) occurring in Rndf with p ∈
pred(R) and p is an unstratified relation, two DT-transition rules

dt pnew(x1, . . . , xn) ← dt p(x1, . . . , xn)
dt pnew(x1, . . . , xn) ← ∆+dt p(x1, . . . , xn),

are in τndf(Rndf) where the xi (i = 1, . . . , n) are distinct variables.

3. No other rules are in τndf(Rndf).

Note that NDF-propagation rules have references to the new state as well as to
the induced insertions of definitely true relations. Additionally, NDF-transition
rules refer to the new state of definitely true relations. Therefore, DT-transition
rules have to be additionally included in the set of NDF-transition rules in order
to make the rule sets ϕndf(Rndf) ∪ τndf(Rndf) complete.



128 Chapter 6. Well-founded Model Computation

Proposition 6.16 (Correctness of NDF-Transition Rules) Let D = �F ,R�
be a deductive database, λ a layering on R and Rdp = Rdt∪Rndf the doubled pro-
gram rewriting of R where Rndf denotes the rules for defining not definitely false
relations. Let DTi and NDFi with i ≥ 1 be the sets of definitely true facts, re-
spectively the sets of not definitely false facts computed in the i-th iteration round
of AFP materialization. Then the transition rules τndf(Rndf) correctly represent
the new state of NDF-relations in NDFi with respect to NDFi+1. In particular,
for each unstratified relation p ∈ pred(D) the following holds

ndf p(�t ) ∈ NDFi+1

⇐⇒

ndf pnew(�t ) ∈ IF �NDFi∪DTi−1∪∆+DTi−1
,ϕndf(Rndf)∪τndf(Rndf)�

where ∆+DTi−1 := + · [DTi
\ DTi−1].

Proof : Correctness follows immediately from Definitions 6.8, 6.13 and 6.15 and
from Propositions 5.5 and 6.14. Since no new state facts are included for any un-
stratified predicate p ∈ pred(D) the new state of the corresponding DT-relation
dt pnew and the new state of the corresponding NDF-relation ndf pnew have to be
simulated. As the new state of stratified relations is identical with their old state,
these relations remain unchanged and are correctly represented with the included
set DTi−1. The union of NDF-propagation rules and NDF-transition rules yields
a stratifiable rule set such that the iterated fixpoint computation is needed for
their correct evaluation. ✷

Before integrating propagation rules into the AFP materialization scheme, we
still have to introduce one more notion. We will use a slightly modified version
of the dt- and ndf-restriction from Section 6.1 in oder to access corresponding
dynamic literals within sets resulting from a fixpoint computation.

Definition 6.17 (dt+- and ndf−-Restriction) Let D = �F ,R� be a deductive
database, Ddp = �F ,Rdp� the deductive database derived from D by applying the
doubled program rewriting to R, and HD, HDdp the Herbrand base of D, Ddp,
respectively. For a set of ground atoms I ⊆ H�F,ϕdt(Rdt)∪ϕndf(Rndf)� we define:

I|dt+ := { + · dt(A) ∈ I | A ∈ HD and dt(A) ∈ HDdp}

I|ndf− := { − · ndf(A) ∈ I | A ∈ HD and ndf(A) ∈ HDdp}.

The modified algorithm for computing the alternating fixpoint based on calcu-
lating updates is presented in Algorithm 6. The essential difference to the AFP
materialization procedure is that the algorithm starts with sets of DT- and NDF-
facts which will be updated only by new DT-facts to be added and NDF-facts
to be removed within each iteration round until no more new DT-facts can be
derived, i.e., ∆+DTi = Ø. The expensive evaluation of rules with respect to the
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Algorithm 6 : AFP materialization using update propagation

i := 0;
DT0 := lfp(T �

Rdt,◦∪Rdt,× ,F)|dt;
NDF1 := lfp(T �

Rndf , DT0
∪ ndf(dt−1(DT0)))|ndf;

∆+DT0 := + · [lfp(T �

Rdt,×∪Rdt,∗ , DT0
∪ NDF1)|dt \ DT0];

while ∆+DTi
�= Ø do

i := i + 1;
∆−NDFi := IF �NDFi∪DTi−1∪∆+DTi−1

,ϕndf(Rndf)∪τndf(Rndf)�|ndf− ;

DTi := DTi−1
∪+−1 · (∆+DTi−1);

NDFi+1 := NDFi
\−−1 · (∆−NDFi);

∆
+DTi := lfp(T �

ϕdt(Rdt)∪τdt(Rdt), NDFi+1
∪ DTi

∪∆−NDFi)|dt+ ;

end while

NDF := NDFi+1;
DT := DTi;

underlying database is restricted to the calculation of the smaller set of induced
updates. The following theorem shows the correctness of AFP materialization
using update propagation as the computed sets of DTi and NDFi (except from
the omitted set NDF0) coincide with the intermediate results obtained by using
AFP materialization.

