
Pseudo-Naive Evaluation

Donald A. Smith Mark Utting
Department of Computer Science

The University of Waikato
Private Bag 3105, Hamilton, New Zealand

Email: {dsmith,marku}@cs.waikato.ac.nz

June 11, 2010

Abstract

We introduce pseudo-naive evaluation, a method for execution of mixed
top-down/bottom-up logic programs and deductive databases. The method
is intermediate in power between naive evaluation and semi-naive evalua-
tion. Pseudo-naive evaluation adds a data-driven component to naive eval-
uation without explicitly collecting the ‘delta’ sets of new facts derivable
at each iteration. Instead, it identifies certain body atoms as ‘triggers’ and
collects an abstraction of the delta sets, thereby simplifying the implemen-
tation. A rule is invoked only when new tuples for its trigger atoms are
derived. Pseudo-naive evaluation is most efficient on strongly-stratified
programs: programs for which all (positive and negative) bottom-up re-
cursion is mediated by an increasing temporal parameter. However, the
method can still be used on programs with general recursion, by using ei-
ther top-down calls, timestamped tuples to represent delta sets, or tuple-
at-a-time bottom-up execution. A desirable feature enjoyed by our system
is that it runs piggyback on most logic programming implementations, but
performance is good because most of the code is compiled and executed
by the native Prolog system.
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1 Introduction

Two common evaluation techniques for bottom-up deductive database systems
are naive evaluation and semi-naive evaluation [Ramakrishnan et al., 1992]. Naive
evaluation evaluates all rules repeatedly, so is quite inefficient for many pro-
grams. Semi-naive evaluation improves efficiency by tracking newly-derived
tuples (delta-sets) and only evaluating rules that use those tuples.

This paper describes an intermediate approach, which is more efficient than
naive evaluation, but can be implemented more easily on top of standard Pro-
log systems than semi-naive evaluation. Essentially, our implementation com-
piles the bottom-up clauses into standard top-down Prolog clauses, then adds
some simple control predicates that use a queue structure (an abstraction of the
delta-sets of semi-naive evaluation) to execute the rules in a bottom-up fashion.
Advantages of this approach are that it reuses the mature implementation and
analysis techniques of standard Prolog, it naturally allows programmers to mix
top-down and bottom-up code, it supports declarative programming of I/O and
change, and it is appropriate as a target language for compilation of semi-naive
evaluation for deductive databases.

2 Naive and Semi-Naive Evaluation

Naive evaluation [Ramakrishnan et al., 1992] is a direct implementation of the
bottom-up, fixed point semantics of logic programs [Lloyd, 1987], wherein the
interpreter computes a monotonically increasing set of atoms derivable from the
program clauses. At each step i of the bottom-up computation, an atom H is
added to the set Si if it appears as the head of an instance of a program clause
H ← B whose body atoms B all appear in the set Si−1.

Naive Evaluation

S0 = {p | p is a fact}
Si+1 = Si ∪ {Hµ | (H ← B) ∈ Rename(P )

∧(Bµ ⊆ Si) ∧ (Hµ 6∈ Si)} (i ≥ 0)
S = ∪i=0...∞Si.

The condition Hµ 6∈ Si (where µ is the most general unifier) guarantees that
only atoms not derived in previous steps are added at time i+1. An interpreter1

for naive evaluation can be written easily in Prolog (Figure 1). Note that the
calls to Body and Head in the first clause for naive evaluation/0 access only

1The interpreter implements a semantics slightly different from the abstract definition
because in the interpreter tuples derived at step i are ‘visible’ immediately, whereas in the
abstract definition they are not visible until step i + 1.



naive_evaluation:-

rule(Head,Body),

Body, % Try proving the Body.

\+ Head, % Check that Head is new.

assert(Head),

\+ some_change, % Fail if some_change already.

assert(some_change),

fail. %Failure driven loop.

naive_evaluation:-

(retract(some_change) ->

naive_evaluation % Iterate.

; true). % Done!

