Evaluating DATALOG Programs over

Infinite and Founded Databases

EVELINA ZARIVACH



800Z - ST-800T-DSIN SISOUL "9S'A - Juaunteda 9ouarog Jondwo)) - uoruyo .



Evaluating DATALOG Programs over Infinite and
Founded Databases

Research Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Computer Science

EVELINA ZARIVACH

Submitted to the Senate of the Technion — Israel Institute of Technology
Tevet 5768 HAIFA December 2007



800Z - ST-800T-DSIN SISOUL "9S'A - Juaunteda 9ouarog Jondwo)) - uoruyo .



The Research Thesis Was Done Under the Supervision of Dr. Yossi Gil
in the Faculty of Computer Science, Technion

THE GENEROUS FINANCIAL HELP OF THE TECHNION IS GRATEFULLY
ACKNOWLEDGED



800Z - ST-800T-DSIN SISOUL "9S'A - Juaunteda 9ouarog Jondwo)) - uoruyo .



Acknowledgments

I would like to express my appreciation to people without whom this work would not be
completed.

I thank my advisor, Assoc. Prof. Yossi Gil, for his enormous help and endless patience.
He taught me that perfection has no limits.

I thank Dr. Sara Cohen for her valuable assistance and guidance during my thesis.

I also want to thank Itay Maman for his involvement, his help and encouragement.
Fruitful discussions with Elena Tulchinsky are gratefully acknowledged.

Thanks to my parents and my beloved husband Igor for their support and belief in me.
And last, but not least, I thank my precious daughter Emily, who was born two days after

my thesis examination, for waiting for the right moment to show up.



Contents

1 Introduction

1.1 Function Symbols . . . . ... ... ... .....
1.2 Open-World Software . . . . ... ... ......
1.3 Access Constraints . . . . . ... .........
1.4 RelatedWork . ... ... ... .. ........

1.5 Contributions . . . . . . . . . . . ... ... ...

2 Preliminaries

2.1 Syntax . . ...
2.2 SemantiCS . . . . . ... e e

2.3 ExpansionRules . .. ... ............

3 The Safety Problem

4 Single Rule Constraints Implication

S Program Wide Constraints Implication
6 Deciding Weak Safety

7 Deciding Termination

7.1 ExpansionGraphs . . . . ... ... ... .....
7.2 Directionality in Expansion Graphs . . . . . . . ..

7.3 Reduced Expansion Graphs . . . . ... ... ...

7.4 Bounded Repertoire of Reduced Expansion Graphs

8 Computability

10
10
11
13

15

18

22

29

31
35
37
38
40

42



9 A Top-Down Evaluation Algorithm 45

9.1 Some Intuition . . . . ... ... 47
9.2 Correctness Proof . . . . . . .. ... ... 52
9.2.1 Construction of the Adapted Program . . . . ... ... .. ... 52
9.2.2 Equivalence proof . . .. ... ... ... ... .. ... 57
0.23 Termination . . . . . . . . . . . .. 61

10 Conclusion 65



List of Figures

2.1
2.2

4.1

7.1
7.2
7.3
7.4

A DATALOG program . . . . . . . . . . .o v i i 12
Representation of multi predicate from Figure 2.1. . . . . . . ... .. .. 13
Inference rules for causations . . . . . . ... ... ... 19
Database as an infinite graph. . . . . . . .. ... 32
Hibernate jar files dependencies. . . . . . . . . ... ... ... ..... 33
The expansion graph of expansion rule (7.1). . . . . ... ... ... .. 36

The reduced expansion graph of expansion rule (7.1). . . . . . ... ... 39



800Z - ST-800T-DSIN SISOUL "9S'A - Juaunteda 9ouarog Jondwo)) - uoruyo .



List of Algorithms

AN L A W N =

closure(r,C,X) . . . . . . 20
reconstraints(r,C) . . . . . . . ... 21
program_constraints(I[,C) . . .. ... ... ... ... ........ 23
idbeval(p, Q, X) . . . . . . e 46
ruleceval(r, @, X) . . . . .. e e 47

atom_eval(a, Q, X) . . . . . .. 47



800Z - ST-800T-DSIN SISOUL "9S'A - Juaunteda 9ouarog Jondwo)) - uoruyo .



List of Definitions

Definition 3.1:

Definition 3.2:

Definition 3.6:

Definition 3.7:

Definition 3.8:

Definition 4.1:

Definition 4.2:

Definition 5.1:

Definition 7.1:

Definition 7.3:

Definition 7.4:

Definition 7.5:

Definition 7.7:

Definition 8.1:

Definition 9.4:

Positions Set and Finiteness Constraint

Constraint Satisfaction

Safe Program

Weakly Safe Program
Terminating Program

Rule Constraint Implication
Closure

Program Constraint Implication
Founded Database

Expansion Graph

Expansion Graph Isomorphism
Subgraph

Reduced Expansion Graph
Variable-Bound Predicate

Closure Sequence

16

16

17

17

17

18

20

22

32

36

37

37

39

44

53



Definition 9.5: Adapted Rule

Definition 9.6: Adapted Program

55

55



Abstract

Traditionally, infinite databases were studied as a data model for queries that may con-
tain function symbols (since functions may be expressed as infinite relations). Recently,
the interest in infinite databases has been sparked by additional scenarios, e.g., as a for-
mal model of a database of an open-world software or of other relations that may be
spread across the Web. In the course of implementing a database system for querying
Java software, we found that the universe of Java code can be effectively modeled as an
infinite database. This modeling makes it possible to distinguish between queries which
are “open-ended,” that is, whose result may grow as software components are added into
the system, and queries which are “closed,” in that their result does not change as the
software base grows. Further, closed queries can be implemented much more efficiently
than open queries.

This work revisits the weak safety and termination problems for recursive DATALOG
programs evaluated over infinite databases. In particular, an algorithm is presented that
computes all finiteness constraints for the IDB predicates of a program, given a set of
finiteness constraints over the EDB predicates. In addition to being of interest in itself,
this algorithm also presents an alternative method to check for weak safety and as a skele-
ton for query evaluation. A sufficient condition for program termination is also presented,
provided that the program and database satisfy certain natural constraints. These con-
straints are often satisfied in the context of software analysis problems. For programs that
satisfy these constraints, we also provide an algorithm to generate an efficient evaluation
scheme of closed queries, which is a generalization of Vieille’s famous QSQR algorithm
for top-down evaluation of Datalog programs. A by-product of this work is a rather terse

and elegant representation of QSQR.



800Z - ST-800T-DSIN SISOUL "9S'A - Juaunteda 9ouarog Jondwo)) - uoruyo .



List of Symbols

Symbol Denotes
A(r) set of adapted rules corresponding to a rule r
a atom
C set of finiteness constraints
Cn set of constraints on IDB predicates implied by 11
C(F) set of all constraints that F satisfy
D database
D domain
F set of facts for EDB and possible IDB predicates
P predicate
Di the i position of predicate p
Py auxiliary predicate of p, X, y C pos(p)
q goal predicate
r rule
oy adapted rule of r which defines p*¥
r sequence of rules
Xa closure of a set X C terms(r) with respect to C and
rule
L XY, Z sets of variables (upper-case boldface letters)
ey XY, 2 variables (lower-case letters from the end of the al-
phabet)
Xy, 2 sets of positions (lower-case boldface letters)
y expansion rule
IT DATALOG program
Il adapted program of 11



Denotes

ar(p)
body(r)
cls(r, x,C)
consts(a)
consts(11)
edb(II)
head(r)
idb(IT)
min(C)
pos(p)
pred(a)
pred(r)

terms(a)

vars(a)

the result of applying all rule sequences of IT on F
where each sequence is no longer than ¢

restriction of a set of facts to facts on predicate p
finiteness constraint

rule

arity of predicate p

body of rule r

closure sequence of r with respect to x and C

set of all constants appearing in a

set of constants appearing in any rule of 11

EDB predicates of 11

head atom of rule r

IDB predicates of 11

minimized version of C

set of positions of p, i.e., {pl, - ,par(p)}

predicate of an atom «a

predicate of the head of rule r, ie., pred(r) =
pred(head(r))

set of all terms appearing in a

set of all variables appearing in a



Chapter 1
Introduction

Usually, a database contains relations of finite size. However, there are natural settings
which can be better modeled by infinite databases, over which a set of finiteness con-
straints is defined. In this research we are interested in the safety problem, which is one
of most fundamental issues related to DATALOG [4] programs over infinite relations. We
say that a DATALOG program is safe, if it yields a finite result over all databases which sat-
isfy some given finiteness constraints. Instead of studying the safety problem directly, we
consider the weak safety and termination properties. Intuitively, a program (i) is weakly
safe if it yields a finite answer for all finite applications of its rules and, (ii) terminates if
every sequence of rule applications eventually ceases to yield new results.

To motivate our study of infinite databases, we describe below three different scenarios

which involve (some degree of) inherent infiniteness of the database.

1.1 Function Symbols

Classically, infinite databases were first introduced as an abstraction that allow programs
with function symbols to be modeled as function-free programs over infinite relations.
As an intuitive example, consider the following DATALOG program which contains two

function symbols:

a(x + 1) « p(x).
a(x) — q(vx),p(x).



As [21] showed, this program can be abstractly modeled as follows, where succ and sqrt

are infinite relations.

a(y) < p(x),succ(x,y).
a(x) < q(y), p(x), sqrt(x, y).

Finiteness constraints were introduced in [21] to model known characteristics of the func-

tion symbols, such that for each x, there are finitely many y such that sqrt(x, y) holds.

1.2 Open-World Software

Recently, the interest in infinite databases has been sparked by additional scenarios, e.g.,
as a formal model of a database of an open-world software or of other relations that
may be spread across the Web. Open-world software is infinite in the sense that it is
constantly growing, and thus, cannot be completely explored at any moment in time. For
example, given a class C, there may be an unbounded number of program classes that
inherit from C, that call a method from C, or that have as a data member an instance of
C. Thus, querying in the open-world software scenario is naturally modeled as querying
over infinite relations. This specific domain also gives rise to finiteness constraints, e.g.,
a class may inherit only from a finite number of classes.

Our study of infinite databases was motivated by JTL [5], a new DATALOG based
system for making queries over software, which uses infinite relations as its data model.
As an example of the usefulness of this paradigm for querying JAVA software, consider
the following JTL query, which finds (i) all public interfaces or (ii) all public interfaces or

classes that extend an abstract class or interface.
public [extends T, T abstract | interface];
The DATALOG program equivalent to the above is as follows.
q(x) < public(x), p(x).
p(x) « interface(x).

p(x) « extends(x,y), abstract(y).

Note that public, interface, abstract and extends are EDB predicates. Although this pro-

gram is nonrecursive, it is also possible to express recursive programs in JTL.



Even in an open-environment, finiteness constraints have a natural manifestation. For
example, the transitive closure of a “uses” relationship between programs is assumed to
be bounded. In other words, the programming model is such that, it is unknown which
classes may be using a given class, and in general, the number of these classes is un-
bounded. However, the list of classes that the given class uses, directly or indirectly, is
bounded, and must be available to the compiler at compile time. (This assumption is crit-
ical, as it allows a program to be compiled and executed by dynamically loading required
components.)

The software-engineering research community has regained interest in applying the
logic paradigm for implementing algorithms for processing software, and more generally,
frameworks for developing such algorithms. Prime examples of this interest include the
CodeQuest system for formulating queries on code [10], ALPHA [19], and JQuery [11].
Such systems are not limited to simple queries, but also e.g., advance frameworks for
dataflow algorithms [18] for developing such algorithms, and optimization schemes for
algorithms implemented in this framework [28], as well as efficient implementation of
specific algorithms [29]. Some less recent work for using the logic paradigm, and in
particular DATALOG, for these tasks include [7,22], as well as the ASTLog framework [6],
the XL C++ browser [12], and many more. Thus, the results in this framework can be

applied to additional software engineering systems, beyond JTL.

1.3 Access Constraints

Infinite databases can also be used as an abstraction for computation that is highly inef-
ficient. Consider, for example, a predicate tree(x,y), which holds pairs of parent-child
node ids in a tree structure. It may be the case that given a value for x, it is easy to com-
pute all values for y (since we have forward pointers), yet given a value for y, it is very
inefficient to compute x (if we do not store backward pointers). Such constraints have
been modeled in the past as access constraints (sometimes called binding patterns) and
the rewriting problem for queries with access constraints has been extensively studied,
e.g., [8,9,16]. An alternative modeling of such scenarios is to consider tree as an infi-
nite relation, with a finiteness constraint that specifies the manner(s) in which it can be
efficiently accessed.

‘We do not discuss the exact similarities and differences between these two alternative



models. However, it is of interest to note that our results shed some light on problems
related to querying with access constraints. For example, our algorithm for implication
of finiteness constraints can be adapted to imply access constraints over IDB predicates,

when given access constraints over the EDB predicates.

1.4 Related Work

The problem of deciding safety (i.e., finiteness of results) of a DATALOG program has
been extensively studied. Safety of recursive DATALOG programs without function sym-
bols, but with negation, is known to be undecidable [20,25]. Safety is also undecidable
for DATALOG programs with function symbols [24]. This latter result motivated [21] to
abstractly model DATALOG programs with function symbols as function-free programs
over infinite relations. [21] also introduced finiteness constraints to model known charac-

teristics of function symbols.

The safety problem for DATALOG programs over infinite relations, with finiteness
constraints, was studied in [23]. In particular, [23] showed that safety can be reduced
to a combination of two properties: weak safety (i.e., finiteness of results for every finite
number of rule applications) and termination. They presented a method to determine weak
safety, and showed that termination is undecidable. For monadic programs, [23] proved

that safety can be determined in polynomial time.

Several stronger notions than safety have also been studied for programs over infinite
relations. Supersafety was considered in [13, 14] and shown to be decidable. Supersafety
is a sufficient, but not necessary, condition for safety. Intuitively, supersafety requires
finiteness of results in all fixpoint models, whereas safety requires finiteness of results
only in the least fixpoint model. A variant characteristic, called strong safety, was studied
in [15]. Basically, a program is strongly safe if all intermediate rules (and not only the goal
predicate) yield finite results. For a special case, [15] showed how to evaluate all results
for a strongly safe program, using a bottom-up computation. One of the requirements
in [15] is that each rule can be computed in a left-to-right ordering of its atoms, such that
the variables in a specific atom are bounded by those appearing to its left. Our results can

also be used to check such properties of rules.



1.5 Contributions

This work presents new results on the safety problem for DATALOG programs over infinite

relations. Our contributions can be summarized as follows.

e We present an algorithm (Chapter 4 and Chapter 5) to determine finiteness con-
straints on IDB predicates defined in a DATALOG program based on the finiteness
constraints defined on the EDB predicates. Our algorithm finds all finiteness con-
straints that must hold on the IDB after any finite number of rule applications. This
result is useful in itself since it gives us insight on the characteristics of the IDB
predicates, which can be important for developing query computation algorithms,

such as the type in [15].

e We present an alternative characterization, based on this algorithm, of DATALOG

programs which are weakly safe (Chapter 6).

e The termination problem is also considered (Chapter 7). Our EDB predicates can
be binary (as opposed to the monadic predicates considered in [23]). We decide
termination when the database is founded which is natural, in particular, in the

software model.

e A characterization of DATALOG programs which can be evaluated even if they re-
quire in their evaluation partial exploration of infinite values is presented (Chap-
ter 8). (This is the case if the program needs to check e.g., if a given class has
at least one class that inherits from it.) An actual evaluation algorithm, based on
the famous Vieille’s [26,27] query-subquery top-down evaluation technique is pre-
sented in Chapter 9. (We believe that our presentation of the algorithm is a bit more

elegant and easy to understand than the original formulation.)