Theorem 6.2 Let D = �F ,R� be a deductive database and λ a layering on D.
Then AFP materialization using update propagation always terminates and the
sets DT and NDF correctly represent the well-founded model of D. It holds that

MD = dt
−1(DT) ∪ ¬ · ndf−1(NDF).

Proof : The proposition of this theorem is shown by induction on the number of
iteration rounds i. In the following, for any stage i we use DTi

APUP, respectively
NDFi

APUP, for referring to the intermediate results obtained by AFP materialization
using update propagation while the sets DTi

AP, respectively NDFi

AP, are employed
for describing the intermediate results of AFP materialization. From Theorem 6.1
follows that AFP materialization as presented with Algorithm 4 correctly com-
putes the well-founded model of D. The idea is to show that the intermediate
results obtained in both algorithms are identical such that AFP materialization
using update propagation must be correct as well.

Suppose that i = 1: For the sets DT1
AP and NDF1

AP computed with AFP material-
ization the following equations hold

NDF1
AP := lfp(T �

Rndf , ndf(dt−1(DT0
AP)) ∪ DT0

AP)|ndf
DT1

AP := lfp(T �

Rdt,×∪Rdt,∗ , DT0
AP ∪ NDF1

AP)|dt
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where DT0
AP := lfp(T �

Rdt,◦∪Rdt,× ,F)|dt. From the scheme in Algorithm 6 it can be
immediately concluded that the equations

NDF1
APUP = NDF1

AP

DT0
APUP = DT0

AP

hold. Using this result, we can show that DT1
APUP = DT1

AP holds as well:

DT1
APUP := DT0

APUP ∪+−1 ·∆+DT0
APUP

= DT0
APUP ∪ [lfp(T �

Rdt,×∪Rdt,∗ , DT0
APUP ∪ NDF1

APUP)|dt \ DT0
APUP]

= lfp(T �

Rdt,×∪Rdt,∗ , DT0
APUP ∪ NDF1

APUP)|dt
= lfp(T �

Rdt,×∪Rdt,∗ , DT0
AP ∪ NDF1

AP)|dt
since DT0

APUP = DT0
AP and NDF1

APUP = NDF1
AP

= DT1
AP.

Suppose that i > 1: We assume that DTi

APUP = DTi

AP and NDFi

APUP = NDFi

AP hold
for all i > 1. With respect to AFP materialization the sets DTi+1

AP and NDFi+1
AP

are computed as follows:

NDFi+1
AP := lfp(T �

Rndf , ndf(dt−1(DTi

AP)) ∪ DTi

AP)|ndf
DTi+1

AP := lfp(T �

Rdt,×∪Rdt,∗ , DTi

AP ∪ NDFi+1
AP )|dt.

We show that NDFi+1
APUP = NDFi+1

AP :

NDFi+1
APUP := NDFi

APUP \−
−1 · (∆−NDFi

APUP)
= NDFi

APUP \−
−1 · IF �NDFi

APUP∪DTi−1
APUP∪∆+DTi−1

APUP,ϕndf(Rndf)∪τndf(Rndf)�|ndf−

= NDFi

AP \−
−1 · IF �NDFi

AP∪DTi−1
AP ∪∆+DTi−1

AP ,ϕndf(Rndf)∪τndf(Rndf)�|ndf−

using the induction hypothesis
= NDFi

AP \ (NDFi

AP \ NDFi+1
AP )

using the results from Propositions 6.14 and 6.16
= NDFi+1

AP

since NDFi+1
AP ⊆ NDFi

AP.

Based on this result, we show that DTi+1
APUP = DTi+1

AP :

DTi+1
APUP := DTi

APUP ∪+−1 · (∆+DTi

APUP)
= DTi

APUP ∪+−1 · lfp(T �

ϕdt(Rdt)∪τdt(Rdt), NDFi+1
APUP ∪ DTi

APUP ∪∆−NDFi

APUP)|dt+

= DTi

AP ∪+−1 · lfp(T �

ϕdt(Rdt)∪τdt(Rdt), NDFi+1
AP ∪ DTi

AP ∪∆−NDFi

AP)|dt+

using the induction hypothesis
= DTi

AP ∪ (DTi+1
AP \ DTi

AP)
using the results from Propositions 6.10 and 6.12

= DTi+1
AP

since DTi

AP ⊆ DTi+1
AP .
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Thus, we conclude that all intermediate results computed by AFP materialization
coincide with the ones obtained by the application of the scheme in Algorithm 6.
Correctness of AFP materialization using update propagation then directly fol-
lows from the correctness of AFP materialization. ✷

Consider once again our running example when using the scheme in Algorithm 6.
First, we determine the update propagation rules for the sets Rdt and Rndf:

ϕdt(Rdt) :

∆+
dt e(X) ← ∆−ndf e(Y) ∧ succ(X, Y) ∧ ¬dt e(X)