Figure 1: Prolog Interpreter for Naive Evaluation

tuples previously derived by bottom-up execution; they do not invoke rules top-
down. Also note that the code would need subsumption checking to handle
non-ground facts.

The inefficiency of naive evaluation results from two phenomena:

Naive-evaluation is not data-driven. Each rule H ← B is tried, even if no
(new) facts have been derived for atoms appearing in the body of the rule.

Naive evaluation duplicates work. Each fact derivable at iteration i of the
bottom-up computation is also derivable at iteration j for all j > i.

An example of a program for which naive evaluation would result in duplication
is the following.

ancestor(A,D):- parent(A,D).
ancestor(A,D):- ancestor(A,Tmp),parent(Tmp,D).

This program would loop using Prolog evaluation, due to the leftmost recursion
in the second rule. Using naive evaluation, at iteration 0, S0 gets assigned the
set of parent/2 facts using the definition of S0. At iteration 1, only the first
rule fires: S1 gets the union of S0 and the set of ancestor/2 facts that result
from copying parent/2 facts from S0. The second rule cannot fire because
ancestor/2 is still empty. At iteration 2, the first rule fires again, rederiving
tuples derived at iteration 1, but the check for duplicates prevents tuples from
being reasserted; additionally, the second rule fires, deriving tuples for the all
pairs in the grandparent relation. Subsequent iterations rederive all tuples de-
rived in earlier iterations, though duplicate removal prevents tuples from being
reasserted. Execution halts when an iteration is reached where no changes can
be made.



Semi-naive evaluation [Ramakrishnan et al., 1992] overcomes both inefficien-
cies mentioned above, by making sure that at least one newly derived fact is
used to satisfy the body of a program clause.

Semi-naive Evaluation

S0 = δ0 = {p | p is a fact}
δi+1 = {Hµ | (H ← B) ∈ Rename(P )

∧(Bµ ∩ δi 6= ∅) ∧ (Bµ ⊆ Si) ∧ (Hµ 6∈ Si)} (i ≥ 0)
Si+1 = Si ∪ δi+1 (i ≥ 0)

S = ∪i=0...∞Si

For each i, δi contains the facts newly derived at iteration i. The condition
Bµ ∩ δi 6= ∅ is the test that avoids duplication of work and makes computation
data-driven, since only rules that have newly derived enabling data are tried.

We forgo presenting a Prolog interpreter for semi-naive evaluation. Indeed,
the difficulty of writing such an interpreter – the efficient management of the
delta sets is the main stumbling block — is a major reason for our developing
pseudo-naive evaluation.

Using semi-naive evaluation on the ancestor/2 program, at iteration 0 δ0

is set equal to the parent/2 relation. At iteration 1, only the first rule fires; δ1

gets set equal to the ancestor/2 facts copied from δ0. At iteration 2, the first
rule is not even tried (unlike naive evaluation), because δ1 contains no parent/2
facts so the condition Bµ ∩ δ1 6= ∅ fails. The second rule fires, setting δ2 to the
new ancestor/2 facts. Subsequent iterations are appropriately data driven and
avoid rederiving all previous iterations’ results.

Before describing pseudo-naive evaluation we must explain two preliminary
notions: timestamps and strong-stratification.

3 Starlog, an Executable Temporal Logic

We have designed and implemented pseudo-naive evaluation for use as the execu-
tion mechanism of Starlog [Liu and Cleary, 1994, Cleary, 1990]. Starlog is an ex-
ecutable temporal logic [Tansel et al., 1993, Baudinet et al., 1993, Chomicki, 1994,
Orgun and Ma, 1994, Abadi and Manna, 1989]. The primary motivation for us-
ing a temporal logic is that it enables declarative expression of I/O, destructive
assignment, and other sorts of dynamic change. The present paper shows, in
addition, that time can be used to structure, and simplify the implementation
of, deductive database programs.