Chapter 2
Preliminaries

This section briefly reviews the basic syntax and semantics of positive, recursive DAT-
ALOG programs, which are evaluated over a possibly infinite database. This review is

necessary in order to introduce the notation that we will be using throughout the research.

2.1 Syntax

Relations in DATALOG are represented by predicates, and are abstractly denoted with p
and q. We use ar(p) to denote the arity of the predicate p. When discussing concrete
examples of predicates, we will use the sanserif font, e.g., members, parent. For a predi-
cate p, we denote by py, po, . . . its positions.

Let V be an enumerable set of variable symbols and D be an enumerable set of
constant symbols. We shall use lower-case letters from the end of the Latin alphabet,
ie., x, y, z, etc., to denote variables and upper-case bold letters to denote sets of vari-
ables X, Y, Z. Constants are quoted, e.g., ‘Moses’, ‘Isaac’, etc. Terms are either constants
or variables and are denoted ¢, ¢1, to, etc.

An atom a is of the form p(ty,...,t,) where p is a predicate symbol of arity n and
each t¢; is a term. We use pred(a) to denote the predicate of a and we use ar(a) as a
shorthand notation for ar(pred(a)). For an atom a, we denote by t;(a) the term which
appears at position 7. Terms which are mapped to a constant are said to be bound;
other terms are free. In parent(x, ‘Moses’), the first term is free while the second is
bound. A fact is a ground atom, i.e., an atom in which all arguments are bound. For

example, parent(‘Amram’, ‘Moses’) is a fact. The phrase p-fact refers to a fact a such

10



that pred(a) = p.

Let vars(a) (respectively consts(a)) denote the set of all variables (respectively con-
stants) appearing in atom a. Let terms(a) = vars(a) U consts(a), i.e., terms(a) is the
set of all the terms appearing in the atom a. An assignment is a function i : V. — . By
applying an assignment 4 to an atom a, one derives a pred(a)-fact.

A rule r has the form p(tq,...,tg) < aq,. .., a,, where p(ty, ..., ty) is the head of r,
and ay,...,a, is the body of r. We use the overloaded notation pred(r) to denote the
predicate of the head of r. If p = pred(r), we say that r defines p. We overload the
notations vars(r), consts(r) and terms(r) to represent all the variables, constants and
terms(respectively) appearing in rule 7. For i = 1,2, ..., let terms;(r) be the i element
of terms(r) in some enumeration of this set. In Figure 2.1, terms(75) = {x,y, w, ‘Bill’}.

A DATALOG program 11 is a finite collection of rules, with a designated predicate,
called the goal. We use consts(II) to denote the set of constants appearing in any rule
of I, i.e., consts(II) = | J, ., consts(r) . We distinguish between two kinds of predicates
that appear in a program: (i) extensional database (EDB) predicates, denoted edb(IT),
which are predicates that do not occur in the head of any of the program’s rules, and
(ii) intensional database (IDB) predicates (all other predicates), denoted idb(II). By con-
vention, we use ¢ to denote the goal of a program. We always require that ¢ € idb(II).

We assume that the goal predicate is defined by a single rule.

2.2 Semantics

A database D is a possibly infinite set of facts. To be exact, for each EDB predicate
p, the database D may contain infinitely many p-facts; D usually does not contain any
facts for the IDB predicates. The result of applying a rule r to a database D is defined
in the standard fashion. Informally, the semantics of a rule is “If the body atoms are
true then so is the head atom.” To make the semantics precise, we consider a set F
that contains facts for the EDB (and possibly for the IDB) predicates. Such sets are
intermediate values during the evaluation of a program on a database. Then, an application
of arule 7: p(ty,...,tx) < ai,...,a, to F produces a set of facts denoted r(F), such
that (/) every factin F is in r(F), and (2) if p is an assignment that satisfies the body of r
(i.e., u(a;) € F, for all i), then also pu(p(ty, ..., tx)) € r(F).

For a sequence 7 of rules, let 7(F) denote the set of all facts obtained by applying

11



Figure 2.1 A DATALOG program

71: heir(x,y) < child(x, y).

To: heir(x,y) « child(x, z), heir(z, y).

73: cousins(x, y, z) < child(x’, z), child(x, x’),
child(y’, z), child(y, y').

74: heirs(x, u, v) < heir(x, u), heir(x, v), not_eq(u, v).

75: multi(x, y) < heirs(x,u, v), cousins(u, v, y),
dependant(x, y).

T6: 9(x,y) < multi(x, y), heir(‘Bill’, x), child(w, ‘Bill”).

the rules in 7 in sequence to F, i.e., if 7 is empty, then #(F) = F. Otherwise, ¥ = 7r,
where 7 is a sequence and r is a rule, in which case #(F) = 7(#'(F)). The nota-
tion IT"(F) will stand for the union of all #(F), where 7 is a sequence of at most i rules

selected from I1. Also, let TI°(F) = (J,», II'(F).

If p is a predicate, then subscript p will be used to denote the restriction of a set of
facts to p-facts only. Thus, IT (F) is the set of p-facts in IT'(F), and #,(F) is defined
similarly. The result of applying II to a database D is II;°(D) where ¢ is II’s goal. Note
that I13°(D) may be infinite if D is infinite.

For the purpose of illustration, Figure 2.1 presents a simple DATALOG program, which
will be used as the running example of this work. The program is defined over the follow-
ing EDB predicates: child, dependant and not_eq. In particular, a fact child(‘c’, ‘p’) states
that ‘c’ is a “child” of ‘p” and a fact dependant(‘a’, ‘b’) represents a fact in which ‘a’ de-
pends upon ‘b’. These predicates can be interpreted over the domain of JAVA classes, with
the “uses” semantics. It can also be interpreted over the domain of genealogy of characters

in the Bible (or Greek mythology for that matter), with the meaning of “preceding.”

The schematic representation of the multi predicate in the program of Figure 2.1 is

depicted in Figure 2.2.

12



Figure 2.2 Representation of multi predicate from Figure 2.1.

2.3 Expansion Rules

We will find it convenient to summarize the application of a rule sequence in a sequence
of expansion rules, i.e., rules which involve only EDB predicates. We will use «y to denote
a single expansion rule and I' to denote a set of expansion rules. Fac. 2.1 is well known,

and follows, e.g., from [17].

Fact 2.1. For every finite sequence of rules ¥ and every predicate p there exists a finite set

of expansion rules I which uses only the constants occurring in the rules of ¥, such that

(D) = | J (D)

yerl’

regardless of D.

In our running example, applying 7, and then 74 is the shortest sequence of rule appli-

cations that generates heirs-facts. The expansion rule for this sequence is

heirs(x, u, v) «—child(x, u), child(x, v), o
not_eq(u, v). '

13



Similarly, one sequence that yields a multi-fact, is by applying first 7; and 7, (to ob-
tain heirs-facts), then 73 (to obtain cousins-facts), and finally 75. The corresponding ex-

pansion rule is similar to (2.1), but a bit longer

multi(x, y) < child(x, u), child(x, v), not_eq(u, v),
child(vw’, y), child(u, v’), child(v', y), (2.2)
child(v, v'), dependant(x, y).

Recall that the result of applying a program II, with goal ¢, to a database D is II° (D).
It follows from Fac. 2.1 that there exists an infinite series of expansion rules v, ~?2, ...

defining ¢ such that
15°(D) = [ Ji(D). (2.3)
=1

Henceforth, we shall tacitly assume that the head atom of any rule r does not contain
any variable v € vars(r) more than once and does not contain constants. No generality
is lost. Rules can always be brought to this form without changing their semantics by
introduction of auxiliary variables and by using the infinite EDB predicate eq(x, y) which

holds whenever x = y. For example, rule
a(x,x,y, ‘Ben’) «— a(x, ‘Dan’, z).
will be transformed to

a(x,w,y,u) < a(x, ‘Dan’, z), eq(w, x), eq(u, ‘Ben’).

14



Chapter 3

The Safety Problem

In this section we present a theory of finiteness constraints which is crucial to the analysis

of the problem that we research. Informally, the problem is:

Given a DATALOG program and restrictions over its database, decide whether the

result of a program is finite for any infinite database that meets the restrictions.

One should understand that when there are no constraints on the database, nothing
meaningful can be stated about the program’s semantics. Even a simple DATALOG pro-

gram, such as
moses_son(x) < parent(‘Moses’, x).

can deduce an infinite number of facts to moses_son predicate when no restrictions are
imposed on parent predicate.

Consider, on the other hand, a case in which we restrict the set of parent-facts in
the database such that for any ‘c’ € D, the set {x |parent(‘c’,x)} is finite. Under this
restriction, we can conclude that the above program deduces only finitely many facts to

its goal. To express such restrictions, we use finiteness constraints, as defined in [21].

Definition 3.1. Let p be a predicate. Then, pos(p) is the set of symbols {pl, o Dar(p) },
and a finiteness constraint (constraint for short) of p is an expression of the form X ~- 'y,

where

x,y C pos(p).

15



A facts’ set F satisfies constraint x ~» y if the search for p-facts in F with some
fixed assignment to positions X, yields only a finite variety of combinations of values for

positions y. More formally,

Definition 3.2. Let 0 = X ~» y be a constraint on predicate p and F be a set of facts.
Then, F |= o (read F satisfies o) if the set

{bly] |b € F and pred(b) = p and b[x] = a[x]}

is finite for every p-fact a € F. If C is a set of constraints, then F = C if F |= o for
all o € C.

As an example, consider the ternary predicate intersect, in which a
fact intersect(‘cl’, ‘c2’, ‘p’) states that ‘cl’ and ‘c2’ are two circles intersecting at
a point ‘p’. Then, (infinite) set of all facts about intersections of distinct circles in the
plane satisfies the constraint {intersect;,intersect,} ~» {intersect;}, since there are
at most two points in which such circles intersect. This set does not satisfy any other

constraints.

Remark 3.3. Using constraints it is possible to state that the number of p-facts, for some predi-

cate p, must be finite. Formally, this is written as () ~ pos(p).

Remark 3.4. Note that finiteness constraints are a somewhat weaker version of functional depen-
dencies. Not surprisingly, Armstrong’s axioms also characterize finiteness constraints for EDB

predicates [21].

Let €(F) denote the set of all constraints that set F satisfies. The following fact is

easily shown.

Fact 3.5. For all finite sequences, F1, ..., F,
C(FAHU---UF,)=CF)N---NEF,) (3.1)

(Unfortunately, this fact does not hold for infinite sequences.)

After defining the notion of finiteness constraints, we are ready to formally state the
central problem of the research. For the purpose of the following definitions, let II be a
fixed DATALOG program, and let predicate ¢ be its goal. Also let C be a set of constraints.
Then, the main problem of this research is to determine whether the set I13°(D) is finite

whenever D = C, i.e., to decide whether a given program is safe or not.

16



Definition 3.6. Program 11 is safe if 11;°(D) is finite whenever D |= C.

It has been shown that the safety problem can be reduced [23] to two problems: (i) the
weak safety problem, which is to decide whether any finite sequence of program rule
applications yields a finite number of facts to its goal, and (ii) the fermination problem,
which is to decide whether there is a finite number of rule applications after which no new

facts are added to the program’s goal. Formally,

Definition 3.7. We say that 11 is weakly safe with respect to C if the set 11} (D) is finite
for all n > 0 whenever D = C.

Definition 3.8. We say that 11 is terminating with respect to C if there exists n > 0 such
that 11°(D) = 117(D) whenever D = C.

Fact 3.9. 11 is safe iff it is both weakly safe and terminating [23].

It is also known [23] that the weak safety problem is complete for exponential time.
However, no algorithm has been shown to, given a program, deduce all constraints for
the IDB predicates that follow from the constraints on the EDB predicates, for all finite
applications of the program rules. Such an algorithm is the topic of Chapter 4 and of
Chapter 5. This algorithm is interesting of itself, since it proves that the finite implica-
tion problem for constraints is decidable. It is also useful as an alternative method for

determining weak safety (see Chapter 6) and as a skeleton for query evaluation.

17



Chapter 4
Single Rule Constraints Implication

Let r be a rule, and C be a set of constraints. This section is concerned with the constraints

that can be inferred from C on the output of a single application of 7.

Definition 4.1. Let 0 be a constraint on pred(r). Then, C |=, o (C implies o in ) if for
every set of facts F, the set r(F) satisfies o whenever F |= C.

Intuitively, C |=, o means that if all constraints of C hold prior to an application of r,
then o holds after a single application of 7. Let C, denote the set of all constraints implied
by C with respect to rule r, i.e., C, = {¢|C |=, c}.

Consider, for example, rule 75 in the running example. For constraints set C =
{{child;} ~ {childs}}, we have

Cr, = { {cousins; } ~» {cousins;},
{cousins,} ~+ {cousins;} }.

Now, a rule constraint (or a causation) is an expression of the form
X~Y

where X, Y C terms(r). For example, {x} ~~ {z} is a causation of the rule 73 defined
in Figure 2.1.

Inference in the context of rule r, must be done in terms of 7’s vocabulary, that is the
set terms(r). We introduce mechanisms for vocabulary translation: For a p-atom a, we
introduce a function term2pos, () which given a set of terms of a, returns the equivalent

set of p-positions, e.g., for a = p(x, ‘B’,y,x, ‘B’,y),

term2pos,({x, ‘B’}) = {p1, P2, P4 P5} -

18



Function pos2term,(-) is simply term2pos,~!(-). Also, for p-rule r with head atom h,

define function term2pos, (X), where X C terms(r), as
term2pos;, (X N terms(h)),

that is, convert to p-positions only terms occurring in the head. Function pos2term,.(-) is
simply pos2termy,(-).
To define the semantics of a causation 0 = X ~» Y, we construct a (predicate-)

constraint
o’ = term2pos,(X) ~~ term2pos, (Y)

where rule 7’ is constructed from r by selecting p’, a fresh predicate symbol not occurring
in 7, and letting r’ be the p’-rule identical to r except that all members of terms(r) occur

in its head term, i.e., the bodies of r’ and r are the same, and the head of 7’ is
h' = p/(terms, (), ..., terms;(r)),

where k& = |terms(r)|. We write C |=, o (read C implies o in rule ), or simply C |= o
(read C implies o) when the rule is clear from context, iff C =, o’.

To determine logical implications of causations, we present the following inference
rules which tell how one or more causations imply other causations. The inference rules

refer to any set of terms X, Y, Z € vars(r).

