
Evaluating DATALOG Programs over

Infinite and Founded Databases

EVELINA ZARIVACH

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Evaluating DATALOG Programs over Infinite and
Founded Databases

Research Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Computer Science

EVELINA ZARIVACH

Submitted to the Senate of the Technion – Israel Institute of Technology

Tevet 5768 HAIFA December 2007

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

The Research Thesis Was Done Under the Supervision of Dr. Yossi Gil

in the Faculty of Computer Science, Technion

THE GENEROUS FINANCIAL HELP OF THE TECHNION IS GRATEFULLY

ACKNOWLEDGED

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Acknowledgments

I would like to express my appreciation to people without whom this work would not be

completed.

I thank my advisor, Assoc. Prof. Yossi Gil, for his enormous help and endless patience.

He taught me that perfection has no limits.

I thank Dr. Sara Cohen for her valuable assistance and guidance during my thesis.

I also want to thank Itay Maman for his involvement, his help and encouragement.

Fruitful discussions with Elena Tulchinsky are gratefully acknowledged.

Thanks to my parents and my beloved husband Igor for their support and belief in me.

And last, but not least, I thank my precious daughter Emily, who was born two days after

my thesis examination, for waiting for the right moment to show up.

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Contents

1 Introduction 5

1.1 Function Symbols . 5

1.2 Open-World Software . 6

1.3 Access Constraints . 7

1.4 Related Work . 8

1.5 Contributions . 9

2 Preliminaries 10

2.1 Syntax . 10

2.2 Semantics . 11

2.3 Expansion Rules . 13

3 The Safety Problem 15

4 Single Rule Constraints Implication 18

5 Program Wide Constraints Implication 22

6 Deciding Weak Safety 29

7 Deciding Termination 31

7.1 Expansion Graphs . 35

7.2 Directionality in Expansion Graphs . 37

7.3 Reduced Expansion Graphs . 38

7.4 Bounded Repertoire of Reduced Expansion Graphs 40

8 Computability 42

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

9 A Top-Down Evaluation Algorithm 45

9.1 Some Intuition . 47

9.2 Correctness Proof . 52

9.2.1 Construction of the Adapted Program 52

9.2.2 Equivalence proof . 57

9.2.3 Termination . 61

10 Conclusion 65

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

List of Figures

2.1 A DATALOG program . 12

2.2 Representation of multi predicate from Figure 2.1. 13

4.1 Inference rules for causations . 19

7.1 Database as an infinite graph. 32

7.2 Hibernate jar files dependencies. 33

7.3 The expansion graph of expansion rule (7.1). 36

7.4 The reduced expansion graph of expansion rule (7.1). 39

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

List of Algorithms

1 closure(r, C, X) . 20

2 r constraints(r, C) . 21

3 program constraints(Π, C) . 23

4 idb eval(p, Q, X) . 46

5 rule eval(r, Q, X) . 47

6 atom eval(a, Q, X) . 47

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

List of Definitions

Definition 3.1: Positions Set and Finiteness Constraint 16

Definition 3.2: Constraint Satisfaction 16

Definition 3.6: Safe Program 17

Definition 3.7: Weakly Safe Program 17

Definition 3.8: Terminating Program 17

Definition 4.1: Rule Constraint Implication 18

Definition 4.2: Closure 20

Definition 5.1: Program Constraint Implication 22

Definition 7.1: Founded Database 32

Definition 7.3: Expansion Graph 36

Definition 7.4: Expansion Graph Isomorphism 37

Definition 7.5: Subgraph 37

Definition 7.7: Reduced Expansion Graph 39

Definition 8.1: Variable-Bound Predicate 44

Definition 9.4: Closure Sequence 53

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Definition 9.5: Adapted Rule 55

Definition 9.6: Adapted Program 55

1

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Abstract

Traditionally, infinite databases were studied as a data model for queries that may con-

tain function symbols (since functions may be expressed as infinite relations). Recently,

the interest in infinite databases has been sparked by additional scenarios, e.g., as a for-

mal model of a database of an open-world software or of other relations that may be

spread across the Web. In the course of implementing a database system for querying

Java software, we found that the universe of Java code can be effectively modeled as an

infinite database. This modeling makes it possible to distinguish between queries which

are “open-ended,” that is, whose result may grow as software components are added into

the system, and queries which are “closed,” in that their result does not change as the

software base grows. Further, closed queries can be implemented much more efficiently

than open queries.

This work revisits the weak safety and termination problems for recursive DATALOG

programs evaluated over infinite databases. In particular, an algorithm is presented that

computes all finiteness constraints for the IDB predicates of a program, given a set of

finiteness constraints over the EDB predicates. In addition to being of interest in itself,

this algorithm also presents an alternative method to check for weak safety and as a skele-

ton for query evaluation. A sufficient condition for program termination is also presented,

provided that the program and database satisfy certain natural constraints. These con-

straints are often satisfied in the context of software analysis problems. For programs that

satisfy these constraints, we also provide an algorithm to generate an efficient evaluation

scheme of closed queries, which is a generalization of Vieille’s famous QSQR algorithm

for top-down evaluation of Datalog programs. A by-product of this work is a rather terse

and elegant representation of QSQR.

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

2

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

List of Symbols

Symbol Denotes

A(r) set of adapted rules corresponding to a rule r

a atom

C set of finiteness constraints

CΠ set of constraints on IDB predicates implied by Π

C(F) set of all constraints that F satisfy

D database

D domain

F set of facts for EDB and possible IDB predicates

p predicate

pi the ith position of predicate p

px,y auxiliary predicate of p, x, y ⊆ pos(p)

q goal predicate

r rule

rx,y adapted rule of r which defines px,y

~r sequence of rules

X+
C,r closure of a set X ⊆ terms(r) with respect to C and

rule r

. . . , X, Y, Z sets of variables (upper-case boldface letters)

. . . , x, y, z variables (lower-case letters from the end of the al-

phabet)

. . . , x, y, z sets of positions (lower-case boldface letters)

γ expansion rule

Π DATALOG program

Π̃ adapted program of Π

3

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Symbol Denotes

Πi(F) the result of applying all rule sequences of Π on F
where each sequence is no longer than i

Πi
p(F) restriction of a set of facts to facts on predicate p

σ finiteness constraint

τ rule

ar(p) arity of predicate p

body(r) body of rule r

cls(r, x, C) closure sequence of r with respect to x and C
consts(a) set of all constants appearing in a

consts(Π) set of constants appearing in any rule of Π

edb(Π) EDB predicates of Π

head(r) head atom of rule r

idb(Π) IDB predicates of Π

min(C) minimized version of C
pos(p) set of positions of p, i.e.,

{
p1, . . . , par(p)

}

pred(a) predicate of an atom a

pred(r) predicate of the head of rule r, i.e., pred(r) =

pred(head(r))

terms(a) set of all terms appearing in a

vars(a) set of all variables appearing in a

4

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Chapter 1

Introduction

Usually, a database contains relations of finite size. However, there are natural settings

which can be better modeled by infinite databases, over which a set of finiteness con-

straints is defined. In this research we are interested in the safety problem, which is one

of most fundamental issues related to DATALOG [4] programs over infinite relations. We

say that a DATALOG program is safe, if it yields a finite result over all databases which sat-

isfy some given finiteness constraints. Instead of studying the safety problem directly, we

consider the weak safety and termination properties. Intuitively, a program (i) is weakly

safe if it yields a finite answer for all finite applications of its rules and, (ii) terminates if

every sequence of rule applications eventually ceases to yield new results.

To motivate our study of infinite databases, we describe below three different scenarios

which involve (some degree of) inherent infiniteness of the database.

1.1 Function Symbols

Classically, infinite databases were first introduced as an abstraction that allow programs

with function symbols to be modeled as function-free programs over infinite relations.

As an intuitive example, consider the following DATALOG program which contains two

function symbols:

q(x + 1) ← p(x).

q(x) ← q(
√
x), p(x).

5

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

As [21] showed, this program can be abstractly modeled as follows, where succ and sqrt

are infinite relations.

q(y) ← p(x), succ(x, y).

q(x) ← q(y), p(x), sqrt(x, y).

Finiteness constraints were introduced in [21] to model known characteristics of the func-

tion symbols, such that for each x, there are finitely many y such that sqrt(x, y) holds.

1.2 Open-World Software

Recently, the interest in infinite databases has been sparked by additional scenarios, e.g.,

as a formal model of a database of an open-world software or of other relations that

may be spread across the Web. Open-world software is infinite in the sense that it is

constantly growing, and thus, cannot be completely explored at any moment in time. For

example, given a class C, there may be an unbounded number of program classes that

inherit from C, that call a method from C, or that have as a data member an instance of

C. Thus, querying in the open-world software scenario is naturally modeled as querying

over infinite relations. This specific domain also gives rise to finiteness constraints, e.g.,

a class may inherit only from a finite number of classes.

Our study of infinite databases was motivated by JTL [5], a new DATALOG based

system for making queries over software, which uses infinite relations as its data model.

As an example of the usefulness of this paradigm for querying JAVA software, consider

the following JTL query, which finds (i) all public interfaces or (ii) all public interfaces or

classes that extend an abstract class or interface.

public [extends T, T abstract | interface];

The DATALOG program equivalent to the above is as follows.

q(x) ← public(x), p(x).

p(x) ← interface(x).

p(x) ← extends(x, y), abstract(y).

Note that public, interface, abstract and extends are EDB predicates. Although this pro-

gram is nonrecursive, it is also possible to express recursive programs in JTL.

6

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Even in an open-environment, finiteness constraints have a natural manifestation. For

example, the transitive closure of a “uses” relationship between programs is assumed to

be bounded. In other words, the programming model is such that, it is unknown which

classes may be using a given class, and in general, the number of these classes is un-

bounded. However, the list of classes that the given class uses, directly or indirectly, is

bounded, and must be available to the compiler at compile time. (This assumption is crit-

ical, as it allows a program to be compiled and executed by dynamically loading required

components.)

The software-engineering research community has regained interest in applying the

logic paradigm for implementing algorithms for processing software, and more generally,

frameworks for developing such algorithms. Prime examples of this interest include the

CodeQuest system for formulating queries on code [10], ALPHA [19], and JQuery [11].

Such systems are not limited to simple queries, but also e.g., advance frameworks for

dataflow algorithms [18] for developing such algorithms, and optimization schemes for

algorithms implemented in this framework [28], as well as efficient implementation of

specific algorithms [29]. Some less recent work for using the logic paradigm, and in

particular DATALOG, for these tasks include [7,22], as well as the ASTLog framework [6],

the XL C++ browser [12], and many more. Thus, the results in this framework can be

applied to additional software engineering systems, beyond JTL.

1.3 Access Constraints

Infinite databases can also be used as an abstraction for computation that is highly inef-

ficient. Consider, for example, a predicate tree(x, y), which holds pairs of parent-child

node ids in a tree structure. It may be the case that given a value for x, it is easy to com-

pute all values for y (since we have forward pointers), yet given a value for y, it is very

inefficient to compute x (if we do not store backward pointers). Such constraints have

been modeled in the past as access constraints (sometimes called binding patterns) and

the rewriting problem for queries with access constraints has been extensively studied,

e.g., [8, 9, 16]. An alternative modeling of such scenarios is to consider tree as an infi-

nite relation, with a finiteness constraint that specifies the manner(s) in which it can be

efficiently accessed.

We do not discuss the exact similarities and differences between these two alternative

7

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

models. However, it is of interest to note that our results shed some light on problems

related to querying with access constraints. For example, our algorithm for implication

of finiteness constraints can be adapted to imply access constraints over IDB predicates,

when given access constraints over the EDB predicates.

1.4 Related Work

The problem of deciding safety (i.e., finiteness of results) of a DATALOG program has

been extensively studied. Safety of recursive DATALOG programs without function sym-

bols, but with negation, is known to be undecidable [20, 25]. Safety is also undecidable

for DATALOG programs with function symbols [24]. This latter result motivated [21] to

abstractly model DATALOG programs with function symbols as function-free programs

over infinite relations. [21] also introduced finiteness constraints to model known charac-

teristics of function symbols.

The safety problem for DATALOG programs over infinite relations, with finiteness

constraints, was studied in [23]. In particular, [23] showed that safety can be reduced

to a combination of two properties: weak safety (i.e., finiteness of results for every finite

number of rule applications) and termination. They presented a method to determine weak

safety, and showed that termination is undecidable. For monadic programs, [23] proved

that safety can be determined in polynomial time.

Several stronger notions than safety have also been studied for programs over infinite

relations. Supersafety was considered in [13, 14] and shown to be decidable. Supersafety

is a sufficient, but not necessary, condition for safety. Intuitively, supersafety requires

finiteness of results in all fixpoint models, whereas safety requires finiteness of results

only in the least fixpoint model. A variant characteristic, called strong safety, was studied

in [15]. Basically, a program is strongly safe if all intermediate rules (and not only the goal

predicate) yield finite results. For a special case, [15] showed how to evaluate all results

for a strongly safe program, using a bottom-up computation. One of the requirements

in [15] is that each rule can be computed in a left-to-right ordering of its atoms, such that

the variables in a specific atom are bounded by those appearing to its left. Our results can

also be used to check such properties of rules.

8

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

1.5 Contributions

This work presents new results on the safety problem for DATALOG programs over infinite

relations. Our contributions can be summarized as follows.

• We present an algorithm (Chapter 4 and Chapter 5) to determine finiteness con-

straints on IDB predicates defined in a DATALOG program based on the finiteness

constraints defined on the EDB predicates. Our algorithm finds all finiteness con-

straints that must hold on the IDB after any finite number of rule applications. This

result is useful in itself since it gives us insight on the characteristics of the IDB

predicates, which can be important for developing query computation algorithms,

such as the type in [15].

• We present an alternative characterization, based on this algorithm, of DATALOG

programs which are weakly safe (Chapter 6).

• The termination problem is also considered (Chapter 7). Our EDB predicates can

be binary (as opposed to the monadic predicates considered in [23]). We decide

termination when the database is founded which is natural, in particular, in the

software model.

• A characterization of DATALOG programs which can be evaluated even if they re-

quire in their evaluation partial exploration of infinite values is presented (Chap-

ter 8). (This is the case if the program needs to check e.g., if a given class has

at least one class that inherits from it.) An actual evaluation algorithm, based on

the famous Vieille’s [26, 27] query-subquery top-down evaluation technique is pre-

sented in Chapter 9. (We believe that our presentation of the algorithm is a bit more

elegant and easy to understand than the original formulation.)

9

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Chapter 2

Preliminaries

This section briefly reviews the basic syntax and semantics of positive, recursive DAT-

ALOG programs, which are evaluated over a possibly infinite database. This review is

necessary in order to introduce the notation that we will be using throughout the research.

