
Practical Applications of Extended Deductive

Databases in Datalog⋆

Dietmar Seipel

University of Würzburg, Department of Computer Science
Am Hubland, D – 97074 Würzburg, Germany

seipel@informatik.uni-wuerzburg.de

Abstract. A wide range of additional forward chaining applications
could be realized with deductive databases, if their rule formalism, their
immediate consequence operator, and their fixpoint iteration process
would be more flexible.
Deductive databases normally represent knowledge using stratified Dat-

alog programs with default negation. But many practical applications of
forward chaining require an extensible set of user–defined built–in pred-
icates. Moreover, they often need function symbols for building complex
data structures, and the stratified fixpoint iteration has to be extended
by aggregation operations.
We present an new language Datalog

⋆, which extends Datalog by
stratified meta–predicates (including default negation), function sym-
bols, and user–defined built–in predicates, which are implemented and
evaluated top–down in Prolog. All predicates are subject to the same
backtracking mechanism. The bottom–up fixpoint iteration can aggre-
gate the derived facts after each iteration based on user–defined Prolog

predicates.

Keywords.

Deductive databases, Prolog, forward / backward chaining, bottom–up, top–
down, built–in predicates, stratification, function symbols, Xml

1 Introduction

Deductive databases allow for efficiently deriving inferences from flat tables using
forward chaining and relational database technology. Most deductive database
systems support the representation language of stratified Datalognot [8, 13].
Disallowing function symbols and enforcing the condition of range–restrictedness
(safety)1 guarantees that the inference process will always terminate. In prin-
ciple, the fixpoint interation based on forward chaining can also be applied to
the extension by function symbols, but termination is not always guaranteed, if
function symbols can occur in rule heads. Other Datalog extensions allow for
a very limited set of built–in predicates under an extended safety condition. In
Datalognot, stratified2 default negation is possible.

1 all variable symbols of a rule must occur in the positive body
2 there is no cycle including default negation in the predicate dependency graph



Datalog rules extended by existentially quantified variables in rule heads
are known as tuple generating dependencies. They have been used for enabling
ontological knowledge representation and efficient reasoning [7] and for specify-
ing generalized schema mappings in databases [12]. In the former paper, also
stratified default negation has been considered.

For handling non–stratified default negation and disjunctive rule heads, an-

swer set programming (ASP) can be used [2, 11]; the advantage of an efficient
query evaluation for large relational databases is partly lost in ASP, but much
more complex problems – of a high computational complexity – can be encoded
elegantly. Today, even larger graph–theoretic problems, such as graph colouring,
can be encoded in a very compact way and solved by ASP in reasonable time.

On the other hand, logic programming in Prolog [5, 9] is not as declarative
as deductive databases and ASP, but backward chaining and side effects make
it a fully fledged programming language. Prolog allows for function symbols,
and it can handle stratified default negation. However, recursion can lead to
non–termination, even if there are no function symbols. Although the Prolog

extension Xsb can solve this termination problem using tabling (memoing) tech-
niques, there exist many applications where backward chaining is not suitable.

Usually, dedicated special–purpose problem solvers are used for more general
forward chaining problems. Due to their lack of declarativity, these solvers often
are hard to maintain, difficult to extend and port to similar application domains.
Thus, we are proposing extended deductive databases (EDDB) based on a Data-

log extension named Datalog⋆, which combines declarative forward chaining
with meta–predicates, function symbols, and built–in predicates implemented
in Prolog. So far, we have used Datalog⋆ for the following forward chaining
applications:

– diagnostic reasoning in medical or technical domains, e.g., d3web [14] or root
cause detection in computer networks,

– anomaly detection in ontologies extended by rules, such as the extension
Swrl of the ontology language Owl, and

– meta–interpreters, e.g. for disjunctive reasoning with the hyperresolution
consequence operator T s

P
in disjunctive deductive databases.

These practical EDDB applications require Prolog meta–predicates (such as
default negation not/1 and the list predicates findall/3 and maplist/2,3),
recursion on cyclic data, and function symbols for representing complex data
structures, such as lists or semi–structured data and Xml [1]. Sometimes, the
standard conjunctive rule bodies are not adequate: the knowledge representation
becomes too complicated, and the evaluation is unnecessarily complex due to
redundancy, if rules with non–conjunctive rule bodies are normalized to sets of
rules with conjunctive rule bodies. Recently, [4] has defined an extended version
of range–restricted Datalog rules with non–conjunctive rule bodies.

