
Data & Knowledge Engineering 5 (1990) 289-312 289
North-Holland

Query evaluation in recursive databases:
bottom-up and top-down reconciled

Franqois B R Y
ECRC, ArabeUastr. 17, D-8000 Munich 81, FRG
e-mail: fb @ ecrc. de

Abstract. It is desirable to answer queries' posed to deductive databases by computing fixpoints because such
computations are directly amenable to set-oriented fact processing. However, the classical fixpoint proce-
dures based on bottom-up processing- the naive and semi-naive methods- are rather primitive and often
inefficient. In this article, we rely on bottom-up meta-interpretation for formalizing a new fixpoint procedure
that performs a different kind of reasoning: We specify a top-down query answering method, which we call
the Backward Fixpoint Procedure. Then, we reconsider query evaluation methods for recursive databases.
First, we show that the methods based on rewriting on the one hand, and the methods based on resolution on
the other hand, implement the Backward Fixpoint Procedure. Second, we interpret the rewritings of the
Alexander and Magic Set methods as specializations of the Backward Fixpoint Procedure. Finally, we argue
that such a rewriting is also needed in a database context for implementing efficiently the resolution-based
methods. Thus, the methods based on rewriting and the methods based on resolution implement the same
top-down evaluation of the original database rules by means of auxiliary rules processed bottom-up.

Keywords. Deductive databases, Logic programming, Query answering, Recursive queries, Recursive logic
programs, Bottom-up reasoning, Top-down reasoning, Meta-interpretation, Partial evaluation.

I . Introduct ion

For various reasons, fixpoint procedures are rather natural ways of processing queries
posed to deductive databases. First, the declarative semantics of a set of Horn clauses can be
defined as the fixpoint of an ' immediate consequence operator ' , as shown by van Emden and
Kowalski in [34]. Moreover, although this so-called 'fixpoint semantics' is not procedural, it
directly induces set-oriented query answering procedures, namely the methods that are
called 'naive' and 'semi-naive' by Bancilhon and Ramakrishnan in [3]. Finally, the fixpoint
theory which was developed in formal logic for studying recursive functions provides us with
a useful mathematical tool for investigating query answering procedures for recursive

databases.
Many studies have been devoted to fixpoint computations for querying databases. In

particular, various search strategies for the semi-naive method are investigated in [25]. The
articles [1] and [35] define a fixpoint semantics for a class of non-Horn deductive databases,
the class of stratified databases. The variant methods Alexander [24] and Magic Set [2, 5]
permit an efficient fixpoint processing of recursive queries on Horn databases by relying on a
rewriting of the deduction rules. In [6], we extended these methods to a class of non-Horn
databases by using a 'Conditional Fixpoint Procedure ' . This fixpoint procedure is extended
to a ternary logic in [A] for querying unrestricted non-Horn databases. All these studies rely
on naive or semi-naive fixpoint computations.

The naive and semi-naive methods are based on rather primitive deduction techniques and
are often inefficient. Indeed, both methods perform forward reasoning, i.e. they proceed

0169-023X/90/$03.50 O 1990-Elsevier Science Publishers B.V. (North-Holland)

29(I l'. BiT ' Query evaluation in recursive databases

bottom-up from the database rules and facts. Therefore, they do not use the constants
occurring in the queries for restricting the search space. In contrast, such a restriction is a
by-product of backward - or top-down - reasoning. The rewriting of the Alexander [24] and
Magic Set [2, 5] methods aims at achieving the same restriction on the search space with
bottom-up reasoning.

In this paper, we show that it is possible to keep the advantages of processing queries
through fixpoint computations, without necessarily sticking to the basic principle of the naive
and semi-naive methods. We specify a new fixpoint query answering procedure, the
'Backward Fixpoint Procedure', which is based on top -down- or backward-reasoning. In
other words, we apply fixpoint theory to databases with another operator than the classical
immediate consequence operator of van Emden and Kowalski. The Backward Fixpoint
Procedure is a sound and complete query answering method for recursive databases.

We rely on bottom-up meta-interpretation for formalizing the Backward Fixpoint Pro-
cedure, i.e. we specify a top-down evaluation of the database rules in a meta-language by
means of rules intended for bottom-up processing. Meta-interpretation is a technique
commonly used in Functional and Logic Programming. Although unusual in databases, it is
implicit in database systems that store predefined queries. As we show below, bottom-up
meta-interpretation permits one to obtain a surprisingly simple specification for the Back-
ward Fixpoint Procedure. This approach can also be applied to specify other advanced
fixpoint procedures like top-down meta-interpretation is conventionally applied in logic
programming for enhancing the in te rpre te r - see , e.g. [28]. Bottom-up meta-interpretation
gives rise for example to specifying fixpoint procedures for querying databases with uncertain
values or for performing updates specified on derived relations [B].

Then, we reconsider evaluation methods for recursive databases from the viewpoint of
fixpoint computation. Several methods have been proposed for evaluating queries on
recursive databases. Those that ensure termination on all recursive databases defining finitely
many facts - e.g. function-free databases - follow one or the other of two approaches. The
methods of the first type rewrite the database rules and process the rewritten rules
bottom-up. The Alexander [24] and Magic Set [2, 5] methods are based on this principle.
The second approach is an extension of SLD-Resolution [13, 18] that consists of storing the
encountered queries and the proven answers. The ET* and ET,,t~rp algorithms [11],
OLDT-Resolution [30], QSQ and SLDAL-Resolution [37], and the R Q A / F Q I strategy [22],
are methods of the second type. We investigate both types of methods. We show that the
methods based on rewriting as well as the methods based on resolution implement the
Backward Fixpoint Procedure. In other words, they express the same top-down reasoning
principle in different formalisms.

Similarities between rewriting-based and resolution-based methods were already observed
by many authors. In particular, Beeri and Ramakrishnan showed in [5] that the same
strategies - called "sideway information passing strategies' - can be applied to optimize both
types of methods. Moreover, Ramakrishnan noticed in [23] that the same propagation of
constants is possible with rewriting-based and resolution-based methods. This point was
investigated more formally by Ullman in [33]. Commonalities in the inferences of both types
of methods were often c i t e d - e . g , in [10, 4~ 38]. Recently, Seki established a one-to-one
mapping between the inferences performed by methods of both types [26]. These observa-
tions and results are precursors of the study we present here.

Examining efficient implementations of the Backward Fixpoint Procedure, we investigate
a technique called specialization. Specializing meta-interpreters is a classical way of obtaining
efficient procedures from formal specifications - see e.g. [27]. We show that the rewriting of
the Alexander and Magic Set methods can be interpreted as a specialization of the Backward
Fixpoint Procedure. We argue that this rewriting is also needed in efficient implementations
of resolution-based methods. This motivates features of the implementation of SLDAL-

F. Bry I Query evaluation in recursive databases 291

Resolution which is reported in [17]. Thus, efficient implementations of methods of both
kinds have to rely on the same rewriting of the database rules and to process the rewritten
rules bottom-up.

Relying on the meta-interpreter for the Backward Fixpoint Procedure, we give simple
soundness and completeness proofs for the Alexander and Magic Set methods on the one
hand, and for the ET* and ETinterp algorithms, OLDT-Resolut ion, QSQ and SLDAL-
Resolution, and the R Q A / F Q I strategy, on the other hand. Thus, bottom-up meta-
interpretation appears to be a useful formalism for theoretical investigations of query
answering procedures.

The article consists of eight sections, the first of which is this introduction. In Section 2, we
review background notions and introduce notations. In Section 3, we show how rules
intended for bottom-up computation can be used for specifying fixpoint procedures. Then we
show in Section 4 that top-down processing of queries can be performed by a fixpoint
procedure: We make use of bottom-up meta-interpretat ion for specifying the Backward
Fixpoint Procedure. In Section 5, we refine the definition of this procedure. In Section 6, we
investigate implementation issues and we show that the rewritings of the Alexander and
Magic Set methods are specializations of the Backward Fixpoint Procedure. Section 7 is
devoted to query answering methods based on SLD-Resolution. We first show that they
implement the Backward Fixpoint Procedure as well. Then we show that they require the
very rewriting of the Alexander and Magic Set methods. In Section 8, we summarize the
results presented in the article and we indicate directions for further research.

The results established in this article have been informally presented in a tutorial on
deductive databases during the 6th International Conference on Logic Programming [9].
They have been presented in a shortened form at the 1st International Conference on
Deductive and Object-Oriented Databases [7].

2. Background

A deductive database is a finite set of deduction rules and facts. Given a database DB, we
shall denote its subset of deduction rules by D R (D B) and its subset of facts by F(DB). Facts
are ground atoms and deduction rules are expressions of the form:

H * - - L I A ' ' ' A L .

where n/> 1, H is an atom, and the Lis are literals. Such a rule denotes the formula:

V X l . . . V X k (L I ^ . . . ^ L n ~ H)

where the xjs are the variables occurring in H or in the Lis. If all Lis are positive literals,
then the rule is called a H o r n rule. A database is called a Horn database if all its rules are
Horn rules. H is called the head of the rule. The conjunction L 1 ̂ • • • ^ L n is called its body.

A dependency relationship on database predicates - or relations - is inductively defined as
follows. A predicate p depends on each predicate occurring in the body of a rule with head
predicate p, and on each predicate on which one of these body predicates depends. A
predicate which depends on itself is said to be recursive. A database is recursive if one of its
predicates is recursive.