A Starlog program consists of a set of timed and untimed program clauses.
Untimed program clauses are identical in form and in execution to standard
top-down Prolog clauses. Timed program clauses are distinguished from un-
timed clauses in that the head atom and zero or more of the body atoms have



an additional distinguished argument, the timestamp, written as the second ar-
gument of the binary infix operator @. Timestamps must evaluate to natural
numbers.2 A typical timed clause looks like

p(X)@T :- q(X,Y)@T, d(D), r(Y)@T-D.

Its declarative reading is roughly: “If q(X,Y) holds at time T, if d(D) holds,
and if r(Y) holds at time T-D, then p(X) holds at time T.” Timed program
clauses are executed either top-down or bottom-up, depending on the presence
or absence, respectively, of a declaration, such as :- top down p/1, specifying
that all clauses for a given head predicate symbol shall be handled top down.
Thus, by default timed clauses are bottom-up.

The heads of bottom-up program rules represent facts to be made true, or
actions (e.g., output) to be performed, at a given time. Atoms in the body
represent conditions to be checked. Conditions are facts derivable either by
earlier bottom-up rules, by top-down calls, or by builtin environmental checks
such as for the availability of data on an I/O channel. Crucially, clauses are
causal: the bodies of bottom-up rules must refer to the past and may not refer to
the future. (This will be made more precise in the next section.) Thus Starlog
rules follow the “Imperative Future” paradigm [Orgun and Ma, 1994].

The typical structure of a Starlog program is basically bottom-up: the out-
ermost loop of execution, which interacts with the external world, is bottom-up
and data-driven. (By analogy, in Haskell[Hudak and et al., 1992] or Mercury[Somogyi et al., 1996,
Somogyi, 1989], interaction with the real world is mediated by the outermost,
singly threaded state of the world.) The reason for this is that in implementing
the imperative future paradigm, Starlog uses the facts true at the current time,
along with a record of some facts true in the past, to compute the state of the
world in the future. If one tried to execute Starlog top-down, say, by running a
query p(X)@100 or p(X)@T, then the system would have to backward chain on
the rules and guess (recursively) which clauses lead to the query’s being true.
This may result in a lot of search. Executed bottom-up, a Starlog program
involves model construction rather than search.

Nonetheless, we have found that it is most natural and efficient to specify
that certain relations are to be evaluated top-down. Since Starlog does not
support magic sets [Ramakrishnan et al., 1992], having top-down predicates is
useful for those computations needing a goal-driven component. Furthermore,
facts derived bottom-up are usually memoized, as in typical deductive databases,
while facts derived top-down are not (by default) memoized. Since Starlog al-
lows data structures as terms (unlike many temporal deductive databases), re-
lations such as append/3 and sort/2 that create numerous intermediate data
structures and that are likely used but once per input arguments, are best exe-
cuted top-down. Lastly, rules that would need arithmetic constraints if executed

2Real time timestamps are supported as well, but for the purposes of this paper, natural
number timestamps suffice.



bottom-up, due to unbound variables, can often be executed top-down without
constraints, since the appropriate (numeric) arguments will bound at call time.

Having both top-down and bottom-up control allows the programmer to
take appropriate advantage of the complementary strengths of both Prolog and
bottom-up deductive database technology.

4 Strongly-Stratified Programs

A strongly stratified program is one that does not contain any simultaneous
recursion through timed predicates (those with heads of the form H@T). In-
stead, all recursion must be stratified through time.3 That is, if the call
graph of the program contains a path from atom p(A1, . . . , An)@T (or literal
¬p(A′1, . . . , A

′
n)@T ′) in the body of a rule to an atom p(A′1, . . . , A

′
n)@T ′ in the

head of some rule, then T must be strictly greater than T ′.
In other words, within each time step, bottom-up computation is hierarchical

(non-recursive). We emphasize that negation too must be strongly stratified.
Note that a strongly stratified programs can still contain recursion, but the
recursion is restricted so that all bottom-up recursive cycles involve increasing
time. The second clause for ancestor/2 is not strongly stratified because of
the recursion in the second clause. (However, since the recursion is linear4, it
presents no problem; see below.)

