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Abstract—The basic aim of our study is to give a possible model
for handling uncertain information. This model is worked out in the
framework of DATALOG. The concept of multivalued knowledge-
base will be defined as a quadruple of any background knowledge;
a deduction mechanism; a connecting algorithm, and a function set
of the program, which help us to determine the uncertainty levels of
the results. At first the concept of fuzzy Datalog will be summarized,
then its extensions for intuitionistic- and interval-valued fuzzy logic is
given and the concept of bipolar fuzzy Datalog is introduced. Based
on these extensions the concept of multivalued knowledge-base will
be defined. This knowledge-base can be a possible background of a
future agent-model.

Keywords—Fuzzy-, intuitionistic-, bipolar Datalog, multivalued
knowledge-base

I. INTRODUCTION

A
large part of human knowledge can not be modeled by

pure inference systems, because this knowledge is often

ambiguous, incomplete and vague. Several and often very

different approaches have been used to study the inference

systems. When knowledge is represented as a set of facts and

rules, this uncertainty can be handled by means of fuzzy logic.

A few years ago, on the beginning of our research a possible

combination of Datalog-like languages and fuzzy logic was

introduced [1]. In our works the concept of fuzzy Datalog has

been introduced by completing the Datalog-rules and facts by

an uncertainty level and an implication operator. The level of

a rule-head can be inferred from the level of the body and the

level of the rule by the implication operator of the rule. Based

upon our previous works, later on a fuzzy knowledge-base

was developed [2]. In the last years new steps was taken into

the direction of multivalued knowledgebase: the fuzzy Datalog

was extend to some multivalued direction [3], [4]. In this

recent paper the concept of fuzzy-, intuitionistic- and bipolar

Datalog will be summarized and for a further step the concept

of a possible multivalued knowledgebase will be shown. This

knowledge-base is a quadruple of a deduction mechanism; a

background knowledge; an algorithm connecting the previous

two part; and a decoding set computing the uncertainty levels

of the consequences.

II. MULTIVALUED DATALOG

Firstly we deal with the deduction mechanism, which is

based on Datalog language. Datalog is a logical programming

language designed for use as a data-base query language. A
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Data-log program consists of facts and rules. Using these rules

new facts can be inferred from the program’s facts. It is very

important that the solution of a program be logically correct,

that is evaluating the program, the result be a model of the

first order logic formulas, being its rules. On the other hand

it is also important that this model would contain only those

true facts which are the consequences of the program, that is

the minimality of this model is expected, i.e. in this model

it is impossible to make any true fact false and still have a

model consistent with the database.

In the case of Datalog programs there are several equivalent

approaches to define the semantics of the program. In fuzzy

extension we mainly rely on the fixed-point base aspect.

A. Fuzzy Datalog

In fuzzy Datalog (fDatalog) the facts can be completed by

an uncertainty level, the rules by an uncertainty level and an

implication operator. The level of a rule-head can be infered

from the level of the rule-body and the level of the rule by

the implication operator of the rule. As in classical cases, the

logical correctness is extremely important as well, i.e., the

solution would be a model of the program. This means that

for each rule of the program, evaluating the fuzzy implication

connecting to the rule, its truth-value has to be at least as large

as the given uncertainty level. More precisely, the notion of

fuzzy rule is the following:

An fDatalog rule is a triplet r; β; I , where r is a formula

of the form A ← A1, ..., An(n ≥ 0), A is an atom (the head

of the rule), A1, ..., An are literals (the body of the rule); I is

an implication operator and β ∈ (0, 1] (the level of the rule).

For getting a finite result, all the rules in the program must

be safe. An fDatalog rule is safe if all variables occurring in

the head also occur in the body, and all variables occurring in

a negative literal also occur in a positive one. An fDatalog
program is a finite set of safe fDatalog rules.

There is a special type of rule, called fact. A fact has the

form A ←; β; I . From now on, we refer to facts as (A, β),

because according to implication I, the level of A can easily

be computed. To be short we sometimes denote αA1∧...∧An
,

by αbody and αA by αhead.