Words beginning with lower case letters from the end of the alphabet (u, v, w, etc.) - with
or without subsc r ip t s -deno te variables. Words beginning with other lower case characters
are used for denoting constants and predicates.

The Herbrand base H B (D B) of a database DB is the set of ground atoms that can be

292 F. BO' / Query' evaluation in recursive databases

constructed from the predicate, constant, and function symbols occurring in DB. H B (D B) is
finite if and only if DB contains no function symbols.

A ground atom A is said to be an immediate consequence of a database DB if there exist:
• a r u l e H ~ - - L ~ / x . . . / x L , , ~ D B
• a substitution or

such that:
• H~r=A
• Liar E F (D B) if Li is a positive literal, and L i c r ~ F (D B) otherwise.

The L io- are called premises of A.
The immediate consequence operator T on DB - formally, on H B (D B) U D R (D B) - is the

function associating with each D C H (D B) U D R (D B) the set T(D) of its immediate
consequences.

More generally, an operator on a set S is a function on the power set of S. An operator F
on a set S is monotonic if it satisfies the property:

VP, C_S VP2C_S [P,C_P2~F(P,)CF(P2)]

Restricted to Horn databases, the immediate consequence operator T is monotonic. How-
ever, T is not monotonic on non-Horn databases.

If F is an operator on a set S and if P C S, we recall the notation:

r t '~(P) = u . ~ r t ' (P)

where:

F1, 0(p) = p

r t = r (r t ' (P)) u F'~'(P) for n E

Intuitively, TI' ' (DB) denotes DB augmented with its immediate consequences; T I " (D B)
denotes DB augmented with all the facts that can be derived from DB.

A least fixpoint of an operator F on a set S is a set F1'~(S) (n E ~J* U {to}) such that:

r t ~(s)= r t ' (s)

FI' ~(S) # FI' *(S) for k < n

A monotonic operator on a set S has a unique least fixpoint on S [31]. Therefore , T admits a
unique least fixpoint on Horn databases. This fixpoint is finite if TI' ° ' (DB)= T 1 " (D B) for
some n < to. This is in particular (but not only) the case if no function symbols occur in DB.
The semantics of a Horn database DB is formalized by defining its true facts as the facts in
the least fixpoint T1' ~(DB).

The least fixpoint of T on a function-flee Horn database DB can be constructed by
iteratively computing the sets T1' " (DB) for increasing n. The computation halts as soon as
no new facts are generated, i.e. when a step n is reached such that:

T(T'~ "(DB)) C_ T 1' ~(DB)

Since the least fixpoint TI '~(DB) of T on a function-free Horn database is finite, this
procedure always terminates when applied to such databases. In particular, it terminates on

F. Bry / Query evaluation in recursive databases 293

recursive function-free Horn databases. Following Bancilhon and Ramakrishnan [3], we call
this procedure the naive method.

A drawback of the naive method is to compute repeatedly facts that have already been
generated: While computing T'[n+~(DB), all immediate consequences of TI ' i (DB) for
0 ~< i < n are recomputed. Since T is monotonic on Horn databases, it suffices to generate
those elements of TI'n+~(DB) that have at least one premise in TI 'n(DB)\TI 'n- I (DB).
Improving the naive method in this way results in the so-called semi-naive method. Various
search strategies for the semi-naive method are investigated in [25]. These strategies depart
from the strict breadth-first generation of consequences.

The naive and semi-naive methods are sound query answering procedures for Horn
databases, i.e., they generate only facts that belong to the least fixpoint TI' °~(DB) of T on a
Horn database DB. They are complete query answering procedures for non-recursive and for
function-free Horn databases, i.e. they determine all the facts in TI"°(DB). They may never
terminate when applied on a database such that TI' °~(DB) is infinite. Nevertheless, the naive
and semi-naive methods are exhaustive query answering procedures, i.e. given a ground fact
F such that F E TI' ~'(DB), they always determine this membership in finite - but indefinite -
time, even if TI' ~(DB) is infinite.

3. Fixpoint procedures as bottom-up meta-interpreters

In this section, we introduce the 'bottom-up meta-interpretation' technique with a quite
obvious and simple example similar to the so-called 'Prolog in Prolog' or 'vanilla' Prolog
meta-interpreter [28]. We show how the fixpoint computation of immediate consequences
can be specified by meta-rules intended for bottom-up evaluation. This technique is used in
more interesting ways in Section 4.

The computation of the immediate consequences T(DB) of a Horn database DB can be
paraphrased as follows. For all rules H ~-- A 1 ̂ " " " A A n in DB and all substitutions o" such
that A i o ' ~ D B (i = 1 , n), the facts Ho- are proved. The immediate consequence
operator T can be expressed as the forward processing of the following rule:

fact(H) ~ rule(H ~ B) A evaluate(B)

where the predicates 'rule' and 'evaluate' respectively express access to the set of deduction
rules and facts. For the sake of simplicity, we assume here and in the rest of the article that
bodies of rules are evaluated from left to right. Note, however, that this hypothesis is not
necessary and that the results we establish do not require it. A different evaluation of the
body of the above-defined meta-rule would be very inefficient or could compromise
termination, for the variable B would have to be bound to all possible atomic or conjunctive
expressions.

A bottom-up evaluation of the above-defined rule produces an expression 'fact(F) ' for
each F E T(DB). By iterating in the naive or semi-naive manner, one generates an
expression ' fact(F) ' for each F E T]' '°(DB). Fig. 1 (next page) illustrates this principle on an
example. The evaluation of ' rule(H *-- B) ' first binds H to 'p(x)' and B to 'q(x) A r(x)'.
Since there are no q facts in the database, the evaluation of B fails. H and B are then
respectively bound to 'q(x)' and 's(x)' from the second rule. Processing 'evaluate(B)' yields
the bindings o r 1 = Ix:a] and ~r 2 = [x: b], i.e. 'fact(q(a)) ' and 'fact(q(b)) ' are proven. They are
added to the database. These new facts now 'fire' the database rule 'p(x) ~-- q(x) A r(x)'
when H is bound to 'p(x)' and B to 'q(x) A r(x)'. 'evaluate(B)' succeeds with the binding
cr 3 = [x:a]: ' fact(p(a)) ' is proven. The procedure stops because the most recently derived fact
p(a) cannot serve as a premise in any rule.

294 F. Brv / Q u e r v evaluation in recursive databases

Database: r(a) s(a) p(x) ~- q(x) A r(x)

s(b) q(x) ~- s(x)

Successful derivations:

Step I: fact(q(x)) ~- rule(q(x) ~ s(x)) /x evaluate(s(x))

Step 2: fact(p(x)) ~-- rule(p(x) ~-- q(x) ^ r(x)) A evaluate(q(x) A r(x))

,,, : [x:.l
~r~= [x:b]

~ = Ix:a]

Fig. 1. Bottom-up reasoning with a bottom-up meta-interpreter.

The semantics of 'evaluate' can be formally defined as follows: If B is an atom or a
conjunction of atoms and ~ is a substitution of constants for variables in B, 'evaluate(B)o-'
holds if and only if Bo- evaluates to true over the current facts, i.e. the database facts and the
already generated 'fact' atoms. Formally, the predicate 'evaluate' could be omitted and
'evaluate(B)' could be replaced by B. In the sequel, in particular in proofs, we shall rely
implicitly on this semantics. We do not specify here any procedure for 'evaluate': Let us
assume that we rely on a non-deductive, relational query evaluator.

The above-defined rule is a meta-interpreter, i.e. it is a logic program that treats another
logic program, namely the database under consideration, as data and interprets or runs it.
Meta-programming is a common practice in Functional and Logic P rog ramming- see e.g.
[28]. It is natural in these languages because they give the same structure to data and
programs. More generally, the ability to specify a given programming language in itself is
generally considered as a necessary feature of powerful languages.

It is worth noting that the meta-interpreters considered in logic programming are usually
intended for top-down evaluation. In contrast, the above-defined meta-interpreter corre-
sponding to the immediate consequence operator is intended for bottom-up processing.
Meta-interpreters of the respective types are not interchangeable. Processing the above-
defined meta-interpreter with SLD-Resolution would enter an infinite loop in case the object
p r o g r a m - i . e , the database under cons idera t ion- is recursive. Similarly, conjunctions of
unbounded growing lengths are usually generated by processing bottom-up meta-interpreters
intended for top-down evaluation. The study of similarities and differences of both types of
meta-interpreters seems to be an interesting direction of research. Moreover, bottom-up
meta-interpretation seems an interesting technique to investigate, especially for databases.

The variables in a meta-interpreter range over atomic and conjunctive queries. We denote
them with upper case letters, in order to distinguish them from conventional variables that
range over attribute values.

Formally, the specification of a query procedure by means of rules can be viewed as
extending the first-order, one-sorted language of the database into a first-order, two-sorted
language. We do not discuss this issue h e r e - s e e e.g. [14, 29]. Other formalizations of
meta-interpretation rely on second-order logic. Extending a database language with variables
ranging over queries is implicitly done in conventional database systems that store predefined
queries.

Let MDB denote a database consisting of the above-defined deduction rule and of the two
relations {rule(R)] R E DR(DB)} and {fact(A) t A E F(DB)}. The following proposition
shows that the least fixpoint T ~ (M o B) expresses the least fixpoint TI '~(DB) of the
underlying database DB.

Proposition 3.1. Le t DB be a H o r n database, A a fact , and n @ N*.
1. A E T'[' '°(DB) i f f fact(A) E TI' '°(MOB)
2. A E TI '"(DB)\TI ' " - I (DB) i f f fact(A) E TI' ~(MDB)\T1' "-I(MDB).