Furthermore, the compiler must be able to statically derive the precedence
relation. All predicates callable at a given time step must be ordered, statically,
by the compiler, into strata such that if predicate q appears (positively or neg-
atively) in the body of a bottom-up clause with head p, then q is in a strictly
lower strata than p. This restriction on the structure of programs is by design.
By analogy, just as Mercury places upon the programmer the obligation to write
a well-moded program, so Starlog places upon the programmer the obligation to
write a program for which the strong stratification is derivable by the compiler.

4.1 Compilation of Strong Stratification

It is tedious (but perhaps good software engineering) for programmers to ex-
plicitly specify the stratification partial order, so the first stage of our Starlog
compiler infers it, by analyzing all the bottom-up clauses of the given program,
then generating a suitable partial order. This is done by the following Prolog
code in the compiler:

...

\+ (is_bottom_up_clause(Head@Time, Body),

3Except that untimed predicates may be recursive, because they are executed top-down
by Prolog and cannot call timed predicates. Conceptually they are executed instantaneously
at whatever time instant that they are called.

4A rule is linear [Ullman, 1989] if only a single body atom is recursive with the head.



path(Body, Path, Constraints),

member(Call@Ti, Path),

\+ stratified(Call@Ti, Head@Time, Constraints)),

tsort,

...

Note that the Prolog code \+(P, \+ Q) is best read as for all solutions to
P, Q is true. The is_bottom_up_clause/2 predicate iterates through each
of the bottom-up clauses in the Starlog program being analyzed. The path/3
predicate converts Body to disjunctive normal form and for each disjunct, binds
Path to the list of the timed calls within that disjunct and binds Constraints
to a list of all the arithmetic constraints within that disjunct. For example, if
Body is:

p(X)@T, T1 is T-1,

(X = 0 -> q(Y)@T1 ; r(Y)@T2, T2 < T1)

then path(Body,Path,Constraints) will return two solutions:

Path = [p(X)@T, q(Y)@T1] Constraints = [T1 = T-1, X = 0] ;

Path = [p(X)@T, r(Y)@T2] Constraints = [T1 = T-1, T2 < T1].

The stratified(Call@Ti, Head@Time, Constraints) predicate first tries
to prove that Ti<Time follows from Constraints (it uses a simple theorem
prover to do this). If it cannot prove this, then it proves that Ti=<Time follows
from Constraints5 and asserts an ordering tuple is_before(P/N, H/M), where
P/N and H/M are the outermost functors of Call and Head, respectively.

Finally, tsort/0 performs a topological sort on the is_before/2 tuples and
generates an error if they contain any cycles, or flattens them into a total order
over the predicates otherwise. This total order is used by the pseudo-naive
evaluator to determine the order of execution within each time step.

5 Pseudo-Naive Evaluation

Pseudo-naive evaluation optimizes naive-evaluation by adding a data-driven
component to computation — thereby overcoming the first source of inefficiency
mentioned in Section 2 — without maintaining ‘delta sets’ δi. Section 7 dis-
cusses how we overcome the second problem of naive evaluation, duplication
of work, and how pseudo-naive evaluation can be used for programs involving
simultaneous recursion.

For hierarchical or strongly stratified programs, delta sets provide no benefit,
due to the lack of simultaneous recursion. However, naive evaluation would still

5It gives a warning if it fails to prove this, because it means that either the theorem prover
is not strong enough, or the call is referencing future tuples which is a programming error.



be inefficient since naive evaluation would try executing each program rule,
whether or not new facts have been derived for atoms in the body of the rule.

Pseudo-naive evaluation adds a data-driven component to naive evaluation
by maintaining, at each iteration i, a token set τi, rather than a delta set δi. A
token set is an abstraction of a delta set. A pseudo-naive interpreter uses the
token set to skip over rules that cannot possibly fire, since no new facts have
been derived for atoms in the bodies of those rules. After presenting the basic
method, we present some important refinenments.