2.1 Syntax

Relations in DATALOG are represented by predicates, and are abstractly denoted with p

and q. We use ar(p) to denote the arity of the predicate p. When discussing concrete

examples of predicates, we will use the sanserif font, e.g., members, parent. For a predi-

cate p, we denote by p1, p2, . . . its positions.

Let V be an enumerable set of variable symbols and D be an enumerable set of

constant symbols. We shall use lower-case letters from the end of the Latin alphabet,

i.e., x, y, z, etc., to denote variables and upper-case bold letters to denote sets of vari-

ables X, Y, Z. Constants are quoted, e.g., ‘Moses’, ‘Isaac’, etc. Terms are either constants

or variables and are denoted t, t1, t2, etc.

An atom a is of the form p(t1, . . . , tn) where p is a predicate symbol of arity n and

each ti is a term. We use pred(a) to denote the predicate of a and we use ar(a) as a

shorthand notation for ar(pred(a)). For an atom a, we denote by ti(a) the term which

appears at position i. Terms which are mapped to a constant are said to be bound;

other terms are free. In parent(x, ‘Moses’), the first term is free while the second is

bound. A fact is a ground atom, i.e., an atom in which all arguments are bound. For

example, parent(‘Amram’, ‘Moses’) is a fact. The phrase p-fact refers to a fact a such

10

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

that pred(a) = p.

Let vars(a) (respectively consts(a)) denote the set of all variables (respectively con-

stants) appearing in atom a. Let terms(a) = vars(a) ∪ consts(a), i.e., terms(a) is the

set of all the terms appearing in the atom a. An assignment is a function µ : V → D. By

applying an assignment µ to an atom a, one derives a pred(a)-fact.

A rule r has the form p(t1, . . . , tk) ← a1, . . . , an, where p(t1, . . . , tk) is the head of r,

and a1, . . . , an is the body of r. We use the overloaded notation pred(r) to denote the

predicate of the head of r. If p = pred(r), we say that r defines p. We overload the

notations vars(r), consts(r) and terms(r) to represent all the variables, constants and

terms(respectively) appearing in rule r. For i = 1, 2, . . . , let termsi(r) be the ith element

of terms(r) in some enumeration of this set. In Figure 2.1, terms(τ6) = {x, y, w, ‘Bill’}.

A DATALOG program Π is a finite collection of rules, with a designated predicate,

called the goal. We use consts(Π) to denote the set of constants appearing in any rule

of Π, i.e., consts(Π) =
⋃

r∈Π consts(r) . We distinguish between two kinds of predicates

that appear in a program: (i) extensional database (EDB) predicates, denoted edb(Π),

which are predicates that do not occur in the head of any of the program’s rules, and

(ii) intensional database (IDB) predicates (all other predicates), denoted idb(Π). By con-

vention, we use q to denote the goal of a program. We always require that q ∈ idb(Π).

We assume that the goal predicate is defined by a single rule.

2.2 Semantics

A database D is a possibly infinite set of facts. To be exact, for each EDB predicate

p, the database D may contain infinitely many p-facts; D usually does not contain any

facts for the IDB predicates. The result of applying a rule r to a database D is defined

in the standard fashion. Informally, the semantics of a rule is “If the body atoms are

true then so is the head atom.” To make the semantics precise, we consider a set F
that contains facts for the EDB (and possibly for the IDB) predicates. Such sets are

intermediate values during the evaluation of a program on a database. Then, an application

of a rule r: p(t1, . . . , tk) ← a1, . . . , an to F produces a set of facts denoted r(F), such

that (1) every fact in F is in r(F), and (2) if µ is an assignment that satisfies the body of r

(i.e., µ(ai) ∈ F , for all i), then also µ(p(t1, . . . , tk)) ∈ r(F).

For a sequence ~r of rules, let ~r(F) denote the set of all facts obtained by applying

11

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Figure 2.1 A DATALOG program

τ1: heir(x, y) ← child(x, y).

τ2: heir(x, y) ← child(x, z), heir(z, y).

τ3: cousins(x, y, z) ← child(x′, z), child(x, x′),

child(y′, z), child(y, y′).

τ4: heirs(x, u, v) ← heir(x, u), heir(x, v), not eq(u, v).

τ5: multi(x, y) ← heirs(x, u, v), cousins(u, v, y),

dependant(x, y).

τ6: q(x, y) ← multi(x, y), heir(‘Bill’, x), child(w, ‘Bill’).

the rules in ~r in sequence to F , i.e., if ~r is empty, then ~r(F) = F . Otherwise, ~r = ~r′r,

where ~r′
is a sequence and r is a rule, in which case ~r(F) = r(~r′(F)). The nota-

tion Πi(F) will stand for the union of all ~r(F), where ~r is a sequence of at most i rules

selected from Π. Also, let Π∞(F) =
⋃

i≥0 Πi(F).

If p is a predicate, then subscript p will be used to denote the restriction of a set of

facts to p-facts only. Thus, Πi
p(F) is the set of p-facts in Πi(F), and ~rp(F) is defined

similarly. The result of applying Π to a database D is Π∞
q (D) where q is Π’s goal. Note

that Π∞
q (D) may be infinite if D is infinite.

For the purpose of illustration, Figure 2.1 presents a simple DATALOG program, which

will be used as the running example of this work. The program is defined over the follow-

ing EDB predicates: child, dependant and not eq. In particular, a fact child(‘c’, ‘p’) states

that ‘c’ is a “child” of ‘p’ and a fact dependant(‘a’, ‘b’) represents a fact in which ‘a’ de-

pends upon ‘b’. These predicates can be interpreted over the domain of JAVA classes, with

the “uses” semantics. It can also be interpreted over the domain of genealogy of characters

in the Bible (or Greek mythology for that matter), with the meaning of “preceding.”

The schematic representation of the multi predicate in the program of Figure 2.1 is

depicted in Figure 2.2.

12

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Figure 2.2 Representation of multi predicate from Figure 2.1.

������� � ���
	 �� ��������� �������
�

���� "! #%$
 �'&

#)('*
+-, .

/1032
46587 2 0 9 5;:=<>@?�A

BC DE
DFC
GHF
I

2.3 Expansion Rules

We will find it convenient to summarize the application of a rule sequence in a sequence

of expansion rules, i.e., rules which involve only EDB predicates. We will use γ to denote

a single expansion rule and Γ to denote a set of expansion rules. Fac. 2.1 is well known,

and follows, e.g., from [17].

Fact 2.1. For every finite sequence of rules ~r and every predicate p there exists a finite set

of expansion rules Γ which uses only the constants occurring in the rules of ~r, such that

~rp(D) =
⋃

γ∈Γ

γp(D)

regardless of D.

In our running example, applying τ1 and then τ4 is the shortest sequence of rule appli-

cations that generates heirs-facts. The expansion rule for this sequence is

heirs(x, u, v) ←child(x, u), child(x, v),

not eq(u, v).
(2.1)

13

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Similarly, one sequence that yields a multi-fact, is by applying first τ1 and τ4 (to ob-

tain heirs-facts), then τ3 (to obtain cousins-facts), and finally τ5. The corresponding ex-

pansion rule is similar to (2.1), but a bit longer

multi(x, y) ← child(x, u), child(x, v), not eq(u, v),

child(u′, y), child(u, u′), child(v′, y),

child(v, v′), dependant(x, y).

(2.2)

Recall that the result of applying a program Π, with goal q, to a database D is Π∞
q (D).

It follows from Fac. 2.1 that there exists an infinite series of expansion rules γ1, γ2, . . .

defining q such that

Π∞
q (D) =

∞⋃

i=1

γi
q(D). (2.3)

Henceforth, we shall tacitly assume that the head atom of any rule r does not contain

any variable v ∈ vars(r) more than once and does not contain constants. No generality

is lost. Rules can always be brought to this form without changing their semantics by

introduction of auxiliary variables and by using the infinite EDB predicate eq(x, y) which

holds whenever x = y. For example, rule

a(x, x, y, ‘Ben’) ← a(x, ‘Dan’, z).

will be transformed to

a(x, w, y, u) ← a(x, ‘Dan’, z), eq(w, x), eq(u, ‘Ben’).

14

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Chapter 3

The Safety Problem

In this section we present a theory of finiteness constraints which is crucial to the analysis

of the problem that we research. Informally, the problem is:

Given a DATALOG program and restrictions over its database, decide whether the

result of a program is finite for any infinite database that meets the restrictions.

One should understand that when there are no constraints on the database, nothing

meaningful can be stated about the program’s semantics. Even a simple DATALOG pro-

gram, such as

moses son(x) ← parent(‘Moses’, x).

can deduce an infinite number of facts to moses son predicate when no restrictions are

imposed on parent predicate.

Consider, on the other hand, a case in which we restrict the set of parent-facts in

the database such that for any ‘c’ ∈ D, the set {x | parent(‘c’, x)} is finite. Under this

restriction, we can conclude that the above program deduces only finitely many facts to

its goal. To express such restrictions, we use finiteness constraints, as defined in [21].

Definition 3.1. Let p be a predicate. Then, pos(p) is the set of symbols
{
p1, . . . , par(p)

}
,

and a finiteness constraint (constraint for short) of p is an expression of the form x Ã y,

where

x, y ⊆ pos(p).

15

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

A facts’ set F satisfies constraint x Ã y if the search for p-facts in F with some

fixed assignment to positions x, yields only a finite variety of combinations of values for

positions y. More formally,

Definition 3.2. Let σ = x Ã y be a constraint on predicate p and F be a set of facts.

Then, F |= σ (read F satisfies σ) if the set

{
b[y]

∣∣ b ∈ F and pred(b) = p and b[x] = a[x]
}

is finite for every p-fact a ∈ F . If C is a set of constraints, then F |= C if F |= σ for

all σ ∈ C.

As an example, consider the ternary predicate intersect, in which a

fact intersect(‘c1’, ‘c2’, ‘p’) states that ‘c1’ and ‘c2’ are two circles intersecting at

a point ‘p’. Then, (infinite) set of all facts about intersections of distinct circles in the

plane satisfies the constraint {intersect1, intersect2} Ã {intersect3}, since there are

at most two points in which such circles intersect. This set does not satisfy any other

constraints.

Remark 3.3. Using constraints it is possible to state that the number of p-facts, for some predi-

cate p, must be finite. Formally, this is written as ∅ Ã pos(p).

Remark 3.4. Note that finiteness constraints are a somewhat weaker version of functional depen-

dencies. Not surprisingly, Armstrong’s axioms also characterize finiteness constraints for EDB

predicates [21].

Let C(F) denote the set of all constraints that set F satisfies. The following fact is

easily shown.

Fact 3.5. For all finite sequences, F1, . . ., Fn

C(F1 ∪ · · · ∪ Fn) = C(F1) ∩ · · · ∩ C(Fn) (3.1)

(Unfortunately, this fact does not hold for infinite sequences.)

After defining the notion of finiteness constraints, we are ready to formally state the

central problem of the research. For the purpose of the following definitions, let Π be a

fixed DATALOG program, and let predicate q be its goal. Also let C be a set of constraints.

Then, the main problem of this research is to determine whether the set Π∞
q (D) is finite

whenever D |= C, i.e., to decide whether a given program is safe or not.

16

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Definition 3.6. Program Π is safe if Π∞
q (D) is finite whenever D |= C.

It has been shown that the safety problem can be reduced [23] to two problems: (i) the

weak safety problem, which is to decide whether any finite sequence of program rule

applications yields a finite number of facts to its goal, and (ii) the termination problem,

which is to decide whether there is a finite number of rule applications after which no new

facts are added to the program’s goal. Formally,

Definition 3.7. We say that Π is weakly safe with respect to C if the set Πn
q (D) is finite

for all n ≥ 0 whenever D |= C.

Definition 3.8. We say that Π is terminating with respect to C if there exists n ≥ 0 such

that Π∞
q (D) = Πn

q (D) whenever D |= C.

Fact 3.9. Π is safe iff it is both weakly safe and terminating [23].

It is also known [23] that the weak safety problem is complete for exponential time.

However, no algorithm has been shown to, given a program, deduce all constraints for

the IDB predicates that follow from the constraints on the EDB predicates, for all finite

applications of the program rules. Such an algorithm is the topic of Chapter 4 and of

Chapter 5. This algorithm is interesting of itself, since it proves that the finite implica-

tion problem for constraints is decidable. It is also useful as an alternative method for

determining weak safety (see Chapter 6) and as a skeleton for query evaluation.

17

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Chapter 4

Single Rule Constraints Implication

Let r be a rule, and C be a set of constraints. This section is concerned with the constraints

that can be inferred from C on the output of a single application of r.

Definition 4.1. Let σ be a constraint on pred(r). Then, C |=r σ (C implies σ in r) if for

every set of facts F , the set r(F) satisfies σ whenever F |= C.

Intuitively, C |=r σ means that if all constraints of C hold prior to an application of r,

then σ holds after a single application of r. Let Cr denote the set of all constraints implied

by C with respect to rule r, i.e., Cr = {σ | C |=r σ}.

Consider, for example, rule τ3 in the running example. For constraints set C =

{{child1} Ã {child2}}, we have

Cτ3 =
{
{cousins1} Ã {cousins3} ,

{cousins2} Ã {cousins3}
}
.

Now, a rule constraint (or a causation) is an expression of the form

X Ã Y

where X, Y ⊆ terms(r). For example, {x} Ã {z} is a causation of the rule τ3 defined

in Figure 2.1.

Inference in the context of rule r, must be done in terms of r’s vocabulary, that is the

set terms(r). We introduce mechanisms for vocabulary translation: For a p-atom a, we

introduce a function term2posa(·) which given a set of terms of a, returns the equivalent

set of p-positions, e.g., for a = p(x, ‘B’, y, x, ‘B’, y),

term2posa({x, ‘B’}) = {p1, p2, p4, p5} .

18

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Function pos2terma(·) is simply term2posa
−1(·). Also, for p-rule r with head atom h,

define function term2posr(X), where X ⊆ terms(r), as

term2posh(X ∩ terms(h)),

that is, convert to p-positions only terms occurring in the head. Function pos2termr(·) is

simply pos2termh(·).
To define the semantics of a causation σ = X Ã Y, we construct a (predicate-)

constraint

σ′ = term2posr′(X) Ã term2posr′(Y)

where rule r′ is constructed from r by selecting p′, a fresh predicate symbol not occurring

in r, and letting r′ be the p′-rule identical to r except that all members of terms(r) occur

in its head term, i.e., the bodies of r′ and r are the same, and the head of r′ is

h′ = p′(terms1(r), . . . , termsk(r)),

where k = | terms(r)|. We write C |=r σ (read C implies σ in rule r), or simply C |= σ

(read C implies σ) when the rule is clear from context, iff C |=r′ σ′.