F. Bry / Query evaluation in recursive databases 295

Proof. We first prove by induction on n that:

,(t) V n ~ A E T~n(DB)C:~fact(A)~ TI'~(MDB)

This is the case for n = 0, by definition of MoB and T 1' 0. Assume that this is true for all k
such that 0 ~< k < n. If A E TI' "(DB) (fact(A) @ TI'"(MoB), resp.), then, by definition of T,
there is a rule H ~ L~ ^ . - . ^ L, in DB (a fact rule(H ~-- L~ ^ .-- ^ L ,) in MoB, resp.) and
a substitution r such that A = H r (fact(A)=fact(H)~-, resp.) and Li~-CTI ' " -~(DB)
(fact(Li)~-E T]'n-~(DB), resp.) for all i = 1 , . . . , n. By definition of ME, B, rule(H ~-- L, ^
• . . a L ,) E MDB(H ~--L~ ^ . . . A L , E D R (D B) , resp.), and by induction hypothesis
fact(L/)~-E T'~" I(MDB)(Lir E TI '"-~(DB), resp.) for all i = 1 n. It follows from the
definition of T that fac t (H)r ~ T]'"(MDB)(Hr @ TI '"(DB), resp.). Point 1 follows from (t)
and from the definition of a least fixpoint. Point 2 is an immediate consequence of (t) . []

Intuitively, the second point of Proposition 3.1 means that the semi-naive computation of
T'~°'(MDB) expresses the semi-naive computation of Tq'~(DB) in the meta-language. It
follows that the above specification of the operator T by means of a rule can be viewed - and
u s e d - as an implementation, if we have at our disposal a naive or semi-naive query
evaluator. This is not really interesting here, since we use the operator T itself. However, it
is useful with other operators, as it permits us to run fixpoint procedures that perform
deductions of other types with a semi-naive eva lua tor - e.g. for test purposes.

Specifying fixpoint query answering procedures as bottom-up meta-interpreters has two
main consequences, as far as the computation of fixpoints is concerned. First, terms that are
not in first normal f o r m - o r nested t e r m s - a r e generated, e.g. ' fact(p(a)) ' . Second,
non-ground terms can be generated, as happens with the Backward Fixpoint Procedure of
Section 4. This requires replacing syntactical identity tests by more expensive instance tests.
In section 5, we describe a normalization technique and we show how to perform instance
tests efficiently. In the next section, we shall assume that the semi-naive query evaluator at
hand correctly handles unnormalized and non-ground terms.

We conclude this section with a generalization of Proposition 3.1. It formally justifies the
use of meta-interpretation with bottom-up rules for specifying fixpoint query answering
procedures.

Proposition 3.2. Let DB be a Horn database. Let MR be a set of meta-rules defining a
predicate 'fact' such that the predicates in MR do not occur in DB and are defined in terms of
the base relations 'rule' and 'fact' that describe DB. Let TMR be the operator on DB which is
specified by MR.
For all D C DB and n E [N U {to}, let:

F D = {fact(F) I F E F(D)} U {rule(R) I R ~ DR(D)}

S D = D U {A I fact(A) E T~ n(F D U MR)}

The following property holds:

VD_CDB V n E N U {to} S~o = TMR?"(D)

Proof. By induction on n, one first establishes the property for n < to in the same ways as (t)
is established in the proof of Propositions 3.1. The property for n --- to is a consequence of
that result and of the definition of a least fixpoint. []

296 F. B<v / Query evaluation in recursive databases

Intuitively, Proposition 3.2 shows that the least fixpoint of an operator TMR can be
computed by running its rule-based specification with an evaluator for the immediate
consequence operator T, Moreover, if the evaluator for T implements a semi-naive method.
this would reflect the semi-naive computation of the least fixpoint for TMR in the meta-
language of MR.

4. The backward fixpoint procedure: principle

In the previous section, we have given a bottom-up meta-interpreter to process the object
ru les- i .e , the database ru les - in a bottom-up manner. In this section, we show that
bottom-up meta-interpretation can also be applied for specifying top-down reasoning on the
object rules. We define a bottom-up meta-interpreter that 'reverses' the reasoning principle:
Processing it bottom-up performs a top-down evaluation at the object level.

The following rules specify an operator, that we call T h. This operator processes the
database rules - accessed with the predicate 'rule' - in a top-down manner. The rule for 'fact'
expresses that a body of a rule is evaluated only in case a query is posed on the head of that
rule. The top-down evaluation principle is rather clearly recognizable in the rules for
'querYb': The first queryb-rule for example induces a query on the body of a rule from a
query on its head. The last two rules split conjunctive queries into atomic ones in order to
permit the top-down expansion of these atomic expressions with the first queryb-rule.

(i) fact(Q) ~-- querYb(Q) /x rule(Q ~ B)/x evaluate(B)

(ii) queryh(B) ~-- querYb(Q)/x rule(Q ~--B)

(iii) querYb(Q,) <--querYb(Q, /x Q2)

(iv) queryb(Q2) ~ querYb(Qt A Q2) ^ evaluate(Qt)

The predicate 'evaluate' expresses access to the already generated facts, as in the rule for
the immediate consequence operator T given in Section 3.

We emphasize that a bottom-up processing of the meta-interpreter defined by rules (i)-(iv)
realizes a top-down evaluation of the database rules. In other words, the rules given above
implement a top-down evaluation of database rules in a meta-language of bottom-up rules.
We call 'Backward Fixpoint Procedure' the procedure that, applied to a Horn database DB
and to a set Q of queryb-atoms, computes the least fixpoint T b I' ~(DB t,3 Q) of the operator
T b on DB and Q. The atoms in Q are the initial queries posed to the database DB. Fig. 2
shows on an example how the Backward Fixpoint Procedure computes Tb(DB U Q). Note
that no t facts are derived.
k

Database: r(a) s(a) u(a) p(x) *--q(x) A r(x)
s(b) u(b) q(x) *--s(x)

t(x) ,--s(x) ^ u(x)

Queries: queryb(p(b))

Success fu l derivation:

queryb(q(x))

fact(q(x)) ~-- queryb(q(x)) A rule(q(x) *-- s(x)) A evaluate(s(x))

query.(q(x) A r(x)) ~ queryb(p(b)) A rule(p(x) ~ q(x) A r(x))

querYb(S(X)) ~ queryb(q(x)) ^ rule(q(x) ~-- s(x))

~1 = Ix:a]
~,= [x:b]

~ = [x:b]

~4 = []

Fig. 2. Top-down reasoning with the Backward Fixpoint Procedure.

F. Bry / Query evaluation in recursive databases 297

Evaluating the body of rule (i) first binds 'querYb(Q)' to 'querYb(P(b))', B to 'q(x) ^ r(x)'
and yields the binding [x:b]. B is not satisfied by the database facts: No facts are generated.
'queryb(Q)' from rule (i) is then bound to 'queryb(q(x))', and B to 's(x)'. The evaluation of
B over the database facts yields the bindings o" 1 = [x:a] and o, 2 = [x:b], thus generating
'fact(q(a))' and 'fact(q(b))'. Rule (ii) generates from 'queryb(p(b))' the expression
'queryb(q(x) A r(x))' with the binding o'3 = [x:b]. Similarly, 'queryb(s(x))' is derived by rule
(ii) from 'queryb(q(x))'.

It is reasonable to evaluate the bodies of rules (i)-(iv) from left to right. With this
ordering, the queryb-atoms constrain the evaluations. In rule (iv), this ordering ensures that
Q1 is bound to an atom when 'evaluate(Q1)' is processed. With another ordering, the type of
the variable Q1, i.e. the set of database queries, would have to be searched. Evaluating the
conjunction

rule(Q ~-- B) ^ evaluate(B)

before 'querYb(Q)' in rule (i) would be inefficient because useless 'evaluate(B)' expressions
would be processed. However, this inefficient ordering would not compromise the top-down
paradigm: The useless values would be filtered out during the evaluation of 'queryb(Q)'.

It is worth noting that, although based on backward reasoning like Linear Resolution
[20, 16], the Backward Fixpoint Procedure differs significantly from this method and from
procedures related to it, like Model-Elimination [19] and SLD-Resolution [13, 18]. A
fundamental difference with SLD-Resolution is that new answers generated with the
Backward Fixpoint Procedure- i .e . new values for the relation ' f a c t ' -may trigger the
generation of new quer ies- i .e , new values for the relation 'queryb'. For example, an
expression

queryb(p(x) ^ q(x, y))

can be generated during the computation of TI' n(DB) at a time where p facts have not yet
been generated. The generation of a fact 'p(a)' at step m > n induces from the previously
computed querYb-expression a term ' queryb(q(a ,y)) ' during the computation of

r n + l TI' (DB). In contrast, SLD-Resolution would have to recompute the expression

queryb(p(x) ^ q(x, y))

in order to generate 'queryb(q(a, y))' once 'p(a)' is obtained. In order to ensure termination
on recursive databases, the query answering procedures based on SLD-Resolution collect
queries and answers, in the same way as the Backward Fixpoint Procedure does.

The following proposition establishes the soundness and completeness of the Backward
Fixpoint Procedure.

Proposition 4.1. Let DB be a Horn database, A an atom, and ~" a substitution such that AT is
ground.