ϕndf(Rndf) :

∆−ndf e
−(X) ← ∆+

dt e(Y) ∧ succ(X, Y) ∧ ¬ndf e
new(X)

The transition rules for Rdt and Rndf are

τdt(Rdt) :

dt e
new(X) ← dt e(X)

dt e
new(X) ←∆+

dt e(X)

τndf(Rndf) :

ndf e
new(X) ← succ(X, Y) ∧ ¬dt e

new(Y)
dt e

new(X) ← dt e(X)
dt e

new(X) ←∆+
dt e(X)

At the beginning, the set of DT0-facts is initialized with the set of base facts F
as the rule sets Rdt,◦ and Rdt,� are empty. Applying the set DT0 and the rules
Rndf for computing NDF1 yields the first and largest set of not definitely false
facts with

NDF1 := F ∪ {ndf e(0), ndf e(1), ndf e(2), ndf e(3), ndf e(4)}.

From this set, the first new DT-facts can be calculated yielding ∆+DT0 = {dt e+(4)}.
In the following loop, ∆−NDFi and ∆+DTi are computed and the corresponding
NDFi- and DTi-sets are updated:

∆−NDF1 := {∆−
ndf e(3)}

DT1 := F ∪ {e(4)}
NDF2 := F ∪ {ndf e(0), ndf e(1), ndf e(2), ndf e(4)}
∆+DT1 := {∆+

dt e(2)}



132 Chapter 6. Well-founded Model Computation

∆−NDF2 := {∆−
ndf e(1)}

DT2 := F ∪ {e(2), e(4)}
NDF3 := F ∪ {ndf e(0), ndf e(2), ndf e(4)}
∆+DT2 := {∆+

dt e(0)}
∆−NDF3 := Ø
DT3 := F ∪ {e(0), e(2), e(4)}
NDF4 := NDF3

∆+DT3 := Ø

The evaluation indeed shows the desired behavior as the computation already
provides a focus on the changes of DT- and NDF-sets. However, using transi-
tion rules when computing induced insertions or deletions leads to the complete
generation of new state facts with respect to DT-relations and NDF-relations,
respectively. In our example, the following state facts are implicitly derived when
computing the corresponding delta sets:

∆−NDF1 ��� {∆−
ndf e(3)} ∪ {dt e

new(4)}
∪ {ndf e

new(0), ndf e
new(1), ndf e

new(2), ndf e
new(4)}

∆+DT1 ��� {∆+
dt e(2)} ∪ {dt e

new(2), dt e
new(4)}

∆−NDF2 ��� {∆−
ndf e(1)} ∪ {dt e

new(2), dt e
new(4)}

∪ {ndf e
new(0), ndf e

new(2), ndf e
new(4)}

∆+DT2 ��� {∆+
dt e(0)} ∪ {dt e

new(0), dt e
new(2), dt e

new(4)}
∆−NDF3 ��� Ø ∪ {dt e

new(0), dt e
new(2), dt e

new(4)}
∪ {ndf e

new(0), ndf e
new(2), ndf e

new(4)}
∆+DT3 ��� Ø ∪ {dt e

new(0), dt e
new(2), dt e

new(4)}.

The reason for this redundancy is that materialization of side literals within the
derivability- and effectiveness test is not restricted to the facts that are relevant for
the particular propagated update. The same problem has been already discussed
in Section 5.2 where the soft update propagation approach has been introduced as
a possible solution to it. We will adopt this idea and show how the application of
the Magic Sets method can provide a focus on the relevant part of the derivability
and effectiveness tests in this context, as well.

6.2.2 DP Materialization Using Soft Update Propagation

Transforming the propagation and transition rules for definitely true relations
using Magic Updates is unproblematic since the original rule set is semi-positive.
The application of Magic Sets with respect to the stratifiable set of propagation
and transition rules for not definitely false relations, however, may introduce un-
stratifiable cycles among these rules. Thus, for their evaluation iterated fixpoint
computation is not sufficient anymore. As an example consider the following
(unstratifiable) rule set R for defining a relation p:
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Rndf :

p(X) ← b(X, Y, Z) ∧ ¬p(Y) ∧ p(Z)
p(X) ← d(X).

The corresponding rule set for defining not definitely false relations Rndf is

Rndf :

ndf p(X) ← b(X, Y, Z) ∧ ¬dt p(Y) ∧ ndf p(Z)
ndf p(X) ← d(X).

Rewriting the two rules yields the following stratifiable set of propagation and
transition rules

ϕndf(Rndf) :

∆−ndf p(X) ← ∆+
dt p(Y) ∧ b(X, Y, Z) ∧ ndf p(Z) ∧ ¬ndf p

new(X)
∆−ndf p(X) ← ∆−ndf p(Z) ∧ b(X, Y, Z) ∧ ¬dt p(Y) ∧ ¬ndf p

new(X)

τndf(Rndf) :

ndf p
new(X) ← b(X, Y, Z) ∧ ¬dt p

new(Y) ∧ ndf p
new(Z)

ndf p
new(X) ← d(X)

dt p
new(X) ← dt p(X)

dt p
new(X) ←∆+

dt p(X).