Figure 4.1 Inference rules for causations

IfY C X, then X ~ Y.
IfX ~ Y, thenXUZ ~ YUZ. 4.1)
fX~YandY ~» Z, then X ~~ Z.

The inference rules as presented in Figure 4.1 are almost an exact copy of the Arm-
strong’s axioms [2] for functional dependencies. It can be shown, that they form a sound
and a complete proof system for finiteness causations.

The notion of closure, which will be defined next, is useful when inferring causations
of a rule. Informally, a closure of terms set X consists of all the terms(r) which are

implied by X.

19



Definition 4.2. The closure of a set X C terms(r) with respect to C and r, denoted Xé{r,
is the largest set Y C terms(r) such that C =, X ~~ Y.

For example, if C = {{child; } ~» {childs}}, and the rule is given by 73 in the running

example, then

{v}er, ={yv'. 2}

Lemma 4.1. There exists a polynomial-time algorithm which, given a rule r, a set C, and

a set X C vars(r), computes Y = Xa.

Proof. Initially, Y < X. For all 0 € C and all atoms a € body(r), if c = u ~ v
and pos2term,(u) C y, then add pos2term,(v) to y. Iterate until Y ceases to change.
O

Algorithm 1 carries out the desired computation of closure.

Algorithm 1 closure(r, C, X)
Given a rule r, a constraints set C, and a set X C terms(r), re-

+
turn X¢ .

1: Let X/ < X U consts(r)

2: Repeat
3:  Forall 1 <i < |body(r)| do // Fixed order iteration
4: Let a; be the i atom of r
5: If there exist Y, Z C terms(a;) s.t.
(1) term2pos,, (Y) ~~ term2pos,, (Z) € C,
()Y C X/}, and
VL LXE,
then
6: X4, — X0 UZI/IXE, implies also Z
7: end If

8:  end for
9: until no more changes to er
10: Return X/,

20



The above algorithm runs in quadratic time in the size of the input (C, X and vars(r)).
There are at most |vars(r)| iterations (each iteration increases Y by one argument in the
worst case). In each iteration, all constraints in C are examined. There also exists a linear
time algorithm for the closure computation [3].

The closure procedure is used in Algorithm 2 which computes the set C,. of constraints

implied by C in 7.

Algorithm 2 r_constraints(r, C)
Return C, for rule r and constraints set C.
1: LetC, — 0
Let H «— terms(head(r))
For all X C H do // Find which variables are bound by X
Forall Y C Xar do // Adjust the result according to Definition 4.1
Cr < C, U {term2pos,(X) ~ term2pos,(Y)}

end for
end for
Return C,

The main loop of the algorithm, i.e., lines 3-5, is performed for all the subsets of
variables appearing in the head term. For each such subset X the algorithm computes
its closure X*. Now, since X ~~ X&LT holds, it remains to translate this constraint (and

subconstraints of it) to constraints over pred(r).

Lemma 4.2. Algorithm 2 correctly computes C, in time 2™O(n?), where m =
ar(pred(r)) + 1 and n is the length of vars(r) and C.

Proof. Omitted. [

21



Chapter 5
Program Wide Constraints Implication

Now that the means for inferring constraints within a single rule are established, we are
ready to study the more interesting problem, i.e., inference of constraints with respect to
an entire DATALOG program II. In doing so, we will need to take into account the effects
of multiple applications of the same rule, the fact that an IDB may be defined by more
than one rule, and that the definition of different IDBs may be mutually recursive.

In this section let C be a fixed set of constraints on the extensional predicates of IT and

let D be a database, i.e., a set of p-facts, where p € edb(II).

Definition 5.1. Let p € idb(1l) and let o be a constraint on p. We say that C implies o,
denoted C = o, if the set I1}(D) satisfies the constraint o for all n > 0 whenever D = C.

Remark 5.2. The implication considered in this research is finite implication, i.e., a constraint is
implied if it holds in all finite number of rule applications. Deciding which constraints hold after

infinitely many applications, allows one to decide termination, and is therefore undecidable.

Henceforth, we shall assume that D satisfies C. Let C, be the set of all the implied
constraints over p € idb(II), i.e., all constraints x ~~ y, where x,y C pos(p) and C =
x ~- y. Let Cy denote the set of all the constraints on IDB predicates of I1.

Observe that if no facts are established for a certain predicate p, i.e., no p-facts exist
in F, then F satisfies any constraint 0 = x ~~ y, where X,y C pos(p), This is precisely
the circumstances for all p € idb(IT), when program IT starts. The set F will continue to
satisfy o if no rule defining p will ever generate facts that violate o.

These observations are employed in Algorithm 3 which uses a fixed point evaluation

strategy for computing Cr;. Algorithm 3 maintains the set P, of constraints for every

22



Algorithm 3 program_constraints(I1, C)
Given a program 11, and a set C of constraints over its extensional predicates, return Cyy.

1: For all p € idb(II) do // find IDB candidate constraints

2:  LetP, — {x~y|x,y Cpos(p)}

3: end for

4: letCrp — CU UpEidb(H) P, Il add candidates to Cry

5: Repeat // Invalidate constraints until each P), is reduced to C,

6:  Forall p € idb(II) do // refine P, as implied by Cry

7: For all « € 11, pred(«) = p do // examine all p-rules

8: let C,, — r_constraints(«, Cry)

9: Cn < Cn1 \ Py !/ forget all p-constraints regarding p
10: Pp < P, N Cy Il remove constraints not preserved by o
11: Crt < Crp U Py, I revive p-constraints preserved by «
12: end for
13:  end for

14: until no changes in Cyy
15: Return Cpg

intensional predicate p € II. Initially, the algorithm assumes that all the constraints are
satisfied by the set F of p-facts (line 2). Then, the algorithm iteratively eliminates the con-
straints which are definitely not satisfied by F until a fixed point is reached. In particular,
a constraint o is in C,, if o is implied (in a steady state) by all the rules defining p.
Before moving on towards a correctness proof, we would like to demonstrate the run
of the algorithm on a concrete example. Consider the following program which computes

Bill’s ancestors in its goal predicate.
Example 5.3.

r1: 9(y) < heir(‘Bill’)y).
ro: heir(x,y) < child(x, z), heir(z, y). (5.1)

r3: heir(x, y) < child(x, y).
Here the heir predicate is defined in the same way as in our running example (see

Figure 2.1). Assuming that {child;} ~» {childy}, the algorithm will infer constraints

over heir and q predicates.

23



At its initialization (line 2) the algorithm creates two sets:

Pq= {0~ {a}}. (5.2)

and

Pheir = {0 ~ {heir} , 0 ~~ {heir,},
{heir; } ~~ {heiry}, (5.3)
{heiry} ~~ {heir; } }

Let us assume that in the main loop (lines 5—14) the algorithm first handles the pred-
icate q and then the predicate heir. Also, assume that the recursive heir-rule is examined

first (line 7). Then, Algorithm 3 updates the sets Pq and Ppgj, as follows:

1. The 1! examination of rule 1| remains the set Pq unchanged.

2. The 1** examination of rule ry reduces the set Ppgij, by two constraints:

0 ~ {heir, } and {heiry} ~ {heir, }.

3. The 1** examination of rule r3 also eliminates () ~~ {heiry} from Ppgijy-

At this stage the set contains only one constraint, i.e.,

Pheir = {{heir:} ~ {heir;}} .

4. Any subsequent examinations of the program’s rules remain the constraints sets

unchanged.

Thus, the output of the algorithm is

Pq = {0~ {ai}},
Pheir = {{heiri} ~ {heiry}} .

24



A bit of notation is required in reasoning about the algorithm. We assume that the
algorithm uses a fixed order for iterating over predicates and rules. With this order, there
is a global enumeration of the iterations of the inner loop (lines 9-11).

An " superscript attached to a variable used by the algorithm denotes the value of
this variable at the beginning of the i iteration. For example, 73;’ is the value of P, at the
beginning of the 3"¢ execution of the inner loop, i.e., the value which is assigned to P, at
the 2" execution of line 10. With this notation we have,

ch=cu |J P (5.4)
peidb(IT)
for all 7 > 0, while the main computation carried out by the algorithm, i.e., line 10, can

be written as the following recursion

P} Nr_constraints(a’,Cf;)  if pred(a’) = p,
P = (5.5)

77; otherwise.

for all p € idb(p) and all ¢ > 0.
An * superscript will denote the value of a variable at the end of the last iteration (for
now just assume that the algorithm always terminates). It is mundane to check that the

sequence of approximations to every individual predicate are non-increasing, i.e.,
1 2 *
P, 2P, 2 2P, (5.6)

Also, the sequence of approximations to the collective set of constraints is non-increasing,

1.e.,
CL2Cio---DCproert =y, (5.7)

where m is the total number of iterations. (It is convenient to assume that there is an
empty dummy iteration which takes place after the last iteration, in which no variables
are changed.)

Examining the computation carried out at iteration ¢ we determine that if a set of
facts F satisfies CY;, then an application of rule o' to F results in a set of facts which

satisfies Cj;"', and in particular P2 . Formally,

FECh = al(F) E Pirl. (5.8)

25



Also, it follows from the termination condition (line 14) that no rule application can gen-

erate facts that violate Cjj, i.e,
FECh =r(F) =Ch (5.9)
for all » € II.

Lemma 5.1. Set Cj; bounds below the constraints in any run of 11, i.e., Cj; C €(#(D)) for

every sequence T with rules drawn from I1.

Proof. By simultaneous induction on n = ||, noting that

ci=cu |J 7

peidb(II)

If n = 0, then #(D) = D and by assumption D satisfies C. Also, all sets 7,(D) are empty,
and hence satisfy all possible constraints and in particular P;.
Letn > 0, then let 7’ be a sequence and r be a rule such that # = #'r. By the inductive

hypothesis,
C € €(#(D)),
i.e., (D) | Cj. Using (5.9) with 7' (D) we obtain
r(7¥(D)) = Ciy,
1.e.,
Cn € €(7(D)).
0

The lemma also implies that Py C &(7,(D)), for all p € idb(II) and for every
sequence 7 of II’s rules.
We now consider the particular sequence of rules that the algorithm selects in the

course of its run. Let & be a prefix of the sequence of o'’s, i.e.,

L...aF for some k > 0.

a=uo
Lemma 5.2. For all p € idb(I1), it holds that

¢(&,(D)) = Pr.

26



Proof. By induction on k for all p € idb(II). The inductive base holds since if |a| = 0,
then &, (D) = (), and P} is the set of all constraints.
Consider the case that k > 0. Let &' = o' ---a*7!,ie., & = @'a”. By the inductive

hypothesis,

¢(al (D)) = P~ (5.10)

for all F. It follows from (5.5) that P}*! = P, and the induction step holds.
Otherwise, let A be the set of p-tuples which the application of o* produced, i.e.,

a,(D) = &, (D) U A, (5.11)

€(6,(D)) = €(a (D)) N E(A). (5.12)
Lemma 4.2 establishes
¢(A) = r_constraints(a”, CF).

The lemma now follows by applying again (5.5) and using the inductive hypothesis (5.10).
O

Theorem 5.1. There exists an exponential time algorithm which computes Cyy.

Proof. Lemma 5.1 implies that Algorithm 3’s return value, Cj;, does not contain invalid
constraints, i.e., Cj; € Cy;. To show that there is no valid constraint which C;j; does not
contain, apply Lemma 5.2 in the case |&| = m, i.e., the longest such &. From (5.4) it

follows that
¢(a(D)) = Ci™
which, using (5.7) implies

¢(a&(D)) = C.

27



It follows that Cjf; 2 Crr.

To see that the algorithm terminates, use (5.7) while noticing that C%[ 1s finite, and C’ﬁ
must decrease after every m iterations, where m is the number of rules in II. The runtime
of the algorithm is exponential in the worst case, since the set of all possible constraints
of predicate p, i.e., the value computed at 4, is exponential in ar(p). Thus, Cll] may be ex-
ponentially sized, and it could be the case that each iteration eliminates only a polynomial

number of constraints. ]

Note that Cy; as received by Algorithm 3 may contain redundant constraints. For
example, if {p1} ~» {p1,p2,p3} € Cn then Cyy also contains {p;} ~» {p1} and {p1} ~~
{p2} and etc. Precisely, there are 2° = 8 constrains which represent what is constrained
by {p1}. This is the result of Algorithm 2 (see line 5).

Sometimes we would like to work with the minimized version of Cy;, denoted min(Cyy),
in which no redundant constraints of this kind present. In particular, min(Cy;) holds that

if x ~»y € min(Cyy), then there are no constraints x ~» z € min(Cyy) such thatz C y.

28



Chapter 6

Deciding Weak Safety

In this section we present the theorem which decides the weak safety problem.

Theorem 6.1. Let I1 be a DATALOG program, and let q be its goal. Then, 11 is weakly
safe iff C = 0 ~ pos(q).

Proof. If 11 1s weakly safe, then according to Definition 3.7,
IT;(D)

is finite for all n > 0 whenever D = C. The above is possible only if C |= () ~~ pos(q).
Conversely, assume that C = () ~ pos(q). Then, by Definition 5.1, the set

satisfies () ~~ pos(q) for all n > 0 whenever D = C. Finally, according to Definition 3.2
it follows that the set

{a]a € F, Npred(a) = q}
is finite for all n > 0. The claim follows. ]

Consider, for example, the following DATALOG program, which computes ancestors
of ‘Rachel’:

heir(x,y) « child(x,y).
heir(x,y) « child(x, z), heir(z, y). (6.1)

rachel_ancestor(x) < heir(‘Rachel’, x).

29



Suppose that the input database of program (6.1) satisfies C = {{child; } ~» {childy}}.
Algorithm 3 deduces that

{heir;} ~ {heiry}

holds and so is () ~~ {rachel_ancestor; }. The last constraint implies that any finite number
of rule applications deduces finitely many rachel_ancestor-facts. This observation makes

program (6.1) weakly safe.

Remark 6.1. Theorem 6.1 establishes that Cr; can be used to decide weak safety. But, since
weak safety EXP-time complete [23], it is no wonder that our algorithm for computing Cry is

exponential.

30



Chapter 7
Deciding Termination

If a program is weakly safe, then any finite number of rule applications contributes a
finite number of facts to the program semantics. However, the result of a weakly safe
program may include an unbounded number of facts, since in general, the number of rule
applications is unbounded. Indeed, Sagiv and Vardi [23] showed that the independent
problem of termination is undecidable, without being able to produce an algorithm for
determining termination in the case that weak safety is known, or conversely, to prove
that no such algorithm exists.

This section sets conditions, common in tasks of processing software, which exclude
the situation that a program is weakly safe yet not terminating.

Specifically, we show that every weakly safe program is also terminating whenever
the database is founded.

We start from informal definition of founded database which is quite intuitive.
Founded databases are restricted to contain only binary EDB predicates. Therefore it
is natural to represent a database as an infinite graph, in which edges correspond to facts.
For each predicate p having the constraint {p,} ~~ {p,}, an edge ¢; — ¢ is created for
each fact p(cq, ¢2). Similarly, for each predicate p having the constraint {p,} ~~ {p,}, an
edge co — ¢ is created for each fact p(cy, c). We say that a database is founded if every
infinite path contains only finitely many vertices.