In general, meta–predicates need to be stratified to ensure termination. It
is easy to decide if a Datalognot program can be stratified. But Datalog⋆

2



programs with arbitrary Prolog meta–predicates have to be analysed carefully
using heuristics based on extended call graphs to find out which predicates call
which other predicates through meta–predicates. Although this problem is un-
decidable in general, suitable heuristics have been published in [17], even for the
more general context of Prolog.

The rest of this paper is organized as follows: In Section 2, we indicate how
Datalog⋆ mixes forward chaining with Prolog’s backward chaining for built–
in predicates. Section 3 presents three case studies for Datalog⋆. In Section 4,
we describe a possible meta–interpreter for Datalog⋆, which we have imple-
mented in Prolog. Finally, we give conclusions and sketch some future work.

2 The General Idea of Datalog⋆

We distinguish between Datalog⋆ rules and Prolog rules. Syntactically, Data-

log⋆ rules are Prolog rules; i.e., they may contain function symbols (in rule
heads and bodies) as well as negation, disjunction, and Prolog predicates in
rule bodies. As forward chaining rules, Datalog⋆ rules are evaluated bottom–
up, and all possible conclusions are derived. The supporting Prolog rules are
evaluated top–down, and – for efficiency reasons – only on demand, and they
can refer to Datalog⋆ facts. The Prolog rules are also necessary for expres-
sivity reasons: they are used for computations on complex terms, and – more
importantly – for computing very general aggregations of Datalog⋆ facts.

Datalog⋆ rules cannot be evaluated in Prolog or Datalog alone for the
following reasons: Current Datalog engines cannot handle function symbols
and non–ground facts, and they do not allow for the embedded computations
(arbitrary built–in predicates), which we need for our practical applications.
Standard Prolog systems may loop in recursion forever (e.g., when computing
the transitive closure of a cyclic graph), and they may be inefficient, if there are
subqueries that are posed and answered multiply. Thus, they have to be extended
by some Datalog⋆ facilities (our approach) or memoing/tabling facilities (the
approach of the Prolog extension Xsb).

Since we need forward chaining, and since the embedding system Ddk [15]
is developed in Swi–Prolog, we have implemented a new inference machine
in standard Prolog that can handle mixed, stratified Datalog⋆/Prolog rule
systems. The evaluation of a Datalog⋆ program D mixes forward–chained eval-
uation of Datalog with SLDNF–resolution of Prolog, see Figure 1. The body
atoms Bi of a Datalog⋆ rule A ← B1 ∧ . . . ∧ Bn are evaluated backward in
Prolog based on previously derived facts and based on a Prolog program P
using SLDNF–resolution.

Due to the Prolog evaluation of rule bodies, variable symbols appearing
only under default negation are implicitely quantified as existential. In contrast to
[6], we do not need an explicit program transformation. For range–restrictedness,
we just require that all variable symbols appearing in the head of a rule must
also occur in at least one positive body atom. Moreover, similarly to Prolog,

3



?

6 A← B1 ∧ . . . ∧Bi ∧ . . . ∧Bn

...

...
D

P SLDNF

Fig. 1. Mixing Forward and Backward Chaining.

the programmer has to ensure that the standard left–to–right evaluation of the
rule bodies will be adequate; in our case, on backtracking it should instantiate
all variable symbols of the head in finitely many ways. This will guarantee,
that every single iteration of the fixpoint process for Datalog⋆ derives only a
finite set of ground facts. In contrast to [4], we do not allow a reordering of the
body literals during the evaluation, since built–in predicates in Datalog⋆ can
be arbitrary Prolog predicates including meta–predicates and predicates with
side effects.

Because of the embedded calls to Prolog, a formal definition of the seman-
tics of Datalog⋆ would be rather technical and difficult to understand. Instead,
we will describe a compact meta–interpreter for Datalog⋆ in Section 4.