Applying the Magic Updates rewriting to Rndfp = ϕndf(Rndf) ∪ τndf(Rndf) as
proposed in Chapter 5 leads to the following negative cycle in the corresponding
dependency graph of mu(Rndfp

Qu ):

∆−ndf p
pos

−→ m ndf p
new
b

pos

−→ ndf p
new
b

neg

−→ ∆−ndf p

For the correct evaluation of the rules mu(Rndfp
Qu ), the soft stratification approach

could be used. Because of the specific structure of these rules, however, we
propose a different evaluation strategy which makes no use of the concept strat-
ification at all. Since we know that the new state of DT-relations is simply the
union of computed insertions and (old) facts already stored in the database, we
will fold this subset of transition rules in τndf(Rndf) into the remaining rules for
defining the new state of NDF-relations. The resulting set is denoted τ f

ndf(R
ndf)

and for the above example it is as follows:
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τ f
ndf(R

ndf) :

ndf p
new(X) ← b(X, Y, Z) ∧ ¬dt p(Y) ∧ ndf p

new(Z)
ndf p

new(X) ← b(X, Y, Z) ∧ ¬∆+
dt p(Y) ∧ ndf p

new(Z)
ndf p

new(X) ← d(X).

In this way, the only negative references to derived relations left are the ones
occurring in the effectiveness tests. Applying now the Magic Updates rewriting
to the set Rndfpf = ϕndf(Rndf)∪ τ f

ndf(R
ndf) still leads to an unstratifiable rule set.

Therefore, we will consider the transformed propagation rules R∆ndf ⊂ mu(Rndfpf
Qu )

and the transformed transition rules Rnndf ⊂ mu(Rndfpf
Qu ) with

mu(Rndfpf
Qu ) = R∆ndf∪· Rnndf,

separately, getting two stratifiable rule sets. Consider again our example from
above after applying the Magic Updates rewriting with respect to the abstract
propagation queries represented by ∆+

dt p(Y) and ∆−ndf p(Z). The resulting
sets R∆ndf and Rnndf are then given by

R∆ndf :

∆−ndf p(X) ← ∆+
dt p(Y) ∧ b(X, Y, Z) ∧ ndf p(Z) ∧ ¬ndf p

new
b (X)

∆−ndf p(X) ← ∆−ndf p(Z) ∧ b(X, Y, Z) ∧ ¬dt p(Y) ∧ ¬ndf p
new
b (X)

m ndf p
new
b (X) ← ∆+

dt p(Y) ∧ b(X, Y, Z) ∧ ndf p(Z)
m ndf p

new
b (X) ← ∆−ndf p(Z) ∧ b(X, Y, Z) ∧ ¬dt p(Y)

Rnndf :

ndf p
new
b (X) ← m ndf p

new
b (X) ∧ b(X, Y, Z) ∧ ¬dt p(Y) ∧ ndf p

new
b (Z)

ndf p
new
b (X) ← m ndf p

new
b (X) ∧ b(X, Y, Z) ∧ ¬∆+

dt p(Y) ∧ ndf p
new
b (Z)

ndf p
new
b (X) ← m ndf p

new
b (X) ∧ d(X)

m ndf p
new
b (X) ← m ndf p

new
b (X) ∧ b(X, Y, Z) ∧ ¬dt p(Y)

m ndf p
new
b (X) ← m ndf p

new
b (X) ∧ b(X, Y, Z) ∧ ¬∆+

dt p(Y).

As mentioned above, combining these two sets would still lead to an unstratifi-
able rule set. However, this unstratifiability is solely caused by the effectiveness
tests which negatively refers to the new state of the transformed NDF-relations
in Rnndf. Therefore, we propose to evaluate the rule sets R∆ndf and Rnndf, sepa-
rately, by using the so-called sequential consequence operator [Beh01].

Definition 6.18 (Sequential Consequence Operator) Let D = �F ,R� be a
deductive database, P1 ∪· P2 a partition of R and I ⊆ HD a set of ground atoms.
The sequential consequence operator �T�P1,P2� is a mapping on sets of ground atoms
and is defined as
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�T�P1,P2�(I) := T �

P2
(lfp(T �

P1
, I)).

The basic property of �T�P1,P2� is that before P2 is applied once, the rule set P1

is evaluated until no more derivations can be made. In principle, the evaluation
coincides with the special case of applying the soft consequence operator to a
binary partition.

Lemma 6.2 Let D = �F ,R� be a deductive database and P = P1 ∪· P2 a binary
partition of R. Then the least fixpoint of �T�P1,P2� always exists and coincides with
the least fixpoint of T s

P , i.e.,

lfp(�T�P1,P2�,F) = lfp(T s

P ,F).