A~- E T I''°(DB) iff fact(A)~- E Tb' ~ ~(DB U {querYb(A)})

The proof of Proposition 4.1 can be sketched as follows. A proof P of fact(A)z in
DB U {queryb(A)} yields a proof of Ar in DB by pruning the queryb-facts from P.
Conversely, a proof of fact(A)'r in DB U {queryb(A) } is obtained from a proof P of Az in
DB by inserting querYb-facts in P according to the rules that specify the Backward Fixpoint
Procedure.

298 F. Bry / Query evaluation in recursive databases

Proof.
Necessary cond i t ion

We first prove by induction on n that for all atoms F, substitutions ~-, and integers n, the
following implication holds:

(t) F~- E T~'"(DB) ~ ::lm C ~ fact(F)~- E The' (DB U {queryb(F)})

Since T] ' ° (DB) = T b] ' ° (D B) = D B , (t) holds for n = 0 with m = 0 . Let n E ~ * and
assume that (t) holds for all k such that 0 ~< k < n. Let Fz E T ~ " (D B) \ T] ' " ~(DB). There is
a rule H ~--L~ A . . . L p in DB and a substitution o- such that Fz = Ho-, and L,o-
T] '" ~(DB), for all i = 1 p. By induction hypothesis, there are p integers m~ such that
fact(L/)o- ~ T b 1"" t+m'(DB U {querYb(L~)}).

Since q u e r y b (L ,) ~ T b ' ~ P (D B U { q u e r y b (F) }) , we have fac t (L~) r~Tb~ ' ' t ~'(DBU
{query~(F)}), where m is the maximum of the rn~s. Therefore , (t) holds for n. It follows
that, for all atoms F and substitutions ~-:

F~- E T~' ~(DB) ~ fact(F)~- ~ T b 1' '°(DB U {queryb(F) })

Suf f i c ien t cond i t ion
We prove by induction on n that for all atoms F, substitutions r, and integers n:

($) fact(F)~- E ThJ'"(DB U { q u e r y b (F))) ~ F~- ~ T~'"(DB)

The property holds for n = 0. Let n ~ N/* and assume that ($) holds for all k such that
0 ~< k < n. Assume:

fact(F)~-E T h 1' ~(DB U {queryb(F)}) \T b 1'" ~(DB U {queryb(F)})

By Proposition 3.2, F r ~ T~'"(B)\T~'" ~(B), where B is the database with set of facts:

(fact(A) I A E F(DB)} U (querYb(F)) U (rule(A) I A E R(DB)}

and with rules the set of rules R that specify the Backward Fixpoint Procedure.
There is a rule r = H *-- L~ A • • • A L e in R and a substitution o- such that f ac t (F) r = Her,

and Lio- E TI' n ~(B) for all i = 1 p. The only rule in R the head predicate of which is
'fact' is rule (i) fact(X) ~ querYb(X) A rule(X *-- Y) A evaluate(Y).

Hence, there is a rule A ~-- B~ A - " A B k in DB, and a substitution v such that Fr = A v

and fact(Biv) ~ T~q'"-~(DB U {queryb(F)}), for all i = 1 k. By induction hypothesis,
B i v E T~'~-~(DB), for all i = 1 k. Hence, F~-E T~'~(DB), i.e. ($) holds for n. It
follows that, for all atoms F and substitutions r:

fact(F)~- ~E 7"6" ~ '°(DB U {queryb(F)}) ::> Fr E T 1' '°(DB)

The proof is complete. []

The semi-naive method always terminates on databases defining finitely many facts, even if
they are recursive. Therefore , so does the Backward Fixpoint Procedure. It follows from
Proposition 4.1 that:

F. Bry / Query evaluation in recursive databases 299

Corollary 4.1. The Backward Fixpoint Procedure is a sound, complete, and exhaustive query
answering method for (possibly recursive) Horn databases.

It is a terminating query answering method for Horn databases defining finitely many
fac t s - e.g. function-free databases.

It is often desirable to evaluate queries with a top-down reasoning method in order to
propagate the constants - i.e. in terms of relational algebra, the selections - from the initial
and subsequent queries to the queries on the base relations. This can only be achieved by
top-down reasoning, indeed.

In the next sections, we first refine the definition of the Backward Fixpoint Procedure.
Then we investigate the relationship between this procedure and methods that were
proposed for querying recursive databases. We show that the methods based on rewritings of
the database rules as well as the methods based on resolution implement the Backward
Fixpoint Procedure. In other terms, the top-down reasoning principle is conveyed by the
rewriting of these methods.

5. The Backward Fixpoint Procedure revisited

A direct implementation of the rules (i)-(iv) can induce undesirable redundancies.
Consider for example a database containing a rule 'p ~ q A r' and the query 'p'. The
following instances of the rules (i)-(iv) are relevant:

fact(p) ~-- queryb(p) A rule(p *-- q A r) ^ evaluate(q A r) from (i)

querYb(q ^ r) ~-- queryb(p) A rule(p ~-- q A r) from (ii)

queryb(q) ~ queryb(q A r) from (iii)

queryb(r) ~ queryb(q A r) ^ evaluate(q) from (iv)

Both the first and the last rules consult the facts for 'q'. This access can be shared by
refining the specification of the predicate 'evaluate'.

We replace the unary predicate 'evaluate' by a binary one, whose arguments respectively
denote the already evaluated part of a conjunctive query, and the rest of the query. Thus, an
expression 'evaluate(0, Q)' denotes a completely non-evaluated query 'Q' . In contrast,
'evaluate(B)' in rules (i) ('evaluate(Q1)' in rule (iv), resp.) must be replaced by
'evaluate(B,0)' ('evaluate(Q1,0)' , resp.) which denotes a completed evaluation of B
(Q1, resp.). The following bottom-up rules specify the binary predicate 'evaluate':

(v) evaluate(0, B) ~-- querYb(Q) A rule(Q *-- B)
(vi) evaluate(B 1, B2) ~ evaluate(0, Bj ^ B2) ^ fact(B1)

(vii) evaluate(B~ ^ B2, B3) ~ evaluate(B1, B 2 A B3) A B 1 ¢ 0 A fact(B2)
(viii) evaluate(B, 0) ~-- fact(B)

(ix) evaluate(B~ A B 2, 0) ~ evaluate(B~, B2) ^ B 1 ~ 0 ^ fact(B 2)

Let T~ be the operator specified by the rules (i)-(ix) - an expression 'evaluate(X)' being
replaced in rule (i) and (iv) by 'evaluate(X, 0)'.

300 F. Bry / Query evaluation in recursive databases

Proposition 5.1. Consider a database DB and a set o f queryb-facts Q. Let B 1 denote either 0,
or an atom, or a conjunction o f atoms. Let B~ and B 3 denote atoms or conjunctions o f atoms.
Le t n ~ ~ .

3 B ~ 3 B 3 evaluate(B,, B 2/x B3)E T;,I"°(DB O Q) i f f querYb(B,)~ T~'~(DB U Q)

Proof. One first shows by induction on n that, for all integers n:

evaluate(B1, B 2/x B3) E T;, '~ "(DB U Q) ::), 3m ~ ~ queryb(B2) E T~ 1' (DB U Q)

By definition of a least fixpoint, we have:

evaluate(B l , B 2 A B3) ~ T~ 1' ~(DB O Q) ~ queryb(B2) E T~ 1"°(DB U Q)

Conversely, one proves by induction on n that, for all n E ~:

queryb(B2) ~ T~I' "(DB U Q) :ff

3m ~/~ ::lB 2 ::IB 3 evaluate(B1, B 2 A B3) ~ T~I' n+"(DB U Q)

It follows that

queryb(B2) E T~I' ~°(DB U Q) ~ evaluate(B~, B e/x B3) E T~I' ~(DB U Q)

This implication completes the proof. []

By Proposition 5.1, rules (ii)-(iv) can be replaced by the following rules, without affecting
the semantics of the operator T~.

(x) queryh(B2) *-- evaluate(B~, B2) ^ B 2 ~ (Ct A Cz)

(xi) querYb(B2) ~ evaluate(Bj, B 2/x B3)

Finally, we prove the equivalence of the operator T~ specified by rules (i) and (v)-(xi) and
the operator T b specified by rules (i)-(iv).

Proposition 5.2. Le t D B be a Horn database, Q a set o f querYb-facts, A and atom, and ~ a
substitution such that A~" is g round

evaluate(At, 0) E T~ 1' '°(DB U Q) i f f fact(At) E T~ 1' °'(DB U Q)

Proof. One first proves by induction on n that for all atoms F, substitutions ~-, and integers n,
the following implication holds:

evaluate(F~-, 0) E T~ 1' "(DB U Q) ~ 3m ~ ~ fact(F~') E T b 1' "+m(DB U Q)

in the same way as (?) is established in the proof of Proposition 4.1. Conversely, one proves
by induction on n that:

F. Bry / Query evaluation in recursive databases 301

fact(F~) E Tb~ n(DB U Q) ~ evaluate(Fr, 0) ~ Tb~' n(DB t.J Q)

for all atoms F, substitutions ~', and integers n like (~:) is established in the proof of
Proposition 4.1. Proposition 5.2 follows by definition of a least fixpoint. []

When it is not otherwise stated, we shall not distinguish any more between T b and Tb, and
we shall implicitly refer to the last specification of the Backward Fixpoint Procedure, i.e. the
specification by means of rules (i) and (v)-(xi).