3 Case Studies for Datalog⋆

In the following, we present three case studies for Datalog⋆ that require for-
ward chaining together with built–in and user–defined Prolog predicates. These
practical applications could not be implemented so elegantly in Datalog or
Prolog alone.

3.1 Diagnostic Reasoning

Diagnostic reasoning in d3web [14] requires forward chaining and built–in pred-
icates for invoking user dialogs. We have implemented diagnostic reasoning in
a declarative way using Datalog⋆, cf. [18]. The Datalog⋆ rules use meta–
predicates (such as not/1, m_to_n/2, maplist/3, and findall/3), and after
each iteration of the immediate consequence operator, the derived facts are ag-
gregated by combining the scores of different derivations of the same diagnosis.

For example, the first Datalog⋆ rule below assigns the value 1 to the in-
termediate diagnose I3 by combining the answers to the questions Q1, Q2, and
Q3 during an interactive examination dialog. The second diagnositic rule assigns
a score 16 to the diagnose D2 based on the intermediate diagnose I3 and the
answer to the question Q4.

4



finding(’I3’ = 1) :-

condition(’Q1’ = 2),

( condition(’Q2’ = 3)

; condition(’Q3’ = 2) ).

diagnosis(’D2’ = 16) :-

condition(’I3’ = 1),

condition(’Q4’ = 5).

The questions are asked while the Datalog⋆ rules are evaluated. An example
of an interactive user dialog is given in Figure 2.

Fig. 2. User Dialog.

If a question Qid has not been asked yet, then a body atom condition(Qid Θ V)

in a Datalog⋆ rule causes the call dialog(Qid = Val) of a suitable Prolog

dialog for determining the answer Val to the question. This value Val is then
asserted in the Prolog database as an atom finding(Qid = Val), and it can
be compared with V using the operator Θ, which is called Comparator below.

condition(C) :-

C =.. [Comparator , Qid , V],

( finding(Qid = Val)

; dialog(Qid = Val),

assert(finding(Qid = Val)) ),

apply(Comparator , [Val , V]).

We can prevent the same instance of a Datalog⋆ rule from firing twice.
Given a range–restricted Datalog⋆ rule Head :- Body, the following modified
rule will fire at most once:

5



Head :-

Body ,

not( has_fired(Head , Body) ),

assert( has_fired(Head , Body) ).

The modified rules can be obtained automatically by a simple program trans-
formation.

For diagnostic reasoning in d3web, all rules are ground, and it is necessary
that each rule can fire at most once. The following aggregation predicate adds
the scores in the list of derived facts for the same diagnosis; the other facts
remain unchanged:

d3_aggregate_facts(I, J) :-

findall( diagnosis(D=S),

( bagof( T, member(diagnosis(D=T), I), Ts ),

add(Ts, S) ),

J1 ),

findall( A,

( member(A, I),

not( functor(A, diagnosis , 1) ),

J2 ),

append(J1, J2, J).

3.2 Ontology Development

For the development of practical semantic applications, ontologies are commonly
used with rule extensions. The integration of ontologies creates new challenges
for the design process of such ontologies, but also existing evaluation methods
have to cope with the extension of ontologies by rules. Since the verification
of Owl ontologies with rule extensions is not tractable in general, we propose
to verify and analyze ontologies at the symbolic level by using a declarative
approach based on Datalog⋆, where known anomalies can be easily specified
and tested in a compact manner [3].

Our Datalog⋆ implementation requires meta–predicates such as setof/3

and maplist/2 for aggregation in rule bodies; moreover, for convenience, the
junctor or (”;”) is used in addition to and (”,”) in rule bodies. The Data-

log⋆ program can be stratified into two layers D1 and D2 of Datalog⋆ rules;
below, we show a few of the rules. The rules for the predicates anomaly/2 and
tc_derives/2 are part of the upper layer D2, and the rules for derives/2,
sibling/2, and disjoint/2 are part of the lower layer D1. D1 is applied to the
Datalog⋆ facts for the basic predicates (such as subclass_of/2), which have
to be derived from an underlying rule ontology. The resulting Datalog⋆ facts

6



are the input for D2. The stratification is necessary, because D2 refers to D1

through negation and aggregation.

anomaly(circularity , C) :-

tc_derives(C, C).

anomaly(lonely_disjoint , C) :-

class(C), siblings(_, Cs), disjoints(C, Cs),

not( sibling(C, M), disjoint(C, M) ).