In the extensions of Datalog several implication operators

are used, but in all cases we are restricted to min-max

conjunction and disjunction, and to the complement to 1 as

negation. So: αA∧B = min(αA, αB), αA∨B = max(αA, αB)

and α¬A = 1− αA.

The semantics of fDatalog is defined as the fixed points

of consequence transformations. Depending on these trans-

formations, two semantics for fDatalog can be defined [1].
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The deterministic semantics is the least fixed point of a

deterministic transformation, the nondeterministic semantics

is the least fixed point of a nondeterministic transformation.

According to the deterministic transformation the rules of

a program are evaluated in parallel, while in the nonde-

terministic case the rules are considered independently and

sequentially. Further on because of the lack of space we deal

only with the nondeterministic semantics. This is appropriate

because in the cases when any rule contains negation, only the

nondeterministic semantics is applicable. This transformation

is the following:

Let BP be the Herbrand base of the program P, and let

F (BP ) denote the set of all fuzzy sets over BP . The non-

deterministic consequence transformation NTP : F (BP ) →
F (BP ) is defined as

NTP (X) = {(A, αA)} ∪X
where

(A← A1, . . . , An; β; I) ∈ ground(P ), (|Ai|, αAi
) ∈ X , 1 ≤

i ≤ n; αA = max (0, min {γ | I(αbody, γ) ≥ β}) .
There ground(P) is the set of all possible rules of P the

variables of which are replaced by ground terms of the

Herbrand universe of P. |Ai| denotes the kernel of the literal

Ai, (i.e., it is the ground atom Ai, if Ai is a positive literal,

and ¬Ai, if Ai is negative) and αbody = min(αA1
, . . . , αAn

).
In [1] it is proved that starting from the set of facts, NTP has

a fixed point which is the least fixed points in the case of pos-

itive P. This fixed point is denoted by lfp(NTP ). It was also

proved, that lfp(NTP ) is a model of P, so lfp(NTP ) could

be defined as the nondeterministic semantics of fDatalog
programs. If the program P is negation-free then lfp(NTP )

is a minimal model and under certain conditions it is minimal

in the case of programs containing any negation as well.

These conditions are referred to as stratification. Stratification

gives an evaluating sequence in which the negative literals are

evaluated first [1].

To compute the level of rule-heads, we need the concept of

the uncertainty-level function, which is:

f(I, α, β) = min({γ | I(α, γ) ≥ β}).

According to this function the level of a rule-head is:

αhead= f(I, αbody, β).

In the former papers several implications were detailed, and

the conditions of the existence of an uncertainty-level function

was examined for all these operators. For intuitionistic cases

three of them was examined till now. They are the follow-

ing: Gödel (IG), Lukasiewicz (IL) and Kleene-Dienes (IK)

operators.

IG(α, γ) =

{

1 α ≤ γ
γ otherwise,

f(IG, α, β) = min(α, β).

IL(α, γ) =

{

1 α ≤ γ
1− α + γ otherwise,

f(IL, α, β) = max(0, α + β − 1).

IK(α, γ) = max(1− α, γ),

f(IK , α, β) =

{

0 α + β ≤ 1

β α + β > 1.

Example 1: Let us consider the next program:

(p(a), 0.8).

(r(b), 0.6).

s(x) ← q(x, y); 0.7; IL.

q(x, y) ← p(x), r(y); 0.7; IG.

q(x, y) ← ¬q(y, x); 0.9; IK .

As the program has a negation, so according to the strati-

fication the right order of rule-evaluation is 2.,3,.1. Then

lfp(NTP ) =

{(p(a), 0.8); (r(b), 0.6); (q(a, b), 0.6);

(q(b, a), 0.9); (s(a), 0.3); (s(b), 0.6)}.

B. Multivalued extensions of fuzzy Datalog

In fuzzy set theory the membership of an element in a fuzzy

set is a single value between zero and one, and the degree

of non-membership is automatically just the complement to

1 of the membership degree. However a human being who

expresses the degree of membership of a given element in a

fuzzy set, very often does not express a corresponding degree

of non-membership as its complement. That is, there may

be some hesitation degree. This illuminates a well-known

psychological fact that linguistic negation does not always

correspond to logical negation. Because of this observation,

as a generalization of fuzzy sets, the concept of intuitionistic

fuzzy sets was introduced by Atanassov in 1983 [5]. In the

next paragraphs some possible multivalued extensions will be

summarized. (Detailed in [3], [4].)