Pseudo-naive Evaluation (unrefined)

S0 = {p | p is a fact}
τi = {p/n | ∃t1, . . . , tn, p(t1, . . . , tn) ∈ Si} (i ≥ 0)

Si+1 = Si ∪ {Hµ | (H ← B) ∈ Rename(P )
∧(preds(B) ∩ τi 6= ∅) ∧ (Bµ ⊆ Si) ∧ (Hµ 6∈ Sj} (i ≥ 0)

S = ∪i=0...∞Si

In unrefined pseudo-naive evaluation the token set τi consists of the set of
relation names (predicate plus arity) which have received new facts at iteration
i. It is clear that the method is sound and complete, since each τi contains all
relation names that have received new tuples in the previous iteration.

But if pseudo-naive evaluation is used on non-strongly stratified programs,
duplicated work may occur. For example, for the ancestor/2 program, at
iteration 0, S0 gets all parent/2 facts, and τ0 gets {parent/2}. At iteration
1, both rules are tried, because both contain parent/2 facts; only the first
succeeds and parent/2 facts are copied into ancestor/2; τi gets {ancestor/2}.
At iteration 2, the first rule is not tried (unlike in naive evaluation), while the
second rule is tried; again τi gets {ancestor/2}. During subsequent iterations
(until the fixpoint is reached), only rule 2 is tried, but it rederives tuples derived
at earlier iterations. With pseduo-naive evaluation only rules having some new
data are tried, but if rules have simultaneous recursion, work will be repeated,
since delta sets are not maintained to distinguish new tuples from old. We
remedy this problem in Sections 5.2 and 7.

5.1 Refinement 1: Triggers

In the ancestor/2 example above, at iteration 1 both rules are tried, because
both contain parent/2 facts. However, the existence of parent/2 tuples alone
is insufficient to cause the second rule to fire. The second rule need be tried
only when new ancestor/2 tuples have been derived. We say that ancestor/2
is the trigger relation for the second rule.

The interpreter for pseudo-naive evaluation shown in Figure 2 is a refinement
of the previous abstract definition. For each rule we identify one or more trigger
relations, which appear as body goals. A trigger relation is a further abstraction



:- mode pseudo_naive_evaluation(+).

pseudo_naive_evaluation([]). % No more tokens.

pseudo_naive_evaluation([Token|RestTokens]):-

setof(NewToken, enables(Token,NewToken), NewTokens),

merge_tokens(NewTokens,RestTokens,Tokens),

pseudo_naive_evaluation(Tokens).

:- mode enables(+,-).

enables(Token,NewToken):-

rule(Token,Head,Body), % Index on Token

Body, % Try proving the body.

\+Head, % Make sure it’s new.

assert(Head),

trigger(Head,NewToken). % Generate tokens for dependent rules.

Figure 2: Prolog Interpreter for Pseudo-naive Evaluation

of a delta set. We need only attempt the rule when a tuple for a trigger atom
is derived. Furthermore, each τi contains a set of rule indices that may fire in
the next iteration, instead of a set of relation names. A rule index appears in
τi if a tuple for some trigger atom in the body of that rule has been derived in
the previous step. If r appears in τi, then the interpreter has to check if rule r
can fire.

Note that the iteration index i of τi is represented as part of the tokens.
So each token is a pair 〈t, r〉, consisting of a timestamp t and the index r of a
rule to be tried. The procedure merge tokens(+,+,-) sorts tokens according
to the stratification order derived by the compiler. If an atom p(T1,...,Tn)
appears as the trigger in the body of some program rule with index I, then
the fact trigger(p( ,..., ),I) must appear in the compiled program. Notice
that the arguments are not stored in the trigger; hence the abstraction.

For example, the facts trigger(parent( , ),1) and trigger(ancestor( , ),2)
must appear in the compiled code for the ancestor/2 program. Using our re-
fined version of pseudo-naive evaluation, at iteration 1 only the first rule is tried,
because parent/2 is a trigger only for the first rule.