Firstly, an obvious equivalence exists between a subclass relationship between
two classes C and D and a rule A ← B with a single body atom B, such that
A and B have the same arguments and the unary predicate symbols D and C,
respectively. Thus, we combine them into the single formalism derives/2 and
compute the transitive closure in Datalog⋆. Every class C contained in a cycle
forms an anomaly, which is detected as tc_derives(C, C).

tc_derives(X, Y) :-

derives(X, Y).

tc_derives(X, Y) :-

derives(X, Z), tc_derives(Z, Y).

Secondly, a class C is called a lonely disjoint, if it is disjoint to a set of
siblings, and it does not have a sibling M with which it is disjoint. The first of
the following Prolog rules aggregates the siblings Y of a class X to a list Ys using
the meta–predicate setof/3, and the second Prolog rule tests if a given class
X is disjoint to all classes in the list Ys using the meta–predicate maplist/2:

siblings(X, Ys) :-

setof( Y, sibling(X, Y), Ys ).

disjoints(X, Ys) :-

maplist( disjoint(X), Ys ).

The call to setof/3 succeeds for every class X having siblings, and it computes
the list Ys of all siblings Y of X; on backtracking, the siblings of the other classes
X are computed. This means, setof/3 does a grouping on the variable X. The
rule for siblings/2 could also be evaluated as a forward rule, but the rule for
disjoints/2 could not, since it is not range–restricted.

The lower layer D1 contains the following rule. We treat it as a Datalog⋆

rule, instead of a Prolog rule, since we want to derive all pairs of siblings.

sibling(X, Y) :-

subclass_of(X, Z), subclass_of(Y, Z), X \= Y.

7



3.3 Disjunctive Reasoning

In disjunctive deductive databases [11], the definite consequence operator TP has
been generalized to the disjuntive hyperresolution operator T s

P
:

T s
P(S) = { C ∨ C1 ∨ . . . ∨ Cm | C,C1, . . . , Cm ∈ DHBP and there is

a rule C ← B1 ∧ . . . ∧Bm ∈ gnd (P) : ∀ i ∈ 〈1,m 〉 : Bi ∨ Ci ∈ S }.

Encoding disjunctive reasoning in Datalog⋆ requires built–in predicates for
standard operations on disjunctions and disjunctive Herbrand states S ⊆ DHBP ,
such as disjunction, union, and subsumption. A disjunction can be represented
as a list of atoms. In [16], a disjunctive rule r = C ← B1 ∧ . . . ∧ Bm without
default negation is translated to a definite Datalog⋆ rule

dis(C0)← dis(B1, C1) ∧ . . . ∧ dis(Bm, Cm) ∧merge([C,C1, . . . , Cm], C0),

where B1, . . . , Bn are the body atoms of r, the list C represents the head of r,
and C0, C1, . . . , Cn are distinct fresh variables.

The Prolog calls dis(Bi, Ci) ground instantiate the atoms Bi, and they
instantiate the variables Ci to lists of ground atoms. If r is range–restricted –
i.e., all variable symbols in C occur in at least one of the body atoms Bi – then
this will also instantiate C to a list of ground atoms. The call dis(Bi, Ci) finds
already derived disjunctions containing the atom Bi and returns the list Ci of
the remaining atoms as follows:

dis(B, C) :-

dis(D), delete_atom(B, D, C).

delete_atom(B, D, C) :-

append(D1, [B|D2], D), append(D1, D2, C).

The Prolog predicate merge/2 computes the disjunction of a list of disjunc-
tions. After each iteration of the immediate consequence operator, an aggregation

operator eliminates subsumed disjunctions.

Alternatively, the disjunctive rule r = C ← B1 ∧ . . .∧Bm can be represented
as a Datalog⋆ fact of the form rule(C–[B1, . . . , Bn]); then, a single, generic
Datalog⋆ rule is sufficient, namely the following rule:

dis(D) :-

rule(C-Bs),

maplist( dis , Bs, Cs ),

merge([C|Cs], D).