Proof : This proposition follows immediately from Definitions 3.4 and 6.18. ✷

Although both operators obtain the same result, the sequential consequence oper-
ator explicitly computes the fixpoint of the lower component P1 before applying
P2 whereas the soft consequence operator always has to test whether the ap-
plication of P1 still leads to new derivations. This allows for a more efficient
implementation of �T�P1,P2� in comparison to the soft consequence operator T s

P .

It is easy to see that the partition R∆ndf∪· Rnndf satisfies the condition of
a soft stratification. Using R∆ndf and Rnndf as first respectively second rule
set, the sequential operator makes sure that all necessary new state facts are
derived before a propagation rule using these facts within its derivability and
effectiveness test is evaluated. Thus, from Lemma 6.2 and Proposition 5.1 it
can be followed that the least fixpoint of the sequential consequence operator
coincides with the total well-founded model MD of the softly stratifiable database
D = �F ,R∆ndf∪· Rnndf�:

M�F ,R∆ndf∪· Rnndf� = lfp(�T�R∆ndf,Rnndf�,F).

The least fixpoint of �T with respect to the rule sets R∆ndf and Rnndf corresponds
to the fixpoint of the following sequence:

F1 := lfp(TRnndf ,F)

F2 := TR∆ndf(F1)

F3 := lfp(TRnndf ,F2)

F4 := TR∆ndf(F3)
...

Fi := TR∆ndf(Fi−1)
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Algorithm 7 AFP materialization using Magic Updates

i := 0;
DT0 := lfp(T �

Rdt,◦∪Rdt,× ,F)|dt;
NDF1 := lfp(T �

Rndf , DT0
∪ ndf(dt−1(DT0)))|ndf;

∆+DT0 := + · [lfp(T �

Rdt,×∪Rdt,∗ , DT0
∪ NDF1)|dt \ DT0];

while ∆+DTi
�= Ø do

i := i + 1;
∆−NDFi := lfp(�T�R∆ndf,Rnndf�, NDFi

∪ DTi−1
∪∆+DTi−1)|ndf− ;

DTi := DTi−1
∪+−1 · (∆+DTi−1);

NDFi+1 := NDFi
\−−1 · (∆−NDFi);

∆
+DTi := lfp(T �

R∆ndt , NDFi+1
∪ DTi

∪∆−NDFi)|dt+ ;

end while

NDF := NDFi+1;
DT := DTi;

The application of �T�R∆ndf,Rnndf� alternates between the determination of induced
deletions from NDF after proving their effectiveness within the inner fixpoint
calculation. Starting from the set of base facts, the effectiveness of all induced
updates to be derived is tested one iteration round before in the inner fixpoint
computation such that the operator never evaluates negative literals too early.

Similar to the transformation of NDF-relations, the rule set mu(Rdtp
Qu ) with

Rdtp = ϕdt(Rdt)∪ τdt(Rdt) is used to denote the rules resulting from the applica-
tion of the Magic Updates rewriting to the propagation and transition rules for
DT-relations in Rdtp. As the rules Rdtp, however, are semi-positive the trans-
formed rules mu(Rdtp

Qu ) must be semi-positive as well. Hence, for their evaluation
the simple immediate consequence operator can be used again. Additionally, it is
not necessary to partition the Magic Updates transformed rules mu(Rdtp

Qu ) and we
will use the single set R∆ndt to denote the Magic Updates rewritten DT-relations,
i.e., R∆ndt := mu(Rdtp

Qu ).

Based on these results, we can now define the scheme of AFP materialization
using Magic Updates with Algorithm 7. The basic difference to the previously
introduced Algorithm 6 is that only relevant new state facts are computed. Con-
sider once again our running example for defining the unstratifiable relation e.
The set R∆ndt of Magic Updates transformed rules with respect to DT-relations
is given by:

R∆ndt :

∆+
dt e(X) ← ∆−ndf e(Y) ∧ succ(X, Y) ∧ ¬dt e(X)
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Note that the original transition rules τdt(Rdt) are not included in R∆ndt anymore
as the (single) propagation rule in ϕdt(Rdt) contains no references to the new
state relation dt e

new. The sets R∆ndf and Rnndf of Magic Updates rewritten
NDF-relations are:

R∆ndf :

∆−ndf e
−(X) ← ∆+

dt e(Y) ∧ succ(X, Y) ∧ ¬ndf e
new
b (X)

m ndf e
new
b (X) ← ∆+

dt e(Y) ∧ succ(X, Y)

Rnndf :

ndf e
new
b (X) ← m ndf e

new
b (X) ∧ succ(X, Y) ∧ ¬dt e(Y)

ndf e
new
b (X) ← m ndf e

new
b (X) ∧ succ(X, Y) ∧ ¬∆+

dt e(Y)

During the application of Algorithm 7 using these rule sets the same ∆+DTi and
∆−NDFi are computed as in the previous case of applying Algorithm 6. However,
only relevant new state facts are derived when computing the corresponding delta
sets:

∆−NDF1 ��� {∆−
ndf e(3)} ∪ {m ndf e

new
b (3)}

∆+DT1 ��� {∆+
dt e(2)}

∆−NDF2 ��� {∆−
ndf e(1)} ∪ {m ndf e

new
b (1)}

∆+DT2 ��� {∆+
dt e(0)}

∆−NDF3 ��� Ø
∆+DT3 ��� Ø.