6. Specialization: the logic of magic

Two difficulties are encountered when implementing the Backward Fixpoint Procedure.
The meta-interpreter which specifies it, on the one hand relies on structures like
'querYb(P(a, b))' that are not in first normal form, i.e. that contain nested terms. On the
other hand, it generates non-ground tuples such as 'queryb(p(x, b))'.

First, we show that normalized structures can be obtained by relying on a technique called
'specialization'. We consider an encoding of variables by means of ground expressions and
we show that a specialization also permits us to perform this encoding at compile time. Then,
we apply these specializations to the Backward Fixpoint Procedure. This yields the rewriting
algorithms of the Alexander and Magic Set methods.

6. i Normal i za t ion by specialization

Consider rule (i) of the Backward Fixpoint Procedure:

(i) fact(Q) ~-- queryb(Q) ^ rule(Q ~-- B) ^ evaluate(B)

It can be specialized with respect to a database DB by pre-evaluating the expression
'rule(Q ~--B)' over the rules in DB. Doing so, each rule in DB yields one partially
instantiated version of (i). For example, a database rule 'p(x) ~-- q(x) A r(x) ' yields:

fact(p(x)) ~ queryb(p(x)) A evaluate(q(x) ^ r(x))

which can be simplified into:

p(x) ~ queryb(p(x)) ^ q(x) ^ r(x)

The expression 'querYb(p(x))' can similarly be normalized by specializing the predicate
'query b' with respect to the relation 'p' into a predicate 'queryb-p':

p(x) ~ querYb-p(x) ^ q(x) A r(x)

Such a normalization by means of rule and predicate specialization is a kind of 'partial
evaluation'. Partial evaluation techniques are commonly applied in artificial intelligence [27].

By the following lemma, normalization by specialization does not affect the semantics of a
database. Given a database DB, let BFPDB denote the set of rules obtained by evaluating the
'rule' expressions in the rules (i)-(iv) that specify the Backward Fixpoint Procedure over the
database rules in R(DB). Given a set Q of queryb-atoms, let N(BFPDB) denote the set of

302 F. Bry / Query evaluation in recursive databases

rules and facts obtained from BFPD• tO Q by applying the following rewriting rules, where p
denotes a database predicate and ~ a list of terms:

fact(F) ~ F
evaluate(B) ---, B
querYb(P(X)) ~ queryh-p(2)

Lemma 6.1. Let DB be a database, Q a set of queryb-atoms, and n ~ N U {o9}.

1. f ac t (p (£))~ Th1'"(DB) iff p (£) E TI'"(N(BFPDB))

2. queryb(p(£)) C Tbl'n(DB) iff queryb-p(£) E T~"(N(BFPDB))

Proof. Let BFP denote the set of rules that specify the Backward Fixpoint Procedure.
Lemma 6.1 follows from the fact that the transformation N induces a one-to-one mapping
between interpretations of {fact(F) I F E F(DB)} U {rule(R) I R E R(DB)} U Q tO BFPDB and
interpretations of N(BFPoB). []

The improved version of the Backward Fixpoint Procedure given in Section 5, i.e., the
specification by means of rules (i) and (v)-(xi), relies on a binary predicate 'evaluate'. The
normalization by specialization of rules (i) and (v)-(xi) therefore requires a more sophisti-
cated rewriting than the one given above. This rewriting is introduced below, in Section 6.3.
Lemma 6.1 also holds for this refined rewriting.

6.2 Pre-encoding of variables

The Backward Fixpoint Procedure may generate non-ground tuples. Non-ground tuples
are undesirable for two reasons. On the one hand, the elimination of logical duplicates has to
rely on full unification instead of syntactical identity. Indeed, although they are syntactically
different, the non-ground tuples 'querYb(p(x))' and 'querYb(p(y))' are logically equivalent.
On the other hand, non-ground tuples either have to be encoded, or special file systems are
needed for storing non-encoded tuples.

Non-ground expressions can be represented in terms of ground expressions by encoding
the variables with ground values. One way of doing this is to reserve special symbols, not
available in the user language, for this usage. Thus, a non-ground tuple 'p(x, y, a)' is
rewritten into the ground tuple 'p(*, *, a)', assuming that '*' denotes the reserved constant
used for encoding variables.

Such an encoding is not completely faithful, for distinct tuples like 'p(x, y, a)' and
'p(z, z, a)' are represented identically. In order to faithfully encode the constellation of
variables, different codes - e.g. "1, *2, etc. - for different variables are needed. This permits
for example to encode the tuple 'p(x, y, a)' as 'p(*l, *2, a)' the tuple 'p(z, z, a)' as
'p(*l, *1, a)'.

The following proposition shows that it is possible to rely on matching-or half-unifica-
tion - for checking if a non-ground expression is subsumed by an expression the variables of
which are faithfully encoded.

Proposition 6.1. Let DB be a database, A and B non-ground atoms, and B c a faithful
encoding of B - i.e. an instance B~r o f B such that the substitution o" uniquely assigns to each
variable in B a constant '*i' which is not in the language of DB.

B subsumes A if and only i f A and B c match.

F. Bry / Query evaluation in recursive databases 303

Proof. If B subsumes A, then by definition there exists a substitution ~- of variables in B for
terms in A such that Br = A. Hence, a faithful encoding of A is an instance of B. The
necessary condition follows. Conversely, if A and B C match, then there exists a substitution ~-
such that Bc~" = A~-. Since B c is ground, we have B c = At. The sufficient condition follows
from the fact that Bc = Bo-, where or instantiates variables in B with constants that do not
occur in A. []

Proposition 6.1 shows that encoding variables is useful not only for storing non-ground
tuples with conventional file systems, but also for performing subsumption tests efficiently.
Examples better treated with faithful encoding are discussed in [33].

However, it is a debatable question, whether or not the overhead of faithful encoding pays
off. We do not discuss this issue here, and we assume in the sequel that an encoding with a
single reserved symbol suffices.

Using the notation introduced by Ullman in [32], an encoded term 'p(*, *, a, *, c)' is
written 'pSrbrb(a, C)', where the adornment 'ffbfb' expresses that the first two attributes are
variables (' f ' stands for free), the third is the constant 'a ' ('b' stands for bound), etc.
Expressed either with reserved symbols or with adornments, the encoding of variables can be
pre-computed by specializing the rules. Assume that predicates with subscript 'v' may have
non-ground facts. Consider the following rule:

po(x, z) *-- q(x, y) ^ ro(y, z)

If z is bound during the evaluation of 'rv(y, z)', then it is bound in po(x, z). Otherwise, it
is free. The relation 'rv' can be specialized into four relations 'r~ b', 'r~ y', 'r~ b', and 'r{ r'
denoting respectively the various possible patterns of free variables in an rv-tuple. The
specialization of 'ro' induces among others the following specialized rule for 'Pv':

p~(x , z) --> q(x, y) ^ r~b(y, z)

Such a transformation of rules performs the" encoding of variables once, during rule
specialization. It is far less efficient to perform it each time a non-ground tuple is generated.
The specialization of rules according to the patterns of instantiated variables can serve other
purposes than the encoding of variables.

It is in general also used for enforcing an optimal propagation of constants during the
evaluation of bodies of rules, by reordering the body literals. This can be viewed as a
compilation ahead of time of 'selection functions' [16]. By Corollary 4.1 this optimization is
not necessary for the correctness, the completeness, the exhaustivity, or the termination of
the method.

6.3 Specialization of the Backward Fixpoint Procedure

Consider a Horn database DB. We assume that the rules in DB are assigned unique
identifiers (1), (2), etc. Consider a rule labeled (k) in DB. The general form of a database
rule is:

(k) P(J?0) ~-- q,(x,) ^ " " ^ qj(xj) ^ " " ^ q,(xn)

where n ~ N*, and where the 2is denote lists of terms. Let us denote the body of this rule by:

^ ~m-~qm(~m)

304 F. Brv Que O, evaluation in recursive databases

The specialization with respect to (k) of the rules specifying the Backward Fixpoint
Procedure refers to the body of rule (k) and to beginning subparts of it:

/x ~q,,,t ,,,) (1 ~<j~<n)

We shall denote such a beginnmg subpart by the pair (k, j). This characterization is not
ambiguous since, by hypothesis, the database rules are assigned unique identifiers.

Proposition 6.2. Specializing the rules (i) and (v)-(xi) of the Backward Fixpoint Procedure
with respect to a database rule (k) P(£o) *- /x ,,m,-'l'q.,(£.,) yields the following rules:

(a k) p(£,,) e-- querYb-p(£o) /x evaluate(k, n, 2) from (i)

(b k) evaluate(k, O, 2) ~- queryh-p(£o) from (v)

For j = 0 n - 1 :

(c)) evaluate(k, j + 1,2) ~evaluate(k, j, £)/x qj+,(Xj.l) from (vi)-(ix)

k (dj) queryb-q1+l(Xj~ i) ~ evaluate(k, j, £) from (x)-(xi)

Proof. Proposition 6.2 is obtained by evaluating over (k) the rule expressions in rules
(i)-(ix) and by denoting (k, j) an expression /x ~U~qm(£,,). []

Fig. 3 illustrates the specialization of the Backward Fixpoint Procedure on an example. As
usual, the base relations 'r' and 's' are not specialized with adornments.