Section 6 describes how triggers are chosen.
We note some similarity between our pseudo-naive interpreter and the tech-

niques described in [Wunderwald, 1996] for converting bottom-up rules into Pro-
log rules.

5.2 Refinement 2: Tuple-at-a-time Immediate Execution

So far we have assumed that when a new tuple is derived, the tokens it triggers
are added to the queue and that any rules that these tokens enable won’t fire
until later on. Relaxing this assumption by allowing tuples to immediately



trigger other rules is often a big win. Suppose a tuple q(T1, . . . , Tn)@T appears
as trigger in the body of some rule
p(U1, . . . , Um)@T :- q(T1, . . . , Tn)@T, .....
in which the timestamp of the head is identically T. Suppose further that it is
safe according to the stratification order to fire the rule immediately (no rule
earlier in the stratification order needs to fire first, due, say, to a negation or to
the possibility of looping — see next section). Then as soon as a q/n tuple is
derived, the p/n rule is tried using that tuple and its arguments as input.

If the compiler can identify that all rules which consume a tuple are such
that the tuple is in the trigger position, then the tuple need not be saved at
all; such virtual triggers exist only in the runtime stack and registers of the
implementation, thereby saving copying and garbage collection time.

Tuple-at-a-time bottom-up execution is used in Section 7 for handling linear
recursions.

6 Compilation for Pseudo-Naive Evaluation

The most important aspect of compiling programs for the pseudo-naive eval-
uator is choosing one or more appropriate triggers for each clause. This is
important, because clauses are only evaluated when triggered, so the choice of
trigger can affect both correctness (if a clause is not triggered at times when
it might produce output, then outputs will be lost) and efficiency (tuples that
occur infrequently make better triggers, because rules are evaluated less often).

Currently, our compiler automatically chooses a trigger for two simple cases,
which cover the majority of clauses, and evaluates the remaining clauses at
every time step. However, we also allow the programmer to annotate a clause to
manually define one or more triggers for a clause, which overrides the compiler’s
choice. (For example, for real-time execution, it is often sufficient to evaluate
certain clauses periodically, e.g., every 0.5 seconds.) This is more flexible, but
means that the programmer is responsible for completeness (choosing the wrong
trigger may cause output tuples to be lost). When adding triggers by hand, we
have occasionally found it useful to add several triggers to a single clause. It
is not clear to us yet whether sophisticated triggering like this can be chosen
automatically, or even checked for correctness by the compiler.

Given a clause, H@T <-- Body, (to simplify discussion, we assume in this
section that all clauses are in Horn clause format) the two strategies used by
the compiler are:

1. If Body contains some positive atom, A@U , such that T −U is a constant
natural number K (e.g. if T and U are identical, then K = 0), then the
compiler uses A as the trigger, and evaluates the clause exactly K time
units after any A tuple is created. The compiler does this by generating the
following rule/3 and trigger/2 clauses (ID is a unique integer generated
for each clause):



rule(ID@T, Head@T, Body).
trigger(A@U, ID@T) :- T is U+K.

Note that there may be several atoms A@U that satisfy this criterion. The
choice between them does not affect soundness, but may affect efficiency.
Ideally, the atom that is least frequent triggered should be chosen. Cur-
rently, we choose the left-most one that satisfies the above criterion, but it
would be interesting to extend the compiler to use statistical information
from previous runs as the basis for this choice.

2. If Body contains some positive atom, A@U which is provably the latest in
the body (relative to the stratification order) then it is safe to trigger the
clause at time U (it will produce outputs at time T , which may be in the
future, but at least no outputs will be missed). The compiler generates :

rule(ID@U, Head@T, Body). % Note that Body contains A@U
trigger(A@U, ID@U).

A disadvantage of this strategy is that some clauses may create many
tuples in the future, which slows the system down.

In reality, a rule that we have described as being compiled into: rule(ID@U,
Head@T, (P@U, Rest...). is actually compiled into something like: rule(ID,
U, Head@T) :- P@U, Rest... so that the body of the rule is compiled directly
by the underlying Prolog compiler and so that first-argument indexing means
that each token directly selects the correct triggered clause.