In each phase, only those facts are computed that lead to changes in the corre-
sponding DT- and NDF-set avoiding full materialization of respective new state
relations. In this example, only two sub-queries with respect to the new state
relation ndf e

new have to be generated, asking for alternative derivations of the
facts ndf e(3) and ndf e(1) in order to show the effectiveness of their deletion
from the respective NDF-sets.

With Algorithm 8 we now define the final algorithm, i.e., iterated AFP mate-
rialization using Magic Updates, for the efficient computation of the well-founded
model of general deductive databases. This algorithm extends the scheme of Al-
gorithm 7 by considering a multi-layered rule set which allows a differentiated
treatment of stratified and unstratified layers. The evaluation of stratified layers
coincides with the iterated fixpoint computation as proposed in Section 3.2.1. For
the evaluation of unstratified predicates, however, Magic Updates transformed
rules are applied. Note that quite similar to the iterated AFP materialization
from Algorithm 5, for computing the sets DT0

l
and NDF1

l
the not definitely false
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Algorithm 8 Iterated AFP materialization using Magic Updates

DT0 := F ;
NDF0 := F ;

for each layer l = 1, . . . ,m of Rdp defined by λdp do
i := 0;
DT0

l
:= lfp(T �

Rdt,◦
l ∪Rdt,×

l

, DTl−1 ∪ NDFl−1)|dt;

NDF1
l

:= lfp(T �

Rndf
l

, NDFl−1 ∪ ndf(dt−1(DT0
l
)) ∪ DT0

l
)|ndf;

∆+DT0
l

:= + · [lfp(T �

Rdt,×
l ∪Rdt,∗

l

, DT0
l
∪ NDF1

l
)|dt \ DT0

l
];

while ∆+DTi

l
�= Ø do

i := i + 1;
∆−NDFi

l
:= lfp(�T�R∆ndf

l ,Rnndf
l �, NDFi

l
∪ DTi−1

l
∪∆+DTi−1

l
)|ndf− ;

DTi

l
:= DTi−1

l
∪+−1 · (∆+DTi−1

l
);

NDFi+1
l

:= NDFi

l
\−−1 · (∆−NDFi

l
);

∆
+DTi

l
:= lfp(T �

R∆ndt
l

, NDFi+1
l
∪ DTi

l
∪∆−NDFi

l
)|dt+ ;

end while

NDFl := NDFi+1
l

;
DTl := DTi

l
;

end for
DT := DTm;
NDF := NDFm;

facts of deeper layers, i.e., NDFl−1, are additionally employed. This in turn re-
quires to initialize not only the first set of definitely true facts but also the first
set of not definitely false relations NDF0 with the fact base F .

Theorem 6.3 Let D = �F ,R� be a deductive database and λ a layering on D.
Then iterated AFP materialization using Magic Updates as in Algorithm 8 always
terminates, and the sets DT and NDF correctly represent the well-founded model
of D. It holds that

MD = dt
−1(DT) ∪ ¬ · ndf−1(NDF).

Proof : The proposition of this theorem follows from the results of Theorems 5.1,
6.2, and 6.1 as well as from Lemma 6.2. ✷

6.3 Discussion

In this chapter, we have presented a new efficient bottom-up evaluation procedure
for computing well-founded models of arbitrary, i.e., potentially unstratifiable
deductive databases. This procedure represents a generalization of differential
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fixpoint computation [BR87] proposed for the efficient evaluation of stratifiable
databases (cf. Section 3.1). It provides a practical method for handling normal
logic programs that involve unstratified negation in a manner that may be mixed
with other approaches such as sip strategies and further rule optimization tech-
niques (e.g. [RBK88, NRSU89, Sag90, SSS90, CG94, NRSU95, Aze97]). Based
on the doubled program approach [KSS95] we used the Magic Updates transfor-
mation from Section 5.2 in order to restrict computation to changes of definitely
true and not definitely false facts. Because of the specific context, we are able to
solve stratification problems which arise if the Magic Sets transformation is used
in combination with propagation rules by introducing the sequential consequence
operator. Its application in combination with Magic Updates transformed dou-
bled programs allows for an even more efficient evaluation than the more general
soft stratification approach.