Consider Figure 7.1 which schematically represents database as an infinite graph.
Here the database contains at least three EDB predicates: p, p’ and p”. Edges marked
with a predicate name represent facts of that predicate. In this figure one can see an in-

finite path. If the represented database is founded, then the path traverses only finitely

31



many vertices.

Figure 7.1 Database as an infinite graph.

Now we are ready to define precisely what founded database means.
Definition 7.1. A database D satisfying a set of constraints C is founded if:

1. all EDB predicates are binary

2. there are only finitely many distinct elements in every infinite sequence (1, (s, . . . in

which every consecutive pair {;, V;.1, © > 1 satisfies at least one of the following:

(a) p(L;,Viy1) holds for some EDB predicate p and {p,} ~ {p2} € C

(b) p(is1,¥;) holds for some EDB predicate p and {p,} ~~ {p1} € C.

Consider the database which represents relations between programming units. Such

database contains relations such as “inherits”, “calls”, “depends” etc. It is obvious to see

32



that this database is founded, since the number of units used by a certain programming
module must be finite (otherwise the compilation process will never end).

For a more concrete example consider JAVA jar files which may be dependent one
upon the other, sometimes even in a cyclic way. This kind of dependencies can be found
in Hibernate [1] open-source project. Hibernate is an object-relational mapping library for
the JAVA language, which provides a framework for mapping an object-oriented domain
model. It contains 36 jar files with over 70 dependencies between them.

Figure 7.2 partially illustrates dependencies between Hibernate jar files.

Figure 7.2 Hibernate jar files dependencies.

jboss_cache

jboss_system

jboss_jmx

jboss_common

\

xerces_2 6_2 concurrent_1_3_2

Y

jaxen_1_1_beta_7

A

dom4j 1 6_1

xml_apis

A,

Here, a cyclic dependency exists between two jar files: jaxen_1.1_beta 7 and

33



dom4j_1.6_1. Therefore, infinite sequences of jar files are possible. Nevertheless, all

infinite sequences must contain finitely many elements due to reasons explained before.

Remark 7.2. One may mistakenly think that for an infinite sequences to contain finitely
many elements it must recurse indefinitely in a cycle. This is not the case. Consider the
transcendental number e, the base of the natural logarithm. Since e is irrational number,
its decimal expansion never terminates nor repeats itself. Yet’, it contains at most 10

distinct digits.
Now we are ready to state the central theorem of this section.

Theorem 7.1. Let D be a founded database satisfying the set of constraints C. Then, if 11

is weakly safe with respect to C, then it is also terminating over D.

The theorem can be made a bit more general, dealing with unary EDB predicates. To
simplify the presentation, we omit this generalization.

Henceforth assume that I is indeed weakly safe with regards to C and D is founded.
To prove the theorem we first write the yield of g-facts of every possible sequence of rule
applications as a set of expansion rules defining ¢ (as in (2.3)).

In the running example, an expansion rule that corresponds to the shortest sequence of
rule applications that may generate a g-fact is obtained by adding two atoms to the body

of expansion rule (2.2):

q(x,y) < child(x,u), child(x, v), not_eq(u, v), child(v’, y),
child(u, '), child(v', y), child(v, v'), (7.1)
dependant(x, y), child(‘Bill’, x), child(w, ‘Bill’).

Fix an enumeration of these rules, v!,~2, .. .. The proof is carried out by showing that the

set
U6\ D)

is finite. We show in fact that there is a finite set of representative rules (which are not

necessarily expansion rules)

i1 in
DTS

34



such that for every expansion rule ~’ there is a representative rule 7, where j €
{i1,...,ix} such that

v (D) C +/(D).

Theorem 7.1 will follow from the observation that each such

¥ (D)\D

is finite when II is weakly safe.

7.1 Expansion Graphs

Let v and 7/ be two expansion rules which define g. When can we be certain that (D) =
+'(D)? This is obviously the case when  can be obtained from +' by reordering body
atoms and renaming of temporary variables, i.e., variables not occurring in the head. To
capture this equivalence we represent each expansion rule 4* as an edge- and vertex-
colored graph G;. We shall argue that rules 7' and 7/ generate the same set of g-facts if
their graphs are isomorphic (differ only in names of vertices with the same color).

The intuition behind representative rules creation goes one small step further. We
argue that the additions of vertices or edges to G; cannot increase (D). Also, in the case
that D is founded, there is a limited variety of such graphs. The set 7%, ..., is created
so that one of G;, . .., G;, is a subgraph of G for an arbitrary i.

The graph representation of an expansion rule +y is obtained by making an edge for
each atom a which occurs in the body of ~y. (This is possible since by definition pred(a) €
edb(II) and by assumption ar(a) = 2.) The graph vertices are precisely terms(7y). We

partition this set into three disjoint subsets:

1. sources, defined by

sources(y) = {t |t € terms(y) AC |=, 0 ~ {t}},

2. targets, given by the set targets(~y), which are variables occurring in the head of ~,

and

3. temporaries, which are all the remaining variables, denoted by free()

35



Note that if a program II is weakly safe, then there exists at least one source in the
expansion graph. However it can be the case that there are no targets in the graph. This
occurs when the goal predicate is boolean (i.e., contains no terms in its head).

The graph representation of expansion rule (7.1) is depicted in Figure 7.3. In this
example, the only source is ‘Bill’, targets are x and y, while the temporaries are u, v, u’, v’

and w.

Figure 7.3 The expansion graph of expansion rule (7.1).

v v
chiId»o\

: C4.
« &° 3 My
‘Bill child+¢< *é dependant%y
Cs ., :
06/70’ /5//0 6(\\\6
\Q child+©/
w u u'

The formal definition of this graph representation is as follows.

Definition 7.3. Let y be an expansion rule. Then the expansion graph of vy has terms(+y)
as vertices. Each source and each target is assigned a unique color, whereas the tempo-
raries are colored with a common neutral color. For each atom p(v,v') in the body of 7,

this graph has a p-colored (v,v").

We see that in Figure 7.3, there are a total of 10 edges, one for each body atom in (7.1).
The graph uses three different colors (i.e., labels) for edges, one for each EDB predicate.
Also, there are four colors for vertices (i.e., for ‘Bill’, x, y and the temporary variables).!

Clearly, any program II sets a finite palette of colors that any graph G may use. We
will study the family of such graphs that IT may generate.

Definition 7.4. An expansion graph G = (V,E) is isomorphic to an expansion

graph G' = (V' E'), if there is a bijective function

FiV oV,

'In a printout of this work, the colors of the vertices may not be apparent.

36



such that f(v) = v if v is a source or a target, and if (u,v) is an edge in E with color p,

then (f(u), f(v)) is an edge in E'" with color p.

It should be obvious that an expansion rule can be constructed from every expansion
graph. Also, if two graphs are isomorphic, then the rules obtained from them produce the

same set of ¢-facts.

Definition 7.5. Graph G is a subgraph of a graph G' if G is isomorphic to a graph

obtained from G' by removing any number of edges and vertices.

Lemma 7.1. Let vy and ' be expansion rules, and let G and G’ be (respectively) their
expansion graphs. Then, if G is a subgraph of G', then

7(D) € (D).

Proof. The atoms in the body of v make a subset of the atoms of the body of ~'. [

7.2 Directionality in Expansion Graphs

A p-colored edge (v,v’) in an expansion graph represents an atom p(v, v') in the rule. To

represent EDB constraints, we shall assign directionality with edges: if

{p1} ~ {p2}

holds, then edge (v, v’) is co-directed, i.e., its direction is from v to v’. But, if

{p2} ~ {p1}

holds then (v,v’) is contra-directed, i.e., its direction is from v’ to v, opposing the edge
syntax. The edge will be bidirectional if p has both constraints, and will be undirected
if p has no constraints associated with it.

Arrows are used in Figure 7.3 to denote edge directions. In this example, there is only
one undirected edge, and no bidirectional or contra-directed edges. All the other edges
are co-directed.

Edge directions in the graph of an expansion rule -y, represent causations of vy due

to EDB constraints. Moreover, the implied causations of ~ are obtained by a simple

37



transitive closure of the directionality relation: a directed path is a path in an expansion
graph which traverses edge only according to their directionality. Thus, directed paths
cannot traverse undirected edges.

We use directed paths to infer new causations. In fact, examining Algorithm 2 we

obtain,

Lemma 7.2. Let v be an expansion rule of 11, and let G be its expansion graph. Then,

Cly {x} ~ {y}
if and only if there exists in G a directed path from node x to node y.

The set of constraints on ¢ that an expansion rule v imply may be quite general.

However, for weakly safe programs, there is a common core to all these sets:

Lemma 7.3. Let v be an expansion rule of a weakly safe program 11 which defines q.
Then,

C = 0 ~ pos(q).

Proof. Follows from Theorem 6.1 and Definition 5.1 and the fact that v equals to a finite

sequence of II’s rules. 0
Combining the above two lemmas we obtain:

Corollary 7.6. Let v be an expansion rule of 11 and let G be its expansion graph. Then,
for every target t € targets() there is a source s € sources(vy) such that there exists a

directed path in G leading from s to t.

Let a computational path be as in the above corollary, i.e., a directed path leading
from a source to a target. Figure 7.3 for example, has exactly four computational paths,
all starting at vertex ‘Bill’; one of these ends in vertex x while the other three end in

vertex y.

7.3 Reduced Expansion Graphs

To finish the proof of Theorem 7.1, we shall use the directionality of expansion graphs,

together with the foundedness property of the domain, to restrict the number of possible

38



such graphs. Corollary 7.6 established that each target is defined by at least one computa-
tional path. We shall argue that in the conditions of the theorem: (i) the number of sources
and targets is bounded; (i1) the number of distinct values, which can be assigned to every
internal nodes of any computational path is bounded; and (iii) edges which do not take
part in computational paths are immaterial in a sense.

Claim (i) is obvious, since any given DATALOG program has a bounded number of
constants. Also, there are finitely many sources due to predicates having constraints of
the form () ~» x. Claim (ii) is the subject of Section 7.4. Claim (iii) can be stated more

formally with the following definition

Definition 7.7. Let G be an expansion graph of . The reduced graph of G, denoted G, is
a graph obtained from G by removing all edges which do not appear in any computational

path.

The reduced expansion graph of expansion rule (7.1) is depicted in Figure 7.4. Ob-
serve that the not_eqg-edge has been removed, as well as the incoming child-edge to the
node ‘Bill’.

Figure 7.4 The reduced expansion graph of expansion rule (7.1).

M hild M
chi
‘ ’ ’%bp .O\%
Bill % Zr
@ child—»e———dependant——»9 ¥
%% (&6
o4 J
4 child—»o”
u u'

Clearly, every reduced graph G defines a g-rule (which is not necessarily an expansion
rule of II). Since the reduction process preserves all computational paths, and these paths

go along EDB constraints, then the number of ¢-facts that this rule produces is finite.

Lemma 7.4. Let v be an expansion rule, G be its expansion graph, and 7 be the rule
of G. Then v4(D) is finite, and

7(P) € (D)

for any D.

39



Proof. Follows from Lemma 7.1 and Corollary 7.6. [

7.4 Bounded Repertoire of Reduced Expansion Graphs

Lemma 7.4 established the process by which the selection of representatives is carried

out: Start from all ¢g-rules in

Y e

For each such rule, build its expansion graph G, and then its reduced expansion graph 5@
The representatives ', . .., v% are nothing but the rules of the graphs ZJVI

We cannot show that the number of distinct reduced expansion graphs is finite. Instead
we show that there is a bound beyond which expansion graphs cannot yield new ¢-facts.
To do so, recall how a reduced graph (actually the rule which it defines) is used to de-
duce g-facts. Every such fact is produced by a consistent assignment of values drawn
from D to all nodes in the reduced graph. The assignment to constant nodes is fixed by
the rule; the search is for assignments to the remaining variable nodes. An assignment is
consistent if it satisfies the property that if values ¢, ¢ € D are respectively assigned to
nodes n and n’, which are connected by a p-edge, then the tuple p(¢, ¢') must be in D.

As a less theoretical approach for deducing ¢-facts, we represent the domain D as a
directed edge-colored graph G, = (Vp, Ep), where V) = D and EJy is constructed as fol-
lows. There is a p-colored edge (¢, ¢') € Ex, for each fact p(¢, ¢') € D. The directionality
of the edges are set in the same manner as in expansion graphs, i.e., according to predicate
constraints.

Now, given a computational path g we can find consistent assignments to nodes of g
by simply traversing the graph Gp. Precisely, consider a p-colored edge (n,n’) of g.
Let consts, C D be the set of values assigned to the node n. Then, the set of val-
ues consts,, which will be assigned to the node ' is found by examining all the p-edges
of graph G which start at nodes consts,,. In particular, a value ¢’ € D will be assigned
to the node ' if there is a p-colored edge (¢, ') € Ep such that ¢ € consts,. The above
description gives rise to a process by which a consistent assignment to g nodes is found.
This process is nothing else than BES traversal of GG, which starts at the source of the

computational path g and terminates after k steps, where £ is the length of g.

40



Consider all nodes in all possible reduced expansion graphs of a DATALOG pro-
gram I1. Let consts* (IT) be the set of all different values from D which can be consistently
assigned to these nodes. To complete this section we would like to show that consts* (1)
is finite whenever II is weakly safe and a database D is founded. To do so we prove that
the set of values reachable from the sources of all the reduced expansion graphs in Gy is

finite. Let sources*(D) denote this set. Then,
Lemma 7.5. If D is founded, then sources*(D) is finite.

Proof. The resulting graph G has a bounded out-degree, because the directionality of the
edges is according to finiteness constraints and because there are finitely many predicates.
Also, the number of sources in all the expansion graphs is finite, therefore it is finite in
all the reduced such graphs (see claim (i) in Section 7.3). Now consider a search of BFS
algorithm on graph Gy to reveal the reachable values sources®(D) from a finite set of
sources. After each step during the run, the number of exposed values is finite. Such
search with bounded out-degree can reach an unbounded number of values, only if it can

progress infinitely. This is prevented by the fact that D is founded. 0

Finally, we show that for any program II
consts™(II) C sources™ (D). (7.2)

Informally, consider a computational path g in some reduced expansion graph. Then, the
BFS search on Gy must have revealed all the values of assignment to the nodes of ¢ since
it traversed all the outgoing edges of nodes unconditionally of their color.

It follows from (7.2) and Lemma 7.5 that the number of different assignments to tar-
get nodes in reduced expansion graphs is finite. Therefore, there is a finite number of
such graphs which generate all these assignments, thereby completing the proof of Theo-

rem 7.1.

41



Chapter 8
Computability

Having shown that every weakly safe program defined over founded database is safe, it is
only natural to ask how such programs may be evaluated. After describing our computa-
tion model, this section discusses which programs may be computed in this model.