To determine logical implications of causations, we present the following inference

rules which tell how one or more causations imply other causations. The inference rules

refer to any set of terms X, Y, Z ∈ vars(r).

Figure 4.1 Inference rules for causations

If Y ⊆ X, then X Ã Y.

If X Ã Y, then X ∪ Z Ã Y ∪ Z.

If X Ã Y and Y Ã Z, then X Ã Z.

(4.1)

The inference rules as presented in Figure 4.1 are almost an exact copy of the Arm-

strong’s axioms [2] for functional dependencies. It can be shown, that they form a sound

and a complete proof system for finiteness causations.

The notion of closure, which will be defined next, is useful when inferring causations

of a rule. Informally, a closure of terms set X consists of all the terms(r) which are

implied by X.

19

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Definition 4.2. The closure of a set X ⊆ terms(r) with respect to C and r, denoted X
+
C,r,

is the largest set Y ⊆ terms(r) such that C |=r X Ã Y.

For example, if C = {{child1} Ã {child2}}, and the rule is given by τ3 in the running

example, then

{y}+
C,τ3

= {y, y′, z} .

Lemma 4.1. There exists a polynomial-time algorithm which, given a rule r, a set C, and

a set X ⊆ vars(r), computes Y = X
+
C,r.

Proof. Initially, Y ← X. For all σ ∈ C and all atoms a ∈ body(r), if σ = u Ã v

and pos2terma(u) ⊆ y, then add pos2terma(v) to y. Iterate until Y ceases to change.

Algorithm 1 carries out the desired computation of closure.

Algorithm 1 closure(r, C, X)

Given a rule r, a constraints set C, and a set X ⊆ terms(r), re-

turn X+
C,r.

1: Let X+
C,r ← X ∪ consts(r)

2: Repeat

3: For all 1 ≤ i ≤ |body(r)| do // Fixed order iteration

4: Let ai be the ith atom of r

5: If there exist Y, Z ⊆ terms(ai) s.t.

(1) term2posai
(Y) Ã term2posai

(Z) ∈ C,

(2) Y ⊆ X+
C,r and

(3) Z * X+
C,r

then

6: X+
C,r ← X+

C,r ∪ Z // X
+
C,r implies also Z

7: end If

8: end for

9: until no more changes to X+
C,r

10: Return X+
C,r

20

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

The above algorithm runs in quadratic time in the size of the input (C, X and vars(r)).

There are at most |vars(r)| iterations (each iteration increases Y by one argument in the

worst case). In each iteration, all constraints in C are examined. There also exists a linear

time algorithm for the closure computation [3].

The closure procedure is used in Algorithm 2 which computes the set Cr of constraints

implied by C in r.

Algorithm 2 r constraints(r, C)

Return Cr for rule r and constraints set C.

1: Let Cr ← ∅
2: Let H ← terms(head(r))

3: For all X ⊆ H do // Find which variables are bound by X

4: For all Y ⊆ X+
C,r do // Adjust the result according to Definition 4.1

5: Cr ← Cr ∪ {term2posr(X) Ã term2posr(Y)}
6: end for

7: end for

8: Return Cr

The main loop of the algorithm, i.e., lines 3–5, is performed for all the subsets of

variables appearing in the head term. For each such subset X the algorithm computes

its closure X+. Now, since X Ã X+
C,r holds, it remains to translate this constraint (and

subconstraints of it) to constraints over pred(r).

Lemma 4.2. Algorithm 2 correctly computes Cr in time 2mO(n2), where m =

ar(pred(r)) + 1 and n is the length of vars(r) and C.

Proof. Omitted.

21

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Chapter 5

Program Wide Constraints Implication

Now that the means for inferring constraints within a single rule are established, we are

ready to study the more interesting problem, i.e., inference of constraints with respect to

an entire DATALOG program Π. In doing so, we will need to take into account the effects

of multiple applications of the same rule, the fact that an IDB may be defined by more

than one rule, and that the definition of different IDBs may be mutually recursive.

In this section let C be a fixed set of constraints on the extensional predicates of Π and

let D be a database, i.e., a set of p-facts, where p ∈ edb(Π).

Definition 5.1. Let p ∈ idb(Π) and let σ be a constraint on p. We say that C implies σ,

denoted C |= σ, if the set Πn
p (D) satisfies the constraint σ for all n ≥ 0 whenever D |= C.

Remark 5.2. The implication considered in this research is finite implication, i.e., a constraint is

implied if it holds in all finite number of rule applications. Deciding which constraints hold after

infinitely many applications, allows one to decide termination, and is therefore undecidable.

Henceforth, we shall assume that D satisfies C. Let Cp be the set of all the implied

constraints over p ∈ idb(Π), i.e., all constraints x Ã y, where x, y ⊆ pos(p) and C |=
x Ã y. Let CΠ denote the set of all the constraints on IDB predicates of Π.

Observe that if no facts are established for a certain predicate p, i.e., no p-facts exist

in F , then F satisfies any constraint σ = x Ã y, where x, y ⊆ pos(p), This is precisely

the circumstances for all p ∈ idb(Π), when program Π starts. The set F will continue to

satisfy σ if no rule defining p will ever generate facts that violate σ.

These observations are employed in Algorithm 3 which uses a fixed point evaluation

strategy for computing CΠ. Algorithm 3 maintains the set Pp of constraints for every

22

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Algorithm 3 program constraints(Π, C)

Given a program Π, and a set C of constraints over its extensional predicates, return CΠ.

1: For all p ∈ idb(Π) do // find IDB candidate constraints

2: Let Pp ← {x Ã y | x, y ⊆ pos(p)}
3: end for

4: let CΠ ← C ∪ ⋃
p∈idb(Π) Pp // add candidates to CΠ

5: Repeat // Invalidate constraints until each Pp is reduced to Cp

6: For all p ∈ idb(Π) do // refine Pp as implied by CΠ

7: For all α ∈ Π, pred(α) = p do // examine all p-rules

8: let Cα ← r constraints(α, CΠ)

9: CΠ ← CΠ \ Pp // forget all p-constraints regarding p

10: Pp ← Pp ∩ Cα // remove constraints not preserved by α

11: CΠ ← CΠ ∪ Pp // revive p-constraints preserved by α

12: end for

13: end for

14: until no changes in CΠ

15: Return CΠ

intensional predicate p ∈ Π. Initially, the algorithm assumes that all the constraints are

satisfied by the set F of p-facts (line 2). Then, the algorithm iteratively eliminates the con-

straints which are definitely not satisfied by F until a fixed point is reached. In particular,

a constraint σ is in Cp, if σ is implied (in a steady state) by all the rules defining p.

Before moving on towards a correctness proof, we would like to demonstrate the run

of the algorithm on a concrete example. Consider the following program which computes

Bill’s ancestors in its goal predicate.

Example 5.3.

r1: q(y) ← heir(‘Bill’, y).

r2: heir(x, y) ← child(x, z), heir(z, y).

r3: heir(x, y) ← child(x, y).

(5.1)

Here the heir predicate is defined in the same way as in our running example (see

Figure 2.1). Assuming that {child1} Ã {child2} , the algorithm will infer constraints

over heir and q predicates.

23

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

At its initialization (line 2) the algorithm creates two sets:

Pq = {∅ Ã {q1}} , (5.2)

and

Pheir = {∅ Ã {heir1} , ∅ Ã {heir2} ,

{heir1} Ã {heir2} ,

{heir2} Ã {heir1}}
(5.3)

Let us assume that in the main loop (lines 5–14) the algorithm first handles the pred-

icate q and then the predicate heir. Also, assume that the recursive heir-rule is examined

first (line 7). Then, Algorithm 3 updates the sets Pq and Pheir as follows:

1. The 1st examination of rule r1 remains the set Pq unchanged.

2. The 1st examination of rule r2 reduces the set Pheir by two constraints:

∅ Ã {heir1} and {heir2} Ã {heir1}.

3. The 1st examination of rule r3 also eliminates ∅ Ã {heir2} from Pheir.

At this stage the set contains only one constraint, i.e.,

Pheir = {{heir1} Ã {heir2}} .

4. Any subsequent examinations of the program’s rules remain the constraints sets

unchanged.

Thus, the output of the algorithm is

Pq = {∅ Ã {q1}} ,

Pheir = {{heir1} Ã {heir2}} .

24

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

A bit of notation is required in reasoning about the algorithm. We assume that the

algorithm uses a fixed order for iterating over predicates and rules. With this order, there

is a global enumeration of the iterations of the inner loop (lines 9–11).

An ith superscript attached to a variable used by the algorithm denotes the value of

this variable at the beginning of the ith iteration. For example, P3
p is the value of Pp at the

beginning of the 3rd execution of the inner loop, i.e., the value which is assigned to Pp at

the 2nd execution of line 10. With this notation we have,

Ci
Π = C ∪

⋃

p∈idb(Π)

P i
p (5.4)

for all i > 0, while the main computation carried out by the algorithm, i.e., line 10, can

be written as the following recursion

P i+1
p =

P i
p ∩ r constraints(αi, Ci

Π) if pred(αi) = p,

P i
p otherwise.

(5.5)

for all p ∈ idb(p) and all i > 0.

An ∗ superscript will denote the value of a variable at the end of the last iteration (for

now just assume that the algorithm always terminates). It is mundane to check that the

sequence of approximations to every individual predicate are non-increasing, i.e.,

P1
p ⊇ P2

p ⊇ · · · ⊇ P∗
p . (5.6)

Also, the sequence of approximations to the collective set of constraints is non-increasing,

i.e.,

C1
Π ⊇ C2

Π ⊇ · · · ⊇ Cm
Π ⊇ Cm+1

Π = C∗
Π, (5.7)

where m is the total number of iterations. (It is convenient to assume that there is an

empty dummy iteration which takes place after the last iteration, in which no variables

are changed.)

Examining the computation carried out at iteration i we determine that if a set of

facts F satisfies Ci
Π, then an application of rule αi to F results in a set of facts which

satisfies Ci+1
Π , and in particular P i+1

p . Formally,

F |= Ci
Π ⇒ αi

p(F) |= P i+1
p . (5.8)

25

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Also, it follows from the termination condition (line 14) that no rule application can gen-

erate facts that violate C∗
Π, i.e,

F |= C∗
Π ⇒ r(F) |= C∗

Π. (5.9)

for all r ∈ Π.

Lemma 5.1. Set C∗
Π bounds below the constraints in any run of Π, i.e., C∗

Π ⊆ C(~r(D)) for

every sequence ~r with rules drawn from Π.

Proof. By simultaneous induction on n = |~r|, noting that

C∗
Π = C ∪

⋃

p∈idb(Π)

P∗
p .

If n = 0, then ~r(D) = D and by assumption D satisfies C. Also, all sets ~rp(D) are empty,

and hence satisfy all possible constraints and in particular P∗
p .

Let n > 0, then let ~r′
be a sequence and r be a rule such that ~r = ~r′r. By the inductive

hypothesis,

C∗
Π ⊆ C(~r′(D)),

i.e., ~r′(D) |= C∗
Π. Using (5.9) with ~r′(D) we obtain

r(~r′(D)) |= C∗
Π,

i.e.,

C∗
Π ⊆ C(~r(D)).

The lemma also implies that P∗
p ⊆ C(~rp(D)), for all p ∈ idb(Π) and for every

sequence ~r of Π’s rules.

We now consider the particular sequence of rules that the algorithm selects in the

course of its run. Let ~α be a prefix of the sequence of αi’s, i.e.,

~α = α1 · · ·αk for some k ≥ 0.

Lemma 5.2. For all p ∈ idb(Π), it holds that

C(~αp(D)) = Pk+1
p .

26

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Proof. By induction on k for all p ∈ idb(Π). The inductive base holds since if |~α| = 0,

then ~αp(D) = ∅, and P1
p is the set of all constraints.

Consider the case that k > 0. Let ~α′ = α1 · · ·αk−1, i.e., ~α = ~α′αk. By the inductive

hypothesis,

C(~α′
p(D)) = Pk

p . (5.10)

If αk does not define p then

~α′
p(F) = ~αp(F)

for all F . It follows from (5.5) that Pk+1
p = Pk

p , and the induction step holds.

Otherwise, let ∆ be the set of p-tuples which the application of αk produced, i.e.,

~αp(D) = ~α′
p(D) ∪ ∆, (5.11)

Applying Fac. 3.5 we obtain

C(~αp(D)) = C(~α′
p(D)) ∩ C(∆). (5.12)

Lemma 4.2 establishes

C(∆) = r constraints(αk, Ck
Π).

The lemma now follows by applying again (5.5) and using the inductive hypothesis (5.10).

Theorem 5.1. There exists an exponential time algorithm which computes CΠ.

Proof. Lemma 5.1 implies that Algorithm 3’s return value, C∗
Π, does not contain invalid

constraints, i.e., C∗
Π ⊆ CΠ. To show that there is no valid constraint which C∗

Π does not

contain, apply Lemma 5.2 in the case |~α| = m, i.e., the longest such ~α. From (5.4) it

follows that

C(~α(D)) = Cm+1
Π

which, using (5.7) implies

C(~α(D)) = C∗
Π.

27

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

It follows that C∗
Π ⊇ CΠ.

To see that the algorithm terminates, use (5.7) while noticing that C1
Π is finite, and Ci

Π

must decrease after every m iterations, where m is the number of rules in Π. The runtime

of the algorithm is exponential in the worst case, since the set of all possible constraints

of predicate p, i.e., the value computed at 4, is exponential in ar(p). Thus, C1
Π may be ex-

ponentially sized, and it could be the case that each iteration eliminates only a polynomial

number of constraints.

Note that CΠ as received by Algorithm 3 may contain redundant constraints. For

example, if {p1} Ã {p1, p2, p3} ∈ CΠ then CΠ also contains {p1} Ã {p1} and {p1} Ã

{p2} and etc. Precisely, there are 23 = 8 constrains which represent what is constrained

by {p1}. This is the result of Algorithm 2 (see line 5).

Sometimes we would like to work with the minimized version of CΠ, denoted min(CΠ),

in which no redundant constraints of this kind present. In particular, min(CΠ) holds that

if x Ã y ∈ min(CΠ), then there are no constraints x Ã z ∈ min(CΠ) such that z ⊆ y.

28

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Chapter 6

Deciding Weak Safety

In this section we present the theorem which decides the weak safety problem.

Theorem 6.1. Let Π be a DATALOG program, and let q be its goal. Then, Π is weakly

safe iff C |= ∅ Ã pos(q).

Proof. If Π is weakly safe, then according to Definition 3.7,

Πn
q (D)

is finite for all n ≥ 0 whenever D |= C. The above is possible only if C |= ∅ Ã pos(q).