While in fuzzy logic the uncertainty is represented by a

single value (µ), in intuitionistic-(IFS) and interval-valued

(IVS) fuzzy logic it is represented by two values, ~µ = (µ1, µ2).

In the intuitionistic case the two elements must satisfy the

condition 0 ≤ µ1 + µ2 ≤ 1, while in the interval-valued case

the condition is 0 ≤ µ1 ≤ µ2 ≤ 1. In IFS µ1 is the degree of

membership and µ2 is the degree of non-membership, while

in IVS the membership degree is between µ1 and µ2. It is

obvious that the relations µ′

1
= µ1, µ′

2
= 1 − µ2 create a

mutual connection between the two systems. In both cases an

ordering relation can be defined, and according to this ordering

a lattice is taking shape:

LF and LV are lattices of IFS and IVS respectively, where:

LF = {(x1, x2) ∈ [0, 1]
2 | x1 + x2 ≤ 1},

(x1, x2) ≤F (y1, y2)⇔ x1 ≤ y1, x2 ≥ y2

LV = {(x1, x2) ∈ [0, 1]
2 | x1 ≤ x2},

(x1, x2) ≤V (y1, y2)⇔ x1 ≤ y1, x2 ≤ y2

It can be proved that both LF and LV are complete lattices

[6]. Each kind of multivalued Datalog is defined on these

lattices and the necessary concepts are generalizations of the

ones presented above.

Fuzzy Datalog was extended to intuitionistic and interval-

valued direction (ifDatalog), and there is a so called bipolar

extension of it (bfDatalog).
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Let FV (BP ) denote the set of all intuitionistic or interval-

valued sets over BP . ifDatalog is a finite set of safe

ifDatalog rules (r; ~β; ~IFV ); the corresponding consequence

transformation iNTP : FV (BP )→ FV (BP ) is formally the

same as NTP in (1) except:

~αA = max(~0FV , min{~γ | ~IFV (~αbody, ~γ) ≥FV
~β}).

The extended uncertainty-level function is

~fFV (~IFV , ~α, ~β) = min({~γ | ~IFV (~α,~γ) ≥FV
~β}),

where ~α, ~β, ~γ are elements of LF , LV respectively, ~IFV = ~IF

or ~IV is an implication of LF or LV , ~0FV is ~0F = (0, 1) or
~0V = (0, 0) and ≥FV is ≥F or ≥V .

An interpretation is a model, if for each

(A← A1, ..., An; ~β; ~IFV ) ∈ ground(P ),

~IFV (~αbody, ~αA) ≥FV
~β.

In [3] it was proved that this transformation has a least fixed

point lfp(iNTP ) which is the least model of the negation-

free program P. In fDatalog a fact can be negated by

completing its membership degree to 1. In ifDatalog the

uncertainty level of a negated fact can be computed according

to negators. A negator on LF or LV is a decreasing mapping

ordering ~0FV and ~1FV together [6]. The applied negators

are essential to the computational meaning of a program, but

they have no influence on the stratification. So for a stratified

ifDatalog program P there is an evaluation sequence in

which lfp(iNTP ) is a unique minimal model of P. Therefore

lfp(iNTP ) can be considered as the semantics of ifDatalog.

The coordinates of intuitionistic and interval-valued impli-

cation operators can be determined by each other:

IV 1 = IF1(~α
′, ~γ′

), ~α′

= (α1, 1− α2),

IV 2 = 1− IF2(~α
′, ~γ′

)); ~γ′

= (γ1, 1− γ2).

The uncertainty-level functions can be computed according

to the applied implication:

~fF (~IF , ~α, ~β) = (min({γ1 | IF1(~α,~γ) ≥ β1}),

max({γ2 | IF2(~α,~γ) ≤ β2}));

~fV (~IV , ~α, ~β) = (min({γ1 | IV 1(~α,~γ) ≥ β1}),

min({γ2 | IV 2(~α,~γ) ≥ β2})).