7 Handling Simultaneous Recursion

There are at least four ways for a pseudo-naive interpreter to deal with programs
that are not strongly stratified.

1. Make the culprit procedures top-down and use Prolog evaluation. For very
many procedures — those efficiently executable by Prolog — this option
will be entirely appropriate, even ideal.

2. Make the procedure top-down and use tabling (OLDT resolution [Sato and Tamaki, 1986]),
as in XSB [Sagonas et al., 1994]. This option will work for a larger class of
programs (e.g., those like the ancestor program with left recursion) and,
unlike bottom-up computation without magic sets, has the advantage of
being goal driven. Our implementation of Starlog runs also under XSB,
and this option has been successfully used.

3. Use tuple-at-a-time bottom-up triggering, provided the simultaneous re-
cursion is linear, as is the case for the ancestor rules. Each derived
ancestor/2 tuple then gets joined with the parent/2 relation to derive



additional ancestor/2 tuples, using a simple stack to handle multiple
firings.

4. Add explicit timestamps to make the recursion strongly stratified. This
option is effectively semi-naive evaluation, using the timestamped relations
to hold the delta sets.

Here we briefly expand on the final technique. A compiler for semi-naive
evaluation transforms the input program to a version utilizing delta sets. As
pointed out in [Freire et al., 1996], in semi-naive evaluation “a form of times-
tamp denoting the iteration number is explicitly represented in both answers
and rules.” (Timestamps are explicit in the implementation’s transformed pro-
gram, not in the original program.) Consider again the ancestor program.
Using timestamps, the transformed program is as follows:

ancestor_delta(A,D)@0:- parent(A,D).

ancestor_delta(A,D)@T:-

ancestor_delta(A,Tmp)@T-1,

parent(Tmp,D),

not(exists(U, (U<T,ancestor_delta(A,D)@U))).

ancestor(A,D):- ancestor_delta(A,D)@T.

At each time T> 0, the second clause is used to derive tuples that are newly
enabled by tuples derived at time T-1. The negated call at the end of the recur-
sive clause is needed to assure that a tuple ancestor delta(A,D)@U derived at
some time U<T in the past is not re-derived at time T. Timestamped relations
correspond directly to delta sets. Now, for this fourth technique to be generally
useful, a way is needed to modularize time, so that the code can be called at
times other than T=0. This is a topic of our current research, on which we plan
to report elsewhere.

8 Conclusion

We have presented a novel implementation technique, pseudo-naive evaluation,
intermediate in power between naive evaluation and semi-naive evaluation. The
essential idea is to prohibit simultaneous bottom-up recursion by requiring all
(non-linear) recursion to be either top-down or mediated by a temporal strati-
fication. Pseudo-naive evaluation optimizes execution of such strongly-stratified
programs by introducing a data-driven component (triggers) to naive evalua-
tion, without maintaining the explicit delta sets of semi-naive evaluation. But
pseudo-naive evaluation can still handle non-strongly stratified programs, either
by using top-down calls, by converting to strongly stratified code via the ad-
dition of explicit time parameters for representing delta sets, or (provided the
recursion is linear) by the use of bottom-up tuple-at-a-time execution. We have



described an implementation of pseudo-naive evaluation in Starlog, a temporal
logic programming language. The language supports both bottom-up, data-
driven execution and top-down, goal-driven execution, since top-down calls are
allowed in rule bodies. Programs are compiled into Prolog rules executed by
an event list driven top-level driver; the system can thereby take advantage of
mature Prolog implementation technology and programming techniques.

Space limitations have prevented us from discussing applications of pseudo-
naive evaluation; these include an elevator simulator with X Windows GUI,
an individual-based ecology simulation, and an implementation of the graph-
plan [Blum and Furst, 1997] planning algorithm. Areas of current work include
automatic compilation of complex triggers; garbage collection and annotations
to specify tuple longevity; abstract, modular, and real time; and comparative
performance evaluation.
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