We continue to assume that all EDB predicates are binary. Let p be such predicate, D

be a database. Then, similarly to [21], we assume the following:
e given constants (¢, '), one can determine in finite time whether p(c, ¢') € D,

o if {p1} ~ {p2} (resp. {p2} ~> {p1}), then given a constant c, it is also possible to
find in finite time all constants ¢’ such that p(c, ') € D (resp., p(¢/, ¢) € D), and

o if ) ~ {p1} (resp. ) ~» {p2}), then we can find in finite time all constants ¢, such

that there exists a constant ¢’ for which p(c, ¢) € D (resp. p(c/, ¢) € D).

Note that in the absence of constraints, one cannot find in finite time all constants ¢
such that p(c, ¢’) € D, (nor respectively, p(c, ¢) € D).

We say that I1 is computable if there is an algorithm, that only accesses the database
according to the rules of our computational model and correctly computes the result of 11
in finite time. It may first seem that if a program is safe, then it is also computable. In
this section we prove that safety is a necessary but not a sufficient requirement for com-
putability of a DATALOG program and present a theorem which settles the computability
problem for safe programs defined over founded databases. Then, Chapter 9 presents an

evaluation algorithm for safe programs.

42



To see that safe programs are not necessarily computable, consider the following pro-

gram II, which is aimed to find all the parents y on which parent ‘Bill’ depends.
T: parents(x,y) < child(w, x), child(z, y).
To: dep_parents(x,y) < dependant(x, y), parents(x, y). (8.1)
73: q(y) < dep_parents(‘Bill’, y).

Then,

Cn = {{dep_parents, } ~ {dep_parents,},? ~ {q,}}

can be inferred with the supposition that child and dependant predicates satisfy the fol-

lowing constraints:

C = { {child;} ~ {child,},
{dependant, } ~» {dependant,} }.

Since Cy; contains ) ~~ {q,}, we have (Theorem 6.1) that this program is weakly
safe. Also, since D is founded, it is also terminating by Theorem 7.1. Neverthe-
less, it is impossible to compute its output, because for any assignment p to D and an
atom t = parents(x,y) it is undecidable whether 1(¢) holds. The difficulty here is that
the evaluation process must find a child of x and a child of y to prove that x and y are
indeed parents. Now, if the evaluation algorithm does find such children, it can conclude
that parents(x, y) holds. But, what should the algorithm do if it does not find any children
of x?

Missing such evidence may be due to the fact that x indeed does not have children.
Still, lack of evidence, could be a result of evaluation procedure’s failure to explore the
infinite database. In the genealogical interpretation, it could be that x has not yet given
birth to children, or that these children exist but in a remote part of the universe. In
the software interpretation, it could be that a software engineer, in a very remote galaxy,
has implemented a class that inherits from x, but the evaluation algorithm did not have
sufficient resources to find this inheriting class.

If one is willing to permit similar existential queries in the algorithm, then any pro-
gram which is terminating can also be evaluated. Under our computational model exis-
tential queries are not always allowed. Hence, it is sometimes not possible to evaluate
even a terminating program. To preclude such queries from DATALOG programs we re-

strict program’s predicates to be “recognizable”, i.e., given ¢y, . . . , ¢, constants for a k-ary

43



predicate p, it is possible to decide whether p(cy, ..., ¢) is a fact. Note that every EDB
predicate (trivially) satisfies this property. The following definition states it formally for
IDB predicates.

Definition 8.1. Predicate p is variable-bound if for every rule r € Il defining p with
head h it holds that Cr; =, vars(h) ~» terms(r).

For example, predicate dep_parents in example (8.1) is variable-bound since 7, con-
tains only head’s variables in the body, i.e., Cri ., vars(head(m)) ~~ terms(ry) triv-
ially holds. It is easy to see that the goal predicate q is variable-bound as well. On the
other hand, the predicate parents is not variable-bound. Observing its rule we can see
that the head’s variables do not imply any additional variables of the body. And, in-
deed, as explained earlier, during program computation one will not be able to decide
whether parents(cy, ¢3) is a fact for any constants ¢y, co. This is precisely the reason why
the program of example (8.1) is not computable.

Therefore, we conclude that for a program to be computable all its predicates must be

variable-bound as stated in the following theorem.

Theorem 8.1. A program 11 is computable if (i) it is safe and (ii) every predicate p ap-

pearing in it is variable-bound.

The next chapter will present the evaluation algorithm for safe programs in which all

the predicates are variable-bound thus proving Theorem 8.1.

44



Chapter 9
A Top-Down Evaluation Algorithm

This section describes a top-down algorithm for query evaluation. The heart of our algo-
rithm is in function idb_eval (Algorithm 4), whose parameters include a predicate p, and
a subquery expressed as a relation (in the relational algebra sense) (), defining a possibly
partial assignment to the positions of p, i.e., scheme(Q) C pos(p).' The function answers
the subquery by returning a relation whose columns are those columns in pos(p) which
are finitely constrained by scheme(()) and whose tuples are computed from the tuples
of () by these finiteness constraints.

For each of the rules defining the predicate, function idb_eval calls function rule_eval
(Algorithm 5), which in its turn, calls function atom_eval (Algorithm 6) for each of the
atoms in the rule. If the atom’s predicate is an EDB, then atom_eval invokes edb_eval;
otherwise, it recursively calls idb_eval.

Even simple rules such as anc(x,y) < anc(x, z), anc(z,y), typical to transitive clo-
sure computation, may cause a naive implementation of idb_eval to recurse indefinitely.
To guard against this predicament, the algorithm passes through the recursive calls vari-
able X, which stores in it all “open queries” in the recursion stack. Variable X is imple-
mented as an associative array of relations. For each positions set ¢, ¢ C pos(p), p an
IDB predicate, X|[q] is a relation with scheme ¢ containing all subqueries whose pattern
is q which are on the recursion stack. At its 2"? line, idb_eval restricts its interest to new
such queries. At line 3, the function records the currently executing queries in X.

Thus, the call to idb_eval that starts the evaluation process is with parameters:

Recall that in our notation a “position” is not just an ordinal; it records also a predicate name. This is

the reason that a set of positions can also be thought of as a scheme of a relation.

45



Algorithm 4 idb_eval(p, @, X)
1: Let q < scheme(Q)) // elicit the pattern of this query

2: Let Q' — Q \ X|[q] // restrict interest to new queries
3: X|[q] < X[q] U Q' // record remaining queries in cache
4: Let m be the maximal set s.t. q ~> m € Cry // m is the scheme of the answer relation
5: If Q' # () then // queries remained for execution
6 Repeat // exercise all rules until no new answers are found
7: For all » € II such that pred(r) = p do // try rule r
8 Let T' — rule_eval(r, pos2term,.(Q"), X)
9 M|q] — M]q] U TTmterm2pos, (T’
10: end for
11:  until no changes in M
12: end If

13: return M([q] <t Q) // restrict global answer set to queries in Q

1. q — the program goal,
2. I — the relation with no columns and a single, empty, tuple and

3. X in which all entries are initialized to an empty relation.

In addition to X, the algorithm maintains a similarly organized global array M for re-
sults memoization, except that the scheme of M|[q] is m, where m is the maximal set such
that q ~~ m. The main loop of idb_eval (lines 6—11) uses the results of calls to rule_eval
to extend, as long as this is possible, relation M|q]. The function result is obtained by
restricting M[q] (which records all queries of pattern q that the algorithm ever executed)
to answers of queries in (); this is carried out by the natural join operation in line 13.

In order to delegate its work to function rule_eval, function idb_eval must translate the
query (', which is formulated in terms of positions in p, to the list of symbolic variables
that rule r expects. To this end, we use an overloaded version of function pos2term,
(invoked at line 8), which returns its input relation with renamed columns as per the head
of rule r. The reverse translation of rule_eval’s return value, is carried out by the call to
(an overloaded version of) function term2pos,., at line 9. This line also projects the return
value into the scheme m.

Consider now function rule_eval, depicted in Algorithm 5. Line 1 of this function

begins the computation of a subquery with respect to a rule, by augmenting the given

46



Algorithm 5 rule_eval(r, ), X)
1: Q «— @ <t CONSTS,

2: Repeat

3:  Forall a € body(r) do

4: Q — @ atom_eval(a, 7,0, X)
5:  end for

6: until no changes in ()

7: return Tyeaq(r) @

subquery with the values of constants used in the rule: variable CONSTS, denotes the
relation whose column names are simply consts(r), while its single tuple consists also
of these constants. The recursive call to atom_eval (line 4) is preceded by a projection
to the variables (and constants) used in the atom. We assume that the operator 7 ignores
columns in projection scheme which do not exist in the projected relation. Hence, the
projection succeeds even if () does not contain all terms of the current atom. (In particular,
if () does not contain any term of a, a no-columns relation containing the empty tuple is
returned.) A projection to terms in the rule head is applied before the function is returned.

Finally take note of Algorithm 6, depicting function atom_eval. This function is rather
straightforward; note however that the recursive call to functions that evaluate a predicate

requires a change of vocabulary, prior to, and after the call.

Algorithm 6 atom_eval(a, Q, X)
1: Let Q' < term2pos,(Q) // bound positions of a

2: Let p — pred(a) // elicit the predicate of this atom
edb_eval(p, Q") if p € edb(II)

idb_eval(p, @', X) otherwise
4: return pos2term,(A)

3: Let A «—

9.1 Some Intuition

Before marching on to the proving the correctness of the evaluation algorithm, we are
inclined to say few words on the repetitive process by which atoms are examined or re-

examined. The gained intuition should make the constructions used in the proof clearer.

47



Our algorithm differs from the original QSQR algorithm [26,27] in the way that the
evaluation of a rule is carried out. In particular, function rule_eval iterates over the rule’s
atoms (lines 2—6) until all the variables of a rule are bound. (Note that in general, the
evaluation of a program may complete without binding all variables of a rule, even if
a rule is used in the evaluation process.) Unlike the original algorithm in which only
one pass is enough to bind all the rule’s variables, the iterative process of Algorithm 5
is such that atoms of a specific rule may be evaluated for many times in the course of
the same invocation of rule_eval. This difference is due to the restrictions placed on the
computational model by the infiniteness of the database. As explained in Chapter 8, we
cannot arbitrarily retrieve data even from EDB predicates. Such retrieval is restricted
to the known finiteness constraints. Thus, in many cases during the program evaluation
we will be able to evaluate an atom a only partially, i.e., only values for a subset of a’s
positions will be retrieved. Later we can re-evaluate a, if we have additional bindings on

more of its positions. The following example demonstrates.

Example 9.1.

a(y,z) < aly,z),p(‘c’,y,2).
p(x,y,2) — a(x,y),b(y, 2).

9.1)

Let a and b be EDB predicates. Suppose also that we have only one constraint on the
database: {a,} ~ {az} . It is not difficult to prove that this program is weakly safe. If the
database is founded, then this program is also safe.

Now, suppose that we would like to evaluate q with our algorithm. We start with
idb_eval which in turn delegates the work to function rule_eval which receives in its first
argument the only rule defining q. The main loop then iterates over the atoms of q-rule

for three times as described next:

1. The 1* evaluation of atom a(y, z) produces the empty tuple only, since we cannot

retrieve data from the EDB predicate a without binding the first position;

2. The 1" evaluation of atom p(‘c’,y, z) triggers idb_eval function which in turn leads
to rule_eval function. Then, given the binding of x to ‘c’, we can compute all val-
ues y that satisfy the first atom a(x,y). However, we cannot find the correspond-

ing z values, since there are no constraints at all in b. This evaluation is given by

48



the following relational algebra expression

Og1="c’a.

3. The 2™ evaluation of atom a(y, z) produces bindings for z since now there exist

bindings to y. Now, the assignments known for y and z can be summarized by
Ts3.54(0s2—s3ns1—c (@ x @))).

4. The 2™ evaluation of atom p(‘c’,y, z) retains only the bindings which satisfy the

atom b(y, z). The following expresses the final assignments:
T$3,34 (0$3:$6/\$4:$8 (U$2:$3A$1:‘c"(a X a)) X (U$2:$3A$1:‘c"(a X b)))

5. The 3" iteration over the rule body verifies that the previously found bindings
satisfy both atoms. At this stage all bindings remain.

The above process can be naturally thought of as an evaluation of a slightly differ-
ent program from the QSQR point of view, i.e., it looks like the original algorithm was
executed on a different input.

In particular, step 2 in the above, namely the preliminary partial evaluation of atom
p(°c’,y,2),
can be thought of as the evaluation of another atom
P’ y)
where p’ is a predicate we introduce together with the rule
P(xy) —alxy).

All in all, the slightly different program which describes the above process is as fol-

lows:

a(y, z) < p'(‘c’,y),a(y, z), p(‘c’,y, z).
P'(x,y) « a(x,y).
p(x,y,2) < a(x,y),b(y, z).

49



The correctness proof, provided in the reminder of this chapter, uses such programs
called adapted programs to represent reformulation of the evaluation process. Precisely,
for a DATALOG program II the proof introduces an adapted program 1 for which it holds
that the run of our evaluation algorithm (Algorithm 4) on I1 is the same as the run of QSQR
algorithm on I Although we have not presented here the original QSQR algorithm, the
main difference between it and our evaluation algorithm is in Algorithm 5, i.e., evaluation
of a rule.

Adapted programs must have the following properties:

1. rule evaluation requires only one iteration to bind all the rule’s variables (QSQR

algorithm goes over rule’s atoms only once), and

2. atom evaluation must be able to find full bindings from the known ones (QSQR

algorithm is not aware of the restrictive computational model).

Before we formally present a construction of adapted programs, let us discuss in fur-
ther detail what happens in function rule_eval. Line 4 in the above function evaluates every
atom of the input rule unconditionally. Some of the evaluations may be unnecessary in
a sense that they do not change the value of variable (). We state that we can determine
statically which atom evaluations are required and which are superfluous. To do so we
present the following lemma which identifies the way in which () changes during the run

of rule_eval function.

Lemma 9.1. Let a € body(r) be an examined atom in the body of rule_eval func-
tion (line 4). Let X = scheme(QQ) N terms(a) be the set of terms which are common
to atom a and Q)’s scheme. Let Y be the set of a’s terms such that term2pos,(X) ~
term2pos,(Y) € min(Cr). Then, after evaluating the atom (line 4), it holds that the new
value of scheme(()) is scheme(Q)) U Y.

The proof can be done by induction on the recursive execution of algorithm functions.

Now it is possible to recognize cases in which atom evaluations are useless and thus
will not be represented in adapted programs.

Precisely, let a € body(r) be an examined atom (see line 4). Let X = scheme(() N
terms(a) be the set of terms which are common to a and ’s scheme. Then, the following

conditions identify the cases in which evaluation of a is unnecessary.

50



1. X = (). Here the evaluation of a is irrelevant to the currently bound variables. An

example of such a case is step 1 (the evaluation of a(y, z) for the first time).

2. X # terms(a) and there does not exist Y C terms(a) such that term2pos, (X) ~-
term2pos,(Y) and X C Y (X # Y). In this case the set of relevant bound vari-

ables X do not bind any variable of terms(a).

To summarize this discussion we present observations which lie in the basis of adapted

program construction.

Observation 9.2. An atom can be evaluated many times during the evaluation of the rule

containing it — each time with a new set of bound variables.