In [16] it is shown, that also disjunctive rules with default negation can be
translated while preserving the stable model semantics. It is known that the well–
founded model is a subset of all stable models (considered as sets of literals).
Thus, by computing the well–founded semantics of the resulting program, we
could approximate the stable model semantics based on Datalog⋆.

8



4 A Meta–Interpreter for Datalog⋆

In the following, we sketch an inference engine for stratified Datalog⋆, which
we have used successfully for our particular applications. We have implemented
it as a meta–interpreter using the well–known Prolog system Swi [19]; the user
dialogs have been built with its publicly available graphical API.

4.1 The Immediate Consequence Operator

The generalized immediate consequence operator TD,P operates on a forward
program D and an auxilliary Prolog program P. In the implementation below,
D is given as a list Datalog of rules, whereas P is stored in the modules M and
user (the standard module) of the Prolog database. The following predicate
calls all rule bodies of Datalog; the calls are executed in the module M. The set
Facts of derived head facts will be stored in M only afterwards.

tp_operator(Datalog , M, Facts) :-

findall( Head ,

( member(Head :- Body , Datalog),

call(M:Body) ),

Facts ).

For all body predicates of D there have to be either rules (or facts) in D ∪ P
or dynamic declarations in P; otherwise, a call to such a predicate would raise
an exception. And there can be rules in both D and P. A body predicate that
is solely defined by rules in P which do not refer to predicates from D could be
considered as a built–in predicate of D. The rules of P are evaluated top–down
using Prolog’s SLDNF–resolution.

Since the evaluated forward program D is not part of the Prolog database,
the forward rules do not call each other recursively within a single TD,P–operator,
and they cannot be called from backward rules. The recursion is only reflected
in the bottom–up fixpoint iteration of TD,P .

4.2 Managing and Aggregating Facts in a Module

We use two elementary predicates for asserting/retracting a given list Facts of
facts in a module Module of the Prolog database using the predicate do/2 from
the well–known loops package of Schimpf:

assert_facts(Module , Facts) :-

foreach(A, Facts) do assert(Module:A).

retract_facts(Module , Facts) :-

foreach(A, Facts) do retract(Module:A).

9



For adding a list Facts of facts to Module, we need to know the list I of facts that
are already stored in Module. First, these facts are retracted from Module, then
I and Facts are aggregated using a user–defined plugin predicate (if there is no
such predicate, then no aggregation is done), and finally the result is asserted in
Module.

aggregate_facts(Module , I, Facts , J) :-

retract_facts(Module , I),

( aggregate_facts(I, Facts , J)

; ord_union(I, Facts , J) ),

assert_facts(Module , J).

aggregate_facts/3 is a plugin predicate that can be specified using application
specific Prolog rules. For example, for diagnostic reasoning in d3web, we use
the following plugin predicate:

aggregate_facts(I, Facts , J) :-

append(I, Facts , K),

d3_aggregate_facts(K, J).

Also ∆–iteration with subsumption [10] could be implemented by a suitable
plugin.

4.3 The Fixpoint Iteration with Aggregation

For a given set Datalog of forward rules, tp_iteration/3 derives a set Facts

in module M:

tp_iteration(Datalog , M, Facts) :-

tp_iteration(Datalog , M, [], Facts).

tp_iteration(Datalog , M, I, K) :-

tp_operator(Datalog , M, Facts),

( tp_terminates(I, Facts) -> K = I

; aggregate_facts(M, I, Facts , J),

tp_iteration(Datalog , M, J, K) ).

tp_terminates(I, Facts) :-

not(member(A, Facts), not(member(A, I))).

Given a set I of facts, tp_iteration/4 derives a new set K in module M. The
derived facts are stored in M and kept on the argument level (I, J, K). The

10



iteration terminates, if all derived facts have already been known. The derived
facts in M are necessary for tp_operator/3. Since they are mixed with the facts
and the rules of the auxilliary Prolog program P in M, they cannot be extracted
from M at the end of the iteration; therefore, they also have to be kept on the
argument level.

4.4 Stratification

We have implemented a Prolog library for the stratification of Datalog⋆

programs. Sophisticated, heuristic methods of program analysis, which can also
be extended by the user, are used to determine embedded calls in Prolog meta–
predicates based on suitably extended call graphs, cf. [17]. Thus, we can partition
a Datalog⋆ program into strata, which can be evaluated successively.