Based on [6] in [3], [4] four intuitionistic and interval-

valued implication was examined, one possible extension of

the Kleene-Dienes, one of the Lukasiewicz and two possi-

ble extensions of the Gödel implication. Beside determining

the appropriate uncertainty-level functions, it was examined

whether the consequences of the program remain within the

scope of intuitionistic or interval-valued fuzzy logic. That is

if the levels of the body and the rule satisfy the conditions

referring to intuitionistic or interval-valued concepts, does the

resulting level of the head also satisfy these conditions? A

further important question is whether the fixed-point algorithm

terminates or not, that is whether or not the consequence trans-

formations reach the fixed point in finite steps. Unfortunately

in the case of the examined implications with the exception of

one of the extensions of the Gödel operator the consequences

remain within these scopes only under certain conditions.

Maybe in practical cases these conditions are fulfilled. Easy to

prove that in the case of this extended Gödel operator the fixed-

point algorithm terminates. This operator and the appropriate

uncertainty functions are:

~IFG(~α,~γ) =

{

(1, 0) α1 ≤ γ1, α2 ≥ γ2

(γ1, γ2) otherwise.

~IV G(~α,~γ) =

{

(1, 1) α1 ≤ γ1, α2 ≤ γ2

(γ1, γ2) otherwise;

fF1(
~IFG, ~α, ~β) = min(α1, β1),

fF2(
~IFG, ~α, ~β) = max(α2, β2);

fV 1(
~IV G, ~α, ~β) = min(α1, β1),

fV 2(
~IV G, ~α, ~β) = min(α2, β2).

The above mentioned problem of extended implications

other than G and the results of certain psychological researches

have led to the idea of bipolar fuzzy Datalog. The intuitive

meaning of intuitionistic degrees is based on psychological

observations, namely on the idea that concepts are more

naturally approached through separately envisaging positive

and negative instances [7], [8], [9]. Taking a further step,

there are differences not only in the instances but also in

the way of thinking as well. There is a difference between

positive and negative thinking, between deducing positive or

negative uncertainty. The idea of bipolar Datalog is based

on the previous observation: we use two kinds of ordinary

fuzzy implications for positive and negative inference, namely

we define a pair of consequence transformations instead of

a single one. Since in the original transformations lower

bounds are used with degrees of uncertainty, therefore starting

from IFS facts, the resulting degrees will be lower bounds

of membership and non-membership respectively, instead of

the upper bound for non-membership. However, if each non-

membership value µ is transformed into membership value

µ′
= 1 − µ , then both members of head-level can be

inferred similarly. Therefore, the appropriate concepts are the

following.

The bipolar fDatalog program (bfDatalog) is a fi-

nite set of safe bfDatalog rules (r; (β1, β2); (I1, I2)) and

the nondeterministic bipolar consequence transformation
~bNTP = (NTP1, NTP2) : FV (BP )→ FV (BP ) is similar

to NTP in (1), except in NTP2 the level of rule’s head is:

α′

2
= max(0, min{γ′

2
|I2(α

′

body2
, γ′

2
) ≥ β′

2
}), where α′

body2
=

min(α′

A12
, . . . , α′

AN2
.)

The uncertainty-level function is: ~fb = (fb1, fb2);

fb1 = min{γ1 | I1(α1, γ1) ≥ β1};

fb2 = 1−min{1− γ2 | I2(1− α2, 1− γ2) ≥ 1− β2}.

It is evident, that applying the transformation µ′

1
= µ1, µ′

2
=

1−µ2, for each IFS levels of the program, they can be applied

to IVS degrees as well. Contrary to the results of ifDatalog,

the resulting degrees of most variants of bipolar fuzzy Datalog

satisfy the conditions referring to IFS and IVS respectively.
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The bipolar fDatalog program (bfDatalog) is a fi-

nite set of safe bfDatalog rules (r; (β1, β2); (I1, I2)) and

the nondeterministic bipolar consequence transformation
~bNTP = (NTP1, NTP2) : FV (BP )→ FV (BP ) is similar

to NTP in (1), except in NTP2 the level of rule’s head is:

α′

2
= max(0, min{γ′

2
|I2(α

′

body2
, γ′

2
) ≥ β′

2
}), where α′

body2
=

min(α′

A12
, . . . , α′

AN2
.)