Our algorithm iteratively evaluates body atoms until it reaches a fixpoint (see the
rule_eval function), i.e., the algorithm tries to expand the set of bound variables as much
as possible. Each time the same atom is examined, the set of bound variables may grow.
Hence, some atoms may be evaluated more than once with a new set of bound variables
thus initiating repeated rule evaluations. Therefore, the adapted program must reflect
these rule evaluations by constructing a dedicated adapted rule for each such case.

For example, in the adapted program of Example 9.1, one auxiliary predicate p’ was
defined and the g-rule was adapted to represent atom evaluations to be performed in order
to bind all the rule’s variables in a single iteration. Note that the atoms in the adapted ¢

rule were rearranged to achieve the “one-iteration” evaluation.

Observation 9.3. The application of function rule_eval to a rule r, where terms X in the
rule head are known, terminates when terms Y C vars(r) are bound, where Y is the

maximal set such that Cy; =, X ~~ Y.

Consider an atom a to be evaluated and a set of bounded positions x C pos(p),
where p = pred(a). Then, according to the algorithm, it triggers rule evaluation for all
the rules 7 defining p with bound variables X = pos2term,.(x). According to Lemma 9.1,
the function rule_eval expands scheme(()) in a similar way the function closure does
(Algorithm 1). Thus, before rule evaluation takes place, we know exactly which rule
variables will become bound afterwards. They are precisely the maximal set Y, such
that Cpy =, X~ Y.

51



9.2 Correctness Proof

The reminder of this chapter is devoted to prove that our evaluation algorithm is cor-
rect. For this purpose, we shift the attention to the original QSQR evaluation algorithm
which is known to be correct. As explained before, we accomplish this by introducing
the adapted program IT which is executed by QSQR algorithm thus representing the run
of our evaluation algorithm on the original program II. By showing that such adapted
program is equivalent to its original program, i.e. produces the same output as II, we
prove that our evaluation algorithm is correct. The previous sentence would have been
true if the database was finite. In our settings, QSQR algorithm may not terminate as
well. Thus, showing the above equivalence only proves that for each fact f returned by
our evaluation algorithm it holds that f € II>°(D). By proving that the run terminates,
we show the opposite direction, i.e., that every fact f € HEO(D) is also returned by our

evaluation algorithm.

9.2.1 Construction of the Adapted Program

Next we define the construction of auxiliary predicates which are necessary for the
adapted program. Let p be an IDB predicate. Let x C pos(p) be a set of p-positions
and y C pos(p), x C y be the maximal set such that x ~ y € Cy; holds. Then, an auxil-
iary predicate of p with respect to x, denoted p*¥, is a predicate of arity |y|. (A predicate
name p*Y implies that this predicate will be used to evaluate p-predicate when x are the
only bounded positions.) The rules of p*¥ are the “adapted” rules of p, constructed as
described next.

Consider a p-rule r € II. Let X = pos2term,.(x) and Y = pos2term,.(y), i.e., X is the
terms rewrite of x and Y is the terms rewrite of y. Then, the adapted rule of r, denoted r*¥

has the head atom
pX7y(Y1> L 7Yk)

while the body is constructed by simulating the run of a slightly different version of func-

tion closure (Algorithm 1) on r, X and the minimized constraints set min(Cry). The dif-

+

ference is in the procedure for choosing a constraint to expand Xmin(cn

) (see line 5).
For further references, we will refer to Algorithm 1 with a new choosing procedure as

the changed Algorithm 1. To prevent confusion, let Y’ denote the value for Y variable

52



used by the algorithm. The new choosing procedure is different only in its 2’ condition.

Precisely, we choose Y’ such that

Y =X*

min(Cr)r [ terms(a;).

Then, when working with the minimized version min(Cyy) of Cyy, the value for Z is unique.

The adapted rule 7*¥ contains only the variables implied by X. The " atom that
expanded the set X:;in(cn)’r will be the i atom in the adapted rule body. Moreover, if
not all the atom’s variables could be constrained, we replace it with an atom of a new
auxiliary predicate. To define precisely the body of the adapted rule, we introduce the

notion of a closure sequence, which represents the run of Algorithm 1 on a given rule.

Definition 9.4. Let r be a rule, x C pos(pred(r)) and C' = min(Cr) a set of constraints.
A closure sequence of r with respect to X and C', denoted cls(r,x,C’) is a sequence of
pairs (a, ) where atom a € body(r) and constraint o € C'.

A pair (a,0); is the i™ pair in the sequence if at the i™ execution of line 6 of the
changed function closure(r, C', X), where X = pos2term,(x), o is the constraint over a-

predicate which expanded X”L,yr, Le.,
o = term2pos,(Y) ~~ term2pos,(Z).
For example, let 7 be the following g-rule
q(x,y,2) < p(x,u,w,v),e(u,w),s(v,z,y). (9.2)

in which p and s are IDB predicates and e is an EDB predicate. Assume that the following

constraints are part of min(Cr)

{P1} ~ {p1,Pa} s {Ps} ~ {Ps, P4} s {€1} ~ {€2}, {81} ~ {s1,83}.

Then, the closure sequence of r with respect to min(Cry) and {1} is

cs(r, {1}, min(Cn)) = ((p(x,u,w,v), {1} ~ {1,2}), (e(u, w), {1} ~ {2}),
(P(x,u,w,v), {3} ~ {3,4}), (s(v, 2,y), {1} ~ {1,3})).

(9.3)

Given a closure sequence, we can now construct an adapted body rule. In particular,

each element of the closure sequence defines a new body atom of the adapted rule, which

53



may refer to an auxiliary predicate. Specifically, consider an element (a,x ~- y) of the
closure sequence in which pred(a) is an IDB predicate. Then, we create an auxiliary
predicate pred(a)®Y¥ which is defined by the adapted rules of pred(a). Each such rule r
retains in its head only the variables pos2term,.(y) and its body contains only variables Z
that are implied by the variables in the head. (Note that to create such rules, one may have
to recursively define auxiliary predicates.)

Usually, when a closure sequence element refers to an EDB predicate, no auxiliary
predicates need to be created. However, there is one case in which a new EDB predicate
must be introduced. This happens when a closure sequence element is of the form (a, () ~~
y) and it holds that |[y| = 1. Let p = pred(a) and y = {p;}. Then, we create a new
unary EDB predicate denoted p’. The predicate p’ contains a fact p(c) if there exists a
constant ¢’ such that p(c, ) (resp. p(c/, ¢)) holds when i = 1 (resp. ¢ = 2). Note that the
resulting predicate contains finitely many facts, which can be computed according to our
computation model.

Now we define the notion of an adapted rule formally.

Definition 9.5. Let r € Il be a p-rule and x C pos(r) and let x ~~ y € min(Cn).
Let Y = pos2term,(y) and |Y| = k.

Then, the adapted rule Y of r with respect to X is a rule with head

px’y(Yl, RN Yk)

and body constructed as follows: for each element (a,y ~» z); in the closure se-

quence cls(r,x, min(Cry))

1. if a refers to an EDB predicate and either |y| > 1 or |z| > 1 holds, then the i"" atom

is a itself,

2. otherwise, if atom a refers to an EDB predicate s = pred(a) and it holds that y = ()
and |z = 1 where z = {s;}, then the i"" atom of the adapted body is atom s’(z)
such that z = pos2term,(z).

3. otherwise, atom a must refer to an IDB predicate s = pred(a). Then the i"™ atom of

the adapted body is atom s¥*(Z., . .. ,Zz) where Z = pos2term,(z).

In addition, for each atom a € body(r) such that terms(a) C Xxin(cn),r’ the

adapted body also contains the atom a itself if a refers to an EDB predicate, or

54



the atom sPPSE)(Uy, ... Upes(s)) such that s = pred(a) is an IDB predicate
and terms(a) = U.

These atoms are placed at the latest positions in an arbitrary order.

For example, assuming that Cp; does not contain any new p- or s- constraints, the

adapted rule 11112} from (9.2) is as follows

012, 3) pl012) x,w),
e(u,w),
pBh 34w, v),
S0, y),

72?374}7{172?374} (

{1
p X, 4, W, V)7

e(u,w).

Here the first four atoms were created due to the closure sequence (9.3), while the
last two atoms were added since their original atoms a € body(r) satisfied terms(a) C
{1};in(cn),r as described in Definition 9.5.

Having defined the meaning of adapted rules and auxiliary predicates, we are ready
to describe the construction of an adapted program. Informally, the construction starts by
computing the adapted rules of g-rules with respect to the empty set. During their creation
new auxiliary predicates might be created which in turn will lead to construction of their
adapted rules. This process is continued until all the auxiliary predicates are defined. (The
process terminates since for each predicate of arity k there may be at most 2% auxiliary

predicates.) Formally,

Definition 9.6. The adapted program of 11, denoted IL is a program with the goal predi-
cate ¢"**\D qs defined by corresponding adapted rules (Definition 9.5).

Note that for every rule » € II there may be several corresponding adapted rules in I1.
Consider a case in which an IDB predicate p satisfies several non-trivial constraints (a
constraint X ~» y is trivial if y C x). Then, for every p-rule r there may be as many
adapted rules as there are non-trivial constraints of p. Let A(r) C I1 denote the set of
adapted rules corresponding to a rule r.

We complete this section with a full example of DATALOG program and its resulting

adapted program.

55



Example 9.7. Consider the following program 11 in which a and b are EDB predicates:

leq(Y) <_p< - ) (‘2’ )
Ta: p(X>Y7 ) N p<u Yy, X )7a( )
z) < a(x,y),b(y, z).

T3: p(Xv Yy, z

Assume that C = {{a;} ~ {a2},{ba} ~» {b1}}.

By running Algorithm 3 for computing constraints of IDB predicates, we receive that

{p1} ~ {pa} {Ps} ~ {pa},0 ~ {a;}

are part of Cyy.

Then, the adapted program Il is as follows:

@7 < ) [3 ) (3 ) 3 )

! {1}, q@,{l}(y) - p{1},{1,2}< I'.y),a(2 ,z),p{1’273}’{1’273}( I',y,2),a(2’,z).
72{1},{1,2} {1341, 2}( y) — p{3},{2,3}(y’ x).

M p 12 (x y) — a(x, ).

72{3},{2,3} p3H{2 3}(y, z) — a(z,u), pthL 2}( Y).

T§3}7{2,3} pt3H{23}( b(y, z).

—pt ¥ (y,x),a(z, u), pt 12w,y %), a(z ).

— a(x,y),b(y, z).

T
N

y,z)

1,2,34,{1,2,3
72{ {123}, p{1’2’3}’{1’2’3} X, 7,2

( )
7_:;{1,273}7{172»3}: p{1,2,3},{1,2,3}( )

X z

Y 7

For the reminder of this chapter we will adopt the following convention in our nota-

tion:

1. For a predicate p € II, we will use the notation p for pp"s(p)’p"s(p) € INI 1.e., the

auxiliary predicate in I1 used for testing membership.

2. For arule r € II, we will use the notation 7 for the rule 7P*®)Pos(®) ¢ I, i.e., the

adapted r-rule for testing membership.

{1,2,3},{1,2,3}

In Example 9.7 the rule 7, will be denoted 75 according to the above con-

vention.

56



9.2.2 Equivalence proof

This section is devoted to the proof that the adapted program is equivalent to the orig-
inal one. To this end we show that both programs deduce the same facts for their goal
predicates.

In the following, we will frequently need to refer to projected set of facts defined as
follows. Let p be a predicate and x C pos(p) a set of positions. Then, a projected p-fact
is obtained from a p-fact by omitting from it all values in positions not in x. If F is a set
of p-facts, then 7 [F] is the set of p-facts thus obtained from F'. By abuse of terminology
we refer to projected p-facts as p-facts as well; no confusion shall arise.

The following lemma defines the relation between a rule of the original program and
its adapted version. The lemma states that the application of an adapted rule r*¥ to a set of
“projected” facts deduces at least the same set of facts obtained by applying the original

rule 7 to the original set of facts and then projecting the result on the positions y.

Lemma 9.2. Let F = F.p U Figp be a set of facts on the predicates of program 11
where F.q, are the facts on EDB predicates and Fy, are the facts on IDB predicates.
Let F,, be the set of facts obtained from F,g, by the following process: for each p-fact f €
Fiap, and for each p*Y such that p*¥ € idb(ﬁ), the set F], contains every fact obtained
from projecting f on the positions'y. Let F' O (Foap U Fiy). Let v € 11 be a p-rule

and Y € A(r) be its adapted rule. Then,
Ty[rp(F)] € 7 (F)
for every set of facts F.

Proof. Let f € r,(F). According to the semantics of Datalog rules, there exists an
assignment /. : vars(r) — D due to which f was deduced, i.e., for all atoms a € body(r),
it holds that ;(a) € F. According to the construction of adapted rules and F it follows
that 4 is an assignment such that y(a’) € F' for all o’ € body(r*Y). The lemma follows.

O

The next lemma shows that the adapted program deduces at least the same set of facts

for its auxiliary predicates as the original program deduces for the original predicates.

Lemma 9.3. Let p € idb(II) and x,y C pos(p) such that p*¥ € idb(II). Then,

7,113 (D)] € Ti5%, (D)

57



Proof. Let f € II5°(D) be a p-fact and let & = a - - - a where o; € IT be a sequence of
rule applications which deduces f, i.e., f € a(D). We show a sequence ﬁ of the rules
of IT which deduces 7 vf,1.e., a p*¥-fact corresponding to f. Specifically, the sequence ,@

is a concatenation of k sequences as follows,
B = /31 T /Bk

where subsequence Bl corresponds to rule ;; € a. The rules in sequence Bl are all the
rules in A(«;) applied in some order.

The lemma is proved by using mathematical induction on the length of & to show that

Ty[6p(D)] C By (D) 9.4)

holds for all p € idb(II) and for all p*¥ € idb(II).

Let &' denote the ¢-lengthed prefix of &.

The inductive base trivially holds since if |&| = 0, then |3| = 0 and there-
fore &, (D) = By (D) = D.

Let & = a‘ayyq and let B = BEBZ +1 and suppose that (9.4) holds for a' and Bg.
Let cpy1 be “renamed” by r and let p = pred(r). Then (9.4) trivially holds for all s € TI,
and all s*¥ € II such that s £ p.

To show that (9.4) holds for a specific p*¥, consider the rule ¥ € ,ég +1 Which by
definition is applied somewhere in B o1

Let 7, = &(D), and Flxy = Bons (D).

Then, by the inductive hypothesis it holds that

Ty[Fp] C Fns

for all p € idb(II) and for all p*¥ € idb(II).

Let
F= |J F=4&MD), 9.5)
peidb(IT)
and
, 0
F= |J Fu=8(D). 9:6)
p*Yeidb(I)

58



Since F and F’ satisfy the condition of Lemma 9.2, we can apply Lemma 9.2

on F, F', p-rule r and r*Y to obtain
Tylrp(F)] S 7Y (F).
Substituting (9.5) and (9.6) to the above we obtain
Tl (D)) € (8 (D).
Taking into account that there is only one rule in ﬁ 1,1 Which defines p*¥, we arrive to

Ty[ap(D)] € Bprs (D),
which completes the inductive step and ends the proof. 0

Before proceeding to the next lemma, we would like to consider rules of predicates
of the form pPos(P)-pos(p) ¢ idb(ﬁ). As it turns out, each such rules can be obtained by an
“extension” of the corresponding rule of II.