For stratification, we have to analyze D ∪ P; thus, P has to be available on
the argument level, too. In practice, all Prolog rules in the system could be
used by the immediate consequence operator; but we only need to analyze the
portion P ′ of the rules that access the facts for Datalog⋆ predicates in the
Prolog database.

In Datalog⋆, most Prolog meta–predicates require a stratified evaluation
(e.g., not/1, findall/3, setof/3, and maplist/2,3). Only the ASP extension
of deductive databases and logic programming can handle non–stratified default
negation (not/1) as well; but, ASP solvers do not support function symbols and
general built–in predicates.

4.5 Side Effects in Forward Rules

In our current implementation, the forward rules are fired successively, and it
is possible that the forward rules update the Prolog database module using
assert/1 and retract/1 in rule bodies. We call these updates side effects –
in contrast to the assertions of derived facts done by assert_facts/4, that are
inherent to our approach.

The temporary facts asserted by side effects need not be derived by the
rules, but they can nevertheless be used by other forward rules. These temporary
facts are hidden in the Prolog database module, they are not derived by the
immediate consequence operator, and normally they will not be part of the
final result of the fixpoint iteration. However, if desired, the user can bring
these hidden facts to the surface by suitable helper rules for deriving them.
For example, the second rule in the Datalog⋆ program below is a helper rule
for deriving the atom b that was asserted by the first rule:

a :- assert(b).

b :- b.

11



During fixpoint iteration, Datalog⋆ makes asserted facts available to further
derivations by subsequent rules within the same iteration. In Datalog, this
could be simulated by the so–called Gauss–Seidel evaluation of deductive data-
bases, cf. [8]. Consequently, a larger part of the transitive closure is computed
during a single iteration for the following Datalog⋆ program:

tc(X, Y) :-

arc(X, Y), assert(tc(X, Y)).

tc(X, Y) :-

arc(X, Z), tc(Z, Y), assert(tc(X, Y)).

For example, given a graph containing – amoung others – the two edges arc(a, b)
and arc(b, c), the transitive edge tc(a, c) is already derived in iteration 1, since
the asserted fact tc(b, c) of the first rule can be used in the second rule together
with arc(a, b), whereas – without assert – it is only derived in iteration 2 under
the standard Jacobi evaluation of deductive databases.

Due to Prolog’s evaluation, an assert statement in a Datalog⋆ rule
r = A ← B1 ∧ . . . ∧ Bn, where Bi = assert(X ), is relevant for all subsequent
rules and for all atoms within the body of the same rule r. This can be simulated
without assert by Gauss–Seidel evaluation: let β = B1∧ . . .∧Bi−1, then we can
replace r by a helper rule r′ = X ← β for deriving X followed by a reduced rule
r′′ = A← β ∧Bi+1 ∧ . . .∧Bn without Bi. By rule extraction we could of course
avoid the redundancy caused by the double evaluation of the conjunction β in
r′ and r′′. The only remaining differences are, that r asserts the atom X only as
a temporary fact, whereas r′ derives X, and that r′ is fully evaluated before r′′,
which makes all asserts of r′ available to r′′.

For avoiding problems, a more controlled use of update predicates for the
Prolog database could be required. For example, in our Datalog⋆ implemen-
tation of diagnostic reasoning, assert is used only after interactive dialogs. This
does not effect the derivation process so drastically; the computation simply
behaves as if all findings had been known before the computation.

5 Conclusions

We have presented an extension of deductive databases with a generalized im-
mediate consequence operator and fixpoint iteration, called Datalog⋆, that is
useful for implementing practical EDDB applications nicely in a compact way.
In future work, we will investigate the theoretical properties of the extensions.

The described meta–interpreter could efficiently handle the case studies on
diagnostic reasoning and ontology development with a few thousand facts and
rules. The main advantage of the Prolog–based approach was the flexibility in
modelling applications requiring more general concepts of forward reasoning than
deductive databases usually offer. Moreover, the meta–interpreter can be easily

12



extended to fit further needs. For other potentially very large applications, such
as disjunctive reasoning, we will conduct experimental evaluations to compare
our proposal to other approaches in the future.