Conversely, assume that C |= ∅ Ã pos(q). Then, by Definition 5.1, the set

Fn = Πn
q (D)

satisfies ∅ Ã pos(q) for all n ≥ 0 whenever D |= C. Finally, according to Definition 3.2

it follows that the set

{a | a ∈ Fn ∧ pred(a) = q}

is finite for all n ≥ 0. The claim follows.

Consider, for example, the following DATALOG program, which computes ancestors

of ‘Rachel’:

heir(x, y) ← child(x, y).

heir(x, y) ← child(x, z), heir(z, y).

rachel ancestor(x) ← heir(‘Rachel’, x).

(6.1)

29

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Suppose that the input database of program (6.1) satisfies C = {{child1} Ã {child2}}.

Algorithm 3 deduces that

{heir1} Ã {heir2}

holds and so is ∅ Ã {rachel ancestor1}. The last constraint implies that any finite number

of rule applications deduces finitely many rachel ancestor-facts. This observation makes

program (6.1) weakly safe.

Remark 6.1. Theorem 6.1 establishes that CΠ can be used to decide weak safety. But, since

weak safety EXP-time complete [23], it is no wonder that our algorithm for computing CΠ is

exponential.

30

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Chapter 7

Deciding Termination

If a program is weakly safe, then any finite number of rule applications contributes a

finite number of facts to the program semantics. However, the result of a weakly safe

program may include an unbounded number of facts, since in general, the number of rule

applications is unbounded. Indeed, Sagiv and Vardi [23] showed that the independent

problem of termination is undecidable, without being able to produce an algorithm for

determining termination in the case that weak safety is known, or conversely, to prove

that no such algorithm exists.

This section sets conditions, common in tasks of processing software, which exclude

the situation that a program is weakly safe yet not terminating.

Specifically, we show that every weakly safe program is also terminating whenever

the database is founded.

We start from informal definition of founded database which is quite intuitive.

Founded databases are restricted to contain only binary EDB predicates. Therefore it

is natural to represent a database as an infinite graph, in which edges correspond to facts.

For each predicate p having the constraint {p1} Ã {p2}, an edge c1 → c2 is created for

each fact p(c1, c2). Similarly, for each predicate p having the constraint {p2} Ã {p1}, an

edge c2 → c1 is created for each fact p(c1, c2). We say that a database is founded if every

infinite path contains only finitely many vertices.

Consider Figure 7.1 which schematically represents database as an infinite graph.

Here the database contains at least three EDB predicates: p, p’ and p”. Edges marked

with a predicate name represent facts of that predicate. In this figure one can see an in-

finite path. If the represented database is founded, then the path traverses only finitely

31

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

many vertices.

Figure 7.1 Database as an infinite graph.

JJJ

JJJ

Now we are ready to define precisely what founded database means.

Definition 7.1. A database D satisfying a set of constraints C is founded if:

1. all EDB predicates are binary

2. there are only finitely many distinct elements in every infinite sequence `1, `2, . . . in

which every consecutive pair `i, `i+1, i ≥ 1 satisfies at least one of the following:

(a) p(`i, `i+1) holds for some EDB predicate p and {p1} Ã {p2} ∈ C

(b) p(`i+1, `i) holds for some EDB predicate p and {p2} Ã {p1} ∈ C.

Consider the database which represents relations between programming units. Such

database contains relations such as “inherits”, “calls”, “depends” etc. It is obvious to see

32

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

that this database is founded, since the number of units used by a certain programming

module must be finite (otherwise the compilation process will never end).

For a more concrete example consider JAVA jar files which may be dependent one

upon the other, sometimes even in a cyclic way. This kind of dependencies can be found

in Hibernate [1] open-source project. Hibernate is an object-relational mapping library for

the JAVA language, which provides a framework for mapping an object-oriented domain

model. It contains 36 jar files with over 70 dependencies between them.

Figure 7.2 partially illustrates dependencies between Hibernate jar files.

Figure 7.2 Hibernate jar files dependencies.

Here, a cyclic dependency exists between two jar files: jaxen 1 1 beta 7 and

33

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

dom4j 1 6 1. Therefore, infinite sequences of jar files are possible. Nevertheless, all

infinite sequences must contain finitely many elements due to reasons explained before.

Remark 7.2. One may mistakenly think that for an infinite sequences to contain finitely

many elements it must recurse indefinitely in a cycle. This is not the case. Consider the

transcendental number e, the base of the natural logarithm. Since e is irrational number,

its decimal expansion never terminates nor repeats itself. Yet’, it contains at most 10

distinct digits.

Now we are ready to state the central theorem of this section.

Theorem 7.1. Let D be a founded database satisfying the set of constraints C. Then, if Π

is weakly safe with respect to C, then it is also terminating over D.

The theorem can be made a bit more general, dealing with unary EDB predicates. To

simplify the presentation, we omit this generalization.

Henceforth assume that Π is indeed weakly safe with regards to C and D is founded.

To prove the theorem we first write the yield of q-facts of every possible sequence of rule

applications as a set of expansion rules defining q (as in (2.3)).

In the running example, an expansion rule that corresponds to the shortest sequence of

rule applications that may generate a q-fact is obtained by adding two atoms to the body

of expansion rule (2.2):

q(x, y) ← child(x, u), child(x, v), not eq(u, v), child(u′, y),

child(u, u′), child(v′, y), child(v, v′),

dependant(x, y), child(‘Bill’, x), child(w, ‘Bill’).

(7.1)

Fix an enumeration of these rules, γ1, γ2, The proof is carried out by showing that the

set

∞⋃

i=1

(
γi(D) \ D

)

is finite. We show in fact that there is a finite set of representative rules (which are not

necessarily expansion rules)

γi1 , . . . , γik ,

34

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

such that for every expansion rule γi there is a representative rule γj , where j ∈
{i1, . . . , ik} such that

γi(D) ⊆ γj(D).

Theorem 7.1 will follow from the observation that each such

γj(D) \ D

is finite when Π is weakly safe.

7.1 Expansion Graphs

Let γ and γ′ be two expansion rules which define q. When can we be certain that γ(D) =

γ′(D)? This is obviously the case when γ can be obtained from γ′ by reordering body

atoms and renaming of temporary variables, i.e., variables not occurring in the head. To

capture this equivalence we represent each expansion rule γi as an edge- and vertex-

colored graph Gi. We shall argue that rules γi and γj generate the same set of q-facts if

their graphs are isomorphic (differ only in names of vertices with the same color).

The intuition behind representative rules creation goes one small step further. We

argue that the additions of vertices or edges to Gi cannot increase γi(D). Also, in the case

that D is founded, there is a limited variety of such graphs. The set γi1 , . . . , γik is created

so that one of Gi1 , . . . , Gik is a subgraph of Gi for an arbitrary i.

The graph representation of an expansion rule γ is obtained by making an edge for

each atom a which occurs in the body of γ. (This is possible since by definition pred(a) ∈
edb(Π) and by assumption ar(a) = 2.) The graph vertices are precisely terms(γ). We

partition this set into three disjoint subsets:

1. sources, defined by

sources(γ) = {t | t ∈ terms(γ) ∧ C |=γ ∅ Ã {t}} ,

2. targets, given by the set targets(γ), which are variables occurring in the head of γ,

and

3. temporaries, which are all the remaining variables, denoted by free(γ)

35

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Note that if a program Π is weakly safe, then there exists at least one source in the

expansion graph. However it can be the case that there are no targets in the graph. This

occurs when the goal predicate is boolean (i.e., contains no terms in its head).

The graph representation of expansion rule (7.1) is depicted in Figure 7.3. In this

example, the only source is ‘Bill’, targets are x and y, while the temporaries are u, v, u′, v′

and w.

Figure 7.3 The expansion graph of expansion rule (7.1).

KMLONQP R

SUT�VXWZY
[\]_^`a

bUc�d egf
hgi�jQk l

mUnOoQpZq

The formal definition of this graph representation is as follows.

Definition 7.3. Let γ be an expansion rule. Then the expansion graph of γ has terms(γ)

as vertices. Each source and each target is assigned a unique color, whereas the tempo-

raries are colored with a common neutral color. For each atom p(v, v′) in the body of γ,

this graph has a p-colored (v, v′).

We see that in Figure 7.3, there are a total of 10 edges, one for each body atom in (7.1).

The graph uses three different colors (i.e., labels) for edges, one for each EDB predicate.

Also, there are four colors for vertices (i.e., for ‘Bill’, x, y and the temporary variables).1

Clearly, any program Π sets a finite palette of colors that any graph G may use. We

will study the family of such graphs that Π may generate.

Definition 7.4. An expansion graph G = (V, E) is isomorphic to an expansion

graph G′ = (V ′, E ′), if there is a bijective function

f : V → V ′,

1In a printout of this work, the colors of the vertices may not be apparent.

36

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

such that f(v) = v if v is a source or a target, and if 〈u, v〉 is an edge in E with color p,

then 〈f(u), f(v)〉 is an edge in E ′ with color p.

It should be obvious that an expansion rule can be constructed from every expansion

graph. Also, if two graphs are isomorphic, then the rules obtained from them produce the

same set of q-facts.

Definition 7.5. Graph G is a subgraph of a graph G′ if G is isomorphic to a graph

obtained from G′ by removing any number of edges and vertices.

Lemma 7.1. Let γ and γ′ be expansion rules, and let G and G′ be (respectively) their

expansion graphs. Then, if G is a subgraph of G′, then

γ′(D) ⊆ γ(D).

Proof. The atoms in the body of γ make a subset of the atoms of the body of γ′.

7.2 Directionality in Expansion Graphs

A p-colored edge (v, v′) in an expansion graph represents an atom p(v, v′) in the rule. To

represent EDB constraints, we shall assign directionality with edges: if

{p1} Ã {p2}

holds, then edge (v, v′) is co-directed, i.e., its direction is from v to v′. But, if

{p2} Ã {p1}

holds then (v, v′) is contra-directed, i.e., its direction is from v′ to v, opposing the edge

syntax. The edge will be bidirectional if p has both constraints, and will be undirected

if p has no constraints associated with it.

Arrows are used in Figure 7.3 to denote edge directions. In this example, there is only

one undirected edge, and no bidirectional or contra-directed edges. All the other edges

are co-directed.

Edge directions in the graph of an expansion rule γ, represent causations of γ due

to EDB constraints. Moreover, the implied causations of γ are obtained by a simple

37

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

transitive closure of the directionality relation: a directed path is a path in an expansion

graph which traverses edge only according to their directionality. Thus, directed paths

cannot traverse undirected edges.

We use directed paths to infer new causations. In fact, examining Algorithm 2 we

obtain,

Lemma 7.2. Let γ be an expansion rule of Π, and let G be its expansion graph. Then,

C |=γ {x} Ã {y}

if and only if there exists in G a directed path from node x to node y.

The set of constraints on q that an expansion rule γ imply may be quite general.

However, for weakly safe programs, there is a common core to all these sets:

Lemma 7.3. Let γ be an expansion rule of a weakly safe program Π which defines q.

Then,

C |=γ ∅ Ã pos(q).

Proof. Follows from Theorem 6.1 and Definition 5.1 and the fact that γ equals to a finite

sequence of Π’s rules.

Combining the above two lemmas we obtain:

Corollary 7.6. Let γ be an expansion rule of Π and let G be its expansion graph. Then,

for every target t ∈ targets(γ) there is a source s ∈ sources(γ) such that there exists a

directed path in G leading from s to t.

Let a computational path be as in the above corollary, i.e., a directed path leading

from a source to a target. Figure 7.3 for example, has exactly four computational paths,

all starting at vertex ‘Bill’; one of these ends in vertex x while the other three end in

vertex y.

7.3 Reduced Expansion Graphs

To finish the proof of Theorem 7.1, we shall use the directionality of expansion graphs,

together with the foundedness property of the domain, to restrict the number of possible

38

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

such graphs. Corollary 7.6 established that each target is defined by at least one computa-

tional path. We shall argue that in the conditions of the theorem: (i) the number of sources

and targets is bounded; (ii) the number of distinct values, which can be assigned to every

internal nodes of any computational path is bounded; and (iii) edges which do not take

part in computational paths are immaterial in a sense.

Claim (i) is obvious, since any given DATALOG program has a bounded number of

constants. Also, there are finitely many sources due to predicates having constraints of

the form ∅ Ã x. Claim (ii) is the subject of Section 7.4. Claim (iii) can be stated more

formally with the following definition

Definition 7.7. Let G be an expansion graph of γ. The reduced graph of G, denoted G̃, is

a graph obtained from G by removing all edges which do not appear in any computational

path.

The reduced expansion graph of expansion rule (7.1) is depicted in Figure 7.4. Ob-

serve that the not eq-edge has been removed, as well as the incoming child-edge to the

node ‘Bill’.

Figure 7.4 The reduced expansion graph of expansion rule (7.1).

r�s=t u v
w'xUy z){

|~}�� �Q�
� ��� � �

Clearly, every reduced graph G̃ defines a q-rule (which is not necessarily an expansion

rule of Π). Since the reduction process preserves all computational paths, and these paths

go along EDB constraints, then the number of q-facts that this rule produces is finite.

Lemma 7.4. Let γ be an expansion rule, G be its expansion graph, and γ̃ be the rule

of G̃. Then γ̃q(D) is finite, and

γ(D) ⊆ γ̃(D)

for any D.

39

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Proof. Follows from Lemma 7.1 and Corollary 7.6.

7.4 Bounded Repertoire of Reduced Expansion Graphs

Lemma 7.4 established the process by which the selection of representatives is carried

out: Start from all q-rules in

γ1, γ2,

For each such rule, build its expansion graph Gi, and then its reduced expansion graph G̃i.

The representatives γi1 , . . . , γik are nothing but the rules of the graphs G̃i.

We cannot show that the number of distinct reduced expansion graphs is finite. Instead

we show that there is a bound beyond which expansion graphs cannot yield new q-facts.

To do so, recall how a reduced graph (actually the rule which it defines) is used to de-

duce q-facts. Every such fact is produced by a consistent assignment of values drawn

from D to all nodes in the reduced graph. The assignment to constant nodes is fixed by

the rule; the search is for assignments to the remaining variable nodes. An assignment is

consistent if it satisfies the property that if values `, `′ ∈ D are respectively assigned to

nodes n and n′, which are connected by a p-edge, then the tuple p(`, `′) must be in D.

As a less theoretical approach for deducing q-facts, we represent the domain D as a

directed edge-colored graph GD = (VD, ED), where VD = D and ED is constructed as fol-

lows. There is a p-colored edge (`, `′) ∈ ED for each fact p(`, `′) ∈ D. The directionality

of the edges are set in the same manner as in expansion graphs, i.e., according to predicate

constraints.