Apparently, our approach represents a significant improvement of the ap-
proach for computing the KSS Alternating Fixpoint Model in Algorithm 3 be-
cause any repeated computations are avoided. A similar result has been ob-
tained by methods proposed for well-founded model computation based on resid-
ual program evaluation [Bry90a]. A residual program consists of conditional
facts [Bry89, DK89, Bry90a] which are ground instances of rules without positive
body literals. The advantage of this notion is that negative dependencies are
made explicit. Consequently, this approach can provide additional information
about the reason why certain atoms are considered undefined within the result-
ing well-founded model by showing which negative dependencies could not be
dissolved. In addition, this approach can be faster than the original alternating
fixpoint approach. As an example consider again the rule

e(X) ← succ(X,Y) ∧ ¬e(Y)

together with the following finite successor relation succ := {(i, i+1)| 0 ≤ i ≤ n}.
Computing the corresponding well-founded model using the residual program
approach (or our proposed soft alternating method from Algorithm 8) would need
time O(n). However, the alternating fixpoint approach (cf. Algorithm 2) needs n
iterations, each costing O(n). Thus, the total cost is O(n2). On the other hand,
the alternating fixpoint approach or our soft alternating fixpoint always need
polynomial time whereas the residual program can grow to exponential size. In
addition, redundant derivations may also occur during the evaluation of residual
programs.

Solutions to these problems have been suggested in [BZF96, BZF97, BDFZ01]
where the authors propose a delayed generation and reduction of certain condi-
tional facts. In particular, this prevents exponential growth of residual programs
and can be employed for avoiding redundant derivations as well. This in turn
requires a complex rule analysis which implicitly takes place in our approach by
using specialized (transformed) propagation rules. It can be concluded that our
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approach of optimizing alternating fixpoint computation and the optimized eval-
uation of residual programs lead to similar improvements and are closely related
to each other. However, our approach represents a much simpler way of achieving
these results and fits well into the database context. An implementation of the
residual program approach requires new index structures and new rule optimiz-
ing techniques to be added to the database in order to handle conditional facts
and algorithms working with them. This is not necessary in our framework as the
proposed rule transformation is independent of other rule optimizing techniques.



Chapter 7

Conclusion

In this thesis, we have developed new efficient inference mechanisms for trans-
formation-based approaches to handling stratifiable as well as unstratifiable re-
cursion in deductive databases. To this end, deductive services are uniformly
accomplished by encoding the respective tasks into deductive rules and evalua-
ting these rules by means of the soft stratification approach. The suitability of
this approach has been investigated on the basis of query evaluation and update
propagation. Additionally, it has been shown that the concept of soft stratifica-
tion can be also used for an efficient implementation of the alternating fixpoint
operator in order to compute the well-founded model of arbitrary unstratifiable
databases.

In Chapter 3 constructive bottom-up methods for computing the semantics of
deductive database are recalled which are based on fixpoint computations. These
methods iteratively materialize derived facts by applying a deductive rule set
over a given input fact base until no more new derivations can be made. For
the derivation of facts different consequence operators are employed which repre-
sent variants of the immediate consequence operator proposed by van Emden and
Kowalski. Among them, the new soft consequence operator is introduced which
is closely related to Kerisit’s weak consequence operator [KP88] and serves as the
basic evaluation mechanism for the transformation-based techniques suggested in
subsequent chapters.

Chapter 4 shows how Magic Sets-based query evaluation in stratifiable data-
bases can be efficiently realized using the soft stratification approach. To this
end, a stratification problem arising when applying Magic Sets to an originally
stratifiable rule set is cured by means of soft stratification. This new stratifica-
tion concept employs additional information from the Magic Sets transformation
in order to find an appropriate rule ordering for the evaluation of Magic Sets
rewritten rules using the soft consequence operator. Soft stratification together
with the soft consequence operator then represent the soft stratification approach.
On its basis, a new transformation-based solution to the problem of optimizing
existential (derived) queries is presented by extending the Magic Sets approach.

141
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Chapter 5 illustrates how the new inference mechanism developed in Chap-
ter 4 can be employed for efficient update propagation. It recalls the structured
update propagation approach [Gri97] that propagates updates in a bottom-up
manner and at each stage initiates top-down query evaluation processes (accord-
ing to the Magic Sets approach) in order to determine further induced updates.
In this approach, deductive rules are compiled by means of Magic Updates rewri-
ting [Gri97, Man94] which encodes the task of update propagation as well as
Magic Sets optimizations into deductive rules. It is shown, that a slightly modi-
fied Magic Updates rewriting may not only provide a more compact representation
of propagation rules relevant for computing the induced changes but additionally
always specifies a softly stratifiable rule set. Thus, the soft stratification approach
can be employed for their efficient evaluation avoiding the expensive application
of too general inference mechanisms like Van Gelder’s alternating fixpoint oper-
ator [vG89].