The direct generation of the adorned form of the rules (ak)-(d~)~j of Proposition 6.2
from a database rule

(k) p(2,,) ~-- q1(2,) /x . . . / x q/(Yj) /x . . . Ix q,(£,,)

is precisely the rewriting procedure of the Alexander and of the Supplementary Magic Set
method, the improved version of the Magic Set method given in [5]. In other words, the
Alexander and the Supplementary Magic Set methods implement the Backward Fixpoint
Procedure by specializing its meta-interpretative specification with respect to the database
rules. Like the Backward Fixpoint Procedure, these methods perform top-down processing
of the original, non-rewritten database rules.

Database rules :

Specialized rules':

y ' (x) ~ queryb-p~(x) A evaluate(l , 2, x)

evaluate(1,0, x) ~ queryh-p~'(x)
evaluate(1, 1, x) ~ evaluate(1, O, x) A qt'(x)
evaluate(I, 2, x) <-- evaluate(1, 1, x) A r(x)

queryb-qh(x) *-- evaluate(1,0, x)

(1) p~(x) ~-- q"(x) /x r(x)
(2) q~'(x) ~ s(x)

q~(x) *-- queryb-q~(x)/x evaluate(2, 1. x)

evaluate(2, 0, x) *-- queryh-qh(x)
evaluate(2, 1, x) ~-- evaluate(2, O, x) /~ s(x)

query~-sb(x) *- evaluate(2, O, x)

Fig. 3. A specialization of the Backward Fixpoint Procedure.

F. Bry / Query evaluation in rec.ursive databases 305

By Lemma 6.1 and Proposition 6.2, it follows from Proposition 4.1 that:

Corollary 6.1. The Alexander, Magic Set, and Supplementary Magic Set methods are sound,
complete, and exhaustive query answering methods for (possibly recursive) Horn databases.

They are terminating methods for Horn databases defining finitely many fac ts - e.g.
function-free databases.

The representation of beginning parts of rule bodies by a pair (k, j) in the specialized
rules of Proposition 6.2 is a simple means for normalizing expressions containing conjunc-
tions.

Omitting the lists of terms £ or £ / in the 'evaluates' terms of rules (ak)-(d~)~/~<n would
compromise the propagation of constants during the evaluation of bodies of rules. The
Alexander method does keep the lists £, while the Magic Set method does not. The
Supplementary Magic Set method has been proposed for remedying this deficiency. In fact,
the Supplementary Magic Set method re-expresses the Alexander method in a different
terminology. A 'querYb- p' predicate is called 'problem-p' in the Alexander method, while it
is called 'magic-p' in the Magic Set method. The 'evaluate' atoms correspond to the
'continuations' of the Alexander method and to the 'supplementary-magic' atoms of the
Supplementary Magic Set method.

If the rule (k) considered in Proposition 6.2 is adorned, i.e. specialized according to
variable instantiation patterns as it is discussed in Section 6.2, then so are rules (ak) -

k , ~ , (d/)l~/~ n. The pre-encoding of variables in expressions 'queryb-P(£0)', querYb-qj(xj)
(1 ~<j ~< n) is realized by removing the variables corresponding to ' f ' adornments. If the
database rule (k) is not adorned, the adornment can as well be performed on the generated
rules (ak)-(d~)l<j<~n. The result is the same, as it is shown by the following proposition.

Proposition 6.3. Given a database rule (k), let B(k) denote the set of rules obtained by
specializing with respect to rule (k) the rules that specify the Backward Fixpoint Procedure,
according to Proposition 6.2. Let A(k) denote the set of adorned rules associated with rule
(k), according to Section 6.2. We have:

A(B(k)) = B(A(k))

Proof. Proposition 6.3 follows from the fact that by definition the transformation B does not
affect variables, and the transformation A affects only variables occurring in query b-
atoms. []

7. From SLD-resolution to fixpoint computation: linearity abandoned

In this section, we consider the algorithms ET* and ETinterp [11], OLDT-Resolution [30],
QSQ or SLDAL-Resolution [37], and the procedure R QA/ FQI [22]. All these methods are
based on SLD-Resolution [13, 18] and extend it in the same way. We first investigate the
differences between SLD-Resolution and the Backward Fixpoint Procedure. Then, we show
that the above-mentioned procedures basically remove these differences. Finally, we argue
that efficient implementations of resolution-based methods must rely on the rewriting of
Proposition 6.2 and process the rewritten rules bottom-up.

Applied to Horn databases, SLD-Resolution evaluates an atomic query Q by trying to
unify it with database facts or heads of rules. A unification with a fact yields an immediate
answer. A unification with the head of a rule in turns entails the evaluation of the rule body.

306 F. Brv / Que O, evaluation in recursive databa.w.s

Conjunctive bodies are evaluated atom after atom, following the ordering specified by a
'selection function', e.g. strictly left to right.

This approach is very similar to the Backward Fixpoint Procedure. In order to evaluate the
same query, SLD-Resolution and the Backward Fixpoint Procedure in fact access the same
database rules and pose the same queries. Therefore, the rules that specify the Backward
Fixpoint Procedure can bc viewed as a logical specification of SLD-Resolution, in the case of
Horn databases.

However, although SLD-Resolution and the Backward Fixpoint Procedure are based on
the same 'logic', they do not apply the same 'control', in the sense of Kowalski's well-known
equation [15]: Algorithm = Logic+ Control. In contrast to the Backward Fixpoint Pro-
cedure, SLD-Resolution does not share results between different evaluations. Consider the
example of Fig. 4. In order to answer the query ' h (x) ' , the Backward Fixpoint Procedure
shares the evaluation of the query 'r(x)' between the processing of 'p(x)' and 'q(x)'. It does
not expand the proof trees rooted at 'r(x)' twice. SLD-Resolution expands it first at node
(3), and re-expands it at node (8). This feature of SLD-Resolution - and of other methods
based on the Resolution principle- is called l ineari ty .

The difference between the Backward Fixpoint Procedure and SLD-Resolution can be
explained in terms of data structures. The Backward Fixpoint Procedure collects generated
queries and proven facts in relations. Therefore, identical queries occurring in distinct parts
of a proof tree are merged (this merging is the 'admissibility test' of resolution-based
methods). In contrast, SLD-Resolution relies on a hierarchical data structure that relates
proven facts and generated queries to the queries they come from.

Database: s(a) t(a) u(a) u(a) p(x) <-- r(x) A S(X)
s(b) t(b) u(b) q(x) , - r(x) A t(x)

r(x) ~- a(x) A v(x)
h(x) ~- p(x) A q(x)

Evaluation qf "h(x)':

(1) h(x)~(2) p(x)* - (3) r (x)*- (4) u(x) [x:al or Ix:b]
(5) v(x) Ix:4

(6) s(x) [x:al
(7) q(x)*-- (8) r(x)*- (9) u(x) [x:a] or [x:b I

(1o) v(x) Ix:a]
(11) t(X) Ix:a]

Fig. 4. A SLD-Resolution proof tree.

In order to make clear the commonalities as well as the differences between the Backward
Fixpoint Procedure and SLD-Resolution, we specify the latter method in the formalism of
bottom-up meta-interpretation. We express the hierarchical data structure by labeling
generated queries and proven facts. Although a faithful expression of SLD-Resolution
should be based on the version of the Backward Fixpoint Procedure given in Section 5 (rules
(i) and (v)-(xi)), we consider the version of Section 4 (rules (i)-(iv)) for the sake of
simplicity:

factr(Q, L) <--- queryf(Q, I, L)/x rule(Q <-- B)/x evaluater(B , I)
f r o m (i)

queryr(Q~ A Q2, [I[L]) *--- queryr(Q, I, L) ^ rule(Q * - Q , A Q2) f r o m (ii)

F. Bry / Query evaluation in recursive databases 307

query~(Q~, J, [II L]) ~ query~(Q, I, L) ^ rule(Q ~ Q1)

^ Ql ~ (C1 ^ C2) ^ new-identifier(J) from (ii)

query~(Q1, J, L) ~-- query~(Ql ^ Q2, L) ^ new-identifier(J) from (iii)

query~(Q2, J, L) query~(Ql ^ Q2, L) ^ factr(Q l, L) ^ new-identifier(J)

from (iv)

An expression 'fact~(F, L)' relates a proven fact F to the queries it contributes to answer:
The list L consists of the identifiers of these queries. For example

fact~(r(a), [3,2, 11)

denotes the first evaluation of 'r(x)' in the example of Fig. 4. The ternary predicate 'query~'
associates with a query Q its identifier and the identifiers of the queries it comes from. Thus
the two 'r(x)' queries in Fig. 4. are respectively represented by:

query~(r(x), 3, [2, 1])

query~(r(x), 8, [7, 1])

Conjunctive queries are similarly related to the atomic queries they come from (no
identifiers are given to conjunctive queries). [I lL] denotes the list obtained by adding the
identifier I in front of the list L. An initial query Q is expressed as:

query~(Q, 1, [l)

The 'evaluate r' predicate is defined as follows: If B is an atom or a conjunction of atoms
and o- is a substitution, 'evaluater(B, I)~r' holds if and only if Bo- evaluates to true over the
facts that are labeled by I or that are explicit in the database.

The 'new-identifier' expression is a call to a procedural subroutine which returns a new
identifier.

In an actual implementation of SLD-Resolution, the dependencies between queries are
implicitly expressed by the data structure. If a depth-first strategy is chosen, a stack suffices
to express it. PROLOG interpreter, for example, rely on this data structure. In the example
of Fig. 4, the stack would be successively [1], [2, 1], [3, 2, 1], [4, 3, 2, 1], [5, 3, 2, 1], [6, 2, 1],
etc.