Now, given a computational path g we can find consistent assignments to nodes of g

by simply traversing the graph GD. Precisely, consider a p-colored edge (n, n′) of g.

Let constsn ⊂ D be the set of values assigned to the node n. Then, the set of val-

ues constsn′ which will be assigned to the node n′ is found by examining all the p-edges

of graph GD which start at nodes constsn. In particular, a value c′ ∈ D will be assigned

to the node n′ if there is a p-colored edge (c, c′) ∈ ED such that c ∈ constsn. The above

description gives rise to a process by which a consistent assignment to g nodes is found.

This process is nothing else than BFS traversal of GD which starts at the source of the

computational path g and terminates after k steps, where k is the length of g.

40

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Consider all nodes in all possible reduced expansion graphs of a DATALOG pro-

gram Π. Let consts∗(Π) be the set of all different values from D which can be consistently

assigned to these nodes. To complete this section we would like to show that consts∗(Π)

is finite whenever Π is weakly safe and a database D is founded. To do so we prove that

the set of values reachable from the sources of all the reduced expansion graphs in GD is

finite. Let sources∗(D) denote this set. Then,

Lemma 7.5. If D is founded, then sources∗(D) is finite.

Proof. The resulting graph GD has a bounded out-degree, because the directionality of the

edges is according to finiteness constraints and because there are finitely many predicates.

Also, the number of sources in all the expansion graphs is finite, therefore it is finite in

all the reduced such graphs (see claim (i) in Section 7.3). Now consider a search of BFS

algorithm on graph GD to reveal the reachable values sources∗(D) from a finite set of

sources. After each step during the run, the number of exposed values is finite. Such

search with bounded out-degree can reach an unbounded number of values, only if it can

progress infinitely. This is prevented by the fact that D is founded.

Finally, we show that for any program Π

consts∗(Π) ⊆ sources∗(D). (7.2)

Informally, consider a computational path g in some reduced expansion graph. Then, the

BFS search on GD must have revealed all the values of assignment to the nodes of g since

it traversed all the outgoing edges of nodes unconditionally of their color.

It follows from (7.2) and Lemma 7.5 that the number of different assignments to tar-

get nodes in reduced expansion graphs is finite. Therefore, there is a finite number of

such graphs which generate all these assignments, thereby completing the proof of Theo-

rem 7.1.

41

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Chapter 8

Computability

Having shown that every weakly safe program defined over founded database is safe, it is

only natural to ask how such programs may be evaluated. After describing our computa-

tion model, this section discusses which programs may be computed in this model.

We continue to assume that all EDB predicates are binary. Let p be such predicate, D
be a database. Then, similarly to [21], we assume the following:

• given constants (c, c′), one can determine in finite time whether p(c, c′) ∈ D,

• if {p1} Ã {p2} (resp. {p2} Ã {p1}), then given a constant c, it is also possible to

find in finite time all constants c′ such that p(c, c′) ∈ D (resp., p(c′, c) ∈ D), and

• if ∅ Ã {p1} (resp. ∅ Ã {p2}), then we can find in finite time all constants c, such

that there exists a constant c′ for which p(c, c′) ∈ D (resp. p(c′, c) ∈ D).

Note that in the absence of constraints, one cannot find in finite time all constants c′

such that p(c, c′) ∈ D, (nor respectively, p(c′, c) ∈ D).

We say that Π is computable if there is an algorithm, that only accesses the database

according to the rules of our computational model and correctly computes the result of Π

in finite time. It may first seem that if a program is safe, then it is also computable. In

this section we prove that safety is a necessary but not a sufficient requirement for com-

putability of a DATALOG program and present a theorem which settles the computability

problem for safe programs defined over founded databases. Then, Chapter 9 presents an

evaluation algorithm for safe programs.

42

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

To see that safe programs are not necessarily computable, consider the following pro-

gram Π, which is aimed to find all the parents y on which parent ‘Bill’ depends.

τ1: parents(x, y) ← child(w, x), child(z, y).

τ2: dep parents(x, y) ← dependant(x, y), parents(x, y).

τ3: q(y) ← dep parents(‘Bill’, y).

(8.1)

Then,

CΠ = {{dep parents1} Ã {dep parents2} , ∅ Ã {q1}}

can be inferred with the supposition that child and dependant predicates satisfy the fol-

lowing constraints:

C =
{
{child1} Ã {child2} ,

{dependant1} Ã {dependant2}
}
.

Since CΠ contains ∅ Ã {q1}, we have (Theorem 6.1) that this program is weakly

safe. Also, since D is founded, it is also terminating by Theorem 7.1. Neverthe-

less, it is impossible to compute its output, because for any assignment µ to D and an

atom t = parents(x, y) it is undecidable whether µ(t) holds. The difficulty here is that

the evaluation process must find a child of x and a child of y to prove that x and y are

indeed parents. Now, if the evaluation algorithm does find such children, it can conclude

that parents(x, y) holds. But, what should the algorithm do if it does not find any children

of x?

Missing such evidence may be due to the fact that x indeed does not have children.

Still, lack of evidence, could be a result of evaluation procedure’s failure to explore the

infinite database. In the genealogical interpretation, it could be that x has not yet given

birth to children, or that these children exist but in a remote part of the universe. In

the software interpretation, it could be that a software engineer, in a very remote galaxy,

has implemented a class that inherits from x, but the evaluation algorithm did not have

sufficient resources to find this inheriting class.

If one is willing to permit similar existential queries in the algorithm, then any pro-

gram which is terminating can also be evaluated. Under our computational model exis-

tential queries are not always allowed. Hence, it is sometimes not possible to evaluate

even a terminating program. To preclude such queries from DATALOG programs we re-

strict program’s predicates to be “recognizable”, i.e., given c1, . . . , ck constants for a k-ary

43

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

predicate p, it is possible to decide whether p(c1, . . . , ck) is a fact. Note that every EDB

predicate (trivially) satisfies this property. The following definition states it formally for

IDB predicates.

Definition 8.1. Predicate p is variable-bound if for every rule r ∈ Π defining p with

head h it holds that CΠ |=r vars(h) Ã terms(r).

For example, predicate dep parents in example (8.1) is variable-bound since τ2 con-

tains only head’s variables in the body, i.e., CΠ |=τ2 vars(head(τ2)) Ã terms(τ2) triv-

ially holds. It is easy to see that the goal predicate q is variable-bound as well. On the

other hand, the predicate parents is not variable-bound. Observing its rule we can see

that the head’s variables do not imply any additional variables of the body. And, in-

deed, as explained earlier, during program computation one will not be able to decide

whether parents(c1, c2) is a fact for any constants c1, c2. This is precisely the reason why

the program of example (8.1) is not computable.

Therefore, we conclude that for a program to be computable all its predicates must be

variable-bound as stated in the following theorem.

Theorem 8.1. A program Π is computable if (i) it is safe and (ii) every predicate p ap-

pearing in it is variable-bound.

The next chapter will present the evaluation algorithm for safe programs in which all

the predicates are variable-bound thus proving Theorem 8.1.

44

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Chapter 9

A Top-Down Evaluation Algorithm

This section describes a top-down algorithm for query evaluation. The heart of our algo-

rithm is in function idb eval (Algorithm 4), whose parameters include a predicate p, and

a subquery expressed as a relation (in the relational algebra sense) Q, defining a possibly

partial assignment to the positions of p, i.e., scheme(Q) ⊆ pos(p).1 The function answers

the subquery by returning a relation whose columns are those columns in pos(p) which

are finitely constrained by scheme(Q) and whose tuples are computed from the tuples

of Q by these finiteness constraints.

For each of the rules defining the predicate, function idb eval calls function rule eval

(Algorithm 5), which in its turn, calls function atom eval (Algorithm 6) for each of the

atoms in the rule. If the atom’s predicate is an EDB, then atom eval invokes edb eval;

otherwise, it recursively calls idb eval.

Even simple rules such as anc(x, y) ← anc(x, z), anc(z, y), typical to transitive clo-

sure computation, may cause a naive implementation of idb eval to recurse indefinitely.

To guard against this predicament, the algorithm passes through the recursive calls vari-

able X, which stores in it all “open queries” in the recursion stack. Variable X is imple-

mented as an associative array of relations. For each positions set q, q ⊆ pos(p), p an

IDB predicate, X[q] is a relation with scheme q containing all subqueries whose pattern

is q which are on the recursion stack. At its 2nd line, idb eval restricts its interest to new

such queries. At line 3, the function records the currently executing queries in X.

Thus, the call to idb eval that starts the evaluation process is with parameters:

1Recall that in our notation a “position” is not just an ordinal; it records also a predicate name. This is

the reason that a set of positions can also be thought of as a scheme of a relation.

45

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Algorithm 4 idb eval(p, Q, X)

1: Let q ← scheme(Q) // elicit the pattern of this query

2: Let Q′ ← Q \ X[q] // restrict interest to new queries

3: X[q] ← X[q] ∪ Q′ // record remaining queries in cache

4: Let m be the maximal set s.t. q Ã m ∈ CΠ // m is the scheme of the answer relation

5: If Q′ 6= ∅ then // queries remained for execution

6: Repeat // exercise all rules until no new answers are found

7: For all r ∈ Π such that pred(r) = p do // try rule r

8: Let T ← rule eval(r, pos2termr(Q′), X)

9: M[q] ← M[q] ∪ πmterm2posr(T)

10: end for

11: until no changes in M

12: end If

13: return M[q] ./ Q // restrict global answer set to queries in Q

1. q — the program goal,

2. I — the relation with no columns and a single, empty, tuple and

3. X in which all entries are initialized to an empty relation.

In addition to X, the algorithm maintains a similarly organized global array M for re-

sults memoization, except that the scheme of M[q] is m, where m is the maximal set such

that q Ã m. The main loop of idb eval (lines 6–11) uses the results of calls to rule eval

to extend, as long as this is possible, relation M[q]. The function result is obtained by

restricting M[q] (which records all queries of pattern q that the algorithm ever executed)

to answers of queries in Q; this is carried out by the natural join operation in line 13.

In order to delegate its work to function rule eval, function idb eval must translate the

query Q′, which is formulated in terms of positions in p, to the list of symbolic variables

that rule r expects. To this end, we use an overloaded version of function pos2termr

(invoked at line 8), which returns its input relation with renamed columns as per the head

of rule r. The reverse translation of rule eval’s return value, is carried out by the call to

(an overloaded version of) function term2posr, at line 9. This line also projects the return

value into the scheme m.

Consider now function rule eval, depicted in Algorithm 5. Line 1 of this function

begins the computation of a subquery with respect to a rule, by augmenting the given

46

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Algorithm 5 rule eval(r, Q, X)

1: Q ← Q ./ CONSTSr

2: Repeat

3: For all a ∈ body(r) do

4: Q ← Q ./ atom eval(a, πaQ, X)

5: end for

6: until no changes in Q

7: return πhead(r)Q

subquery with the values of constants used in the rule: variable CONSTSr denotes the

relation whose column names are simply consts(r), while its single tuple consists also

of these constants. The recursive call to atom eval (line 4) is preceded by a projection

to the variables (and constants) used in the atom. We assume that the operator π ignores

columns in projection scheme which do not exist in the projected relation. Hence, the

projection succeeds even if Q does not contain all terms of the current atom. (In particular,

if Q does not contain any term of a, a no-columns relation containing the empty tuple is

returned.) A projection to terms in the rule head is applied before the function is returned.

Finally take note of Algorithm 6, depicting function atom eval. This function is rather

straightforward; note however that the recursive call to functions that evaluate a predicate

requires a change of vocabulary, prior to, and after the call.

Algorithm 6 atom eval(a, Q, X)

1: Let Q′ ← term2posa(Q) // bound positions of a

2: Let p ← pred(a) // elicit the predicate of this atom

3: Let A ←

edb eval(p, Q′) if p ∈ edb(Π)

idb eval(p, Q′, X) otherwise

4: return pos2terma(A)

9.1 Some Intuition

Before marching on to the proving the correctness of the evaluation algorithm, we are

inclined to say few words on the repetitive process by which atoms are examined or re-

examined. The gained intuition should make the constructions used in the proof clearer.

47

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Our algorithm differs from the original QSQR algorithm [26, 27] in the way that the

evaluation of a rule is carried out. In particular, function rule eval iterates over the rule’s

atoms (lines 2–6) until all the variables of a rule are bound. (Note that in general, the

evaluation of a program may complete without binding all variables of a rule, even if

a rule is used in the evaluation process.) Unlike the original algorithm in which only

one pass is enough to bind all the rule’s variables, the iterative process of Algorithm 5

is such that atoms of a specific rule may be evaluated for many times in the course of

the same invocation of rule eval. This difference is due to the restrictions placed on the

computational model by the infiniteness of the database. As explained in Chapter 8, we

cannot arbitrarily retrieve data even from EDB predicates. Such retrieval is restricted

to the known finiteness constraints. Thus, in many cases during the program evaluation

we will be able to evaluate an atom a only partially, i.e., only values for a subset of a’s

positions will be retrieved. Later we can re-evaluate a, if we have additional bindings on

more of its positions. The following example demonstrates.

Example 9.1.

q(y, z) ← a(y, z), p(‘c’, y, z).

p(x, y, z) ← a(x, y), b(y, z).
(9.1)

Let a and b be EDB predicates. Suppose also that we have only one constraint on the

database: {a1} Ã {a2} . It is not difficult to prove that this program is weakly safe. If the

database is founded, then this program is also safe.

Now, suppose that we would like to evaluate q with our algorithm. We start with

idb eval which in turn delegates the work to function rule eval which receives in its first

argument the only rule defining q. The main loop then iterates over the atoms of q-rule

for three times as described next:

1. The 1st evaluation of atom a(y, z) produces the empty tuple only, since we cannot

retrieve data from the EDB predicate a without binding the first position;

2. The 1st evaluation of atom p(‘c’, y, z) triggers idb eval function which in turn leads

to rule eval function. Then, given the binding of x to ‘c’, we can compute all val-

ues y that satisfy the first atom a(x, y). However, we cannot find the correspond-

ing z values, since there are no constraints at all in b. This evaluation is given by

48

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

the following relational algebra expression

σ$1=‘c’a.

3. The 2nd evaluation of atom a(y, z) produces bindings for z since now there exist

bindings to y. Now, the assignments known for y and z can be summarized by

π$3,$4

(
σ$2=$3∧$1=‘c’

(
(a × a)

))
.

4. The 2nd evaluation of atom p(‘c’, y, z) retains only the bindings which satisfy the

atom b(y, z). The following expresses the final assignments:

π$3,$4

(
σ$3=$6∧$4=$8

(
σ$2=$3∧$1=‘c’(a × a)

)
×

(
σ$2=$3∧$1=‘c’(a × b)

))
.