More precisely,

Observation 9.8. Let r be a p-rule, p € idb(Il) and 7 be a p-rule, p € idb(Il). Then,
forall a € body(r), a = s(x1,...,x,) the following hold:

1. if s is an EDB predicate, then a € body(T),
2. otherwise, there is an atom o’ € body(T) such that o' =35(xy, ..., %,).

Proof. Since every predicate appearing in II is variable-bounded, it holds
that terms(head(r)) ~» terms(r). Now the observation follows from Definition 9.5
on construction of adapted rules. An example of such auxiliary predicate can be found
in Example 9.7. [

Note however that not all atoms in 7 are rewrite of atoms in r. Rule 7 may con-
tain many more atoms than those described by Observation 9.8. Those atoms reflect, by
construction, the iterative process by which “full” atoms of the form 5(xy,...,x,) are
evaluated.

The following lemma states that for all p € idb(II), a predicate p and a predi-

cate pPos(p):Pos(p) < idb(ﬁ) are equivalent, i.e., deduce the same set of facts.

59



Lemma 9.4. For all p € idb(11) it holds that
IL°(D) = 1157 (D).

Proof. Using Lemma 9.3 we obtain that
11(D) C fix(D)

holds for all p € idb(II). It is left to show that
IL°(D) 2 I1°(D)

holds for all p € idb(II).

Let f € ﬁ%"(D) be a p-factand let ¥ = ry---7p, 1; € II, be a sequence of rule
applications which deduces f, i.e., f € #(D). We show a sequence 7 of rules of IT which
deduces f. Precisely, 7 = 7q - - - 7, where 7; € Il is the corresponding original rule of r;.

By using the same induction technique as in Lemma 9.3 we can show that

Ty[7p(D)] € 7122 (D) 9.7)

holds for each p*Y¥ € idb(II) defined by a rule r; € 7 and its original predicate p €
idb(II).

Next we would like to refine the above statement and to show that
7p(D) = 75(D) (9.8)

holds for all p € idb(II).

The proof of (9.8) is done by induction on the length of #. The inductive base is
when |7#| = 1,1i.e., ¥ = r; and 7 = 7y. Then, if 7y contains only atoms of EDB predicates,
so is the adapted rule r; (see Observation 9.8) and therefore (9.8) holds. Otherwise, 7
contains an atom of IDB predicate, and (9.8) trivially holds since both sequences deduce
the empty set of facts.

Let #° denote the (-lengthed prefix of 7. Let ¥ = FZWH and T = ‘FKTZH where 7,1
is p-rule. By the inductive hypothesis it holds that Ff;(D) = Fé for all p € idb(II).

Let 1 be a satisfying assignment to body(r)-atoms. Then, from the inductive hy-
pothesis and (9.7) it holds that x is also a satisfying assignment to body(7,,1)-atoms.

Denoting 4,1 by 7’ and 74,1 by 7/ we receive that for all p € II it holds that

(7 (D)) C 7,(7'(D)),

60



which is the same as
'Fﬁ(D) - ?P(D)‘
The opposite containment direction follows from (9.7). O

The following lemma states that the goal predicate set of facts of the original program
is a superset of the goal predicate set of facts of the adapted program.

Let § = ¢"P*(@ denote the goal predicate of II.

Lemma 9.5.
Hgf’(D) - HEO(D).

Proof. The safety property of II states that () ~» pos(q), while the variable-bound prop-
erty of II states that pos2term,.(pos(q)) ~» terms(r) where r € II is the rule which
defines ¢. From these it follows that () ~~ terms(r). Consider the rule 7 € II which
defines g. Similarly to Observation 9.8 we can show that for all a € body(r), where a =
p(x1,...,x,), the adapted rule body body(7) contains the pP*s®P)Pos() (%, .. x.) atom.
Using Lemma 9.4 we can show that each satisfying assignment y to body(7) atoms also

satisfies body(r) atoms. The lemma follows. O
Theorem 9.1. The adapted program I is equivalent to 11.

Proof. To prove the theorem it is sufficient to show that I1>°(D) = ﬁgo(D) forall D = C.

Lemma 9.3 shows that
H;’O(D) - HQEO(D),

while Lemma 9.5 shows the converse, i.e.,

1*(D) D Ti¥(D). O

9.2.3 Termination

In this section we prove that our algorithm terminates on safe programs with variable-
bounded predicates evaluated over founded databases. In previous section we showed
that the run of QSQR algorithm on the adapted program Il represents the run of our
evaluation algorithm on the original program II. After proving that 11 is equivalent to 1 it
is enough to show that QSQR evaluation algorithm terminates on I1. To show the above,

we need to introduce the following lemma.

61



Lemma 9.6. If 11 is safe and all its predicates are variable bound, then Il is safe and

all I’s predicates are variable bound.

Proof. The safety property follows from the fact that I is equivalent to II. The variable

bound property of each predicate follows from the construction. [

Thus, we need to show that the original QSQR algorithm terminates on safe program
with all variable bound predicates while run over infinite and founded database. For the
reminder of this section we will refer to QSQR algorithm only. As we mentioned before,
in spite the fact that we do not present here the full description of the QSQR algorithm,
it is easy to see that the main difference between it and our evaluation algorithm is in the
way a rule evaluation is carried out.

Let us examine possible reasons for non-termination. First, the database might be
accessed for infinitely many values. Second, the algorithm may recurse indefinitely. Al-
though the algorithm takes care of this predicament (see line 5 in Algorithm 4), it is
effective only when the database is finite. In the infinite case, the idb_eval function may
recurse indefinitely with the same value for a p predicate and with different value for ()
each time. And the last, but not least, the algorithm may not terminate if the value of M
variable in Algorithm 4 never reaches the fixpoint. While the first scenario is impossi-
ble, the other two can happen if infinitely many database values are exposed during the
algorithm execution.

For this sake, we show that during the run of the algorithm on safe programs defined
over founded database only finitely many database values are exposed. This is precisely
the case when the algorithm operates on finite database.

The following lemma rephrases the above for the general case.

Lemma 9.7. Let 11 be a safe program having only variable bound predicates and D be

an infinite and founded database. Then, there exists a finite database D' C D such that
I°(D) = HZO(D’).

Proof. Lemma 7.5 states that sources*(D) is finite whenever D is founded. The facts
of D' are constructed as follows.
For each predicate p € edb(II), we create an EDB predicate s which will be part

of D'. Before presenting the facts of s, we create an auxiliary predicate s’ whose facts are

62



given by
{s'(x,y) | %,y € sources”(D)} .

Then, s-facts are simply an intersection of p-facts and s’-facts and can be represented

by the following rule:

s(x,y) < p(x,y), 8'(x,y).
The same construction can be presented in a relational style as follows. Let
C' = sources”(D) x sources™(D)

be a binary and finite relation. Then, the database D’ contains every relation R’ = R < C,
such that R € D.

It is immediate to see that the lemma follows. ]

Now it is left to show that during the run of the algorithm, only tuples from D’ are
retrieved.
Let gsqrp denote the set of facts retrieved from D during the run of QSQR algorithm.

Then, we need to show that

Lemma 9.8.

qsqrp = qsqrp.

Proof. 1tis trivial to see that

gsqrp © gsqryp.

Let f be a D-fact used by the algorithm, i.e., f € gsqrp. We will show that f €
D'. The algorithm employs a straightforward top-down evaluation strategy, in which the
primary motivation is to avoid producing facts that do not participate in derivation of
any answer facts, i.e., it retrieves to the extent possible, only the required facts from the
database. Consider again the value of consts*(II) which denotes the set of all different
values that can be assigned to nodes of reduced expansion graphs of II. It is almost
immediate to show that the set of values exposed by the top-down evaluation technique is

bound above by the set of values that can be assigned to nodes of non-reduced expansion

63



graphs of 11, and by far by consts*(II). Therefore, from the above and from (7.2) it holds
that

consts(f) C consts*(IT) C sources™(D).

The lemma follows. L]

64



Chapter 10
Conclusion

In this research we studied the weak safety and termination problems (and thereby, also
the safety problem) for recursive DATALOG programs over infinite databases. We pre-
sented an algorithm that computes all constraints for IDB predicates that are (finitely)
implied by the constraints on the EDB predicates and the rules of a given program. We
also showed that weak safety guarantees termination if the database is founded, a natural
property in many models. Finally, for safe programs we presented an elegant evalua-
tion algorithm that computes the goal predicate in a top-down manner, using sideways

information passing.

65



Bibliography

[1] The Hibernate Project. http://www.hibernate.org/.

[2] W. W. Armstrong. Dependency structures of data base relationships. In IFIP
Congress, pages 580-583, 1974.

[3] C. Beeri and P. A. Bernstein. Computational problems related to the design of nor-
mal form relational schemas. ACM Trans. Database Syst., 4(1):30-59, 1979.

[4] S. Ceri, G. Gottlob, and L. Tanca. Logic programming and databases. Springer
Verlag, New York, 1990.

[5] T. Cohen, J. Y. Gil, and I. Maman. JTL—the Java tools language. In P. L. Tarr
and W. R. Cook, editors, Proc. of the Twenty First Annual Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA’06), Port-
land, Oregon, Oct.22-26 2006. ACM SIGPLAN Notices.

[6] R.F. Crew. ASTLOG: A language for examining abstract syntax trees. In S. Kamin,
editor, Proc. of the First USENIX Conference Domain Specific Languages (DSL’97),
pages 229-242, Santa Barbara, Oct. 1997.

[7] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis us-
ing general purpose logic programming systems—a case study. In Proc. of the Con-
ference on Programming Language Design and Implementation (PLDI’96), pages
117-126, New York, NY, USA, 1996. ACM Press.

[8] A. Deutsch, B. Ludéscher, and A. Nash. Rewriting queries using views with access

patterns under integrity constraints. Theoretical Comp. Sci., 371(3):200-226, 2007.

66



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the pres-
ence of limited access patterns. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh,
editors, SIGMOD 1999, pages 311-322, New York, NY, USA, 1999. ACM Press.

E. Hajiyev, M. Verbaere, and O. de Moor. CodeQuest: Scalable source code queries
with Datalog. In D. Thomas, editor, Proc. of the Twentieth European Conference
on Object-Oriented Programming (ECOOP’05), volume 4067 of Lecture Notes in
Computer Science, Nantes, France, July 3—7 2006. Springer Verlag.

D. Janzen and K. De Volder. Navigating and querying code without getting lost. In
Proc. of the Second international conference on Aspect-Oriented Software Develop-
ment (AOSD’03), pages 178—187, New York, NY, USA, 2003. ACM Press.

S. Javey, K. Mitsui, H. Nakamura, T. Ohira, K. Yasuda, K. Kuse, T. Kamimura,
and R. Helm. Architecture of the XL C++ browser. In Proc. of the Conference of
the Centre for Advanced Studies on Collaborative research (CASCON’92), pages
369-379, Toronto, Ontario, Canada, 1992. IBM Press.

M. Kifer. On the decidability and axiomatization of query finiteness in deductive
databases. J. ACM, 45(4):588-633, 1998.

M. Kifer, R. Ramakrishnan, and A. Silberschatz. An axiomatic approach to decid-
ing query safety in deductive databases. In Proc. of the Seventh ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’88),
Austin, Texas, Mar. 1988. ACM Press, New York, NY, USA.

R. Krishnamurthy, R. Ramakrishnan, and O. Shmueli. A framework for testing
safety and effective computability of extended datalog. In Proc. of the ACM SIG-
MOD International Conference on Management of Data (ICMS’88), Chicago, Illi-
nois, June 1988. ACM Press, New York, NY, USA.

C. Li and E. Y. Chang. On answering queries in the presence of limited access
patterns. In J. V. den Bussche and V. Vianu, editors, ICDT, volume 1973 of Lecture
Notes in Computer Science, pages 219-233. Springer, 2001.

D. Maier, J. D. Ullman, and M. Y. Vardi. On the foundations of the universal relation
model. ACM Trans. Database Syst., 9(2):283-308, 1984.

67



[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

R. Manevich. Data structures and algorithms for efficient shape analysis. Master’s

thesis, Tel-Aviv University, School of Computer Science, Jan. 2003.

K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for increased
modularity. In A. P. Black, editor, Proc. of the Nineteenth European Conference
on Object-Oriented Programming (ECOOP’05), volume 3086 of Lecture Notes in
Computer Science, pages 214-240, Glasgow, UK, July 25-29 2005. Springer Verlag.

R. D. Paola. The recursive unsolvability of the decision problem for the class of
definite formulas. J. ACM, 16(2):324-327, 1969.

R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. Safety of recursive Horn
clauses with infinite relations. In Proc. of the Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’87), San Diego, California,
Mar. 1987. ACM Press, New York, NY, USA.

T. Reps. Shape analysis as a generalized path problem. In PEPM ’95: Proc. of
the 1995 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 1-11, New York, NY, USA, 1995. ACM Press.

Y. Sagiv and M. Y. Vardi. Safety of Datalog queries over infinite databases. In
Proc. of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS’89), pages 160-171, Philadelphia, Pennsylvania, United
States, Mar. 1989. ACM Press, New York, NY, USA.

O. Shmueli. Decidability and expressiveness aspects of logic queries. In Proc. of
the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’87), San Diego, California, Mar. 1987. ACM Press, New York, NY,
USA.

M. Vardi. The decision problem for database dependencies. Inf. Process. Lett.,
12(5):251-254, 1981.

L. Vieille. Recursive axioms in deductive databases: The Query/Subquery approach.
In L. Kerschberg, editor, Proc. of the Firstint. Conf. on Expert Database Syst., pages
179-197, Redwood City, CA, USA, 1986. Benjamin-Cummings Publishing Co.,

Inc.

68



[27] L. Vieille. Recursive query processing: The power of logic. Theoretical Comp. Sci.,
69(1):1-53, 1989.

[28] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog and binary decision
diagrams for program analysis. In K. Yi, editor, Proc. of the Third Asian Sympo-
sium on Programming Languages and Systems, volume 3780 of Lecture Notes in

Computer Science. Springer Verlag, Nov. 2005.

[29] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis us-
ing binary decision diagrams. In Proc. of the Conference on Programming Language
Design and Implementation (PLDI’04), pages 131-144, New York, NY, USA, June
9-11 2004. ACM Press.