As opposed to the Backward Fixpoint Procedure, SLD-Resolution is incomplete for
querying recursive databases: The extension that was proposed in [11,30, 37, 22] achieves
completeness by preventing reprocessing of queries that were already answered, and by
evaluating these queries over the facts that were proven. In terms of the above-defined rules,
this extension consists on the one hand of tracking the generated queryr-atoms that coincide
on the first argument, and on the other hand of modifying the definitions of 'evaluater' so
that the identifiers are no longer considered. Clearly, this extension can be specified by
simply removing the query identifiers and query dependency lists, i.e. by the Backward
Fixpoint Procedure.

It can also be redundantly specified by means of rules in which the query identifiers are
kept. A set-oriented implementation of SLDAL-Resolution is reported in [17]. It relies on a
rewriting of the database rules similar to that of the Alexander and Supplementary Magic Set

308 f. Bry / Query evaluation in recursive databases

methods, It processes the rewritten rules with a sort of semi-naive inference engine. This
engine, however, uses a hierarchical data structure in main memory that relates the
encountered queries to the queries they are issued from. This makes the semi-naive
computations more complex.

Since the resolution-based methods can be specified by the Backward Fixpoint Procedure,
we have from Proposition 4.1:

Corollary 7.1. The algorithms ET* and ETimerp, OLDT-Resolution, QSQ, SLDAL-Resolu-
tion and the R Q A / F Q I procedure are sound, complete, and exhaustive query answering
methods for (possibly recursive) Horn databases.

They are terminating query answering methods for Horn databases defining finitely many
facts - e.g. function-free databases.

The fixpoint formalism is useful to understand the differences between some resolution-
based methods. In this formalism, the resolution-based methods are viewed as computing a
fixpoint on answers and queries. In [11] an incomplete algorithm, called ET, is considered
for defining the complete methods ET* and ETinterp. The algorithm ET corresponds to the
procedure QSQ as it is defined in [36]- QSQ is corrected in [22] and [37]. The reason for
incompleteness is that queries are generated only during the first round. During the
subsequent rounds, the fixpoint is performed on answers only. Completeness requires
treating answers and queries similarly, i.e. computing a fixpoint on both answers and queries.

Also, the difference between the so-called recursive and iterative versions of QSQ [36] lies
in different processing of queries and answers: Recursive QSQ applies the semi-naive
optimization to both, queries and answers, while Iterative QSQ applies it only to queries and
does not eliminate answers that are not new. Clearly, the former approach is more efficient
than the latter. This was experimentally observed in [3]. Like completeness, efficiency
requires treating answers and queries similarly.

The formalization of resolution-based as well as rewriting-based methods in terms of the
same procedure yields the following questions. In order to achieve an efficient implementa-
tion of one of these methods is it desirable to:

1. structure hierarchically the encountered queries following their generation?

2. rely on a semi-naive query evaluator?

3. rely on the rewriting of the Alexander or Supplementary Magic Set method?

We think that the first question must be answered negatively, the other two positively, for
the following reasons:
1. A hierarchical data structure that follows the way in which the queries are generated
could make their retrieval more complicated. In particular, such a structure would induce an
overhead for checking if an encountered query is new.

Moreover, a great advantage of relying on a relational data structure is to build on other
components of the database management system. This makes it easier to store large sets of
queries on secondary memory. Also, this permits centralized control of main memory
resources.

2. It is not mandatory to rely on a language of bottom-up rules for implementing a
fixpoint procedure. However, the optimization principle that distinguishes the semi-naive
from the naive method is needed for the sake of efficiency. As discussed in Section 3,

F. Bry / Query evaluation in recursive databases 309

fixpoint procedures can be formalized in terms of bottom-up rules in a rather natural
manner. No gains in efficiency seem to be reachable by changing the rule syntax on which a
semi-naive procedure relies to some other, e.g. the equational syntax which is conventionally
used in mathematics.

Moreover, relying on a semi-naive evaluator has the advantage of using a component of
the system that is useful for efficiently processing queries that do not give rise to constant
propagation, e.g. for materializing the whole of a relation. The various search strategies of
the resolution-based methods - depth-first, breadth-first, and their multi-stage versions - are
as well obtainable with a semi-naive method. They are investigated in [25].

Finally, relying explicitly on a semi-naive query evaluator allows us to process some rules
top-down, others bottom-up, during the same query evaluation process: It suffices not to
rewrite the rules whose bottom-up evaluation is desired. This is a very simple way to
implement sophisticated query optimization strategies.

3. The rewriting of the Alexander and Supplementary Magic Set methods results from the
specialization of the Backward Fixpoint Procedure with respect to the database rules, as
shown in Section 5. There, we justified it by showing that it permits on the one hand to
normalize nested terms, and on the other hand to pre-encode the variables occurring in the
generated queries. The rationale of normalization is to simplify the data structures and to
permit one to rely on well-established file systems.

As we have observed, it is more efficient to pre-encode variables than to do it repeatedly
when query-tuples are generated. Pre-encoding is possible only if auxiliary predicates- the
'query b' predicate of the Backward Fixpoint P rocedure -a re introduced. Indeed, these
auxiliary predicates give rise to distinguishing queries that are amenable to encoding from
the atoms that must be kept unchanged in order to permit their later evaluation. This
justifies the introduction of the 'query b' expressions-i .e, the 'problem' atoms of the
Alexander method or the 'magic' atoms of the Magic Set method.

The remaining feature of the rewriting, the ternary predicate 'evaluate' of Proposition
5 .2 - i . e . the 'continuation' or 'supplementary magic' a toms- i s justified by efficiency
considerations, as discussed in [24], in [5], and more briefly in Section 6.

An additional advantage of the rewriting of the Alexander and Magic Set methods is not
to have to distinguish between tuples that express answers and tuples that express queries.
This simplifies the procedure as well as the data structure.

8. Conclusion

During the last five years, several methods have been proposed for evaluating queries on
recursive databases. Those that are exhaustive and ensure termination on recursive data-
bases defining finitely many facts follow one or the other of two approaches. The methods of
the first type rewrite the database rules and process the rewritten rules bottom-up. This is
how the Alexander [24] and Magic Set [2, 5] methods proceed. The second approach is an
extension of SLD-Resolution that consists of storing the encountered queries and the proven
answers. It .has been proposed in [11] with the ET* and ETinterp algorithms, in [30] with
OLDT-Resolution, in [37] with QSQ and SLDAL-Resolution, and in [22] with the RQA/
FQI procedure.

On the one hand, the bottom-up processing of the first approach is often opposed to the
top-down reasoning principle of the second - SLD-Resolution performs top-down reasoning.
On the other hand, strong similarities between the two approaches were often observed.
However, Beeri and Ramakrishnan noted:

310 k. Brv / Query evaluation in recursive databases

"so far there is no uniform framework in terms of which these strategies may be
described and compared, and the basic ideas that are common to these strategies remain
unclear"

in an article [5] giving, with the notion of 'sideway information passing strategy', a first
contribution towards such a framework.

In this article, we have proposed a common framework. We relied on the concept of
fixpoint procedure for comparing the rewriting-based and the resolution-based methods. We
showed that fixpoint theory can be applied to databases with other operators then the
bottom-up reasoning immediate consequence operator of van Emden and Kowalski [34].

We specified a fixpoint query answering procedure, which we call the Backward Fixing
Procedure. This procedure performs top-down reasoning but it is specified by a bottom-up
meta-interpreter, i.e. in a meta-language by means of rules intended for bottom-up
processing. Thus, it is possible to process queries by computing fixpoints without necessarily
sticking to the bottom-up reasoning principle of the naive and semi-naive methods. The
Backward Fixpoint Procedure was shown to be a sound, complete, and exhaustive query
answering method for (possibly recursive) Horn databases.

Then, we interpreted the Alexander and Magic Set methods on the one hand, the
algorithms ET* and ETinterp, OLDT-Resolution, QSQ, SLDAL-Resolution, and the pro-
cedure RQA/FQI on the other hand, in terms of the Backward Fixpoint Procedure. We
showed that all these methods implement the Backward Fixpoint Procedure. Roughly
speaking, rewriting-based and resolution-based methods are no longer distinguishable when
expressed as fixpoint procedures in the formalism of meta-interpretation.

More precisely, we first showed that the rewriting of the Alexander and Magic Set method
results from specializing the Backward Fixpoint Procedure with respect to the database rules.
Specialization is a common technique in artificial intelligence [27]. It is used for improving
the efficiency of recta-interpreters.

Then, investigating the nature of the extensions to SLD-Resolution in the ET* and
ETinterp algorithms, OLDT-Resolution, SLDAL-Resolution, and the RQA/FQI procedure,
we showed that the Backward Fixpoint Procedure formalizes these methods as well. Finally,
we argued that an efficient implementation of a resolution-based procedure has to explicitly
rely on a semi-naive query evaluator and on the very rewriting of the Alexander and
Supplementary Magic Set methods.

Relying on bottom-up meta-interpreters for specifying fixpoint query answering pro-
cedures appears to be a useful technique for both theoretical and practical issues. On the one
hand, it often permits simple soundness and completeness proofs, like in this article. On the
other hand, we have applied bottom-up meta-interpretation for specifying advanced fixpoint
query answering procedures, e.g. for databases with uncertain data. This technique seems to
be an interesting direction for further research.