Chapter 6 is concerned with improving the implementation of the alternating
fixpoint computation by using the results presented in previous chapters. To
this end, the doubled program approach to implementing the alternating fixpoint
operator is extended by update propagation techniques. This avoids redundant
computations of facts, as only those definitely true and not definitely false facts
are derived at the end of each iteration round which have to be inserted into or
deleted from the database during the fixpoint evaluation process, respectively. It
is shown that the used propagation rules are always softly stratifiable such that
the soft stratification approach (based on a simplified soft consequence operator)
can be employed for their efficient evaluation.

Summary

On the whole, this thesis shows that deductive services are well realizable by
means of the soft stratification approach. The proposed soft consequence operator
represents an efficient inference component for softly stratifiable rules and is well-
suited for extending the DBMS of existing relational database systems. It allows
for implementing the well-known differential fixpoint computation of recursive
views and is independent of other established optimization techniques such as
algebraic manipulation. On the basis of the soft stratification approach, we have
presented transformation-based techniques (known approaches as well as new
ones) which allow for an efficient implementation of query evaluation and update
propagation with respect to stratifiable recursion. These techniques may provide
a realistic framework for extending the expressive power of relational database
systems in order to implement the class of recursive views as proposed by the
new SQL:1999 standard.

Apart from the positive results, a possible drawback of the suggested transfor-
mation-based approaches is the high number of deductive rules that have to



143

be generated for each database service. For instance, the application of Magic
Sets to one deductive rule may lead to the generation of an exponential num-
ber of rules with respect to the arity of the rule’s head and their evaluation
does not necessarily improve the efficiency of query evaluation. However, several
approaches to optimizing the Magic Sets transformation have been already de-
veloped which may reduce the number of rewritten rules for specific schemata or
allow for a more compact representation of query restricted rules in certain cases.
These approaches are independent of our soft stratification method and thus, can
be applied to improving our suggested transformation techniques, too. Another
drawback of our proposed framework is the usage of purely transformation-based
approaches to solving various database services. The advantage of their indepen-
dence of the underlying inference mechanism may be considered their weakness as
well. For example, new algorithmic ideas for improving the soft update propaga-
tion approach which cannot be solely incorporated into its transformation process
but require modifications of the used inference mechanism may be not feasible
because these changes may negatively influence other database services like query
evaluation based on the same inference procedure.

In fact, there is a price to pay for the independence of database services and
database engine quite similar to the one for storing data with physical and logical
independence. The latter concept of data abstraction, however, is well-established
in the database context because it simplifies and systematizes application main-
tenance leaving changes in any of the abstraction levels to be largely contained
locally. The benefits of the resulting ANSI/SPARC layered model of database
architecture can be rediscovered in our proposed architecture of a transformation-
based deductive database system from Figure 1.1 in Chapter 1.

Future Work

As far as future work is concerned, our approach can be extended and optimized
in several ways: A major aim is to investigate how the proposed methods can be
transferred into the SQL context such that additional language concepts of SQL
like Null values, multisets and aggregates are taken into account as well. [Pie01]
proposed to consider a complete syntactical subset of SQL, called Basis-SQL,
allowing the definition of SQL expressions which can be most directly translated
into equivalent Datalog rules. However, the problem of how to treat the different
transaction concept and the additional language features of SQL mentioned above
remained unsolved. Another possible way is to transfer our results into relational
algebra. To this end, our transformation-based approaches are to be interpreted
as special algebraic manipulation rules which can be applied like other algebraic
laws such as selection pushing or splitting. In this context it would be interesting
to investigate to which extent these known algebraic laws can be freely combined
with the new ones resulting from our rewriting techniques. A third approach
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to transferring our methods into the SQL world is the usage of triggers which
has been already suggested in [CW90, SJGP90, CW91, CFPT94, GL96, Gri97,
Pie01]. To this end, active rules are automatically (or semi-automatically) derived
from high level specifications such as view definitions and integrity constraints.
In [CW90] and subsequent publications the authors have shown that active rules
are well-suited for implementing deductive inference. The idea of using active
rules for materializing derived relations has been taken up by Griefahn in [Gri97]
where a uniform approach to the implementation of query evaluation and update
propagation has been developed. In this context, it ought to be investigated how
our proposed inference component and our transformation-based techniques can
be efficiently realized by means of active rules, too.

Another possible enhancement of our proposed framework is the development
of cost-based approaches to query evaluation and update propagation which solely
rewrite a subset of the considered deductive rules such that intermediate results
are only partially materialized. These transformation-based methods ought to
take estimated relation sizes and additional cost measurements for performing join
and union operations into account. Work in this area is closely related to methods
of dynamic query processing, e.g. [CG94, SHP+96, GPFS02]. Moreover, the
realization of further deductive services such as view updating is to be addressed.
Finally, practical work based on the foundations provided in this thesis is just
in its initial phase. First implementations of the soft stratification approach
have been completed using the programming languages JAVA and PROLOG.
The results may form a basis from which prototypical implementations can be
developed in order to extend the expressive power of commercial systems such as
Oracle or Microsoft Access.
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