5. The 3rd iteration over the rule body verifies that the previously found bindings

satisfy both atoms. At this stage all bindings remain.

The above process can be naturally thought of as an evaluation of a slightly differ-

ent program from the QSQR point of view, i.e., it looks like the original algorithm was

executed on a different input.

In particular, step 2 in the above, namely the preliminary partial evaluation of atom

p(‘c’, y, z),

can be thought of as the evaluation of another atom

p’(‘c’, y)

where p’ is a predicate we introduce together with the rule

p’(x, y) ← a(x, y).

All in all, the slightly different program which describes the above process is as fol-

lows:

q(y, z) ← p’(‘c’, y), a(y, z), p(‘c’, y, z).

p’(x, y) ← a(x, y).

p(x, y, z) ← a(x, y), b(y, z).

49

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

The correctness proof, provided in the reminder of this chapter, uses such programs

called adapted programs to represent reformulation of the evaluation process. Precisely,

for a DATALOG program Π the proof introduces an adapted program Π̃ for which it holds

that the run of our evaluation algorithm (Algorithm 4) on Π is the same as the run of QSQR

algorithm on Π̃. Although we have not presented here the original QSQR algorithm, the

main difference between it and our evaluation algorithm is in Algorithm 5, i.e., evaluation

of a rule.

Adapted programs must have the following properties:

1. rule evaluation requires only one iteration to bind all the rule’s variables (QSQR

algorithm goes over rule’s atoms only once), and

2. atom evaluation must be able to find full bindings from the known ones (QSQR

algorithm is not aware of the restrictive computational model).

Before we formally present a construction of adapted programs, let us discuss in fur-

ther detail what happens in function rule eval. Line 4 in the above function evaluates every

atom of the input rule unconditionally. Some of the evaluations may be unnecessary in

a sense that they do not change the value of variable Q. We state that we can determine

statically which atom evaluations are required and which are superfluous. To do so we

present the following lemma which identifies the way in which Q changes during the run

of rule eval function.

Lemma 9.1. Let a ∈ body(r) be an examined atom in the body of rule eval func-

tion (line 4). Let X = scheme(Q) ∩ terms(a) be the set of terms which are common

to atom a and Q’s scheme. Let Y be the set of a’s terms such that term2posa(X) Ã

term2posa(Y) ∈ min(CΠ). Then, after evaluating the atom (line 4), it holds that the new

value of scheme(Q) is scheme(Q) ∪ Y.

The proof can be done by induction on the recursive execution of algorithm functions.

Now it is possible to recognize cases in which atom evaluations are useless and thus

will not be represented in adapted programs.

Precisely, let a ∈ body(r) be an examined atom (see line 4). Let X = scheme(Q) ∩
terms(a) be the set of terms which are common to a and Q’s scheme. Then, the following

conditions identify the cases in which evaluation of a is unnecessary.

50

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

1. X = ∅. Here the evaluation of a is irrelevant to the currently bound variables. An

example of such a case is step 1 (the evaluation of a(y, z) for the first time).

2. X 6= terms(a) and there does not exist Y ⊆ terms(a) such that term2posa(X) Ã

term2posa(Y) and X ⊂ Y (X 6= Y). In this case the set of relevant bound vari-

ables X do not bind any variable of terms(a).

To summarize this discussion we present observations which lie in the basis of adapted

program construction.

Observation 9.2. An atom can be evaluated many times during the evaluation of the rule

containing it — each time with a new set of bound variables.

Our algorithm iteratively evaluates body atoms until it reaches a fixpoint (see the

rule eval function), i.e., the algorithm tries to expand the set of bound variables as much

as possible. Each time the same atom is examined, the set of bound variables may grow.

Hence, some atoms may be evaluated more than once with a new set of bound variables

thus initiating repeated rule evaluations. Therefore, the adapted program must reflect

these rule evaluations by constructing a dedicated adapted rule for each such case.

For example, in the adapted program of Example 9.1, one auxiliary predicate p’ was

defined and the q-rule was adapted to represent atom evaluations to be performed in order

to bind all the rule’s variables in a single iteration. Note that the atoms in the adapted q

rule were rearranged to achieve the “one-iteration” evaluation.

Observation 9.3. The application of function rule eval to a rule r, where terms X in the

rule head are known, terminates when terms Y ⊆ vars(r) are bound, where Y is the

maximal set such that CΠ |=r X Ã Y.

Consider an atom a to be evaluated and a set of bounded positions x ⊆ pos(p),

where p = pred(a). Then, according to the algorithm, it triggers rule evaluation for all

the rules r defining p with bound variables X = pos2termr(x). According to Lemma 9.1,

the function rule eval expands scheme(Q) in a similar way the function closure does

(Algorithm 1). Thus, before rule evaluation takes place, we know exactly which rule

variables will become bound afterwards. They are precisely the maximal set Y, such

that CΠ |=r X Ã Y.

51

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

9.2 Correctness Proof

The reminder of this chapter is devoted to prove that our evaluation algorithm is cor-

rect. For this purpose, we shift the attention to the original QSQR evaluation algorithm

which is known to be correct. As explained before, we accomplish this by introducing

the adapted program Π̃ which is executed by QSQR algorithm thus representing the run

of our evaluation algorithm on the original program Π. By showing that such adapted

program is equivalent to its original program, i.e. produces the same output as Π, we

prove that our evaluation algorithm is correct. The previous sentence would have been

true if the database was finite. In our settings, QSQR algorithm may not terminate as

well. Thus, showing the above equivalence only proves that for each fact f returned by

our evaluation algorithm it holds that f ∈ Π∞
q (D). By proving that the run terminates,

we show the opposite direction, i.e., that every fact f ∈ Π∞
q (D) is also returned by our

evaluation algorithm.

9.2.1 Construction of the Adapted Program

Next we define the construction of auxiliary predicates which are necessary for the

adapted program. Let p be an IDB predicate. Let x ⊆ pos(p) be a set of p-positions

and y ⊆ pos(p), x ⊆ y be the maximal set such that x Ã y ∈ CΠ holds. Then, an auxil-

iary predicate of p with respect to x, denoted px,y, is a predicate of arity |y|. (A predicate

name px,y implies that this predicate will be used to evaluate p-predicate when x are the

only bounded positions.) The rules of px,y are the “adapted” rules of p, constructed as

described next.

Consider a p-rule r ∈ Π. Let X = pos2termr(x) and Y = pos2termr(y), i.e., X is the

terms rewrite of x and Y is the terms rewrite of y. Then, the adapted rule of r, denoted rx,y

has the head atom

px,y(Y1, . . . , Yk)

while the body is constructed by simulating the run of a slightly different version of func-

tion closure (Algorithm 1) on r, X and the minimized constraints set min(CΠ). The dif-

ference is in the procedure for choosing a constraint to expand X+
min(CΠ),r (see line 5).

For further references, we will refer to Algorithm 1 with a new choosing procedure as

the changed Algorithm 1. To prevent confusion, let Y′ denote the value for Y variable

52

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

used by the algorithm. The new choosing procedure is different only in its 2nd condition.

Precisely, we choose Y′ such that

Y′ = X+
min(CΠ),r ∩ terms(ai).

Then, when working with the minimized version min(CΠ) of CΠ, the value for Z is unique.

The adapted rule rx,y contains only the variables implied by X. The ith atom that

expanded the set X+
min(CΠ),r will be the ith atom in the adapted rule body. Moreover, if

not all the atom’s variables could be constrained, we replace it with an atom of a new

auxiliary predicate. To define precisely the body of the adapted rule, we introduce the

notion of a closure sequence, which represents the run of Algorithm 1 on a given rule.

Definition 9.4. Let r be a rule, x ⊆ pos(pred(r)) and C ′ = min(CΠ) a set of constraints.

A closure sequence of r with respect to x and C ′, denoted cls(r, x, C ′) is a sequence of

pairs (a, σ) where atom a ∈ body(r) and constraint σ ∈ C ′.

A pair (a, σ)i is the ith pair in the sequence if at the ith execution of line 6 of the

changed function closure(r, C ′, X), where X = pos2terma(x), σ is the constraint over a-

predicate which expanded X
+
C′,r, i.e.,

σ = term2posa(Y) Ã term2posa(Z).

For example, let r be the following q-rule

q(x, y, z) ← p(x, u, w, v), e(u, w), s(v, z, y). (9.2)

in which p and s are IDB predicates and e is an EDB predicate. Assume that the following

constraints are part of min(CΠ)

{p1} Ã {p1, p2} , {p3} Ã {p3, p4} , {e1} Ã {e2} , {s1} Ã {s1, s3} .

Then, the closure sequence of r with respect to min(CΠ) and {1} is

cls(r, {1} , min(CΠ)) = 〈(p(x, u, w, v), {1} Ã {1, 2}), (e(u, w), {1} Ã {2}),
(p(x, u, w, v), {3} Ã {3, 4}), (s(v, z, y), {1} Ã {1, 3})〉.

(9.3)

Given a closure sequence, we can now construct an adapted body rule. In particular,

each element of the closure sequence defines a new body atom of the adapted rule, which

53

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

may refer to an auxiliary predicate. Specifically, consider an element (a, x Ã y) of the

closure sequence in which pred(a) is an IDB predicate. Then, we create an auxiliary

predicate pred(a)x,y which is defined by the adapted rules of pred(a). Each such rule r

retains in its head only the variables pos2termr(y) and its body contains only variables Z

that are implied by the variables in the head. (Note that to create such rules, one may have

to recursively define auxiliary predicates.)

Usually, when a closure sequence element refers to an EDB predicate, no auxiliary

predicates need to be created. However, there is one case in which a new EDB predicate

must be introduced. This happens when a closure sequence element is of the form (a, ∅ Ã

y) and it holds that |y| = 1. Let p = pred(a) and y = {pi}. Then, we create a new

unary EDB predicate denoted pi. The predicate pi contains a fact pi(c) if there exists a

constant c′ such that p(c, c′) (resp. p(c′, c)) holds when i = 1 (resp. i = 2). Note that the

resulting predicate contains finitely many facts, which can be computed according to our

computation model.

Now we define the notion of an adapted rule formally.

Definition 9.5. Let r ∈ Π be a p-rule and x ⊆ pos(r) and let x Ã y ∈ min(CΠ).

Let Y = pos2terma(y) and |Y| = k.

Then, the adapted rule rx,y of r with respect to x is a rule with head

px,y(Y1, . . . , Yk)

and body constructed as follows: for each element (a, y Ã z)i in the closure se-

quence cls(r, x, min(CΠ))

1. if a refers to an EDB predicate and either |y| > 1 or |z| ≥ 1 holds, then the ith atom

is a itself,

2. otherwise, if atom a refers to an EDB predicate s = pred(a) and it holds that y = ∅
and |z| = 1 where z = {sj}, then the ith atom of the adapted body is atom sj(z)

such that z = pos2terma(z).

3. otherwise, atom a must refer to an IDB predicate s = pred(a). Then the ith atom of

the adapted body is atom sy,z(Z1, . . . , Z|Z|) where Z = pos2terma(z).

In addition, for each atom a ∈ body(r) such that terms(a) ⊆ X
+
min(CΠ),r, the

adapted body also contains the atom a itself if a refers to an EDB predicate, or

54

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

the atom spos(s),pos(s)(U1, . . . , Upos(s)) such that s = pred(a) is an IDB predicate

and terms(a) = U.

These atoms are placed at the latest positions in an arbitrary order.

For example, assuming that CΠ does not contain any new p- or s- constraints, the

adapted rule r{1},{1,2} from (9.2) is as follows

q{1},{1,2}(x, y) ←p{1},{1,2}(x, u),

e(u, w),

p{3},{3,4}(w, v),

s{1},{1,3}(v, y),

p{1,2,3,4},{1,2,3,4}(x, u, w, v),

e(u, w).

Here the first four atoms were created due to the closure sequence (9.3), while the

last two atoms were added since their original atoms a ∈ body(r) satisfied terms(a) ⊆
{1}+

min(CΠ),r as described in Definition 9.5.

Having defined the meaning of adapted rules and auxiliary predicates, we are ready

to describe the construction of an adapted program. Informally, the construction starts by

computing the adapted rules of q-rules with respect to the empty set. During their creation

new auxiliary predicates might be created which in turn will lead to construction of their

adapted rules. This process is continued until all the auxiliary predicates are defined. (The

process terminates since for each predicate of arity k there may be at most 2k auxiliary

predicates.) Formally,

Definition 9.6. The adapted program of Π, denoted Π̃, is a program with the goal predi-

cate q∅,pos(q) as defined by corresponding adapted rules (Definition 9.5).

Note that for every rule r ∈ Π there may be several corresponding adapted rules in Π̃.

Consider a case in which an IDB predicate p satisfies several non-trivial constraints (a

constraint x Ã y is trivial if y ⊆ x). Then, for every p-rule r there may be as many

adapted rules as there are non-trivial constraints of p. Let A(r) ⊆ Π̃ denote the set of

adapted rules corresponding to a rule r.

We complete this section with a full example of DATALOG program and its resulting

adapted program.

55

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Example 9.7. Consider the following program Π in which a and b are EDB predicates:

τ1: q(y) ← p(‘1’, y, z), a(‘2’, z).

τ2: p(x, y, z) ← p(u, y, x), a(z, u).

τ3: p(x, y, z) ← a(x, y), b(y, z).

Assume that C = {{a1} Ã {a2} , {b2} Ã {b1}}.

By running Algorithm 3 for computing constraints of IDB predicates, we receive that

{p1} Ã {p2} , {p3} Ã {p2} , ∅ Ã {q1}

are part of CΠ.

Then, the adapted program Π̃ is as follows:

τ
∅,{1}
1 : q∅,{1}(y) ← p{1},{1,2}(‘1’, y), a(‘2’, z), p{1,2,3},{1,2,3}(‘1’, y, z), a(‘2’, z).

τ
{1},{1,2}
2 : p{1},{1,2}(x, y) ← p{3},{2,3}(y, x).

τ
{1},{1,2}
3 : p{1},{1,2}(x, y) ← a(x, y).

τ
{3},{2,3}
2 : p{3},{2,3}(y, z) ← a(z, u), p{1},{1,2}(u, y).

τ
{3},{2,3}
3 : p{3},{2,3}(y, z) ← b(y, z).

τ
{1,2,3},{1,2,3}
2 : p{1,2,3},{1,2,3}(x, y, z) ← p{3},{2,3}(y, x), a(z, u), p{1,2,3},{1,2,3}(u, y, x), a(z, u).

τ
{1,2,3},{1,2,3}
3 : p{1,2,3},{1,2,3}(x, y, z) ← a(x, y), b(y, z).