The uncertainty-level function is: ~fb = (fb1, fb2);

fb1 = min{γ1 | I1(α1, γ1) ≥ β1};

fb2 = 1−min{1− γ2 | I2(1− α2, 1− γ2) ≥ 1− β2}.

It is evident, that applying the transformation µ′

1
= µ1, µ′

2
=

1−µ2, for each IFS levels of the program, they can be applied

to IVS degrees as well. Contrary to the results of ifDatalog,

the resulting degrees of most variants of bipolar fuzzy Datalog

satisfy the conditions referring to IFS and IVS respectively.

Example 2: Consider the next IFS valued program:

(p(a), (0.6, 0.25)). (q(a), (0.7, 0.1)). (r(a), (0.7, 0.3)).

q(x)← p(x), r(x); (0.8, 0.15); ~I.

Let ~I = ~IFG, then ~αbody = min((0.6, 0.25), (0.7, 0.3)) =

(0.6, 0.3), f1(IFG, ~α, ~β) = min(α1, β1) = 0.6;

f2(IFG, ~α, ~β) = max(α2, β2) = 0.3, that is the level

of rule’s head is (0.6, 0.3). Allowing the other levels

of q(a), its resulting levels are the union of them:

max((0.8, 0.3), (0.7, 0.1)) = (0.8, 0.1). So the fixed point of

the program is:

{(p(a), (0.6, 0.25)), (r(a), (0.7, 0.3)), (q(a), (0.8, 0.1))}

Now let the program be evaluated in bipolar manner and

let I = (IL, IG). Then αbody1 = min(0.6, 0.7) = 0.6,

α′

body2
= min(1 − 0.3, 1 − 0.25) = 0.7; fb1(IL, α1, β1) =

max(0, α1 +β1−1) = 0.8+0.6−1 = 0.4; fb2(IG, α′

2
, β′

2
) =

1−min(α′

2
, 1−β2) = 1−min(0.7, 0.85) = 0.3. Allowing the

other levels of q(a), its resulting levels are (max(0.4, 0.7), 1−
max(1− 0.3, 1− 0.1)) = (0.7, 0.1), so the fixed point is:

{(p(a), (0.6, 0.25)), (r(a), (0.7, 0.3)), (q(a), (0.7, 0.1))}.

As fuzzy Datalog is a special kind of its each multivalued

extension, so further on both fDatalog and any of above

extensions will be called multivalued Datalog (mDatalog).

III. BACKGROUND KNOWLEDGE

The facts and rules of a mDatalog program can be regarded

as any kind of knowledge, but sometimes we need some

other information in order to get an answer for a query.

In this section we give a possible model of background

knowledge. Some kind of synomyms will be defined between

the potential predicates and between the potential constans

of the given problem, so it can be examined in a larger

context. More precisely a proximity relation will be defined

between predicates and between constants and these structures

of proximity will serve as a background knowledge.

Definition 1: A multivalued proximity on a domain D is an

IFS or IVS valued relation ~RFVD
: D × D → [~0FV ,~1FV ]

which satisfies the following properties:

~RFD
(x, y) = ~µF (x, y) = (µ1, µ2), µ1 + µ2 ≤ 1

~RVD
(x, y) = ~µV (x, y) = (µ1, µ2), 0 ≤ µ1 ≤ µ2 ≤ 1

~RFVD
(x, x) = ~1FV ∀x ∈ D (reflexivity)

~RFVD
(x, y) = ~RFVD

(y, x) ∀x, y ∈ D (symmetry).

A proximity is similarity if it is transitive, that is

~RFVD
(x, z) ≥ min(~RFVD

(x, y), ~RFVD
(y, z)) ∀x, y, z ∈ D.

In the case of similarity equivalence classifications can be

defined over D allowing to develop simpler or more effective

algorithms, but now we deal with the more general proximity.