Based on the generalized immediate consequence operator TD,P , it also seems
to be posssible to implement an extended form of the magic sets transformation
method for rules with non–conjunctive rule bodies in a very simple way.

So far, only stratified evaluation is possible for Datalog⋆. But, it would be
interesting to extend TD,P to handle non–stratified negation using ASP tech-
nology (stable or well–founded models). Sometimes, guessing strategies on the
truth of special atoms can be used, whereas the whole extension of the called
predicates has to be guessed, before a call to a meta–predicate such as setof/3
can be evaluated.

Logic programming and extended deductive databases can be used as a
declarative mediator technology between different data sources (like relational
databases, Xml databases/documents, and Excel sheets) and tools. We are
planning to integrate similar diagnostic problem solvers by mapping them to
Datalog⋆, and to combine data mining tools by processing their input and
output, such that a declarative data mining workflow can be specified in Data-

log⋆.

References

1. S. Abiteboul, P. Bunemann, D. Suciu: Data on the Web – From Relations to Semi–
Structured Data and Xml, Morgan Kaufmann, 2000.

2. C. Baral: Knowledge Representation, Reasoning and Declarative Problem Solving,
Cambridge University Press, 2003.

3. J. Baumeister, D. Seipel: Smelly Owls – Design Anomalies in Ontologies, Proc.
18th International Florida Artificial Intelligence Research Society Conference,
FLAIRS 2005, AAAI Press, 2005, pp. 215–220.

4. S. Brass: Range Restriction for General Formulas, Proc. 22nd Workshop on (Con-
straint) Logic Programming, WLP 2009.

5. I. Bratko: Prolog– Programming for Artificial Intelligence, 3rd Edition, Addison–
Wesley, 2001.

6. P. Cabalar: Existential Quantifiers in the Rule Body, Proc. 22nd Workshop on
(Constraint) Logic Programming, WLP 2009.

7. A. Cali, G. Gottlob, T. Lukasiewicz: A General Datalog–Based Framework for
Tractable Query Answering over Ontologies, Proc. International Conference on
Principles of Database Systems, PODS 2009, pp. 77–86.

8. S. Ceri, G. Gottlob, L. Tanca: Logic Programing and Databases, Springer, 1990.
9. W.F. Clocksin, C.S. Mellish: Programming in Prolog, 5th Edition, Springer,

2003.
10. G. Köstler, W. Kießling, H. Thöne, U. Güntzer: Fixpoint Iteration with Subsump-

tion in Deductive Databases, Journal of Intelligent Information Systems, Volume
4, Number 2, Springer, 1995.

11. J. Lobo, J. Minker, A. Rajasekar: Foundations of Disjunctive Logic Programming,
MIT Press, 1992.

13



12. B. Marnette: Generalized Schema–Mappings: From Termination To Tractability,
Proc. International Conference on Principles of Database Systems, PODS 2009,
pp. 13–22.

13. J. Minker (Ed.): Foundations of Deductive Databases and Logic Programming,
Morgan Kaufmann, 1987.

14. P. Puppe et al.: D3. http://d3web.informatik.uni-wuerzburg.de/
15. D. Seipel: The DisLog Developers’ Kit (DDK),

http://www1.informatik.uni-wuerzburg.de/databases/DisLog

16. D. Seipel: Using Clausal Deductive Databases for Defining Semantics in Disjunctive
Deductive Databases. Annals of Mathematics and Artificial Intelligence, vol. 33,
Kluwer Academic Publishers, 2001, pp. 347-378.

17. D. Seipel, M. Hopfner, B. Heumesser: Analyzing and Visualizing Prolog Programs
based on Xml Representations. Proc. International Workshop on Logic Programing
Environments, WLPE 2003.

18. D. Seipel, J. Baumeister: Declarative Specification and Interpretation of Rule–
Based Systems, Proc. 21st International Florida Artificial Intelligence Research
Society Conference, FLAIRS 2008, AAAI Press, 2008.

19. J. Wielemaker: Swi–Prolog 5.0 Reference Manual and
J. Wielemaker, A. Anjewierden: Programming in Xpce/Prolog,
http://www.swi-prolog.org/

14