For the reminder of this chapter we will adopt the following convention in our nota-

tion:

1. For a predicate p ∈ Π, we will use the notation p for ppos(p),pos(p) ∈ Π̃, i.e., the

auxiliary predicate in Π̃ used for testing membership.

2. For a rule r ∈ Π, we will use the notation r for the rule rpos(p),pos(p) ∈ Π̃, i.e., the

adapted r-rule for testing membership.

In Example 9.7 the rule τ
{1,2,3},{1,2,3}
3 will be denoted τ3 according to the above con-

vention.

56

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

9.2.2 Equivalence proof

This section is devoted to the proof that the adapted program is equivalent to the orig-

inal one. To this end we show that both programs deduce the same facts for their goal

predicates.

In the following, we will frequently need to refer to projected set of facts defined as

follows. Let p be a predicate and x ⊆ pos(p) a set of positions. Then, a projected p-fact

is obtained from a p-fact by omitting from it all values in positions not in x. If F is a set

of p-facts, then πx[F] is the set of p-facts thus obtained from F . By abuse of terminology

we refer to projected p-facts as p-facts as well; no confusion shall arise.

The following lemma defines the relation between a rule of the original program and

its adapted version. The lemma states that the application of an adapted rule rx,y to a set of

“projected” facts deduces at least the same set of facts obtained by applying the original

rule r to the original set of facts and then projecting the result on the positions y.

Lemma 9.2. Let F = Fedb ∪ Fidb be a set of facts on the predicates of program Π

where Fedb are the facts on EDB predicates and Fidb are the facts on IDB predicates.

Let F ′
idb be the set of facts obtained from Fidb by the following process: for each p-fact f ∈

Fidb, and for each px,y such that px,y ∈ idb(Π̃), the set F ′
idb contains every fact obtained

from projecting f on the positions y. Let F ′ ⊇ (Fedb ∪ F ′
idb). Let r ∈ Π be a p-rule

and rx,y ∈ A(r) be its adapted rule. Then,

πy[rp(F)] ⊆ rx,y(F ′)

for every set of facts F .

Proof. Let f ∈ rp(F). According to the semantics of Datalog rules, there exists an

assignment µ : vars(r) → D due to which f was deduced, i.e., for all atoms a ∈ body(r),

it holds that µ(a) ∈ F . According to the construction of adapted rules and F ′ it follows

that µ is an assignment such that µ(a′) ∈ F ′ for all a′ ∈ body(rx,y). The lemma follows.

The next lemma shows that the adapted program deduces at least the same set of facts

for its auxiliary predicates as the original program deduces for the original predicates.

Lemma 9.3. Let p ∈ idb(Π) and x, y ⊆ pos(p) such that px,y ∈ idb(Π̃). Then,

πy[Π
∞
p (D)] ⊆ Π̃∞

px,y(D).

57

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Proof. Let f ∈ Π∞
p (D) be a p-fact and let ~α = α1 · · ·αk where αi ∈ Π be a sequence of

rule applications which deduces f , i.e., f ∈ ~α(D). We show a sequence ~β of the rules

of Π̃ which deduces πyf , i.e., a px,y-fact corresponding to f . Specifically, the sequence ~β

is a concatenation of k sequences as follows,

~β = ~β1 · · · ~βk

where subsequence ~βi corresponds to rule αi ∈ ~α. The rules in sequence ~βi are all the

rules in A(αi) applied in some order.

The lemma is proved by using mathematical induction on the length of ~α to show that

πy[~αp(D)] ⊆ ~βpx,y(D) (9.4)

holds for all p ∈ idb(Π) and for all px,y ∈ idb(Π̃).

Let ~α`
denote the `-lengthed prefix of ~α.

The inductive base trivially holds since if |~α| = 0, then |~β| = 0 and there-

fore ~αp(D) = ~βpx,y(D) = D.

Let ~α = ~α`α`+1 and let ~β = ~β
`~β`+1 and suppose that (9.4) holds for ~α`

and ~β
`
.

Let α`+1 be “renamed” by r and let p = pred(r). Then (9.4) trivially holds for all s ∈ Π,

and all sx,y ∈ Π̃ such that s 6= p.

To show that (9.4) holds for a specific px,y, consider the rule rx,y ∈ ~β`+1 which by

definition is applied somewhere in ~β`+1.

Let Fp = ~α`
p(D), and F ′

px,y = ~β
`

px,y(D).

Then, by the inductive hypothesis it holds that

πy[Fp] ⊆ F ′
px,y

for all p ∈ idb(Π) and for all px,y ∈ idb(Π̃).

Let

F =
⋃

p∈idb(Π)

Fp = ~α`(D), (9.5)

and

F ′ =
⋃

px,y∈idb(Π̃)

Fpx,y = ~β
`
(D). (9.6)

58

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Since F and F ′ satisfy the condition of Lemma 9.2, we can apply Lemma 9.2

on F , F ′, p-rule r and rx,y to obtain

πy[rp(F)] ⊆ rx,y(F ′).

Substituting (9.5) and (9.6) to the above we obtain

πy[rp(~α
`(D))] ⊆ rx,y(~β

`
(D)).

Taking into account that there is only one rule in ~β`+1 which defines px,y, we arrive to

πy[~αp(D)] ⊆ ~βpx,y(D),

which completes the inductive step and ends the proof.

Before proceeding to the next lemma, we would like to consider rules of predicates

of the form ppos(p),pos(p) ∈ idb(Π̃). As it turns out, each such rules can be obtained by an

“extension” of the corresponding rule of Π.

More precisely,

Observation 9.8. Let r be a p-rule, p ∈ idb(Π) and r be a p-rule, p ∈ idb(Π̃). Then,

for all a ∈ body(r), a = s(x1, . . . , xn) the following hold:

1. if s is an EDB predicate, then a ∈ body(r),

2. otherwise, there is an atom a′ ∈ body(r) such that a′ = s(x1, . . . , xn).

Proof. Since every predicate appearing in Π is variable-bounded, it holds

that terms(head(r)) Ã terms(r). Now the observation follows from Definition 9.5

on construction of adapted rules. An example of such auxiliary predicate can be found

in Example 9.7.

Note however that not all atoms in r are rewrite of atoms in r. Rule r may con-

tain many more atoms than those described by Observation 9.8. Those atoms reflect, by

construction, the iterative process by which “full” atoms of the form s(x1, . . . , xn) are

evaluated.

The following lemma states that for all p ∈ idb(Π), a predicate p and a predi-

cate ppos(p),pos(p) ∈ idb(Π̃) are equivalent, i.e., deduce the same set of facts.

59

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Lemma 9.4. For all p ∈ idb(Π) it holds that

Π∞
p (D) = Π̃∞

p (D).

Proof. Using Lemma 9.3 we obtain that

Π∞
p (D) ⊆ Π̃∞

p (D)

holds for all p ∈ idb(Π). It is left to show that

Π∞
p (D) ⊇ Π̃∞

p (D)

holds for all p ∈ idb(Π).

Let f ∈ Π̃∞
p (D) be a p-fact and let ~r = r1 · · · rk, ri ∈ Π̃, be a sequence of rule

applications which deduces f , i.e., f ∈ ~r(D). We show a sequence ~τ of rules of Π which

deduces f . Precisely, ~τ = τ1 · · · τk where τi ∈ Π is the corresponding original rule of ri.

By using the same induction technique as in Lemma 9.3 we can show that

πy[~τ p(D)] ⊆ ~rpx,y(D) (9.7)

holds for each px,y ∈ idb(Π̃) defined by a rule ri ∈ ~r and its original predicate p ∈
idb(Π).

Next we would like to refine the above statement and to show that

~τ p(D) = ~rp(D) (9.8)

holds for all p ∈ idb(Π).

The proof of (9.8) is done by induction on the length of ~r. The inductive base is

when |~r| = 1, i.e., ~r = r1 and ~τ = τ1. Then, if τ1 contains only atoms of EDB predicates,

so is the adapted rule r1 (see Observation 9.8) and therefore (9.8) holds. Otherwise, τ1

contains an atom of IDB predicate, and (9.8) trivially holds since both sequences deduce

the empty set of facts.

Let ~r`
denote the `-lengthed prefix of ~r. Let ~r = ~r`r`+1 and ~τ = ~τ `τ`+1 where r`+1

is p-rule. By the inductive hypothesis it holds that ~τ `
p(D) = ~r`

p for all p ∈ idb(Π).

Let µ be a satisfying assignment to body(r`+1)-atoms. Then, from the inductive hy-

pothesis and (9.7) it holds that µ is also a satisfying assignment to body(τ`+1)-atoms.

Denoting r`+1 by r′ and τ`+1 by τ ′ we receive that for all p ∈ Π it holds that

r′p(~r
`(D)) ⊆ τ ′

p(~τ
`(D)),

60

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

which is the same as

~rp(D) ⊆ ~τ p(D).

The opposite containment direction follows from (9.7).

The following lemma states that the goal predicate set of facts of the original program

is a superset of the goal predicate set of facts of the adapted program.

Let q̃ = q∅,pos(q) denote the goal predicate of Π̃.

Lemma 9.5.

Π̃∞
q̃ (D) ⊆ Π∞

q (D).

Proof. The safety property of Π states that ∅ Ã pos(q), while the variable-bound prop-

erty of Π states that pos2termr(pos(q)) Ã terms(r) where r ∈ Π is the rule which

defines q. From these it follows that ∅ Ã terms(r). Consider the rule r̃ ∈ Π̃ which

defines q̃. Similarly to Observation 9.8 we can show that for all a ∈ body(r), where a =

p(x1, . . . , xn), the adapted rule body body(r̃) contains the ppos(p),pos(p)(x1, . . . , xn) atom.

Using Lemma 9.4 we can show that each satisfying assignment µ to body(r̃) atoms also

satisfies body(r) atoms. The lemma follows.

Theorem 9.1. The adapted program Π̃ is equivalent to Π.

Proof. To prove the theorem it is sufficient to show that Π∞
q (D) = Π̃∞

q̃ (D) for all D |= C.

Lemma 9.3 shows that

Π∞
q (D) ⊆ Π̃∞

q̃ (D),

while Lemma 9.5 shows the converse, i.e.,

Π∞
q (D) ⊇ Π̃∞

q̃ (D).

9.2.3 Termination

In this section we prove that our algorithm terminates on safe programs with variable-

bounded predicates evaluated over founded databases. In previous section we showed

that the run of QSQR algorithm on the adapted program Π̃ represents the run of our

evaluation algorithm on the original program Π. After proving that Π is equivalent to Π̃ it

is enough to show that QSQR evaluation algorithm terminates on Π̃. To show the above,

we need to introduce the following lemma.

61

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Lemma 9.6. If Π is safe and all its predicates are variable bound, then Π̃ is safe and

all Π̃’s predicates are variable bound.

Proof. The safety property follows from the fact that Π̃ is equivalent to Π. The variable

bound property of each predicate follows from the construction.

Thus, we need to show that the original QSQR algorithm terminates on safe program

with all variable bound predicates while run over infinite and founded database. For the

reminder of this section we will refer to QSQR algorithm only. As we mentioned before,

in spite the fact that we do not present here the full description of the QSQR algorithm,

it is easy to see that the main difference between it and our evaluation algorithm is in the

way a rule evaluation is carried out.

Let us examine possible reasons for non-termination. First, the database might be

accessed for infinitely many values. Second, the algorithm may recurse indefinitely. Al-

though the algorithm takes care of this predicament (see line 5 in Algorithm 4), it is

effective only when the database is finite. In the infinite case, the idb eval function may

recurse indefinitely with the same value for a p predicate and with different value for Q

each time. And the last, but not least, the algorithm may not terminate if the value of M

variable in Algorithm 4 never reaches the fixpoint. While the first scenario is impossi-

ble, the other two can happen if infinitely many database values are exposed during the

algorithm execution.

For this sake, we show that during the run of the algorithm on safe programs defined

over founded database only finitely many database values are exposed. This is precisely

the case when the algorithm operates on finite database.

The following lemma rephrases the above for the general case.

Lemma 9.7. Let Π be a safe program having only variable bound predicates and D be

an infinite and founded database. Then, there exists a finite database D′ ⊂ D such that

Π∞
q (D) = Π∞

q (D′).

Proof. Lemma 7.5 states that sources∗(D) is finite whenever D is founded. The facts

of D′ are constructed as follows.

For each predicate p ∈ edb(Π), we create an EDB predicate s which will be part

of D′. Before presenting the facts of s, we create an auxiliary predicate s′ whose facts are

62

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

given by

{s′(x, y) | x, y ∈ sources∗(D)} .

Then, s-facts are simply an intersection of p-facts and s′-facts and can be represented

by the following rule:

s(x, y) ← p(x, y), s′(x, y).

The same construction can be presented in a relational style as follows. Let

C = sources∗(D) × sources∗(D)

be a binary and finite relation. Then, the database D′ contains every relation R′ = R ./ C,

such that R ∈ D.

It is immediate to see that the lemma follows.

Now it is left to show that during the run of the algorithm, only tuples from D′ are

retrieved.

Let qsqrD denote the set of facts retrieved from D during the run of QSQR algorithm.

Then, we need to show that

Lemma 9.8.

qsqrD′ = qsqrD.

Proof. It is trivial to see that

qsqrD′ ⊆ qsqrD.

Let f be a D-fact used by the algorithm, i.e., f ∈ qsqrD. We will show that f ∈
D′. The algorithm employs a straightforward top-down evaluation strategy, in which the

primary motivation is to avoid producing facts that do not participate in derivation of

any answer facts, i.e., it retrieves to the extent possible, only the required facts from the

database. Consider again the value of consts∗(Π) which denotes the set of all different

values that can be assigned to nodes of reduced expansion graphs of Π. It is almost

immediate to show that the set of values exposed by the top-down evaluation technique is

bound above by the set of values that can be assigned to nodes of non-reduced expansion

63

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

graphs of Π, and by far by consts∗(Π). Therefore, from the above and from (7.2) it holds

that

consts(f) ⊆ consts∗(Π) ⊆ sources∗(D).

The lemma follows.

64

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Chapter 10

Conclusion

In this research we studied the weak safety and termination problems (and thereby, also

the safety problem) for recursive DATALOG programs over infinite databases. We pre-

sented an algorithm that computes all constraints for IDB predicates that are (finitely)

implied by the constraints on the EDB predicates and the rules of a given program. We

also showed that weak safety guarantees termination if the database is founded, a natural

property in many models. Finally, for safe programs we presented an elegant evalua-

tion algorithm that computes the goal predicate in a top-down manner, using sideways

information passing.

65

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Bibliography

[1] The Hibernate Project. http://www.hibernate.org/.