In our model the background knowledge is a set of prox-

imity sets.

Definition 2: Let d ∈ D any element of domain D. The

proximity set of d is an IFS or IVS subset over D:

RFVd
= {(d1, ~λFV1

), (d2, ~λFV2
), . . . , (dn, ~λFVn

)},

where di ∈ D and ~RFVD
(d, di) = ~λFVi

for i = 1,. . . , n.

Based on proximities a background knowledge can be con-

structed which means some information about the proximity

of terms and predicate symbols.

Definition 3: Let G be any set of ground terms and S any set

of predicate symbols. Let RGFV and RSFV be any proximity

over G and S respectively. The background knowledge is:

Bk = {RGFVt
| t ∈ G} ∪ {RSFVp

| p ∈ S}

IV. MULTIVALUED KNOWLEDGE-BASE

So far two steps was made on the way leading to the concept

of multivalued knowledge-base: the concept of a multivalued

Datalog program and the concept of background knowledge

was defined. Now the question is: how can we connect this

program with the background knowledge? How can we deduce

to the ”synonyms”? For example if (r(a), (0.8, 0.1)) is an IFS

fact and RSF (r, s) = (0.6, 0.3), RGF (a, b) = (0.7, 0.2) then

what is the uncertainty of r(b), s(a) or s(b)?
To solve this problem the concept of extended uncertainty

function will be introduced. According to this function the

uncertainty levels of synonyms can be computed from the

levels of original fact and from the proximity values of actual

predicates and its arguments. It is expectable that in the case

of identity the level must be unchanged, but in other cases

it is to be less or equal then the original level or then the

proximity values. Furthermore we require this function to be

monotonically increasing. This function will be ordered to

each atom of a program.

Let p be a predicate symbol with n arguments, then p/n is

called the functor of the atom characterized by this predicate

symbol.
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Definition 4: An extended uncertainty function of p/n is:

~ϕp(~α,~λ, ~λ1, . . . , ~λn) : (~0FV ,~1FV ]
n+2 → [~0FV ,~1FV ]

where

~ϕp(~α,~λ, ~λ1, . . . , ~λn) ≤ min(~α,~λ, ~λ1, . . . , ~λn),

~ϕp(~α,~1FV ,~1FV , . . . ,~1FV ) = ~α

and ~ϕp(~α,~λ, ~λ1, . . . , ~λn) is monoton increasing in each argu-

ment.

It is worth mentioning that any triangular norm is suitable

for extended uncertainty function, for example

~ϕp1
(~α,~λ, ~λ1, . . . , ~λn) = min(~α,~λ, ~λ1, . . . , ~λn),

~ϕp2
(~α,~λ, ~λ1, . . . , ~λn) = min(~α,~λ, ~λ1 · · · ~λn),

where the product is:

(µ1, µ2) · (λ1, λ2) = (µ1 · λ1, µ2 · λ2)

are extended uncertainty functions, but

~ϕp3
(~α,~λ, ~λ1, . . . , ~λn) = ~α · ~λ · ~λ1 · · · ~λn

is an extended uncertainty function only in the interval valued

case.

Example 3: Let (r(a), (0.8, 0.1)) be an IFS fact and
RSF (r, s) = (0.6, 0.3), RGF (a, b) = (0.7, 0.2) and

~ϕr(~α,~λ, ~λ1) = min(~α,~λ, ~λ1) then the uncertainty levels of
r(b), s(a) and s(b) are:

(r(b), (min(0.8, 1, 0.7), max(0.1, 0, 0.2))) = (r(b), (0.7, 0.2))

(s(a), (min(0.8, 0.6, 1), max(0.1, 0.3, 0))) = (s(a), (0.6, 0.3))

(s(b), (min(0.8, 0.6, 0.7), max(0.1, 0.3, 0.2))) = (s(b), (0.6, 0.3))

We have to order extended uncertainty functions to each

predicate of the program. The set of these functions will be

the function-set of the program.