69



Yo .parents VP>TID HY MTAY D) VI YNVW OwN {dep_parents; } ~» {dep_parents; }

VNN 01Pn2 'Bill'-> mon»nnn dep_parents Yy M7y NN P9 9910 g NIVNN LPITIO
SV OO 19D P N 1D PEONY I VN DIPINN NN D J9INI YAIP NYRIN DIPIRNY PO
i i f i

(.q 5y M1y

NNIN .parents VPITION NX TIVYY PPN NN NNTN NN NN TIVYD 1N XD NYDIA NN
.1212) 1D ,NTAIW NMNNN 1IN parents VPITIAD NONMNNN NPV ONN PITAY G DINND NN
ORI NN NIY .NOYW 2NN DTN PIYIYD NN NIDINN NN DOYP NMIX 8.1. vLavNa
DIIMON DY DD top-down NVIYA TAIY DNININD .DORNND TIYY DIMINONX NN

MY DMINONRN NI NNDNA NN MNN . Vieille bv QSQR Tryw
YPHY PPN

Datalog 5¢ 57192 NTaya mMnNTIN NPYaN X PITAY 1N NOW NTIAYN DY MIWIN TUNnd
2OV PN



YTY DY NYID INDID NNDIN DPNO1N DM >TON Syn Datalog N1»on Sv 0ON NHyaw Tva

MNLA YK 22N Y5, 00120 D) DNMN TON TWNRD D 7.1. VOWNI NN NN PTIN DIV
ML D) 1991 MKW DI NN YIN 19N

7YY

NI .MMV NMIN TIYY DV MY PIDYY MIXIT,MINPVIN NINY NN NIYMY IINN
YT 2N DTN PTHIND DY PNDIN DINNI TONA 1 THY
DY MIMNN MNIRYN NN DOYAP DPMINNN DXVPITIV DY NPNDN INIDIN NOHY 1NN DTN
DN ToN
MYNIND MIMN MXIAN MNDRYN PI IR (NNINN 295 > IN»2) EDB vpr7199 0 p OX 07192
991D 012

T2 NN p(C, €') ORN NP 1N -1 c DMIAP NV YN .1

p(c, ¢')-v 75 ¢’ ©WIAPN 9 NN NINND I ¢ Y1IIPN NP {p1} » {pa} o ON .2
Ap2} ~ {p1} 79NN 1NN 123D NNYIT I9INL .OMPNN
YN ¢ YIAPN DMPY TI € OWNIAPN DD NN NINDD I X, Dw{p1} NN N OX .3

D {2} NIDINN 220 NNIT 19N DT NN p(C, ¢')-¥ O»PNN

7PN NIDNNY P90 I NIAD 1NV .PHRNMIVI NNRI TIWYD N1 DY MdYan NY’NNA
270 79 XDV 72N0N L0 DY INDA .51 2IWINN DTN NNN NNIX TIVYD HONY »T51 NNV

:INT DYOINNN TWNR q NIVN VPITID DY NINN PND
parents(X, y) «— child(w, x), child(z, y).
dep_parents(Xx, y) «— dependant(Xx, y), parents(X, y).
q(y) < dep_parents('Bill', y).
oN 0»pnn child('c', 'p') ,0192 .dependant-y child ©»PINN OYOPITI92 NYWNNWN NNT NN
IUNI O MNIY HP .'d2'-2 5N 'd1' ox ©»pnn dependant('dl’, 'd2')-1 'p' Sv 130w ¢!

DMIMPNN DINAN DINIDIND

{child;} » {child,}, {dependant;} » {dependant,}

MM N9 DINN) .OPPNN D {q1} NIPRN 7 NNV NP INNT,DDIAN 1N DININ TON)

TPIMNNY NI TN ,0OTNIN DOVP>TION Y DINPN 2IWNY DNININN NN PYPNN NIONI
NN N9YON > YY DXIXNN ,parents VPITID SY MTIWY 0192 .NINI N PN MMDONPI NN NNY

T NN MNMPN dep_parents DY NITAY .NPND \IDNX GR DINMPN DN )NYRIN PIND DY



7972 231 child VPYTIH MY NTINN VI .NPND ITN NMYXNNI NNVIN NN NYN
: N2

{child; }» {child,} (1)

.child vVP>71792 >-1-N (position) ©IPI YION child; IWND
,2'N NIDPRN NN 901 child VPYTI9 DY MTIYN DI GOIN BN OMNN) Y TOND P DNMNND NN

.0»pnn child('c’, 'p')-w 75 'p' 127y ¥ 91D 1901 DMP NYNRI DIPHA 'c M1aP 9D Ny MDD

NPIDIN DY MNPV MT YN YT NYN) )HY YW’ DY DNTIAY DY NODINN OV NTIAYN
NYRY NN DXPONN YTIN )Y .NPAID IR DINMPNN DMANDPN DN 701 Syn Datalog
s MORVY ONN YNV NMINYVIN
9901 95 DN YIN J9IN2 NNV XIPN NI0NN (weak safety) nwon mmoan»ya .1
.NIVNN VPYTIOY NITIIW DY XD 790N 12 NN YPIN YW MOYIN HY YD
SV MTAIYN 23 NN D2PY 1N OX HINHVN XIPN NI0NN .(termination) OPON NMYa .2
IDINN YPIN HY MDYIN HY IND 19010 P> DY NIVNN LPITIO
Y15 92ANDHN NNT NNV .NYIDND MM NYHNN MNPVIAN DY YD NN DIPIND MY
Y95 NPNX DPON
YN DNINIR DX NNIN ,NDNNND .NYINT MNdMOIN NMYIAD NNV PIND NN N NTIAY
DOVPTINN DY DINDIND DI NN AVND , DPMNNN DOVPTIND DY NPND YN JN1NA
.D»INON

oY child VPYTI9 YYN NITHIIM 'Moses' YW DNMINTP MIAN NAYND TYUX NIDINN NAY ,NOINT
(1) 198D N
moses_ancestor(x) < descendant('Moses', X).
descendant(x, y) «<— child(x, z), descendant (z, y).

descendant (x, y) «<— child(x, y).
@+ {moses_ancestor; } -y {descendant; } «~ {descendant,} ©¥$19N D P>O> DNININN

.DMPNN
NNIN .NIYINN NMINPVIN NMYA NX YIOND DI DMINONRN DY NXIN NINNIN 1N1NL ,NYD

q 2NN HY NIVNN VPITI Y N7NAN YON J19IND NNV XN NN 1 6.1. VOIVNI DININ
DB {q1,...,qx} 2NN 0»pnn k 571 arity bya

UON I9INA IMOLA NN 'Moses' DY DNNTPN MIANN DX NAYNNN NMIDIND D PIONY 91 NN
9D 190D YT 1MV ,NNMNON D) NIDIND D NMINY ¥ NNV DI N TMIDNY MININD TN DY
.NIVNN VPYTID DY MTIVN DO NN PIOND NN Y MIDINN YPIN DY MHOYan Y



public [extends T, T abstract | interface];
: NN 1Y Nopwn Datalog-n m0m
q(x) < public(x), p(x).
p(x) < interface(x).
p(x) «— extends(x, y), abstract(y).
(EDB 71%>p2a N Extensional DataBase) 893905 ©X0>799 NY2IX2 DXWNNWN NNT 1NN
TONI MNYNIN NPYOT DNX1N PN DXOPITIA .abstract-) public, interface, extends —
71¥p2 N Intensional DataBase) 95315 DX0P>T79 %Y N°)0INA OXITNN 1D 1D .0MNMN
TN PIIN OINNIN TONI NINYND) 1PRY NPNOIY DIMIRNNN DOVPITIO 0N WX .p-1q— (IDB
LDXNNNN VPYTION NAY NT2IY D) NIPIN 71P8DT HY 191N NNV .1PIDINN 2IWON 7y
3 OPYTIVY MNNIND NITIY NNONNI OINDN 1Y HIVNN VPITI 1N ¢ NNT NN

.2>07p7 Datalog n1351mn5 1710 AU MmN RY wand 0y 10 JTL-2

YNIDIN DIV NPANDIN NPT 12) DN TON YT DY ANPNN NINNN DYV D) ,DPY0 IINID

TIV NOOP TN .INM NPONNN NYIY DI1D MPONN DY 291D 1901 P ,5WND 15 .00 NP
WP RV YN "uses” PN DN HWND INIANI .NTD DMINN) TONI NP DY MSPITIN

Y DN’ DY VIV IMNON D) NTINAD NROIP,NIYIT NI, MPONND PNV P INYID YDV
NYND DI YIT XD NHNIDN NPONNI MYNNYNN MPINND 190N DINN : XA 12192 DIDN N
LPPY IR DY 19INT DX °2,)N2 NYHNYHD NINONN NPONNN IWN MPYNNN 190N TN ,DIDN N
WNY) N GONA .ODDIAN DN PTON DINNP NNIN DINM) YTON DY NNIN NNONY N NIN
DN DN OPNINNN DXVPITIO DI D (MLWIN

mnroa

.DXDDI12N) OPNDIN OMNNI TON H¥N MOYMNN Datalog 11735112 X1 12 HY 1NMIYNN 150
DIMVA N ORD NINRD NMIDN NIAY MIAPD NN )NURD TYND
:child »mNN VLPYTI9 BY NITHNN NVIVI XPINTA PIAM

moses_parent(x) «<— child('Moses', x).
SV DYNNN YD MNY NN DD TYUNX MOSES_Son VP TIAY MTAWY 23 NN DY NN
952V YaP) ON TR .TPNDPN NPNY NDIDY NIRXIND DD DN 1N DN TON ON .'Moses'

199) PN PNN THN NIRIIND 0NN DY IND 190N NPNY 01D 197 535 YNDIN DMNNI TON
.MV NINN D PIO)



9899

DNYY INNA VN NTHN TYNR DXANN DIV TN ,NPND NPXYI O’ OMIM YTON KD 77172
,N9YD IXIVIN DINNIN YTON DY DTN IR DIPNA ,211D .DNNOINX DN Y TOND DN
PNOPR NPNOT DY OMON DY MYAIN RV DINY TN

AIND DYNDIN OMNINI MTON YN NNYPN IWX Datalog oD XNYINY NOWA POIY NIV IpPNHN

N> ONN IIYD ,NNVA NN Datalog n251n ORN NORWYN NN NPDIY IR N2 MIPIYN MIYIN
MNLA NPIDN NIY,JONA IANDPN XIN OMNMN TONY G DY NPND NIRXIN THN NN
MINNIND NN XY YN OIND I XIN TIVY DIMINON PN NINIA

19IND .NPIPNI MNPD 51>vVH Datalog H¥ N2aNINY XIN DPNDIN DINM TN YONIP VINY
DPAMHDIN NPXDT T DY NPIPND KN 1PN N7 Datalog 1n0omnD Mayd N ,m
TPNPND MDD NV NDIINN NINNN ,RINT
qx + 1) < p(x).
q(x) < q(x), p(x).
:NNaN Datalog 19510 »7> Sy NN Mind)
q(y) < p(x), succ(x, y).
q(x) < q(y), p(x), sqrt(x, y).
sqrt NPMHDIN NI INY 57510 DINNIN TON 1IN 7PIPND MNP0 NI NITHN NIDINN NY
YNIDIN DIV, NPIPND ITIND NPNDIRN NPXDIN DY 12NN NN 29PY NN HY .succ-)
T2 O~y DY 91D 1901 DMP X DOV NPJMDN NIDINA WHNW) sqrt P89 HWnd T5.01PN0

.DO»PNN sqrt(x, y)-v
1ON2VMN

D2 NN TPONNID NN AN 11PO)IN DY NNINNRD I DMNDIN DN YTONI WTIND Iy
12192 Y9I1DPN 1PN MINPTN MIDNNN DI .Web-1 NN TWR NPETIN GOIN NN IN MIDINN
NPYNN IN1NA,NANTI NI VI GRIINIDN NN P10 1N KD 12 O DI1THIDN POIDINK NINY
NTY MY INX NOY NTINND MNP IUR ,MINND MY IUX MPONN H¥ DI0N XY 1901 1o C
TONWI N NIDINN DY MNDORY NOYIN NITHNN INPA NPYILVN TITN )2 DY .C-5 wasnn
DMOIN N ONNIN

0N DY MNYINRY DINWY Nwann X JTL mny Ny nav Nndn 9pnnd 1O P800
DDPN OMIN TON YT DY 8PN 0NN T JTL-1 .Datalog Sy noovian navn

NN (2) W (public interfaces) ©2291 DXPWINN 95 (1) NN NN WX JTL NnORY RO
DOPIVDIAN PYIN IN NPONNN DIWIY TYUNX DM MPYNN IN DPYWINN D



800Z - ST-800T-DSIN SISOUL "9S'A - Juaunteda 9ouarog Jondwo)) - uoruyo .



20
21
23
46
47
47

29ANYIAOR NSRS

.......................................

---------------------------------------

.. .closure(r, C, X)

.r_constraints(r, C)

................................. program_constraints(z, C)

---------------------------------------

......................................

. 1db_eval(p, Q, X)
. rule_eval(p, Q, X)
atom_eval(p, Q, X)

= Y T SR SR SR



QY7290 N9

......................................... Datalog n1>xn 2.1
.......................... 2.1 o°wann multi vP>70 YW N> 2.2
............................... causations M2y aponopm 4.1
................................... DIVIR AWM NN 7.1
....................... Hibernate vp>>1192 jar *xap panmon - 7.1
.......................... 7.1'0n mann o ay nana e 7.1

.................... 7.1 '0m 72077 PN MY XX A A 7.2



..................................... mpw o .9.2.2
............................................ o010 .9.2.3

.................................................

mipon .10



29190177 1970

NO93IR2 RPN
< Nwan .1
o TXPD o L1.1

O mno 710N oW 1.2
7/ W XN (1.3

< Mmoo n°po .1.4

O mman 1.5
10 RIMITRR MY .
10 (opu°0) 7ann 2.1

Ll (7povano) nvnawn 2.2

1 7Aoo 2.3

15 nmwan nves 3
18 7792 PR 2R npont 4
2 AR NOIDINK QIR npen .5
29 SRS NITUAN NvYa IS .6
3 e 2107 NvYa Pane 7
G J 7an7n Sw o007 7.1

37 72777 YW 29732 N 7.2

B8 D°RXMIXN 7277 Sw 090 .7.3

40 D°AXNINA 712077 P 0°973 190n v aon 7.4
42 Datalog n1°1510 @ n2wsmsT Ny Pns .
A5 TR ANTDN .
AT TRRIIR 9.1
3772 mMn21 nna 9.2

S NN N1 N2 9.2



D7) 501 77 SV INMNINA NWY) IPNND
AWNNN OYTND NVNPII

ADON NIMINN JY IRIVID MIDNDV )IDN — NIV NTIN NN
YMNONYNA NAYTIN



800Z - ST-800T-DSIN SISOUL "9S'A - Juaunteda 9ouarog Jondwo)) - uoruyo .



»101 Yy Datalog 5190 719y
0001219 DNVIN 01N

PNN DY NN

ININD NOAPO MWIITN DY OPON NN DYD
AWNNIN YN DIYTNIY TODMN

’N29Y NIYDAN

DNV MNDNOV IDN — IOV VIDD VIIN
2007 "2NNT NN NYOYn Nav



800Z - ST-800T-DSIN SISOUL "9S'A - Juaunteda 9ouarog Jondwo)) - uoruyo .



101 Yyn Datalog 5990 7r9y>vY
0907521 091DI’N OIN)

’N29Y NIDAN