The Backward Fixpoint Procedure can be called an 'upside-down meta-interpreter', for it
relies on bottom-up reasoning for implementing a top-down evaluation. Meta-interpretation
can also be applied in the reverse way, i.e. for specifying bottom-up reasoning in a top-down
language. We applied this approach for implementing the rather unconventional theorem
prover SATCHMO in the top-down language PROLOG [21]. Upside-down meta-interpreta-
tion does not seem to have attracted much attention. The article [12] which describes an
approach similar to that of the Alexander and Magic Set methods seems to be a noticeable
exception.

In [8] we studied this technique by referring to SATCHMO on the one hand, to the
Alexander and Magic Set methods on the other hand. We refuted the intuition that direct
implementations of a reasoning principle - bottom-up or top-down - necessarily yield better
performances than implementing it by means of the other principle.

F. Bry / Query evaluation in recursive databases 311

Further research on upside-down meta-interpretation is desirable. In particular, efforts
should be devoted to investigating strategies for combining top-down and bottom-up
reasoning, i.e. strategies for choosing which rules to rewrite ~ la Alexander/Supplementary
Magic Set and which rules to keep unchanged. As recent results in various fields of
automated reasoning show, approaches combining the two inference principles often permit
considerable gains in efficiency.

Acknowledgements

I am indebted to Jean-Marie Nicolas for his encouragement and support during this
research, and to Alexandre Lefebvre and Rainer Manthey for helpful discussions.

The research reported in this article has been partially supported by the European
Community in the framework of the ESPRIT Basic Research Action "Compulog" No. 3012.

References

[1] K.R. Apt, H.A. Blair and A. Walker, Founda-
tions of Deductive Databases and Logic Program-
ming (Morgan Kaufmann, Los Altos, CA 1988)
Chapter: Towards a theory of declarative
knowledge.

[2] F. Bancilhon, D. Maier, Y. Sagiv and J. Ullman,
Magic sets and other strange ways to implement
logic programs, in: Proc. 5th ACM SIGMOD-
S1GACT Symp. Principles of Database Systems
(PODS) (1986).

[3] F. Bancilhon and R. Ramakrishnan, An
amateur's introduction to recursive query pro-
cessing strategies, in: Proc. ACM-S1GMOD
Conf. Management of Data (SIGMOD),
Washington, D.C. (1986).

[4] C. Beeri, Recursive query processing, in: Proc.
8th ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems (PODS), Phila-
delphia, PA (1989). (Tutorial).

[5] C. Beeri and R. Ramakrishnan, On the power of
magic, in: Proc. 6th ACM SIGACT-SIGMOD-
SIGART Syrup. Principles of Database Systems
(PODS), San Diego, CA (1987).

[6] F. Bry, Logic programming as constructivism: A
formalization and its application to databases, in:
Proc. 8th ACM SIGACT-SIGMOD-S1GART
Syrup. Principles of Database Systems (PODS),
Philadelphia, PA (1989).

[7] F. Bry, Query evaluation in recursive databases:
Bottom-up and top-down reconciled in: Proc. Ist
Int. Conf. Deductive and Object-Oriented Data-
bases (DOOD), Kyoto, Japan (1989).

[8] F. Bry, Upside-down deduction, Research Report
IR-KB-66, ECRC, 1989.

[9] F. Bry and R. Manthey, Deductive Databases,
6th Int. Conf. Logic Programming (ICLP), Lis-
bon, Portugal (1989) (Tutorial).

[10] R. Demolombe and V. Royer, Evaluation
strategies for recursive axioms: A uniform pre-
sentation, Internal Report, ONERAoCERT,
Toulouse, France, 1986.

[11] S.W. Dietrich, Extension tables: Memo relations
in logic programming, in: Proc. Symp. Logic
Programming (SLP), San Francisco, CA (1987).

[12] J. Gallagher, M. Codish and E. Shapiro, Speciali-
sation of Prolog and FCP programs using abstract
interpretation, New Generation Comput. 6
(1988).

[13] R. Hill, LUSH-Resolution and its completeness,
DCL Memo 78, Univ. of Edinburgh, UK, 1974.

[14] P.M. Hill and J.W. Lloyd, Analysis of meta-
programs, in: Proc. Workshop Meta-Program-
ming in Logic Programming, Bristol, UK (1988).

[15] R. Kowalski, Algorithm = Logic + Control, Com-
mun. ACM (1979).

[16] R. Kowalski and D. Kuehner, Linear resolution
with selection function, Artificial Intelligence 2
(1971).

[17] A. Lefebvre and L. Vieille, On deductive query
evaluation in the Dedgin* system, in: Proc. 1st
Int. Conf. Deductive and Object-Oriented Data-
bases (DOOD), Kyoto, Japan (1989).

[18] J.W. Lloyd, Foundations of Logic Programming
(Springer, Berlin, New York, 1987), 2nd edition.

[19] D.W. Loveland, A linear format for resolution,
in: Proc. IRIA Syrup. Automatic Demonstration,
Versailles, France, (1968), LNCS 125 (Springer,
Berlin, New York, 1970).

[20] D. Luckham, Refinements theorems in resolution
theory, in: Proc. 1R1A Syrup. Automatic Demon-
stration, Versailles, France, (1968), LNCS 125
(Springer, Berlin, New York, 1970).

[21] R. Manthey and F. Bry, SATCHMO: A theorem
prover implemented in Prolog, in: Proc. 9th Int.
Conf. Automated Deduction (CADE), Argonne,
IL (1988).

312 F. Brv / Query evaluation in recursive databases

[22] W. Nejdl, Recursive strategies for answering re-
cursive quer ies-The RQA/FQI strategy, in:
Proc. 13th Int. Conf. Very Large Data Bases
(VLDB), Brighton, UK (1987).

[23] R. Ramakrishnan, Magic templates: A spellbind-
ing approach to logic programs, in: Proc. 5th Int.
Conf. Symp. on Logic Programming (ICLP/
SLP) Seattle, WA (1988).

[24] J. Rohmer, R. Lescceur and J.-M. Kerisit, The
Alexander method, A technique for the process-
ing of recursive axioms in deductive databases,
New Generation Comput, 4(3) (1986).

[25] H. Schmidt, W. Kiessling, U. Gfintzer and R.
Bayer, Compiling exploratory and goal-directed
deduction into sloppy delta-iteration, in: Proc.
,~vmp. Logic Programming (SLP). San Francis-
co, CA (1987).

[26] H. Seki, On the power of Alexander templates
in: Proc. 8th ACM S1GACT-SIGMOD-SIGART
Symp. Principles c)[" Database ,~vstems (PODS)
Philadelphia, PA (1989).

[27] P. Sestoft and H. S~ndergaard, A bibliography
on partial evaluation, SIGPLAN Notices 23(2)
(1987).

[28] L. Sterling and E. Shapiro, The Art of Prolog
(MIT Press, Cambridge, MA, 1986).

[291 V.S. Subrahmanian, Foundations of metalogic
programming, in: Proc. Workshop Meta-Prog-
ramming in Logic Programming, Bristol, UK
(1988).

[30] H. Tamaki and T. Sato, OLD resolution with
tabulation, in: Proc. 3rd Int. Conf. Logic Pro-
gramming (ICLP), London, UK (1986).

[31] A. Tarski, A lattice-theoretical fixpoint theorem
and its applications, Pacific J. Math. 5 (1955).

[32] J.D. Ullman, Implementation of logical query
language for databases, Trans. Database Systems
10(3) (1985).

[33] J.D. Ullman, Bottom-up beats top-down for
Datalog, in: Proc. 8th ACM SIGACT-S1GMOD-
SIGART Symp. Principles of Database Systems
(PODS) Philadelphia, PA (1989).

[34] M. van Emden and R. Kowalski, The semantics
of predicate logic as a programming language, J.
ACM 23(4) (1976).

[35] A. Van Gelder, b~)undations of deductive dam-
bases and logic programming (Morgan Kauf-
mann, Los Altos, CA., 1988) Chapter: Negation
as failure using tight derivations for general logic
programs.

[36] L. Vieille, Recursive axioms in deductive data-
bases: The Query-Subquery approach, in: Proc.
1st Int. ConJ~ Expert Database System (EDS).
Charleston, SC (1986).

[37] L. Vieille, A database-complete proof procedure
based on SLD-resolution, in: Proc. 4th Int. Conf~
Logic Programming (ICLP), Melbourne, Aus-
tralia, (1987).

[38] L. Vieille, Recursive query processing: The
power of logic, Theoret. Comput. Sci. 69(l)
(1989).

[A] F. Bry, Negation in logischer Programmierung:
Eine Formalisierung in konstruktiver Logik, in:
Proc. I. Workshop lnformationssysteme und Kiin-
stliche h~telligenz, UIm, FRG (1990) (Invited
paper).

[B] F. Bry. lntensional updates: Abduction via de-
duction, in: Proc. 7th lnternat. Conf. Logic Prog-
ramming (ICLP), Jerusalem (1990).

F r a n c o i s B r y , born 1956,
works since 1985 on deductive
databases in the Knowledge
Base group at ECRC in
Munich. His research in this
centre has been devoted to
database integrity and consis-
tency, query evaluation,
semantics of deductive data-
bases and logic programming,
and automated theorem prov-
ing. He leads a team currently

_ investigating the application of
automated reasoning techniques to databases, with the
aim to enhance knowledge assimilation. Prior to this,
he worked on statistical databases at INRETS, a
public research centre in Paris. Bry received his MSc
in Mathematics (1978) and his PhD in Graph Theory
(1981) from Paris University. He is member of
AFCET, ALP, and GI.