[2] W. W. Armstrong. Dependency structures of data base relationships. In IFIP

Congress, pages 580–583, 1974.

[3] C. Beeri and P. A. Bernstein. Computational problems related to the design of nor-

mal form relational schemas. ACM Trans. Database Syst., 4(1):30–59, 1979.

[4] S. Ceri, G. Gottlob, and L. Tanca. Logic programming and databases. Springer

Verlag, New York, 1990.

[5] T. Cohen, J. Y. Gil, and I. Maman. JTL—the Java tools language. In P. L. Tarr

and W. R. Cook, editors, Proc. of the Twenty First Annual Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA’06), Port-

land, Oregon, Oct.22-26 2006. ACM SIGPLAN Notices.

[6] R. F. Crew. ASTLOG: A language for examining abstract syntax trees. In S. Kamin,

editor, Proc. of the First USENIX Conference Domain Specific Languages (DSL’97),

pages 229–242, Santa Barbara, Oct. 1997.

[7] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis us-

ing general purpose logic programming systems—a case study. In Proc. of the Con-

ference on Programming Language Design and Implementation (PLDI’96), pages

117–126, New York, NY, USA, 1996. ACM Press.

[8] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting queries using views with access

patterns under integrity constraints. Theoretical Comp. Sci., 371(3):200–226, 2007.

66

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

[9] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the pres-

ence of limited access patterns. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh,

editors, SIGMOD 1999, pages 311–322, New York, NY, USA, 1999. ACM Press.

[10] E. Hajiyev, M. Verbaere, and O. de Moor. CodeQuest: Scalable source code queries

with Datalog. In D. Thomas, editor, Proc. of the Twentieth European Conference

on Object-Oriented Programming (ECOOP’05), volume 4067 of Lecture Notes in

Computer Science, Nantes, France, July 3–7 2006. Springer Verlag.

[11] D. Janzen and K. De Volder. Navigating and querying code without getting lost. In

Proc. of the Second international conference on Aspect-Oriented Software Develop-

ment (AOSD’03), pages 178–187, New York, NY, USA, 2003. ACM Press.

[12] S. Javey, K. Mitsui, H. Nakamura, T. Ohira, K. Yasuda, K. Kuse, T. Kamimura,

and R. Helm. Architecture of the XL C++ browser. In Proc. of the Conference of

the Centre for Advanced Studies on Collaborative research (CASCON’92), pages

369–379, Toronto, Ontario, Canada, 1992. IBM Press.

[13] M. Kifer. On the decidability and axiomatization of query finiteness in deductive

databases. J. ACM, 45(4):588–633, 1998.

[14] M. Kifer, R. Ramakrishnan, and A. Silberschatz. An axiomatic approach to decid-

ing query safety in deductive databases. In Proc. of the Seventh ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’88),

Austin, Texas, Mar. 1988. ACM Press, New York, NY, USA.

[15] R. Krishnamurthy, R. Ramakrishnan, and O. Shmueli. A framework for testing

safety and effective computability of extended datalog. In Proc. of the ACM SIG-

MOD International Conference on Management of Data (ICMS’88), Chicago, Illi-

nois, June 1988. ACM Press, New York, NY, USA.

[16] C. Li and E. Y. Chang. On answering queries in the presence of limited access

patterns. In J. V. den Bussche and V. Vianu, editors, ICDT, volume 1973 of Lecture

Notes in Computer Science, pages 219–233. Springer, 2001.

[17] D. Maier, J. D. Ullman, and M. Y. Vardi. On the foundations of the universal relation

model. ACM Trans. Database Syst., 9(2):283–308, 1984.

67

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

[18] R. Manevich. Data structures and algorithms for efficient shape analysis. Master’s

thesis, Tel-Aviv University, School of Computer Science, Jan. 2003.

[19] K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for increased

modularity. In A. P. Black, editor, Proc. of the Nineteenth European Conference

on Object-Oriented Programming (ECOOP’05), volume 3086 of Lecture Notes in

Computer Science, pages 214–240, Glasgow, UK, July 25–29 2005. Springer Verlag.

[20] R. D. Paola. The recursive unsolvability of the decision problem for the class of

definite formulas. J. ACM, 16(2):324–327, 1969.

[21] R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. Safety of recursive Horn

clauses with infinite relations. In Proc. of the Sixth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems (PODS’87), San Diego, California,

Mar. 1987. ACM Press, New York, NY, USA.

[22] T. Reps. Shape analysis as a generalized path problem. In PEPM ’95: Proc. of

the 1995 ACM SIGPLAN symposium on Partial evaluation and semantics-based

program manipulation, pages 1–11, New York, NY, USA, 1995. ACM Press.

[23] Y. Sagiv and M. Y. Vardi. Safety of Datalog queries over infinite databases. In

Proc. of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems (PODS’89), pages 160–171, Philadelphia, Pennsylvania, United

States, Mar. 1989. ACM Press, New York, NY, USA.

[24] O. Shmueli. Decidability and expressiveness aspects of logic queries. In Proc. of

the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems (PODS’87), San Diego, California, Mar. 1987. ACM Press, New York, NY,

USA.

[25] M. Vardi. The decision problem for database dependencies. Inf. Process. Lett.,

12(5):251–254, 1981.

[26] L. Vieille. Recursive axioms in deductive databases: The Query/Subquery approach.

In L. Kerschberg, editor, Proc. of the FirstInt. Conf. on Expert Database Syst., pages

179–197, Redwood City, CA, USA, 1986. Benjamin-Cummings Publishing Co.,

Inc.

68

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

[27] L. Vieille. Recursive query processing: The power of logic. Theoretical Comp. Sci.,

69(1):1–53, 1989.

[28] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog and binary decision

diagrams for program analysis. In K. Yi, editor, Proc. of the Third Asian Sympo-

sium on Programming Languages and Systems, volume 3780 of Lecture Notes in

Computer Science. Springer Verlag, Nov. 2005.

[29] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis us-

ing binary decision diagrams. In Proc. of the Conference on Programming Language

Design and Implementation (PLDI’04), pages 131–144, New York, NY, USA, June

9-11 2004. ACM Press.

69

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

{dep_parents2}�{dep_parents1} Å��	�������������������������
���
��parents �����

��������	����q	����������������������dep_parents�����������%'Bill'��
������	�����

��
����	���������������������	���
������	���
����������
�����������	����
�����	���������

����������q(��

��������������������
�������������������������������
���
�	�������	����parents� �����

������������"����	�����������������
������	�����parents����������������������������� ��

���
��8.1.���������
���
��������������
�������������������������	� ������������������

�����������
���������������� ����
����������������top-down��������������������

������
QSQR��
�Vieille� ��!�������������
������������������������ ��

����	����� �

��
��
�����
�����������
���������
���
���������������������������������	����Datalog�

����
������ ��

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

�����������
���������������
�Datalog���

���������
�����
������������7.1.
��
������

���������������������������
������� ��

���	
� �

��
���
�������
��
��������������������������������
��
�������	������������� ������

�������������������������
��	�������
�������������������� ��

���
���
��������������������������	����������������������	�������������������
����

����������� ��

���������p��	����������EDB�&���������������(���������������������
��	���!�����������

�������!��$��

' ������	���
�������c��%c'�����	�����������p(c, c')������������

� �����������{p1} Å {p2}�����	���������c������������������	��������c'
����% p(c, c')�

���	��� �����������������#�����������{p2} Å {p1}

+ �#��������������Å{p1}��������	�������������������!�c����	�����	
����c'�������

����	��% p(c, c')���������� ������������#������������Å{p2}

��

����������
����������
������������������������ �������������������������
�	��������

�����
�������������������
������
������������� �����
�����������������
������� ��

�������������������	�������q���!��
�����
�$��

parents(x, y) � child(w, x), child(z, y).

dep_parents(x, y) � dependant(x, y), parents(x, y).

q(y) � dep_parents('Bill', y).

��	�������
��
����!����������������child��%dependant� ������child('c', 'p')�������	���

'c'��
�����������'p'��%dependant('d1', 'd2')�������	���'d1'�������%'d2'� ��
�������������	

����������	��������������

{child1} Å {child2}, {dependant1} Å {dependant2}

��������������������������#���������������������������Å{q1}���	���&� ��������������

����������
�������������������	����������������	������������������������
���������

��������	���������!����#����!� ��������	��������������,parents�������������������������

��
����	����
���������#�����"�������	������� ����������dep_parents�����#����������	��

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

�������������������������������!������� ��	����������#�����������child�����������

����$��

{child1}Å {child2} (1)

��
��childi���	��������(position)��%i%�	��������child ��

�������������	���������������	�������������������"��������child���#���������	��������

����	��������������'c'�������
��������������	���
�����	����'p'
����%child('c', 'p')���	���� ��

����������
�������������
��������
������
��
�����
���������������������
�������

Datalog������������������������������������	������������ ����������
������	������
�

�������
������������
$��

' ��
�������������(weak safety)� ���	���������
��������������������������

�������	��������������
��������������������������	���
���������
�����
� ������������(termination)� ���	������������������������	����������
���������

��������������������	������������������
���������	���

��������������
����������������������������	�����
� ������������������!������

���������������� ��

�
��������������������
��������������!������ ����������
����������������������

���������������������������	������������������������������������
����	������

���������� ��

�����������
���
����������������
�������	�����'Moses'���	����������������child������

�#����������:(1)

moses_ancestor(x) � descendant('Moses', x).

descendant(x, y) � child(x, z), descendant (z, y).

descendant (x, y) � child(x, y).

����	����������������������*{descendant1} Å�{descendant2��%�Å {moses_ancestor1} �

�����	�� ��

�����������������
��
�� �����

���������
��6.1.������
��������������������������������	��������������������
��q�

����arity�������k�#���������	����Å{q1,…,qk} �

��
�������	�������������
��������������	��������������'Moses'
������������������ ��

����������������������!�������������������
��

���������
���������	���
�������	����������������������	������������ ��

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

��

public [extends T, T abstract | interface];

��������%Datalog������������	
$��

q(x) � public(x), p(x).

p(x) � interface(x).

p(x) � extends(x, y), abstract(y).

���������
��
����!����������	�������������&�Extensional DataBase�����	�����(EDB�

��public, interface, extends ��%.abstract����	�������������������������������������

�������� ����	�������
��������������������������������&Intensional DataBase�����	�����

IDB��(��q��%p� ��������������������������������������
���������������������	�����������

������
��������� ���
� ����� �
 ����� ��	�� �� ��	�� ���� �	����� ������.

���!��������q�������������������!��	��� ��

�%JTL�������������������
��������
���������������Datalog��������	�� ��

��

��������������������
���

������������� ����
������������	�����
����������	����
�����������	�� ���������	���

�!����������������������
����	������ �������������
���������"uses"
����
	�������

�
���
��	�����
�������
�����
�������������������������) ���!�����
������!����������

������������������$�����������������������������	������
��
�����	��������������

�������������
��
����������	�����
����	�������������"�	�������
����������������

��������� ������������������	�������������������
���!��������������� �����"����&�����

�
�����(���������	��������������������������� ��

������� �

��
�������������������!����������������Datalog�� �

��
���	������ ��

�	�������������������
���������������������child$��

moses_parent(x) � child('Moses', x).

��	���������������������������
�������moses_son��������
�����������
���������
�

'Moses'� ��� �������	��������

�������
��

����������������	��� ��

��

��

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

����� � �
��
��

��
��������������������
����������
�����

����������������������������� ���������������������������������������	�����������������

������������������
�������������������������!����
� ��

��	���
���
��	�������
�����������Datalog�����������������������������
�����
�������

����	����������	������������������
�������������Datalog���������������������������

���
�"������ "�������������������������

�����
��������������������������������!��#������������������
�� ��

��������������������������������	�
���
���
�����Datalog����	������������������� ������

�!�������������������Datalog����������������������������	����������������������� ��

��������������������	������������
��������

q(x + 1) � p(x).

q(x) � q(x), p(x).

���������������������������Datalog������$��

q(y) � p(x), succ(x, y).

q(x) � q(y), p(x), sqrt(x, y).

�����������������	��
������ sqrt�

�%succ �����	�������������������������������
������������	������������������������

������ �
�������������sqrt��������#������
��
������
�x��
��������������	�y%�������������

%sqrt(x, y)���	��� ��

�������� �

��

���

������!���
����������"����������������%web� ���������������������������������������

����
������������	��������������"���������������	������������������� ����������	���������

C������������������������
�����
����	����
��������
�������������	��
�����
������

��������%C ������������
�������������������������
�������������������������������

��������������������� ���

������	������
�������������������
���
JTL���������������
����
����
�����
���

�������������
�.Datalog��%JTL��� ��

������������
�JTL�����������
��&'�(����������	
��������(public interfaces)����&��(���

���������	��������	
�������������	������
�����
�����	������	
 ��

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

���	���	��	��#���

��

�� closure(r, C, X)���

�� r_constraints(r, C)��

�� program_constraints(�, C)��

�� idb_eval(p, Q, X)���

�� rule_eval(p, Q, X)���

�� atom_eval(p, Q, X)�� �

�&

�

��

�%

��

��

��

��

��

��

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

���	���	�	�����

��

�� �������Datalog��

��� ����!�����������multi��������2.1���

�� ���
�����������causations ���

�� ������	�"�����������!���

�� ���
��#�
�������jar��������
�Hibernate���

�� �
����"���������
���
�������$���

��� �
����"��������������
�����
�������$���

� �

�

�

��

��

�%

�

��

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

 ����� ��

 ����� ��

�$� ���
�� �

57

61

65

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

��������	
		
��

��

����������	
���

�� ���

�� ��

��� ���

��� ����������	���

��� ��

��� ���

�� �	�	�����	
		
���
��� ���
��

���� ��

���� �������
���

�� ���	�����		��
�� ���	���	���

�� ��	���	�����������	
���

�� ��������		�������	���

�� ���������		����	���

��� ��
��

���� ��
������������
���

���� ��
���

���� ��������������
���

 � ���		����������	���	����	
�������Datalog��

!� "���	����	��#���

 �� ����	����	���

 ��� ���

 ���� ��	���������������
��

1

�
�

6

7

8

9

10
10

11

13

15
18
22
29
31
35

37

38

40

42
45
47

52

52

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

��������
����	���
���������������
�
�������������	���

���������������������
�����������������������������������

������
����������

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

�

������������	�
Datalog������	�

�������������������������� �

�

�

�����	�������

�

�

���������	����
������
��	���������
�
���������������
�������� �
�

�

�

������������� �

�

�

��������������
��������
���������������� �

��������
������������������������������� �

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

�

������������	�
Datalog������	�

������������������������
 � �

� � ������������� �

Te
ch

ni
on

 -
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

sis
 M

SC
-2

00
8-

15
 -

20
08