Definition 5: Let P be a multivalued Datalog program, and

FP be the set of the program’s functors. The function-set of

P is:

ΦP = {~ϕp(~α,~λ, ~λ1, . . . , ~λn) | ∀ p/n ∈ FP }

Let P be a multivalued Datalog program, Bk be any

background knowledge and ΦP be the function-set of P .

The deducing mechanism consist of two alternating part:

starting from the fact we determine their ”synonyms”, then

applying the suitable rules another facts are derived, then

their ”synonyms” are derived and again the rules are applied,

etc. To define it in a precise manner the concept of modified

consecution transformation will be introduced.

The original consequence transformation is defined over the

set of all multivalued sets of P ’s Herbrand base, that is over

F (BP ). To define the modified transformation’s domain, let

us extend P ’s Herbrand universe with all possible ground

terms occurring in background knowledge: this way, we obtain

the modified Herbrand universe modHP . Let the modified

Herbrand base modBP be the set of all possible ground

atoms whose predicate symbols occur in P ∪ Bk and whose

arguments are elements of modHP . This leads to

Definition 6: The modified consequence transformation

modNTP : FV (modBP )→ FV (modBP )

is defined as

modNTP (X)= {(q(s1, ..., sn), ~ϕp( ~αp, ~λq, ~λs1
, . . . , ~λsn

) |

(q, ~λq) ∈ RSFVp
;

(si, ~λsi
) ∈ RGti

, 1 ≤ i ≤ n} ∪X,

where

(p(t1, ..., tn)← A1, . . . , Ak; ~I; ~β) ∈ ground(P ),

( |Ai|, αAi
) ∈ X, 1 ≤ i ≤ k, (|Ai| is the kernel of Ai)

and ~αp is computed according to the actual extension of (1).

It is obvious that this transformation is inflationary over

FV (modBP ) and it is monotone if P is positive.

(A transformation T over a lattice L is inflationary if X ≤
T (X) ∀X ∈ L. T is monotone if T (X) ≤ T (Y ) if X ≤ Y .)

According to [10] an inflationary transformation over a

complete lattice has a fixed point moreover a monotone

transformation has a least fixed point, so

Proposition 1: The modified consequence transformation

modNTP has a fixed point. If P is positive, then this is the

least fixed point.

It can be shown that this fixed point is a model of P , but

lfp(NTP ) ⊆ lfp(modNTP ), so it is not a minimal model.

As the modifying of original transformation that is the mod-

ifyingalgorithm has no effect on the order of rules, therefore

it does not change the stratification. Therefore we can state

Proposition 2: In the case of stratified program P ,

modNTP has least fixed point as well.

Now we have all components together to define the concept

of a multivalued knowledge-base. But before doing it, it is

worth mentioning that the above modified consequence trans-

formation is not the unique way to connect the background

knowledge with the deduction mechanism, there could be other

possibilities as well.

Definition 7: A multivalued knowledge-base (mKB) is a

quadruple

mKB = (Bk, P,ΦP , cA),

where Bk is a background knowledge, P is a multivalued

Datalog program, ΦP is a function-set of P and cA is any

connecting algorithm.

The result of the connected and evaluated program is called

the consequence of the knowledge-base, denoted by

C(Bk, P,ΦP , cA).

So in our case C(Bk, P,ΦP , cA) = lfp(modNTP ).

Example 4: Let the IVS valued mDATALOG program

and the background knowledge be as follows

lo(x, y) ← gc(y), mu(x); (0.7, 0.9); ~IV G.

(fv(V ), (0.85, 0.9).

(mf(M), (0.7, 0.8).
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B V M

B (1, 1) (0.8, 0.9)
V (0.8, 0.9) (1, 1)
M (1, 1)

lo li gc fv mu mf

lo (1, 1) (0.7, 0.9)
li (0.7, 0.9) (1, 1)
gc (1, 1) (0.8, 0.9)
fv (0.8, 0.9) (1, 1)
mu (1, 1) (0.6, 0.7)
mf (0.6, 0.7) (1, 1)

According to the connecting algorithm, it is enough to consider

only the extended uncertainty functions of head-predicates. Let

these functions be as follows:

~ϕlo(~α,~λ, ~λ1, ~λ2) := min(~α,~λ, ~λ1 · ~λ2),

~ϕfv(~α,~λ, ~λ1) := min(~α,~λ, ~λ1),

~ϕmf (~α,~λ, ~λ1) := ~α · ~λ · ~λ1.

The modified consequence transformation takes shape in the

following steps:

X0 = {(fv(V ), (0.85, 0.9)), (mf(M), (0.7, 0.8))}

⇓ (according to the proximity)

X1 = modNTP (X0) = X0∪

{(gc(V ), ~ϕfv((0.85, 0.9), (0.8, 0.95), (1, 1)) =

(min(0.85, 0.8, 1), min(0.9, 0.95, 1)) = (0.8, 0.95)),

(fv(B), ~ϕfv((0.85, 0.9), (1, 1), (0.8, 0.9)) = (0.8, 0.9)),

(gc(B), ~ϕfv((0.85, 0.9), (0.8, 0.95), (0.8, 0.9)) = (0.8, 0.9)),

(mu(M), ~ϕmf ((0.7, 0.8), (0.6, 0.7), (1, 1)) =

(0.7 · 0.6 · 1, 0.8 · 0.7 · 1) = (0.42, 0.56))}

⇓ (applying the rules)

lo(M, V ) ← gc(V ), mu(M); (0.7, 0.9); ~IV G.

lo(M, B) ← gc(B), mu(M); (0.7, 0.9); ~IV G.

here : fV (~IV G, ~α, ~β) = min(~αbody, ~β), so

X2 = modNTP (X1) = X1∪

{(lo(M,V ), (0.42, 0.56)), (lo(M, V ), (0.42, 0.56))}

⇓ (according to the proximity)

X3 = modNTP (X2) = X2∪

{(li(M,V ), (min(0.42, 0.7, 1 · 1), min(0.56, 0.9, 1 · 1))),

(li(M,B), (min(0.42, 0.7, 1 · 1), min(0.56, 0.9, 1 · 1)))}∪

{(li(M,V ), (min(0.42, 0.7, 0.64), min(0.56, 0.9, 0.81))),

(li(M,B), (min(0.42, 0.7, 0.64), min(0.56, 0.9, 0.81)))}

X3 is a fixed point, so the consequence of the knowledge-base

is:

C(Bk, P,ΦP , cA) =

{(fv(V ), (0.85, 0.9)), (mf(M), (0.7, 0.8)),

(gc(V ), (0.8, 0.95)), (fv(B), (0.8, 0.9)),

(gc(B), (0.8, 0.9)), (mu(M), (0.42, 0.56)),

(lo(M, V ), (0.42, 0.56)), (lo(M,V ), (0.42, 0.56))

(li(M,V ), (0.42, 0.56)), (li(M,B), (0.42, 0.56))}

To illustrate our discussion with some realistic content,

in the above example the knowledge-base could have the

following interpretation. Let us suppose that music listeners

”generally”(level between 0.7, 0.9) are fond of the greatest

composers. Assume furthermore that Mary is a ”rather de-

voted” (level between 0.7, 0.8) fan of classical music (mf), and

Vivaldi is ”generally accepted” (level between 0.85, 0.9) as a

”great composer”. It is also widely accepted that the music of

Vivaldi and Bach are fairly ”similar”, being related in overall

structure and style. On the basis of the above information, how

strongly state that Mary likes Bach? To continue with this idea,

next we can assume that an internet agent wants to suggest

a good CD for Mary, based on her interests revealed through

her actions at an internet site. A multivalued knowledge-base

could help the agent to get a good answer. As some of the

readers may well know, similar mechanisms – but possibly

based on entirely different modelling paradigms – are in place

in prominent websites such as Amazon and others.

V. CONCLUSIONS

In this paper a possible model of multivalued knowledge-

base was introduced. The knowledge-handling of the model is

based on multivalued Datalog as a deduction mechanism and

multivalued proximity serving for handling some ”synonyms”.

Supposedly there is a lot of possibility for developing this

model. For example to work out an efficient evaluating al-

gorithm or to find another connection methods combinig the

background knowledge and the deduction mechanism to each

other.
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